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Abstract

In supervised classification, one attempts to learn a model of how objects map to

labels by selecting the best model from some model space. The choice of model space

encodes assumptions about the problem. We propose a setting for model specification

and selection in supervised learning based on a latent source model. In this setting,
we specify the model by a small collection of unknown latent sources and posit that

there is a stochastic model relating latent sources and observations. With this setting

in mind, we propose a nonparametric classification method that is entirely unaware

of the structure of these latent sources. Instead, our method relies on the data as a

proxy for the unknown latent sources. We perform classification by computing the

conditional class probabilities for an observation based on our stochastic model. This

approach has an appealing and natural interpretation - that an observation belongs

to a certain class if it sufficiently resembles other examples of that class.

We extend this approach to the problem of online time series classification. In

the binary case, we derive an estimator for online signal detection and an associated

implementation that is simple, efficient, and scalable. We demonstrate the merit

of our approach by applying it to the task of detecting trending topics on Twitter.

Using a small sample of Tweets, our method can detect trends before Twitter does

79% of the time, with a mean early advantage of 1.43 hours, while maintaining a

95% true positive rate and a 4% false positive rate. In addition, our method provides

the flexibility to perform well under a variety of tradeoffs between types of error and

relative detection time.
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Chapter 1

Introduction

1.1 Motivation

Detection, classification, and prediction of events in temporal streams of information

are ubiquitous problems in science, engineering and society. From detecting malfunc-

tions in a production plant, to predicting an imminent market crash, to revealing

emerging popular topics in a social network, extracting useful information from time-

varying data is fundamental for understanding the processes around us and making

decisions.

In recent years, there has been an explosion in the availability of data related to

virtually every human endeavor - data that demands to be analyzed and turned

into valuable insights. Massive streams of user generated documents, such as blogs

and tweets, as well as data from portable electronic devices, provide an amazing

opportunity to study the dynamics of human social interaction online and face to

face [16][17]. How do people make decisions? Who are they influenced by? How do

ideas and behaviors spread and evolve? These are questions that have been impossible

to study empirically at scale until recent times. In healthcare, records of over-the-

counter medication sales [21] as well as search engine queries [22] can anticipate the

outbreak of disease and provide insight into the most effective ways to limit its spread.

Particle collision experiments at the Large Hadron Collider generate more than 15

petabytes of data [1] every year that promises to reveal fundamental physical truths.
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Such large quantities of data present both opportunities and challenges. On the

one hand, enough data can reveal the hidden underlying structure in a process of

interest. On the other hand, making computations over so much data at scale is a

challenge. Fortunately, in recent years, advances in distributed computing have made

it easier than ever to exploit the structure in large amounts of data to do inference

at scale.

All of the examples mentioned above share a common setting. There exists an

underlying process whose observable properties generate time series. Using these time

series, one may wish to do inference such as detecting anomalous events, classifying

the current activity of the time series, or predicting the values of the time series at

some future point.

This is difficult to do in general. Many real-world processes defy description by

simple models. A quote from "The Unreasonable Effectiveness of Data"[9] by Halevy,

Norvig, and Pereira sums this up:

"Eugene Wigner's article 'The Unreasonable Effectiveness of Mathematics

in the Natural Sciences' examines why so much of physics can be neatly

explained with simple mathematical formulas such as f = ma or e = mc2 .

Meanwhile, sciences that involve human beings rather than elementary

particles have proven more resistant to elegant mathematics. Economists

suffer from physics envy over their inability to neatly model human be-

havior. An informal, incomplete grammar of the English language runs

over 1,700 pages. Perhaps when it comes to natural language processing

and related fields, we're doomed to complex theories that will never have

the elegance of physics equations. But if that's so, we should stop acting

as if our goal is to author extremely elegant theories, and instead em-

brace complexity and make use of the best ally we have: the unreasonable

effectiveness of data."

Like language, the behavior of complex systems rarely admits a simple model that

works well in practice. Like machine translation and speech recognition, there is an
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ever growing amount of data "in the wild" about processes like epidemics, rumor-

spreading in social networks, financial transactions, and more. The inadequacy of

simple models for complex behavior requires an approach that embraces this wealth

of data and it highlights the need for a unified framework that efficiently exploits the

structure in that data to do detection, classification, and prediction in time series.

In this thesis, we study the problem of prediction in a complex system using large

amounts of data. Specifically, we focus on binary classification of time series and

ask whether we can tell apart "events" from "non-events" given sufficient historical

examples. We apply this to the problem of trending topic detection on Twitter and

show that we can reliably detect trending topics before they are detected as such by

Twitter. At the same time, we aim to introduce a more general setting for doing

inference in time series based on a large amount of historical data.

1.2 Previous Work

A popular approach to detecting emerging popular topics in document streams is to

measure the deviation of topics' activity relative to some baseline. Ihler et al. [10]

propose an event detection framework based on time-varying Poisson processes, in

which a baseline Poisson rate is estimated in a sliding window and anomalies are

considered to be deviations from a local the baseline. Becker et al. [5], Cataldi et al.

[6], and Mathioudakis and Koudas. [13] all group terms together to form topics and

use a combination of features including temporal activity and social authority and

interaction to detect trending topics.

Many approaches to emergent topic detection specifically, and detecting outbreaks

in networks more generally, involve explicit models of a spreading process over a

network. Asur et al. [2] model the formation, persistence and decay of trending topics

on Twitter using a branching process model. Shtatland and Shtatland [20] investigate

outbreak phenomena based on an underlying SIR model for spreading. They train

a stationary autoregressive model for spreading activity and declare anomalies when

the model starts to become non-stationary. Gruhl et al. [8] use a cascade model

15



to study the propagation of information through a social network. They posit that

topic activity is composed of "spikes" and "chatter" and characterize individuals in

the network in terms of different posting behaviors. They then use an EM algorithm

to infer which edges may have been active in the spread of the topic. For modeling

the activity of topics in a document stream, models not based on networks also exist.

Kleinberg [11] models a stream of documents using an infinite state automaton and

computes optimal state sequences based on the data to infer how the observed activity

was generated.

A third class of methods operates on large collections of time series as a way to

reason about the underlying hidden process without explicitly modeling that process.

Along those lines a number of trajectory clustering methods have emerged recently.

Gaffney and Smyth [7] propose a method for trajectory clustering, where each cluster

is modeled as a prototype trajectory with some noise. They produce low dimensional

representations of the trajectories by using regression models and train a finite mix-

ture model on the regression model components. Munaga et al. [15] offer a more

flexible approach that is able to identify regions of high density that are separated

from one another by regions of low density as well as automatically determine the

number of clusters. In the realm of supervised learning, McNames [14] uses a "nearest

trajectory" strategy to do prediction in time series. Lenser and Veloso [12] propose

a method for nonparametric time series classification in time series produced by a

process consisting of different underlying states, in which pieces of the time series are

classified as having been produced by a certain state.

