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ABSTRACT

Objects and systems in nature are models for the practice of sustainable design and fabrication.
From trees to bones, natural systems are characterized by the constant interplay of creation,
environmental response, and analysis of current structural constituents, as part of a larger
dynamic system. In contrast, traditional methods of digital design and fabrication are
characterized by a linear progression of three main stages: modeling (digital generation in the
digital domain), analysis (digital mapping of the physical domain), and fabrication (physical
generation of the digital domain). Moving towards a system process where modeling, analysis,
and fabrication are integrated together for the development of a dynamic process will transform
traditional fabrication technology and bring about the creation of sustainable and more efficient

synthetic environments. Integration of modeling, analysis, and fabrication into one fluid process

requires the development of a fabrication platform with capabilities for real time control. This

thesis explores and investigates the creation of a framework for real time control of industrial

robotic arms as part of a multipurpose fabrication platform.

MIT Thesis Supervisor: Neri Oxman
Assistant Professor, Department of Media Arts and Sciences
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1. Introduction and Motivation

1.1. Overview

Natural systems and objects found in the world of nature are testaments to the practice of

sustainable design and fabrication. These natural systems are characterized by the constant

interplay of creation, environmental response, and analysis of current structural constituents, as

part of a larger dynamic system. As exploration of the world of digital design and fabrication

progresses there is growing desire to transform traditional fabrication technology and bring about

the creation of sustainable and more efficient synthetic environments by drawing inspiration

from natural systems. This thesis explores and investigates the creation of a framework for real

time control of industrial robotic arms as part of a multipurpose fabrication platform as a way to

create the capabilities for an integrated fluid fabrication process that is no longer constrained to a

linear process flow.

1.2. Nature Case Studies

Nature's sustainable creations can be found all around us. From the bones in our bodies

to the trees found in the forest, natural forms and materials provide us with examples of objects

and systems that have endured the passage of eons. The study of nature's forms and materials
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has aided in the achievements of countless scientific discoveries, and its influence can be found

throughout society as whole, including in that of synthetic environment design. It is with respect

to the design and fabrication of buildings and systems that we look to nature for inspiration.

Trees are one of nature's creations that are complex systems exhibiting the influence of

its environmental surroundings. Trees are shaped by and exposed to a variety of influences.

Natural forces such as winds and in addition to their own weight result in stress and strain, which

alter the overall shape and structure of the tree to adapt to its unique environment [1,2].

Furthermore, natural systems are also characterized by their constant dynamically changing

structural differences at the micro scale. For example, trees have cellulose fibers that change

shape in response to external forces. This shape change is exhibited "as mechanical reorientation

occurs on the cell walls (local level), the tissue (regional level), and the trunk (global level)"

[1,2,3,4].

Bone is another natural creation that also exhibits a change in material properties over

time. Bone is composed of mineralized collagen fiber and exhibits changes in structure over

time. Parts of bone can be replaced in response to time, stress, and strain. Furthermore, the

density of bone material also varies depending on the various influences present during the

period of bone formation [1,2,3].

1.3. Advantages of Dynamic Fabrication

Structures found in nature are characterized by the response of the formative process to

the forces and loads that act upon it, resulting in a variation of design for each and every

creation. Variations in design can vary in magnitude from the slightly different shapes of leaves
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or the difference between a heart muscle cell and skin cell as cell differentiation occurs in a

single cell zygote to the multicellular human adult. Furthermore, the design process in natural

systems is an ever-changing, never-ending, complex dynamic process. One has only to think of

biological systems that are able to detect and repair localized structural damage to exhibit this

complex dynamic process [1]. It is this idea of a dynamic process, which occurs in nature that

we hope to translate to traditional methods of digital design and fabrication to create a new

approach to fabrication, dynamic digital fabrication.

Traditional methods of digital design and fabrication are characterized by a linear

progression of independent stages. The typical design process makes use of computer aided

design and is characterized by three main stages: modeling (digital generation in the digital

domain), analysis (digital mapping of the physical domain), and fabrication (physical generation

of the digital domain), shown in figure la [1]. In contrast, dynamic digital fabrication would

move towards a system where modeling, analysis, and fabrication are integrated together for the

development of a dynamic process that moves closer to the sustainable practices of nature,

shown in figure lb. This shift to an integrated design process allows for a dynamic approach to

fabrication that would allow for the creation of structures via one fluid composite process.

