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Abstract

Previous research has shown strong correlations between postings on the online social
network Twitter where users complain of influenza-like symptoms, and clinical data
on actual influenza rates. In addition, previous research has shown that more popular
individuals in a real-life social network are infected with influenza earlier than average
individuals. We collect all flu-related tweets during the 2012-2013 influenza season in
order to compare the timing of flu-related tweets from more popular users compared
to less popular users. No difference is seen in flu tweet timing between Twitter users
with a high number of followers compared to users with a low number of followers.
Restricting the Twitter network to bidirectional edges (mutual followings) performs
slightly better, but is still not significant. Future work should focus on identifying
edges in online social networks that indicate that two users regularly come into close
physical proximity.
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Chapter 1

Motivation

Worldwide, seasonal influenza causes three to five million cases of severe illness
and 250,000 to 500,000 deaths each year.[14] Seasonal influenza reoccurs each year
in regular cycles, but the geographic location, timing and size of each outbreak vary,
which makes it difficult to produce reliable and timely estimates of influenza activity
using traditional time series models. {17] In addition to seasonal influenza, a pandemic
outbreak like the 1918 “Spanish Flu” could cause millions of fatalities if a new strain
of the influenza virus were to develop, against which no prior immunity existed.[15]

Early detection of influenza activity, if followed by a rapid response, can reduce
the impact of both seasonal and pandemic influenza.[15] For example, research sug-
gests that targeted mass prophylactic use of antiviral drugs can contain an epidemic if
administered sufficiently early [6][11], which requires early detection to appropriately
distribute the medications, which are limited in supply. Rapid, targeted administra-
tion of vaccines is a critical element of the World Health Organization’s pandemic

influenza response plan. [15]
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Chapter 2

Background

State of the art flu-tracking is real-time at best. The traditional surveillance
approach used by the Centers for Disease Control and Prevention (CDC) is almost
entirely manual, leading to a 1-2 week delay between the time a patient is diagnosed
at a strategically selected medical practice, and the time that data point becomes
available in aggregate reports. Several innovative surveillance systems have been
proposed to monitor influenza activity in real-time. For example, Google Flu Trends
[8] aggregates live online search queries for keywords relating to influenza, Espino et
al. [4] propose monitoring call volumes to telephone triage advice lines, and Magruder
et al. [12] track over the counter drug sales.

Research shows that flu-related Tweets (messages posted on the online social
network Twitter) give a good approximation for the prevalence of influenza-like illness.
Moreover, Twitter data is publicly available in real-time, unlike any of the previously
mentioned data sources. Through Twitter’s Streaming API, it is easy to collect all
tweets containing flu-related keywords such as “flu”, “sick”, “influenza”, “headache”,
“sore throat”, and “fever”. Invariably, this simple keyword-based collecting leads
to some false negatives (“I'm feeling a bit under the weather today.”), and a large
number of false positives (“OMG I have such Bieber fever!!”). Recent papers solve
this problem by learning document classification models on manually labeled training
sets, resulting in strong correlations with ILI prevalence reported by the CDC. [3] [9]
[16] [1)
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We can characterize the spread of influenza as a random process over a network
comprising edges representing real-life physical proximity between two people. In-
fluenza spreads primarily from person to person through respiratory droplets from
coughing and sneezing. [7] It can also spread indirectly, if, for example, a sick per-
son sneezes into their hands, touches a doorknob, then a healthy person touches the
same doorknob shortly afterwards. We can consider a network where people are
nodes, and edges connect two people who came within close enough physical con-
tact that influenza spreading was possible. Let us refer to this type of network as a
“flu-spreading” network. We can now consider a random process over this network,
where at each timestep, a person can be either susceptible to influenza, infected with
influenza, or recovered from influenza (and therefore immune to this season’s strain).
As we move forward in time, whenever an edge connects an infected node with a

susceptible node, with some probability influenza is transmitted across that edge.

From a theoretical perspective, the problem of outbreak detection can be formal-
ized as follows: Given a network and a dynamic process spreading over it, we wish
to select a set of of nodes to detect the process as efficiently as possible. Several
objective functions may be relevant, such as minimizing detection time (so that you
identify an outbreak as early as possible), minimizing population affected by unde-
tected outbreaks, or detection likelihood (maximize the probability that we detect an
outbreak at all). Leskovec et al show that optimizing any of these objective functions
is NP-hard, so we cannot expect to find the optimal solution for a large network.[10]
However, they also show that these objective functions exhibit submodularity, a di-
minishing returns property stating that adding an extra node u to a set S of sensors
has less benefit than adding u to a sensor set &', if S’ C S. It is known that for
submodular optimization functions on networks, a 1 — 1/e approximation can be ob-
tained using the simple greedy strategy of always adding the node that increases the
objective function the most.[13] Leskovec et al. give another algorithm that is up to
700 times faster than the simple greedy strategy, and also prove online bounds on the

quality of a sensor set chosen by any algorithm.[10]

Even finding an approximate solution to the outbreak detection problem requires
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calculations across the entire network topology, which is impractical on a network as
large as Twitter. Instead, we can use techniques that only require local knowledge of

the network structure to sample sets of nodes that are more central than average.

