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Abstract

TaleBlazer is a location-based, augmented reality game engine that allows users to

both design their own games as well as play them on mobile devices. This thesis
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Chapter 1

Introduction

With mobile technologies becoming accessible to a wider range of people, applications

utilizing tablets/phones are becoming more commonplace. One genre of application,

augmented reality, consists of applications that feature ways of extending the player's

environment via such things as visual overlays or location-triggered pop-ups. Given

this wide availability, one natural extension of mobile augmented reality applications

is to use them to support learning, allowing students to become more immersed in

given scenarios. The Scheller Teacher Education Program (STEP) has done many

projects in the field of educational mobile technologies. One such project, known as

TaleBlazer, focuses on location-based augmented reality games. One of the current

goals of TaleBlazer is to extend games to be multiplayer.

1.1 Motivations

Multiplayer games will enhance TaleBlazer, as they will allow players to have more

shared experiences/interactions and further require players to work together in the

context of the games. For this type of game to be feasible, there needs to first be a

stable multiplayer server that can allow multiple players to play games similar to the

already existing single player games. Once this stable server exists, there is a whole

new realm of interesting multiplayer game mechanics that can be added to further

expand the TaleBlazer design library.
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1.2 Chapter Summary

Chapter 2 will provide background on the history of TaleBlazer, as well as details

about its current state. Chapter 3 will give context for this new multiplayer func-

tionality and provide guarantees that a successful multiplayer server should be able

to uphold. Chapter 4 will detail the new user interface elements that aid players in

playing multiplayer games. Chapter 5 will explain how the infrastructure for playing

multiplayer games is set up and how information is passed between mobile devices.

Chapter 6 will describe the different tests performed with multiplayer games. Chapter

7 will suggest new features that can be added to improve multiplayer games.
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Chapter 2

Background

TaleBlazer is less of a standalone game and more of a powerful engine that allows both

players to play games as well as designers to create their own games. TaleBlazer games

are often created to enhance an experience at a particular location. For example, the

TaleBlazer project is currently partnered with Old Sturbridge Village, a historical site

in central Massachusetts. They have a historical economics game that visitors can

play, which further teleports visitors into the early nineteenth century environment.

The software itself consists of three parts-the editor interface, where users create

games, the mobile interface, where users play games after they are created, and the

servers, which serve as both a repository for games and a mechanism for hosting

multiplayer games.

2.0.1 Editor

This software allows the user to play the role of the designer and create his/her own

games [7]. While the game itself is played on a smart phone/tablet, the designer

defines the game via a web interface by selecting a location for the game to be played

and adding agents to a virtual map of this location. From there, the designer can

further define the agents and add more options to the game as detailed in Appendix

A.
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Blocks-Based Programming

In addition, using a set of programming blocks, the designer can specify how these

defined options are affected through interactions with different parts of the game.

These blocks allow a low barrier to entry for game creation and are used to define

any dynamic aspects of the game (agents appearing/disappearing, traits changing,

etc). For example, in Figure 2-1, picking up the Red Coin decreases the world trait,

"Coins in World", by 1, increases the player trait, "Coins", by 1, makes Diamond 1

appear, and increases the world trait, "Diamonds in World" by 1. More examples of

TaleBlazer blocks appear in Appendix A.

when pjayer picks up, RWd Cqi

change [cis in World : fworld : by

change, [Coins : JOf { player : }by, E2l
include i amond 1 in world7

change Diamonds in World Of world : y_ EL

Figure 2-1: Example Blocks in the Editor Interface

2.0.2 Mobile

The mobile side of TaleBlazer contains all software that runs the user created games.

Because the mobile code must be able to run any user created game (including all

of the script blocks), it must be sufficiently general to support all possible game

operations.

The mobile interface contains a number of tabs, only some of which are shown to

the player (based upon which tabs are selected by the designer). The two basic tabs

are the "Home" tab, which shows the player high level details about the game and

the "Map" tab, which displays the game area as well as all visible agents and the

location of the player.
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2.0.3 Servers

In the software, there are two distinct sections of server code-one for the multiplayer

server and one for the repository server. The multiplayer server, described at length

in this paper, coordinates multiplayer games by propagating messages from/to the

players of a game as players interact with the game world. In addition, there exists a

repository server that stores all of the necessary files for games (pictures, videos, and

the game files themselves).

2.1 Previous work

Within the STEP lab, there have been previous versions of similar software. Many

of the functional components of TaleBlazer were derived in theory from components

of previous iterations.

2.1.1 MITAR

Similar to TaleBlazer, MITAR also allowed users to play location-based, augmented

reality simulations. However, game designers had a smaller set of game elements to

choose from and had to create them without a blocks based programming language

(early games had to be created directly in the MITAR-specific markup language). In

one of the MITAR games, "Environmental Detectives", players tried to detect the

source of a toxic spill by questioning virtual characters and taking virtual samples in

the environment to see how far the spill had spread [2].

2.1.2 StarLogo

Also developed within the STEP lab, StarLogo was a tool for creating simulations to

help understand systems, such as bird flocks and traffic jams [5]. The newer version,

StarLogo TNG (The Next Generation), added 3D graphics and sound [6]. StarLogo

utilized a similar blocks-based programming language to TaleBlazer and was one of

its predecessors.
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2.1.3 Other STEP Lab Multiplayer Games

The STEP lab also previously tested two other multiplayer AR games. One game,

Outbreak L MIT, was a strictly indoor game that was played on Pocket PCs. Players

had to work together to interview virtual agents and gather items to control the spread

of an epidemic [3]. The other, POSIT (Public Opinions of Science using Information

Technologies), was a game that revolved around a hypothetical policy question (ex.

Should MIT build a level 4 biohazard laboratory nearby?). Players would assume

different roles (ex. biologist, resident) which initially have varying degrees of support

for this policy and they work to gather evidence to convince the other players and

NPCs to sway their decision. Upon being swayed one way or the other, NPCs would

change their tone/message to reflect this new position [8].

