
Systems for the Interconnection of
Android Applications and Automobiles

via the OpenXC Framework
by

Arkady Blyakher
S.B. EECS, M.I.T., 2012

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

7Q.C I4 AJT- Z
at the a Umr iszijD

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2013
L"BRARIES

© Massachusetts Institute of Technology 2013. All rights reserved.

The author hereby grants M.I.T. permission to reproduce and to distribute publicly
paper and electronic copies of this thesis document in whole and in part in any

medium now known or hereafter created.

Author

Depa tmentof Electrical Engineering and Computer Science
February 1, 2013

Certified by- .-----..-------------
James R. Glass

Senior Research Scientist
Thesis Supervisor

Certified by ---
Scott Cyphers

Research Scientist
Thesis Supervisor

Accepted by ----.. --------....----..-------..................................
Prof. Dennis M. Freeman

Chairman, Masters of Engineering Thesis Committee

2

Systems for the Interconnection of
Android Applications and Automobiles

via the OpenXC Framework
by

Arkady Blyakher
S.B. EECS, M.I.T., 2012

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

Abstract

The topic of this thesis is the design and construction of a set of applications that use
information from a vehicle to provide a better user experience. We introduce two
Android applications that make use of the open-source OpenXC library to gauge
driver awareness and to provide a user interface via steering wheel controls. The
first of these applications deals with human-to-human interactions in the form of a
messaging client. Our goal for this application is to provide a method of determining
when to notify drivers of new messages by using vehicle data to gauge driver
awareness. The second application deals with human-to-machine interactions in the
form of a point-of-interest browser. Our goal for this second application is to use
steering wheel controls in place of the touch screen traditionally associated with
Android mobile applications. We hope to demonstrate that our versions of these
mobile applications, with their focus on preserving driver awareness, provide a
viable upgrade to their traditional alternatives.

Thesis Supervisor: James R. Glass
Title: Principal Research Scientist

Thesis Supervisor: Scott Cyphers
Title: Research Scientist

3

4

Acknowledgements

First, I would like to thank Jim Glass and Scott Cyphers, who were my thesis co-

advisors. This work would not have been possible without their help and guidance. I

greatly appreciate their patience and insight throughout this project.

I would like to thank John Leonard, who first introduced me to the ideas that formed

the basis of this work. It is thanks to his efforts that I came in contact with OpenXC,

and was able to obtain a test vehicle.

I would like to thank Andrew Patrikalakis for all of his work. He helped to lay the

hardware foundations used by this project. His insight and technical expertise were

crucial, and he helped me through several roadblocks over the course of this project.

I would like to thank the people at Ford and on the OpenXC project who made this

work possible.

Most importantly, I would like to thank my family for always supporting me, for the

sacrifices they made for me, and for inspiring me. None of what I achieved would

have been possible without them.

5

6

Contents

1 Introduction 13

1.1 Adoption of Mobile Technology 13
1.2 Mobile Technology in Automobiles 14
1.3 Age Trends between Automobiles and Mobile Devices 14
1.4 Thesis Outline 15

2 Purpose 17

2.1 The Idea of Plug-In Hardware 17
2.2 Project Goal 17
2.3 Project Scenario 18
2.4 Scenario Constraints 19

3 Background 20

3.1 The OpenXC Framework 20
3.2 The CAN Bus AND OBD-II 21
3.3 Device Overview 28
3.4 Android Services 28
3.5 Android Services in OpenXC 29

4 Framework 32

4.1 Framework Goals 32
4.2 Framework Design 33
4.3 Centralized Design 33
4.4 Decentralized Design 37

7

5 Applications 40

5.1 CarTalk 40
5.1.1 The CarTalk Application 40

5.1.2 CarTalkServer 42
5.1.2.1 Overview 42
5.1.2.2 Entities 43
5.1.2.3 Handling Login 43
5.1.2.4 Sending Messages from a Client 44
5.1.2.5 Receiving Messages 45

5.1.3 CarTalk 46
5.1.3.1 Overview 46
5.1.3.2 Logging In and Asynchronous Tasks 46
5.1.3.3 The Home Activity 49
5.1.3.4 Gauging Driver Awareness 49
5.1.3.5 Viewing and Sending Messages 50
5.1.3.6 CarTalk Summary 54

5.2 CityBrowser 56
5.2.1 The CityBrowser Application 56
5.2.2 The Asgard City Browser 57
5.2.3 HijackJSInterface 64
5.2.4 Patching JS Functions 66
5.2.5 Hijacking JS Functions 67
5.2.6 Sharing in CityBrowser 71
5.2.7 CityBrowser and Steering Controls 71

6 Conclusion 73
6.1 Summary 73
6.2 Future Work 75

Appendix
Al Transcript of Example Usage of CarTalk and CityBrowser 79

A2 Selected Code Examples 81
The SendMessage Activity 81
The CarTalkMain Activity 89
The OpenXC Browser 93

8

9

Figures and Tables

Figure 1: The OBD-II Port

Figure 2: The CAN Translator

Figure 3: Standardized Format for Single-Valued and
Event Message for OpenXC

Figure 4: Measurements Supported by OpenXC

Figure 5: OpenXC Architecture

Figure 6: Synchronous Measurement Listener

Figure 7: Asynchronous Measurement Listener

Figure 8: Centralized Framework Design

Figure 9: Decentralized Framework Design

Figure 10: The Login Activity

Figure 11: Rudimentary Awareness Classifier

Figure 12: CarTalk Steering Controls Mapping

Figure 13: The Home Activity

Figure 14: The ViewMessage Activity

10

23

24

25

26

27

30

31

35

38

48

50

52

53

54

Figure 15: The SendMessage Activity

Figure 16: The CityBrowser UI

Figure 17 CityBrowser Steering Controls Mapping

Figure 18: Querying With CityBrowser

Figure 19: Using the Google Voice Recognizer in CityBrowser

Figure 20: The HijackJSlnterface

Figure 21: An Injected Javascript Patch

Figure 22: A Hijacked Javascript Function

Figure 23: Sharing in CityBrowser

11

56

60

61

63

64

66

68

70

71

12

1 Introduction

1.1 Adoption of Mobile Technology

Our current lifestyles have shown a slow shift into a more technology-centric realm.

We have smartphones, tablet PCs, and the "cloud." A Nielsen survey taken January

2012 found that 66% of Americans between the ages of 24 and 35 own a

smartphone[1]. Similarly, the market analyst firm Gartner predicted that tablet PC

sales will reach 119 million units by the end of 2012. This is an increase of 98% over

the 60 million units sold in 2011.[2] These figures exemplify the current trend

towards mobile computing. As consumers, we expect to have our computers

manage our lives, entertain us, and provide us with a social outlet. Yet, we do not

expect to be stuck behind a desk to take advantage of all of these features. There are

currently thousands of free Wifi hotspots across the US, not to mention the fee-

based services provided by all of the major telephone carriers. With the market for

mobile computing growing quickly, it is inevitable that more of our everyday tasks

incorporate the ability to interact with these devices.

13

1.2 Mobile Technology in Automobiles

One major, as yet untapped, resource comes in the form of the automobile. The

average American spends 18.5 hours in the car each week, as either a driver or a

passenger[3 . While this might not seem like a lot at first, the chunks quickly add up.

At 18.5 hours a week out of our waking hours, we are spending nearly 1.3 months

out of the year in our cars. At the same time, we are severely limited by what we can

do while driving. Many current mobile applications do not take driving into account

when providing a user interface. Driver distractions are a big hazard to everyone on

the road, with many states adopting more stringent guidelines on what drivers can

and cannot do while behind the wheel. With these changes, phones and other mobile

devices will need to change as well, to properly reflect the different circumstances

that an individual faces while in a car.

1.3 Age Trends Between Automobiles and Mobile Devices

The average age of a vehicle on U.S. roads is over 11 years. This figure comes from

the findings of the research firm Polk, which tracks and releases data for the

automotive sector. This figure continues the gradual trend in the increase of the

average age of both passenger and commercial vehicles. For comparison, the

average age of an automobile on U.S. roads was 8.4 years in 1995, and 10.4 years as

recently as 2009.[4]

14

The aforementioned aging trend for U.S. automobiles has not been mirrored in the

mobile computing sector. In contrast, we have seen computer prices fall significantly

within the past decade, along with steep depreciation of existing computer

hardware. This phenomenon, combined with the rapid pace of innovation within the

mobile computing industry, has contributed to a low mean-time-between-

replacements rate for mobile devices. Consumers are replacing laptop computers

after 4 years and 4 months, on average. Similarly, cellphones are upgraded, on

average, more recently than every two years.5]

1.4 Thesis Outline

This work is divided into several chapters. The first serves as an outline of the

current state of U.S. automobiles, and their relationship with mobile devices. We

hope to highlight the predicaments faced by drivers currently using mobile devices

in their vehicles. In this context, we start our second chapter with a description of

the purpose of our work: to develop a suite of OpenXC-enabled applications that

allow us to create driver-centric experiences on mobile devices. We present a target

scenario that we want our suite to facilitate. Our third chapter provides the reader

with an overview of OpenXC, an Android library that allows Android developers to

receive data from a variety of Ford vehicles. The third chapter provides a

background on OpenXC, and how it is used with Android application. The fourth

15

chapter of this work deals with framework considerations that we faced when

deciding how to integrate different OpenXC-enabled applications. We discuss both

centralized and decentralized organizational frameworks, as well as the design we

settled upon. The fifth chapter covers the OpenXC-enabled applications that we

constructed: CarTalk and CityBrowser. The first section of the fifth chapter covers

the implementation of CarTalk, as well as the CarTalkServer that it requires for its

functionality. We discuss our implementation and design decisions, while giving an

overview of how the CarTalk application operates. The second segment of the fifth

chapter deals with the CityBrowser application. We start the second segment with

an overview of the Asgard City Browser, the non-OpenXC-enabled predecessor to

CityBrowser. We go on to detail the specific design challenges that came with

adapting the Asgard City Browser for our specific use case, and we describe the

ways that we dealt with these challenges. The sixth chapter of this work provides a

summary for the work we have achieved, and introduces future lines of

investigation.

