
Schedule Visualization and Analysis for Halide

Image Processing Language

by

Jovana Knezevic

S.B, Massachusetts Institute of Technology (2012)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science
ARCHVE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2013

o Massachusetts Institute of Technology 2013. All rights reserved.

A uthor

Depa ment of ctrical Engineering and Computer Science
Jl-12, 2013

Certified by
Prof. Fredo Durand

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by y
Prof. Dennis M. Freeman

Chairman, Masters of Engineering Thesis Committee

2

Schedule Visualization and Analysis for Halide Image

Processing Language

by

Jovana Knezevic

Submitted to the Department of Electrical Engineering and Computer Science
on July 12, 2013, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Image processing applications require high performance software implementations
in order to satisfy large input data and run on smaller mobile devices that require
high efficiency. Halide is a language and compiler for optimizing image processing
pipelines. Halide introduces a separation between algorithm, the logics behind the
program, and a schedule, the order of execution. This thesis focuses on providing
interactive GUI for visual analysis of Halide schedules. It creates a visualization of
the order of execution and provides tools for analyzing three important aspects of
image processing schedules: redundancy, locality and parallelism. Tool is designed
for Halide programers who want to gain better understanding of scheduling in Halide
and receive guidance for schedule optimizations.

Thesis Supervisor: Prof. Fredo Durand
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

I would like to thank my thesis supervisor, Prof. Durand, and PhD student, Jonathan,

for working with me on developing the ideas for this thesis and supporting me through-

out my MEng journey. I would also like to thank Prof. Saman Amarasinghe and

Sylvain Paris for being quick to come up with great ideas and advices.

I thank my lab mates Abe Davis, Nick Chornay, Michael Gharbi, Vladimir By-

chkovsky, and Manohar Srikanth for bringing the fun back to work, karaoke, photog-

raphy sessions, enjoyable lab meetings and even more enjoyable evenings.

I thank my friends and roommates, Ranko and Alex, for their immense support

and the best two years I've had at MIT.

Finally, I thank my parents, who are the reason I am who I am. This thesis is

every bit theirs as much as mine. Even though they are far away, they're celebrating

this success with style (and a couple of good beers). I thank them because they are

my support and my best friends.

5

6

Contents

1 Introduction 8
1.1 Separation of Algorithm and Schedule 8
1.2 Thesis Goal and Guide . 9

2 Schedules: Redundancy, Locality and Parallelism 10
2.1 Strategy 1: Redundancy . 11
2.2 Strategy 2: Locality . 11
2.3 Strategy 3: Parallelism . 12
2.4 The tradeoff . 12

3 Schedule Visualizer 14
3.1 Execution traces . 14
3.2 Infrastructure 15
3.3 Execution Visualizer . 16
3.4 Dependency Visualizer . 22
3.5 Statistics Tool . 25

3.5.1 Redundant Computation 25
3.5.2 Locality . 28
3.5.3 Parallelism . 31

3.6 Schedule Comparison. 32

4 Results 34

5 Conclusion 42

7

1 Introduction

Image processing applications are becoming more popular every day. With
growing number of smartphone users, almost everyone has access to a decent
camera with up to 8-13 MP resolution. SLR and point and shoot cameras are
becoming cheaper and more accessible, while camera sensors keep evolving and
increasing in resolution and frame rate. Millions of users use applications like
Instagram and Photoshop, but image processing application are also used in
medical imaging, object and pattern recognition, etc. Image processing appli-
cations require high performance software implementations in order to satisfy
large input data and run on the shrinking cameras and mobile devices that need
high efficiency.

Nowadays, most of the image processing algorithms are implemented and
then hand-tuned for a specific platform. In order to achieve very high perfor-
mance, developers spend months writing vectorized, parallel, tiled and fused C
code, trying to find an order of execution that might yield the best performance
for a given platform. As a result, expert developers write algorithms that are
efficient, but take months to write, are overly long and complex, and most impor-
tantly, lack flexibility and portability. Application code ends up being complex
and highly platform specific. It becomes very hard to test alternative orders of
execution and in order to port the application to a different platform, engineers
write the application from scratch re-optimizing it for the new platform.

Halide changes the level of abstraction and decouples algorithm from its
execution strategy, allowing for easier search for the optimal performance and
better portability.

1.1 Separation of Algorithm and Schedule

Halide is a C++ functional embedded language developed by MIT graduate
students Jonathan Ragan-Kelley and Andrew Adams. Halide represents images
as functions defined over an infinite domain, where functions are mappings from
coordinates to values, i.e. pixel coordinates to pixel's color. Halide tried to
facilitate writing high performance image processing algorithms by decoupling
algorithms from schedules. [1]

" Algorithm represents the logic of the program and the dependencies be-
tween different functions and function values. It specifies what gets ex-
ecuted and how (using which dependencies and which arithmetic opera-
tions)

" Schedule describes the order of execution of the algorithm. It commands
when and where should value at each coordinate in each function be com-
puted, where should those values be stored and how long they are cached
before they are consumed[1]

Program's algorithm and schedule are implemented independently. The separa-
tion of the two allows the programer to explore different scheduling possibilities

8

and seek an optimal solution without modifying the algorithm. Halide makes
the code more readable, while facilitating the exploration of possible execution
orders. Developers can reach high performance much quicker with cleaner, more
readable and shorter code.

To illustrate this, PLDI paper on Halide uses an example implementation
of local Laplacian filter. In order to implement this feature, one of the top
developers in Adobe worked for three months and wrote hundreds of lines of
C++ code with dozens of loops nests for high performance. Halide's version of
local Laplacian took one intern day to write and ended up being 5 times shorter
in lines of code, and 1.7 times faster.[1]

1.2 Thesis Goal and Guide

Halide is innovative because it introduces the separation between algorithms
and schedules, while offering a way to describe image processing pipelines in a
simple functional style. Halide enables a programmer to modify and try out
many different schedules, all with the goal of finding the best one.