1.3 Our Approach

Simple, parametric models prove ineffective at modeling many real-world complex

systems. To resolve this, we propose a nonparametric framework for doing inference

on time series. In this model, we posit the existence of a set of latent source time

series, or signals, each corresponding to a prototypical event of a certain type, and

that each observed time series is a noisy observation of one of the latent time series.

16



In the case of classification, an observed signal, is compared to two sets of reference

signals - one consisting of positive examples and the other of negative examples.

We posit that the observation belongs to the positive (resp. negative) class if it was

generated by the same latent source as one of the positive (resp. negative) examples.

To do classification, we compute the class probabilities conditioned on the observation.

In our model, doing so involves a surprisingly simple computation - to see how likely

it is that an observation belongs to a certain class, one simply computes the distances

from the observation to the reference signals in that class. This allows us to infer the

class in a nonparametric fashion directly from the data without specifying any model

structure.

1.3.1 Application: Detecting Outbreaks of Popular Topics

on Twitter

As an application, we apply the latent source model to the problem of detecting

emerging popular topics (called trends) on Twitter. Twitter is a real-time messaging

service and information network whose users can post short (140 characters or fewer)

messages called Tweets. Tweets are public by default and broadcast to the users'

followers. Users can engage in conversation with one another and join a potentially

global conversation on a variety of topics being discussed. Inevitably, some topics,

such as a breaking news event, gain sudden popularity on Twitter. Twitter surfaces

such topics in the service as a list of trending topics. We apply our method to the

task of detecting trending topics and show its effectiveness by comparing our results

to the official topics detected by Twitter. Our method can detect trends in advance of

Twitter 79% of the time, with a mean early advantage of 1.43 hours, while maintaining

a 95% true positive rate and a 4% false positive rate. Furthermore, we are able to do

this using only a sample - 10% - of the Tweets in a period of time. Lastly, we show

that our method is flexible and can be tuned to reflect a wide variety of tradeoffs

between false positive rate, true positive rate, and relative detection time.

17



18



Chapter 2

Classification Method

2.1 Motivation

Suppose we have a space of objects Q, a set of class labels Z, and a probability

distribution p on Q x Z. For simplicity, we take the classes to be + and -. Based on

objects X and labels Y drawn from p, we would like to learn a classification function

that maps each object to its correct class label. This is the standard supervised

learning problem.

Typically, when one wants to learn a model of how objects map to labels one selects

some model space and chooses the best model from that model space, preferring a

model that fits the data but is not too complex. The choice of model space encodes

assumptions about the problem. For example, in the class of methods known as

Tikhonov Regularization [18][4], of which Support Vector Machines and Regularized

Least Squares are special cases, this choice manifests itself in the choice of a kernel

and its associated Reproducing Kernel Hilbert Space (RKHS).

There are many ways to specify a model and therefore many types of model

spaces. Tikhonov Regularization specifies the model as a function. It defines model

complexity using the norm of the function in RKHS. Then it searches over the RKHS

to find the best function. However, the model need not be specified by a function

in a function space at all. It could be specified by a neural network with a certain

architecture, or a spline with a certain number of nodes, or a boolean expression with
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a certain number of terms, or any number of other objects. Each of these settings

have corresponding ways to determine model complexity and to do model selection.

With this in mind, we propose a setting for model specification and selection in

supervised learning based on a latent source model. In this setting, the model is

specified by a small collection of unknown latent sources. We posit that the data

were generated by the latent sources according to a stochastic model relating latent

sources and observations. However, rather than encoding any assumptions about the

data via a choice of model space (e.g. all sets of 10 latent sources) and searching over

the model space for the best set of latent sources, we rely directly on the data itself

as a proxy for the unknown latent sources.

In other words, we are entirely unaware of the structure of the classification func-

tion. To resolve this, we propose the following nonparametric model relating observed

objects to their labels. We posit that there are a relatively small number of distinct

latent source objects in each class that account for all observed objects in that class.

Let us call them t, ... , tn for + and qi, ... , qt for -. Each observation labeled + is

assumed to be a noisy version of one of the latent sources t1 , . .. , tn. Similarly, each

observation labeled - is assumed to be a noisy version of one of the latent sources

q,... qf. We do not know what the latent source objects are or even how many

there are. We only know the stochastic model that relates an observation to its latent

source object.

2.2 Stochastic Model

To make the presentation more concrete, let us focus for the rest of this chapter on

time-varying signals - the main objects of concern in this thesis. In this context,

an observed object is simply a signal in a time window of a certain length. A latent

source object may be thought of as a signal corresponding to a prototypical type of

event. If the same type of event were to happen many times, we suppose that the

resulting observed signals are noisy versions of the latent source signal corresponding

to that type of event.
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We say an observation s from an infinite stream s,, is generated by a latent source

q if s is a noisy version of q. Accordingly, we propose the following stochastic model

relating a latent source q and an observation s:

P(s generated by q) oc exp (-yd(s, q)) (2.1)

where d(s, q) is the distance between s and q and -y is a scaling parameter. This

coincides with the notion that the closer an observation is to a latent source, the

more likely it is that the observation came from that source. For example, a choice

of distance function might be

N~b.

d(s, q) = (s, - q,) 2  (2.2)
i=1

for digital signals s and q of length Nob,. However, any symmetric, positive definite,

and convex d would work.

2.3 Detection

2.3.1 Class Probabilities

Suppose that s is an observed signal of length Nbs. We would like to compute the

probability that s belongs to each class. We can then use those probabilities to

compute an estimate of the class of s. To compute the probability that s belongs

to each class, we make use of a set of reference signals for each class - a set R+ of

signals sampled from + and a set Z_ of signals sampled from -. Reference signals

represent historical data about previous activity from each class to which we can

compare our observation and draw conclusions about which class it belongs to. We

will assume that reference signals have length Nref > N,b,. We will deal with the

case of Nef = N,,b first and generalize in the following section.