Development of a dynamic process will transform traditional fabrication technology, bringing

about the creation of more sustainable and efficient synthetic environments embodying the

essence of nature's sustainable creative processes.
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Traditional Fabrication

Modeling

Analysisj

Fabrication

Future of Fabrication

Modeling

Fabrication 4An ysis

Figure 1. (a) Traditional fabrication processes are characterized by a linear progression of
modeling, analysis, and fabrication. (b) We envision the future of fabrication as a process that
encompasses a constant interplay between modeling, analysis, and fabrication.

1.4. Thesis Overview

Incorporation of modeling, analysis, and fabrication into one cohesive process requires

the integration of sensing modalities in conjunction with a fabrication platform that has the

potential for dynamic updates. Chapters 2-4 provide background information to provide context

for digital fabrication, related research, and the potential for the use of industrial robotic arms in

fabrication. Chapter 2 describes current technologies used in digital fabrication. Chapter 3 looks

at research efforts in digital fabrication, the potential to use industrial robotic arms for

fabrication, and the potential to use digital fabrication technology in the construction industry.

Chapter 4 talks more in depth about industrial robotic arms. Chapter 5 describes the current state

of research in real time control for industrial robotic arms and talks about the limitations and

potential benefits. Chapter 5 also details the research done to explore and investigate the
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creation of a framework for real time control of industrial robotic arms as part of a multipurpose

fabrication platform.
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2. Digital Fabrication

Conventional approaches to digital fabrication can be grouped into three main categories:

additive, formative, and subtractive manufacturing. Additive manufacturing, also referred to as

layered manufacturing, or rapid prototyping transforms digital models (e.g. CAD model) into

three-dimensional objects. A digital model is divided into thin layers, or cross-sections, which

are then fabricated via a layer-by-layer process [5,6,7]. Subtractive fabrication uses techniques

such as Computer Numerical Control (CNC) cutting, also referred to as 2D fabrication, and CNC

milling. CNC cutting involves the removal of two-dimensional components from solids or

surfaces via cutting technologies such as plasma-arc, laser-beam, or water-jet [6,7,8]. CNC

milling is a subtractive fabrication technique used for the removal of specified volumetric

quantities from solids via multi-axis milling [7,8]. Formative fabrication applies mechanical

forces, restricting forces, heat, or steam to form or shape materials [7,8]. Examples of formative

fabrication are bending, extrusion, thermoforming, and molding [6].

These fabrication techniques are all characterized by a linear progression of processes to

reach an end product. The typical design process makes use of Computer-aided Design (CAD)

and is characterized by three main stages: modeling (digital generation in the digital domain),

analysis (digital mapping of the physical domain), and fabrication (physical generation of the
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digital domain) [1]. Figure 2 depicts an example of the linear process required to design and

create a cup using additive manufacturing technology.

1 CAD
2 STL convert
3 File transfer to machine
4 Machine setup
5 Build
6 Remove
7 Post-process
8 Application

Figure 2. Depiction of linear process flow required to design and create a cup
using additive manufacturing technology [5].
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3. Current Research in Digital Fabrication

3.1. Overview

The reach of digital fabrication is constantly expanding, encompassing a plethora of

potential possibilities and opportunities for a wide range of use. Ongoing research and

development of digital fabrication technologies has resulted in applications across many different

fields such as biomedical engineering, medicine, aerospace, automotive, art, architecture, and

design [6,7,9,10,11,12].

One particular area of development for fabrication technologies is in the field of

architecture and design. The research done by Mediated Matter Group at the Media Lab

explores "how digital and fabrication technologies mediate between matter and environment to

radically transform the design and construction of objects, buildings, and systems." Research in

the Mediated Matter Group aims to address the goal of enhancing the relationship between

natural and man-made environments. Exploration and development of fabrication technologies

within the group has resulted in the development of novel methods for construction such as the

Print-in-Place construction process and the development of a multipurpose fabrication platform

using a robotic arm.

