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Abstract

Despite years of research into improving the safety of police roadside stops, reck-
less drivers continue to injure or kill police personnel stopped on the roadside at an
alarming rate. We have proposed to reduce this problem through a "divert and alert"
approach, projecting lasers onto the road surface as virtual flares to divert incoming
vehicles, and alerting officers of dangerous incoming vehicles early enough to take
life-saving evasive action. This thesis describes the initial development of the Officer
Alerting Mechanism (OAM), which uses cameras to detect and track incoming vehi-
cles, and calculates their real-world positions and trajectories. It presents a procedure
for calibrating the camera software system with the laser, as well as a system that al-
lows an officer to draw an arbitrary laser pattern on the screen that is then projected
onto the road. Trajectories violating the "no-go" zone of the projected laser pattern
are detected and the officer is accordingly alerted of a potentially dangerous vehicle.

Thesis Supervisor: Seth Teller
Title: Professor
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Chapter 1

Introduction

Police officers and their vehicles are frequently struck by incoming drivers while

stopped along the roadside. Despite regular use of vehicle mounted emergency light-

ing (VMEL) systems to alert incoming drivers, there are a regrettably high number

of injuries and deaths caused by impaired drivers. Other drivers are apparently not

impaired, yet still do not notice or react to the police officer on the side of the road.

This leads us to believe that existing VMEL systems fail to generate sufficiently ef-

fective cues to divert incoming vehicles. Some drivers, however, are indeed impaired,

in which case no type or amount of emergency lighting may divert that driver from

colliding with the officer. In this case an easy-to-deploy mechanism is needed for

alerting the officer of an incoming potentially dangerous vehicle, early enough so that

the officer has enough time to get out of harm's way.

To solve these two main problems and reduce the number of these preventable ac-

cidents, we use a two component approach: divert and alert. Our Motorist Diverting

Mechanism (MDM) projects virtual flares onto the road using lasers, giving incoming

drivers visible cues to change course and avoid the officer and parked police vehicle.

Our Officer Alerting Mechanism (OAM) detects incoming vehicles and determines if

they are potentially dangerous, in which case it alerts the officer of the danger so that

he or she can take evasive action. Figure 1-1 shows an example of the environment

in which the system would be used.

The Divert and Alert project is a joint project between the Robotics, Vision, and
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Sensor Networks group (RVSN), BAE, and the Massachusetts State Police. This the-

sis will focus mainly on the OAM, and the detection, tracking, and machine vision

algorithms that have gone into it. Section 2 reviews relevant background material.

Section 3 states the problem. Section 4 provides an overview of the technical achieve-

ments I have made and detail the steps I have taken in my work on the OAM. Section

5 evaluates some results of my work, analyze my contributions to the project, and

present opportunities for future work.

(a) A police cruiser parked on the roadside (b) The system detects when an incoming ve-

looks back at the road and projects a line of hicle breaks the flare line and presents a dan-

laser virtual flares. ger to the officer, then alerts the officer early
enough to take life-saving evasive action.

Figure 1-1: An example of the Divert and Alert system usage case. The dotted lines

are laser virtual flares, and the pink cone represents the camera's field of view.
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Chapter 2

Background

2.1 Review of Relevant Literature

In this section I will perform a brief review of literature relating to roadside accidents,

lane estimation, and vehicle tracking.

2.1.1 Incidence of Roadside Accidents

Roadside accidents involving police officers are relatively well documented. I will

highlight some interesting statistics that have come out of the documentation on

these types of accidents. The most recent findings show that over the decade from

2000-2009, there were 47 law enforcement officer deaths from being struck by a vehicle

while conducting a "Traffic stop, road block, etc." in the United States. Another 73

deaths occurred while the officer was "Directing traffic, assisting motorist, etc" [21].

Solomon and Ellis (1999) found that most roadside incidents with police vehicles

occur on straight, dry roads in clear weather[17]. Charles et al. (1990) found that

the normative condition for roadside accidence involved unimpaired drivers, and that

the majority of accidents occurred on unmarked roads[3]. They also found that the

number of roadside accidents with police vehicles was proportionally similar to the

number of accidents with passenger vehicles. In addition they found that a common

cause of the accidents is sleep deprivation. Agent and Pigman (1990) also found that
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sleepiness, as well as alcohol impairment, were major causes of roadside accidents[1].

These results seem to suggest that there are many accidents that no diverting system

can prevent because the driver is so insensate due to impairment or sleepiness. In

these cases a warning system would be the only effective way to avoid injury to the

officer on the side of the road.

2.1.2 Lane Estimation

Our own group, the Robotics, Vision, and Sensor Networks Group, has developed

sensor-based methods for identifying and locating nearby traffic lanes on real roads

under challenging lighting and weather conditions[13, 14]. Lane estimation was for-

matted as a curve-fitting problem, where local sensors provided partial, noisy ob-

servations of lane geometry. The system can handle roads with complex geometries

without making assumptions about the position or orientation of the vehicle.

Mobileye is a commercially available system that uses monocular vision algorithms

to perform lane detection, among other applications. The Mobileye system sits on

the dashboard of a moving car, and uses its algorithms to help the driver drive more

safely, by giving him or her lane departure warnings, forward collision warnings, and

similar features[16]. To our knowledge no lane-finding method specific to roadside

vehicles has been developed.

2.1.3 Vehicle Tracking and Classification

An enormous body of work exists on video-based object detection, tracking, and clas-

sification. Stauffer and Grimson (1999) created a widely used mixture-of-Gaussians

background modeling algorithm that detects moving objects, which works very well

for stationary cameras, but cannot handle slight perturbations caused by wind or

small vehicle movements[19].

There are also many existing object tracking systems, which either associate in-

dividual independent detections over time[5], or search for an object at later times

based on knowledge of that object at earlier times[4, 22].
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Work in the field of visual surveillance has led to a number of techniques for

building normalcy models based on continuous observation[18, 23, 2]. Classification

algorithms can use these normalcy models to predict future behavior, such as speed

and direction, as well as identify anomalous objects that do not fit the normal behav-

ior, such as a swerving car.

2.2 LCM

We use the Lightweight Communication and Marshaling (LCM) protocol to com-

municate between separate parts of the system. LCM is a system of libraries for

transferring data over a local-area network, which was designed by the MIT DARPA

Urban Challenge Team[15]. LCM is made for real-time systems such as ours that

require high bandwidth and low-latency data transfer. We have 142 GB of LCM logs

(about an hour) of roadside video that we use to test our system. These logs simulate

the communication between the cameras and the software system using LCM. We

also use LCM to communicate between the laser and the software system.
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Chapter 3

Problem Statement

Impaired, inattentive, or sleeping drivers strike police officers and other emergency

workers, as well as their vehicles, at an alarmingly high rate, causing damage, injuries,

and often fatalities. The traditional way to combat these types of accidents is to alert

drivers to the presence of the vehicle on the side of the road in some way. Vehicle-

mounted emergency lighting (VMEL) is routinely used to divert drivers from the

officers and their vehicles on the roadside. Yet there is still an unnecessarily high

rate of accidents, many of them involving apparently unimpaired drivers (Charles

et al., 1990)[3]. We therefore conclude that existing VMEL systems fail to generate

sufficiently effective cues to divert drivers from collisions with the vehicles on the side

of the road.

Some drivers cannot be diverted by any emergency lighting system. In this case,

something else must be done to reduce the danger of roadside collisions. We have

developed the early stages of an easy-to-deploy mechanism to warn the officer of a

potentially dangerous oncoming vehicle, early enough to allow the officer to get out

of the way in time to avoid injury.

Our system addresses the problem of roadside collisions from two separate angles,

based on the needs we perceive:

1. Create a more effective vehicle-mounted emergency lighting system to divert

oncoming drivers.
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2. Create a warning system that robustly perceives potentially hazardous oncom-

ing vehicles, and effectively alerts officers in time to avoid disaster.