2.1.4 TaleBlazer

TaleBlazer itself is a descendent of MITAR and incorporates the ideas of other blocks-

based platforms such as StarLogo. Currently, many functionalities (detailed in Ap-

pendix A) are implemented for single player games, both on the editor and in the

mobile code. There also exists a defined model that is used to provide structure for

the game files.

2.1.5 Multiplayer Server

There had been previous work done to start the multiplayer server prototype. The

general protocol for sending messages was set up, as well as a server that could connect

with mobile devices. Multiple players could be connected to a single game world, but

the process to do so was unwieldy and very susceptible to human error. Also, due

to intermittent connectivity, some messages were dropped and there was no system

place to detect whether messages had reached their destination (and resend them if

they hadn't). The game states of the players could very easily and quickly diverge,

thus making any sort of real world multiplayer gameplay impossible.
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Chapter 3

Intro to Multiplayer Games

In TaleBlazer single player games, each player has their own device and is looking

at their own game world. Many people may be playing the same game, but nothing

anyone does will affect anyone else's game. All players can be playing the same game

at the same time and, assuming there's a coin in the game, each player can pick up

their own version of the coin. But what if the game designer only wanted one coin for

everybody and only the first person to pick up that coin would get it? For this, the

game designer needs additional functionality and the ability to have many players in

a single shared game world.

3.1 Possible TaleBlazer Multiplayer Games

In order to define multiplayer mode goals, there was an initial exploration of the

possible use cases. This allowed for a more clearly defined vision moving forward.

3.1.1 Player vs. the World

This type of game involves many players interacting with a single game world without

any clearly defined alliances. Therefore, all players should be viewing the same game

world and their actions should affect everyone else's world. Though there may be

competitive/cooperative elements, there is no other defined subset of other players

21



that a player is said to be working with or against.

Example Games

" There are many agents in the world. Everyone tries to collect the agents, and

the one with the most agents/highest score is considered the winner.

" There are many enemies in the world and different ways to defeat them. Who-

ever can defeat the most enemies wins.

3.1.2 Single Cooperative Team

Games like this are strictly cooperative-each player in the instance is working toward

a common goal. The players may have different roles allowing them to play different

parts in reaching this goal.

Example Games

" Players can have different roles which allow them to perform different actions

on agents. For example, some players can open treasure chests and others can

pick up coins.

" There could be a epidemic style game where agents start out randomly infected

with a virus and the virus can spread through players making contact with

infected agents (and players can get infected). Players would have to work

together to combat and stop the spread of the virus.

" There is a certain agent that requires team members to coordinate actions. For

example, to defeat a dragon, players would have to coordinate "taunt", "taunt",

"stab".

3.1.3 Multiple Competitive Teams

Multiple Competitive Team games consist of multiple players on competing teams.

Each team could be working towards the same goal, or different teams could have

22



different goals (possibly goals with conflicting tasks). Note that Player vs. the World

is essentially a subset of competitive teams-each player is merely a team of one.

Example Games

" There could be a quest-style game where players have different roles in their

respective teams that aid them in completing these quests. Teams compete to

finish the most quests/get the most points from quests.

" There could be an environmental disaster game where one team is working

together to spread the disaster and another team is working to stop the disaster

from spreading.

3.2 Multiplayer Goals/Guarantees

The multiplayer server keeps track of all "instances" of games being played. An

instance consists of a game and all of the players currently playing that game in the

shared game world.

The end goal of a multiplayer game is to give all participating players in an

instance a shared game world. However, because TaleBlazer is run on mobile devices

which aren't yet known for their consistent internet connections, the server will not be

able to keep all players synchronized at all times. Instead, the system ensures that all

players who can connect to the server will eventually see the same game world-though

it makes no guarantees about the amount of time to possible synchrony.

However, the intermittent connectivity should not hinder the game's progress.

Therefore, most elements of the game are not mediated by the server unless it is

crucial. This allows for players to make most changes to their local game world

instantaneously and have them integrated into the server later.

The one crucial action the server must mediate is agent pickup. Because agents

are often very integral to games, the server must be able to guarantee that no agents

are ever duplicated. That is, once a player picks up an agent, no other player can
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also pick that agent up - thus ensuring that only one copy of each agent can exist in

the world.

Eventually, multiplayer will be able to replicate and extend upon all single player

elements and blocks(as listed in Appendix A).

3.3 Example Multiplayer Game: "Don't Take Me

Treasure"

Created for a formal play test in summer 2013, this game serves both as a demo of

the multiplayer features present after this project as well as a test of those features.

In addition, it highlights certain features that distinguish multiplayer games from

single player games. The game is played on an indoor region and can thus be played

anywhere. The premise of this game is that the players are a group of treasure seekers

guided by their captain (the person administering the game/test). There are roles

defined for each type of player.

The captain starts up the instance and instructs each of their treasure seekers to

connect to that instance. When they enter the instance, they can all confirm that the

map tab has 10 objects, the player tab reads that the player has picked up no coins

and diamonds, and the world tab says there are 10 coins in the world (Figure 3-1).

The captain can then instruct the treasure seekers to pick up the coins, either

one at a time (with one player trying to pick up each coin) or with all players trying

to pick up a single coin. This demos/tests both successful pick up of agents by

a single person and the consequential disappearing of those picked up agents from

other players' maps. In addition, after all of the coins have been picked up, players can

confirm that they got the expected coins by looking at the values in the player/world

tab, as well as agents in their inventory. This ensures that traits have also been

properly propagated.

Following that controlled test, the captain can select to add more agents to the

world via actions on his/her player tab (also shown in Figure 3-1). After clicking on
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Figure 3-1: Don't Take Me Treasure, Start State

the "Diamonds" action, 25 diamond agents will be included in the world, and the

captain can confirm that each player can see the new agents on the map (Figure 3-2).