16

2 Purpose

2.1 The Idea of Plug-In Hardware

The difference between aging trends for automobiles and mobile devices shows that

car electronics are getting progressively older compared to what is available on the

consumer market. We see the results of this aging in dated user interface designs

and slow processing times. One solution to this problem is to separate the mobile

computing hardware from the purchase of the vehicle itself. With plug-in mobile

computing systems for automobiles, a new set of design constraints must be

implemented. In this work, we examine and deal with these constraints, presenting

a working and extensible implementation of a framework for using mobile

computers, namely Android devices, in OpenXC-enabled Ford automobiles.

2.2 Project Goal

The goal is to use OpenXC-enabled applications for both human-to-machine and

human-to-human interactions. We present two example applications in our design,

each offering distinct architectural challenges. First is CarTalk, a messaging client

that uses OpenXC measurements to provide for a safer method of communication.

17

CarTalk uses measurements to make assumptions about the driver's state of

awareness and accordingly chooses when to either present or withhold the delivery

of new messages. Second is CityBrowser, which offers users the ability to locate

points of interest using speech queries. However, this application was not originally

designed to be accessible via Android, or to be used in conjunction with OpenXC.

This presented a wide array of interesting problems, and led to some major

decisions for our overall design.

2.3 Target Scenario

To establish a baseline for our applications, we chose to build a system that would

prove effective under the following scenario: a user in an automobile decides to get

in touch with a friend for dinner after a long day of work. The user employs our

application suite to message her friend, and the two agree on a time but are unsure

of a venue. Our user then asks our application suite to provide a suggestion for

dinner. She knows that she wants Italian cuisine, maybe even pasta. The application

takes her question and returns a list of restaurants in the area. Our user looks over

the list, picks a restaurant with a good ranking, and has our application suite

forward her decision on to her friend.

18

2.4 Scenario Constraints

For the established scenario, we wanted to develop a system that would be

preferable to existing systems. For example, our system is integrated with the

vehicular controls. Similarly, it minimizes the attention that the driver has to divert

to perform these tasks. This leaves drivers with fewer distractions, leaving them

more able to concentrate on the task of driving.

19

3 Background

3.1 The OpenXC Framework

To introduce our design scheme, we begin with the OpenXC framework, an integral

portion of our implementation. The OpenXC framework is a combination of open

source hardware and software that provides a development interface for vehicles.

The hardware module reads and translates metrics from a car's internal network,

making them available to any Android application that employs the OpenXC library.

OpenXC is an API developed as a joint venture between the Ford Motor Company

and Bug Labs. It was created to set a standard for adding aftermarket software and

hardware to vehicles[6 . Because every new car is full of computerized and electronic

controls, there is growing interest in connecting the output from those systems to

third-party applications and to the web. Several tools are available that allow an

application or hardware add-on to hook into the driver's interface, but, for the most

part, they provide limited capability to hobbyists and developers. OpenXC, on the

other hand, was designed to be open source and to give insight into the vehicle itself.

At the same time, the OpenXC platform protects the manufacturer from needing to

release the vehicle's proprietary implementation details to the public. This latter

activity could be risky for a manufacturer as it is possible to reverse-engineer a car

20

given the information in these codes. Worse, an amateur use of these codes in a

moving vehicle can be dangerous. Hence, OpenXC strikes a balance between

openness of hardware and software within the vehicle, and protection for the

manufacturer.

3.2 The CAN Bus AND OBD-II

To get an understanding of how the OpenXC framework operates, we must start

with the vehicle itself. Modern vehicles come equipped with a multitude of

microcontrollers and sensors. These devices have varying roles, from measuring

throttle position and fuel economy to checking for open doors. All of these sensors

are on the vehicle's controller area network (CAN) bus. The CAN bus allows the

individual electronic control units within the car to broadcast and receive messages.

If the bus is free, any node may begin to transmit. In the case where two or more

nodes begin sending messages at the same time, the bus performs a priority-based

arbitration. Messages with numerically smaller values of IDs are defined as having a

higher priority and are transmitted first. Each of the nodes connected to the CAN

bus consists of three main components: a host processor, a CAN controller, and a

transceiver. The host processer, connected to an array of sensors, is responsible for

both deciphering received messages and deciding on which messages to transmit.

The CAN controller serves as an intermediary between the host processor and the

CAN bus. The controller serializes messages from the host processor before sending

21

them over the bus, as well as deserializing messages arriving over the bus before

sending them to the host processor for interpretation. The transceiver acts as a level

converter, adapting signal levels between the CAN controller and the bus, as well as

protecting the controller from damaging signal levels.7]

The CAN bus is one the principle components of OBD-II, a vehicle diagnostic

standard that has been mandatory for all U.S. cars since 1996. The OBD-II standard,

and therefore the messages sent across the CAN bus, are externally accessible via a

diagnostic port. The diagnostic port is usually located under the steering wheel,

within the driver's footwell.

22

Figure 1

The OBD-II Port

The OBD-Il port in the driver's footwell.

The OpenXC hardware connects directly to this diagnostic port. The first of the

OpenXC architecture's two components is the CAN translator, which connects

directly into the OBD-II port. The CAN translator reads and translates CAN

messages, putting them into a standardized format.

23

Figure 2

The CAN Translator

The OpenXC CAN Translator used with our test vehicle. A list of all supported Ford

vehicles is available at http://openxcplatform.com/vehicle-interface/index.html.

24

Figure 3

Standardized Format for Single-Valued and Event Messages for OpenXC

Single Valued
The expected format of a single valued message is:

{ "name": "steering-wheel-angle" "'value":

Event
The expected format of an event message is:

{" name": "buttonevent", "value":

* Taken from the OpenXC Vehicle Interface documentation, available at
openxcplatform.com/vehicle-interface/output-format.html

25

45}

"up" "pressed"}"levent":

Figure 4

Measurements Supported by OpenXC

Measurement Range Units

steering-wheel-angle -600 to +600 Degrees

torqueattransmission -500 to 1500 Nm

engine-speed 0 to 16382 RPM

vehicle-speed 0 to 655 Km/h

accelerator-pedal-position 0 to 100 %

parking-brake-status True == brake engaged Boolean

brake-pedal-status True == pedal pressed Boolean

transmission-gear.position First, Second, Third, Gear State
Fourth, Fifth, Sixth,

Seventh, Eighth, Reverse,
Neutral

odometer 0 to 16777214 Km

fineodometersincerestart 0 to 4294967295.0 Km

ignitionstatus Off, Accessory, Run, Start Ignition State

fuellevel 0 to 100 %

fuelconsumedsincerestart 0 to 4294967295.0 L

door status Driver, Passenger, Rear Door Value
Left, Rear Right

True == ajar Door Event

headlamp-status True == on Boolean

high_beamstatus True == on Boolean

windshield-wiperstatus True == on Boolean

latitude -89.0 to 89.0 Degrees

longitude -179.0 to 179.0 Degrees

buttonevent Left, Right, Up, Down, Ok Button Value

Idle, Pressed, Released, Button Event
HeldShort, HeldLong,

Stuck

26

* Data for the preceding table has been obtained from the OpenXC Vehicle Interface
documentation, available at openxcplatform.com/vehicle-interface/output-
format.html

The translated messages can then be sent via Bluetooth or USB to an Android Host

Device, the second part of the OpenXC architecture. The host device uses an Android

Java library to enable applications to receive the translated messages.

Figure 5

OpenXC Architecture
CAN

. 1CANPrs*kActv_-B' Translator paiing brastas

USB Android Device

* Diagram from openxcplatform.com/getting-started/index.html

27

3.3 Device Overview

For our system, our main test device was a Samsung Galaxy Nexus. This phone

provides many of the flagship Android features, and we targeted our applications to

run on Android 4.0, or Ice Cream Sandwich. However, our application suite has also

been tested on devices running Android 3.2 (Honeycomb). Our main requirement

was that the devices support USB Hosting, which is required by OpenXC. When an

Android device is in USB Host mode, it acts as the USB host, powers the bus, and

enumerates connected USB devices. USB host mode is only supported on devices

using Android 3.1 and higher, which have the appropriate hardware modules.

3.4 Android Services

All applications using the OpenXC architecture receive vehicle measurements via an

Android service. A Service, as described in the Android API, is an application

component that either performs a long-running operation while not interacting with

the user or supplies functionality for other applications to use. There are some

important distinctions that we must address in regards to Android services. First, a

service normally runs in the same process as its containing application and not in a

separate process. Similarly, a service does not by default spawn its own thread to do

work. These considerations were important in our framework designs because we

did not wish to lose the open-endedness with which an OpenXC application can be

28

implemented. Because there are many different ways to control access to the

OpenXC service due to Android's inherent flexibility, we did not want to impose

restrictions on this variability via our framework.