By combining these two approaches, our system contains two layers of risk mitigation.

The first layer will divert many possibly dangerous oncoming drivers, and the second

layer will warn the officer of any vehicles that break through the first safety layer. By

integrating these two approaches into a single system we will give police officers and

other emergency workers an effective safety net from roadside collisions. I worked on

the second approach, the alerting approach, and this thesis will cover that portion of

the project.

3.1 Officer Alerting Mechanism (OAM)

The development of the OAM has been focused on writing and evaluating software

designed to monitor the roadway behind a stopped police vehicle, detecting oncoming

vehicles using machine vision algorithms, evaluating the potential danger of a detected

oncoming vehicle, and alerting the police officer of any vehicles deemed potentially

dangerous. Research for the alerting portion of the project will consist of evaluating

the software system on LCM logs of camera data taken from the roadside during

police escorted ride alongs.

3.1.1 Sensors and Geometry

Vision at night is very challenging. Road markings and vehicle bodies are extremely

dimly lit, requiring long exposures to show sufficient detail. The long exposure time

of the camera causes blur on moving vehicles, which also makes recovering details

difficult. Additionally long exposure causes bright objects, such as headlights and

streetlights, to saturate the camera and produce a blooming effect. With this bloom,

it is very hard to precisely track bright lights. We would like to be able to minimize

bloom and track headlights very precisely, but at the same time be able to see details

of the road and vehicle bodies.

14



To accomplish these two seemingly contradictory tasks, we mount two identical

cameras, one set to short exposure, and the other to a longer exposure. The short

exposure camera is set around 1/2000 second exposure time, and is used to detect

moving headlights and other bright lights, while minimizing motion blur. The long

exposure camera is set around 1/60 second exposure time, and is used to capture

details of the road, such as lane lines and other markings, which are stationary and

so not subject to motion blur. Figure 3-1 shows the difference between the images

from these two exposure settings.

Although we are using two cameras, we are still using a monocular vision approach.

The two cameras do not function as a stereo pair, they only differ in their exposures,

and are relatively close in position. We do not use a stereo system for three main

reasons:

1. We would like the entire system to fit in a small box on top of the vehicle, and a

stereo pair of cameras would require a large distance between the two cameras.

2. Stereo works better the closer the object is to the cameras, but our system is

focused on detecting objects at a far distance, and so in this case stereo would

not provide much of an advantage.

3. Stereo would require adding at least one more camera, which would bring an

additional cost to the system.

A monocular vision approach implies that we must determine distance in other

ways, such as using assumptions about the shape and size of the road, or assumptions

about the height of headlights off the ground.

3.1.2 Vehicle Detection

One of the most critical aspects of the project is the ability to detect and track

oncoming vehicles. The task of detection involves recognizing objects as vehicles

and determining the precise position of those vehicles. T racking involves keeping a
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(a) Short-exposure

Figure 3-1: Short and long exposure images of the road. Notice the bloom in the long-
exposure image, making it very difficult to differentiate headlights in the distance.

consistent representation of each vehicle's position and velocity as it moves through

the cameras field of view.

The easiest way to detect vehicles is by looking for headlights. Using the short

exposure camera, headlights do not bloom and so can be relatively compact, and so

are seen to be distinct from one another. Because the short exposure camera is highly

sensitive to bright lights, and dulled to most everything else, it is reasonably simple

to detect and track vehicles with their headlights on.

3.1.3 Vehicle Tracking

Once we determine the positions of oncoming vehicles, we form a coherent track for

each vehicle by correlating detections over camera frames based on sensor geometry,

motion consistency, and proximity.

3.2 Sensor Calibration

We employ three levels of offline sensor calibration. First we estimate camera pa-

rameters such as focal length and radial lens distortion, which remain fixed, using a

standard procedure[6]. Second we compute the alignment between the two cameras,

which remain fixed. Third, we determine a transformation between the cameras and

16
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the laser from the MDM using a sequence of calibration steps built into the software

system. This laser calibration will also remain fixed in the final system, which will

contain all parts of the system in one enclosure.
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Chapter 4

Technical Achievements/ Steps

The majority of the work I did was focused on three main problems - vehicle de-

tection and tracking, recovering world coordinates from road lines, and calibration

with the laser system. The Divert and Alert system contains two cameras, one at long

exposure and one at short exposure, aimed at the road. The short exposure camera is

used for vehicle detection and tracking, as the short exposure reduces headlight bloom

and darkens other objects in the image, making it easier to separate headlights. The

long exposure camera is used in the officer's interface, so he can easily see road lines

and reference objects along with the headlights of incoming vehicles.

4.1 Assumptions

In the current version of the system, we assume that the road is flat and straight. This

assumption will not always hold, but for most cases, especially on the highway, the

road is relatively flat and straight. The straight road assumption allows us to use the

road lines to find the vanishing point of the image and to infer the world coordinate

system from these straight road lines. We also assume a fixed headlight height of

0.6 meters above the road. This allows us to determine the real-world position of

headlights once we have calculated the transformation between the camera image

and the road. The process of determining real-world coordinates is described in

Section 4.3. The flat road assumption allows us to perform a homography between

18



the laser coordinate system and the camera coordinate system, so we can calibrate

the two systems and project lasers on the road using the camera interface. This

procedure is outlined in Section 4.4.

4.2 Vehicle Detection and Tracking

Vehicle detection and tracking are critical to the process of alerting an officer of a dan-

gerous incoming vehicle. Detection consists of finding blobs of pixels that correspond

to headlights, while tracking consists of keeping track of headlights and more impor-

tantly headlight pairs which represent vehicles. This process is performed monocularly

on the short exposure camera, so that the effects from headlight bloom and other,

less bright objects are minimized. Figure 4-1 shows a screenshot of the tracker code

running on a log from the short exposure camera.

4.2.1 Detection

The vehicle detection process consists of separating headlights in the image from the

short exposure camera. To do this, the system first finds all pixels in the greyscale

image over a threshold light value, usually 240 for an 8-bit pixel value. We put all

of these pixels into a simple "Union Find" data structure. Our Union Find data

structure is a simple disjoint set data structure that packs each pixel entry into a

single integer array for performance.

Once we have all relevant pixels, we can separate them out into clusters. This is

when our Union Find data structure becomes useful. The disjoint-set data structure

allows us to cluster all connected pixels that are above the threshold light value

together efficiently. Once we have clustered together all bright pixels, which we will

call blobs, we assign a random ID to each blob. We then discard all blobs smaller than

a minimum size value, in our system usually 40 pixels. This leaves us with only large

blobs of light, which generally represent headlights. For each blob that we detect in

the image, we calculate the centroid and store it as a headlight for the current frame.
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Figure 4-1: A zoomed-in image of the tracker code running on a log from the short
exposure camera. The tracker first finds blobs of light pixels (blue), then finds the
centroids of these blobs to track as headlights (green), then matches headlight pairs

(red). The inset shows the original image, and the portion which is zoomed in on.

4.2.2 Tracking Headlights

We would like to have some sort of memory of the headlights that we detect, so we

can keep track of a vehicle's trajectory and velocity. At the beginning of each frame,

we load all of the headlights from the previous frame. When we look at the new blobs

found in the current frame, we examine the blob IDs to determine if some of the

blobs correspond to headlights carried over from the previous frame. Our Union Find

data structure carries over blob IDs if they are connected to a blob in the previous

frame, so as long as the blobs don't jump too far between frames, we can keep track

of headlights from frame to frame, based on their blob ID.

At each frame, we check to see if each headlight is present, and when a headlight

20



is missing for a threshold number of frames, usually just 1 or 2, then we remove

that headlight from our headlights array. In this way we can keep only the active

headlights at all times, and so therefore consistently track the headlights of vehicles.

