
A Speculative Execution Framework to

make Linux Services Fault Tolerant

by r 1

Kavya Joshi

S.B., Computer Science and Engineering,
Massachusetts Institute of Technology, 2012

Submitted to the Department of Electrical Engineering
and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer
Science

at the Massachusetts Institute of Technology

June 2013

Copyright 2013 Kavya Joshi. All rights reserved.

The author hereby grants to MIT permission to reproduce and
to distribute publicly paper and electronic copies of this thesis
document in whole or in part in any medium now known or

hereafter created.

Author:.
D artment of Electrical Engineering and Computer Science

May 24, 2013

Certified by:
Prof. Robert Morris, Thesis Supervisor

May 24, 2013

Accepted by:
Prof. Dennis M. Freeman,

Chairman, Masters of Engineering Thesis Committee

Cabala:

Cabala: A Speculative Execution Framework to make Linux

Services Fault Tolerant

by

Kavya Joshi

Submitted to the Department of Electrical Engineering
and Computer Science

on May 24, 2013, in partial fulfillment of the
requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer
Science

Abstract

Cabala is a speculative execution framework that enables server programs in Linux
to be fault tolerant. The errors it targets are run-time errors that are due to program
bugs, and which cause program exit; in particular, it provides resilience to errors

triggered by requests. The Cabala framework is implemented as a user-space library,
and enforces per-request checkpoint/rollback semantics to provide fault-tolerance. It
provides facilities for checkpointing the state of the server program just before request

processing starts, executing the processing in an isolated environment, detecting tol-

erated run-time errors before they cause program exit, and committing or discarding
the modifications made during processing. Cabala addresses the fault tolerance needs

of server programs in the context of supported errors. It enables the services provided

by a server program to be highly available and ensures that a program which is correct
and satisfies Cabala's requirements remains correct despite tolerated errors; it also

ensures that the system's state remains consistent. In addition, Cabala is easy to use;

the only changes required to the server program's source code are the inclusion of the

Cabala library and the addition of three library function calls. Cabala was evaluated

with two Linux server programs, the Apache2 web server and the DHCP4 DHCP

server; it detected the tolerated errors and correctly recovered the server programs in

both cases.

Thesis Supervisor: Prof. Robert Morris

Title: Professor, Department of Electrical Engineering and Computer Science

3

4

Acknowledgments

I would like to thank Robert Morris, who was my thesis supervisor and sounding

board too. I appreciate his guidance in this thesis, and especially value all the great

discussions we've had.

I would also like to thank my support system: my mom and sister, Krittika; and

my friends, in particular Alexandre Milouchev and Sanja Popovic who kept me going

throughout.

Lastly, I'd like to dedicate this thesis and the journey it ends to the one person I

cannot thank enough - my dad.

5

6

Contents

1 Introduction

1.1 Motivation and Proposed Solution .

1.2 Thesis Contributions .

1.3 O utline .

2 Related Work

2.1 Software Fault Tolerance .

2.2 Speculative Execution .

3 Design

3.1 Overview.

3.2 Fault Model

3.3 Requirements

3.4 The Cabala Library

3.4.1 Memory checkpointing

3.4.2 System calls and library

3.4.3 Shadow file system . .

3.4.4 Recovery

3.4.5 Commit process .

3.5 Design Discussion

3.6 Challenges and Limitations

3.6.1 Challenges

3.6.2 Limitations

7

functions

11

11

15

16

17

17

21

23

. 23

. 24

. 26

. 2 7

. 2 7

. 2 7

. 28

. 29

. 29

. 30

. 3 1

. 3 1

31

4 Implementation 33

4.1 Overview. 33

4.2 Checkpointing . 34

4.2.1 Checkpointing program state information 34

4.2.2 Memory checkpointing . 34

4.3 Shadow File System . 35

4.3.1 Data structures . 36

4.3.2 File system operations . 36

4.4 Error Detection and Recovery . 39

4.4.1 Error detection . 39

4.4.2 Recovery . 39

4.5 Commit Routine . 40

4.6 Challenges . 41

4.7 Limitations . 41

5 Evaluation 43

5.0.1 Methodology . 43

5.0.2 Results 44

6 Conclusion 45

6.1 Future Work. 45

8

List of Tables

3.1 Tolerated Errors in x86-Linux . 26

3.2 Intercepted Syscalls and Library Function Calls 28

9

10

Chapter 1

Introduction

This thesis introduces a recovery scheme for server programs in Linux, targeted at

run-time errors activated by requests. The Cabala library provides a speculative ex-

ecution framework for server programs that enforces per-request checkpoint/rollback

semantics to guarantee high service availability and data consistency.

1.1 Motivation and Proposed Solution

A server is a software application that provides a "service" to client applications [I.

Web servers that deliver web content and mail servers that receive and deliver email

messages are two routinely used examples of server programs among the many that

provide different services. With the growing number of applications that depend on

servers, the fault tolerance of server programs is an increasingly important concern

[J; specifically, server programs must ensure that the service is available when needed

by client applications and that it is correct, even in the face of errors.

Errors that affect a server program may result from bugs in the hardware, oper-

ating system software or program itself; an error may cause the server program to

exit or hang, return responses in an untimely manner, or return incorrect responses

- termed crash failure, timing failure and server response failure respectively. The

subset of errors we provide tolerance to are errors that result from bugs in the server

program and which cause program exit.

11

Non-trivial programs like server programs have bugs despite testing since not all

bugs are uncovered during compilation and testing. These bugs, called latent bugs,

are the result of logic flaws and programming errors. Since they are not transient,

a simple program restart does not eliminate the errors. Replication techniques for

fault tolerance do not provide resilience to them either since all copies of the program

would contain the bugs. The standard approach to latent bugs is therefore to simply

rectify the bug after it surfaces. This approach suffers from two shortcomings: first,

the service provided by the server program is unavailable till the bug is fixed and

second, the bug-fix rectifies the particular error-causing bug; other latent bugs in the

program may be activated in the future and will require individual correction then.

An additional drawback is that after the corrected server program is restarted, state

recovery may be necessary depending on whether the server is stateless or stateful. A

stateless server treats each request as an independent transaction which is unrelated

to any previous request. Since information or state pertaining to a request is not

retained across multiple requests, the server can simply be restarted if it exits in the

middle of processing a request. On the other hand, a stateful server keeps in-memory

state across requests and hence, the server's prior-crash state must be reconstructed

on restart. Existing state recovery schemes are inefficient, further disadvantaging

the standard approach. Our approach provides a less bug-specific and more efficient

alternate to make server programs resilient to latent bugs. The problem of providing

fault tolerance to latent bugs is compounded if they result in timing or server response

failures when activated, since these failures are harder to detect than a crash failure.