3.5 Android Services in OpenXC

There are two distinct services upon which OpenXC relies for proper

communication with an Android application. The first of these is the VehicleService,

which receives data via a physical interface, in our case USB, from the CAN

translator. The VehicleService runs in a stand-alone Android process, separate from

any Android application. Since only one Android application can connect to a USB

device at any one time, this connection is handled by the VehicleService. The benefit

of this design is that several OpenXC-enabled applications can run on an Android

device simultaneously. The VehicleService is also responsible for processing the

data and encapsulating it as Java objects before passing it on to a second service, the

VehicleManager Service, which may be bound to multiple Android applications. It is

possible for each OpenXC-enabled application to have its own connection to the

VehicleManager. The OpenXC documentation recommends binding to this service

with the BINDAUTOCREATE keyword, which keeps the service running as long as

either it is explicitly started or there are one or more connections to it.

29

The VehicleManager is an abstraction of the VehicleService and its functions for the

application developer. OpenXC has an enabler Android application, whose role is to

start the VehicleService, which keeps the application developer from needing to

manage it directly. The VehicleManager, on the other hand, is declared within the

Android manifest and serves as an in-application service. It has two main modes of

operation: synchronous and asynchronous. In synchronous mode, the application

must make explicit requests for measurements from the service once the

VehicleManager is bound and a connection to it has been established. An example of

this request mode is given in Figure 6.

Figure 6

Synchronous Measurement Listener

try {

VehicleSpeed measurement = (VehicleSpeed)

vehicle.get(VehicleSpeed.class);

} catch(NoValueException e) {

Log.w(TAG, "The vehicle may not have made the measurement

yet");

} catch(UnrecognizedMeasurementTypeException e) {

Log.w(TAG, "The measurement type was not recognized");

}

* This example is reproduced from
http://openxcplatform.com/android/api-guide.html

30

The asynchronous mode of operation allows an application to be kept up-to-date

with any particular measurement. This involves registering a listener with the

VehicleManager, an example of which is given in Figure 7.

Figure 7

Asynchronous Measurement Listener

VehicleSpeed. Listener listener = new VehicleSpeed. Listenero {

public void receive(Measurement measurement) {

final VehicleSpeed speed = (VehicleSpeed) measurement;

7/ do stuff with the measurement

}

vehicle.addListener(VehicleSpeed.class, listener);

* This example is reproduced from
http://openxcplatform.com/android/api-guide.html

31

4 Framework

4.1 Framework Goals

Our central goal for this framework is to provide for both human-to-machine and

human-to-human interactions. As an exemplary human-to-human interaction, we

implemented a messaging application, CarTalk. This application allows its end users

to send and receive messages. We focused our implementation on the sending of

text, but the system is readily extensible to send other forms of media as well. A

good comparison to this module is the native Android messaging application. Our

implementation, however, takes information from OpenXC to tailor message

delivery to "safe" driving situations. CarTalk withholds message delivery if it senses

that the driver is distracted with a critical task.

To account for human-to-machine interactions, we adapted CityBroswer, a point-of-

interest query platform developed by the Spoken Language Systems group within

CSAIL at MIT, for use with OpenXC and our particular framework. This latter

constraint led to some interesting design choices when developing our framework.

32

4.2 Framework Design

For a framework of interconnected OpenXC applications, the first major defining

network characteristic is centralization, or the lack thereof. A centralized approach

was considered, whereby all accesses to the OpenXC API would occur through a

single access point, in the form of a central, or head, node. Given that OpenXC uses

an enabler application in its base implementation, this seemed like a logical

enhancement.

4.3 Centralized Design

A centralized framework design binds both the VehicleService and the

VehicleManager to a single point-of-access. This application-as-a-service effectively

controls all of the OpenXC-related accesses used by the other applications in the

system. Additionally, the head node serves as a processing station for all inter-node

communication.

For a centralized approach, an Android application (which we will designate a node)

has two main API calls that it can make with respect to the transmission of data. A

node can elect to transmit information, in which an Android Intent is sent from the

transmitting node to the head node. The data item itself can be attached to the

Intent via the putExtra() method call. With this transmission scenario, the head

33

node acts as a data repository, keeping a mapping of applications to data elements.

However, the head node may store a reference to the transmitted data, rather than

the data itself, to reduce overhead. This can be accomplished with Android's

ContentProviders. ContentProviders provide references to resources via unique

identifiers in the form of content URIs. While this implementation is beyond the

scope of our discussion, it is important to note that there are many possible

variations for data transmission within a centralized network structure. Requests

for reception of data in this network must, as with transmission, flow through the

head node. This is possible with a subscription model, whereby the head node

accepts the attachment of listeners from other individual nodes. The listener model

preserves both the synchronous and asynchronous modes of operation of the

OpenXC framework. In addition, there is no distinction between requests for

OpenXC data and for data from other applications. Both of these types of requests

are encapsulated by our proposed centralized design.

34

Figure 8

Centralized Framework Design

Head Node

vehicWSrviaencr
OpenXC

I

I cOW=nUatW I

CAN Translator

GPS

35

+---

I I

#41W lete

... f..2

P IMMOW i~oim l A p ooo mimw uilw I eLq mimaOc l 11im10i1

Avncn e

Apabon. Lq

VehkWc rmWns,

j

The preceding figure shows the layout of the centralized design for our application

framework. The operation of OpenXC is controlled via a head node, with the head

node taking on the responsibilities regularly reserved for the OpenXC enabler

application. The major characteristic of this design is that individual applications

subscribe to a message bus to receive content from any outside sources, including

OpenXC readings, GPS data, and information from other applications. To connect to

the message bus, the applications rely on a system-unique listener model, and

subscribe to or request data from the bus as appropriate. It is important to note that

all messages are forwarded through the head node, and it is only the head node that

interacts directly with the OpenXC library.

36

4.4 Decentralized Design

There are, however, some strong drawbacks to a centralized proposal. Our main

concern with a centralized framework was the difficulty in incorporating existing

stand-alone OpenXC-enabled applications. Because our centralized design uses a

listener model that differs from that of the original OpenXC framework, applications

would need to be rebuilt from the ground-up. This would be a great barrier to

adoption for many developers. Similarly, such a proposal would not allow

applications to leave the framework design without significant restructuring on the

part of the developer. We wanted applications to be useable as independent

modules that could interconnect and share information, but could also act as

standalone applications with only minor modification. Where the centralized model

can be characterized as a single server with multiple clients, the decentralized

model relies upon nodes exchanging information with each other.

The key to a decentralized architecture was using Android's existing Intent design in

lieu of building a messaging bus. By using Intents, an application that is a valid

member of our framework, must only be a valid OpenXC-enabled application. With a

decentralized framework, each application uses the OpenXC library independently.

We rely upon the VehicleService to sort out contention issues relating to the access

of OpenXC messages. Each application is allowed to use the VehicleManager service

independently. Applications are responsible for providing an API for their data.

37

Figure 9

Decentralized Framework Design

OpenXC Enabler

VghdeServiA
OpenXC

I
a

CAN Translator

Em ~

OpenXC
0pMM I

This figure shows the layout for the decentralized design of our application suite.

This design is much less restrictive to applications than is the centralized approach.

Each application interacts with OpenXC in the traditional way, directly via the

38

2 L GPS

OpenXC
On~x I

VehicleManager and listeners. We have included the OpenXC enabler application in

this figure, as it is an integral plart of the OpenXC libraray. However, it is possible for

individual applications to internalize this logic. Instead of using a messaging bus at a

central node, we rely on the underlying Android OS to transfer data, using Intents.

Applications also connect directly to external data sources, such as a GPS or

gyroscope. In this sense, applications have the ability to behave in a stand-alone

fashion, or can be combined with others to form a suite.

39

5 Applications

5.1 CarTalk

5.1.1 The CarTalk Application

To showcase the benefits of OpenXC-enabled applications, we have developed a

messaging application for the Android platform. The main distinction between our

application and a standard messaging app is the use of vehicular feedback to

determine driver awareness. By monitoring the data provided by the OpenXC

library, we can make qualified assumptions as to what a driver is doing. This allows

us to distinguish high-concentration versus low-concentration events, and provide

notifications in only the latter states. In addition, the CarTalk application, when

coupled with our point-of-interest browser, allows the driver to perform lookup and

share tasks while verbally interacting with their Android device.

The CarTalk application consists of two core parts. There is the client-side Android

application, which provides the UI for the user and is also responsible for using the

OpenXC library. The client-side portion performs all processing with respect to

monitoring driver awareness. All of the logic pertaining to analysis of the OpenXC

40

messages is performed on the client side. The second part of CarTalk is the server,

which acts as a message repository. Its role is to organize and to store messages that

are transmitted from multiple Android client devices.

41

5.1.2 CarTalkServer

5.1.2.1 Overview

The CarTalkServer is a Google App Engine web application implemented in Java. It

consists of a set of Java Serviets, each of which responds to a specific HTTP GET or

POST request. We developed several versions of the server component, with

differing levels of security for user data. The goal, however, was to emphasize

functionality in the proof-of-concept form. We are currently in the process of

upgrading the server to have a security level robust enough to be deployed in a

production environment. One of the upgrades involves support for server-client

sessions, where a user must log in to the server to establish a connection.

The CarTalkServer makes use of Google's App Engine Datastore, a NoSQL

schemaless object datastore. The App Engine Datastore provides a query engine,

and transactions appear as atomic operations. Additionally, the App Engine

Datastore handles cross-machine data replication. It guarantees strong consistency

for all read queries, meaning that reads from parallel reads are ordered

sequentially, so that a consistent state is observed. The datastore observes an

eventual consistency model for all other queries. To support application scalability

the App Engine Datastore relies upon replication between different data centers.

42

5.1.2.2 Entities

The datastore contains data objects called entities, which each have one or more

properties. A property can be thought of as a key-value pair. The value for the

property may be one of many data types, including a reference to another entity.

Each entity is of a particular kind, which is a categorization used for queries. Each

entity also possesses a unique key. The key is permanent, and may be assigned

either at the application-logic level, or by the datastore itself.

