
Building a Computer Poker Agent with Emphasis
on Opponent Modeling

by

Jian Huang

B.S. Computer Science
Massachusetts Institute of Technology, 2011

Submitted to the Department of Electrical Engineering and Computer Science
In partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

At the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2012

02012 Jian Huang. All rights reserved.

The author hereby grants to MIT permission to reproduce
and to distribute publicly paper and electronic

copies of this thesis document in whole or in part
in any medium now known or hereafter created.

A~~g~E$

Signature of Author:
Department of Electrical

- A

Engineering and Computer Science
August 29, 2012

Certified by:

Professor of
teslie P. Kaelbling

Computer Science and Engineering
Thesis Supervisor

Accepted by:
Prof. Dennis M. Freeman

Chairman, Masters of Engineering Thesis Committee

1

2

Building a Computer Poker Agent with Emphasis

on Opponent Modeling

by

Jian Huang

Submitted to the Department of Electrical Engineering and Computer Science

On August 25, 2012 in Partial Fulfillment of the

Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

In this thesis, we present a computer agent for the game of no-limit Texas Hold'em Poker

for two players. Poker is a partially observable, stochastic, multi-agent, sequential game.

This combination of characteristics makes it a very challenging game to master for both

human and computer players. We explore this problem from an opponent modeling

perspective, using data mining to build a database of player styles that allows our agent to

quickly model the strategy of any new opponent. The opponent model is then used to

develop a robust counter strategy. A simpler version of this agent modified for a three

player game was able to win the 2011 MIT Poker Bot Competition.

Thesis Supervisor: Leslie P. Kaelbling

Title: Professor of Computer Science and Engineering

3

4

Acknowledgements

First I want to thank my supervisor, Leslie Kaelbling, for giving me the opportunity to

work with her and others in LIS. She has given me great feedback and directed me to

people whom I was able to work with.

Next, I give my thanks to Frans Oliehoek who has been mentoring me throughout the

project, even after moving to Amsterdam. The reading materials and guidance from him

have been very helpful.

I want to thank Chris Amato who joined us later in the project. I appreciate the wonderful

feedbacks and suggestions from him, and best wishes to his newborn son.

Also, thanks David Shi for printing and hand in this thesis for me while I am off campus!

Finally, I want to thank my family for their support and my friends for the great times

we've had together.

5

6

Contents

1 Introduction 9
1.1 M otivation ... 10

1.1.1 W hy Gam es?..... 10
1.1.2 W hy Poker?... 11

1.2 Thesis Contribution ... 12
1.3 Thesis Organization ... 13

2 Background 15
2.1 Rules of No-Limit Texas Hold'em 15
2.2 Game Theoretic Overview ... 17

2.2.1 Strategy .. 19
2.2.2 Nash-Equilibrium .. 20
2.2.3 Best Response... 20

2.3 Related W ork ... 21
3 Opponent Modeling 25

3.1 Abstractions .. 26
3.1.1 Hand Strength ... 26
3.1.2 Action Sequence .. 28

3.2 Generalizing Across Information Sets 30
3.2.1 Data Mining .. 31
3.2.2 Strategy Reconstruction 31
3.2.3 Estimating Strategy of New Opponents 36

4 Decision Making 39
4.1 Opponent Hole Card Distribution 39
4.2 Estimating Expected Return .. 40

4.2.1 Uniformly Random Action Selection 41
4.2.2 Self-Model Action Selection 41

4.3 Calculating Strategy using Expected Returns 42
5 Results 43

5.1 D uplicate Poker ... 43
5.2 Experim ents .. 44

5.3 M IT Poker Competition ... 46
6 Conclusion and Future Work 49

6.1 C onclusion .. 49
6.2 Future W ork ... 50

6.2.1 Improving Data Mining 50
6.2.2 Choosing Action Based on Opponent's Exploitability 50

7

List of Figures and Tables

Figure 1.1 shows the high-level model of the computer agent and how it interacts with the
environm ent ... 12

Table 1.1 shows types of 5-card hands for Texas Hold'em poker from strongest to weakest . .. 17

Figure 2.1 shows a partial tree representing a two-player game of poker 18

Table 3.1 examples of action sequences mapping to buckets 29

Figure 3.1 shows an example of the probability of calling or raising with respect to hand strength
when d = <0.3, 0.3, 0.2, 0.2> .. 32

Figure 3.2 shows graphs of action distributions vs. hand strength 34

Figure 3.3 shows action probabilities vs. hand strength individually 35

Figure 4.1 shows how the agent updates the probability distribution of opponent's hole cards . 40

Table 5.1 shows the results from matches played between pairs of computer agents 44

Figure 5.1 graphs the net profit of Random as the match against Self-Model progressed 45

Figure 6.1 illustrates a visual representation of the balanced strategy and shows how it is

calculated .. 51

8

Chapter 1

Introduction

Playing games is something that most people have done at some point in their lives.