For this reason, we restrict the set of errors we detect and recover from to those due

to program bugs and which would cause a server crash failure, specifically abnormal

program termination. Examples of such errors are division-by-zero errors, null pointer

dereferences and assertion failures. Our recovery scheme is most relevant to stateful

servers.

Our scheme makes three fundamental assumptions. First, that request processing

for a request is self-contained and atomic i.e. each request is processed indepen-

dently of other requests and if the server fails midway through request processing for

12

a request, all changes made so far during processing must be undone to ensure the

system is in a consistent state. The per-request atomicity assumption is in line with

the request processing requirements of protocols implemented by stateful servers like

Lightweight Directory Access Protocol (LDAP) in LDAP servers [] and File Transfer

Protocol (FTP) in FTP servers [], and is therefore reasonable. The second assump-

tion is that a request triggers the program bug that causes server failure. The error-

causing request may be malicious or simply malformed and its input may be invalid

input that triggers a bug in the input-validation code, or valid input that triggers a

bug elsewhere in the request processing code; in any case, a bad request is responsible

for the error surfacing. The third assumption made is that tolerated errors can be

detected by the operating system and are reported to the server program; this holds

true for the errors in the set of errors we address.

Our recovery scheme is implemented as a speculative execution framework for

server programs, provided as a user-space library called Cabala. The Cabala library

enables a server program to process each request speculatively until an error occurs or

processing completes successfully. In case of an error, Cabala restores the program and

system state to that right before request processing started. If processing completes

successfully, the state at the end of the speculative execution is committed to become

the new program and system state. The start and end of request processing are defined

by the server program; error detection and recovery are performed transparently by

Cabala.

Cabala enforces speculative request processing for each request by creating an iso-

lated environment right before processing starts. Request processing then proceeds

in this isolated environment, which is a private copy of the server program's memory

and the system state at the time of environment creation. If an error is reported

during request processing, Cabala discards the isolated environment and restores the

original program and system state, which are not modified by the processing. On the

other hand, if request processing completes successfully, Cabala commits the isolated

environment which contains all the state modifications made during processing; this

operation replaces the program and system state that is visible to the rest of the

13

system with that contained in the isolated environment. Our speculative execution

framework thus provides per-request checkpoint/rollback semantics; the server pro-

gram is checkpointed before the start of a request, and is effectively rolled-back to

the checkpoint if request processing for the request fails. The failed request is not

re-executed.

Cabala's design is closely related to that of two existing systems: libckpt and

Speculator. Libckpt [] is a user-level checkpoint/rollback library that transparently

checkpoints Unix applications to provide recovery from processor failure. Upon a

processor failure, the user would restart the checkpointed application with a special

flag to resume execution from the most recent checkpoint. Speculator [] is a Linux

kernel extension that provides support for speculative process execution in order

to improve the performance of distributed file systems. Speculator implements a

lightweight checkpoint/rollback mechanism in the Linux kernel, provides isolation

of speculative state from non-speculatively executing, or non-speculative, processes

and tracks casual dependencies between related speculative processes. Like libckpt,

Cabala is a user-space library. We chose to implement our recovery scheme in user-

space rather than in the kernel for reasons of simplicity of implementation, the low

overhead of inclusion in applications and to leverage application-specific knowledge.

The trade-off is that, like in libckpt, checkpointing is not completely transparent

to the application. A further similarity with libckpt is that the recovery scheme

restores the program to its state at the last checkpoint, from which it then executes.

The speculative execution model in Cabala is largely inspired by that in Speculator.

Like Speculator, we implement checkpoint/rollback and guarantee speculative state

is never exposed to non-speculative processes. Unlike Speculator though, we do not

track speculative process dependencies; thus, in our system, a process may perform

only a restricted set of operations while executing speculatively.

The implementation of Cabala's support for speculative execution was the main

challenge in our undertaking; specifically, the isolated environment for speculative

execution includes a shadow file system to which all file system operations are applied,

and ensuring that all cases of all operations are handled correctly was tricky. The

14

implementation of the other components, like checkpointing, recovery and commit,

was more straightforward.

Cabala addresses the fault tolerance needs of server programs in the context of

supported errors. It enables the services provided by a server program to be highly

available and ensures that a program which is correct and satisfies Cabala's require-

ments remains correct despite tolerated errors; it also ensures that the system's state

remains consistent. In addition, Cabala is easy to use; the only changes required to the

server program's source code are the inclusion of the Cabala library and the addition

of three library function calls. Cabala's predominant limitation is the server pro-

gram's restricted operation during request processing, since processing occurs during

speculative execution; the fault tolerance benefits provided remain valuable nonethe-

less.

1.2 Thesis Contributions

The primary contribution of this thesis is a mechanism for making server programs

in Linux fault tolerant to the set of errors that result from program bugs, and which

cause program exit; in particular, Cabala has the property of making server programs

resilient to error-causing requests. The fault tolerance provided by Cabala is especially

useful to stateful servers. We therefore evaluate it with a stateful server like the

DHCP4 DHCP server, in addition to the stateless Apache2 web server; Cabala detects

and correctly recovers from the tolerated errors in both cases.

Cabala is, to our knowledge, the only system that implements per-request check-

point/rollback to provide fault tolerance; it is also the first to implement speculative

execution to provide fault tolerance.

Cabala provides an easy to use mechanism for fault tolerance; to make a server

program fault tolerant to the tolerated errors, only four additional lines must be added

to its source code, which is a vastly simpler solution than most existing options for

fault tolerance.

15

1.3 Outline

The rest of the thesis is organized as follows: Chapter 2 presents an overview of

the related work. Chapter 3 describes the design of Cabala; Chapter 4 details its

implementation. We present an evaluation of Cabala in Chapter 5, and Chapter 6

concludes.

16

Chapter 2

Related Work

This chapter presents related work and compares each to Cabala.

Cabala is a user-space library that provides a speculative execution framework to

make server programs in Linux fault tolerant. Cabala provides tolerance to run-time

errors that result from bugs in the server program, and which cause program exit;

specifically errors that are triggered by requests. We first present related work in the

field of software fault tolerance and then the related work in speculative execution.