5.1.2.3 Handling Login

The CarTalkServer currently provides three separate functionalities. Interactions

with the server are user-based, meaning that a client must establish a connection as

a specific user before performing any other transactions. This logic is implemented

within the LoginServlet class. The LoginServlet responds to POST requests to the url

http://cartalkserver.appspot.com/login. The client must supply a

username parameter. If the username parameter exists and a valid password hash is

also supplied, then the server returns an alphanumeric identifier, which can be used

as a session key. This was implemented with the ability to maintain session-based

interactions between client devices and the server. Upon receipt of a POST request,

the LoginServlet queries the datastore for an entity with a matching username. If

43

one is found, a session identifier is returned. Otherwise, the servlet creates the

necessary entity in the datastore before returning a session identifier. Our model

relies upon the invariant that all usernames are unique, as they are used as

datastore keys for a given user.

5.1.2.4 Sending Messages from a Client

The second functionality that the server provides is the ability for clients to

exchange data with one another. The server acts as a go-between in these

exchanges. Information is uploaded to the server by the sending client, and the

receiving client is responsible for polling the server for updates. The servlet

responsible for implementing this functionality is the SendShareableServlet. While

the SendShareableServlet was designed abstractly, with the ability to send varying

types of data, we will focus on our proof-of-concept implementation, which

transfers text messages. The SendShareableServlet responds to POST requests to

the url http://cartalkserver.appspot.com/send. The sending client must

include values for the "from", "to", "data", and "date" properties that will be

associated with the message. The servlet's first action is to validate the existence of

both the sending client's and the receiving client's entities in the datastore. This

ensures that messages will be received by a valid client. The servlet executes this

check by performing two read queries upon the datastore, one for each client. If

either client's entity is null, the message transaction is voided, and an appropriate

44

failure message is returned. Otherwise, the servlet creates a new entity of the

"Shareable" type to represent the message, and fills in its properties accordingly.

5.1.2.5 Receiving Messages

The third functionality provided by the server is the ability to view the messages

sent to a particular user. The logic for this is housed within the

GetShareablesServlet. This servlet responds to GET requests sent to the url

http://cartalkserver.appspot.com/get. The client must include the desired

username as a parameter for the request. Upon receipt of a new request, the servlet

checks the requester's username with that of the current session. Each query must

have an associated session, which is created during the login sequence. If the two

usernames match, then the GetShareablesServlet queries the datastore for all

messages sent to the requested username. Currently, as we only deal with text

messages, the servlet response with a text representation of the entities

representing the messages sent to the username. The entities' representations

include all of the properties of the messages, with any empty key-value pairs

represented by an empty String.

45

5.1.3 CarTalk

5.1.3.1 Overview

The second half of the CarTalk application is the Android client. This portion of the

application is responsible for the user experience. It is also on the client device that

we perform all processing related to the OpenXC library. The CarTalk application

consists of a set of Android Activities, each of which is responsible for a different

user action. As our current version of the CarTalk application supports text

messaging, we have four distinct user actions. These actions are as follows: logging

into the service, viewing a "home screen" of all received messages, viewing an

individual message, and sending a message.

5.1.3.2 Logging In and Asynchronous Tasks

The login Activity, named CarTalkMain, serves as a gateway for the rest of the

CarTalk application. Rather than assigning a one-to-one relationship between users

and devices, we allow multiple users to use the same device. The goal of allowing

this functionality to be user-visible is to allow separate accounts for when users are

outside a vehicle, but still allowing passengers access to a terminal that has been

46

permanently installed within a vehicle by a different user. CarTalkMain provides

asynchronous login logic, which keeps the Activity from blocking Android's main

(UI) thread. This is the required logic design when performing a request-response

interaction between an Android Activity and an outside server that needs to

eventually update the UI. We repeat this design pattern throughout the CarTalk

application, whenever a response from the CarTalkServer is necessary. We make

use of Android's AsyncTask, an abstract class that allows us to perform work in a

background thread. In the case of CarTalkMain, this work is network related,

sending off a user's textual input for login approval by the CarTalkServer. We

needed the AsyncTask in this situation to inform the user that work was, in fact,

being done and that the application had not failed silently. This behavior serves to

provide a better user experience. Upon receipt of the server's response, the client

updates the application state accordingly. On login failure, which occurs with a

mismatch of credentials, the UI is updated with a "Login Failed" alert. Otherwise, the

user is allowed to proceed to the next Android Activity, which provides a different

set of functionality. Because our application relies on a connection to the

CarTalkServer, we require that the mobile device have a network connection. If a

network connection drops, CarTalk can no longer receive responses from its

asynchronous requests, resulting in an inability to send or receive new messages.

Login is considered successful if either there is a username/password match with an

existing account, or there is no username match with an existing account. In the

latter case, a new account is created with the given parameters. We allow cases

where it is possible for users to bypass the login screen completely, even if the

47

CarTalk application is not currently running. We make use of this functionality in a

pass-through from the point-of-interest CityBrowser to CarTalk, which works as

long as the user has a valid CarTalk username associated with their CityBrowser

application.

Figure 10

The Login Activity

Logging In...

Username rk

Login Login

The Login Activity, named CarTalkMain in our implementation.

48

5.1.3.3 The Home Activity

After a successful login, the user is presented with the UI controlled by the Home

Activity. It is this Activity that makes use of the OpenXC library. The role of the

Home Activity is to give the user a summary of their received messages. However,

this must be done only when the user is not preoccupied with a critical driving task.

The Home Activity follows the same AsyncTask design pattern that we outlined for

CarTalkMain and our login process. We use this pattern to received new messages

from the CarTalkServer. The messages are stored in a buffer object, but they are not

immediately displayed on the UI. This latter step is performed after checking for

driver awareness.

5.1.3.4 Gauging Driver Awareness

Checking for driver awareness is the key feature that distinguishes CarTalk from a

traditional messaging application. To accomplish this, the Home Activity makes use

of the OpenXC library with asynchronous listeners. A set of OpenXC-related

variables is maintained in a dynamic state; these variables are updated by the

asynchronous listeners whenever an updated value is available via the

VehicleManager. The variables are made available to a TimerTask, whose purpose is

to recurrently predict driver state. Currently, the output of this task is binary, with

the outcome being either the delivery or withholding of newly received messages

49

from the server. For future implementations, we hope to extend this functionality to

distinguish between different types of messages and notifications. The goal is to

match different notifications with different awareness states, as monitored by

OpenXC. For example, a voice message does not necessarily need the same level of

awareness as does a text message. We hope to perform a set of user studies to better

quantify awareness states, and the notifications that are applicable in each of them.

Our current implementation provides a rudimentary classification mechanism. We

monitor vehicle speed and brake pedal status to determine whether a driver is

stopped at a light. If the vehicle is stationary and the brake is being held, we allow

CarTalk to present the driver with new messages.

Figure 11

Rudimentary Awareness Classifier

if (mVehicleSpeed < 10 && mVehicleBrakeStatus) {
// Get our messages
GetMessages getMessages = new GetMessageso;
getMessages.execute(user);

}

50

Viewing and Sending Messages

From the Home Activity, the user has the option to view an individual message in

detail, or to send their own message. The ViewMessage Activity is unremarkable

with respect to the features of the application, other than to focus the user's

attention to a single message with the limited UI real estate available on mobile

devices. The SendMessage Activity, on the other hand, serves as a model of human-

machine interaction. Rather than using the physical mobile device to input message

details, a driver can use controls on the steering wheel and voice for input. To

monitor the steering wheel for control inputs, we once again use the OpenXC library,

with asynchronous listeners. Using the steering wheel controls, the user is able to

activate speech recognition, as well as send their message. We rely on Android's

built-in speech recognizer to handle this task. A user can use the speech feature to

either issue commands to the application, or to dictate portions of their message.

CarTalk currently supports two distinct commands, which must be prefaced with

the phrase "CarTalk" to distinguish them from message or username dictation. The

first of these commands is a "send" command, whose function is akin to pushing the

"send" button on the application's Android UI. The second command is a "paste"

command, and is used to transfer the contents of the clipboard into the message

body. The reason that the command is prefaced with the phrase "CarTalk" is so that

it can be used inline with normal dictation. Like the Home and CarTalkMain

Activities, the SendMessage Activity makes use of the AsyncTask design to allow UI

51

5.1.3.5

feedback for message status. We notify the user when a message is sent successfully,

or if transmission failed.

Figure 12

CarTalk Steering Controls Mapping

For the CarTalk application, we focused on simplicity when mapping application
functions to steering wheel buttons. Rather than use several buttons and map an
action to each one, we only employed a single steering wheel button. When pressed,
this button activates the voice recognition engine on the Android device. This allows
the user to dictate a larger set of commands. Please see section Al for example
usage.

52

Figure 13

The Home Activity

jim 01:53 Dec/18

scott 01:54 Dec/18

The Home Activity, before and after message updates.

53

Figure 14

The ViewMessage Activity

Jim

01:53 Dec/18

what do you think of this restaurant - Carlos Cucina
Italiana 131 Brighton Avenue Allston, MA ?

Reply

Viewing an individual message

54

5.1.3.6 CarTalk Summary

The two key components of the CarTalk mobile application are the Home Activity

and the SendMessage Activity, which we use as two proof-of-concept

implementations. The Home Activity demonstrates the use of OpenXC to check for

driver awareness when presenting notifications. Its goal is to provide a safer way to

enable human-to-human interactions while in a vehicle. We wish to demonstrate

that time spent commuting can also be time spent engaging with others, within

reason. The SendMessage Activity takes the same idea of safe communication, but

applies it differently. The SendMessage Activity is designed to make the physical

device's screen redundant, as all of its operations can be achieved with a

combination of steering wheel controls and voice inputs. This allows a driver to

focus their visual attention on the road ahead, instead of staring at a screen.