Other research in the application of fabrication to construction by various groups has

resulted in projects such as D.Shape, 3D Concrete Printing, and Contour Crafting [13,14,15].
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This chapter focuses on the ongoing fabrication research done by the Mediated Matter group,

specifically the Print-in-Place construction process, the multipurpose fabrication platform using a

robotic arm, and informed fabrication.

3.2. Construction-Scale Digital Fabrication

One application of digital fabrication to construction is the Print-in-Place construction

process developed by Steven Keating. The Print-in-Place construction process uses a robotic

arm to print an insulative, rapidly curing spray foam mould which is then used to cast concrete

[16]. Figure 3(a) shows an example of a printed mould and casting a mould with concrete. This

process can be used to produce building-scale structures and allows for integration of other

features such as embedded objects for plumbing, rebar, or electrical wiring or milled designs, as

shown in figure 3(b) [16]. Figure 3(c) shows a computer rendering of the Print-in-Place process

using a robotic arm attached to a crane.
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l (a)

Figure 3. (a) An example of the Print-in-Place process, an insulative, rapidly
curing spray foam mould is printed via a robotic arm. Afterwards, the mould is
used to cast concrete. (b) Integration of features such metal reinforcement rods
to printed moulds is possible. (c) Rendering of robotic arm platform for
printing polyurethane wall mould. [16]
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3.3. Multi-Purpose Fabrication Platform

With the use of an industrial KUKA robotic arm Keating developed the first

multipurpose robotic arm fabrication platform capable of all three main categories of fabrication:

subtractive, additive, and formative [16,17]. Keating demonstrated the use of a robotic arm as a

platform for 3D printing, an additive fabrication technique using an ABS print head. Formative

fabrication was demonstrated by attaching a holder for sculpting tools to the robotic arm and

creating sculpted modeling clay moulds. These moulds were then used to cast urethane plastic

objects. Subtractive fabrication was enabled via a robotic arm with the attachment of a rotary

tool and milling bits to mill polyurethane foam, ABS, medium-density fiberboard, and modeling

wax [16].

3.4. Immaterial and Informed Fabrication

Keating also introduced the concept of Immaterial and Informed Fabrication. Immaterial

fabrication is a concept "where designs are produced by changing material and environmental

properties without mechanical forces" [16]. For example, Keating creating light paintings using

an LED attached to a robotic arm, shown in figure 4(a). Informed fabrication is defined as a

"combination of immaterial sensing and physical fabrication, where environmental feedback

contributes to the finished design product" [16].
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Figure 4. (a) A light painting created using a robotic arm with an attached LED
and captured using long exposure photography (b) Robotic arm platform used to
print a polyurethane wall mould [16].
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3.5. Summary

The application of digital fabrication to the field of construction has the potential to

transform the construction industry. Fabrication technologies create the possibility for

manufacturing complex structures with greater structural integrity, less material waste, a

reduction in human labor, and an overall reduction in build time. Potential benefits for more

efficient mass customization of buildings also exist. Research in the Mediated Matter group

focuses on the potential for the use of industrial robotic arms as a multipurpose fabrication

platform for construction and other applications. The following chapter gives a brief history of

robotic arms, discusses the potential for the use of industrial robotic arms for fabrication, and

describes the robotic arm system used by the Mediated Matter group to provide context for the

research done on real time control of a KUKA robotic arm.
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4. Robotic Arm

4.1. Overview

The concept of robotics reaches far back in history to ancient legends and myths.

Accounts of robot-like devices appear as early as 350 B.C. in ancient Greece with the description

of "a strange machine that... was capable of flying more than 200m, using some type ofjet

propulsion..." [18]. Robotics has evolved over the years aided by advances in technology to

include a wide range of functionality and features such as graphical interfaces, virtual robot

environments, and digital control loops for better actuator control [18]. Furthermore, there is

great potential for the use of robotics in digital fabrication.