2.1 Software Fault Tolerance

Cabala is closely related to libckpt [], a user-space library that implements check-

point/rollback for Unix applications. Libckpt transparently checkpoints applications

to provide recovery from processor failure; upon a processor failure, the user would

restart the checkpointed application with a special flag to resume its execution from

the most recent checkpoint. Unlike Cabala, libckpt does not detect any type of run-

time error since it is intended for recovery from processor failure. Although it would

be possible to use libckpt to recover from a run-time error that has been detected

using a separate mechanism, recovery is not transparent to the application since

it requires manually restarting the program. Furthermore, since libckpt assumes a

transient fault model, the error-causing request would be re-executed and the server

program would fail in the same way again.

17

The Chorus micro-kernel operating system [] also provides a checkpoint/rollback

mechanism for applications. Chorus facilitates the persistent checkpointing of pro-

grams, and if a program fails, detects and restarts the failed program. Unlike libckpt,

recovery in Chorus is transparent to the application but like libckpt, Chorus does not

address the target fault model either.

An alternate strategy to checkpoint/rollback for fault tolerance is redundant ex-

ecution. Systems like Tandem's NonStop operating system [and the UNIX-based

Targon/32 operating system [] employ a process-pair model to achieve tolerance to

hardware failure like processor failure, and Heisenbugs which are transient software

bugs. In the process-pair model, a server program is run as two processes on two

different processors; one process, called the primary process, receives clients' requests

and executes them. The primary process in NonStop forwards requests to the back-

up process as well, which executes them independently. In Targon/32, the primary

process instead periodically sends a state snapshot to the back-up process, which

updates its state correspondingly. In both versions of the process-pair model, the

back-up process takes over as the new primary if the primary process or the processor

it runs on fails. The back-up process first re-executes all client requests since the last

message received from the primary, before it begins to accept client requests as the

new primary. For this reason, neither NonStop or Targon/32 provide tolerance to the

errors Cabala targets. After a server program's primary process fails, the back-up

process would re-execute the error-causing request during its promotion to primary;

the request triggers the same latent bug in the back-up, since the back-up runs the

same program as the failed primary, and the back-up process would fail as well.

Primary site is another redundant-execution approach to fault tolerance; a modi-

fied version is implemented by Huang and Kintala in [J, and used in several AT&T

telecommunications network management products. In the primary site approach,

the service to be made fault tolerant is replicated at many nodes or machines, one

of which is designated as the primary site and the others as back-up sites. All client

requests for the service are sent to the primary site, which executes them. The pri-

mary periodically checkpoints its state to the back-ups as well. The primary site

18

approach provides fault tolerance to hardware errors, transient software (operating

system, application) errors and power failure, since if the primary fails for any of these

reasons, one of the back-ups becomes the new primary. In Huang and Kintala's sys-

tem, primary failure due to either application failure or system failure (i.e. hardware

or operating system failure) is detected and recovered from. Like the process-pair

model, the primary site approach fails to address the target fault model since it repli-

cates the server program and repeats the error-causing request, which results in server

failure at the back-up as well.

Replicated State Machines (RSM) involve replicating the service on different ma-

chines as well. All client requests are sent to the primary, which chooses the order

of processing and executes the requests locally, in that order. The primary forwards

the requests to the back-ups or replicas, which also execute the requests locally, and

respond to the primary. Bressoud and Schneider implement a hypervisor-based RSM

scheme [] to provide application fault tolerance to processor failure. In their scheme,

the primary runs in a virtual machine on one processor and the back-ups run in in-

dependent virtual machines on different processors. The hypervisors coordinate to

ensure that all I/O inputs and interrupts are delivered to the back-ups at exactly the

same execution points that the primary received them at. Primary processor failure

is detected by the back-ups and after a set time period, one of the back-ups becomes

the new primary. The hypervisor-based fault tolerance system is able to detect termi-

nation of the server program's primary process. In the interim before a back-up takes

over as the new primary, the back-up does not re-execute instructions; it skips them.

Thus, the hypervisor-based system provides fault tolerance to the errors Cabala tar-

gets. The VMware vSphere Fault Tolerance line employs an improved version of the

same scheme, which drastically reduces the performance overhead. However, the key

disadvantage compared to Cabala is still the degree of server slow-down caused.

Horus [] is a toolkit that removes the complexity of implementing replication

techniques for fault tolerance from application development. The Horus subsystem,

which can run in either user-space or the kernel, implements a reliable group commu-

nication protocol and atomic broadcast for applications. It thus enables applications

19

to leverage replication for fault tolerance. Although Horus makes it easier for server

programs to become fault tolerant to hardware failure and transient software failure,

it does not help them become tolerant to our target fault model. The server program

is replicated at the back-ups which execute all requests, including the error-causing

request; thus, the back-ups would fail in the same way as the primary.

Multi-version techniques for fault tolerance involve running different versions of

the program or blocks of the program to be made tolerant so as to reduce the likelihood

of the same program bug being triggered in the primary and back-ups. In N-version

programming, N functionally equivalent yet independently developed versions of the

program are run on N different machines, and the final output to be returned is

determined by supervisor software. The DEDIX distributed supervisor and testbed

system [] is a UNIX-variant framework for executing N-version applications. The

implementation overhead of providing fault tolerance through N-version programming

is extremely high, although the target fault model would be addressed.

In the recovery blocks method [], a critical code block is coupled with an ac-

ceptance test and alternate implementations of the block to form a "recovery block".

If the acceptance test determines that the result produced by a code block is incor-

rect, the block is replaced by one of its alternates and re-executed. Recovery blocks

are intended for logical program errors that can be arbitrated by an acceptance test;

errors that cause server program exit would not be detected.

There are other system-specific fault tolerance techniques. The IBM MVS op-

erating system [], for example, implements a multi-level recovery scheme which

attempts a pre-specified hierarchy of recovery routines for a faulty program, before

its abnormal termination occurs. The IBM MVS OS would address our target fault

model for server fault tolerance; however, there is a high implementation overhead

since the recovery routines would have to be implemented as part of the server pro-

gram.

20

2.2 Speculative Execution

Speculative execution has previously been successfully applied in processor and com-

piler design []. The goal of these systems however, is to improve performance rather

than provide fault tolerance.

The speculative execution model in Cabala is largely inspired by Speculator [],

a Linux kernel extension that provides support for speculative process execution, in

order to improve the performance of distributed file systems. Speculator implements

a lightweight checkpoint/rollback mechanism in the Linux kernel. It also ensures

that speculative state is never externalized or directly observed by non-speculative

processes, and allows multiple processes to share speculative state by tracking causal

dependencies propagated through inter-process communication. Speculator improves

distributed file system performance by masking remote-I/O latency; the file system

predicts the result of a remote operation, checkpoints the state of the calling process

using Speculator and continues its execution speculatively i.e. based on the predicted

result. If the prediction is correct, the checkpoint is discarded; if not, the calling

process is restored to the checkpoint by Speculator, and the operation is retried.