55

Figure 15

The SendMessage Activity

Body

Send

Speech

Replying to a message

56

5.2 CityBrowser

5.2.1 The CityBrowser Application

The CityBrowser application started out as an existing web application of the same

name, developed at the Computer Science and Artificial Intelligence Laboratory at

MIT. The functionality that it provides is a human-to-machine interaction, as

opposed to the human-to-human interaction of CarTalk. CityBrowser takes voice

queries as user input, and responds with a set of points of interest. While the

browser can be configured to query several datasets, including flights and movies,

we worked with restaurant queries. Because the original application is web-based,

there were numerous design choices that came with adapting CityBrowser for use

with OpenXC and our framework. The original web component of CityBrowser

incorporates voice recognition from the WAMI project. WAMI is an open source

Javascript API that allows projects to integrate speech recognition. Because of this,

our Android application needed to be able to support both the WAMI speech

recognition engine as well as the built in Android recognition engine. Most

importantly, we needed a method to allow OpenXC, a Java library, to interface with

the web technologies of the point-of-interest application.

57

5.2.2 The Asgard City Browser

The core of CityBrowser is a point-of-interest query web application. It employs

standard web technologies, notably HTML and Javascript. To allow for the display of

web-based content on Android devices, Android applications provide the WebView,

a class that delivers the necessary functionality. The WebView is an Android View

object that uses the WebKit rendering engine to display web pages and includes

methods to manipulate these pages. These methods include navigation, zoom, and

text search, all akin to methods found in a standard Android mobile browser. A basic

WebView provides no browser-like widgets and does not enable Javascript on the

presented pages. However, there are many features of WebViews that allowed us to

combine tranditional web technologies with our OpenXC framework, without

requiring any modifications on the server-side for CityBrowser.

The core of CityBrowser, known as the Asgard City Browser, is currently located at

http: //web. sls. csail.mit. edu/CityBrowser. The mobile-optimized version

of the Asgard City Browser is located at

http://web.sls.csail.mit.edu/CityBrowser?mobile=true. The mobile

version of the site has a slightly different user interface for mobile devices. To start a

query, a user must press a button on the web application. This starts the audio

capture for the user's speech. To end the capture, the user must press the button a

second time. At that point, the audio is sent off to the server, where it is processed.

The server responds with a set of restaurants that match the parameters presented

58

in the user's request. These are displayed on a map, and the results are also read

aloud to the user. We added several key components for the UI that increased the

capabilities of CityBrowser. We modified the application to allow it to be given voice

commands, not just queries. Additionally, we added support for OpenXC, which

allows the application to take steering wheel inputs. Lastly, we added support for

CityBrowser to interact with CarTalk, allowing users to share their restaurants over

our messaging implementation.

59

Figure 16

The CityBrowser UI

te aplastoMa Sate lte
Ne urypo

N em Haverh il
CarTalk

Lawrence

Hamilton cs
W stford ilnc7Bv

on Wlt am - Berverly.rl

Fo ur --- ingham Wob

Nono

irorougg Bev rl
Stught n RSck Ond

Fralinr Wroburnmrke ~ rmnga
DubuincQmc

>nsocketMNord

ThNs founpeet'wovrino h it~osrU.Tefiueo h h

shows the debStugho UI, ang b- tnNhtae omlyhnle i peh

steerin whe ocktonds Laerraurs ingauetedbm'It h etr
Pembrobkety

60

Figure 17

CityBrowser Steering Controls Mapping

This figure shows the mapping of commands for the CityBrowser application. As
with the CarTalk application, we focused on simplicity for our mapping. Thus, we
only rely upon two of the steering wheel buttons. One, labeled above as "Query," is
used to initiate and to terminate voice queries to the underlying Asgard City
Browser, providing point-of-interest functionality. The other button, labeled
"Command" above, is used to activate the voice recognition engine for CityBrowser.
This allows the user to dictate commands to the application, as we had allowed for
CarTalk. Please see section Al for example usage.

61

Because the Asgard City Browser is a web-based tool, we wanted to maintain

separation between our OpenXC-enabled implementation and the original

application. The goal was to have no server-side modifications, so that a request

from our modified application would be indistinguishable from that of the original

implementation. For this to happen, we needed to be able to access the Javascript

methods within the web application from our Android application, as well as to have

the web application call methods from our Android application. Because we did not

want to modify the web application on the server-side, we decided to establish a

"compatibility layer" between the web application and the rest of our OpenXC

framework. This decision kept us from using a centralized design for our

framework, because doing so would severely complicate the logic contained within

CityBrowser. The compatibility layer contains all of the logic necessary for

CityBrowser to use OpenXC, as well as to pass information to other applications in

our framework.

62

Figure 18

Querying With CityBrowser

Share

Speech

est) M Satellite

A Cuisine Location ever

italian in boston '

CarTalk

Share

Speech

I 'tmap satellite
Cuisine Location

italian in boston Lynn

These two figures demonstrate the act of querying the CityBrowser application for a
point of interest. This process is identical to that of the original Asgard City Browser,
except that it can be initiated via steering wheel controls.

63

Figure 19

Using the Google Voice Recognizer in CityBrowser

This figure shows the Google Voice Recognizer, launched via steering-wheel
controls. This allows the user to input a variety of speech commands.

64

5.2.3 HijackJSInterface

To be able to pass information from the web application to Android, we use a

Javascript Interface, a construct that can be added to a WebView. A Javascript

Interface allows us to inject Java objects into a webpage's Javascript context, so that

they can be accessed by Javascript in the page. To attempt to future-proof our Web-

to-Android bridge, we have assigned our interface to the "hijack" namespace, and

have made it easy to add additional methods to the existing interface. At a minimum,

we needed a way to get the point-of-interest data from the WebView and into a Java

representation. Similarly, we needed a way to update this data for different queries.

For CityBrowser, we currently make use of a just a single method. This

sendToAndroido method takes a String as an argument and, after some filtering,

assigns the String text to a Java object. While a typical query may return several

restaurant options, these options are overlaid on a map as markers, as which point

the user has the option of selecting the best option. It is after this last step that we

grab the data in question, which keeps us from having to duplicate logic that already

occurs on the server side. For instance, our approach means that we do not need to

keep track of which restaurant marker a user clicks on; neither do we need to keep

track of all of the returned results. However, it is worth noting that our Javascript

Interface implementation is easily extensible, so it is trivial to add in new methods

to grab any possible data from the WebView.

65

Figure 20

The HijackJSlnterface

public class HijackJSInterface {

public HijackJSInterface({
}

public void sendToAndroid(String text) {
text = text.replaceAll("
", " \n ");
text = text.replaceAll("</(\\w)+>", " \n ");
text = text.replaceAll("<(\\w)+>", "");
text = text.replaceAll("•", ",");
currentPOI = text;
share. setClickable(t rue);
share. setActivated(t rue);
Log. v(TAG, text);

}
}

@Override
public void onCreate(Bundle savedInstanceState) {

super. onCreate(savedInstanceState);
mWebView.addiavascriptInterface(new HijackJSInterface(,

"hijack");

}

This figure gives an example of how the HijackJSInterface class is used. During the
Activity's onCreateO method, the HijackJSInterface is added as a Javascript Interface
to the WebView that contains the Asgard City Browser. The interface is assigned to
the "hijack" scope, which gives a consistent reference point. For this example, the
sendToAndroido method is available from the Asgard City Browser Javascript via
hijack.sendToAndroidO. This method effectively turns a Javascript object into a Java
object.

66

Having solved the issue of providing Java methods for the WebView to call via our

Javascript Interface, we still had the problem of calling those methods. The problem

resided with our goal of allowing no server-side logic changes, even though the

Asgard City Browser server is responsible for delivering the client-side Javascript

logic. To get around this issue, we resorted to Javascript injection. We injected

Javascript code into the web-application via the WebView's loadUrl() method. It is

important to note that our method relied upon changing logic on the client side,

leaving the logic supplied by the Asgard City Browser server unchanged. Our

injections came in two particular flavors.

5.2.4 Patching JS Functions

Our first case deals with the method of initiating audio capture when the user is not

employing the physical mobile device. To accomplish this, we have created a Java

method that injects Javascript into the WebView that simulates a click on the HTML

element that represents the initiation button. In this case, we use Javascript

injection to call existing methods in the WebView, without the need for processing

any results. We refer to this type of code injection as "patching," since no existing

methods are overridden by this function.

67

Figure 21

An Injected Javacsript Patch

loadUrl("javascript: $('#wami-microphone > div > div >
div').click);");

The above shows a code example for an injected Javascript "patch". The logic
presented above is used for simulating a click in the WebView from our Android
Java code. We inject Javascript code via the WebView's loadUrlo method, without
the need for processing a return value.

5.2.5 Hijacking JS Functions

Our second case is different from the first in that it deals with us getting data back

from the WebView. While we have previously described our construction of the

Javascript Interface, there did not exist a method to call these new functions from

the original logic. To resolve this issue, we chose to hijack an existing method within

the Javascript logic. We refer to this type of injection as a "hijack" because we

override an existing method within the client-side Asgard City Browser logic. To

accomplish a hijack, we make use of the fact that Javascript allows for the

overloading of functions, and that a given function can be reassigned to a new

variable. For this technique to succeed, hijacked functions must reside at the same

scope as the original functions that they replace. Furthermore, the hijacking function

must be of the same name as the original function. Because our goal was to return

point-of-interest data from the WebView into a Java object, we targeted an existing

function that had this data available. The function in question is named

68

addMarker(, and serves to place a marker onto the map to represent the location of

a restaurant. In addition to placing a marker on the map, the addMarker(function

attached an on-click listener to the marker. Knowing that a user has set off a given

listener allows us to determine exactly which restaurant they are currently

interested in, and this is the data that we wish to pass on to our Java representation.