The players can try to pick up the diamonds as they see fit-it turns into a com-

petition of sorts, especially since the players don't know what diamonds the other

players are trying to pick up. With enough players, this also turns into a reasonable

load test for the server.

Finally, the captain taps the "Pirate" action, causing two agents to appear on the

map-an Angry Pirate and a Cannon. Players tap on both, but the cannon seems to

be the only option to defeat the pirate. Each treasure seeker can only hit "Fire!" once,

and the cannon has a hidden trait, "Number of Fires", which counts how many times

it has been fired. Once it reaches a predetermined number of fires, it excludes the

angry pirate from the world and includes the treasure chest (if there aren't enough

treasure seekers to reach the predetermined number, the captain can fire multiple

times to get up to the required number). From there, the players tap on the treasure

chest and are informed that they have completed the game (Figure 3-3).
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Figure 3-2: Don't Take Me Treasure, World after Diamonds

Figure 3-3: Don't Take Me Treasure, Pirates Sequence
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Chapter 4

Multiplayer User Interface

For single player games, TaleBlazer offers many affordances for how to progress game-

play. Many of these are also useful with multiplayer games. However, there are some

new user interface (UI) flows/elements specifically for users looking to play multi-

player games. These elements seek to enhance and clarify the multiplayer experience.

4.1 UI for Starting MP Games

4.1.1 First Player

The user interface to start a multiplayer game looks much like that which starts

a single player game, but with a few key differences. Both types of games can be

found in the standard game selection screen, though once tapped, they show some

key differences. There is an icon and text to indicate multiplayer, and the text on the

button suggests that the player must be connected to the server to play (Figure 4-1).

From there, the player is taken to a loading screen while the player connects to

the server.

After the player receives the game file, if there are multiple roles or scenarios for

that particular game, a role selection screen is automatically opened, as in single

player. Note that only the first player has the capability of selecting the scenario-this

is because each instance must only have one scenario, and once the game is started
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Figure 4-1: Game Page Screen for a Multiplayer Game

the scenario cannot be changed.

Now the player is taken back to the loading screen with more information popu-

lated (if there are not multiple roles/scenarios, the player will be taken directly here).

From there he/she can reselect a role or scenario, start the game (if applicable), or go

back (thus disconnecting from the server and failing to start up the game) (sequence

shown in Figure 4-2).

4.1.2 Additional Players

If a player wants to share a single player TaleBlazer game that they're playing, they

share a Game Code. Each TaleBlazer game has a unique code that, when typed into

the game code screen, will take the player directly to the game's page (as in Figure

3-1). However, though multiplayer games have game codes that direct to their game

pages, a player would generally be more interested in sharing the world that he/she

is playing in. In this case, they would share the multiplayer "Instance Code" which

refers to a specific instance of the game (starting with an "i" instead of the Game

Code's "g"). The additional player(s) would enter this code from the same game code

28



Figure 4-2: Sequence of Screens Starting a Multiplayer Game

interface.

Once entered, the instance code will take a player directly to the instance, con-

necting to the server and bringing up a similar loading screen to the one for first

player. If there are multiple roles, the player will be prompted to choose a role. If

the first player has started the game already, the player will be taken directly to the

game. If not, the player will see a populated screen with the message "Waiting for

First Player to Start".

Because there are possible blocks to be run when the game starts, the game should

only be started once, and currently that duty lies with the first player. Unfortunately,

if the first player were to disconnect before he/she starts the instance, any subsequent

players will not be able to play in this instance and will have to start a new instance

in order to be able to play.

If the player has already connected to the instance, he/she can select "Connect to

Server and Continue" from the Game Page (the game will be stored under the "Saved

Games" tab of the game selection screen).
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4.1.3 Resetting/Deleting/Updating Games

Currently, there is no way to truly reset a multiplayer instance. Instead, if players

wish to start a game over, they need to simply start a new instance. Pressing the reset

button will remove all references to the particular instance in which the player has

been participating for that particular game. Pressing the delete button also will not

delete the instance. In addition to removing all references to the particular instance as

during a reset, pressing the delete button will remove all metadata associated with the

game, making it no longer available as a saved game. Unfortunately, there is not yet

a way for the player to tell if the designer has updated the game since he/she started

the instance. Instead, each instance that has been started will never be updated, and

all new instances will have the properties of the game revision reflected.

4.2 UI during MP games

Because multiplayer games have more going on in general, it is crucial that there are

also UI elements that aid the players in figuring out what events are happening and

why.

4.2.1 Player Icons

Unless the game is utilizing an indoor region, in addition to the agents, the map also

displays the icons of the other players. This allows those in the game to know where

their collaborators/competitors are. It potentially allows them to see which agents

are about to be visited (and possibly picked up) by noticing the players' proximity

to those agents. In addition, these icons display the username of the player when

tapped, so players can locate specific teammates if necessary (note that the other

player icons appear as fuzzy blue dots) (Figure 4-3).
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Figure 4-3: Player Icons on the Map

4.2.2 Agent Feedback

Because players need to wait for a server response to actually pick up an agent, the

"Pick up" button changes to a loading animation when tapped, indicating that the

device has registered the player's intent to pick up that agent. Once the the server

confirms a successful pickup, the player sees a confirmation message regardless of what

tab they are currently looking at (Figure 4-4). Other players who may be looking

at that agent at the time of pickup will get a message saying that someone else has

picked up that agent and the agent's dashboard will be subsequently closed. Finally,

if a player is looking at an agent when it is excluded from the world (most likely due

to actions taken by other players), he/she will get a message saying that the agent is

no longer in the world and the dashboard will also be closed.

4.3 Summary of UI Additions

The TaleBlazer UI now supports the following:

a There is an interface for easily starting up multiplayer instances that is much
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Figure 4-4: Sequence of Picking Up an Agent, with Feedback

less susceptible to human error, as well as a means for players to leave instances,

start new instances, and delete references to instances on their devices.

* Players can see/identify all other players on the map.