4.2.3 Headlight Pairs

Tracking headlights is not sufficient for tracking vehicles. Most, but not all, vehicles

have two headlights, so we must pair our tracked headlights to track vehicles. This is

slightly more complicated than just tracking blobs of light. We could have a handful

of headlights in the image, but if we don't know which headlights go together, then

these headlights don't do us much good. We would like to track vehicles, because

if we just have unpaired headlights then we cannot know the exact position of the

vehicle, and so our tracking will not be very accurate. Therefore we needed to come

up with some sort of pairing algorithm.

Currently we pair by two main factors, a y-distance threshold and a pure distance

threshold. In other words, if two headlights are within a small threshold number of

pixels in the y direction, then we consider them a possible pair. This works because

headlight pairs are horizontal, and so their positions in the image should be roughly

equal in their y position. We also consider a pure distance factor, as headlights should

be relatively close to each other. For instance there could be two separate headlights

that have equal y values, but that are across the image from each other. These are

clearly not a pair; the distance factor takes care of this case.

Other factors that we have considered are velocity factors and spacing factors. We

could track the velocity of each headlight, and if a possible pair has similar velocities,

then this would make them more likely to be an actual pair. Similarly, if we tracked

the pixel spacing between two pairs, this should strictly increase as the two headlights

approach the camera. If this does not happen, this decreases the likelihood of being

an actual pair.

Note that we mention tracking possible pairs. We actually pair up all possible

pairs that meet our factor thresholds, and so sometimes headlights end up in multiple

possible pairs. At some point we trim down the pairs until all headlights are contained
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in only one pair, based on the factors above.

4.3 Recovering World Coordinates from Road Lines

We now know where the vehicles are in the image, and can track their position, but

only in the camera image. We want to know their position in the world, so we can

track their distance from the vehicle, their velocity, and other relevant parameters.

To find the relationship between the camera image coordinate system and the world

coordinate system, we need to have some sort of basis in the camera image that we

can relate to the world. For this, we decided to use lines on the road, because they

are constant and are relatively easy to see on the camera image.

Once we have the road lines in the camera coordinate system and also have some

idea about their position in the real world, we can calculate a transformation from

the camera coordinate system to the world coordinate system, and so be able to track

the real world position and velocity of each vehicle.

4.3.1 Vision Algorithms to Recover Road lines

We first define the coordinate system that we will use throughout. Let (Xw, YW, ZW)T

be "world coordinates" aligned with the road. The Zw-axis is parallel to the road,

the Yw-axis is parallel to the gravity vector, and the Xw-axis is orthogonal to these

two (and hence horizontal). Let Zw increase in the direction the camera is aimed, let

X, increase to the right when facing in the positive Z. direction and let Yw increase

downward. This gives us a right-hand coordinate system.

For convenience we pick the origin of this coordinate system to coincide with the

center of projection (COP) of the camera - that way, the road and camera coordinate

systems are related just by a rotation, not a rotation and a translation.

Let (Xc, Yc, Zc)T be "camera coordinates" with Z, aligned with the optical axis,

X, horizontal to the right, and Y vertical down. The origin of this coordinate system

is also at the center of projection. These coordinate systems are shown in Figure 4-2.
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image plane

x

camera

Figure 4-2: A diagram of the camera and the road showing the camera and world
coordinate systems. The world coordinates X, and Z, of the red dot, as well as the
camera coordinates X, and Zc, are shown. The y coordinates are not shown because
the y-axis is perpendicular to the page, but both Y and Y are increasing downward.

The perspective image projection equations are

x Xc
f zc

y Ye
f ze

where f is the focal length and (x, y) is the position in the image - measured relative

23

. ...... ..... .... - - ." ,

road



to the image center, or principal point.

Next, the camera is mounted on a tripod that permits two rotations, yaw 0 about

the Y axis, and pitch # about the X axis. We then have the relationship between the

world coordinate system and the camera coordinate system

Xj XW

Y R Yw

Ze ZW

where

1 0 0 cos 0 0 sin0

R = 0 cosq$ sinc 0 1 0

0 -sin 0 cos 0 -sin 0 0 cos 0

or
cos 0 0 sin0

R = -sin0sin$ cos# cos0sin#

-sin0cos# -sin# cos0cos#

From this we can get the vanishing point (xV, Yv) of the road by projecting the

rotated (0, 0, ZW)T to obtain

= tan sec# = tan#
f f

These equations allow us to estimate yaw 0 and pitch # from the location of the

vanishing point. We can easily find the vanishing point by finding the intersection of

two parallel road lines in the camera image.

Now we can estimate how far a line parallel to Z., such as a road edge or lane

marking, is from the camera. Suppose that the line passes a distance w to the right

of the COP and a distance h below it. This road line projects into a line in the image.

We will estimate the ratio w/h from the angle of the road line in the image relative

to the y-axis of the image. Then, knowing h we can estimate the horizontal offset w.

Points on the road line have world coordinates (w, h, Z)T and as Z tends to infinity
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the projection of this point tends to the vanishing point. We need only one other

point on the projection of this line into the image in order to determine it fully. We

find an arbitrary point (xc, yC) in the image. We are only interested in the direction

of the line, so we compute

xc - xv XC Xe cos 0 cos 0 - Ze sin0

f Z t Zc cos theta cos #

and

Ye - YV Y Y cos # - Ze sin 
= -- - tan # =

f Ze Ze cosq$

where

Xc = w cos 0 + Z sin 9

Y = -w sin 9 sin $ + h cos + ± Z cos 0 sin q

Ze = -w sin 0 cosb - h sin + Z cos 0 cos 0

We find after some simplification that

Y cos - Ze sin = h

Xc cos 0 cos - Ze sin 9 = w cos q5+ h sin 9 sin 4

consequently
xc - xv wcosq + hsin0 sin

YC - YV hcos 0

This is the tangent of the angle between the projection of the line and the vertical in

the image, so
W Cos

tan =- - +tan0sin#
h cos

This allows us to calculate w/h from the angle of the projected line and the known

camera orientation parameters 9 and 4. If we know the height h of the COP above

the road surface we can then estimate the horizontal offset w of the line from the

camera. In our case, we will have a fixed height h as the police vehicle will have a
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constant height. If we perform this calculation for two lines, such as lane markings,

then we can estimate the distance between them, which would be the lane width.

4.3.2 Software System To Recover Road Lines

Using the machine vision algorithms from the previous section, I designed a software

system in C++ to recover road line information given the camera image of the road.

The system displays two road lines and a horizon line overlaid on the camera image

of the road, which is read using LCM. The officer can adjust these three lines to meet

the two edges of the left-most lane and the horizon, respectively. The system uses the

intersection of the two road lines to find the vanishing point, and from there calculates

the horizontal offset of the road from the camera, as well as the width of the lane.

Based on the vanishing point and assuming a flat road, the system can determine the

yaw 0 and pitch <$ of the camera relative to the road, and from there determine the

entire transformation R from the world coordinate system to the camera coordinate

system. The progression of the system is shown in Figures 4-3 and 4-4.

4.3.3 Position and Velocity Calculation

Once we have calculated the transformation between the camera and road frames, we

can track the real world position and velocity of the vehicles using the tracker portion

of the software system. First we need to transfer the headlight tracking information

from the tracker code to the road lines code just described. This is a little trickier than

simply passing the headlight pixels to the road lines code, as the tracker is working

on the short exposure camera, which is a separate camera from the long exposure

camera that the road lines code works on. The two cameras are spaced slightly apart,

and the timings of the two

cameras are not completely in sync. The timing of the cameras does not really

matter for figuring out position information, as the road lines are constant, but the

difference in timing can cause a slight offset when displaying tracking information

on the road lines image. This problem is hardly noticeable most of the time, but in
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Figure 4-3: The road lines program running on a log of the footage from a ride along

with an officer. The user adjusts the road lines shown overlaid on the picture to

fit the lines of the road in the picture. The system then automatically calculates

the distance to the road, the road width, and a transformation from the camera's

coordinate frame to the real world coordinate frame. Based on these calculations, the

system then displays meter markings at increments of 10 meters along the road.

future iterations of the project should be dealt with for increased accuracy.