Speculator uses speculative execution for value prediction in file system operations

and does not aim to provide fault tolerance.

21

22

Chapter 3

Design

This chapter describes the design of Cabala. We first present an overview of the

design and the fault model it handles. We then define the requirements imposed by

the design, before describing the design in detail. We conclude with a discussion of

its limitations.

3.1 Overview

The Cabala library implements a speculative execution framework for request process-

ing in server programs in order to make the programs fault tolerant. The framework

provides facilities for checkpointing the state of the server program just before request

processing starts, executing the processing in an isolated environment, catching tol-

erated run-time errors before they cause program exit, and committing or discarding

the modifications made during processing. The design of the library can be explained

in terms of these four functions, which are introduced here and developed in the later

sections of the chapter:

Checkpointing the state of the server program involves saving a snapshot of the

program's memory and storing program state information such as the memory map,

the program break, the current working directory and the file descriptors; the check-

pointed state is the state the server is rolled-back to if an error occurs during re-

quest processing. Cabala implements Copy-On-Write (COW) checkpointing for the

23

program's memory, an optimization well-known in the literature [] and detailed in

section 3.4.1.

The speculative execution of the server program begins after checkpointing is

complete; it ends at the successful completion of request processing or on encountering

a tolerated error. During the period of speculative execution, none of the changes

made by the server program should be externalized to non-speculative processes.

To that end, Cabala creates an isolated environment right before request processing

starts. The speculative processing then proceeds in the isolated environment, which

is a private copy of the server program's memory and the system state at the time

of environment creation. In particular, a private shadow file system for the server

program is created, to which all its file system operations are applied; this is explained

in section 3.4.3. In addition, system calls and library function calls that are not

idempotent are either intercepted or disallowed, as explained in section 3.4.2

To detect tolerated errors during request processing, Cabala installs signal han-

dlers for the respective signals. The handlers are also responsible for discarding spec-

ulative state i.e. the shadow file system and modified memory regions, and restoring

the program to the state it was in just before request processing started i.e. the

checkpointed state; this recovery procedure is described in section 3.4.4. After the

program's state has been restored, it resumes execution from that state; it does not

re-execute the error-causing request.

If request processing completes with no errors, the changes made to the program's

memory and the shadow file system are committed i.e. made visible to the rest of

the system; the commit process is described in section 3.4.5

3.2 Fault Model

Cabala's design provides fault tolerance to a specific set of of errors, namely, run-time

errors that are due to server program bugs triggered by requests, and which cause

server program exit. More precisely, the errors Cabala handles are errors that:

* Result from bugs in the server program:

24

The only errors Cabala provides resilience to are errors that are due to bugs in

the server program. Cabala does not address hardware errors such as disk or

processor failure, memory (RAM/ECC) errors, errors due to CPU overheating,

or power failure. It also does not address errors due to operating system bugs.

Providing fault tolerance to this set of errors rather than those due to hardware

or operating system bugs is valuable for three reasons: first, most failures are

due to faulty software rather than hardware []. Second, operating system bugs

are less likely than other software bugs since operating system code is typically

the most extensively tested and third, existing fault tolerance techniques do not

address these errors sufficiently (see section 2.1)

" Cause immediate program exit:

The only errors Cabala provides resilience to are those that cause immediate

program exit since these errors are easy to detect. Cabala does not address

errors that cause the server to return responses in an untimely manner or return

incorrect responses. It also does not address errors that cause the program to

crash, i.e. exit or hang, after a time delay.

" Are triggered by requests:

Cabala handles errors that are due to bugs triggered by requests; the error-

causing request may be malicious or simply malformed and its input may be

invalid input that triggers a bug in the input-validation code, or valid input that

triggers a bug elsewhere in the request processing code. Cabala handles request-

triggered errors by design, since after the server program has been restored, it

does not re-execute the error-causing request.

" Can be detected in user-space:

Cabala only handles errors that are reported to the user-space program since

error detection in Cabala's design occurs via error signals delivered to the signal

handlers it installs.

The set of errors that raise processor exceptions which are delivered to the

25

Table 3.1: Tolerated Errors in x86-Linux

Program Error Signal Generated
Memory access error: SIGSEGV
null pointer dereference, array out-of-bounds

Arithmetic error: SIGFPE
division-by-zero, overflow

Illegal operation error: SIGILL
unknown/privileged instruction

Bad system call: SIGSYS
bad argument to syscall
Bus error: SIGBUS
incorrect memory access alignment,
non-existent physical address
Assertion failure SIGABRT

offending program as signals for handling is dependent on instruction set ar-

chitecture (ISA) and operating system. The set of tolerated errors and the

corresponding signals they generate in the x86-Linux architecture we use for

our implementation of Cabala's design is listed in Table 3.1; examples are:

divide-by-zero errors, null pointer dereferences and array out-of-bounds errors.

Assertion failures raise processor exceptions that are delivered to the program

irrespective of system architecture; thus, these are supported in our implemen-

tation too.

3.3 Requirements

Cabala's design imposes two requirements on the server program: first, the program

must be structured as a single-threaded event-loop that processes requests; thus,

Cabala does not support multi-threaded servers. Second, the program must declare

the start and end of request processing; this is required because Cabala's design

identifies a request as the unit of checkpoint/commit i.e. the recovery scheme in

Cabala implements all-or-nothing semantics for the modifications made by request

processing, which is per-request. With respect to requests, Cabala's design requires

each request to be a self-contained unit; this is because Cabala's recovery scheme

26

only discards the modifications made by the failed request processing and does not

roll-back any other request processing that is dependent on those modifications.

3.4 The Cabala Library

Each component of Cabala's design, introduced in the overview (section 3.1), is

explained in detail in this section.

3.4.1 Memory checkpointing

Cabala uses a Copy-On-Write (COW) scheme to checkpoint program memory. COW

delays the creation of a memory page copy until the copy is first needed i.e. until

the first write access to a writable page; it is an optimization to basic checkpointing,

which creates copies of all pages at each checkpoint.

There are two components to our COW scheme: the page fault handler installed

by Cabala and the checkpoint function called right before request processing starts.

The program's writable memory regions are made non-writable by the function; a

subsequent write access by the program therefore triggers a permissions page fault

exception and execution control is transferred to the page fault handler. At this

point, the handler creates a copy of the page which is saved away; the original page

is marked writable, control returns to the program and the write occurs successfully.