* Players receive feedback about picking up agents, and if they're looking at an

agent that is no longer accessible, it closes with a message indicating why it is

no longer accessible.

32



Chapter 5

Server/Mobile Device Interaction

The multiplayer architecture is split up into two separate parts-the server code and

the mobile code. The following chapter details how these parts of the code are set

up and how they interact with each other, as well as how they resolve any differences

that arise due to intermittent connectivity.

5.1 Server/Mobile Device Setup

The server is the primary location of all information about games being played -

multiplayer game files aren't saved on the devices. Any changes that affect the game

file must be sent to the server in order for those changes to persist across game play

sessions. The game file on the server is the primary source for the state of the game,

and all players save their game changes to and restore the game from the server.

Previously, the basic setup for the multiplayer server was mostly in place. The

server was set up in a way that would fit the current code already running on mobile

devices without any drastic changes, as it was very important to add this functionality

without breaking what already existed in the code base. The server code itself was

already started using node.js - a fitting choice given both its features and the fact

that most of the rest of the TaleBlazer codebase is already written in JavaScript. In

addition to the server setup, there was code for the mobile devices for connecting to

that server and sending messages.
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Node.js

Node.js is an asynchronous, event-driven platform which allows developers to write

server-side Javascript. The main event loop is in a single thread, and concurrent

worker threads process events as they come in [1]. Node.js allows developers to

quickly set up a TCP server which listens for connections (in the case of TaleBlazer,

from mobile devices).

Server Code

Primarily, the server needs to manage many mobile device connections. In order to

do so, there must be a unique identifier for each player connected to the server. In

the case of TaleBlazer, it is the username/user id. All players must be logged in

to connect to multiplayer instances. Each player with a distinct username can be

actively participating in at most one instance at a time. For example, if a player logs

in and connects to an instance with one device, he/she cannot also connect to that

instance with a different device logged in with the same username.

Many data structures exist to keep track of the many instances/sockets on the

server and are accessible by each socket opened: instanceIdToInstanceObject, game-

FileUpdateQueue, clientUpdateObjects. The instanceIdTolnstanceObject keeps track

of all players in the instance. In addition to basic information of that player, each

player object contains information about the number of the last update sent to that

player, the number of the last update received from that player, and the time the

player was last seen (if the player has disconnected). The gameFileUpdateQueue has

a queue of updates to be sent for each instance. Finally, the clientUpdateObjects

keeps track of all messages sent to the clients (again, organized by instance), which

is necessary for resending messages.

Using the asynchrony of node.js as well as the defined data structures, the server

can effectively receive, incorporate, and propagate updates. In most cases, when an

update is received from a mobile device, it is incorporated into the game file and

then the same update is propagated to all of the devices (including the one that
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sent the update). All devices incorporate this update visually (ex. moving a player

icon, making an agent appear). Though the initial sender most likely already visually

incorporated this update before sending the message to the server, it still runs the

update again, as the order of messages the server received may have altered the result

of applying this message.

Something that needed to be added to the server was error handling in general.

Exceptions caused server to completely stop running, which was certainly not desir-

able functionality, especially with multiple instances running that could be causing

the error. Everything is asynchronous, so the normal JavaScript try/catch function-

ality couldn't be used. In node.js, there is a way to catch all exceptions, but then

it loses the context of error, making it nearly impossible to recover from. There is

also the concept of domains, which are a way to group many I/O calls together (cite

node.js docs). It is possible to catch and handle errors within a specific domain so

that they are caught before the general "catch all" net. In TaleBlazer, it is necessary

to catch errors related to trying to send messages to disconnected clients. Therefore,

all of the write calls are now wrapped in a single domain, so if the server fails to write

to a socket, it closes the socket and notes the last time that particular player was

seen.

Mobile Code

Mobile devices need to be able to open up and maintain connections with the server.

The mobile devices themselves are responsible for ensuring the server connection, so

they should have mechanisms in place to ensure that they maintain connection with

the server. Previously, the mobile devices could open up connections to the server and

send messages, as well as retry to connect if they knew they were disconnected. Now,

in addition to that, should a mobile device become disconnected from the server, it

can reconcile updates with the server as well. It can also detect if the server has

been receiving its messages and try to reconnect to the server if it detects that the

messages are failing.
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Shared Code

Because both the server and mobile devices need to consistently update the game file

in the same way, it was simplest for there to be shared files between the server and

the mobile code. Note that though the mobile code doesn't directly manipulate the

game files in a multiplayer game, it does in the case of a single player game, process

of updating the game file is the same for both single and multiplayer games. There

are three files in particular that are shared. One file, updateState, is responsible

for parsing all of the update messages and updating the game file itself. Another,

mobileUpdate, visually updates the game on mobile devices. Though this code is less

useful on the server, many functions in updateState call functions in mobileUpdate

to update the UI itself, so the references must be preserved.

The third file, blockEvaluator, evaluates all defined script blocks in the game.

There are few instances where blocks will actually need to be evaluated on the multi-

player server itself (the only instance being the "when picked up" blocks, which is run

on the server, as the server mediates pick up of agents). It is important that blocks

only run in one place the results sent in messages (rather than blocks running in all

locations). For example, the random block would simply cannot be run in multiple

places and produce the same results each time, and if this were done in a multiplayer

context, the players' games would quickly diverge.

5.2 Messages

The server communicates with the mobile devices using a set of predetermined mes-

sages. These messages contain information about all game events, enabling all devices

connected to an instance to converge to a single shared game world.

5.2.1 Parts of a Message

Messages consist of two main parts. The first is the main information that the message

contains (parameters for initialization, parameters for updating the game file, etc).
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The second is the updateNum parameter (or requestNum in the case of the mobile

messages). This number increases sequentially with each message sent and gives an

order to each of the messages, and each message from a single entity has a unique

updateNum or requestNum (for example, there would be a message #5 for the server

and for each player). This allows the server and clients to apply each message in the

sequence which they were generated and also helps the them quickly notice missing

messages due to loss of contact with each other.