The friendship paradoz states that, if you are an average person, your friends
have more friends than you do.[5] This was originally an observation about human
social networks, but it can also be shown mathematically to be true. Consider a
social network represented by an undirected graph where each person is a node and
each friendship is an edge. Let u be a node picked uniformly at random from the
network. The expected degree of v is simply p, the mean degree of the network. But,
if we then pick v uniformly at random from the neighbors of u, we can show that the
expected degree of v is not the mean degree, but (1 + o?)u, where o2 is the variance
of degree in the network.

For graphs such as social networks, this suggests a clever method for sampling
individuals who have more friends than average. First, pick a group of people at
random, then for each member of the “random” group, select one of their friends
at random, creating the ”friends” group. The “friends” group will have higher than
average degree. In social networks, higher degree people are more central, or in social
terms, more popular than average.

Now we have seen that in theory, central nodes in a social network structure
are infected earlier by a dynamic process spreading over the network, and that it
is possible to sample nodes that are more central than average, using only local
information about the network. But, how does it relate to influenza spreading in
practice?

During the 2009 HIN1 swine flu outbreak, Christakis and Fowler [2] used the
friendship paradox technique to sample Harvard students, by selecting the “random”
group from the student directory, and asking each of these students to name a friend,
creating the “friend” group. They monitored both groups for the duration of the flu
season, and tracked when students had flu symptoms. As hypothesized, the “friends”
group acted as sentinels in the network, getting sick two weeks earlier on average than

the “random” group.
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This suggests that the edges in real-life social networks, at least in a fairly closed
population such as a college campus, are a good approximation for the edges in the flu-
spreading network on that population. In addition, it agrees with our prediction that
more central members of the network should become infected earlier than average.

Therefore, the goal of this project is to answer the following question: Do more
central Twitter users tweet about having the flu earlier than average Twitter users? If
so, then we can use Twitter as a novel data source for influenza outbreak prediction,
rather than simply for outbreak detection.

It should be noted that we do not attempt to distinguish postings reflecting true
influenza infections from those reflecting influenza-like illness, which is difficult for
even a physical to do without running a diagnostic test. Instead, we build on the body
of research work showing a strong correlation between online social network postings
about influenza-like symptoms, and medical records of clinical influenza rates. [3] [9]
[16] [1] In any case, being able to monitor and predict influenza-like illness is still

valuable.

16



Chapter 3

Methods

Twitter.com is a micro-blogging service that allows users to post messages of 140
characters or fewer. A person can subscribe to the feed of messages posted by another
user by “following” that user. Following relationships on Twitter are unidirectional -
User A can follow User B, and User B may or may not follow User A. The high message
posting frequency enables up-to-the-minute analysis of an outbreak. As compared to
search engine query logs, Twitter messages are longer, more descriptive, and generally
more publicly available. Twitter profiles often contain semi-structured meta-data
(city, state, gender, age), enabling a detailed demographic analysis. Despite the fact
that Twitter appears targeted to a young demographic, it in fact has quite a diverse
set of users. The majority of Twitter’s nearly 10 million unique visitors in Feb 2009
were 35 years of older. A nearly equal percentage of users are between ages 55 and
64 as are between 18 and 24.

We maintain a persistent connection to the Twitter Streaming API from December
5, 2012 until March 1, 2013, collecting all tweets containing any of the following
keywords: flu, influenza, headache, sore throat, fever, cough. For each tweet, the
API returns a username and timestamp in addition to the text of the post. From the
author’s username we can get additional profile details that are attached to each user,
including number of followers, number of friends (or followings), profile creation date,
and location. We exclude retweets, which are tweets originally posted by one user

that is “retweeted”, or forwarded, by another user. Since retweets do not indicate a
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new case of ILI, they are removed from analysis.

We run three experiments on this dataset. In all the experiments, we select a
subset of users who are highly central, and determine whether those users tweeted
about flu symptoms earlier, on average, than random users. In our first experiment,
we compare users in the highest quartile for number of followers to random users. In
our second experiment, we take the intersection of the follower and friend lists to get
a list of mutual followers. We then compare users in the highest quartile for number
of mutual followers to random users. In our third experiment, we perform a similar
analysis as the second experiment, but restricted to users with a specific city listed

in the location field of their profile.
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Chapter 4

Results and Discussion

4.1 Experiment #1

For our first experiment, we partition Twitter users into two cohorts - low fol-
lowers, who have fewer than 100 followers, and high followers, who have at least 100
followers. We then examine the cumulative occurence of flu tweets from December
2012 to February 2013, during the seasonal influenza outbreak in the United States
(where the majority of English language tweets originate). The graph in Figure 4-1
plots the fraction of all (eventual) flu tweets for the cohort of Twitter users that have

happened by the date on the x-axis.