Under our model the observation must belong to + if it has the same latent source

as one of the reference signals in 7Z.. Similarly, the observation must belong to -
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if it has the same latent source as one of the reference signals in 7. Hence, the

probability that the observation belongs to + is

P(+ I s) oc 13 P(s belongs to +, s shares a latent source with r)
rER+

E P(s generated by tj, r generated by tj)
rE7Z+ i=1

n

= exp (-yd(s, tj)) exp (--yd(r, tj))
rE1Z+ i=1

n

= exp (-7 (d(s, tj) + d(r, tj)))
rER+ i=1

(2.3)

For large enough -y, the term with the smallest exponent will dominate the sum over

the latent sources and we can write the approximation

P(+ I s) oc E exp - min (d(s, ti) + d(r, tj))).
rER+

(2.4)

However, the expression so far still involves a minimization over the unknown latent

sources tj. We would like to eliminate the tj altogether and just end up with a sum

over all reference signals r. If we suppose that the space of signals is reasonably well-

covered by the latent sources, then the minimizing source tj. should be close to the

global minimizer * over all signals. Figure 2-1 illustrates the reference signal r, the

observation s, the latent source signals t1 , ,t, and the minimizing latent source

signal tj..

The global minimizer * is simply the mean of s and t. To see this, first observe

that since d(s, t) and d(r, t) are convex in t, d(s, t)+d(r, t) is also convex in t. Second,

let us assume that the distance function d(s, t) is actually a norm and therefore has

the functional form d(s, t) = c(s - t), which depends only on the difference between
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-......... t;

. tj

.. .................... .. . . . . . . .

Figure 2-1: An illustration of the latent source signal tj. that minimizes d(s, tj) +
d(r, tj) in Eq. 2.4. Depicted are the reference signal r, the observation s, the latent
source signals ti, ... , t,, and the minimizing latent source signal tj..

signals. Finally, observe that

a a

- (d(s, t) + d(r, t)) = - (c (t -s) + c (t -r))
astr at s r

2 2

,sr - s + s r r

2 2

-0 (2.5)

where in the last line, we have made use of the symmetry of c induced by the symmetry

of d. Because d(s, t) + d(r, t) is convex in t and the derivative with respect to t at

s±3 is zero, t* = s+r is indeed the global minimizer.
2 2

Now, we can compute the corresponding global minimum d(s, t*) + d(r, t*). The

global minimum is

r +s r+ s
d(s, t*) + d(r, t*) = d (S ) + d (r,

= c r 2 s) + C (s 2r) (2.6)
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Let us also assume that for any reasonable distance function c, scaling the argument

by a constant scales the distance according to

c(ax) = g(a)c(x) (2.7)

where g is some positive definite function. Applying this to Eq. 2.6 gives

d(s, t*) + d(r, t*) =g c(r - s) + g (-)c(s - r)

= 2g -g c(r -s)

= 2 - ( d(r, s)

= C - d(r, s).

where C is a constant independent of r and s.

Having done this, we can now approximate minj (d(s, tj) + d(r, tj)) in Eq. 2.4

by C -d(s, r), assuming the actual minimizing latent source tj. is close to the global

minimizer t*. This gives us the probability that the observation belongs to + without

having to minimize over the unknown tj:

P(+ I s) oc exp -y min (d(s, tj) + d(r, tj))
rE7Z+

S exp (--yd(s, r)) (2.9)
rElZ+

where we have absorbed C into y for convenience. We can similarly compute the

probability that the observation belongs to -:

P(- I s) oc 5 exp (--yd(s, r)).
rEJ-

(2.10)
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2.3.2 Class Estimator

Our class estimation rule is simple: assign to the observation the class with the highest

probability. In practice, we compute the ratio of P(+ I s) and P(- I s)

S exp (-yd(s, r))

R(s) = =P(± ) s) (2.11)
P(- I s) exp (--yd(s, r))

rER-

and check if it exceeds a threshold of 0 = 1. For a quadratic distance function, this

becomes

Nob.

exp -- Y (si- ri)2

R(s) = rE7 (2.12)

exp -- (si - ri)2
rER- \ =

The estimator for the class label L is therefore

+ if R(s) > 0
i s(s) = (2.13)

- if R(s) < 0.

In practice, values other than 1 may also be used for the threshold 0. For example,

if the benefits of true positives outweigh the costs of false positives, one may set 0 to

less than 1. On the other hand, if the costs of false positives outweigh the benefits of

true positives, one may conservatively set 0 to greater than 1. We explore this effect

in Chapter 5.

Accumulating Evidence

In some cases, for example when dealing with noisy data, it could be advantageous

to accumulate evidence over multiple time steps before determining which class the

observation belongs to. A simple extension of our algorithm would be to require that

the observation is judged to belong to a particular class for several consecutive time
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steps. We shall call this number of required time steps Dreq. We study the effect of

Dreq in Chapter 5.

2.3.3 Online Classification

In the previous sections, we have assumed that the reference signals and the obser-

vations have the same length. In the online classification setting, it is convenient to

extend this to reference signals of arbitrary length. At its core, our method compares

an observation - recently observed measurements of some property of a system -

to reference signals - sets of historical measurements of that property for each class.

Recently observed measurements are judged to belong to the class whose reference

signals they most resemble. For reference signals and observations of the same size,

this resemblance is computed using the distance function d previously described. In

practice, however, there are two complications. The first complication is that ob-

servations will generally be short, containing a small amount of recent samples, and

reference signals will be long, containing large amounts of historical data. The second

complication is that reference signals will often have unknown phase. That is, the

events underlying the reference signals may have occurred at arbitrary time shifts

with respect to one another. Furthermore, when comparing the observation to each

reference signal, there is no temporal point of reference between the two. A natural

solution to both of these complications is to check whether the observation resem-

bles any piece of the reference signal of the same size as the observation. Figure 2-2

illustrates this.

We generalize the distance function to reflect this notion. Let us assume for

simplicity that all observations are of length Nob, and all reference signals are of

length Nref ;; Nob,. We define the distance between a reference signal r and an

observation s as the minimum distance between s and all contiguous subsignals of r

of length Nb 8 .

d(r, s) = .min d(rk:k+NObS-, S) (2.14)
k=,...,Nref -Nobs,+1
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Figure 2-2: To compare a long reference signal to a short observation, we compute
the distance between the observation (right) and the closest piece of a reference signal
(left).
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Conveniently, for Nref = Nos, this new distance function reduces to the distance

function previously defined. Finally, using the generalized version of d, the ratio of

class probabilities R(s) from the previous section becomes

Nob(

exp 7 min Z(si - ri+k-1)2

R(rS) ==1. Nr b.+1 i=1 5Nobs

exp -7 min E(si - ri+k-1) 2

r E -- k=,..N- -Nob.+l 1
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Chapter 3

Algorithm

In this chapter, I describe the practical implementation of the method described in

Chapter 2.

3.1 Overview

The goal of the algorithm is to perform online classification of an infinite stream

of samples from an observed digital signal. We will focus on the case of binary

classification, in which we have positive signals and negative signals, but the results

can be extended to multiple classes. For binary classification, one could imagine that

one class represents events and the other non-events, and that we would like to detect

events as soon as they happen.