5.2.2 Initialization Messages

Before the player starts playing the game in an instance, it is important to initialize

the connection between the server and the player's device. Therefore, a series of init

messages open up the connection and deliver the game file so the player can start

playing the game in the instance.

First Connection with the Server

When the first player taps the button to start an instance of a particular game, the

mobile device first calls the repository server to get the next available instance code.

Once the mobile device has received that instance code, it opens up a connection

with the multiplayer server. The multiplayer server then recognizes this connection

and immediately sends an "initServer" message. This message has no other informa-

tion other than its type (initServer), and it indicates to the mobile device that the

connection was successfully started.

As a response to the initServer object, the mobile device will then send its own

init message. This message will include the player's username and user id, the id of

the game that will be played, the instance id, the last updateNum of server that the

mobile device received (should be -1 at the start), and the requestNum of the message

(starts at 1).

The server then takes that information and initializes the instance by downloading

the corresponding game file from the repository server and adding the player to the
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instance. The game file is sent to the mobile device in a "gameFileAndStateServer"

message, which also includes an updateNum, and playerId. From there, the player can

choose the role/scenario if relevant and start the game. Additional players connecting

to the instance for the first time will go through a similar messaging process, except

now that the instance is already initialized, the server won't have to make extra calls

to the repository to get the game file and will instead send the updated game file

reflecting the current state of the game.

Reconnecting to the Server

Inevitably, a player is going to have to reconnect to the server after their device gets

disconnected from the server. Should the mobile device knowingly lose connection,

it tries to reconnect every ten seconds, giving up after 20 consecutive failed tries.

In this case, instead of adding a new player, the server goes through the process

of reconnecting that player to the instance. Any messages missed are resolved by

resending them as described in section 5.2.4.

5.2.3 Game State Update Messages

After the connection with the server is established, there needs to be a way to pass

along all that is necessary to update the game file as events occur in the game. For

this, there are game state update messages. The bulk of the messages sent between the

mobile devices and the and the server are of this type. Previously, many game state

message updates were included, but many needed to be improved upon (detailed

in future sections). Each game state update message that originates on a mobile

device has a "propagate" parameter which indicates whether the message should be

propagated. The propagate parameter is true on the initial message which gets sent to

the server and is false in the messages that get sent to each of the connecting players.

When the message initially leaves the mobile device, the propagate parameter is set

to true. The server then applies the change to the game file indicated in the message,

sets the propagate parameter to false, and sends out a copy of the message to each
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of the devices connected to the game so they can visually apply that change to their

game. Table 5.1 lists the current game state update messages in place in the server.

Note that moveAgentToInventory is the only message that requires a response from

the server before the change is applied locally.

Table 5.1: Possible Game State Updates

Method Name Parameters
startGame propagate

movePlayer playerId, x, y, regionld, propagate

moveAgent agentld,setOrChange, x, y, regionld, propagate

changeAgentVisibility agentld, visibility, propagate

setChangeTrait entityId, entityType, traitDef~d,
setOrChange, value, propagate

moveAgentToInventory agentld, playerld, giverId, propagate

dropAgent agentId, playerld, propagate

addPlayer player

disconnectPlayer playerld

setRole playerld, roleld, propagate

setScenario scenarioId, propagate

setTabVisibility tabId, visibility, playerld, propagate

unlockEntity entityId, playerld, propagate

Local Changes

There are some messages that will only change the state of the world of a single player.

For example, setTabVisibility only includes/excludes the tabs of the player whose id

is specified. The unlockEntity message works in the same way-it should only unlock

the entity for the player specified. In the future, there will be more messages that

indicate that something should only be changed for a single player. Currently, there

are aspects of the game (action/trait visibility) that are not persistent over multiple

game sessions because they are not yet propagated to the server, where the only saved

copy of the game file exists (so if the player chooses to exit the game, these settings

will be lost when they start up again). This needs to be fixed in the next version of

the multiplayer code.
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Adding/Disconnecting Players

These messages are sent from the server when players are added or disconnected. In

order for the map tab to have feedback about where players were, it was necessary to

include these messages. Upon receipt of these messages, a mobile device can either

add or remove the corresponding icon of the player indicated.

Dealing with Conflicting Updates

There are some game state updates that could cause major conflicts with each other.

Most updates are fine as long as they are applied in order-the game state itself may

not make sense in the context of the game, but each player will still see the same

thing. For example, the health of a particular agent could be taken below zero by a

delayed change trait message. Some could possibly be more devastating. For example,

consider the game that has an agent with a health trait. There exists an action that

decreases the health of the agent by 5 points and an action that sets the health to

full again. Because the system automatically applies these changes on the initiating

player's game first to move along the game, the results of these actions could cause

the players to eventually see different values for the same trait.

For example, say the starting health for the agent is 25 and is currently 15 due

to by actions taken by the players. Now, Player 1 has disconnected from the server

but nonetheless triggers the action that decreases the health by 5 points. Therefore,

Player 1 will see the health as 10. While Player 1 is disconnected, Player 2 triggers

the action that sets the health to full again. Player 2 (and everyone else connected)

will see the health back at 25. When Player 1 reconnects to the server:

1. Player I's device will apply Player 2's change of resetting the health to full (so

Player 1 will see the health as 25) and his/her change will finally be propagated

to the server.

2. The server and subsequently the rest of the players will apply Player l's change

to decrease the health by 5, so everyone else will see the health as 20 (note

40



that the system cannot apply the change trait to Player 1 again, as the change

should not be applied more than once to be consistent with the block).

In this game, Player l's game state has diverged irreparably from the rest of the

players' game state. To remedy this possible situation, in cases of messages that

have the "setOrChange" property, the server will always convert "change" messages

to "set" messages. These set messages can always be applied on the client devices

and as long as the set messages are applied in order, the players' game states will not

diverge from each other.