This thesis implements a tool for visualizing and analyzing Halide schedules.
It should be used by a Halide developer in order to gain deeper understanding
of order of execution, but also to get useful statistics on three main aspects of
Halide's schedules: redundancy, locality and parallelism.

First we describe the schedule characteristics and the tension between lo-
cality, parallelism and redundant computation. The next section describes the
general application setup and infrastructure. The sections that follow describe
different modules of the GUI, the way data is processed in the background
and the way it is visualized and presented to the user. Finally, results section
demonstrates schedule analysis using the tools developed as a part of this thesis.

9

2 Schedules: Redundancy, Locality and Paral-
lelism

This section describes Halide schedules in more details and demonstrates a tight
relationship between locality, parallelism and the amount of redundant compu-
tations in every schedule. We will use an example of a simple two-stage blur
algorithm, that computes a 3x3 box filter as two 3x1 passes. Input image is
represented as a three-dimensional function from which we calculate the first
stage of the algorithm, blurm:

blurx(x,y) = input(x-1,y) + input(x,y) + input(x+1,y);

blurx represents the input image blurred along the x axis using a 3x1 kernel.
In the second stage, we compute the output of the two stage blur by blurring
the y dimension of blurx:

blury(x,y) = blurx(x,y-1) + blurx(x,y) + blurx(x,y+1);

These two lines of code are what we call the Algorithm portion of the Halide
code. Figure 1 sketches the dependencies between three functions where input
function was 16x16 pixels.

There are many different ways in which this simple pipeline can be scheduled
for execution on the processor. All available schedules cover a three-dimensional
space of possible schedules along the three axis: redundant computation, locality
and parallelism axis.

We want to minimize the total number of computations. Ideally, we would
like to calculate each value exactly once. It turns out that sometimes, intro-
ducing redundant computation i.e. calculating the same values multiple times,
can decouple dependencies and enable them to execute in parallel. On the
other hand, we want to improve producer-consumer locality. Values that are
computed should be used to calculate their descendants as soon as possible,
increasing the chances of them still being in cache when reused. Great locality
minimizes the number of cache misses and decreases the number of accesses to
the slow, disk memory. Simultaneously, we want to have a lot of parallelism
available i.e. we want independent operations on independent regions being ex-
ecuted on multiple threads. We would like to maximize all three, but have to
face some of the tradeoffs. In order to gain on redundancy and parallelism we
might need to sacrifice some of the locality, and vice versa.

The following subsections describe three different schedules that favor re-
dundant computation, locality and parallelism respectively and demonstrate
the trade-off relationship between these three variables. All three schedules are
applied to the same two-stage blur described above.

10

I

H H H H + 11 1 11111111 IF F F I1II F 1 F11 111 F11

input blurx blury

Figure 1: Visual representation of a two-stage blur dependencies

2.1 Strategy 1: Redundancy

The first simple approach a programer can take is to calculate all the values of
blurx first, before proceeding to calculate blury. This is a breadth-first execution
approach.

blur _x. chunk (root , root);

Every value of blurx is calculated independently using the corresponding
pixels from the input, thus each of those calculations can be executed in par-
allel. Each blurx and blury value is calculated and stored only once, therefore
achieving the optimal number of computations. This schedule performs well in
terms of parallelism and redundancy, it maximizes parallelism and minimizes
redundant computation, but fails short when it comes to producer-consumer
locality. blurx pixels will be evaluated and stored, but the schedule will com-
pute and store the whole blurx before reusing blurx values to calculate pixels
in blury. It is likely that by the time blurx pixels get reused, they got out of
cache forcing the program to access the disk memory. In other words, it takes a
long time (or more specifically a large number of operations) between the times
when the values are computed and used, thus damaging the locality. In this
extreme case, locality was sacrificed to get optimal redundant computation and
improve parallelism.

2.2 Strategy 2: Locality

The second approach tries to achieve the optimal locality. In this strategy, blury
computes each point in blurx, immediately before the point which uses it.

blurx.chunk(x, x);

That would mean that before computing little red cell in blury, three red
cells from blurx will be computed from 9 red cells in input. (Figure 1) This
stencil is repeated for every pixel in blury independently. The strategy is knows
as depth-first execution approach and it insures maximized locality. Pixels in
blurx are calculated as needed and used immediately, thus producing the optimal

11

I

1--lo.

locality. Since computations across blury are done independently for every pixel,
this schedule has a lot of avaiable parallelism. However, because blury pixels
have overlapping dependencies in blurx and these are calculated independently,
many of the blurx values will be computed multiple times, once for each blury
pixel that uses it. This introduces redundant work across blurx. Therefore, this
depth-first strategy achieves high locality and parallelism, while introducing a
lot of redundant work.

2.3 Strategy 3: Parallelism

The third strategy is similar to the previous one; it calculates blurx values as
they are needed, but it stores them instead of calculating them independently
for each blury pixel. In this fashion, blurx values will be calculated using the
sliding window approach.

blur _x. chunk (root , x);

Thirs strategy calculates each blurx value exactly once and reuses it in the
following computation. This schedule still achieves high locality. The distance
between a blurx value being produced and consumed is up to three lines of
blurx. This is much better that the whole image (Strategy 1) but it's not as
good as depth-first approach (Strategy 2). However, in order to minimize the
redundant work from Strategy 2, independence between calculations is intro-
duced. blury values have to wait for the previous ones to be computed so that
the values can be reused, which means that they can't be executed in parallel
any more. Therefore, the third strategy minimizes the number of redundant
computations, improves on locality compared to breath-first approach, but it
completely destroys parallelism.