To predict which class the observed signal belongs to at a given point in time, we

compute the probability that the recent samples of the observed signal were generated

by a latent source from the positive class and the probability that they were generated

by a latent source from the negative class, based on previously observed reference

signals for each class. Recall from Chapter 2 that a signal is generated by a latent

source of a particular class if it shares a latent source with some reference signal from

that class. To compute the probability that the recently observed samples share the

same latent source with a particular reference signal, we compute the distance between

the trajectory consisting of the recently observed samples and all trajectories of the
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same size in the reference signal, and take the minimum over all such trajectories.

3.2 Implementation

In practice, the computation of conditional class probabilities amounts to nothing

more than computing distances. To compute the probability that an observation

belongs to a particular class, one simply computes the distance from the observation to

each reference signal in that class in order to see how much the observation resembles

the reference signals for that class.

Algorithm 1 contains the core detection logic. At each time step, it updates the

Algorithm 1 Perform online binary classification on the infinite stream so, using
sets of positive and negative reference signals R+ and R-.

DETECT(So, R+, R_, -y, 0, Dreq):

1: ConsecutiveDetections <- 0
2: loop
3: s +- UPDATEOBSERVATION(sc, Nps)

4: for r in R+ do
5: PosDists.APPEND(DISTToREFERENCE(s, r))

6: end for
7: for r in R- do
8: NegDists.APPEND(DISTToREFERENCE(S, r))
9: end for

10: R = PROBCLASS(PosDists, -y) / PROBCLASS(NegDists, -y)
11: if R > 6 then
12: if ConsecutiveDetections > Dre, then
13: DetectionTime <- CURRENTTIME()
14: return DetectionTime
15: else
16: ConsecutiveDetections +- ConsecutiveDetections + 1
17: end if
18: else
19: ConsecutiveDetections <- 0
20: end if
21: end loop

observation s so that s contains the latest Nob, samples from the infinite stream s,

and computes the distances PosDists (resp. NegDists) to reference signals of the
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positive class (resp. negative class). A detection is declared whenever the ratio of

class probabilities R(s) exceeds the threshold 0 for Dreq consecutive time steps.

Algorithm 2 computes the distance between a reference signal r and an observation

s. Since the reference signal is generally longer than the observation, we compute the

Algorithm 2 Compute the minimum distance between s and all pieces of r of the
same length as s.

DISTToREFERENCE(s, r):

1: Nbs +- LENGTH(S)

2: Nef < LENGTH(r)
3: MinDist = oo
4: for i = 1 to Nef - Nb, + 1 do
5: MinDist = MIN(MinDist, DIST(r:i+NOnb-, s))
6: end for
7: return MinDist

minimum distance (Algorithm 3) across all pieces of r of the same size as s.

Algorithm 3 simply computes the Euclidean distance between two signals of the

same size.

Algorithm 3 Compute the distance between two signals s and t of the same length

DIST(s, t):

1: D +- 0
2: for i = 1 to LENGTH(s) do
3: D +- D + (si - ti)2

4: end for
5: return D

Using the distances from an observation to the reference signals of a class, we

compute a number proportional the probability that the observation belongs to the

class (Algorithm 4).
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Algorithm 4 Using the distances of an observation to the reference signals of a
certain class, compute a number proportional to the probability that the observation
belongs to that class.

PROBCLASS(Dists, 7):
1: P <- 0
2: for i = 1 to LENGTH(Dists) do
3: P <- P + exp (--yDistsi)
4: end for
5: return P
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3.3 Performance and Scalability

To do detection on an infinite stream for T time steps, with jR+1 positive refer-

ence signals and |R1 negative reference signals of length Nej, and observations of

length Nb,, our rudimentary implementation runs in O(TNef(Iz_ I + 1R 1)) time.

In practice, the algorithm can be made faster by a constant factor by not performing

detection on every time step, not computing distances based on the full N , samples,

or not comparing the observation to every single slice of the reference signal.

Clearly, the computational cost of our implementation grows with the amount of

data. Nevertheless, our approach is scalable, since one can compute in parallel the

scores for each of the topics, as well as each of the reference signal distances for each

topic.

A more sophisticated version of our algorithm would use an approach based on

time series indexing. For instance, Rakthanmanon et al. have shown a way to effi-

ciently search over trillions of time series subsequences [19]. Since our probability-

based metric involves exponential decay based on the distance between signals, most

reference signals that are far away from the observation can safely be ignored. Thus,

instead of computing the distance to all reference signals, which could become costly,

we can operate on only a very small fraction of them without significantly affecting

the outcome.
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Chapter 4

Application: Identifying T rending

Topics on Twitter

In this chapter, we consider the application of the method and algorithm proposed

in Chapters 2 and 3 toward detection of trending topics on Twitter. We discuss the

Twitter service, the collection and pre-processing of data, and the experimental setup

for the detection task.

4.1 Overview

4.1.1 Overview of Twitter

Twitter is a real-time messaging service and information network. Users of Twitter

can post short (up to 140 characters) messages called Tweets, which are then broad-

cast to the users' followers. Users can also engage in conversation with one another.

By default, Tweets are public, which means that anyone can see them and potentially

join a conversation on a variety of topics being discussed. Inevitably, some topics gain

relatively sudden popularity on Twitter. For example, a popular topic might reflect

an external event such as a breaking news story or an internally generated inside

joke or game. Twitter surfaces such topics in the service as a list of top ten trending

topics.
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4.1.2 Twitter-Related Definitions

Talking about Tweets, topics, trends and trending topics can be ambiguous, so here

we make precise our usage of these and related terms.

Definition 1 (Topic). We define a topic to be a phrase consisting of one or more

words delimited by spacing or punctuation: A word may be any sequence of characters

and need not be an actual dictionary word.

Definition 2 (Tweet about topic). A Tweet is about a topic if it contains the topic

as a substring. Tweets can be about many topics.

Example 1. The following tweet by the author (handle Osnikolov) contains the string

"matlab." Hence, it is considered to be about the topic "matlab."

"matlab symbolic eigendecomposition. expressions with 25000+ characters

are not always the most interpretable thing."

Definition 3 (Trending topic). A trending topic is a topic that is currently on the

list of trending topics on Twitter. If a topic was ever a trending topic during a period

of time, we say that the topic trended during that time period.

Definition 4 (Trend). A trending topic will also occasionally be referred to as a

trend for short.

Definition 5 (Trend onset). The trend onset is the time that a topic first trended

during a period of time.