3.4.2 System calls and library functions

The Cabala library provides custom implementations of two classes of system calls and

glibc functions: first, those that modify program or system state and second, those

that result in the creation of process dependencies on the speculatively executing

process. The custom implementations for the former class track all modifications

made during speculative execution so that they may be undone in case of error. The

custom implementations for the latter simply disallow the actions in our initial version

of the framework; the purpose of disallowing them is to prevent speculative changes

27

Table 3.2: Intercepted Syscalls and Library Function Calls:
Functions in the right-most column are the disallowed functions

mmap read fork

munmap write vfork

mprotect link clone

brk unlink pipe

sbrk rename kill

open mkdir IPC functions:
msgsend, msgget etc.

creat rmdir socket functions:
send, reev etc.

close chdir execve functions:
exec, execv etc.

from having consequences on non-speculative execution since the latter cannot be

undone.

The complete list of syscalls and library function calls Cabala intercepts is given

in Table 3.2; examples of functions intercepted to track modifications are memory

management functions such as mmap/munmap and sbrk, and file system functions

such as open/close, read/write and link/unlink. Functions that are disallowed include

functions for inter-process communication and network communication, and functions

like fork and clone which create a child process.

To ensure our custom syscall/library function is invoked rather than the original,

we use a standard Linux technique called function interposition.

3.4.3 Shadow file system

Cabala creates a private, per-request shadow file system for the server program, right

before request processing starts; all file system modifications during processing are

only applied to the shadow FS. Cabala uses an approach similar to COW to create this

file system; the shadow FS is built up incrementally and recursively on non read-only

(i.e. write or read/write) accesses to files, as explained below:

For each request, a file system rooted at "/var/tmp/[pid]" - henceforth called fake-

root, is created; initially, the fakeroot is a symbolic link to root - "/". On the first non

28

read-only access to a file, all the directories in the pathname of the file are created un-

der fakeroot. So for example, on a write-access to the file "/Users/kavya/thesis.tex",

the following directories would be created: fakeroot, "fakeroot/Users" and "fake-

root/Users/kavya". All the other contents of the non-terminal directories would

be created as symlinks to the original contents since they are not in the path-

name. Similarly, a copy of the original file is created in the shadow file system as

"fakeroot/Users/kavya/thesis.tex", whereas the other contents of the directory would

merely be symlinks as well; this copy in the shadow FS is the file that is written to.

The purpose of populating the directory pseudo-copies created under fakeroot

with symlinks for the contents not in the pathname is to provide a simple and cor-

rect implementation for directory reads (including the Linux command, Is), despite

renames and deletions.

Cabala interposes on file system functions like open/close, read/write, link/unlink,

rename, mkdir/rmdir etc. to create the shadow FS and route file system operations

to it.

3.4.4 Recovery

Cabala installs signal handlers for the signals generated by the occurrence of tol-

erated errors. The handlers perform recovery. The goal of recovery is to undo all

modifications made to program and system state during the request processing which

caused the error. To achieve this, Cabala discards the shadow FS, which contains

the file system modifications, and restores the program's memory to its checkpointed

state, which effectively discards the modifications to memory; the program's memory

is restored from the saved memory map and COW pages copies.

3.4.5 Commit process

At the successful completion of request processing for a request, Cabala commits the

modifications made to the program and system state by the processing; this operation

makes the modifications visible to future request processing and the rest of the system.

29

Due to Cabala's COW scheme, all modifications to the program's memory can be

made during request processing and undone in case of error except memory region

unmaps, which only occur at commit. Cabala's shadow file system is effectively copied

over to the original file system to commit the file system modifications made during

request processing.

3.5 Design Discussion

Cabala is designed to address the fault tolerance needs of server programs in the

context of supported errors.

Cabala enables the services provided by a server program to be highly available

since it detects an error as soon as it occurs and before the server program exits,

by installing special signal handlers. Furthermore, our recovery procedure is efficient

since we do not need to undo any operations other than memory allocations; we can

simply discard the shadow file system and restore memory to its checkpointed state.

Cabala ensures that a program which is correct and satisfies Cabala's require-

ments remains correct despite tolerated errors; it also ensures that the system's state

remains consistent. First, it checkpoints the server program's state and effectively

the file system right before request processing starts. The checkpointed program and

system state is error-free with respect to tolerated errors; our fault model does not

include errors that cause state to be logically incorrect. If an error occurs during

request processing, the program and system state are restored to the unmodified

checkpointed state, which is known to be correct. Second, Cabala creates an isolated

environment for the server program's speculative request processing to ensure that

speculative state, which may be discarded, is not observed by other processes. Cabala

also restricts how the program may interact with the rest of the system while exe-

cuting speculatively. Specifically, the program is not allowed to perform any action

that would cause other processes to be dependent on it; the purpose is to prevent

speculative changes from having consequences on non-speculative execution since the

latter cannot be undone, which would result in inconsistencies and incorrectness. For

30

example, if during speculative request processing, the server sends a message to a

non-speculative process which causes that process to take some action, although it

is easy to restore the server to its pre-request state on error, we cannot undo the

message-sending and receiving. Furthermore, it would be extremely difficult to track

the chain of events set in motion by the message (like the action taken by the receiver)

and undo them; but failing to do so would be incorrect since the server believes it has

never sent the message. Thus, inter-process communication (IPC) including network

communication, and functions that create a child process (like fork and clone) are

disallowed by Cabala.

Lastly, Cabala is simple to implement and has a low implementation overhead for

use in server programs since the library is implemented in user-space rather than in

the kernel. To use Cabala, the only changes required to a server program's source

code are the inclusion of the Cabala library and the addition of three library function

calls.

3.6 Challenges and Limitations

3.6.1 Challenges

Conceiving the shadow file system was the main challenge in designing Cabala. Specif-

ically, ensuring that all cases of all file system operations and sequences of operations

are handled correctly by the design was tricky; for instance, Cabala maintains sym-

links to files that have been not been opened for writing in order to correctly support

directory reads after file deletions and renames.

3.6.2 Limitations

Our current design suffers from three key limitations:

1. Cabala's design does not allow a program that is executing speculatively to

make syscalls or library function calls that would cause other processes to be

31

dependent on it. Thus, a server program may perform only a restricted set of

operations during request processing.

2. Checkpointing is not completely transparent to the application since Cabala is

a user-space library and the application is required to call the necessary Cabala

functions for checkpoint/commit. In addition, as a user-space library, Cabala

cannot support the execve family of system calls (in addition to the function

calls disallowed to prevent process dependencies,) since they replace the program

image which includes the Cabala library.

3. Shadow copies of files that are written to by the program during speculative

execution replace the original files at the end of speculative execution i.e. at

the commit; this overwrites all the changes made to the file by other programs

during the period of speculative execution after the creation of the shadow copy.