To take care of the position offset between the two cameras, we calculate a camera-

to-camera transformation using a simple homography, which remains constant, be-

cause the camera rig is constant. We only have to do this once, and can store the

homograph in a config file. Using this simple transformation, we can integrate the

tracker and the road lines code, and then determine position and velocity of tracked

vehicles. To calculate position we simple use the camera-to-world transformation that

we calculated above using the road lines and the vanishing point. We also pass in the

previous frame's headlights from the tracker, which allows us to calculate the velocity

of each tracked headlight pair. In Figure 4-5 we calculate the position and velocity of
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Figure 4-4: The user can toggle the level of the road markings between road level

and headlight level. When the road lines are at headlight level, it allows the user to

see whether or not the car corresponding to headlights on the screen is within the

boundary of the road lane. Notice that the car in the left lane has both headlights

between the orange lane lines.

incoming vehicles, and mark any that are in the rightmost lane, closest to the parked

police vehicle.

4.4 Laser Calibration

In addition to the OAM functions performed by the camera, the image from the

camera is also used by the officer to give the system directions on where to place

the laser virtual flares. The software system deduces where these flares should go

based on the camera image of the road, then sends a command to the laser system

for where to fire the laser. This can be tricky, however, because the laser and the
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Figure 4-5: The road lines program after integration with the tracker. The red dots

denote tracked headlight pairs. Blue circles denote vehicles that are in the rightmost

lane, closest to the shoulder.

camera are naturally in different positions, and possibly also different orientations,

upon the police vehicle. Therefore the software system must know the relationship

between the camera coordinate system and the laser coordinate system. In order to

determine this relationship we use the principles of homography.

4.4.1 Homography

We seek to determine the relationship between the camera coordinate system and the

laser coordinate system. The most accurate way to do this is to determine the relative

orientation (translation and rotation) between the laser coordinate system and the

camera coordinate system, using 5 or more pairs of correspondences and a least

squares method[9, 10]. However it was quicker to implement a simple homography,
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Figure 4-6: The relationships between the camera, laser, and world coordinate sys-
tems are shown. f represents focal length, t represents a translation vector, and R
represents a rotation matrix.

and this doesn't cause a loss of accuracy unless the data is extremely noisy. This

could cause a problem at some point, but for now the homography approach produced

accurate enough results[11, 12, 8]. We can use a homograph because we assume a

flat road, and so we are finding a transformation between two 2-D planes, namely the
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image and the road.

In either case, there are some basic calibration parameters we need to determine.

Ideally we would want to know where the principal point is, but we use the image

center instead, as this is a close approximation for the scale of the road. Image

coordinates are in reference to this point, not one corner or another of the image, and

in the same units as the focal length.

Many of the projection equations we use are from the chapter on photogrammetry

in RobotVision[7]. The camera's perspective projection equations are

xi X! y" Y
f ZC, f Z,,

where (xi, yi) are the coordinates of the image of the point (Xc, Y, Zc)T measured in

the camera coordinate system.

It is important to note that the image coordinates xi and yi are measured relative

to the principal point (approximately at the image center) and in the same units,

in our case pixels, as those used for f, the distance from the center of projection

(rear nodal point) to the image plane (approximately the focal length). The principal

point is only approximately the image center because of the tangential distortion or

imperfect centering of the lens components and other manufacturing defects, in other

words the imperfect properties of the camera. We can generally treat the principal

point as the image center, as the difference is not enough to effect us on the scale

of the road. Similarly the focal length is approximate, as the center of projection

can correspond to two nodal points in the imperfect lens. Again, this is not enough

to effect us in a noticeable way. Further, the camera coordinates Xc , Y , Ze are

measured with respect to an origin at the center of projection (front nodal point)

with the Z, axis along the optical axis and the Xc and Y axes parallel to the xi and

yi axes in the image plane.

The accuracy with which we can determine the required transformation will de-

pend to some extent on the relative arrangement of the camera and the laser. If it

were possible to place the center of projection of the camera right at the point of
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projection of the laser, then only rotation between them would matter. But of course

this is not practical. There may be an advantage to keeping them fairly close together

anyway, which we will do, as the final product will be entirely contained in a box on

top of the police vehicle.

With the laser, we need to determine the actual angles of deflection of the beam,

which will be twice those of the mirror rotations. Next, because rotations do not

commute, we need to know in which order the beam from the laser hits the two

mirrors. Then the direction of the laser beam can be given as something like

sin 9

cos 0 sin

cos 8 cos q

where 0 and 0 are the deflection angles of the two mirrors. This expression will look

slightly different, depending on the arrangement of mirrors and choice of coordinate

axes, which we will examine in the following section.

There is an additional issue with the laser in that the mirrors rotate about axes

that do not intersect. This makes the calculation of the exiting beam much harder,

but we can ignore this based on the large ratio between the distance to the road

surface (many meters) and the distance between the two mirror axes (< 10 mm).

The transformation between any arbitrary world coordinate system X", Y", and

Z, (not necessarily corresponding to the world coordinate system from the previous

section) and the camera coordinate system is given by a rotation and a translation

Xc XW

Yc =R Y) +t

where R is an orthonormal rotation matrix and t = (X 0, Y0 , ZO)T, is the translational

offset.

When dealing with a plane, in this case the road surface, we can construct the
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world coordinate system in such a way that Zw, = 0 for points on that surface. Then

Xc = rnlXw + r1 2Yw + XO

Y= r 21Xw + r 22Yw + Yo

Ze = r31 Xw + r32Yw + ZO

where rij are the components of the rotation matrix for row i and column j. We can

also write this as

XC

YC

Ze)

rin r12 Xo

r 2 1  r22 YO

r 31 r 22 ZO

XW
Yw

1J

Using the perspective projection equation we see that

wi Xc

k yi Y

f Ze

where k = (Ze/f). So

xi r,

k y r21

f r3

or

kf

xi

yiI

1

or

=Ifrn

f r 21

r 12 X 0

r 2 2 Y

r 22 ZO)
fr 12 f X 0

fr22 fY

r 22 Zo

ki

ki y Me

XW

YW
yw
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That is, there is a simple linear relationship between homogeneous coordinates on the

world plane, in our case the road surface, and homogeneous coordinates in the image

plane.

We can think of the laser as something like a reverse camera, that fires rays of

light from its COP rather than receiving rays of light like the camera. We can imagine

a plane a distance f in front of the device and specify the directions of rays from it

by coordinates x, and y, where the ray intersects this plane. Then there is a similar

relationship between coordinates in this plane and world coordinates on the road, just

X1 XW

k, y, =AM YW

We can combine these two transformations to find a transformation between laser

coordinates and image coordinates:

Xi X1

k yi = M y,

where M = M 1M;j.

The calibration task is that of finding M, a 3 x 3 matrix, using correspondences

between laser coordinates (xi, yi) and image coordinates (xi, yi). The matrix M has

9 elements, but since it relates homogeneous coordinates, its magnitude does not

matter. So we have only 8 unknowns - we can fix one component, say M 3 3 = 1, and

solve for the rest.

We now have

kxi = M1 . (XI, yI, 1)T

kyj = M 2 . (X1, yI, I)T

k = M3.- (XI, yl, 1)T
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where M1 , M 2 and M 3 are the three rows of the matrix M and the dot denotes dot

product. Using the last equation to substitute for k in the first two equations we

obtain

m11X1 + m1 2yI + Mi13 - m 31 xix - m 3 2xiyl - m33Xi = 0

m 2 1x 1 + m 22y1 + m 23 - m 3 yxi1 - m3 2yi - m33Yi = 0

We obtain two such linear (homogeneous) equations in the unknown elements of

the matrix M for every correspondence between a laser direction (xl, yl) and the

coordinates of the image (Xi, yi) of the spot that the laser makes on the surface. If we

collect enough correspondences, and add the non-homogeneous equation n 33 = 1, we

can solve the resulting set of linear equations for the components of the transformation

matrix M. Because there are 8 unknowns, we need 4 correspondences to produce 8

linear equations, which we can just solve using Gaussian elimination.