2.4 The tradeoff

Two-stage blur example with three different schedule possibilities shows several
features of Halide language. First, it demonstrates the independence between
algorithm and order of execution. Program can specify and freely change and
try out any schedules without modifying the initial blur algorithm. Second,
Halide's functional nature provides clean and clear representation of images as
functions and generates highly readable algorithms. Third, Halide's keywords
and schedule abstraction allow us to describe a huge space of different execution
possibilities while getting rid of a very messy syntax. Halide schedules look
simple and are much easier to understand. Finally, all the previous features
give programmer enough freedom to experiment and try out many different
schedules before finding an optimal one.

12

coarse intereavng' high paralism %readth first
low locailty lOW loxty

compute overlapping tiles, sliding windows
granularity within tiles

fine Wnerfeaving Or-
high locaNly

jd" fusion "Wi~dow
fine storage granularity stOrag coarse store granularity
redundant computaton granularity no redundan computaon

Figure 2: Breadth-first execution (Strategy 1) has poor locality, depth-first exe-

cution (Strategy 2) often does redundant work and using sliding windows (Strat-

egy 3) to avoid redundant recompilation constrains parallelism by introducing

dependencies across loop iterations. [1]

Every schedule represents a fine tension between redundancy, locality and

parallelism. Figure 2 extracted from the PLDI paper graphically describes this

tension. Three examples above demonstrate extreme cases when one is highly

optimized while the other two variables suffer. Most of the time, the best

schedule won't be in these extremes; it will be a combination of contributions of

all three attributes, with different contribution across individual functions and

across fusion between those stages.
The work described in the following chapters help the programer understand

the way redundancy, locality and parallelism interact in a given schedule. Even

though we can often sit down and reason out the tradeoffs between these three

variables, it takes time and effort to truly deduce what is happening for each

schedule we might play with. One of the goals of this thesis is to calculate

and display statistics that might help developers gain better understanding of

how these three parameters interact within a schedule. As a consequence, this

analysis tool should give guidance into how to improve upon existing schedules.

13

3 Schedule Visualizer

Schedule visualizer processes and extracts information about execution of Halide's
programs suppling the developer with visualizations of schedules and statistical
data. This section will talk about its features, GUI design, and data processing
in the background. We start off by describing the input files in subsection 3.1
followed by general description of frameworks and coding infrastructure in sub-
section 3.2. Schedule visualizer is made out of several different visualizers, each
of which is described in a separate subsection, 3.3, 3.4, 3.5 and 3.6.

3.1 Execution traces

Halide programs can generate trace files that describe program's execution.
By specifying setenv("HL TRACEENABLED=2") program will generate an
output file. This slows down the execution due to all the print statements,
but it gives insight into what happened during the execution. Traces contain
information about 4 different kinds of operations:

" Allocation describes the action of allocating memory for values to be com-
puted. It is described in trace file as:

Allocating functionname over xmin ymin xmax ymax

" Freeing is the opposite of allocation. It describes when some function
range is released from memory:

Freeing functionname over x_min ymin xmax ymax

" Load signifies when a value or values are loaded into memory. This means
they were previously stored, either as input values, or were computed,
stored and are being loaded to be used in the next computation. Loads
are described as:

Loading functionname at x y

or as:

Loading functionname at [x1, x2, x3, x4] y

if multiple values are being loaded simultaneously, in case of vectorization.

" Store labels when function value is stored in memory:

Storing functionname at x y

or as:

Storing function-name at [xl, x2, x3, x4] y

if multiple values are being stored simultaneously, in case of vectorization.

14

Depending on the size of the images/ functions and the complexity of algorithm
and schedule, trace files can be a few MBs in size up to a couple of GBs.
Performance and responsiveness of the GUI become an issue when trace files
are too large. We managed to deal with trace files that are up to 1GB large and
future work should include performance improvement.

Schedule visualizes doesn't interact with Halide code directly. It only takes
the data provided by the execution trace and analyzes it in various ways. Trace
files often change with different version of the compiler. That's because Halide
language is still in the development phase and a lot of things will be improved
upon and changed until it reaches its final version. Before trace files are supplied
to the visualizer at input, they are preprocessed in two different ways.

First, simple python script parses the trace, generating two different files
that we call header file and body file. Header file of the two-stage blur example
is depicted in Figure 3. Header file describes the functions that participate in
the algorithm, including their names, the number of dimensions and the range
of values that are going to be used or calculated in each dimension.

3
0 blury_0.blur x_0 2 0 15 -1 16 0 0 0 0
1 ,m02-1 16-1 160000
2 blury-_0 2 0 15 0 15 0 0 0 0

Figure 3: Header file of one of the two stage blur execution traces

Second file is the body file. It contains information about all the data ma-
nipulation, formatting the four operations into lines of integers of constant size.
Each operation, allocation, freeing, storing and loading, is converted into a se-
quence of 10 integers per file line. Each operation is represented with a number
where 0 corresponds to allocation, 1 to loading, 2 to storing and 3 to freeing.
This further enables the conversion of body file to binary body file, which en-
ables a very quick load of all the operation into our visualizer C+- code. Each
operation is represented as a struct depicted in Figure 4. Operations are read
very efficiently into memory using fread C++ stream function.

It seems like a lot of effort, but it's well worth it. Initially, the file parsing
took a long time because of the sheer size of the trace files. With trace prepro-
cessing, loading of the trace files takes significantly less time. Files need to be
preprocessed only once and then freely reused at each run of the visualizer.