Although this was not an issue during our testing, since the server programs we

tested Cabala with don't write to files that other programs write to as well (for

example, the only files dhcpd writes to are its dhcpd.leases file and its log file),

it could pose a problem in other cases.

32

Chapter 4

Implementation

This chapter details the implementation of the Cabala library. The library is imple-

mented in C and consists of 2300 lines of code. Cabala currently supports Linux-x86

server applications and has been tested with the Apache2 web server, the Bind9 DNS

name server and the DHCP4 DHCP server.

4.1 Overview

The implementation logic is split into four components: the checkpointing compo-

nent which checkpoints the state of the server program before request processing

starts (section 4.2), the shadow file system which is responsible for file system man-

agement during speculative execution (section 4.3), the recovery subsystem which

executes recovery at the detection of tolerated errors (section 4.4) and the commit

routine which runs at the successful completion of request processing (section 4.5). In

addition, we re-implement the functions listed in Table 3.2 to provide the speculative

execution semantics required by our design.

The initialization routine of the Cabala library allocates a pre-determined amount

of memory for Cabala's data structures. It also installs the signal handlers required

for recovery and performs function interposition of the syscalls and library functions

we re-implement. cabala-init is the first Cabala library function call a server program

makes, so as to set-up the framework for fault tolerance.

33

4.2 Checkpointing

Checkpointing the state of the server program involves saving a snapshot of the pro-

gram's memory and storing program state information such as the memory map, the

program break, the current working directory and the file descriptors. The server pro-

gram is checkpointed by calling the cabala-checkpoint function right before request

processing for a request starts.

4.2.1 Checkpointing program state information

Cabala stores the program's memory map and file descriptors by copying the /proc file

system files that contain this information to certain locations; the /proc/ [pid] /maps

file is copied to /var/tmp/mapscopy/[pid] and similarly, the /proc/[pid]/fd and

/proc/ [pid] /fdinfo files are copied to /var/tmp/fdcopy/[pid] and /var/tmp/fdinfocopy/ [pid]

respectively. The current program break is obtained by calling glibc's sbrk; the value

is stored in a global variable.

4.2.2 Memory checkpointing

Cabala implements the COW scheme described in section 3.4.1 to save snapshots of

the program's memory regions.

The data structures implemented for the scheme are:

The vma-info struct : maps a memory region to the address of its snapshot.

The modifiedvmas list : tracks the writable memory regions modified by the

program during speculative execution.

The prot-vmas list : tracks the memory regions that have been mprotect-ed by

the program during speculative execution.

The new-vmas list : tracks the memory regions that have been mmap-ed by the

program during speculative execution.

34

The unmapped-vmas list : tracks the memory regions that have been unmapped

(with the munmap function) by the program during speculative execution.

Cabala's checkpoint-memory function implements the mechanism to track writes

to memory. The function parses the /proc/ [pid] /maps file (where pid is the server

program's pid) to obtain the address range and access permissions of memory regions

currently mapped by the server program, and those that are writable are mprotect-ed

to be non-writable while preserving their read and execute permissions.

The Cabala library installs a custom page fault handler in the cabala-init func-

tion to implement COW. In Linux, a page fault exception generates a SIGSEGV

signal which is delivered to the offending program's SIGSEGV signal handler if one

is installed. Thus, the user-level handler installed by Cabala is invoked at an illegal

memory access. The handler first checks if the illegal memory access was a write to a

COW address i.e. an address that is valid (mapped), and which was write-protected

by the checkpoint-memory function. If this is the case, it creates a snapshot or read-

only copy of the enclosing page, creates a vma-info struct that maps the memory

range to the corresponding snapshot address, and appends the struct to the modi-

fied-vmas list. The original page is mprotect-ed to be writable and control returns to

the program; the write to the original page then occurs successfully.

The memory allocated for Cabala's data structures must not be write-protected

since they are used by the page fault handler. To that end, the cabala-init function

allocates the memory needed by the Cabala library as a contiguous region of a pre-

determined size and saves the address of the region allocated in a global variable;

the checkpoint..memory function does not write-protect the memory region at the

address in the variable. The function does not write-protect memory that constitutes

the program's stack as well.

4.3 Shadow File System

Cabala creates a private shadow file system as part of the isolated environment created

for the speculative execution of the server program. The per-request shadow FS

35

is created right before request processing for a request starts, and all file system

modifications during processing are only applied to the shadow FS.

The terminology used in this section is defined as follows: an original file is a file

in the real file system and a shadow file is a file in the shadow file system.

4.3.1 Data structures

The following data structures are implemented to aid in file system operations during

speculative execution:

The file-info struct maps a file to a list of shadow files. The file is identified by its

device and inode number - henceforth termed the file id, and each shadow file

is identified by its pathname.

The fd-pair struct maps an fd to a shadow fd. The fd is an fd opened before spec-

ulative execution; the shadow fd is an fd opened during speculative execution.

The inodes-copied list tracks original files that have been recreated in the shadow

FS and shadow files that are created as a result of file creation operations during

speculative execution.

The unlinked-files list tracks file pathnames unlinked by the program during spec-

ulative execution.

The mapped-fds list tracks pre-speculative execution fds that have been accessed

during speculative execution.

4.3.2 File system operations

The shadow file system is built up incrementally and recursively on non read-only (i.e.

write or read/write) accesses to files, as explained in section 3.4.3; Cabala interposes

on the open function to implement this.

Cabala's implementation of open checks if a shadow file for the requested path-

name exists; if it does, a file descriptor (fd) for the shadow file is returned. If not, it

36

checks if the original file with the pathname exists and has not been deleted during

this unit of speculative execution. If so, a corresponding copy is created in the shadow

file system and an fd for the newly created shadow file is returned; if not, depending

on the access flags argument passed to open, an error is thrown or a new file is created

in the shadow file system and an fd for it is returned. In both the cases a shadow file

is created, a file-info struct is appended to the copied.inodes list. If the shadow file

is created as a copy of an original file, the struct maps the original file's file id to the

shadow file's pathname; if the shadow file is created as a new file, the struct maps

the shadow file's file id to the shadow file's pathname instead.

The creation of the shadow file in either case proceeds in a top-down, recursive

check-and-create manner i.e. all directories in the pathname that do not have coun-

terparts in the shadow file system are created first. Depending on the access flags,

the shadow directories and the file may be created as symlinks to the original versions

- as in the case of a read-only access, or they may be created as independent copies.