Modem robotics is comprised of two main categories, service robots and industrial robots

[19]. The International Organization for Standardization (ISO) defines industrial robots as "an

automatically controlled, reprogrammable, multipurpose manipulator programmable in three or

more axes, which may be either fixed in place or mobile for use in industrial automation

applications," while service robots are defined as "a robot which operates semi- or fully

autonomously to perform services useful to the well-being of humans and equipment, excluding

manufacturing operations." [19].

Industrial robotics is a continuously expanding sector of the robotics market. According

to the International Federation of Robotics, as of 2011, the value of the industrial robot market
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was an estimated $8.5 billon, including the cost of software, peripherals and systems

engineering, the worldwide market value is an estimated $25.5 billion [19]. The use of industrial

robots spans a wide range of industries as shown in figure 5.

Estimated worldwide-annual supply of industrial robots at year-end
by industries 2009 - 2011

Chrta ubbr andPastics

Metalproducts

Food 02011

Industrial machinery 02010

Communcaon 02009

consumer, domesn applances

Glmss ceramics

Meic. precision, & otialisnrt

Othm I

0 .5,000 10,000 16,000 20,000
units

Figure 5. Estimated worldwide annual supply of industrial
by industries 2009-2011 [19].

25,000 30,000 35,000

Soor at 0 andep

robots at year-end

Although there is widespread use of industrial robots, their use is mostly restricted to

automation and manufacturing processes, which require repetitive, specified precise motion for

task completion [18,21]. However, industrial robots have the potential for a much richer

spectrum of complexity and range of tasks. Robotic arms are ideal for digital fabrication due to

factors such as flexibility, the ability to be equipped with different end-effectors, potential for

customized design, speed, and options for use as an input or output device [16,20,21]. Industrial
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robotic arms have been repurposed for a variety of projects with applications in various areas

such as interactive art, furniture design, bricklaying, surgery, and customized roller coaster rides

[20,22,23,24,25]. As mentioned in the previous chapter, research efforts by the Mediated Matter

group have demonstrated that the robotic arm can be used as a multipurpose fabrication platform

capable of all of the main fabrication categories: additive, subtractive, and formative [16]. This

chapter describes the robotic arm used by the Mediated Matter group and the following chapter

examines real time control for the robotic arm and discusses limitations and the creation of a

framework for real time control.

4.2. KUKA Robotic Arm

The robotic arm system used for research in the Mediated Matter Group at the MIT

Media Lab is based on a KUKA KR5 sixx R850 six axis robotic arm, shown in figure 6. The

KUKA KR5 is an industrial robotic arm with manipulation capabilities in both the Cartesian and

angular domain. The robotic arm weighs 29kg, has a reach of 855mm, speeds of up to 2m/s with

a footprint of 200mm x 200mm [27].

Communication with the arm is done using a KUKA KR C2 sr controller. The KUKA

robotic arm uses the KUKA Robot Language (KRL), a propriety programming language

common to all KUKA products. Previous research done with the arm used code uploaded to the

controller and did not include real time control for the arm due to difficulties with interfacing

with other common programming languages.

21



Figure 6. KUKA KR5 sixx R850 6 axis lightweight robotic arm [26].

4.3. Summary

Robotic arms have great potential for use in digital fabrication due to its flexibility,

versatility, speed, precision, and possibility to attach a wide variety of end effectors. However,

the use of propriety programming languages for industrial robotic arms has created a significant

software and programming barrier for widespread use.
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5. Real-Time Control

5.1. Overview

Creation of a system capable of large-scale three-dimensional printing for use in

construction and architecture, potential exploration of concepts such as silk-based building skins,

or building composite structures which incorporate their surrounding environment all potentially

require an integrated autonomous sensing system capable of response to changes in the

surrounding environment. An integrated sensing system would also be able to interact with

dynamic environmental stimuli, creating novel composite structures through the use of a system

cognizant of change. Furthermore, the integration of real-time control with current digital

fabrication techniques will enable process control and set the stage for fabrication of novel

structures.