To do this, we injected Javascript code into the WebView that overwrote the original

addMarkero function, replacing it with a method that preserved the original

functionality while simultaneously calling our new method from the "hijack" scope.

In this way, the functionality of the original logic is not impaired, but our new

method is inserted appropriately.

69

Figure 22

A Hijacked Javascript Function

private void hijackAddMarker({
String sled = "javascript: var originalAddMarker = " +

" addMarker; function addMarker(location, " +
"o contentString, imgUrl, title, _oid) {I" +
"f var marker = new google.maps.Marker({"+
"o position : location," +
" map map," +
" icon : imgUrl," +
" title title," +

optimized : false" +
+

"marker.-oid = _oid;" +
"t "t +

"google.maps.event.addListener(marker, 'click','
"t function () {" +
"t infowindow.setContent(contentString);" +
"1 infowindow.open(map, marker);" +
"1 fireCityEvent('MARKERCLICKED', marker);" +
"V hijack.sendToAndroid(contentString);" +
"I);" +
If ''

+

"markersArray.push(marker);" +

loadUrl(sled);
}

The above example illustrates an injected Javascript "hijack." This particular
example demonstrates the overloading of the addMarkero function. The key change
here is the inclusion of the hijack.sendToAndroido call within the body of the maps
event listener. The role of the original addMarkerO function is maintained with this
modification, but new logic is now introduced into the listener's on-click sequence.
This type of injection allows us to pass objects from Javascript into the Java of our
Android application.

70

Figure 23

Sharing in CityBrowser

Spe

S Cuisine

italian

Map Satellite
Location

boston

This figure demonstrates the use of a hijacked function, along with the
HijackInterface, to transfer point-of-interest data from within the WebView to the
Android clipboard.

71

CarTAk

5.2.6 Sharing in CityBrowser

Once we have captured a user's point-of-interest, we allow them to exchange this

information with others via CarTalk. To accomplish this, we employ existing

Android tools. To share data, we rely upon Android's clipboard and the act of

sending Intents. Android's clipboard framework allows applications to share

numerous data types, and even Intents. The ClipData class and its convenience

methods make sharing between applications a simple task, and we adapted this

existing structure for sharing in our OpenXC-enabled framework. For our proof-of-

concept implementation, however, we rely upon the clipboard solely to share text.

5.2.7 CityBrowser and Steering Controls

To show the benefits given by OpenXC-enabling this human-to-machine application,

we incorporated steering controls and voice commands into CityBrowser. This was

done in the same fashion as for CarTalk. The user is able to start and end

CityBrowser's audio capture via the push of a steering-wheel-mounted button. To

make distinguishing between queries and commands easier, there are two separate

buttons that we make use of on the steering wheel. One serves to initiate queries,

while the other is a directive to the program to listen to a command. CityBrowser

responds to verbal "copy" requests, and can also recognize commands to launch

72

CarTalk. We structured our program this way to allow seamless transitions between

CityBrowser and CarTalk, such that the user can focus on the task at hand, and not

on which application they need.

73

6 Conclusion

6.1 Summary

With this work, we have developed a proof-of-concept application suite that offers a

non-traditional interplay between automobiles and mobile devices. We have

demonstrated that steering wheel controls can be seamlessly integrated into a

variety of mobile applications and, along with speech recognition, can be used to

create a new class of mobile applications. This class of applications gives drivers the

ability to use their mobile devices while driving, in a manner that minimizes

distractions. This is one of the key benefits of using data from a vehicle in real time.

We were able to develop a set of constraints to determine whether it was applicable

to present information to a driver. Similarly, we developed a design that makes it

easy to add new constraints to our classifier, or to modify existing ones.

Our work demonstrates that it is possible to interleave vehicular controls for

applications that deal with human-to-human interactions, as well as for those that

deal with human-to-machine interactions. Similarly, we demonstrated that an

existing application, in our case the Asgard City Browser, could be modified to

accept steering wheel commands. Using steering wheel buttons allowed us to

74

replace actions that would normally have to be carried out on the physical mobile

device.

Because steering wheel space is limited, and because we did not want drivers to

need to memorize an extensive list of button mappings across different applications,

we made broad use of speech recognition in our applications. We used speech

recognition to increase the types of commands an application would accept, without

using up physical real estate on either the phone or in the car. The result was a more

natural interaction between a user and an application; an application could pick up

on specific commands or execute queries based on speech input. This frees the

driver's eyes to focus on the main task at hand: driving.

With our design, we showed that it is possible to adapt OpenXC into a web-based

application that preserves its original feature set, while simultaneously expanding

the latter. We accomplished this in our CityBrowser application with a

"compatibility layer." This compatibility layer did not require us to change any

server-side code. Although our particular compatibility layer required injection of

Javascript code, we have provided the abstraction of "patches" and "hijacks" to

simplify this process.

We presented several designs for frameworks involving OpenXC-enabled

applications, and determined that a decentralized organizational method would be

best for our purposes. Our application suite employed this organizational

75

framework, which made it simple to exchange data from one application to another.

This allows us to provide seamless transitions between applications, for instance

between CityBrowser and CarTalk. The goal of this is to leave the question of which

application to use up to the framework, with the user left to concentrate on driving-

related tasks.

In all, we hope to leave the reader with an analysis of a system that is readily

extensible with the inclusion of additional applications, can monitor driver

awareness in real time and use that awareness level to make decisions as to the

presentation of content, and offers in-vehicle control options for both human-to-

human and human-to-machine interactions.

6.2 Future Work

While our implementation serves as a working proof-of-concept, there are many

additional components we hope to include in future work. CarTalk was designed

with the abstraction of sharing "Shareable" objects, and we would like to extend the

application to support more than text messaging. This includes adding support for

sending audio and video snippets, as well as images.

In addition to extending the message types that CarTalk can send and receive, we

want to extend the abilities of our awareness classifier. The goal here is to

76

differentiate between different driving actions, and present the user with only the

information or actions that they could absorb while in a particular state. For

instance, city driving requires a different level of awareness than does highway

driving. To quantify the states of awareness, user studies must be conducted. We

hope to provide a "driver availability" classifier as a service in our application suite.

This allows several applications to use the same criteria when determining driver

awareness.

The OpenXC library, with the data that it allows to be gathered from a vehicle, has

potential for a variety of applications. We have only demonstrated two distinct

Android applications with our suite. There exists a myriad of possibilities, such as

developing an application that shows drivers how to optimize their driving habits to

get better gas mileage. We hope to extend our suite to include more applications, to

make full use of the features that OpenXC provides.

77

78

Appendix

Al Transcript of Example Usage of CarTalk and CityBrowser

Scenario: The user is driving a vehicle equipped with OpenXC, and has a mobile

device with our application suite.

- The user launches the CityBrowser application on the mobile device and is

presented with its mobile interface (Detailed in Figure 18).

* The user presses the steering wheel control button corresponding to "Query"

(Detailed in Figure 17), and speaks the request "Find me restaurants in

Boston that serve chicken parmesan." They release the "Query" button when

they are done with their request.

* The list is read aloud to the user, and they touch an icon corresponding to the

restaurant of their choice.

* The user presses the steering wheel control button corresponding to

"Command" (Detailed in Figure 17) and speaks the request "Copy."

79

e The user presses the steering wheel control button corresponding to

"Command" (Detailed in Figure 17) and speaks the request "Launch CarTalk."

This launches the CarTalk application on the mobile device and brings the

user to the "Send Message" interface (Detailed in Figure 15).

- The user presses the steering wheel control button corresponding to

"Command" (Detailed in Figure 12) and speaks the request "To Jim,"

whereupon the "To:" field of the message is populated with "Jim."

* The user presses the steering wheel control button corresponding to

"Command" (Detailed in Figure 12) and speaks the request "Hey Jim, I was

wondering what you thought about this restaurant for dinner? CarTalk paste

I feel like getting Italian food tonight." This request populates the "Body:"

field of the message, and the phrase "CarTalk paste" is replaced with the

contents of the the Android clipboard, which is the restaurant's information.