Once we have the transformation matrix M, we can then convert any image

point (Xi, yi) to a laser point (xi, yj). The laser, however, does not understand this

coordinate system, and only takes mirror angles as input. Therefore we must find a

transformation between the laser points (xi, yi) and the command angles to send to

the laser. To figure out this transformation, we will examine the galvanometers of

the laser in greater detail.

4.4.2 Galvanometers

The laser contains two galvanometer-driven mirrors, which control the direction of

the laser beam. First, let's define the coordinate system for the galvanometers.

Let Z be the direction of the beam out of the mirror system at zero deflection

(i.e. perpendicular to the plate with the three screws visible in Figure 4-7). Let X

be the direction opposite to that of the laser beam where it comes into the mirror

system (i.e. parallel to the line between the bottom two screws on the front plate in

the figure). Let Y be upward, perpendicular to the X- and Z-axis (i.e. parallel to

the line connecting the two left screws in Figure 4-7). These axes form a right-hand
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Figure 4-7: The coordinate system for the galvanometers.

coordinate system.

Next, we define the positive angle of rotation of the galvanometers as clockwise

when viewed from a point along the axis on the mirror side of the motor. The

deflection of a beam by a mirror can be described by

=Out = in - 2(in * n)n

where jn is a unit vector in the direction of the incident beam and bOut is a unit

vector in the direction of the reflected beam and fi is the unit normal to the mirror.

We can verify that the emitted angle equals the incident angle, and that the three
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vectors bin, bout, and ii are coplanar using

bin - bout = 2(bi - )n

(bin + bout) -n = 0

(-bin) - = bout -

[bin bout i] = (bin x bout) -i = 0

Next, we consider the orientation of the two mirrors. The axis of rotation of the

second, "Y-axis" mirror is k = (1, 0, 0 )T . The normal to this mirror is

f2 = (0, c2 , S2 )'

where c2 = cos (02 + 020), S2 = sin (02 + 020), with 02 being the rotation of the axis of

that galvanometer from its rest position and 020 being the rest position angle (~ r/4).

The axis of rotation of the first, "X-axis" mirror is (0, se, c,)T where ce = cos E,

s, = sin f and E is the angle of inclination of the galvanometer axis with respect to the

horizontal plane. Measurement of the drawing from the manual of the galvanometers

indicates that ce~ 11.5[201. The normal to the first mirror is

li = (si, cicE, -cise) T

where c = cos (01 + 01o) and s, = sin (01 + 010), with 01 being the rotation of the

axis of that galvanometer from its rest position and 010 being the rest position angle

(wr/4).

The beam initially enters the assembly traveling in the negative X-direction

bo = -R = (-1, 0, O)T

After reflection by the first mirror the beam direction is b1 = 0 - 2(bo - ii)fi or,
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after some simplification,

C1

bi = S1 c,

SSisF

where C1 = cos (2(01 + 010)), and S1 = sin (2(01 + 01o)) (note upper case C1 and S,

now for trigonometric functions of double angles).

After reflection by the second mirror the beam direction is b 2 = - 2( 1 - n2)2
or, after some simplification,

C1

2 = S1(-C2C: + S2s)

S1 (C28,5 - S2Ce)

where C2 = cos (2(92 + 920)), and S2 = sin (2(92 + 020)) (note upper case C2 and S 2

now for trigonometric functions of double angles). This can also be written as

C1

b 2 = -S1C2

S1SA

where C2 = cos (2(02 + 020) - E) and S2 = sin (2(92 + 920) - E). Note how we can

compensate for the angular offset of the axis of the first galvanometer by adjusting

the at-rest position of the second axis so that the exit beam travels parallel to the

Z-axis when the galvanometers are in their rest position. All we need to do is set

020 = E/2.

Finally, if O1o = 7r/4, then Si = cos (201) and C1 = - sin (201). So we end up with

- sin (291)

2 =cos (s6i) sin (292)

cos (sO1 ) cos (292)

This is the actually form of Equation ... from the previous section. Note the negative
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sign on the X-component which in practice is taken care of by considering counter-

clockwise rotation of galvanometer 1 as positive. Also, note the double angles due to

the fact that reflection of light doubles the angles. The rotation commands to the

galvanometers already take this into account and correspond to 20, and 202.

Projecting the exit beam onto a planar surface perpendicular to the Z-axis at

distance f, which corresponds to a laser point (Xi, yi), we obtain

X - tan (201) sec (202)

Y1 = f tan (202)

for the position of the spot. Note that the y-position is affected only by 02, while

the x 1-position depends on both 02 and 01. The sec(20 2) multiplier stretches the

x1-component when 02 is non-zero.

Conversely, we can get the galvanometer commanded angles from desired positions

in the plane using

-201 = arctan (2
Vf2 +yJ2

202= arctan (j)

This provides the galvanometer command angles given a desired position in the pro-

jection plane. We can use these formulas to determine the command angles to send

to the laser to fire the beam in a desired direction (Xi, yi).

4.4.3 Calibration Software System

I designed a calibration process, and added it to the road lines software system. The

procedure consists of a series of steps performed by the user of the software system,

which will most likely be the officer. The officer follows instructions on the screen,

and the software system runs the algorithms described in the previous sections to

determine a transformation M between the camera and laser coordinate systems. The
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software communicates with the laser using LCM, sending it galvanometer command

angles.

Generally the camera and the laser coordinate systems are close together and

pointed in generally the same direction, although this procedure works for any ar-

rangement of the laser and camera. The system has no knowledge of the laser's

orientation, and only can see through the camera coordinate system. The system

initially assumes an identity transformation between the two coordinate systems, al-

though this is never actually the case, as even if the camera were right on top of the

laser and pointed in the exact same direction, there is some scale factor that differs in

the two coordinate systems. By the end of the calibration process the system knows

M and can draw any arbitrary series of laser points in the real world based on the

user's clicks on the camera image.

The steps of the calibration process are as follows:

1. First the user clicks on the 'Start Calibration' button in the menu bar. Direc-

tions are displayed in the output section of the menu, which tells the user to

click in a quadrilateral on the road surface to send to the laser.

(a) User clicks on 'Start Calibration'. (b) The system prompts the user to click four
corners of a quadrilateral.

Figure 4-8: Step 1.

2. The user clicks on the four corners of a quadrilateral. The system calculates the

corresponding galvanometer command angles, based on its current idea of the
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transformation M, which is initially just the identity. The laser points corre-

sponding to the clicked corners then appear on the world surface. Additionally

a plot of the galvanometer command angles appears, as well as a graph of the

clicked points in the laser coordinate system.

Figure 4-9: Step 2. The user clicks a quadrilateral (light blue), which the system
transforms to a series of laser points, as seen to the upper right of the clicks. A plot

of the galvanometer command angles appears in the top left of the screen, and shows

the angles of the two motors, with a green dot that follows the angles being sent by
the software to the laser. In the top right of the screen a plot of the clicks in the laser

coordinate frame appears, with points in blue.

3. The user is prompted to click on the four laser points as they appear on the

screen, in the order corresponding to the order clicked. With each clicked laser

point, the system gets a laser-camera correspondence, as described in the section

on homography. Once the system has four such correspondences, it can perform

the algorithms previously described to calculate the transformation matrix M.
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After these four clicks, the system should be fully calibrated. If the calibration

is a little off, then the user can reset the calibration process and start over.

Figure 4-10: Step 3. The user clicks on the laser points corresponding to the corners
of the quadrilateral. These clicks appear in green. Notice the blue points in the laser
frame have changed position, as the transformation matrix M has been updated, and
so the laser frame coordinates of the calibration quadrilateral have shifted.