Whether it is a board game, card game, or video game, we generally begin by learning

the rules of the game, and then we gradually improving in skill level as we gain more

experience. In competitive games where players are pitted against one another, the more

skillful players come on top more often than not.

Now what if we want to create computer programs that could play these games? They

will essentially need to make decisions given some information or knowledge just like

human players. While it is possible to create rule-based computer agents using expert

knowledge of humans, this approach is often cumbersome and inflexible, especially in

games such as poker where opponents' playing styles play a large role in the decision

making.

In this thesis, we will study opponent modeling in the game of two-player no-limit

Texas Hold'em poker and build a computer agent using an opponent modeling approach.

9

1.1 Motivation

1.1.1 Why Games?

Artificial Intelligence research involving classic games has been around since as early as

the advent of computers. Chess, Checkers, and Othello are some of the earliest games to

be studied. As of today, the best chess programs, having estimated elo ratings of over

3200, far surpass the current human Chess world champion Magnus Carlsen's 2837

rating[2][14]. Checkers has been solved for perfect play in 2007[10]. Starting from

around the past decade, poker has been receiving increasing attention by researchers as

the game experienced a dramatic boom in popularity.

Games are usually a form of entertainment, but why should anyone devote so much

time toward developing AIs for them? Well, games are all about making decisions -

potentially under time constraints - using some set of knowledge or information. It's just

like what people, companies, and governments do every day in the real world, from

trading stocks to setting prices of new products. When different choices are available

there are of course different outcomes, some better than others. Therefore, we want to

study decision making in classic games to be able to apply similar techniques to problems

in the real world.

10

1.1.2 Why Poker?

Poker, a game that is often said to be easy to learn but hard to master, has a number of

defining characteristics that makes it different from some of the previously mentioned

games:

1. Poker is an imperfect information game, meaning players cannot observe the entire

state of the game. Each player can see the cards they are holding, but not the ones

in the opponent's hand.

2. Poker is stochastic, meaning the same action performed in one game state can

probabilistically transition into a number of different game states. Unlike in chess

where each move can only have a single fixed outcome, in poker, future

community cards are random.

3. Poker has varying levels of success in each game. In chess, it does not matter if

you reach checkmate with all your pieces remaining or only one. In poker, you

want to win as much chips from the opponent as possible.

These properties of poker are also shared by most real world problems. Nobody can

possess every bit of information available, nor can anyone predict the future with one

hundred percent certainty. Outcomes are rarely confined to perfect success or failure, but

rather somewhere in between. While the addition of these properties is a better reflection

of reality, it also makes creating a computer poker agent a challenging and interesting

problem for research. A number of groups in the research community have been actively

11

tackling this problem, and there are also computer poker competitions such as the one

held annually at the annual AAAI conference to showcase their efforts.

1.2 Thesis Contribution and Focus

Agent

Decision making

Belief

Opponent Model H

Environment

Action

Observation

Dealer

Opponent

Figure 1.1 shows the high-level model of the computer agent and how it interacts with the
environment.

This thesis focuses on creating a computer agent for poker from an opponent modeling

perspective. The high level picture of our agent is described in Figure 1.1. The agent has

an opponent model that is updated when there is an observation of opponent action. The

belief, which is a probability distribution over state spaces, is updated with the help of the

opponent model after any observation from the environment. Both the opponent model

and belief contribute to the agent's decision making component which uses a simulation

approach to determine an action to send back to the environment.

12

The opponent modeling and decision making algorithms are formulated in

collaboration with Frans Oliehoek and Chris Amato. The author implemented the

computer agent and poker engine on which to test the agent and also performed the

experiments shown near the end of this thesis.

1.3 Thesis Organization

Chapter 2 gives an overview of poker and presents some of the existing computer poker

agents. Chapter 3 describes the method we use to model the opponent's strategy,

including game state abstractions and inference through data mining. Chapter 4 discusses

the decision making part of the agent and how we make use of the opponent model and

simulation techniques to facilitate this process. Chapter 5 shows the performance of the

agent when running against a number of benchmark opponents as well as comparisons of

algorithms used in different versions of the agent.

13

14

Chapter 2

Background

2.1 Rules of No-Limit Texas Hold'em

There are many variations of poker and different formats of competition, such as

tournaments or cash games. The most popular variation is Texas Hold'em, and in this

thesis we will focus on two-player No-Limit Texas Hold'em.

Each player starts with a stack of chips that they can use to make bets. The goal is to

win chips from the opponent through a number of short games. The game begins when

both players place forced bets called blinds. One player called the dealer will be the small

blind, and the other player will be the big blind which is generally double the amount of

the small blind.

Next, two cards called hole cards, seen only by the player holding them, will be dealt

from a standard 52-card deck to each player, followed by a round of betting where

players take turns making actions. The first round of betting starts with the dealer. During

each player's turn, he has the three types of actions to choose from.

If a playerfolds, he forfeits the hand and all chips that were bet in this game goes to

the other player immediately.