It is worth noting that the look-up we implement to determine whether a file has a

counterpart in the shadow file system first invokes the stat syscall with the pathname

the shadow file would have if it existed. If that fails, the look-up obtains the file id of

the original file (by invoking stat with the pathname) and checks if the copied-inodes

list has an entry for the file id; if it does, the entry contains the pathname of the file's

corresponding shadow file. The look-up is implemented as such to ensure that the

hard links to the original file that existed before the creation of the shadow FS map

to the same shadow file. This is required to provide correct file system semantics with

respect to hard links; for example, writes to a linked file appear in the other linked

files as well.

File system functions that operate on file descriptors returned by open - like read,

write and close, are re-implemented. In Cabala's implementation, they first check if

the fd is one that was returned by an open call made during speculative execution.

If this is the case, the standard file system function is invoked since Cabala's open

function is guaranteed to have returned the right fd; an fd for the shadow file rather

than the original was returned if the current access or any prior access to the file was

37

a non read-only access, otherwise an fd to the original file was returned. If the fd was

opened before speculative execution began, Cabala cannot perform the operation on

the fd since it would be visible to the rest of the system. Therefore, close does not close

the fd; it instead ensures the fd is a valid fd (using fentl) and if so, returns success

vacuously. Read and write check the mapped-fds list to obtain the corresponding

shadow fd, if it exists; if it does, the standard read/write function is invoked with the

shadow fd as the argument. If not, the pathname of the file represented by the fd is

obtained from the program's checkpointed file descriptors information (i.e. by parsing

the checkpointed fd and fdinfo files), and the file is opened; since the open invoked

is Cabala's open, a shadow fd is returned. The state of the shadow fd is updated to

that of the fd's using lseek, and an fd.pair struct that maps the fd to the updated

shadow fd is appended to the mappedifds list. The standard read/write function is

then invoked with the shadow fd as the argument.

The creation of hard links during speculative execution is supported by intercept-

ing calls to the link function. First, the shadow file of the file referred to by oldpath

(i.e. the file to link to) is created if it does not exist. Next, the shadow file system

version of the newpath pathname (i.e. the link pathname) is linked to the shadow

file. Finally, the shadow link pathname is appended to the list of pathnames in the

shadow file's file-info struct in the copied-inodes list, to ensure that the new link is

accounted for at commit/recovery.

Unlinking requires re-implementation as well. A pathname of the file to be un-

linked is created and appended to the unlinked-files list. If the original file exists,

it is not unlinked; if it does not, i.e. the pathname was a new link/new file created

during speculative execution, it is unlinked. The unlinked-files list is used by the

open function to ensure that attempts to open a pathname that was unlinked during

speculative execution will fail, and by the commit routine.

38

4.4 Error Detection and Recovery

4.4.1 Error detection

To detect the tolerated errors, Cabala installs signal handlers for the respective sig-

nals (see Table 3.1).

4.4.2 Recovery

The goal of recovery in Cabala is to undo all modifications made to program and

system state by the request processing which caused the error.

The signal handlers installed by Cabala perform recovery:

1. The shadow file system is discarded. All file system modifications made during

speculative execution are only contained in the shadow FS; thus, the file system

is restored to its state before request processing for the error-causing request

started.

2. The program's memory is restored to its checkpointed state to discard the mod-

ifications to memory. The saved memory map is parsed to obtain the original

access permissions of the program's memory regions at the time of checkpoint.

The non-writable regions are mprotect-ed with their original permissions to

undo any mprotects or munmaps that may have occurred during speculative

execution. For each writable region, the modified-vmas list is checked to see if

it was modified during speculative execution; if so, the snapshot of the region,

which was created by the COW scheme, is restored and the region is mprotect-

ed with its original permissions. If not, the region is only mprotect-ed. To undo

the memory allocations due to mmap, brk and sbrk calls during speculative

execution, the memory regions tracked in the new-vmas list are munmap-ed.

After the program's state has been restored, it resumes execution from that state.

Cabala uses sigsetjmp/siglongjmp to return execution control to the program with a

39

special return value; the application does not re-execute the request on getting that

return value.

4.5 Commit Routine

The commit routine is called by the server program after the successful completion of

request processing for a request. The routine converts the speculative modifications

made by the processing to non-speculative modifications i.e. at commit, the modifi-

cations are made visible to future request processing and the rest of the system.

The modifications made to the server program's memory during request processing

are not all speculative; mmaps and mprotects in most cases directly manipulate the

program's memory during request processing and their modifications are undone by

recovery in case of error. Thus, the only modifications to memory that are deferred till

commit are munmaps and mprotects in one case. To perform these modifications, the

cabala-commit function first walks the modified-vmas list; for each memory region

that does not have a snapshot, it checks the wrprotect bit. If the bit is not set,

it mprotects the region with PROT-WRITE in addition to its original protections;

none of the other memory regions in the list are mprotect-ed. cabala-commit then

munmaps the regions tracked in the unmappedvmas list.

The file system modifications during request processing are made to the shadow

file system; the cabala-commit function applies them to the original file system in

two steps: first, it walks the inodes-copied list; for each entry whose isnew flag is set,

it creates a new file in the original file system, with the pathname corresponding to

the shadow file's pathname, and copies the contents of the shadow file into the newly

created file. The original files already exist for the other entries so the contents are

copied over directly. In both cases, the pathnames in an entry's list of shadow files are

the hard links to the file and therefore, the corresponding hard links to the original

file are created as well. The cabala-commit function then walks the unlinked-files list

and unlinks the pathnames (which are pathnames of original files) contained in it.

40

4.6 Challenges

The two main challenges in the implementation of Cabala were: handling the merging

of memory regions in the /proc/[pid] /maps file and handling all cases of all file system

operations correctly. The former complicates the implementation of the COW scheme

and the other memory management functions, while the latter is tricky to get right.

4.7 Limitations

Our current implementation of Cabala suffers from the following limitations:

1. Checkpointed state (namely the program state information and the COW snap-

shots) and the Cabala library data structures are stored in memory rather than

in persistent storage. We chose the in-memory approach for two reasons: first,

simplicity of implementation and second, the slight performance benefit offered,

which contributes to our goal of high service availability. The resulting limita-

tions are that we do not tolerate faults that cause the loss of in-memory program

state (for example, those that cause the program to be killed), and we cannot

provide any fault tolerance guarantees if the memory itself is faulty.

2. We allocate a fixed amount of memory for the checkpointed state and the Cabala

library data structures at the initialization of the framework. It is therefore

possible to run out of space for these purposes; in our current implementation,

we simply throw an error if that happens. The better design alternative is

to implement our own memory allocator. We save this for future work in the

interest of simplicity of the first version.