For example, the use of real-time control with the Print-in-Place construction process will

enable process control for material variation (e.g. spray foam) and for environmental noise and

variation. Since systems such as the Print-in-Place construction process are designed for use in

settings such as outdoor construction sites where strict environmental constraints cannot be

enforced, real-time control is crucial for optimal functionality. Even for systems where strict

control of environmental factors can be achieved error correction can be enabled via real-time

control.
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5.2. Benefits

In the Print-in-Place process, material variation due to factors such as temperature, foam

expansion, and foam layer height can introduce systematic error. In particular, incremental

differences in foam layer height can result in a cycle of positive feedback. The Print-in-Place

process prints consistently uniform foam layers which when layered can achieve building scale

wall heights. Through the use of a robotic arm with a foam printing attachment, the arm is

programmed to move a fixed height and distance for each layer. As overall structure layer height

increases, incremental variation in layer height due to incremental changes in the distance from

the printer head to the top of the printed wall slowly increases or decreases. This results in an

increasingly thicker or thinner foam spray, which in turn creates inconsistent foam layer height.

This cycle of positive feedback in layer height requires that the system must be constantly

monitored for change in spray nozzle height and manually updated by repositioning the arm.

This can be a tedious, somewhat imprecise task that impedes the development of an autonomous

printing system for construction. Real-time control will allow for autonomy of the printing

system and process control for the Print-in-Place process.

Another example that shows the potential benefits of real time control for fabrication is

the use of Makerbot 3D printers. Roughly a quarter of the items printed using a Makerbot 3D

printer in the Mediated Mater lab have to be re-printed at some point due to an error in printing.

Incomplete layer adhesion or warping of the printed object, such as the object detachment from

the build platform, is a common problem that currently has no solution other than to re-start and

re-print the entire object. However, with the addition of real-time control, a user could
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potentially adjust the printing conditions to account for printing errors as they occur. This would

save time and material costs since print jobs would not necessarily have to be completely re-done

or re-started.

5.3. Limitations

Real time control for robotic systems is a widely researched concept. The plethora of

research on real-time control for robotic systems has resulted in a multitude of projects based on

the subject. Research projects aimed at autonomous real time control have demonstrated the use

of various sensors, control logic, and integration of systems for interests such as visual tracking

for robotic systems such as the widely popular quadcopter [28,29,30,31,32]. Other projects such

as the Real-Time Robotic Hand Control using Hand Gestures, which used a PUMA industrial

robotic arm programmed with VAL, have shown the use of real time control for manufacturer

specific industrial robotic arms [33]. Although, there have been projects with real time control

for industrial robotic arms, most of these projects involve programming via robot specific

languages such as VAL for PUMA robotic arms and KRL for KUKA robotic arms. Some

robotic arm manufacturers, such as KUKA have realized the need for easier programming

interfaces and produced new robotic arms such as the KUKA Lightwieght Robot which has a

new PC-based KUKA robot controller which eliminates the need for programming in favor of

teaching the robot by guidance [34,35].

Overall, translating the success of real time control mechanisms used in robotics projects

to manufacturer specific industrial robotic arms has proven difficult due to the use of
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manufacturer specific proprietary programming languages, which hinder the use of open-source

platforms and third-party software.

Current research efforts such as the Robot Operating System (ROS), the Orocos Project,

the Kuka Control Toolbox (KCT), and the KUKA parametric robot control for Grasshopper

show promise for moving towards open-source control [36,37,38,39,40]. The Robot Operating

System (ROS) is an "open-source, meta-operating system for your robot" and provides libraries

and tools for software developers to create robot applications [36]. The Orocos Project provides

open source robot control software in the form of C++ libraries [37,38]. The KUKA Control

Toolbox provides MATLAB functions for motion control of KUKA robot manipulators [39].

The KUKA parametric robot control for Grasshopper allows a user to program through a

parametric modeling environment to generate robot control files [40].

The use of the software and tools created by these research projects require familiarity

with some form of programming such as C++ or Matlab, or only provide capabilities for offline

programming [38,39,40]. Furthermore, the capability for easily expanding these programming

interfaces and the software architecture to include multiple sensors of varying types is limited

without rebuilding and restructuring the control system [36,41]. In order to create an

environment where not only programmers and engineers, but also designers and the general

population can participate in real time control of robotic arms for digital fabrication and other

uses, there is still much work to be done.