80

A2 Selected Code Examples

The SendMessage Activity

package com.openxc.apps;

import java.io.BufferedReader;
import java.io.IQException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Calendar;
import java.util.List;

import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.ClientProtocolException;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpPost;
import org.apache.http.impl.client.DefaultHttpClient;

import com.openxc.VehicleManager;
import com.openxc.measurements.Measurement;
import
com.openxc.measurements.UnrecognizedMeasurementTypeException;
import com.openxc.measurements.VehicleButtonEvent;
import com.openxc.measurements.VehicleButtonEvent. ButtonAction;
import com.openxc.measurements.VehicleButtonEvent.ButtonId;
import com.openxc.remote.VehicleServiceException;

import android.app.Activity;
import android.content.ClipboardManager;
import android.content.ComponentName;
import android.content.Context;
import android.content.Intent;
import android.content.ServiceConnection;
import android.content.pm.PackageManager;

81

import android.content.pm.ResolveInfo;
import android.os.AsyncTask;
import android.os.Bundle;
import android.os.Handler;
import android.os.IBinder;
import android.speech.RecognizerIntent;
import android.util.Log;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.EditText;
import android.widget.TextView;

public class SendMessage extends Activity {

public static final String TAG =

"CarTalkClient:SendMessage";
public static final String server =

"http://cartalkserver.appspot.com/";
public static final SimpleDateFormat dateFormat = new

SimpleDateFormat("HH:mm MMM/dd");
protected String user;
private static final int REQUESTCODE = 1111;

TextView alerts;
EditText toInput;
EditText bodyInput;
Button send;

// OpenXC
private VehicleManager mVehicleManager;
private boolean mIsBound;
private final Handler mHandler = new Handler();

VehicleButtonEvent.Listener mButtonEvent =
new VehicleButtonEvent. Listenero {

public void receive(Measurement measurement) {
final VehicleButtonEvent event =

(VehicleButtonEvent) measurement;
mHandler.post(new Runnable({

public void runo {

checkVehicleButton(event.getValueo.enumValue(,
event.getEvento.enumValue();

82

}

}

private void checkVehicleButton(ButtonId buttonId,
ButtonAction buttonAction) {

if (buttonId == ButtonId.OK) {
if (buttonAction == ButtonAction.PRESSED) {

startVoiceRecognition(;

}
}

}

private ServiceConnection mConnection = new
ServiceConnectiono {

public void onServiceConnected(ComponentName className,
IBinder service) {

Log. i(TAG, "Bound to VehicleManager");
mVehicleManager =

((VehicleManager.VehicleBinder)service
).getServiceo;

try {

mVehicleManager.addListener(VehicleButtonEvent.class,
mButtonEvent);

} catch(VehicleServiceException e) {
Log.w(TAG, "Couldn't add listeners for

measurements", e);
} catch(UnrecognizedMeasurementTypeException e) {

Log.w(TAG, "Couldn't add listeners for
measurements", e);

}
mIsBound = true;

}

public void onServiceDisconnected(ComponentName
className) {

Log. w(TAG, "VehicleService disconnected
unexpectedly");

mVehicleManager = null;
mIsBound = false;

}

83

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
Bundle state = getIntento.getExtraso;
if (state != null && state.containsKey("user")) {

user = state.getString("user");
setContentView(R.layout. send);
alerts = (TextView) findViewById(R.id.alerts);
toInput = (EditText) findViewById(R.id. toInput);

if (state.containsKey("to")) {
toInput.setText(state.getString("to"));
toInput. setEnabled(f al se);

}

bodyInput = (EditText) findViewById(R.id.bodyInput);
send = (Button) findViewById(R.id.send);
send.setOnClickListener(new OnClickListenerO {

@Override
public void onClick(View v) {

String toInputString =
toInput.getText().toStringo;

String bodyInputString =
bodyInput.getTexto.toStringo;

if ((toInputString != "") &&
(bodyInputString != "")) {

// Timestamp for the message
String timestamp =

dateFormat.format(Calendar.getInstance().getTime();
Send sendTask = new Send();
// Sanitize the url before

sending it
String command =

"from="+user+"&to="+toInputString+"&data="+bodyInputString+"&date
-"+timestamp;

command = command.replaceAll("
, "%20v);

command =
command. replaceAll("\\n", "%0A");

sendTask.execute(command);
alerts.setText("Sending ... ");

84

} else {
alerts. setText("Message is

incomplete");
}

}
});

// Speech to text
Button speech = (Button) findViewById(R.id.speech);
PackageManager manager = getPackageManager(;
// Check whether a recognizer is present
List<ResolveInfo> activities =

manager.queryIntentActivities(
new

Intent(RecognizerIntent .ACTIONRECOGNIZESPEECH), 0);
if (activities.size() == 0)

{
speech. setEnabled(fal se);
speech.setText("Recognizer not present");

}

speech.setOnClickListener(new OnClickListenero {

@Override
public void onClick(View v) {

startVoiceRecognitiono;
}

}
}

@Override
public void onResume({

super .onResume(;

bindService(new Intent(this, VehicleManager.class),
mConnection, Context. BINDAUTO_ CREATE);

}

@Override
public void onPause() {

super .onPause(;
if(mIsBound) {

Log.i(TAG, "Unbinding from vehicle service");

85

unbindService(mConnection);
mIsBound = false;

}
}

private void startVoiceRecognition() {
Intent intent = new

Intent(RecognizerIntent . ACTIONRECOGNIZESPEECf);
intent. putExtra(RecognizerIntent. EXTRA_ LANGUAGEMODEL,

Recognize r Intent. LANGUAGEMODE L_FREE_FORM);
intent. putExtra(RecognizerIntent. EXTRAPROMPT, "CarTalk

Voice Recognition");
startActivityForResult(intent, REQUESTCODE);

}

@Override
protected void onActivityResult(int requestCode, int

resultCode, Intent data) {
if (requestCode == REQUESTCODE && resultCode ==

RESUL TOK)

{
// Populate the wordsList with the String values the

recognition engine thought it heard
ArrayList<String> matches =

data.getStringArrayListExtra(
Recognize rIntent. EXTRARESUL TS);

processVoiceResult(matches.get(0));
I
super.onActivityResult(requestCode, resultCode, data);

}

private void processVoiceResult(String match) {
String pasteData = "";

// If the speech was to set the TO: field
String lowered = match.toLowerCase(;
if (lowered.startsWith("to")) {

toInput.setText(lowered.replaceAll(" ",

"").replaceAll("to", ""));
return;

}

// If this was a send message, perform a click on the
send button

86

if (lowered.contains("car talk send")) {
send.performClick(;
return;

}

ClipboardManager clipboard = (ClipboardManager)
getSystemService(Context. CLIPBOARDSERVICE);

if (clipboard.hasPrimaryClip() {
pasteData = (String)

clipboard.getPrimaryClipo.getItemAt(0).getText(;
match = match.replaceAll("[Cc]ar()*[Tt]alk(

)*[pp]aste", pasteData);
}

bodyInput.setText(match);
}

public class Send extends AsyncTask<String, Void,
Boolean> {

* returns whether sending the message was successful

@Override
protected Boolean doInBackground(String... params) {

String data = params[0];
String result = "";
boolean retval = false;
HttpClient client = new DefaultHttpClient(;
HttpPost post = new

HttpPost(server+"send?"+data);
try {

HttpResponse response =

client.execute(post);
if

(response.getStatusLineo.getStatusCode(== HttpStatus. SC_0K) {
InputStream content =

response.getEntity().getContento;
BufferedReader buffer = new

BufferedReader(new InputStreamReader(content));
result = buffer.readLine(;

retval = result.startsWith("Sent
message successfully");

87

}
} catch (ClientProtocolException e) {

e.printStackTraceo;
} catch (IQException e) {

e.printStackTrace(;

}
return retval;

}

protected void onPostExecute(Boolean result) {
// anything that we do after sending a message

goes here

if (result) {
alerts.setText("");
Intent intent = new

Intent(getApplicationContext(), Home.class);
intent.putExtra("user", user);
startActivity(intent);

} else {
alerts.setText("Could not send message");

}
}

}
}

88

The CarTalkMain Activity

package com.openxc.apps;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;

import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.ClientProtocolException;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpPost;
import org.apache.http.impl.client.DefaultHttpClient;

import android.app.Activity;
import android.content.Intent;
import android.os.AsyncTask;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.EditText;
import android.widget.TextView;

public class CarTalkMain extends Activity {
public static final String TAG = "CarTalkClient:Main";
public static final String server =

"http://cartalkserver.appspot.com/";
protected String user;
protected String referrer;

TextView alerts;
EditText userEntry;
Button loginButton;

@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

89

setContentView(R.layout.main);
referrer = "";
alerts = (TextView) findViewById(R.id.alerts);
userEntry = (EditText) findViewById(R.id.username);

loginButton = (Button) findViewById(R.id.Zogin);
loginButton.setOnClickListener(new OnClickListenero {

@Override
public void onClick(View v) {

Login loginTask = new Login();

loginTask.execute(userEntry.getTexto.toStringo);
alerts.setText("Logging In...");

}

alerts.setText("");

// If we are to skip the login by being supplied the

username from another pW
Bundle state = getIntent(.getExtraso;
if (state != null && state.containsKey("user")) {

user = state.getString("user");

if (state.containsKey("referrer")) {
referrer = state.getString("referrer");

}

Login loginTask = new Logino;
loginTask.execute(user);
userEntry.setText(user);

alerts.setText("Logging In...");

}
}

@Override
public void onResume({
alerts.setText("");
super.onResumeO;

}

public class Login extends AsyncTask<String, Void, String>

{

90

@Over ride
protected String doInBackground(String... params) {

String username = params[0];
String result = "";
HttpClient client = new DefaultHttpCliento;
HttpPost post = new

HttpPost(server+ "login?username="+username);
try {

HttpResponse response =
client.execute(post);

if
(response.getStatusLineo.getStatusCode(== HttpStatus.SCOK) {

InputStream content =
response.getEntity().getContent(;

BufferedReader buffer = new
BufferedReader(new InputStreamReader(content));

result = buffer.readLine(;

result =
(result.startsWith("SessionID:")) ? result.substring(10,
result.length())

}
} catch (ClientProtocolException e) {

e.printStackTrace(;
} catch (IOException e) {

e.printStackTrace();

}
return result;

}

protected void onPostExecute(String result) {
// anything that we do after login goes here
user = (result == "") ? null result;

if (user != null) {
Intent intent = new

Intent(getApplicationContext(, Home.class);
intent.putExtra("user", user);
if (referrer != "") {

intent.putExtra("referrer", referrer);
}
startActivity(intent);

} else {
alerts.setText("Login Failed");