3. The Cabala library currently uses hard-coded values such as the program's root

directory. Thus, our implementation does not support programs that have been

chroot-ed before speculative execution begins; support for chroot-ed processes

can be implemented using the /proc file system (specifically, /proc/[pid]/root)

but we save this for future work.

41

42

Chapter 5

Evaluation

We tested Cabala with three Linux server programs to evaluate: one, whether it de-

tects the tolerated errors and correctly recovers the server program; and two, whether

it is easy to use for the server program. The methodology used in our evaluation and

the results are presented in this chapter.

5.0.1 Methodology

We tested Cabala on an x86-Linux system, with the Apache2 web server (httpd),

the Bind9 DNS name server (named), and the DHCP4 DHCP server (dhcpd); httpd

is a stateless server, whereas named and dhcpd are both stateful servers. httpd is

configured with the the mpmprefork.module since Cabala does not support multi-

threaded servers; for the same reason, named is configured with the -disable-threads

option.

To test the Cabala library, we included the library in each server program's source-

code, added calls to the cabala-init, cabala-checkpoint and cabala-commit functions

in the appropriate locations, and rebuilt the servers. Each server program was run

normally to test Cabala's checkpoint/commit facilities, and with a bug which was

introduced to test Cabala's error detection and recovery facilities; we inserted a few

lines of code to raise one of the tolerated errors in the request processing code-path.

43

5.0.2 Results

We evaluate Cabala on two criteria: one, whether it is able to detect the tolerated

errors and recover the server program correctly; and two, whether it is easy to use.

The tolerated errors are listed in Table 3.1

1. When the server program was run normally, without the error-causing lines,

Cabala's checkpoint/commit worked correctly for both httpd and dhcpd. With

the introduced bug as well, Cabala detected the error and recovered the program

correctly for both httpd and dhcpd. Neither experiment worked with named;

we attribute the failure to the incorrect placement of the Cabala function calls

in the named source-code, which is complex.

2. The Cabala library is easy to use if the server program's source-code is well-

understood; this was true for our experiments with httpd and dhcpd. The

named source-code however, is complex and we believe we may have inserted

the calls in the wrong locations. It is worth noting that the right placement

of the Cabala function calls in the server program's source-code is crucial for

Cabala to provide the desired fault tolerance.

44

Chapter 6

Conclusion

Cabala is a speculative execution framework that enables server programs in Linux to

be fault tolerant to run-time errors that result from bugs in the program, and which

cause program exit; in particular, Cabala provides resilience to errors triggered by

requests.

Cabala addresses the fault tolerance needs of server programs in the context of

supported errors. It enables the services provided by a server program to be highly

available and ensures program correctness and system-wide consistency despite errors.

In addition, Cabala is easy to use.

Cabala was evaluated with three Linux server programs; it detected the tolerated

errors and correctly recovered the server program in two cases, the Apache2 web

server and the DHCP4 DHCP server. It did not succeed in the experiment with the

Bind9 DNS name server; we believe this is due to the incorrect placement of the

Cabala function calls in the server program's source-code.

6.1 Future Work

We would like to improve Cabala in two ways.

Cabala currently does not track speculative process dependencies. As a result,

the server program may perform only a restricted set of operations during request

processing, since processing occurs during speculative execution. One way to track

45

speculative process dependencies is to use the approach in Speculator, although this

would involve making modifications to the Linux kernel.

Cabala currently does not implement a memory allocator. As a result, only a pre-

determined amount of memory can be allocated for the checkpointed state and the

Cabala library data structures, and the allocation must occur at the initialization of

the framework. It would be fairly straightforward to implement a standard user-space

memory allocator for Cabala, which would prevent the risks of running out of space

and having a large memory footprint.

46

Bibliography

[1] Y. Huang and C. Kintala, "Software implemented fault tolerance: Technologies
and experience," in FTCS, vol. 23. IEEE COMPUTER SOCIETY PRESS,
1993, pp. 2-9.

[2] F. Cristian, "Understanding fault-tolerant distributed systems," Communica-
tions of the A CM, vol. 34, no. 2, pp. 56-78, 1991.

[3] T. Howes, M. Smith, and G. S. Good, Understanding and deploying LDAP di-
rectory services. Addison-Wesley Professional, 2003.

[4] J. Postel and J. Reynolds, "File transfer protocol," 1985.

[5] J. S. Plank, M. Beck, G. Kingsley, and K. Li, Libckpt: Transparent checkpointing
under unix. University of Tennessee], Computer Science Department, 1994.

[6] E. B. Nightingale, P. M. Chen, and J. Flinn, "Speculative execution in a dis-
tributed file system," in A CM SIGOPS Operating Systems Review, vol. 39, no. 5.
ACM, 2005, pp. 191-205.

[7] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien, M. Guillemont, F. Her-
rmann, C. Kaiser, S. Langlois, P. L6onard et al., "Overview of the chorus dis-
tributed operating systems," in Computing Systems. Citeseer, 1991.

[8] J. F. Bartlett, "A nonstop kernel," in A CM SIGOPS Operating Systems Review,
vol. 15, no. 5. ACM, 1981, pp. 22-29.

[9] A. Borg, W. Blau, W. Graetsch, F. Herrmann, and W. Oberle, "Fault tolerance
under unix," ACM Transactions on Computer Systems (TOCS), vol. 7, no. 1,
pp. 1-24, 1989.

[10] T. C. Bressoud and F. B. Schneider, "Hypervisor-based fault tolerance," ACM
Transactions on Computer Systems (TOCS), vol. 14, no. 1, pp. 80-107, 1996.

[11] R. Van Renesse, T. M. Hickey, and K. P. Birman, "Design and performance of
horus: A lightweight group communications system," Cornell University, Tech.
Rep., 1994.

[12] A. Avizienis, "The n-version approach to fault-tolerant software," Software En-
gineering, IEEE Transactions on, no. 12, pp. 1491-1501, 1985.

47

[13] B. Randell, "System structure for software fault tolerance," Software Engineer-
ing, IEEE Transactions on, no. 2, pp. 220-232, 1975.

[14] S. Mourad and D. Andrews, "On the reliability of the ibm mvs/xa operating
system," Software Engineering, IEEE Transactions on, no. 10, pp. 1135-1139,
1987.

[15] F. Gabbay and A. Mendelson, Speculative execution based on value prediction.

Citeseer, 1996.

[16] M. Baker and M. Sullivan, "The recovery box: Using fast recovery to provide

high availability in the unix environment," in Proc. Summer 1992 USENIX Con-

ference, 1992, pp. 31-43.

48