3.2 Infrastructure

Schedule visualizer is implemented in C++ using Qt for graphical user inter-
face. Qt is a cross-platform application and UI framework for developers using
C++ or QML, a CSS & JavaScript like language. [2]Project repository is at
https://github.com/mit-gfx/halide-visualizer and is available for all Halide de-
velopers who would like to use it. In order to run the visualizer, users need to

15

have Qt installed along with Qwt library. Schedule Visualizer displays a lot of
statistical data and it uses Qwt library to do so. The Qwt library contains GUI
Components and utility classes which are primarily useful for programs with
a technical background and include GUI components for histograms and plots,
among other things.[3]

3.3 Execution Visualizer

First idea of this project is to help developers visualize the execution of their
Halide program. Different schedules will cause different order of execution of the
same algorithm, produce different trace files and lead to different visualizations.
Order of execution will change within functions, but also across stages. We
are interested in seeing when pixels are stored (produced) and when they are
loaded (consumed). Since Halide programs mostly deal with images, the most
natural way of visualizing this is representing each function as a grid of pixels.
Figure 4 shows the representation of 2D functions of two-stage blur inside of
the execution visualizer.

Figure 4: Halide functions are visually represented as a grid of blocks/pixels

Each function is represented as a QPixmap inside of code and each cell
correlates to the coordinates of the functions inside of the program. Functions
will be of various sizes, depending on the algorithm and the size of input images.
That is why user has an option to zoom in or zoom out using plus and minus
keyboard keys. By zooming in, each function cell becomes larger, and vice
versa, by zooming out they become smaller until they reach lxi pixels minimum
available size. This enables better control over the layout of the visualization
and how much is seen at a time. In some cases, it might be beneficial to zoom
out so that more functions are visible in the GUI simultaneously. However, as
cells get smaller, it is harder to see what is going on per individual function
region. User might decide to zoom in and observe a specific region in enlarged
view and more details.

Figure 5 shows a complete appearance of the execution visualizer. Trace
files contain all the operations written in the order of the program's execution.

16

The list of operations in the order of execution is called a timeline. Slider is
positioned below functions and slider's value represent a position inside of a
timeline. When slider is dragged all the way to the end, we see the results of
the complete program execution. Using the slider, user can go forward and back
in time, following and observing order of execution.

F -

Figure 5: GUI of the execution visualizer showing all the components

Additionally, user can go through the timeline step by step in two different
ways. First, keyboard keys A and S move the visualization in time by exactly
one time step i. e. one operation. User can move the slider to the point of
interest and then trace through the execution step by step, forward or backwards
in time. Second, user can click on "play" and "pause" buttons located below
the slider. Clicking on play causes visualization to play through the execution
automatically, while the user can sit back and observe. Pause button pauses the
animation. During the automatic execution visualization, operation is executed
every 100 is.

Execution visualizer is color coded. Function cells are colored differently
depending on the operation being executed. The legend at the top right corner
shows what each color represents. Pixels are colored red when stored, green
when loaded, blue when allocated and dark gray when freed. Functions are
initially black. That means no operation has been executed in those regions.
Blocks in lighter colors represent the operation happening at the current slider
position. Once the operation has finished, the cells assume the darker color
of their last operation. In Figure 5, highlighted pixel of .mO is the one being
loaded at the moment. We can see that majority of input function.mO has
been loaded and used for calculating and storing pixels of blur_ y_ 0. blur_ x_ 0.
blur y_ 0 hasn't been touched at this point, because the example schedule

17

shows the Strategy 1 described in Section 2. First, the whole intermediate
function is calculated and stored before proceeding to using those pixels to
calculate blur y_ 0 values.

Around the main visualization segment, Schedule Log and Visualization Set-
tings widgets are placed. They can be closed or moved around, if not needed,
to make more screen space for the visualization itself. Schedule Log contains
a readable version of the trace file. It shows all the operations in order while
table selection moves concurrently with the slider, with current operations al-
ways being the highlighted one. User is also able to scroll up and down the log,
select any operation and slider will immediately follow up, placing the timeline
at that particular selected operation. Schedule Log familiarizes the developer
with trace files and the correlation between trace files and the actual execution.

Functions are ordered in the order of their dependence. In our example
above, input image is first followed by blur_ x that's derived from .mO, followed
by the output function. Names of the functions are extracted from the trace
and they depend purely on how Halide decided to name them.

Visualization Settings widget offers users a few additional options. By de-
fault, all the functions are displayed as part of the visualizer space. Sometimes,
due to their size, they can't all fit into the screen space. By placing QPixmaps
on top of a QScrollWidget, we enabled user to scroll left to right, up and down
and be able to observe all the functions. Additionally, user can click on the
checkboxes in function selection to select which function should be displayed.
This is especially useful when the algorithm deals with a lot of functions; user
might want to observe only two whose pixels are being loaded and stored at the
time.

Visualization Settings also display some basic info about each function.
Halide functions can have up to 4 dimensions. Commonly, they will have three,
representing an image and its x and y coordinates and three color channels, but
they can have anywhere from 1-4 dimensions. User has an option to select which
two dimensions should be plotted on a function's 2D cell grid. Figure 6 shows
all possible selection for a 4D function. User can choose any two dimensions to
use them as function coordinates and observe operations in the space of those
2 dimensions.

18

- --

Figure 6: User can choose to observe operations in the space of any 2 function

dimensions

Often, one might want to know what is happening in every dimension. 2D
grid looks good but it is not enough to represent all the cells of a 4D function.

Instead, it's possible to use two 2D grids, where each grid is a combination of

two of the four dimensions. This feature is enabled by selecting Show additional

dims checkbox. Figure 7 demonstrates this example. User can select cells in x

and y grid and see the state of the other two dimensions at given point in time.

Using this one, and the previous feature, it is possible to make any possible

graphical combination of the four dimensions using 2D grids of colored cells.