The rest of this chapter explores the creation of a framework for non-programmer user-

friendly real time control of KUKA industrial robotic arms. Specifically, real time control of the

robotic arm via different sensing modalities was explored through the design, implementation,
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and integration of graphical user interface (gui) components and input devices (sensors and

sketchpad).

5.4. System Architecture

5.4.1 Communication Scheme and Hardware

To explore and investigate the creation of a framework for real time control of industrial

robotic arms as part of a multipurpose fabrication platform a graphical user interface (gui) was

designed and implemented with the integration of a sensor module. This section describes the

overall system setup that was created to allow for real time control.

To allow for real time communication the Robot Sensor Interface (RSI) software package

for the KUKA robotic arm was purchased and installed. RSI enables real time control for the

arm by allowing communication between the robot controller and an external system via

Ethernet. To allow for communication between a remote computer and the robot controller a

python server script, written by Ilan Moyer and Steven Keating, was used. The python server

script also allowed for interfacing with other programming languages. Figure 7 shows the

overall communication scheme between a remote computer and the KUKA robot arm that

includes:

1) a remote computer running kuka.py a python server script

2) the KUKA Robot Controller (KRC)

3) the KUKA robotic arm

4) a sensor module
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A connection is established between a remote computer and the KUKA robot controller via

Eth.RSIXML (a KUKA software package). The KRC runs PythonRSI.src, KRL code, which

manages the data exchange with the robotic arm and runs the client for the Eth.RSIXML. The

python server script also communicates with a Java client using the TCP/IP protocol. The Java

client also communicates with a sensor module via a serial port.

KUKA Robot Controller

PythonRSI.~sc

Ow Eth.RSIXML

UDPservw

UDPAP Protocol

KUKA arm

Serial Port

Sensor module remote computer running Python
server script and Java GUI.

Figure 7. Communication scheme for real time control between a KUKA robot
controller, a remote computer, and a sensor module.

In order to add the functionality possible for process control, real-time control via sensors

was desired. A sensor module for distance sensing shown in figure 8 was connected via serial

port to the Java client and consisted of an Arduino uno board and the following three sensors:

* An ultrasonic sensor (Maxbotix HRLV-EZ4) with 1mm resolution and sensing up to

5 meters
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* An Infrared Proximity Sensor (Sharp GP2YOA21YK) with sensing for IOcm-80cm

" An Infrared Proximity Sensor (Sharp GP2D120XJOOF) with sensing for 3cm-30cm

Figure 8. Sensor module for distance sensing.

5.4.2 Graphical User Interface (GUI)

To promote ease of use for users of all backgrounds, a Java based graphical user interface

(gui) was designed and created to enable easy real time control of the robotic arm for people of

all backgrounds. Figure 9 shows the basic functionality of created graphical user interface (GUI).

The client GUI allows the user to:

* Jog each of the robot joints in any direction.

" Move the end effector to specific coordinates and orientations.

e Import a file with pre-determined points and have the robot move to each point.
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e Integrate sensor data for error correction & motion detection.

Draw with the arm via a sketchpad.

Importing a file, changing the settings, adding a sensor, or drawing via the sketchpad could all be

easily accessed through the file menu located on the top left comer of the gui.

File

JOG MODE ON 'OF xps y-po zpos -a-angle b-angfe c-angle velocity omega

jog Speed 0 20 40 60 80 100

Angular Speed 0 20 40 60 80 100

x-Position 479 DOWN UP

y-Position 0.0 DOWN UP

z-Position 870iW DOWN UP

a-Angle O DOWN UP

b-Angle 0.0 DoWN UP

c-Angle 0.0 DOWN UP

GO

RUN RESET STOP

CURRENT STATUS STATUS: CURRENT MOVEMENT IS CARTESIAN f'x(479.19,y':0.0,'z':870.0,a':0.0,1 b':0.0 ,c':0.0

SENSORS:

Figure 9. Graphical user interface designed for use with the robotic arm.