5.2.4 Resend Updates Messages

In the all too common and unpreventable event that the mobile device disconnects

from the server, there needs to be a system in place to resend any missing messages,

and previously, there was no system to do this. The system now in place for resending

uses selective acknowledgements for resending messages (mobile devices also receive

positive acknowledgements that their messages have been sent, as they propagate to

all other devices, including their own, from the server)[4]. Before any messages are

resent, there needs to be a way to detect whether a message has been missed in the

fist place. In the case of the mobile device, there is a variable that keeps track of the

updateNum of the last message received from the server. If the message received is

not one more than the last message received from the server, then the device knows

that there are messages missing.

Assume that the last message received had updateNum 16, and the device has

just received a message with updateNum 21. The mobile device starts a queue of

messages received early and puts the message with updateNum 21 in it until the

mobile device receives the missing messages. It determines what range of messages

are missing (in this case 17-21) and sends a "requestMissingUpdates" message to the

server. This message contains no requestNum, and includes the start (inclusive) and

end (not inclusive) of the range of missing updates. If the mobile device receives

additional messages out of order (for example, a message with updateNum 22), it
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assumes that the server has not yet gotten the message requesting missing messages

so it resends the request and appends that new message onto the end of the queue.

In the meantime, both the client and the server have been keeping track of each

message that they have sent. Therefore, when the server receives a request for missing

updates, it references the object containing all of the sent updates and sends all of

the missing updates in "resendMissingServerUpdates" message.

Finally, the mobile device will incorporate all of those messages. Afterwards, it

will iterate through the queue of messages received early and following that, mobile

device will be back up to date. However, given the earlier assumption that if the

server sends a second message out of order, then it hasn't received the request for

missing messages, it is possible to receive two sets of missing update messages. For

this, the mobile code makes the assumption that if the updateNum of the received

message is less than the last received (valid) update num, then it has already been

applied and the message is ignored.

The server resolves missing mobile device messages in the same fashion. It keeps

track of the last requestNum seen from each connected device, and in that way resolves

missing messages for all connected devices as they occur.

5.2.5 Pings

Sometimes when mobile devices disconnect from the server, they do so silently. In

this case, both the server and the disconnected device operate as if they are sending

messages to each other, but in all actuality are not. If the a device ends up in this

state, it needs to be resolved as quickly as possible so it can stay current with the

server.

Therefore, if a mobile device hasn't gotten a message from the server in the last 15

seconds, it sends a "ping" message. The server should respond to the ping message

with an "ack" message. Upon receipt of the ack message, the mobile device knows

that it is still connected to the server.

If the device doesn't receive an ack from the server, it takes note and tries pinging

again in another 15 seconds if it doesn't receive any messages from the server. within
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that time If after 3 times there is no response from the server, the device disconnects

and retries the connection. From there, if the device is within range of wifi or a cell

phone signal, it should be able to regain connection with the server and incorporate

any missed messages.

5.2.6 "NoUpdate"

Sometimes the server progresses all the way up to the step where it increases the

update number to send a message but doesn't actually have a message to send. One

thing that would cause that would be failed pickups (when any player tries to pick

up an item that is already picked up). In this case, the clients would not receive a

message at that update number and proceed to request the message for that update

number (and the message does not exist). Therefore, there's a placeholder message

that is simply referred to as a "noUpdate" message, which the clients simply process

only for the updateNum.

5.3 Garbage Collection

As the system scales, it becomes necessary to garbage collect any stale data on the

server and mobile devices.

5.3.1 Old Messages

Because the mobile devices and server keep all sent messages in case they have to be

resent, old messages must be garbage collected.

Mobile

Each message sent to the server from a mobile device is associated with a unique

combination of player id and requestNum. This information can be utilized to remove

old messages from the mobile message queue as the mobile device receives them. If

the server is propagating this message, it should already have incorporated the data
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from this message into the game file. Therefore, once a mobile device receives a server

message with its own associated player id, then it can remove the message with that

request num from its message queue. Currently the message queue is being purged

of all game state update messages as they are incorporated in the server, but not init

messages (as they don't have associated responses for the mobile code to look for).

Server

Most importantly, because the server will eventually be handing many messages,

the old messages from the server must be garbage collected. Currently, there is no

mechanism in the code for doing this, as there is no acknowledgement indicating

which players have received which message. For now, as the number of instances

running concurrently on the server will be very small, this is not an issue. Later, this

will need to be implemented, possibly by getting rid of messages that are very likely

to have been received by all, and if a mobile device requests a message that has been

garbage collected, just resend the game file to that device.

5.3.2 Old Users on the Server

In addition to garbage collecting old messages, it will also be necessary to garbage

collect old users. After running many instances, there are bound to be many users

referenced in objects on the server who are no longer connected to the server. There-

fore, every few minutes, the server should clean out old users who haven't sent the

server any messages in a predetermined amount of time. Doing this is crucial for the

future when the server is scaled. Note that cleaning out users on the server is different

than cleaning out players-the game file will still contain all references to players, so

that even if the corresponding user has been cleaned out on the server, the reference

to the player's state in the game will be preserved in the game file. The server will

just automatically have to send the device a clean version of the game file.
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Chapter 6

Playtest

6.1 Basic Play Tests

In order to ensure stability, I conducted basic play tests. They would test the most

basic TaleBlazer game features, especially those features that would need to be me-

diated by the server.

6.1.1 "Picking up Pencils"

From the beginning, I decided that the most basic play test that the server would

need to pass would consist of many agents in the world and multiple players would

try to pick up those agents. This type of game was known as the "picking up pencils"

game, named after the initial choice of object to be picked up. Eventually, pencils

evolved into coins, but the basic functionality of the play test remained the same.

In these basic tests, I was looking for these different things:

" Neither the server nor the mobile devices would crash

" Players were able to pick up agents and see them in their inventories

" No two players would have the same agent in their inventories

" All agents were accounted for at the end of the game.