15

If a player checks or calls, he will match the amount the opponent has bet. If the

opponent bet nothing, the action is a check, otherwise it is a call. If the caller has fewer

chips than the amount raised, then he will simply bet all he has and the unmatched chips

will be returned to the raiser.

If a player bets or raises, he increases the amount to be wagered, forcing the opponent

to call or raise again if he does not want to give up the hand. The amount that can be

raised in a limit game is always a single fixed amount of either one or two big blinds, and

in a no-limit game is any amount between the big blind and one's entire chip stack. If the

opponent has made a bet or raise in the current round, the minimum raise amount is then

at least the amount the opponent has raised by. For example, if player A bets 20 chips and

player B raises to 70 chips, then if player A wants to raise again, the amount must be at

least 120 chips.

A round of betting ends when both players have made at least one action and the last

action is a check or call. Essentially the players can raise back and forth as many times as

they like until one player has bet his entire chip stack or calls. However, in reality raises

rarely occur more than 3 or 4 times in one round.

After the first round of betting, 3 community cards called the flop that both players

share are dealt from the same deck. This is followed by another round of betting, this

time, starting with the player who is not the dealer. Then 1 community card called the

turn is dealt with another round of betting, and finally the last community card called the

river is dealt with the last round of betting.

16

If neither player has folded after the last round of betting, then they will go to the

showdown where players reveal their hole cards and each will look for the best 5 card

combination they can make using any combination of their 2 hole cards and the 5

community cards. The player with the stronger 5 card combination wins all of the chips

that were wagered in this game, called the pot. If the card strengths are the same, then

they share the pot.

Strengths of 5 card combinations are listed in Table 1.1 below.

Name Description Example

Straight flush 5 consecutive ranked cards of the same suit Q J 10 9 8 all clubs

4-of-a-kind 4 cards of the same rank A A A A 9

Full house 3-of-a-kind and 1 pair J J J 8 8

Flush 5 cards of the same suit K J 10 7 3 all clubs

Straight 5 consecutive ranked cards 9 8 7 6 5

3-of-a-kind 3 cards of the same rank 8 8 8 Q 2

2 pairs 2 pairs 1010665

Pair 2 cards of the same rank AAK87

High-card None of above Q J 9 6 4

Table 1.1 shows types of 5-card hands for Texas Hold'em poker from strongest to weakest.
Within each category, the ranks of the cards will further decide their strengths. For example
KKK32 is stronger than JJJ94, and 88Q43 is stronger than 88J96. Ties are therefore fairly
uncommon.

2.2 Game Theoretic Overview

Two-player poker can be modeled as a zero-sum game. The representation, or extensive

form, of the game is a tree, where nodes are game states and directed edges are transitions.

17

Figure 2.1 shows a partial tree of the game that shows some of the important features.

There are two types of nodes in the tree, decision nodes that transitions based on action

from players and dealer nodes that make stochastic transitions when cards are dealt.

D
2c2dj2h2s c2dj23c AcAdjAhAs

Pi Pi Pi

Fold Call Raise min Raise max

P2 P2 P

R = (+0.5, -0.5)

Check Raise min Raise max

D Pi Pi

Deal Fold Call Raise X
Flop

P2 P2 P2 P2 P2

R = (+1, -1)

Show down
R=(+r,-r)

Figure 2.1 shows a partial tree representing a two-player game of poker. Many of the nodes and
transitions are omitted. The square nodes are the dealer nodes, and circle nodes are decision
nodes for the players. The game begins with the root dealer node transitioning to player 1 through
one of around 2 million hole card combinations. The players then take turns making actions.
When a fold or show down occurs, the game ends and positive and negative rewards are given out.

18

Because poker is an imperfect information game, players do not get to see the entire

game state whenever making an action. The part of the game state that the player can

observe is called the information set, which includes his own hole cards, community

cards, and previous actions - in other words, everything except the opponent's hole cards.

2.2.1 Strategy

We define a strategy as a mapping from any information set to a probability distribution

over legal actions. We use a probability distribution over actions because in imperfect

information games, these mixed strategies are more robust than pure strategies that maps

information sets to fixed single actions. A simple example to illustrate this claim with the

game of Rock, Paper, Scissors is that the strategy of always choosing Rock is much

easier to recognize and exploit than a strategy that chooses the three actions uniformly at

random. Now tying strategies back to our extensive form game, notice that to a player,

many of the nodes in the tree have the same information set due to the hidden opponent

hole cards. The number of information sets is actually much lower than the number of

game states, and from a player's perspective, he could very well reduce the game tree by

ignoring opponent's hole cards. The question now is what would be the best strategy for

poker? There are two ways to look at this problem.

19

2.2.2 Nash-Equilibrium

First we will define the Nash-Equilibrium for a two-player zero-sum game.