Example 2. If the topic "earthquake" is currently in the trending topics list on

Twitter, we say that "earthquake" is trending, and that earthquake is a trend. The

topic "earthquake" has a trend onset, which is the first time it was trending in a given

period of time. This could, for example, correspond to when the earthquake happened.

After "earthquake" is no longer trending, we say that "earthquake" trended.
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4.1.3 Problem Statement

At any given time there are many topics being talked about on Twitter. Of these,

some will trend at some point in the future and others will not. We wish to predict

which topics will trend. The earlier we can predict that a topic will trend, the better.

Ideally, we would like to do this while maintaining a low rate of error (false detections

and false non-detections).

4.1.4 Proposed Solution

Our approach to detecting trending topics is as follows. First, we gather examples of

topics that trended and topics that did not trend during some period of time. Then,

for each topic, we collect Tweets about that topic and generate a time series of the

activity of that topic over time. We then use those time series as reference signals (cf.

Chapter 2) and apply the classification method and algorithm described in Chapters

2 and 3.

4.2 Data

4.2.1 Data Collection

The online time series classification method detailed in Chapters 2 and 3 requires a

set of reference signals corresponding to topics that trended and a set of reference

signals corresponding to topics that did not trend during a time window of interest.

These reference signals represent historical data against which we can compare our

most recent observations to do classification.

The data collection process can be summarized as follows. First, we collected

500 examples of topics that trended at least once between June 1, 2012 and June

30, 2012 (hereafter referred to as the sample window) and 500 examples of topics

that never trended during the sample window. We then sampled Tweets from the

sample window and labeled each Tweet according to the topics mentioned therein.

Finally, we constructed a reference signal for each topic based on the Tweet activity
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corresponding to that topic.

We obtained all data directly from Twitter via the MIT VI-A thesis program.

However, the type as well as the amount of data we have used is all publicly available

via the Twitter API.

Topics

We collected a list of all trending topics on Twitter from June 1, 2012 to June 30,

2012 (the sample window) as well as the times that they were trending and their rank

in the trending topics list on Twitter. Of those, we filtered out topics whose rank was

never better than or equal to 3. In addition, we filtered out topics that did not trend

for long enough (the time of the first appearance to the time of the last appearance

is less than 30 minutes) as well as topics that reappear multiple times during the

sample window (the time of the first appearance to the time of the last appearance is

greater than 24 hours). The former eliminates many topics that are spurious and only

trend for a very short time. The latter eliminates topics that correspond to multiple

events. For example, the name of a football player might trend every time there is an

important game. We would like to avoid such ambiguity and restrict each trending

topic to correspond to a single underlying event within the sample window.

We collected topics that did not trend during the sample window in two steps.

First, we sampled a list of n-grams (phrases consisting of n "words") occurring on

Twitter during the sample window for n up to 5. We filtered out n-grams that contain

any topic that trended during the sample window, using the original, unfiltered list of

all topics that trended during the sample window. For example, if "Whitney Houston"

trended during the sample window, then "Whitney" would be filtered out of the list

of topics that did not trend. We also removed n-grams shorter than three characters,

as most of these did not appear to be meaningful topics. Lastly, we sampled 500

n-grams uniformly from the filtered list of n-grams to produce the final list.
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Tweets

We sampled 10% of all public Tweets from June 1, 2012 to June 30, 2012 inclusive.

We labeled each Tweet with the topic or topics contained therein using a simple

regular expression match between the Tweet text and the topic text. In addition to

the Tweet text, we recorded the date and time the Tweet was authored.

4.2.2 From Tweets to Signals

We discuss the process of converting the timestamped Tweets for a given topic into

a reference signal. Each of the steps below is followed in order for each topic.

Tweet Rate

As a first step toward converting timestamped Tweets about a topic into a signal, we

bin the Tweets into time bins of a certain length. We use time bins of length two

minutes. Let p[n] be the number of Tweets about a topic in the nth time bin. Let

the cumulative volume of of Tweets up to time n be

v[n] = E p[m] (4.1)
m<n

Thus, effectively p[n] is the discrete derivative of the continuous cumulative volume

v(t) over time i.e. p(t) = i(t). Therefore, we shall call p[n] the rate of the signal at

time step n. Figure 4-1 shows this rate for a topic over the whole sample window.

Baseline Normalization

A first glance at the data reveals that many non-trending topics have a relatively high

rate and volume of Tweets, and many trending topics have a relatively low rate and

volume of Tweets. One important difference is that many non-trending topics have

a high baseline rate of activity while most trending topics are preceded by little, if

any, activity prior to gaining sudden popularity. For example, a non-trending topic

such as 'city' is likely to have a consistent baseline of activity because it is a common
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Figure 4-1: The rate of a topic over the sample window.

word. To emphasize the parts of the rate signal above the baseline and de-emphasize

the parts below the baseline, we define a baseline b as

b= p[n] (4.2)
n

and a baseline-normalized signal Pb as

Pb[n] (n (4.3)
b

The exponent 8 controls how much we reward and penalize rates above and below

the baseline rate. In this thesis, we use 6 = 1. Figure 4-2 shows rate signals without

any baseline normalization and their baseline-normalized versions.

Spike Normalization

Another difference between the rates of Tweets for trending topics and that of non-

trending topics is the number and magnitude of spikes. The Tweet rates for trending

topics typically contains larger and more sudden spikes than that of non-trending

topics. We reward such spikes by emphasizing them, while de-emphasizing smaller

spikes. To do so, we define a baseline-and-spike-normalized rate

Pb,s [n] = IPb[n] - Pb[in - 1]1c (4.4)
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in terms of the already baseline-normalized rate Pb. The parameter a > 1 controls

how much spikes are rewarded. We use a = 1.2. Figure 4-2 shows the effect of this

spike-based transformation.

Smoothing

Tweet rates, and the aforementioned transformations thereof, tend to be noisy, espe-

cially for small time bins. To mitigate this, we convolve the signal with a smoothing

window of size Nsmooth. Applied to the spike-and-baseline-normalized signal Pb,s, this

yields the convolved version

n

Pb,s,c[nl = Pb,s[ml. (4.5)
m=n-Nmooth+1

Figure 4-3 shows the effect of smoothing with various window sizes.