19

X

d

bu y_0blur _x_

7454 Load value fro a.m a(:from 7 to 8; Y from 7 to 8 C: from 0 to 1; 0: from 2 to 3)

7455 Load value from .mO at OC: from 8 to 9; Y: from 7 to ; C: from O to 1: M from 2 to 3)

ir Stor, valoe fr.m bl -, w b fuX0 r fr- 7 t. 8 Y from 7 to 8 C f-o 0 t. 1. D fom 2 wo 3)
7457 Waad value from .mO at QC from 7 to 8; Y: from 7 to A; C: from 0 to L; D: from 2 to 3)

Figure 7: Figure shows blur_ x visualized as a two 2D grid. First one shows the
operation in the x and y dimensions, and the second one c and d. Selecting a
cell (xl,yl) inside of the first grid, displays the state of (xl, yl, c, d) grid for c
and d dimensions

Schedules can specify vectorization of a dimension. This means that vectors
of cells will be processed, loaded or stored, simultaneously. In that case, visual-
ization will successfully highlight multiple pixels as demonstrated in Figure 8.
Figure 8 also shows an example of tiling. blur y is separated into four different
sections (tiles), each of which is processed in vectors along x axis.

20

Figure 8: Vectorization and tiling

Execution visualizer has multiple benefits. It helps users understand better
what is going on during the execution. Instead of manually going through thou-
sands of lines of trace files, which is how code is often debugged, visualization
processes all that data and graphically visualizes execution. It is much easier to
observe and understand in which way programs are executed and to understand
constructs like vectorization and tiling. Execution visualizer also helps debug
the schedules. If a programer expected tiling but doesn't observe it where de-
sired, he can trace back to that place in the schedule log and see what happened
instead and why. Execution visualizer will also help users who are new to the
world of Halide and Halide's schedules. By visualizing selected schedules they
gain deeper understanding into how Halide schedules work.

21

3.4 Dependency Visualizer

Dependency visualizer gives insight into dependencies of the algorithm itself.
It's representation doesn't change with the schedule, but with the algorithm.
For that reason, it is considered to be less of a schedule analyzer and more of
an algorithm analyzer. Dependency visualizer is an attempt to derive as much
of useful information from the trace as possible. It visualizes the dependencies
between values of functions and its UI layout is derived from the execution
visualizer.

Value dependencies are deduced from the trace. Traces are ordered in the

order of execution. Therefore, before a value is calculated and stored, all its
dependencies have to be loaded into memory in order to be used. All the values
that are loaded immediately before some other value is stored, are considered
"parents" of the stored value. Vice versa, the stored value is considered a "child"

of all the loaded values. The same pixel can be a child or a parent of many
others. The following is the excerpt from a trace file.

Loading .mO at -1 -1
Loading .mO at 0 -1
Loading .mO at 1 -1
Storing blur_y_O.blur_x 0 at 0 -1
Loading .mO at 0 -1
Loading .m0 at 1 -1
Loading .m0 at 2 -1
Storing blur_y_0.blur_x_0 at 1 -1

It would be deduced that pixel of blur_ y_ 0.blur_ x_ 0 at (0, -1) depends

on pixels of function .mO at (-1, -1), (0, -1) and (1, -1). Similarly, pixel of

blur y_ 0.blurx _ 0 at (1, -1) is a child of pixels of function .mO at (0, -1),
(1, -1) and (2, -1). All of the dependency information is stored in memory and
accessed during the visualization.

Dependency visualizer, in a similar way as execution visualizer, represents
all the functions as QPixmaps, 2D grids of cells. Function with more than two
dimensions are represented with two different QPixmaps, one showing X and

Y dimensions, and the other showing C and possibly D. In the beginning all

the cells are gray and the user can choose whether to make functions visible by
selecting or deselecting checkboxes in the right side dock widget. By default, all

the functions are displayed.
User then has the option of clicking on cells whose dependencies they are

interested in analyzing. With the right click of a mouse, the cell becomes high-

lighted blue, with all its children drawn in red and all its parents drawn in green.

Figure 9 shows a dependency visualization for two-stage blur on two-dimensional

functions.

22

Figure 9: Dependency visualizer showing the dependencies on a two-stage blur.
User selected the blue cell; green are it's dependency ancestors; red are it's
dependency descendants. Number 1 represents direct dependence.

Blue square was selected by user by right clicking on a cell. Green cells show
blue cell's parents, and red cells show its children. The number on each cell
represents a generation distance. In this case, since all the cells have number
1 inscribed, they are directly related to the computation of the blue square.
Dependency visualizer can also show descendants in further generation i.e. chil-
dren of children, etc. Figure 10 demonstrates this ability. Children labeled with
number two are "grandchildren" of the blue cell.

Figure 10: Dependency visualizer showing the dependencies on a two-stage blur.
Cells labeled with number 1 are direct children of the blue cell. Cells labels with
number 2 are children of the cells with label 1.

These dependencies are consistent with two-stage blur algorithm. .mO is an
input image, and all the pixels in blur_ y_ 0. blur_ x_ 0 are derived from taking
three cells in .mO along the x axis and averaging their value. This means
that most of .mO cell (excluding border cases) participate in calculations of
three blur_ y_ 0. blur_ x_ 0 cells, as demonstrated by the dependency visualizer.
Further more, each of the blur y_ 0. blur_ x_ 0 contributes to three different cells
in blur_ y_ 0 along the y axis. As a result, we see a 3x3 square in blur_ y_ 0.
Blue square value was used in calculations of 9 different cells around that region
in blur_ y_ 0. That is exactly what two-stage blur does: it applies 3x3 kernel
to average neighboring pixels and produces blur. Dependency diagram helps to
establish correctness of an algorithm.

23

.

Dependency visualizer can cope with functions that have up to 4 dimensions,
supporting all Halide functions. Figure 11 represents the layout in case of the

same algorithm, two-stage blur, but with 3D functions. QPixmaps on the left

of each function segment show X and Y dimensions, and the right one shows C

dimension. In the case of more than two dimensions, user needs to specify (right

click select) both values in X and Y, and C domain. After that, all the ancestors

and descendants will be labeled in the X, Y grids. To examine the dependencies

of C and D dimensions, user needs to click on individual children/parents and

observe C, D dimension for the selected (X, Y) function of that cell. For those

selections, user uses left click and the white border appears around the selected

cell. In the case of Figure 11, user selected the bottom right corner of the 3x3

green square and verified that first cell in C dimension of function blur_ y_ 0
is a descendant of first cell in C dimension of the input .mO. Similarly, user

chose the bottom green cell of the X, Y grid of function blur_ y_ 0, blur_ x_ 0 to

confirm the same relationship in C dimension.