Definition 2.1 Let -i be the strategy of player i. Let Tji be the strategy of player i's

opponent. Also let the expected return of strategy ni be E(i, m-.). Then 7T* = (rI, 7T2) is

a Nash-Equilibrium if and only if:

Vi' , E(t1 i,m.i) > E(un', Tg) for i = 1,2

In other words, if each player is using a strategy such that changing it will not provide

more expected return against the opponent's current strategy, then it is a Nash-

Equilibrium. An example of the Nash-Equilibrium for Rock, Paper, Scissors would be

both players choosing the three actions uniformly at random.

For a zero-sum game like poker, at Nash-Equilibrium the two players can expect to tie

in the long run. In reality, however, human players are not able to play so accurately and

computer players can only play at an estimated equilibrium at best because finding an

exact equilibrium for a problem of this enormous size is practically impossible.

2.2.3 Best Response

Suppose instead that we are playing against a terrible player who is using a static strategy,

using the equilibrium strategy will certainly give us a positive expected return, but it's

possible to do much better. We will define the best response strategy as follows.

20

Definition 2.2 Let it 2 be the strategy of player 2, and let the expected return of strategy

ii be E(Tri, Tri). Then 4r is the best response to 2 if and only if:

V-n' , E(T', 72) > E(Ti, T2O

The best response is usually a pure strategy, meaning it itself is very exploitable. It is

the best strategy to use against an opponent whose strategy is static and known perfectly,

but that is also not a very realistic assumption.

2.3 Related Work

Currently the most popular approach to creating computer poker agents has been finding

near-equilibrium strategies. As mentioned before, since it is impossible to obtain exact

Nash-Equilibrium, a number of techniques are used to calculate near-equilibrium

strategies. Most competitive agents do so by using an abstraction algorithm to first reduce

the number of game states and then using custom algorithms to solve the abstracted game

for equilibrium [9]. This technique is used, in conjunction with a lossless information

abstraction algorithm GameShrink, to solve a simpler version of the game called Rhode

Island Hold'em Poker for the exact equilibrium [3]. However, for the much larger Texas

Hold'em Poker, only lossy information abstractions can bring the game down to a

manageable size.

A significant amount of work in poker Al has been done at the University of Alberta's

Computer Poker Research Group (CPRG) led by Michael Bowling. They have developed

21

a number of poker agents over time for both Limit and No-Limit Texas Hold'em. Their

current state of the art poker agents play a near-equilibrium strategy computed using an

iterative algorithm called Counterfactual Regret Minimization (CFR). The idea behind

CFR is essentially letting agents play against each other, adjusting their strategies after

each hand to minimize how much more they would have earned by taking the best

possible action, or regret [15].

This near-equilibrium approach appears to be one of the most promising techniques so

far. In 2007, the poker agent Polaris played against world-class poker professionals in

two-player Limit Texas Hold'em and won in a number of duplicate matches in the First

Man-Machine Poker Championship [6]. Since then, the strength of Limit Hold'em agents

has steadily increased and has reached or surpassed the human world champion level of

play. However, No-Limit agents have not yet achieved that level due to the significant

increase in the number of game states from having a much larger range of legal actions at

each decision node.

Using a near-equilibrium strategy ensures that the agent cannot be exploited, but at the

same time, it also limits itself from being able to fully exploit weaker opponents. In an

environment consisting of mostly very strong players, playing a near-equilibrium strategy

is a good idea as strong opponents rarely open themselves up to be exploited. However,

not everyone is a strong player, and against weak opponents, there is no reason not to

exploit them to a greater degree. After all, the objective of the game is not simply to win

but to win as much as possible. Of course, the idea of exploitive counter-strategies in

poker is not new. Vexbot, an agent developed in 2003 at CPRG, did just that. It kept a

22

model that learns the opponent's frequency of actions at every decision point and

attempts to exploit the opponent's strategy. While Vexbot would lose to some of the best

equilibrium agents today, it could potentially be a better choice against weaker opponents

[11].

The third approach is to use robust counterstrategies, where the agent would employ

an exploitive strategy that limits its own exploitability. CPRG introduced the Restricted

Nash Response algorithm for this approach. The algorithm computes a strategy that

exploits the opponent as much as possible while having a lower bound on how much it

would lose in the worst case scenario when the model of the opponent is inaccurate [1].

This approach is ideal for maximizing profits against unknown opponents. Our agent

described in this thesis belongs to this third category. However instead of the technique

above, we will explore the effectiveness of using a simulation-based approach to compute

robust counterstrategies.

23

24

Chapter 3

Opponent Modeling

As stated earlier, we want to build a computer agent that implements a robust

counterstrategy against opponents. However before a counterstrategy can be built, we

must first know the strategy of the opponent. We know that a strategy is a mapping from

information sets to a probability distribution over legal actions, but let us define it more

precisely.