Branching Processes and Logarithmic Scale

It is reasonable to think of the spread of a topic from person to person as a branching

process. A branching process is a model of the growth of a population over time,

in which each individual of a population in a given generation produces a random

number of individuals in the next generation. While we do not know the details of

how a topic spreads, we do know that in a wide generality of branching processes,

the growth of the population is exponential with time, with the exponent depending

on the details of the model [3]. It is reasonable, then, to measure the volume of

tweets at a logarithmic scale to reveal these details. Asur et al. confirm that the

spread of topics on Twitter can be modeled as a branching process and also propose

a logarithmic scaling [2]. Therefore, as a final step, we take the logarithm of the

signal constructed so far to produce the signal

Pb,s,c,l [n] = log Pb,s,c[n]. (4.6)

Figure 4-4 shows a sample of signals and their log-scaled versions.
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Constructing a Reference Signal

The signal Pb,s,c,1 [n] resulting from the steps so far is as long as the entire time window

from which all Tweets were sampled. Such a long signal is not particularly useful as

a reference signal. Recall from chapter 3 that to see how much the recent trajectory

of the observed signal resembles part of a reference signal, we have to traverse the full

length of the reference signal in order to find the piece that most closely resembles

the recent observed trajectory. If the reference signal for topic that trended spans too

long of a time window, only a small portion of it will represent activity surrounding

the onset of the trend. In addition, it is inefficient to compare the recently observed

trajectory to a reference signal that is needlessly long. Hence, it is necessary to

select a small slice of signal from the much longer rate signal. In the case of topics

that trended, we select a slice that terminates at the first onset of trend. That way,

we capture the pattern of activity leading up to the trend onset, which is crucial

for recognizing similar pre-onset activity in the observed signal. We do not include

activity after the true onset because once the topics is listed in the trending topics

list on Twitter, we expect the predominant mode of spreading to change. For topics

that did not trend, we assume that the rate signal is largely stationary and select

slices with random start and end times. For simplicity, all slices are a fixed size.

Figures 4-2 through 4-4 show the samples of reference signals with various com-

binations of the transformations described in this section.
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Figure 4-2: Reference signals of either class are hard to tell apart without normaliza-
tion. Top left: no baseline or spike normalization. Top right: Baseline normaliza-
tion. Bottom: Baseline and spike-based normalization.
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Figure 4-3: The results of smoothing the reference signals
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Figure 4-4: Logarithmically scaled reference signals (with spike and baseline nor-
malization previously applied) allow one to make finer-grained distinctions between
signals. Left: Not logarithmically scaled. Right: Logarithmically scaled.
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4.3 Experiment

We propose an experiment to measure our algorithm's performance on two fronts:

error rate and relative detection time. We divide the set of topics into a training set

and a test set using a 50/50 split. For each topic in the test set, we wish to predict

if the topic will trend. If the topic really did trend, we wish to detect it as early as

possible relative to the true trend onset while incurring minimal error.

4.3.1 Detection Setup

In principle, to test the detection algorithm, one would step through the signal in

the entire sample window for each topic in the test set and report the time of the

first detection, or that there were no detections. In practice, we take a shortcut to

avoid looking through the entire signal based on the following observations about the

activity of topics that trended and topics that did not. First, for topics that trended,

there is little, if any activity aside from that surrounding the true onset of the trend.

In the rare event that a detection is made very far from the true onset, it is reasonable

to assume that this corresponds to a completely different event involving that topic

and we can safely ignore it. Thus, the only part of the signal worth looking at is

the signal within some time window from the true onset of the trend. Second, topics

that did not trend exhibit relatively stationary activity. That is, the signal usually

looks roughly the same over the entire sample window. Therefore, it is reasonable

to perform detection only on a piece of the signal as an approximation to the true

detection performance.

We perform detection over a window of 2N,,b samples - twice the length of a

reference signal. For convenience and future use, we define this in terms of hours.

Definition 6. Let hei be the number of hours corresponding to Nef samples. At 2

minutes per sample, hef is given by Nef/30.

For test topics that have trended, we do detection on the window spanning 2 hef

hours centered at the true trend onset. For topics that did not trend, we randomly
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choose a window of the desired size. Note that, although this seems to require a priori

knowledge of whether the test topic ever trended or not, this is only a consequence

of the shortcut we take to not do detection over the entire sample window.

4.3.2 Parameter Exploration and Trials

We explore all combinations of the following ranges of parameters, excluding param-

eter settings that are incompatible (e.g. N,,b > Nef). For each combination, we

conducted 5 random trials.

S'Y: 0.1, 1, 10.

* NbS: 10, 80, 115, 150.

* Nmooth: 10, 80, 115, 150.

* href: 3, 5, 7, 9.

* Dreq: 1, 3, 5.

0 9: 0.65, 1, 3.

4.3.3 Evaluation

To evaluate the performance of our method, we compute the false positive rate and

true positive rate for each experiment, averaged over all trials. In the case of true

detections, we compute the detection time relative to the true onset of the trending

topic.

Before presenting the results in the following chapter, we note the following im-

portant difference between the general detection method employed herein and that of

Twitter. Twitter produces a list of top ten trending topics, while we perform detec-

tion based on a score and a threshold, and do not limit the number of topics detected

as trending at any given time. This could cause noticeable discrepancies between

the topics detected. For example, an otherwise popular emerging topic might not be

detected as a trend if there are many other important topics being discussed at the
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moment. Despite these differences, we show in the next chapter that our algorithm

can achieve good performance relative to that of Twitter.

48



Chapter 5

Results and Discussion

In this chapter, we present the results of the trend detection experiment described in

Chapter 4. We show the quality of the trend detection algorithm using ROC curves

and distributions of detection time relative to the true trend onset. We analyze the

effect of the algorithm parameters on the tradeoff between false positive rate, true

positive rate, and relative detection time. Finally, we propose parameter regimes

appropriate for three situations: 1) the cost of a false positive outweighs the cost of

a false negative, 2) the cost of a false negative outweighs the cost of a false positive,

and 3) the costs of a false positive and a false negative are comparable.

5.1 Summary of Results

In this section we show that we are able to detect trending topics before they are

detected by Twitter while maintaining a low error rate. We showcase the flexibility

of our algorithm and investigate the effects of parameters. In particular, we show

that our algorithm accommodates a wide range of tradeoffs between true positive

rate, false positive rate and relative detection time.
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5.1.1 Main Result: Early Detection of Trending Topics

Our main result is that for a range of parameters, we are able to detect trending

topics before they appear on Twitter's trending topics list. Figure 5-1 shows that for

the given parameter setting, we are able to detect trending topics before Twitter does

79% of the time, and when we do, we detect them an average of 1.43 hours earlier.

Furthermore, we achieve a low error rate: a true positive rate of 95% and a false

positive rate of just 4%. Naturally, there are tradeoffs between false positive rate,

FPR =0.04,TPR =0.95
y=10, N,,=115, 0=1, N,,wah=80, href =7, Dreq=1

60 - P(early)=0.-9 early -
50- P(late)=0.21 late

(early) =1.43 hrq.
030-
U 20(late) =1.00 hrs.