" Players could initiate pick up of agents while disconnected and agents would

move to their inventories when they reconnected if nobody else had picked them
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up in the interim.

(Later) Players could drop agents and other players could pick them up.

Most of the tests I conducted myself indoors with 2-3 phones. In order to simulate

possible outdoor conditions, I made myself a couple of buttons to aid in testing and

added them to the Settings tab for testing. First, I made a "Simulate Tunnel" button

that would disconnect the player from the server. The device would then retry the

connection afterwards, giving me time to make sure I could satisfy the requirement

that the players be able to initiate pickup while disconnected (and complete the pickup

after reconnecting). In addition, so I could flood my server with messages (and test

connectivity before pings were implemented), I created a "Send movePlayer" button

which sends a movePlayer message with the player at the last known location. In

this way, I could test to make sure that the server and mobile devices could handle

resending many messages at once, as the most common failure mode that would cause

things to crash was the resend functionality not working properly (Figure 6-1).

Simiulate Tunnel

Figure 6-1: Interface for Testing Multiplayer

When I fixed all of the bugs in this controlled test, I gathered a group of people

to test the same game outside (3-4 players, all on phones with data plans), testing
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the same basic things. In addition, we all gathered and try to pick up one agent at

the same time and confirm that only one player got the agent. These tests would

expose potential resending message bugs as well as offer up a chance for everyone to

comment on the user interface of multiplayer in general. By the end of coding, all of

my basic play tests were passing all of my requirements.

6.2 Advanced Play Tests

From there, I moved onto more complex play tests. In addition to the requirements

listed above, the more complex game would also test:

" Making sure trait values were being propagated as expected for all players

" Making sure that agents were being included/excluded from the world for all

players

On August 7, 2013, a group of high school freshmen/sophomores visited the lab

and helped perform this complex test. Instead of the usual 3 or 4 devices, the test

had 16-17 wifi-enabled devices connected to a single instance. In addition, because

the wireless network outside wasn't conducive to maintaining enough connection to

the server for smooth play, testing was done inside. Prior to the test, they were

introduced to the concept of TaleBlazer, but otherwise had no previous interaction

with the software. To test, I used the game "Don't Take Me Treasure as described

in Chapter 3. The students were told to take note of the names of agents picked up

to compare with their inventories later. The test was run twice, as the students were

split into two testing groups.

6.2.1 Play Test Results

The first set of students had a mostly smooth game. One student reported that he

had an item in his inventory that he didn't note picking up, but none of the other

students also had that item, confirming that the item was not duplicated.
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The second set of students ran into more problems. One of the devices discon-

nected and caused a loop with the server when asking for missing messages, a problem

which didn't come up more than once in my earlier tests, but should be fixable with

a stricter check before sending missing messages requests (it was requesting messages

5 to 5, which isn't a valid range). Additionally, there was another phone that was

trying to create multiple connections with the server, causing the device to behave

incorrectly, as multiple connections from one username cause the mobile device to be

disconnected from the server. This bug will have to be fixed in future iterations.
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Chapter 7

Future Work and Conclusion

Now that the multiplayer server is mostly stable, work can be continued to extend

the multiplayer server functionality to support more interesting game mechanics.

7.1 Future Work

7.1.1 Teams

As explained in chapter 3, Multiple Competitive Team games rely on the concept of

teams. To support teams, work must be done on the following:

" Looking into improving methods of communication for team members. In most

games (especially in the proposed environmental disaster game in chapter 3),

it is crucial to be able to relay information to teammates. There is currently

work started on a messages tab, but more work would need to be done on that

tab to support different types of chat (chat among everyone, chat among team

members, player to player chat, etc.).

" Differentiating team members on the map/adding support so the player can see

who is on his/her team

" Implementing ways for team members to give agents to one another
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Once teams are implemented, they should be able to also have assigned traits and

actions, as well as be tested for in the block set. This will allow for certain features

such as team score and being able to perform different actions on agents based on

what team the player is on.

7.1.2 Drones

There may be certain games where the game designer will want each player to be

able to have a copy of a certain item. However, the game designer has no control over

the number of players eventually in the game, so he/she doesn't know how many of

that type of agent to add. Therefore, it is necessary to add a type of agent known as

a "Drone". Once drones are in place on the map, they can keep creating an infinite

number of copies of themselves. For example, this will come in handy when a game

designer wants everyone in the game to have a key to proceed to the next part of the

game.

7.1.3 Blockset

The addition of multiplayer in general opens up a realm of different possibilities for

how the blocks should work. For example, consider the inInventory? block, which

determines whether or not an agent is in the player's inventory. In the traditional

TaleBlazer single player architecture, this block was pretty straight forward. However,

with the addition of multiplayer elements, the block needs more parameters to answer

the following questions:

" Is the agent in my inventory?

" Is the agent in everyone's inventory?

" Is the agent in everyone on my team's inventory?

" Is the agent in someone's inventory?

" Is the agent in someone on my team's inventory?
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All blocks referring to players will need to be augmented to take additional arguments

of this type when multiplayer games are being created. In addition, it becomes neces-

sary to iterate over all players on certain events. For example, game designers might

want to add points each player on a team following their completion of something

and need to be able to iterate over all players to set this trait.

Finally, there could also be multiplayer-only blocks added to the block set. For

example, there exists a "when game starts" block, but there should also be a different

"when player enters instance" block, as not all players are going to be guaranteed to

be in the instance when the game starts.

7.1.4 Player Interaction

For multiplayer games, it would also be interesting for players to be able to bump

each other and affect each other as they effect agents. For example, in the epidemic

game suggested in Chapter 3, it would be interesting for players to be able to directly

infect each other and have to inoculate each other to the effects of the disease.

7.1.5 Helpful Future UI Elements

The current system still needs additional feedback mechanisms to ensure that the

players can follow the events of multiplayer games.