Figure 11: Dependency visualizer showing the dependencies for two-stage blur

for 3D functions

Results obtained for two-stage blur are consistent with the expected results

pictured in Figure 1. In summary, dependency visualizer can display all Halide

functions and show the dependencies between individual values. This tool is

primarily used to verify the logic behind the algorithm.

24

3.5 Statistics Tool

Statistics tool derives the statistical data related to the three schedule properties
mentioned, locality, redundancy and parallelism. Statistics are presented in an
interactive and visual way, that helps developers analyze schedule properties,
identify week points and give intuition for improvements. Statistics tool is
divided into three independent sections that represent the data for these three
variables, redundant computation, locality and parallelism.

3.5.1 Redundant Computation

As explained in section 2, optimal number of computations per each function
value is one. Values could be loaded and used multiple times, but ideally we
want to calculate values exactly once, compute them and store them. Redun-
dant computation is introduced in some schedules to improve locality or increase
available parallelism. Statistics tool offers a way to observe the amount of com-
putation done per function and in total, and diagnose the areas where redundant
computation is performed.

Trace files are preprocessed in order to extract information about computa-
tions. Each operation is observed and different information is stored per each
pixel: the number of loads, the number of stores, the times of each operation.
Then, per pixel information is processed to achieve statistics on the function
level: total number of loads and stores, average number of load and stores, etc.
This information is presented as a histogram of the number of pixels per number
of stores. User can select to display a histogram for a specific function, or to
show a total histogram combining the values of all the functions.

Figure 12. shows an example of stores visualization. It is an instance of
two-stage blur as before, with a schedule whose values are calculated once, two
times or three times. The number of pixels that were stored more than once
represents the amount of redundant computation of this schedule.

Figure 12: Histogram representing the number of calculations per pixel in a
two-stage blur schedule

Ideally, one will want to minimize the amount of redundant computation.
Such histogram would show only a peak at number 1 on x axis. Schedule in
Figure 12, on the contrary, introduces a lot of redundant computation since
most of the pixel values are calculated three times.

25

-A,.

Once the user has observed the histogram values, they can closely examine
where the redundant computations are coming from. Below the histogram there
is a QPixmap representation of the function, like before. User can click on
particular histogram values and the pixels that were stored that many times will
be highlighted in red. Figure 13 shows an example of this interaction with the
previous histogram of blur_ y_ 1. blur_ x_ 1. As Figure 13 shows, after clicking
on the histogram bar with x value 3, all the pixels associated with that number
of stores are colored red. Additionally, user can click on pixels themselves to
reveal more detail. Selected pixel's border is colored in white and its chain
of operations is reproduced below emphasizing where the histogram values are
coming from. In the case of the selected pixel in Figure 13, after observing red
borders around store operations in its chain of operations, it is obvious that this
pixel's value was calculated and stored three separate times.

*bhw.Lthkw.zJ

II-

I.

Figure 13: Interaction with the stores histogram

Another example of redundant computation analysis is shown in Figure 14.
This figure also represents the same algorithm, but a different schedule. This
schedule tiles the blur_ y. blur_ x function in 4 different regions, called tiles. Each
tile is computed separately, so all the redundant computation happens where
the tiles overlap: those pixels' values were computed once in each tile.

26

I --- -. -- - - -- I

E~z.3bIw~x.3

2Wi.

I 0

Figure 14: Interaction with the stores histogram of a tiling schedule

Users can also choose to visualize a total redundancy histogram (Figure 15).
This is a cumulative histogram of number of stores of each function, combined
together in different colors. This histogram is not interactive, but it helps ob-
serve the total redundancy of a schedule and the way functions relate to each
other. One function when put against the others can be a major contributor to
all the redundant work, and therefore we might want to analyze that function
closer. If the user wants to analyze any aspect in more details, they can easily
switch to per function mode and proceed as described previously.

3-

-- U

0~
UbhvyJMIwLB
a~ujJ

Figure 15: Total redundancy histogram

Redundant work happens only when a schedule does multiple stores per

27

.

S

pixel. However, it is possible to choose to observe the load distribution of each
function. GUI works in a similar way as for stores, but this time Load operations
are highlighted instead of Store operations. Figure 16 shows a visualization for
blur_ y. blur_ x loads of the same schedule as Figure 14 and Figure 15. In a
similar way, total loads histogram is available as well.

to

Figure 16: Histogram interaction and visualization of load operations

This visualization and analysis tool helps understand the distribution of
store and load operations of a given schedule. It provides information about
the amount of loads and stores per schedule, per function and per pixel. It
calculates and demonstrates the amount of redundant work being done, but
most importantly, it helps to diagnose critical areas where the redundant work
is coming from. This leads to developers better understanding one of the most
important schedule features, redundant work, and knowing where and what to
change in order to improve it.

3.5.2 Locality

Good locality is achieved with keeping the number of cache misses as low as
possible. Cache is a fast memory and less cache misses means less disk accesses
and faster load times. In order to achieve this, values should be used soon
after they are computed or previously used, increasing the chance that they
are still located inside of the cache. Locality analyzer extracts, from the trace,

28

.... -----

information about producer-consumer locality and represents it in a visual and
interactive way.

Locality analyzer calculates the distances between pixel accesses. In other
words it finds, between two accesses to the same pixel, how many different pixels
were accessed. When pixel A is stored or loaded, the copy of its value stays in
cache. Every time a different pixel is loaded or stored, they are added to the

cache as well. In our calculation, we simulate behavior of a simple LRU (least
recently used) cache. If many different pixels are loaded/stored (more than the
size of the cache), pixel A will removed and replaced by newly accessed pixels.
The next time A is loaded, cache miss occurs. If however, the number of newly
inserted pixels is not larger than cache size, A will be in cache and provide faster

load time. This number of different pixels loaded or stored between two accesses

to the same pixel is what we call the distance between accesses. For optimal
locality, the distance should be as small as possible.