4. The user can now click on the 'Draw Laser' button to command the laser to

draw out any arbitrary shape. The user clicks on an arbitrary series of points on

the world surface in the image, and the system stores an array of galvanometer

command angles corresponding to these image points.

5. When the user clicks on the 'Send Laser' button, the array of galvanometer

command angles is sent to the laser, and the laser outputs the desired points

on the world surface.
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Figure 4-11: Step 4. The user clicks the 'Draw Laser' button, and clicks a series of

points in a pattern on the world surface. Notice the order of the points clicked.

This procedure allows the user to easily calibrate the camera and laser coordinate

systems. A demonstration of the procedure in action is shown in Figure 4-13. This

should only need to be done once for the final product, but depending on how static

all of the parts are, can be done occasionally and very quickly to keep the two systems

calibrated. The laser drawing functionality will allow the officer to design a pattern

of virtual flares on the road surface with a simple series of clicks, saving him or her

time and energy on placing real flares on the road.

43



Figure 4-12: Step 5. The user clicks the 'Send Laser' button, and the galvanometer
command angles corresponding to the pattern are sent to the laser. Notice the star
pattern. The laser in its current state moves between laser points slower than the
final laser will, and some intermittent laser points are produced in between each point.
Also notice the curve of the lines between each laser point. This is due to the angular
nature of the galvanometers, and so the shortest path between two mirror positions
does not necessarily translate to the shortest path on the world surface. Finally note
that this example of the system uses a flat vertical wall, instead of a horizontal road.
This should not make any difference, as the system only assumes a flat surface, and
the code has been run on a horizontal surface and works just as well.

44



(a) A user running the calibration procedure on
a laptop.

(b) The lasers projected on a wall.

(c) The laser system. The laser source is on the right, and the laser travels through a series of optical

lenses in the middle, then enters the galvanometers on the left and is projected out of the hole on

the left facing forward.

Figure 4-13: A demo of the laser calibration procedure.
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Chapter 5

Results and Contributions

5.1 Results

This section will present some results, my contributions, and future work to be done.

5.1.1 Specifications

The computer running the code was a Dell Precision Mobile M4600, with a 2.70 GHz

Quad Core Intel Core i7-2960XM processor, with 8.0 GB RAM. The cameras are

Point Grey Dragonfly2 V1.3 cameras. Figure 5-1 shows the group testing at the BAE

facility in Merrimack, NH.

5.1.2 Performance

The tracker system and the road lines system each run concurrently in real time on

camera logs that are running at 20 frames per second. The system takes about 4

ms per frame to find the relevant pixels that could be headlights, about 32 ms per

frame to pull out the headlights from these relevant pixels and manage the union

find data structure, and about 8 ms per frame to run all of the road lines algorithms

and display the image and tracks to the user. This adds up to about 44 ms per

frame, which is under the 50 ms between frames, but it is close. The efficiency of the

headlight detector should be improved in the future, so that any performance hiccups
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Figure 5-1: The group testing the laser and camera systems at the BAE facility in
Merrimack, NH.

will not cause any problems.

5.1.3 Lane Characterization

As a demonstration of the correctness of the system, I recorded the z-direction ve-

locities of headlights and compared them to the lane that the system deduced the

headlights belonged to. I recorded these values and correlations for a 93-second LCM

log of footage taken on a police ride along on a highway about 20 minutes outside of

Boston, with relatively heavy traffic and a speed limit of 65 mph. The average speed

breakdown for each lane is shown in Table 5.1, and Figure 5-2 shows the distribution

of the velocity data for each lane.
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Lane 1 2 3 4
Number of Headlights 81 64 41 18

Average Velocity (mph) 68.09 69.71 75.65 72.66

Table 5.1: The number of headlights and average velocity for headlights detected in
each lane. Lane 1 is the rightmost lane closest to the shoulder and the camera.
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Figure 5-2: Velocity distributions for each
x-axis are in miles per hour.
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(d) Lane 4

lane of the road. The velocities on the

Analysis

This experiment is not the most rigorous test of the system, as there are a few small

problems with the experiment and the results. First, it only records velocities from

tracked headlights, rather than headlight pairs. The system currently can track head-

light pairs, but does not do so as accurately as with single headlights, and finds many

false positive pairs due to the high traffic and clustering of headlights. Headlights

also are dropped occasionally, and so headlight pairs disappear when either headlight

is dropped; the pair tracker thus has double the drop rate as headlights.

Second, as mentioned some headlights are dropped, in which case if they reappear

in subsequent frames they will be double counted. This seems to happen consistently
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across lanes, so should not muddle the distributions of the data.

Third, because of the traffic, the system detects fewer headlights in the farther

lanes, as many of them are obscured by closer vehicles, and their headlights are

relatively smaller then those of vehicles in the closer lanes. This accounts for the

decreasing number of headlights in farther lanes. This should be fine though, because

we are really just concerned with vehicles that pose a danger to the officer, which are

almost always vehicles in the rightmost lane.

The speed limit on the stretch of highway where this log was taken is 65 mph, so

these numbers make sense, as most drivers drive slightly above the speed limit. As

the lane gets farther away from the shoulder, there is an increase in average speed (for

the most part), which also makes sense. The distributions are somewhat Gaussian,

which is a good sign, and their deviation from Gaussian may be due to the relatively

small sample size.

5.2 Contributions

In this thesis I made four main contributions:

1. I designed and implemented a laser calibration procedure, which takes click

input from the user to determine a homography between the camera coordinate

system and the laser coordinate system. After calibration, I added functionality

to allow the user to draw an arbitrary pattern on the screen with mouse clicks,

then be able to send the pattern to the laser to fire points into the corresponding

points on the road surface.

2. I built a vehicle detection and tracking system that looks back at oncoming

cars from the road shoulder and detects oncoming headlights. The system then

tracks the headlights, pairs them up, and tracks the resulting vehicle headlight

pairs.

3. I developed a software system displays the camera image of the road, takes road

lines as input from the user, and calculates the transformation from the image
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coordinate system to the world coordinate system. This allows the system to

determine the real world coordinates of vehicles on the road based upon their

coordinates in the image. I then integrated this system with the tracker, and

implemented additional functionality such as lane characterization and velocity

calculation for tracked headlights.

4. I devised and ran an experiment to test the correctness of the software system

that recorded velocities of vehicles in a heavy traffic log, and characterized them

by lanes. I then analyzed this data.

5.3 Future Work

There is much left to do on this project. The tracker needs a lot of honing to become

as accurate and robust as the application calls for. There is much to be done on

characterizing dangerous vehicles, which will be a critical function of the final product.

The user interface for the final design will need to require much less user input and

interaction. The final product will need to go through a vigorous process of real-time

performance evaluation, in conjunction with the Massachusetts State Police.

5.3.1 Vehicle Detection and Tracking

The vehicle detection and tracking system works, but has some issues. Headlights

are often dropped, where for a frame the detecter will not see the blob of light, either

because it is to small or not bright enough or some other bug. In this case a headlight

will disappear from the tracker for a frame, and when it reappears will have a new

ID.

Similarly, occasionally the tracker will give a headlight that was actually also

detected in the previous frame a new ID. This occurs because the blob detection

algorithm uses a union find data structure, and so if the two images of the blob do

not overlap, then the system will have no way of knowing that they are in fact the

same headlight. This happens a lot when the headlights are close to the camera and
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moving fast, and so moving many pixels per frame. This is not a huge problem, as

by the time a vehicle is that close to the camera the decision of whether the vehicle

is dangerous will have already been made to give the officer enough time to get out

of the way.

We could also perform more sophisticated techniques, such as cross-sensor cueing

and many-to-many association of detections, to improve the robustness of the tracks.