Integrating Broadcast Messages

In many TaleBlazer games, the act of bumping one agent (or performing an action

on that agent) often causes other agents to appear/disappear. In a multiplayer game,

only the player directly responsible for that act will have the proper context for

why the agents on the map changed. Therefore, in order to provide context for

all players, it is necessary to be able to broadcast messages to all players and have

them be displayed like the agent feedback previously shown. Game designers will be

responsible for adding these messages to the game using the "Broadcast Message"

block.
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Notifications for Agents Appearing/Disappearing

There may be some games where it doesn't make sense for messages to be broadcast

(for example, when many possible agents appear at the same time). Therefore, there

needs to be some general visualization that notifies the players of agent changes. To

alert players to new agents in the world, they should be highlighted in some way for a

short period of time. Likewise agents that have been picked up or otherwise excluded

from the world should slowly fade away as opposed to just disappearing.

Visualizing Server Connection Status

Finally, similar to the feedback for GPS connection status, there should also be visual

feedback for the server connection status. If the device is receiving messages from

the server normally, the map tab will show a green icon. If the device hasn't received

a message from the server within a predetermined amount of time, the map tab will

show a yellow warning icon. If there is no server connection whatsoever, the icon will

be red.

7.2 Conclusion

The TaleBlazer game platform allows users to both play and design their own aug-

mented reality location-based games. Following the work done for this thesis, Tale-

Blazer has a stable multiplayer server that is ready to be extended to various multiplayer-

specific features. The server can run instances with many players in these instances,

and each player in a particular instance will eventually see the same game state. Soon,

users should soon be able to create and play their own multiplayer games, allowing

for more possible TaleBlazer games than ever before.
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Appendix A

Elements of a TaleBlazer Game

A.1 Game Features

Game designers have many elements that they can choose to mix into a TaleBlazer

game. Currently, TaleBlazer supports all of these features:

World

The "world" is the name for the universe that the game takes place in. Game designers

can further define the world by adding traits for the players to see/possibly change

or actions for the players to perform.

Map

Every TaleBlazer game starts out with a map based on the location where the game

is supposed to take place. There are currently 2 types of maps: a normal Google

map, known as a dynamic map (can only be used on devices with a data plan), and

a custom map where the designer can specify the image in the background.

Maps can consist of different regions. Regions can be used to express different

locations/times. For example, two regions on top of one another could define agents

in that location at different times, and switching regions is one way to allow users to

move between times. In addition, if a region is predominantly indoors, it won't be
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able to get a GPS signal. In this case, the game designer can specify this region as

being and "Indoor Region", meaning that all of the agents can be visited by simply

tapping on them.

Tabs

The game can consist of any number of tabs, and game designers can choose which

tabs to include in the game. The Game Tab and the Map Tab are included by

default, but designers can also include tabs such as the World Tab, which shows

traits and actions that players can perform on the world, the Player Tab, which

shows information specific to that player's role, and the Inventory Tab, which shows

all the agents that the player has picked up. More tabs can be found in the game

editor.

Roles

Within a game, players can choose different roles, and game designers can control

what players of specific roles can see and and what actions specific roles can take.

For example, one player could be a locksmith who can open treasure chests, and

another player could be an appraiser who can see how much that treasure is worth.

Agents

Agents are anything that the players can interact with in the game-from people

they can speak with to artifacts they can pick up and use to help with their quest.

Agents can be visible or hidden (to be revealed by a script later), as well as password

protected. They can have associated actions and traits.

Actions

Actions are options that players can choose to take in the game, and can be defined

on Agents, Roles, and the World itself. Actions can bring up text, videos, or run

scripts defined by blocks. For example, opening a treasure chest could cause treasure
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to spill out and appear on the map-a sequence that could be defined by a series of

blocks which include the treasure into the world when a player hits that action.

Tiraits

Traits are properties of an Agent, a Role, or the World, which can be assigned nu-

merical or string values. These values can be set or changed via blocks, and can also

either be visible or hidden. For example, a player's score might be a visible trait

assigned to the Role, while a hit counter for an enemy might be a hidden trait (the

game designer "kill off" an agent when its hit counter reaches a certain amount).

Scenarios

Scenarios were created mostly to accommodate large groups playing the same game.

If the game isn't entirely sequential, multiple scenarios allow small groups of players

to start at different points of the game, an experience which is superior to having a

large mob of people moving along the same game trek. More generically, a scenario

can be used to create different versions of a similar game, acting as a global variable

that dictates how the game progresses, with all options defined by the designer.

Blocks

In addition to basic operators and if/then blocks, TaleBlazer also incorporates the

following game-specific blocks for use, detailed in Table A.1 [7]:

A.2 Glossary of Additional TaleBlazer Terms

game code - unique, searchable code assigned to each game

game file - text file consisting of a JSON object which includes all information nec-

essary to run the game

instance - consists of a game and all of the players currently playing that game in

the shared game world

instance code - unique, searchable code assigned to each instance
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Table A.1: Types of TaleBlazer Blocks

Control Blocks
Block Description Parameters

When game starts, run script none
When player sees world tab, run script none

Action script (can be renamed) none

Game Blocks
Block Description Parameters

Include/exclude agent agent
Test to see if agent in world agent

Test role of player player type, role
Test scenario of game scenario

Looks Blocks
Block Description Parameters
Show/hide action action, entity (world, role, agent)
Show/hide trait trait, entity (world, role, agent)
Say something thing to be said (plain or rich text)

Switch tab tab
Include/exclude tab tab

Movement Blocks
Block Description Parameters

Move player/agent region entity (player or agent), region
Test if player/agent in region entity (player or agent), region

Move agent to x,y agent, x, y
Set/change agent x x or A x
Set/change agent y x or A x

Get x of player/agent entity (player or agent)
Get y of player/agent entity (player or agent)
Is agent in inventory agent

Trait Blocks
Block Description Parameters

Set/change trait value agent, trait, value or A value
Get trait value agent, trait
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repository server - external server that contains all assets necessary to run a Tale-

Blazer game, including game files, pictures, and videos
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