10 

1

-4 -2 0 2 4 6
hours late

Figure 5-1: Our algorithm is able to achieve a low error rate while detecting trending
topics in advance of Twitter a large percentage of the time.

true positive rate, and relative detection time. We explore these relationships in the

following sections.

5.1.2 ROC Curve Envelopes

By varying a single parameter and keeping the rest fixed, we generate a Receiver

Operating Characteristics (ROC) curve that describes the tradeoff between False

Positive Rate (FPR) and True Positive Rate (TPR). Figures 5-3 and 5-2 show the

ROC curves that result from varying each detection parameter, aggregated over all

combinations of the remaining parameters. The left side of each plot shows all ROC

curves for a given variable parameter overlaid on a single set of axes. The right side

shows the upper-right-most envelope of those ROC curves, representing the best-case,

or achievable ROC curve.
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Figure 5-2: Left: All ROC curves for the given variable parameter overlaid on a single
set of axes. Right: The upper-right-most envelope of those ROC curves, representing
the best-case, or achievable ROC curve.
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Figure 5-3: Left: All ROC curves for the given variable parameter overlaid on a single
set of axes. Right: The upper-right-most envelope of those ROC curves, representing
the best-case, or achievable ROC curve.
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It is evident by the length of the ROC curves for each parameters that some

parameters have a greater effect in trading off between TPR and FPR. In Section

5.2, we investigate these effects in detail. However, in aggregate, the ranges of the

parameters studied allow a full range of tradeoffs between TPR and FPR, and show

the flexibility of our approach.
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5.1.3 Effect of FPR and TPR on Relative Detection Time

Figure 5-4 shows the effect of position along the ROC curve on the relative detection

times of our algorithm compared to Twitter's trend detection algorithm. To simplify

our analysis, we break the ROC curve into three regions: the top region, referring

to the upper right corner of the curve, the center region, referring to the upper left

corner of the curve, and the bottom region, referring to the bottom left corner of the

curve. More precisely, we define the regions as follows.

Definition 7 (Top region). (FPR, TPR) is in the top region if FPR > 0.25 and

TPR > 0.75.

Definition 8 (Center region). (FPR, TPR) is in the top region if FPR < 0.25 and

TPR > 0.75.

Definition 9 (Bottom region). (FPR, TPR) is in the top region if FPR < 0.25 and

TPR < 0.75.

In the top region, we accept the possibility of frequent false detections for the

sake of rarely missing the chance to make a true detection. In the bottom region,

we accept a lower chance of making a true detection for the sake of rarely making

false detections. The center region lies in between these two extremes. Consequently,

points in the top region correspond to earlier detection relative to the true onset of

a trend as detected by Twitter, points in the bottom, correspond to predominantly

late detection, and points in the center roughly balance being early and late. Figure

5-4 illustrates this.
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Figure 5-4: Effect of position along ROC curve on early and late detection.
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5.1.4 Examples

In this section, we show examples of our detection algorithm in action on specific

topics. Figure 5-5 shows the detection of fast-spreading and a slow-spreading topics.

In general, it is harder to detect fast-spreading topics early.
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Figure 5-5: Fast-spreading vs. slow-spreading topics. Top: English football player
Danny Welbeck scores late in the second half of the June 15th match between England
and Sweden in the Euro 2012, securing a 3-2 victory for England. The reaction on
Twitter is immediate. Bottom: Ed Miliband, leader of the UK's Labour Party,
calls for a criminal investigation of Barclays, the global financial services provider,
over involvement in the Libor fraud scandal. The story stimulates steadily growing
discussion over the course of the day.

Figure 5-6 shows two true negative topics - topics that did not trend and were

not detected as trending. In one case, the topic ("Ludacris") is a celebrity who, de-
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spite receiving consistently high attention on Twitter, is not involved in any rapidly

breaking story, and hence never becomes a trending topic in the time period consid-

ered. The other topic, "tweetin," is presumed to be a common expression that is not

associated with any trending topic.

100
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IoI-%., r
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-- N
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'-, ,

0

time (hours) +3.7205e5

Figure 5-6: Examples of true negatives - topics that did not trend and were not

detected as trending. Top: Although Ludacris, a well-known celebrity, receives con-

stant attention on Twitter, there is no anomalous event involving Ludacris that would

cause the topic to trend. Bottom: The word "tweetin" is being used as a part of

regular speech to refer to the act of posting a message on Twitter, and does not

constitute a trending topic.

In Figure 5-7, we show examples of false negatives - topics that were not trending,

but were detected as such. It is interesting to note that some topics that did not trend,

such as "redsnOw" in the bottom half of the figure, may be associated with emerging
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stories of smaller magnitude that almost became trending topics.
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Figure 5-7: Examples of false positives - topics that did not trend but were detected
as trending. Top: If the activity of a topic trends upward for a sufficiently long
time, it may sufficiently resemble the activity of topics that trended and lead to a
false detection. Bottom: Some false positives refer to actual breaking events that
happened to not make the trending topics list on Twitter. The topic "redsnOw," for
example, coincides with a new release of popular jailbreaking tool for iOS.

5.2 Effect of Parameters

5.2.1 Effect on Position Along ROC Curve
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(Nobs) (href) (y) (Dreq) (0) (Nmooth)
top 76.93 6.86 4.38 2.90 0.81 88.66
center 77.92 6.09 3.75 2.88 1.79 88.61
bottom 68.76 6.83 1.81 3.70 2.69 88.10

Table 5.1: The effect of parameters on position along the ROC curve.

In this section, we analyze the effect of each parameter on the position along the

ROC curve. To simplify analysis, we again consider only the top, center and bottom

regions of the curve. Table 5.1 shows the mean of the parameters responsible for the

(FPR, TPR) points in each region. It is immediately clear that the mean threshold

0 is dramatically different in each region. This coincides with our intuition that a

low threshold leads to higher TPR and FPR (top region) and vice versa (bottom

region). Similarly, a higher number of required consecutive detections Dreq puts us

in the bottom region of the curve, and a lower number puts us in the center and top

regions. Another clear effect is that low values of -y put us in the bottom region and

higher values put is in the center and top regions. Nob,, href, and Nmooth do not

appear to have a significant effect on the position along the curve.
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5.2.2 Effect on Movement Along ROC Curve

For each ROC curve, we have a parameter that varies to produce the ROC curve,

which we will call the variable parameter, and a fixed combination of the remaining

parameters, which we will call the constant parameters.

As we vary the variable parameter, how do we move up or down the ROC curve?