5.3.2 Headlight Pairing

We currently only pair headlights based on a few simple factors, such as vertical

proximity and total pixel distance. This leads to headlights belonging to multiple

pairs. Other factors that could be used to pair headlights are velocity factors and

spacing factors. We could track the velocity of each headlight, and if a possible

pair has similar velocities, then this would make them more likely to be an actual

pair. Similarly, if we tracked the pixel spacing between two pairs, this should strictly

increase as the two headlights approach the camera. If this does not happen, this

decreases the likelihood of being an a actual pair.

A more robust way of doing this, which we have considered but not implemented,

is to weight each possible pair based on all of the factors above, then run a constantly

updating maximum weighted matching algorithm to determine the most likely set

of actual headlight pairs. This may provide some possible performance issues, and

added complexity, so we decided against implementing it, but it could be very useful

in future iterations.

It is much more difficult to detect vehicles with their headlights off. For this we

could use the long exposure camera by trying to find what is moving in the field of

view. We could use optical flow, which is the pattern of motion in a visual scene,

and the well-understood techniques for motion detection and object segmentation

using optical flow, to find potential vehicles. The cameras should also have variable,

software controlled exposure times, so that the system can adjust based on lighting

conditions.
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5.3.3 Characterizing Dangerous Vehicles

There are many ways to characterize the tracks of vehicles with varying complexities.

Simple characterization techniques, such as examining speed and direction, can clas-

sify a vehicle as moving too fast or directly toward the camera, and therefore classify

that vehicle as dangerous. Contextual information such as models of the roadway,

lane geometry, and vehicle size can be used to determine vehicle speed and acceler-

ation in real-world units, rather than pixels. Optical flow can be used to calculate

a simple time-to-collision estimate. A slightly more complex technique is to look at

night for vehicles with their headlights off, by finding objects that have a large amount

of directed motion, but that do not appear in the images from the short exposure

camera.

Even more complex techniques include machine learning algorithms to infer "nor-

malcy" of non-dangerous traffic. This involves storing all of the trajectories of traffic

that passes by and triggering an alert when an oncoming vehicles path varies in some

significant way from the norm, such as by swerving or decelerating an exaggerated

amount. Normalcy can also be modulated by other contextual information, such

as known speed limits, road curvature information from GPS-referenced databases,

number of lanes, weather conditions, and current traffic advisories. Additional infor-

mation, such as turn signals, fog lights, or hazard lights, can inform us of anomalous

behavior, such as motion inconsistent with the turn signal.

Other indicators, such as a turn signal or other blinking lights, could also be

detected and tracked on disjoint but globally consistent trajectories. For example,

turn signals appear as dotted lines. We could use co-occurrence analysis and geometric

reasoning to group these indicators with the vehicles that they belong to, and use

this information as an even more detailed classification technique.

We could use a combination of all of these techniques to characterize oncoming

vehicles. We could determine the most effective combination of all of these techniques

based on comparing the results during testing to some ground truth conditions.
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5.3.4 User Interface

We allow the police officer to manually adjust the road lines visual interface. We

could combine visual lane boundary detection with contextual information such as

GPS-referenced maps to determine the location and orientation of the cruiser and

generate the safety zones automatically. Ideally the officer will only have to power on

the system, and the code will automatically produce virtual flares in the right places

and begin tracking and characterizing vehicles.

5.3.5 OAM Performance Evaluation

We currently have tested only logs of video data, but in the future we would like

to evaluate the performance of the OAM prototype by live testing under controlled

conditions on a closed course with the collaboration of trained police officers. The

police officers would repeatedly drive around the course and drive by a vehicle with

the MDM/OAM detection device. The police testers would drive in a number of

patterns that should or should not be classified as dangerous as determined by us.

We would tabulate these situations, as well as the ground truth for each situation, or

whether we believe it should have been classified as dangerous. We would compare

the outcomes of the detection device with our ground truths, and hope to minimize

the number of false positives and missed detections. We would gather these statistics

over hundreds of individual tests, with varying specifications, such as along a long

straight stretch of road, near a curve on either side of the cruiser, near a section

of lane merging, and near a section of lane splitting. We would use the results of

these tests to analyze and improve the performance of the OAM and the algorithms

controlling it.
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Appendix A

Setup Instructions

A.1 Checkout the Repository

Here is the svn checkout command: svn checkout

svn+ssh://<csail-id>@login/afs/csail.mit.edu/group/rvsn/repositories/nij nij.

There will be a few points where it runs into an error, and says that it is missing

some function. Google the function and find out what package the function is in,

then sudo apt-get install that package.

After you get the whole repository checked out, go into nij/software/ and type

"make". This will build the code, and again you will probably run into errors where

you need to apt-get install some packages.

Once this finishes, you are ready to run the code. All of the tracker/roadlines

code is in nij/softwaxe/headlight.tracker/src/. After making changes, type "make"

in nij/software/headlight-tracker/ to build.

A.2 Run the Headlight Tracker Code

For this go into software/build/bin/ and type "./nij-headlights -c dragonfly". An

LCM input must be running for this code to run.

LCM input options:
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1. Playback an LCM log file. For this go into the directory of the log file, then

type "lcm-logplayer-gui [log name]". A good example log file is

logs/Ride-Along-November/log5.

2. Run on input from the cameras. Plug the cameras into the firewire port of

the laptop. In build/bin/ type "./camview" and add Point Grey Research

Dragonfly2 to the chain. Then add OpenGL to see the camera image, then add

LCM Image Publish to publish the image to the code. Set the channel of the

short-exposure camera to CAMLCMIMAGE and the long-exposure camera to

CAMLCMIMAGEJHIGH. (If the image from the camera is split, lower the

packet size to around 2600 to fix it)

A.3 Run Laser

The laser code is in /nij/software/firmware/serial-interface. To run the laser to listen

to LCM commands from the tracker code type "sudo python listener.py".

A.4 Run Alert code

The alert code is written in Java, so open Eclipse. The code that listens for LCM

messages from the tracker, and makes an alert sound when necessary is the file My-

Subscriber.java. Just run this file in Eclipse.

55



Appendix B

Code

Here is a portion of the headlight tracker code. This shows the basic process of

detecting and tracking headlights.

// called every frame, true if there is a new image from LCM

if (camGrab-pointer->getCameraData(greyImage, greySize) == true)

{

// finds all pixels above a threshold

filter::relevantPixels rp;

filter-pointer->getRelevantPoints(greyImage, &rp);

// clusters them into a union find data structure

headlightEstimator::idxAndBlobIDArray newBlobIndices;

filter-pointer->colorSegmentsVoting(&rp, &newBlobIndices);

// extracts headlights and pairs from relevant pixels

h_estimator-pointer->extractFromInput(&newBlobIndices);

// updates headlights and pairs data every frame

h_estimator-pointer->updateHeadlights();

h_estimator-pointer->updateHeadlightPairs();
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// stores relevant tracking data to be passed to roadlines code

headlightEstimator::idxAndBlobIDArray headlightBlobIndices;

headlightEstimator::idxAndBlobIDArray headlightPrevBlobIndices;

headlightEstimator::idxAndBlobIDArray pairBlobIndices;

headlightEstimator::idxAndBlobIDArray pairPrevBlobIndices;

h_estimatorpointer->publishHeadlightTracking(

&headlightBlobIndices, &pairBlobIndices,

&headlightPrevBlobIndices, &pairPrevBlobIndices);

rlines-pointer->setTracking(&newBlobIndices,

&headlightBlobIndices, &pairBlobIndices,

&headlightPrevBlobIndices, &pairPrevBlobIndices);

free (rp.pix);

free(newBlobIndices.array);

}

Here are some of the data structures that are used in the tracking code.

typedef struct {

int blobID;

coordinates_2D centroid;

int framesMissing;

bool isDeleted;

} headlight;

typedef struct {

headlight headlight_1;

headlight headlight_2;

coordinates_2D midpoint_2D;

coordinates_3D midpoint_3D;
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float velocity;

float pixelDistanceBetweenLights;

bool isDeleted;