91

92

}
}

}
}

The OpenXC Browser

package com.quanta.nui.android.openxc;

import java.util.ArrayList;
import java.util.List;

import android.content.ClipData;
import android.content.ClipboardManager;
import android.content.ComponentName;
import android.content.Context;
import android.content.Intent;
import android.content.ServiceConnection;
import android.content.pm.PackageManager;
import android.content.pm.ResolveInfo;
import android.os.Bundle;
import android.os.Handler;
import android.os.IBinder;
import android.speech.RecognizerIntent;
import android.util.Log;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.Toast;

import com.openxc.VehicleManager;
import com.openxc.measurements.Measurement;
import
com.openxc.measurements.UnrecognizedMeasurementTypeException;
import com.openxc.measurements.VehicleButtonEvent;
import com.openxc.measurements.VehicleButtonEvent.ButtonAction;
import com.openxc.measurements.VehicleButtonEvent.ButtonId;
import com.openxc.remote.VehicleServiceException;
import com.quanta.nui.android.openxc.R;
import com.quanta.nui.android.browser.WamiBrowser;

public class OpenXCBrowser extends WamiBrowser {

public static final String TAG = "OpenXCBrowser";
public ClipboardManager clipboard;
private static boolean loaded;

93

private String currentPOI;
private Button button;
private Button cartalk;
private Button share;
private static final int REQUESTCODE = 1234;

private static int delay;

// Username
private String user = "rkd";

// OpenXC
private VehicleManager mVehicleManager;
private boolean mIsBound;
private final Handler mHandler = new Handlero;

@Override
protected String getInitialUrl() {

return
"http://web.sls.csail.mit.edu/CityBrowser?mobile=true";

}

@Override
protected int getContentViewId() {

return R.layout.main;
}

private ServiceConnection mConnection = new
ServiceConnectionO {

public void onServiceConnected(ComponentName className,
IBinder service) {

Log. i(TAG, "Bound to VehicleManager");
mVehicleManager =

((VehicleManager.VehicleBinder)service

).getServiceo;

try {

mVehicleManager.addListener(VehicleButtonEvent.class,
mButtonEvent);

} catch(VehicleServiceException e) {
Log.w(TAG, "Couldn't add listeners for

measurements", e);
} catch(UnrecognizedMeasurementTypeException e) {

94

Log.w(TAG, "Couldn't add listeners for
measurements", e);

}
mIsBound = true;

}

public void onServiceDisconnected(ComponentName
className) {

Log. w(TAG, "VehicleService disconnected
unexpectedly");

mVehicleManager = null;
mIsBound = false;

}

VehicleButtonEvent.Listener mButtonEvent =

new VehicleButtonEvent.Listener() {
public void receive(Measurement measurement) {

final VehicleButtonEvent event =

(VehicleButtonEvent) measurement;
mHandler.post(new Runnable({

public void runo {

checkVehicleButton(event.getValue().enumValue),
event.getEvento.enumValueO);

}
});

}
};

private void checkVehicleButton(ButtonId buttonId,
ButtonAction buttonAction) {

if (buttonId == ButtonId.UP) {
if (buttonAction == ButtonAction.PRESSED) {

clickMicrophoneo;

I
} else if (buttonId == ButtonId.DOWN) {

if (buttonAction == ButtonAction.PRESSED) {
startVoiceRecognitiono;

i
}

}

@Over ride

95

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
mWebView.addJavascriptInterface(new HijackJSInterface(,

"hijack");
clipboard = (ClipboardManager)

getSystemService(Context. CLIPBOARDSERVICE);
currentPOI = "";
loaded = false;
Log. i(TAG, "OpenXCBrowser created");
button = (Button) findViewById(R.id.button);
button.setOnClickListener(new OnClickListenero {

@Override
public void onClick(View v) {

clickMicrophone(;
}

cartalk = (Button) findViewById(R.id. cartalk);
cartalk.setOnClickListener(new OnClickListenero {

@Override
public void onClick(View v) {

launchCarTalkO;
}

share = (Button) findViewById(R.id.share);
share.setOnClickListener(new OnClickListener() {

@Override
public void onClick(View v) {

copyPOIToClipboard(;

}
});
share. setClickable(false);
share. setActivated(fal se);

// Speech to text
Button speech = (Button) findViewById(R.id.speech);
PackageManager manager = getPackageManagero;
// Check whether a recognizer is present

List<ResolveInfo> activities =

manager.queryIntentActivities(
new

96

Intent(RecognizerIntent.ACTIONRECOGNIZESPEECI), 0);
if (activities.size() == 0)
{

speech. setEnabled(f al se);
speech.setText("Recognizer not present");

}

speech.setOnClickListener(new OnClickListener() {

@Override
public void onClick(View v) {

startVoiceRecognition(;
}

// Make the buttons invisible
button. setVisibility(View. GONE);
cartalk.setVisibility(View. GONE);
speech.setVisibility(View. GONE);
share.setVisibility(View. GONE);

}

Clip

"Cop

private void copyPOIToClipboardo {
ClipData clip =

Data.newPZainText("CityBrowserPOI", currentPOI);
clipboard.setPrimaryClip(clip);
Toast toast = Toast.makeText(getApplicationContext(,

ied to Clipboard", Toast. LENGTH-SHORT);
toast. showo;

}

private void launchCarTalkO {
// Launch cartalk and skip the login sequence
PackageManager manager = getPackageManager(;
Intent intent = new Intento;
intent =

manager.getLaunchIntentForPackage("com.openxc.apps");
intent. addCategory(Intent. CATEGORYLAUNCHER);
intent.putExtra("user", user);
intent.putExtra("referrer", "citybrowser");
startActivity(intent);

}

private void startVoiceRecognition() {

97

Intent intent = new
Intent(RecognizerIntent .ACTIONRECOGNIZESPEECH);

intent. putExtra(RecognizerIntent. EXTRALANGUAGEMODEL,
RecognizerIntent. LANGUAGEMODELFREEFORM);

intent. putExtra(RecognizerIntent. EXTRAPROMPT,
"CityBrowser Voice Recognition");

startActivityForResult(intent, REQUEST CODE);
}

@Override
protected void onActivityResult(int requestCode, int

resultCode, Intent data) {
if (requestCode == REQUESTCODE && resultCode ==

RESUL TOK)

{
// Populate the wordsList with the String values the

recognition engine thought it heard
ArrayList<String> matches =

data.getStringArrayListExtra(
RecognizerIntent. EXTRARESUL TS);

processVoiceResult(matches.get(0));

}
super.onActivityResult(requestCode, resultCode, data);

}

private void processVoiceResult(String match) {
match = match.toLowerCaseo;
if (match.contains("share") II match.contains("copy"))

{
copyPOIToClipboard(;

} else if (match.contains("car talk")) {
launchCarTalkO;

}

@Override
public void onResume({
super.onResume(;

bindService(new Intent(this, VehicleManager.class),
mConnection, Context. BINDAUTOCREATE);

Log. i(TAG, "OpenXCBrowser resumed");
I

@Over ride

98

public void onPause({
super .onPause(;

if(mIsBound) {
Log.i(TAG, "Unbinding from vehicle service");
unbindService(mConnection);
mIsBound = false;

}
}

// Simulates a user's cli
private void clickMicro
loadUrl("javascript: $(

div').click);");
currentPOI = "";
if (!Zoaded) {

hijackAddMarker();
Loaded = true;

}
}

ck to begin recording
phone({
'#wami-microphone > div > div >

// Hijacks the addMarker function
private void hijackAddMarker({
String sled = "javascript: var originalAddMarker =

addMarker; function addMarker(location, contentString, imgUrl,
title, _oid) {" +

"f var marker = new google.maps.Marker({"+
"f position : location," +
" map : map," +
" icon imgUrl," +
" title title," +

optimized : false" +
"});" +
"marker._oid = _oid;" +
if it +

"google.maps.event.addListener(marker, 'click',
function 0 {" +

"f infowindow.setContent(contentString);" +
infowindow.open(map, marker);" +
fireCityEvent('MARKERCLICKED', marker);" +
hijack.sendToAndroid(contentString);" +
+

" " +
"markersArray.push(marker);" +

1} " 1 ;

99

loadUrl(sled);

}

public class HijackJSInterface {
public HijackJSInterface() {
}

public void sendToAndroid(String text) {
text = text.replaceAll("
", " \n ");
text = text.replaceAll("</(\\w)+>", " \n ");
text = text.replaceAll("<(\\w)+>", "");
text = text.replaceAll("•", ",");
currentPOI = text;
share. setClickable(t rue);
share. setActivated(t rue);
Log. v(TAG, text);

}
}

}

100

References

[1] Nielson. Survey: New U.S. Smartphone Growth by Age and Income, February
20, 2012. http://blog.nielsen.com/nielsenwire.

[2] Tabletpcsplayer.com, April 13, 2012.

[3] D. Williams. The Arbitron National In-Car Study. Arbitron, Inc. 2009.

[4] Polk. Average Age of Vehicles Reaches Record High, January 17, 2012.
http://www.polk.com.

[5] M. Richtel. Consumers Hold onto Products Longer. The New York Times,
February 25, 2011.

[6] http://openxcplatform.com/

[7] Bosch. Road vehicles - Controller area network (CAN) - Part 1: Data link layer
and physical signaling. ISO 11898-1:2003 (ISO) 2003.

[8] A. Gruenstein, J. Orszulak, S. Liu, S. Roberts, J. Zabel, B. Reimer, B. Mehler, S.
Sene, J. Glass, and J. Coughlin. City Browser: developing a
conversationalautomotive HMI. CHI, 2009.

[9] A. Gruenstein, I. McGraw, and I. Badr. The WAMI toolkit for developing,
deploying, and evaluating web-accessible multimodal interfaces. ICMI, 2008.

101

102