Definition 3.1 Let I be the set of all information sets in a poker game. Let A be the set of

all legal actions. Then a strategy is a function

r: I x A -> [0, 1]

Such that

Vi E I, Y (i, a) = 1
aEA

Now that we know how to describe a strategy, how do does the agent actually model

the strategy of the opponent? No opponent will simply hand out his strategy on a piece of

paper, so it must be learned through observations while playing. However, due to the

25

large number of game states and limited number of observations from the opponent,

estimating the strategy proves to be rather challenging. We will describe the abstraction

algorithm used to reduce the number of game states and data mining technique used to

make inferences about little observed information sets in the opponent's strategy.

3.1 Abstractions

The number of information sets in Texas Hold'em is on the order of 1018 in limit

Hold'em, and in no-limit the existence of additional action choices increases it to over

1050 in a game with starting stacks of 100 big blinds, making it impossible to store in

memory without any compression.

To deal with this, abstractions must be used to greatly reduce the size without losing

too much information. Abstractions essentially group together closely related information

sets into a single one [12]. Since the information set in poker is composed of both cards

and action sequences, we will focus on each one individually.

3.1.1 Hand Strength

A player can see at most 7 cards - 2 in his hand and 5 on the table. There are on the order

of 10 9 such combinations. To a player, the most important information about the cards is

the relative strength of his hole cards compared to all other possible hole cards, with

respect to the community cards. Instead of keeping track of the individual cards, we can

26

instead convert every combination of cards to some value between 0.0 and 1.0 to indicate

the hand strength.

There are a number of methods to estimate the strength of a hand. The values

computed by different methods are not quite the same, so we will consider some of the

most common ones.

The most nalve hand strength is sometimes called the immediate hand rank (IHR).

Calculating IHR requires relatively little computation. It first enumerates all of the

possible hole cards that the opponent could hold and then checks to see what percentage

of those hands could be beaten if neither player's hand improved. The problem with this

method is that it ignores the chance that the hand improves from future community cards,

which may happen quite often in poker [7].

A more accurate estimator of hand strength is the 7-card hand rank (7cHR). This is

essentially the probability that the hand wins at the showdown against a uniform

distribution of opponent hole cards. It can be computed by enumerating (or sampling for

better performance) all opponent hole cards and future community cards and outputting

the percentage our hand wins [7]. There are other estimators that use slightly different

algorithms or uses a combination of the above two methods. For the purpose of our poker

agent, we will use 7cHR and bucket the values between 0.0 and 1.0 into 20 equal sized

buckets. The bucketing is necessary because otherwise the hand strength could take on

millions of different floating point values.

27

3.1.2 Action Sequences

To shrink the number of action sequences, we first consider the actions a player can make

at each decision node. He can fold, check/call, or raise any amount between the minimum

and his entire chip stack. In reality, rarely do players raise more than twice the value of

the pot, so we chose to use a small number of buckets for different raise amounts. These

raise amounts are usually some fraction of the pot. For example in our implementation

we used two buckets, one for raises less than or equal to the pot and one for raises over

the pot.

Further abstractions are made by reducing the space of action sequences through

bucketing. Instead of keeping track of the action sequence in all rounds of betting, we

compress the information from the previous rounds by only tracking the number of raises

in the previous betting round and who the last aggressor was. The action sequence of the

current betting round is for the most part unchanged. However if the number of actions

exceed 4, only the last 4 actions in the sequence will be tracked. The actual bucketing

algorithm is described below.

1. Each bucket is represented by a string of digits.

2. The first digit represents the round of betting the game is currently in. 0 represents

preflop; 1 for flop, 2 for turn, and 3 for river.

3. The second digit represents the number of raises that occurred in the previous

betting round if it exists. This digit can be as low as 0 and is capped at 4.

28

4. The third digit represents the last aggressor, or last person to have raised, in the

previous round. 0 indicates that the opponent being modeled is the last aggressor,

and 1 indicates that it is the agent.

5. The remaining digits represent the betting sequence in the current betting round. 1

represents a check or call, 2 represents a below or equal to pot raise, and 3

represents an above pot raise. (Fold is not needed because there will never be

action after it) The length of this sequence is capped at 4. If more than 4 actions

are taken in the current round, only the last 4 will be used.

Table 3.1 gives some examples of how full action sequences are mapped to buckets.

Complete action sequence Bucket

(Beginning of game) 000

Call, Low Raise 00012

High Raise, Low Raise, Call, Flop, Check 1210

Call, Check, Flop, Check, Check, Turn, Check, High Raise, Low Raise 200132

Low Raise, Low Raise, Low Raise, High Raise, Low Raise, Low Raise 0002322

Table 3.1 examples of action sequences mapping to buckets. The opponent is the first to act in all
of the examples.

Using the abstractions mentioned above, the number of information sets can be

reduced to 105_106, a large but much more manageable size. The set of bucketed

information sets I is now equivalent to S x H, where S is the set of bucketed action

sequences and H is the set of bucketed hand strengths.

29

3.2 Generalizing across Information Sets

While there is no longer a memory constraint problem in representing the opponent

strategy, it would still take an impractically large number of games to obtain enough

observations in each information set to accurately estimate the mixed strategy. Even after

using abstractions to shrink the number of information sets, it is still far greater than the

number of observations of opponent actions in normal game play. Professional human

player can get a good sense of their opponent after just a few hundred games, so we know

that playing millions of hands should not be necessary.