We show how varying a given parameter p trades off FPR for TPR by computing

the discrete derivative of FPR and TPR with respect to p. For each ROC curve,

corresponding to the variable parameter p and some fixed combination of remaining

parameters, we compute

AFPR FPR(p ) - FPR(pi_1) (5.1)
Pi = - Pi-(

ATPR -TPR(pi) - TPR(pi-1)(52
pi- pi_1

for each ROC curve associated with p and for i ranging from the second to the last

value of p in increasing order. If each point on the ROC curve is produced by multiple

trials, we compute the above for all possible combinations of ROC curves. Finally,

we compute the above across all combinations of fixed parameters.

The result is a distribution of discrete derivatives of FPR and TPR with respect

to a variable parameter of interest p which highlights the effect of p on tradeoffs

between FPR and TPR. We can refer this effect as moving "up" the ROC curve, or

"down" the ROC curve. If most of the mass of AFPR and ATPR is at values greater

than 0, then an increase in p causes a decrease in FPR at the expense of lower TPR,

moving down the curve. If, on the other hand, most of the mass is at values less than

zero, an increase in p causes an increase in TPR at the expensive of higher FPR,

moving up the curve.

Sometimes, the curve moves neither toward (0, 0) ("down the curve") nor toward

(1, 1) ("up the curve") but toward (0, 1) or (1, 0). The former represents an increase in

TPR in addition to a decrease in FPR - a win-win situation. The latter represents

the exact opposite of that - an increase in FPR and a decrease in TPR.
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(AFPR)

Nobs hrej 7 Dreq 0 Nsmooth
top -0.0023 0.0335 -0.0945 -0.0493 -0.9807 -0.0002
center -0.0002 0.0413 0.0846 -0.0098 -0.0746 0.0001
bottom 0.0002 0.0061 0.0306 -0.0052 N/A 0.0001

(APR)

Nobs href 7 Dreq 0 Nsmooth

top -0.0002 0.0019 -0.0126 -0.0228 -0.2298 -0.0001
center 0.0003 -0.0007 0.0227 -0.0358 -0.0238 0.0000
bottom 0.0016 -0.0168 0.3838 -0.0594 N/A 0.0004

Table 5.2: Movement along ROC curve caused by changes in each parameter, de-

pending on which region in the FPR-TPR plane the ROC curve starts.

Note that we did not count A, for consecutive points at (0, 0) or (1, 1) since the

TPR and FPR are not free to move any further despite changes to the variable

parameter.

In Table 5.2, we see the movement along the curve caused by changes in each

parameter. The behavior is not uniform, however. The change in FPR and TPR

depending on the current position in the FPR-TPR plane. To study the effect of

initial position on the movement along the curve, we once again break the space

up into top, center and bottom regions. This time, each ROC curve is assigned to

a region based on where the ROC curve begins (starting with the lowest value of

the variable parameter). The discrete derivatives resulting from that curve are then

assigned to the appropriate region.

It is not surprising that 0, which has the most influence on the position along the

curve, also has by far the most influence on the movement along the curve. A larger

0 moves us down the curve no matter where we start, as expected. Similarly, a larger

Dreq always moves us down the curve, also as expected.

Also influential is 7. Interestingly, it moves us down the curve if we start in the

top region, and up the curve otherwise.

An increase in N,,b causes us to move down the curve if we start in the top region

and up the curve if we start in the bottom region. In the center, region, it causes

a slight movement perpendicular to the curve - increasing TPR while decreasing
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FPR.

The length of the reference signals in hours and half the time window for a single

detection run, href causes us to move down the curve if we start in the bottom and

up the curve if we start in the top.

Nsmooth has no significant effect for the range of smoothing widths explored. It is

possible that a bigger difference may be seen outside of this range.

5.3 Recommended Parameter Settings

We propose parameter regimes appropriate for the following three situations: 1) the

cost of a false positive outweighs the cost of a false negative, 2) the cost of a false

negative outweighs the cost of a false positive, and 3) the costs of a false positive and

a false negative are comparable. We make use of the results involving position and

movement along a the ROC curve shown in the previous sections.

5.3.1 Cost(FP) < Cost(TP)

We recommend the parameter settings in the third row of Table 5.1, corresponding

to the bottom region, which give an average (FPR, TPR) equal to (0.02,0.27). For

fine-tuning, we can increase href or decrease -y or N,,b to move down the curve (or do

the opposite to move up the curve.)

5.3.2 Cost(FP) > Cost(TP)

We recommend the parameter settings in the first row of Table 5.1, corresponding to

the top region, which give an average (FPR, TPR) equal to (0.74, 0.98). For fine-

tuning, we can decrease href or increase y, N 0b, to move up the curve (or do the

opposite to move down the curve.)

62



5.3.3 Cost(FP) - Cost(TP)

We recommend the parameter settings in the second row of Table 5.1, corresponding

to the center region, which give an average (FPR, TPR) equal to (0.10, 0.87). For

fine-tuning, we can increase N,,b to simultaneously increase TPR and decrease FPR.

5.3.4 Out of the Box

Finally, if one wishes to use the algorithm "out of the box," we recommend, the

parameter setting of -y = 10, N,,b = 115, 0 = 1, Nsmooth = 80, href = 7, Dreq = 1

shown in Figure 5-1 at the beginning of this chapter, which achieves a TPR of 95%,

a FPR of 4%, and is able to detect trending topics in advance of Twitter 97% of the

time.
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Chapter 6

Summary of Contributions and

Future Work

6.1 Contributions

We have introduced a setting to do inference in the presence of large amounts of data

governed by an underlying stochastic model. Within this setting, we have derived

an online time series classification method and an associated implementation that is

simple, efficient, and scalable. We have investigated the classification performance

of our method by applying it to the task of predicting trending topics on Twitter.

We have showed the method's flexibility by analyzing the effects of the algorithm

parameters, and have quantified the tradeoffs between relative detection time, true

positive rate, and false positive rate. Finally, we have demonstrated the method to

be successful in detecting trending topics on Twitter before Twitter's algorithm does,

while maintaining a low error rate.

6.2 Future Work

It remains to be established what the theoretical guarantees of our latent source

method are. In particular, an important next step is to establish the statistical effi-

ciency of our algorithm when the actual data is truly generated according to a latent
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source model. Another important step is to compare the classification performance

of our algorithm relative to other supervised learning methods, e.g. ones based on

Tikhonov Regularization. A third important step is to modify our algorithm to take

advantage of the structure in large amounts of unlabeled data, as many large data sets

are only sparsely labeled. A fourth and final important step is to evaluate the classi-

fication performance and computational efficiency of our algorithm on truly massive

datasets. While we have designed our algorithm to be efficient and scalable, we have

only used it on a relatively small data set and its full power remains to be seen.
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