} headlightPair;

typedef struct {

int ID;

int centroidX;

int centroidY;

int* previousCentroidsX;

int* previousCentroidsY;

int Raverage; /average radius for the blob size

} blob;

typedef struct {

headlightPair *headlightPairs;

int num-pairs;

int num-pairs-active;

headlight *headlights;

int num-headlights;

int num.headlights-active;

std::map<int, int> blobIDs;

std::map<int, int> pairjIDs;

} frame;

Here is a selection of the machine vision algorithms used in the road lines code.

float phi; //yaw about Y axis (horizontal), with right positive

float theta; //pitch about X axis (vertical), with down positive

float xileft; /angle of image line of left road edge from y-axis

float xi-right; //angle of image line of right road edge from y-axis
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void roadlines::calculateVelocityForPair(int pairID,

double x-p, double y-p, double &v_x, double &v-z)

{

v_x = 0.0;

v_z = 0.0;

// check to see if this pair was in the previous frame

for (int i = 0; i < pairsPrevTrackIDArray->size; i++) {

if (pairsPrevTrackIDArray->array[i].val == pairID) {

double cam[3], world[3], x-prev, y-prev, x-prevp,

y-prev-p, cam-prev[3], world-prev[3];

this->convertPixelToMM(x-p, y-p, cam[O], cam[1]);

cam[2] = focal-length;

this->convertCamToWorldCoordinates(cam, world,

cam-height - headlight-height);

this->convertIndexToPixel(

pairsPrevTrackIDArray->array[i].idx, x-prev, y.prev);

this->convertCameraToCamera(

x-prev, y-prev, x-prev-p, y-prev-p);

this->convertPixelToMM(

x-prev-p, y-prev-p, cam-prev[0], camprev[1]);

camprev[2] = focallength;

this->convertCamToWorldCoordinates(

cam.prev, world.prev, cam-height - headlight-height);

v_x = world[0] - world-prev[0];

v_z = -(world[2] - world.prev[2]);

}

}
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}

// find distance to the road from the car, and the lane width,

// based on camera height and user input roadlines

void roadlines::findDistances()

{

// tan(xi) = (w/h)*(cos(theta)/cos(phi)) + tan(theta)*sin(phi)

camtoroad = (tan(xi-left) - tan(theta)*sin(phi)) *

cos(theta)/cos(phi) * cam-height;

camtolane = (tan(xi-right) - tan(theta)*sin(phi)) *

cos(theta)/cos(phi) * cam-height;

lanewidth = camtolane - camtoroad;

}

// find transforms between the camera coordinate frame

// and the world coordinate frame based on angles

// found from the vanishing point

void roadlines::findWorldToCamTransforms()

{

/* rotations between world and camera coordinates

double worldtocamrotation[3][3] = {

{cos(theta), 0, sin(theta)},

{-sin(theta)*sin(phi), cos(phi), cos(theta)*sin(phi)},

{-sin(theta)*cos(phi), -sin(phi), cos(theta)*cos(phi)}};

double camtoworldrotation[3][3] = {

{cos(theta), 0, -sin(theta)},

{-sin(theta)*sin(phi), cos(phi), -cos(theta)*sin(phi)},

{sin(theta)*cos(phi), sin(phi), cos(theta)*cos(phi)}};
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worldtocamrotation[O][0]

worldtocamrotation[0] [1]

worldtocamrotation[0] [2]

worldtocamrotation[1][0]

worldtocam-rotation[1] [1]

worldtocam-rotation[1] [2]

worldtocamrotation[2][0]

worldtocamrotation[2] [1]

worldtocamrotation[2] [2]

cam-to-world-rotation[0] [0]

camtoworldrotation[0][1]

camtoworldrotation[0][2]

camtoworldrotation[1][0]

camtoworldrotation[1][1]

camtoworldrotation[1][2]

camtoworldrotation[2] [0]

camtoworldrotation[2][1]

camtoworldrotation[2][2]

= cos(theta);

= 0;

= sin(theta);

= -sin(theta)*sin(phi);

- cos(phi);

= cos(theta)*sin(phi);

= -sin(theta)*cos(phi);

= -sin(phi);

= cos(theta)*cos(phi);

= cos(theta);

= 0;

= -sin(theta);

= -sin(theta)*sin(phi);

= cos(phi);

= -cos(theta)*sin(phi);

= sin(theta)*cos(phi);

= sin(phi);

= cos(theta)*cos(phi);

// convert a point in the laser coordinate frame (xj, y-1)

// to the two galvo command angles thetal, theta2

void roadlines::convertLaserToCommandAngles(

double x_1, double y_1, double &thetal, double &theta2)

{

//-2 * thetal = atan(x/sqrt(f~2 + y^2))

// 2 * theta2 = atan(y/f)

thetal = -atan(x_1/sqrt(focaljlength * focallength + yl * y-1))/2;

theta2 = atan(y_1/focal-length)/2;
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}

// find transformation between image frame and

// laser frame based on 4 correspondences.

// Called at the end of calibrationstate 2

void roadlines::findCalibration()

{

if (num-corrs >= 4) {

// Each correspondence gives us 2 linear equations:

// mll*x_1 + m12*y_1 + m13 - m31*xi*x_1 -

// m32*x-i*y_1 - m33*x-i = 0

// m21*x_1 + m22*y_1 + m23 - m31*y-i*x_1 -

// m32*y-i*y_1 - m33*y-i = 0

// These are the rows:

// (xjl, y-l, 1, 0, 0, 0, -xi*xl, -xi*y-l) lhs and

// x-i rhs because m33 = 1

// (0, 0, 0, x_1, y-l, 1, -y-i*x-l, -y-i*y-l) lhs and

// yi rhs because m33 = 1

double** lhs = (double**)malloc(

2 * numcorrs * sizeof(double*));

for (nt i = 0; i < 2 * numcorrs; i++) {

lhs[i] = (double*)malloc(8 * sizeof(double));

}

double* rhs = (double*)malloc(

2 * numcorrs * sizeof(double));

for (nt j = 0; j < num.corrs; j++) {

lhs[2*j][0] = corrs[j][0];

lhs[2*j][1] = corrs[j][1];

lhs[2*j][2] = 1;

lhs[2*j][3] = 0;
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lhs[2*j] [4] = 0;

lhs[2*j] [5] = 0;

lhs[2*j] [6] = -corrs[j] [2] * corrs[j] [0];

lhs[2*j] [7] = -corrs[j] [2] * corrs[j] [1];

rhs[2*j] = corrs[j][2];

lhs[2*j+1] [0]

lhs[2*j+1][1]

lhs[2*j+1][2]

lhs[2*j+1] [3]

lhs[2*j+1][4]

lhs[2*j+1][5]

lhs[2*j+1] [6]

lhs[2*j+1][7]

rhs[2*j+1] =

= 0;

= 0;

= 0;

= corrs[j][0];

= corrs[j][1];

= 1;

= -corrs[j][3] * corrs[j][0];

= -corrs[j] [3] * corrs[j] [1];

corrs[j][3];

gauss-solve(lhs, 8, rhs);

// solution is now in rhs

laserto-image-transformation[0][0]

lasertojimage-transformation[0][1]

laserto-image-transformation[0][2]

laser-to-image-transformation[1][0]

laser-to-image-transformation[1][1]

laser-tojimage-transformation[1][2]

lasertojimage-transformation[2][0]

lasertojimage-transformation[2][1]

laser-to-image-transformation[2][2]

// image to_laser_transformation is

// laser-to-image-transformation

= rhs[0]; //m11

= rhs[1]; //m12

= rhs[2]; //m13

= rhs[3]; //m21

= rhs[4]; //m22

= rhs[5]; //m23

= rhs[6]; //m31

= rhs[7]; //m32

= 1; //m33

just the inverse of
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matrixinverse(

laserto-image-transformation, image-tolasertransformation);

free(lhs);

free(rhs);

}

}
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