To deal with this issue, we must generalize about values in information sets that have

few or no observations, using the assumption that the values in different information sets

are not independent to each other. The space over all possible strategies is in no way

uniform. With a large dataset of heads-up hand histories between different players, we

can see examples of the type of strategies real players use. Suppose our abstraction of the

opponent's strategy is a JIxIAI matrix ir, where I is the set of bucketed information sets

and A is the number of bucketed actions (4 in this case), then 7ria is the frequency the

opponent chooses action a in information set i. We can estimate these frequencies for

each player in the dataset. The goal, however, is to be able to estimate this matrix for a

new opponent that the agent is facing even with a low number of observed actions.

30

3.2.1 Data Mining

We obtained a dataset of 7 million heads-up games between thousands of players on a

popular online poker casino called PokerStars. Unfortunately one immediate problem that

came up during data mining is that so few of the games revealed the players' hole cards,

preventing us from finding out the hand strength of the players. This is due to the nature

of the game itself, because players often fold before reaching the showdown if they

believe their hand is beaten, and hole cards are not shown if a showdown is not reached.

To deal with this issue, we decided to first ignore hand strengths for the moment and only

produce a mapping from action sequence to probability distribution over actions using the

dataset. Then a heuristic is used to reconstruct a full scale strategy matrix 7r that includes

the hand strength.

3.2.2 Strategy Reconstruction

Our goal is to construct a function f1 that take as input any probability distribution over

actions observed without regard to hand strength, d E D, where D is the set of all such

distributions, and output functions f2: H -+ D which maps hand strengths h E H to

different distributions. d is a vector <f, c, rl, r2>, where f is the probability of folding, c

is the probability of calling, rl the probability of raising below or equal to pot, and r2 the

probability of raising above pot. For simplicity in notations later, we will say that the 4

actions have risks of 0, 1, 2, and 3 associated with them respectively.

31

In order to construct function f 1, we need to make a number of assumptions based on

rational play.

1. The higher the risk associated with the action the opponent takes, the stronger his

hand strength is likely to be.

2. The probability of taking an action that has at least some risk value v is modeled

by a logistic curve with respect to hand strength as shown by an example in

Figure 3.1.

d =<0.3, 0.30.2,0.2>

0.9-

0.8-

o 0.7-
A

0.6-

0.5

OA --
0

0.3-

0.2-

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Hand Strength

Figure 3.1 shows an example of the probability of not folding with respect to hand strength when
d = <0.3, 0.3, 0.2, 0.2>.

32

The first assumption is rather obvious. The stronger the hand is, the more likely the

player will win at show down. Therefore, it is beneficial to bet more when the chance of

winning is higher. For the second assumption, a number of other curves such as a step

function or linear function could have been chosen. If we used a step function, the

opponent model would end up being a pure strategy which is not realistic. A linear

function could be reasonable, but we ultimately chose the logistic function in order to

have a tipping point at which the probability of taking a certain amount of risk drops off

quickly. Like the graph in Figure 3.1, the probability of taking risk of at least 2 and the

probability of taking risk of 3 have similar shapes. Each of the curves is parameterized by

c + ri + r2, ri + r2, or r2, respectively. These values shift the curves either to the left or

right. Figure 3.2 and 3.3 shows graphs of hand strength to action probabilities that were

computed with our algorithm with distributions d =< 0.15, 0.3,0.4,0.15 > and d =<

0.3, 0.3, 0.4, 0.0 >.

33

d = <0.15,0.3,0.4,0.15>

0 0.1 0.2 0.3 0.4 0.5 0.6 0.1 0.8 0.9 1
Hand Strength

d =<0.3,0.3,0.4 ,0.0>

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Hand Strength

Figure 3.2 shows graphs of action distributions vs. hand strength. Each curve on the graph
represents probability of risk > c, for c = 0, 1, 2, 3. Between the curves are the probabilities of
different actions. Graph b) has no area showing raise above pot because r2 = 0.

34

a) I

C
0

0.9

0.8

037

0.6

0.5

0.4

0.3

0.2

0.1

Fold

Call

Raise below pot

-'Raise above pot

0

1
b)

C
0

.0

ti

0.

0.

0.

0.

0.

0.

0.

0.

0-

9-

8 Fold

7 -

6-

'5

4-
Raise below pot

3

.2

I

1

0.9

0.8

0.7

O.6

0.5

0.4

0.3

0.2

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 1
Hand Strength

d =<0.3,0.3,0.4,0.0>
~1.

Fold
Raise below pot

call

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Hand Strength

0.8 0.9 1

Figure 3.3 shows action probabilities vs. hand strength individually. The value of the curves in
the graphs here are essentially the difference between the curves in Figure 3.2.