The distance between accesses is calculated for every pixel separately, and
for every two accesses to that pixel. Trace is processes by observing each pixel

individually and saving the time of every operation on that pixel. Every time

a load operation happens, algorithm counts how many other, different pixels

were accessed, since the last time a load or a store operation was performed on

this pixel. This is repeated for every pixel and every pair of store/load, load-

/load operations. Eventually, each pixel will have a locality vector of distances
associated with it. Out of that data, locality map is produced that maps each

distance to the number of pixels that have that distance in their locality vector.

Locality map data is presented in a histogram of distances vs. number of

pixels. User is able to interact with a histogram, not only by selecting individual
data points, but also by selecting a range along x axis. Range selection can be

performed by clicking, dragging and releasing the mouse. The click represents

a range starting point, and release marks the ending point. Once the range is

selected, pixels whose distances belong to that range are highlighted with red

on a QPixmap.

29

Figure 17: Locality histogram interaction and visualization of distances between
pixel accesses

In Figure 17 of a locality visualization of input function in two-stage blur,
user selected a range of histogram values from ~230 to ~310. All the pixels
whose distances between some operations belong to that range are highlighted
in red. User selected the white-bordered cell to visualize where the distances
are coming from. Chain of operations for that pixel shows all the operations in
order and red arrows mark the distances that belong to the selected histogram
range. These distances are 307 and 243 and happened between first and second
load, and fourth and fifth load. These numbers represent the number of different
pixels processed and cached between the operations around the red arrows.

Application, like prevous modules, supports functions with up to 4 dimen-
sions (Figure 18). GUI interaction is similar as in 2D case only this time, user
has to select not only X, Y location but coordinates form other dimensions as
well.

30

... --- -----

Figure 18: Locality histogram interaction and visualization of distances between
pixel accesses in 3D functions

Locality visualization helps evaluate schedule's locality and diagnose criti-
cal areas that might suffer from week locality. This helpes developers further
understand and improve their schedules.

3.5.3 Parallelism

Unfortunately, given the nature of the trace files, we were unable to extract
useful information about parallelism. It is possible to, using the dependen-
cies calculated in the dependency visualizer, calculate the maximum parallelism
available in an algorithm. This number would purely depend on the algorithm
and wouldn't help analyze Halide's schedules. Further more, it was clearer what
the optimal values for locality and redundancy were: we want to minimize the
amount of redundant work and minimize the number of cache misses. It is not as
clear what the optimal value for parallelism would be. While it is good to have
some parallelism, introducing too much of it with small granularity can cause
more performance harm than benefits. These are the reasons why parallelism
wasn't pursued in this thesis.

It is possible for the developer to gain some insight about parallelism sim-
ply from observing the execution visualizer. With enough understanding and
intuition, Halide developer can deduce some information about parallelism by
observing the execution timeline and tiling and vectorization occurences.

31

......_

3.6 Schedule Comparison

This tool so far provided ability to analyze and visualize individual schedules.
In order to find an optimal schedule, it is useful to compare two different ones in
terms of redundant work and locality. Doing the comparison can give insight into
whether we are moving in the adequate position, and give better understanding
of the tradeoff between the two variables.

Every time a trace is loaded into the application we can save the processed
data into a binary file. Application saves all the histogram data containing
information about redundancy and locality. Later on, when a different schedule
is being analyzed, we can load the data from the previous schedule and perform
a data comparison.

Module for comparison consists of displaying three kinds of histograms. First
two are the ones described before that contain the information about the number
of stores and the distances between pixel accesses. The third one is a variant
of a locality histograms. Distance data is processed and a reverse cumulative
histogram is created. Figure 19 shows an example of all three histograms. The
third histogram represents the number of cache misses depending on a cache
size. It decreases with the size of the cache. Smaller cache means less data can
fit into cache, which leads to a quick disposal of unused values. Larger cache
means we can keep the unused data in it for a longer period of time. Pixels with
large distances between loads will get thrown out of small caches.

Figure 19: Redundancy, distances between accesses and cache misses histograms

By default, these histograms represent the total histograms of a schedule,
summarized data across all functions. User can choose to view only the data
from a particular function by making a selection in the radio buttons on the

32

....

side.
When a data from another schedule is loaded, histogram data of the loaded

schedule is laid over data from the current schedule (Figure 20).

:CL-mld Sch.duk

-- UM

11Cwm3 SdwmI

Figure 20: Comparison of two schedules

Comparing them, it becomes more obvious what are the advantages and

disadvantages of each of the schedules, and gives programmers an opportunity

to choose the appropriate one.

33

..

4 Results

Section 1 described three extreme schedules for two-stage blur algorithm. Strat-
egy 1 favored redundancy while sacrificing locality. Strategy 2 improved the lo-
cality by introducing some redundant work. Strategy 3 performed well in terms
of redundancy and locality, but it completely got rid of all available parallelism.
Analysis was done using the intuition behind schedule loop synthesis. Develop-
ers can often try to analyze schedules in this way, but it becomes a tedious job
for large input files, multi-dimensional functions and complex schedules.

Visualization and analysis tool enables developers to understand schedules
and their advantages and disadvantages in a comprehensive, graphical and easy
way. Analysis of Strategy 1 produced the Figures 21 and 22.