If the seasonal influenza outbreak were affecting high follower users earlier than
low follower users, we would expect to see the red curve shifted to the left. Instead,
we see that the two curves are essentially identical (Kolmogorov-Smirnov statistic
= 0.0119, p-value=1.00), indicating that there is no difference in influenza timing
between the two cohorts. This implies that most edges on Twitter do not indicate
that the two users come into close physical proximity on a regular basis, and are
therefore not of use for influenza outbreak prediction. This result is not surprising,
given that Twitter users often follow celebrities and news outlets, which are not people
they would regularly come into close physical proximity with, which is necessary for

spreading influenza.
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Cumulative Occurrence of Flu Tweets, normalized by cohort
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Figure 4-1: Experiment #1
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4.2 Experiment #2

In our second experiment, in order to identify users who regularly come into close
physical proximity, we will try restricting the Twitter network to the edges that are
bidirectional, known as mutual followings. A mutual following, where User A follows
User B, and User B follows User A, is more likely to indicate a social relationship
between the two users. We perform a similar partitioning of Twitter users into two
cohorts, those'with a low number of mutual followers, and those with a high number
of mutual followers. Figure 4-2 shows the cumulative occurrence of flu tweets in these
two cohorts over the course of influenza season.

Again, if users with a high number of mutual followings were affected by the
seasonal influenza outbreak earlier than users with a low number of mutual followings,
we would expect to see the solid curve shifted to the left of the dashed curve. While
there is a slight shift visible that we did not see in the first experiment, this difference is
not statistically significant (Kolmogorov-Smirnov statistic = 0.071, p-value = 0.979),
implying that our heuristic of restricting to mutual followings was insufficient to
identify edges in the Twitter network that indicate that the two users regularly come

into the close physical proximity required for influenza transmission.

4.3 Experiment #3

It is possible that even if mutual followings on Twitter indicate a social relationship
between two users, that the users are living far apart and might have regular contact
on online social networks, but not regular face-to-face contact. Twitter users can
list a city as their profile location. Unfortunately, due to rate limits on the Twitter
API, we are not able to make a sufficient number of profile location queries to restrict
our dataset to mutual edges in which both users list the same city as their location.
Instead we will count all mutual followers as edges, as in Experiment #2, but analyze
flu timing in each city separately. We choose Boston, Chicago, and Houston for this

experiment because they are large cities with only one word in their title, which makes
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Cumulative Occurrence of Flu Tweets, normalized by cohort
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Figure 4-2: Experiment #2
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parsing location strings easier.

We see once more in Figure 4-3 that there is no significant difference in influenza
outbreak timing between our cohorts, indicating that our methods from this project
are not useful for influenza outbreak prediction. We will discuss alternative ap-

proaches that may prove more fruitful in the next section.
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Cumulative Occurrence of Flu Tweets, normalized by cohort
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Figure 4-3: Experiment #3 - Boston
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Chapter 5

Future Work

Future work should focus on ways of using publicly available real-time data that
more accurately approximate the edges that influenza actually spreads over in real
life. Here we present several alternative approaches using Twitter data, as well as
several approaches using other data sources.

For the majority of Twitter users, most of the follower/following edges are not re-
ciprocal, indicating that these edges primarily spread information, which often flows
in one direction, rather than social interactions, which generally flow in both direc-
tions. These users may also have some mutual followings, but the mutual followings
make up a small fraction of their total number of followings. However, there are
some Twitter users who almost exclusively engage in mutual followings. It is possible
that these users are using the Twitter platform in a different manner, more for social
interactions than for obtaining information. Further investigation could attempt to
identify cohorts of these users whose Twitter relationships may more accurately re-
flect their social interactions in real life, which would be more useful for predicting
disease outbreaks.

The online social network Facebook is an obvious alternative source of data. The
primary disadvantage compared to Twitter is that most Facebook users set their pro-
files as private, making data collection much more challenging. In particular, it would
be interesting to use photos posted on Facebook as a data source. Facebook users

can upload photos, and then "tag” them, which labels the faces in the photograph
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with people’s names. In addition, facial recognition technology can often identify the
people in photos without the need for manual tagging. Users who appear together in
a Facebook photo are likely people who regularly interact in real life.

Another possible data source is the location-based platform Foursquare. Foursquare
users can use their smartphone to ”check in” at a location such as a restaurant, con-
cert, or sporting event. Based on previous a user’s previous check-ins, Foursquare
makes personalized recommendations to the user about places and events they might
be interested in. This geolocation data could be tremendously useful for disease
outbreak prediction, but again, privacy concerns and data availability are a major

challenge.
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