35

Raise below pot
Fold

Call Raise"
above
pot

-

- /

a)

0

0

b)
0.9

OR
.

0

0.8

0.7

0.6

0.6

0.4

0.3

0.2

0.1

0
0

d = <0.15, 0.3,0.4, 0.15>

I A A-

Using this method, the full strategy can be reconstructed for the players in the dataset.

However, understandably this reconstructed strategy is not as accurate as if we had built

it with the knowledge of all the hole cards, and we hope to change this once more data is

obtained in the future.

3.2.3 Estimating Strategy of New Opponents

Now that we have a dataset of full strategies for thousands of real players, we can use it

to help estimate the strategy of a new opponent. The distribution of strategies that players

take on is most likely a smooth function, meaning if frequencies in a subset of the

strategy matrix between two players are very similar, then it is more likely for the rest of

the strategy matrix to have similar frequencies between them as well. Using this idea, we

can estimate the frequency of actions in information sets with few or no observations for

a new opponent by taking a weighted average over strategies in the dataset that are

similar to the new opponent's in the observed information sets.

To calculate the weight, we came up with a distance metric between observations from

the new opponent to strategies in the dataset. To calculate this distance, first a raw

opponent strategy is computed using frequency of observations in each information set. If

the information set has no observation, the action distribution defaults to uniform. The

action distribution each information set maps to is treated as a vector, and we find the

Euclidian distance between distributions in each information set between the raw

opponent strategy and the player's strategy from the dataset. The distance between the

36

two strategies is the average of these Euclidian distances weighted by the number of

observations in each information set.

The weight of each strategy in the dataset then became the inverse square distance

between itself and the new opponent. The strategy of the new opponent is then shifted

toward the weighted average of the dataset. The amount of shift depends on the number

of observations in each information set; the more observation, the less the shift. For

example the frequency of actions in information sets with zero observations is completely

replaced by the weighted average, and ones with over 100 observations are not shifted at

all.

37

38

Chapter 4

Decision Making

Using the opponent model to compute an appropriate action is the second component of

the poker agent. First, the poker agent will track the uncertainty in the opponent's hole

cards with Bayesian inference. Then, it will estimate an expected return for each

available action choice. Finally, it will calculate a mixed strategy based on the expected

returns.

4.1 Opponent Hole Card Distribution

To clearly define the uncertainty in the opponent's hole cards, the agent will store a

probability distribution over every possible hole card combination. This distribution is

essentially the belief state, and it is initialized to uniform at the beginning of each hand.

For each action that the opponent makes, we will update the distribution as shown in

Figure 4.1.

39

Let z be the action that has just been taken by the opponent.

Let C represent the set of all possible hole cards.

Let 7r(s, c, z) be the probability given in the opponent model that at action sequence s with
opponent holding hole cards c that he would have taken action z.

P(c), the probability that opponent is holding c, will be updated with the following equation:

VC P'(c) = P(c) * 7r(s, c, z)
N

Where N is a normalization factor defined as:

N = P(c) * r(s, c, z)
CEC

Figure 4.1 shows how the agent updates the probability distribution of opponent's hole cards.

4.2 Estimating Expected Return

To estimate the expected return of different actions, we will use a method similar to

David Silver's Monte-Carlo planning for large POMDPs [13]. For each available action

an expectation will be calculated by averaging over a number of simulations that plays

out the rest of the hand. In each simulation the opponent will be assigned a pair of hole

cards based on the distribution mentioned in the previous section. Future community

cards will be generated uniformly at random, and opponent's actions will be generated

based on the opponent model. The main difference between the method we implemented

and the original by David Silver is that instead of also computing the expectations of

different actions in child nodes, we only care about the actions from the current decision

node. This means a lower number of simulations will need to be run to arrive at a

40

reasonably accurate expectation. The question now is what rollout policy to use when

picking subsequent actions for the agent itself in the simulation.

4.2.1 Uniformly Random Action Selection

A naive method of similarly calculating the expectation for actions in later nodes and

picking the best one would not be possible because the number of nodes in the tree, and

therefore computational cost, is too high. A feasible option would be to randomly select

later actions for the agent even though this does not accurately reflect how the agent

really will play in the future.

4.2.2 Self-Model Action Selection

An alternative method is to let the agent keep a strategy model of itself exactly the same

way it keeps track of the opponent model. It can then use the self-model to generate

actions during simulation at the same speed as generating opponent actions. We

compared the two methods against bench mark computer agents in Section 5.2.

The agent always chooses 1 of 4 possible actions. It can fold, check/call, raise 0.7

times the pot, or raise 1.5 times the pot. Fold always has an expected return of exactly 0,

so no simulation is necessary. The other three actions go through 100 simulations each.

At the end of each simulation the reward is calculated by taking the pot won (if any) and

subtracting the total amount of chips committed since the beginning of simulation. Any

chips that were committed in the action sequence before simulation started are considered

41

sunk cost and are not subtracted from the reward. The expected reward of the action will

simply be the average over the rewards from each simulation.