Figure 21: Redundancy total histogram for Strategy 1

Figure 1 shows that all the computation in Strategy 1 happens exactly once
i.e. no redundant work is introduced. On the other hand, locality histogram for
blur_ x (Figure 22) shows some smaller peaks of large distances (red rectangle
on the histogram). Chain of operations shows that these large distances are
coming from blur_ x data being used long after it is computed. The distances
between the first store and the first load is large, which is consistent with our
intuitive analysis. Whole blur_ x is computed and stored before any of its values
are used, making the locality between the first and second access rather poor.

34

...................

I;'

Figure 22: Locality histogram of blurx for Strategy 1

Strategy 2 introduces redundant computation as visible in the Figure 23.
Many pixels are recalculated two or three times.

SbhJLbhLA.1

Figure 23: Redundancy total histogram for Strategy 2

On the other hand, Strategy 2 significantly improves locality. The distances
between pixel accesses are at most 8, significantly better than locality of Strategy
1. (Figure 24)

35

...

OL

I".

Figure 24: Locality histogram of blur_ x for Strategy 2

Comparison of the two schedules gives a nice summary of both properties. In
Figure 25 histograms of the two schedules are overlaid on top of each other. Pink
schedule represents Strategy 1 while purple one represents Strategy 2. Purple
schedule introduces redundant computation on almost half of all its pixel values.
Cache misses histogram shows that for small cache sizes, two strategies perform
similarly. As the cache grows, cache misses are completely eliminated from
Strategy 2, making it superior in terms of locality.

36

.

Finally, Strategy
(Figure 26)

a L.4Sd."i

SM

Figure 25: Strategy 1 vs. Strategy 2

3 also achieves optimal amount of work like Strategy 1.

Figure 26: Redundancy total histogram for Strategy 3

However, even though its locality is not as good as Strategy 2's, it is sig-
nificantly better than the first Strategy in that regard. Figure 22 shows that
Strategy I's distances between pixel accesses goes up to ~550. Strategy 2, even
though spread out, achieves maximal distances between accesses of approxi-
mately 120. (Figure 27)

37

L6.

16 ' 16 ' I' D

Figure 27: Locality histogram of blur_ x for Strategy 3

To further amplify the results, we can compare every schedule with each
other. (Figure 28 and Figure 29) Strategy 2 achieves better locality than any of
the other ones, but it performs more significantly more redundancy than both
of them. Strategy 3 locality is better than Strategy 1 while keeping redundant
work almost optimal.

38

......

. taadesd e

Uawu~4.d

Figure 28: Strategy 1 vs. Strategy 3

39

. -.-" -, I- - - - -

I

LodiSdw"d

Lm

40 ID so4

0

Figure 29: Strategy 2 vs. Strategy 3

These results are consistent with our intuitive analysis from Section 1. We
have to keep in mind that these analysis are not complete since we are lack-
ing parallelism data. However, a lot about parallelism can be deduces from
observing the visualization of the schedule.Visualization provides insight into
what schedules apply sliding window strategy that minimizes locality. In this
case, even though Strategy 3 would be deemed superior in terms of locality and
redundancy, it will constrain the amount of parallelism and thus not be the best
choice for optimal two-stage blur.

Most of the time, the best schedules will not lie in the corners of the
redundancy-locality-parallelism, but somewhere in the area of the triangle. The
best strategy for two-stage blur won't be any of the strategies analyzed above.
One of the better ones is a tiling schedule that divides blur x into 4 separate re-
gions. Tiling is easy to spot in visualizing module, and the developer can deduce
that tiles can be computed i parallel, while within the tiles work can be done
sequentially or in parallel. This introduces some amount of parallelism, while
behaving well in terms of locality and redundancy. Figure 30 shows the total
redundancy and locality of tiling schedule. It's not as optimal in redundancy
and locality as some of the strategies mentioned above, but as a combination of
all three parameters, it performs well.

40

5MAO

MoU-

Figure 30: Redundancy and Locality total histograms for a tiling strategy

Finally it's all about the trade-off between locality, redundancy and paral-
lelism. This thesis provided a tool to better analyze these properties for every
schedule, ability to understand schedules better by visualizing the execution and
the ability to compare schedules and the three variables. Overall, it provides a
good and detailed solution to schedule analysis, minimizing the tedious intuitive
analysis. Sometimes, we might have a wrong intuition, and schedule analyzer
helps us understand what is really going on.

41

..----- ,

5 Conclusion

The tool presented in this thesis helps visualize, understand and evaluate prop-
erties of Halide schedules. Future work should deal with the performance of
the visualization tool. Disk storage versus RAM storage would have to be care-
fully designed for each module to minimizes RAM consumption, and to reduce
waiting times. This would also provide insight into complex schedules with
large data sets. Visualization tool still performes well with moderately complex
schedules and it provides good analysis of some of the most important aspects
of Halide schedules.

Execution visualizer will be especially helpful to people who are just entering
the world of Halide and algorithm-schedule separation. It will lead them to
better understanding of what is going on in the background of a Halide program.
Execution visualizer is also useful for detecting the overal flow of the execution
and noticing when tiling and vectorization are being used. This additionally
helps gain visual intuition into how much parallelism is available; it is easier
to deduce while looking at the visualization of the execution than by picturing
it in one's head. Dependency visualisation is the only module that focuses
on Halide algorithms by providing insight into te inner dependencies of the
algorithm. Statistical analyzer represents crucial data about redundancy and
locality in a graphical way. It not only presents useful data to the users, but it
enables them to diagnose places of failure by highlighting critical regions within
functions. Finally, tool enable schedule comparison, all in service of minimizing
programmer's manual work and laying out useful data in front of him. By
comparing different schedules, programmers get a better understanding of the
advantages and disadvantages of each schedule, and helps them move in a rght
direction towards a better scheduling option.

42

References

11] J, Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand and S. Ama-
rasinghe. Halide: A Language and Compiler for Optimizing Parallelism,
Locality, and Recomputation in Image Processing Pipelines. PLDI 2013

[2] http://qt-project.org/

13] http://qwt.sourceforge.net/

43