5.5. Results and Discussion

The viability for real time process control of processes such as the Print-in-Place

construction process was demonstrated using the sensor module shown in figure 8. The sensor
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module was attached to the end of the robotic arm, shown in figure 10. Using the gui, different

ideal distances were specified and tested for behavior using a smooth foam board and a printed

foam block. As expected the gui was able to receive and display sensor distance readings and

adjust the robotic arm's position in real time to compensate for the movement of the foam board.

When the board was either too far or too close to the robotic arm and sensor, the arm would

move closer or farther away in order to remain at the previously specified ideal distance.

Figure 10. Robotic arm with attachment for sensor module.
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The potential for real time control of the robotic arm for more complex behavior via the

gui was demonstrated by using the robotic arm as a drawing tool. Figure 11 shows the setup,

which included an attachment to hold a drawing device for the robotic arm and a drawing

surface. Using a software sketchpad via the gui, shown in figure 12, a user can draw with the

arm by drawing on the sketchpad. Figure 13 shows a close up of a drawing done with the robotic

arm to match the user created drawing in figure 12. Using a maximum speed of 1500 mm/s

resulted in responsive real time control of the arm via the sketchpad. The robotic arm was able

to reliability reproduce drawings in real time without significant lag.

Figure 11. Arm with attachment for marker and drawing setup.
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Figure 12. A user can draw with the arm via the sketchpad.

Figure 13. Close up of writing done with marker using real time control for the
robotic arm via the gui sketchpad.
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The modular nature of sensor integration and interface design allow for the ability of

programmers to easily customize the interface and real-time control components to their needs.

This setup allows for easy open source type integration of any number of input and output

devices that can be used for real-time control of the arm. Users can easily add any number of

sensors (or other input/output devices) to interface with the arm and specify factors such as a

distance range that the arm should keep while completing a task using a sensor or multiple

sensors. The simple sensor integration of the gui also creates the possibility for the use of the

robotic arm system by users with no prior programming experience.
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6. Conclusion and Contributions

6.1. Contributions

In this thesis, I have explored, developed, and designed a framework for easy integration

of sensors for real time control of industrial robotic arms as part of a multipurpose fabrication

platform. This system has laid the groundwork to allow for the capability to use an integrated

fluid fabrication process that is no longer constrained to a linear process flow. Sensor integration

allows for dynamic behavior based on environmental stimuli.

The following contributions were made:

" Designed, developed, and created a system for easy integration of sensors for real time

control of an industrial robotic arm as part of a multipurpose fabrication platform.

* Designed and developed, graphical user interface (gui) components to promote ease of use

for users with no programming background.

" Demonstrated the use of real time control for error correction.

* Demonstrated the use of real time control for complex behavior by using the robotic arm

to draw via a software sketchpad.
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6.2. Future Work

In this thesis, I have explored, developed, and designed a framework for easy integration

of sensors for real time control of industrial robotic arms as part of a multipurpose fabrication

platform. Real time control of the KUKA robotic arm was demonstrated through the use of

sensors and a software sketchpad. Future work would include demonstrating the potential for

complex multi-process digital fabrication, perhaps through the use of integrating easy gui

components for allowing users to switch end effectors based on sensor data This would allow

for more complex processes that could be used for construction scale fabrication. Also,

demonstrating real time control via the use of more input and output devices in parallel would

add more functionality to the system. Integration of tasks such as switching end effectors and

sensor-based motion would allow for an autonomous process where a robotic arm could

simultaneously print a foam mould, integrate layers, integrate features such metal reinforcement

rods, and perform custom surface detailing.

Furthermore, in order to allow for user customization of features such as the addition of

sensors, future iterations of the gui could include a software sensor wizard, which could allow

users to customize not only the type of sensor but the specified control logic and behavior

associated with each sensor or allow for complex behavior based on multiple sensors. Addition

of a simulator that would allow users to simulate arm behavior before sending actions to the arm,

and/or record a simulated video of the arm behavior would allow users to easily save and share

data.
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