4.3 Calculating Strategy using Expected Returns

Once simulations are over, we get a 4-tuple of expected returns for the 4 action. If the

agent simply chose the action with the highest return, it would be playing the best-

response pure strategy which also makes itself exploitable. Since we want a robust

counterstrategy, the agent needs to come up with a mixed strategy based on the returns.

We came up with the following rules to calculating a mixed strategy.

1. Any action that has negative expected returns will have zero probability.

2. The ratio of at which actions with positive expected returns will be chosen is

equal to the ratio of their returns.

3. If no action has positive expected return, then the agent will always fold.

With these rules, the best action will always have the highest probability of being

chosen. However it still allows the agent to other actions at times to be less predictable.

Rule number 2 uses that particular ratio because it is somewhat reasonable, but different

ratios may be tested in the future. One may notice that there are still instances where the

agent will still play a single action 100% of the times. This fact does not necessarily

make the agent more exploitable because there are legitimate times when there should

only be one choice. For example, if the opponent bets all his chips while the agent is

holding cards that are impossible to win, then the only good option is to fold.

42

Chapter 5

Results

5.1 Duplicate Poker

Poker is a game of high variance. In order to conclude with statistical significance that

one poker player is better than another, we would normally need to see a very large

number of hands played. To compare computer poker agents, we could greatly reduce the

variance by playing duplicate poker.

In duplicate poker, two players will simultaneously play against each other at two

different tables. The exact same hole cards and community cards will be dealt at both

table, but the position of the players will be reversed on one of the tables. In practice of

course, the two matches can occur one after the other as long as memories of the previous

match are erased when the duplicate match starts.

Duplicate poker is widely used in computer poker research, because it reduces the

number of hands needed, and therefore time cost, when evaluating poker agents.

43

5.2 Experiments

The two agents whose performance we are interested in are:

1. MC-Random: Agent picks actions for itself uniformly at random during simulation.

2. MC-Self-Model: Agent keeps track of a strategy model of itself and uses it to

generate actions during simulation.

To test the computer agent, we created a number of benchmark agents to play against.

The benchmark agents are the following:

1. No-Model: Agent uses a default model of the opponent (model when there are no

observations) and never updates it.

2. RaiseBot: Agent will always raise 0.7 times the pot.

3. CallBot: Agent will always call, or check when appropriate.

For the experiment, we ran 10000 hands of duplicate poker between every pair of the

above agents. Each agent starts with 100 big blinds at the beginning of each hand. The

results are in Table 5.1.

MC-Random MC-Self-Model No-Model RaiseBot CallBot

MC-Random +3.5942 +4.7398 +14.1988 +16.8359

MC-Self-Model -3.5942 +2.0839 +5.9154 +15.2184

No-Model -4.7398 -2.0839 -10.2261 +5.3785

RaiseBot -14.1988 -5.9154 +10.2261 0.0

CallBot -16.8359 -15.2184 -5.3785 0.0

Table 5.1 shows the results from matches played between pairs of computer agents. Values in the
table are average number of big blinds won per hand by agents to the left of the row.

44

Contrary to our expectations, MC-Random performed better than MC-Self-Model. In

fact, it won more chips in each of the benchmark matches and came out positive in the

match between the two. Figure 5.1 shows the amount MC-Random won from MC-Self-

Model over the course of the 10000 hands.

0

z

Random vs. Self-Model<O 4
4

3.5

3

2.5

2

1.5

1

0.5

0

-05
C

7000 8000 9000 10000
1000 2000 3000 4000 5000 6000

Hands Played

Figure 5.1 graphs the net profit of MC-Random as the match against MC-Self-Model progressed.

In 10000 hands of duplicate poker against MC-Self-Model, MC-Random made a total

profit of 35942 big blinds with a standard deviation of about 4813, meaning we can

conclude without a doubt that MC-Random is indeed superior. However, what is the

reasoning behind this result? Why would randomly picking actions during simulation

45

7000 8000 9000 10000

have significant advantage over the seemingly more rational approach using a self-model?

One possible answer is that because both agents are adapting to each other's strategies,

the self-model may not be changing fast enough to reflect the agent's true current strategy.

Using the outdated self-model during simulation somehow ended up biasing against itself,

giving the agent with the simpler approach an advantage.

There are several other results in Table 5.1 that are worth mentioning. Both agents

MC-Random and MC-Self-Model performed better than No-Model against the other

benchmarks, meaning that the opponent modeling proves to be useful in this case. The

agent No-Model did very poorly against the bot that always raised. Other than not

updating the opponent model, the rest of No-Model is exactly the same as MC-Random.

The reason it lost against RaiseBot is that it folded way too often thinking that RaiseBot

has very strong hands. Because it never keeps track of how often the opponent is raising,

it updates its belief state as if playing against a normal opponent, placing too much

weight on strong opponent hole cards.

Finally, we see that RaiseBot did better than CallBot in all of their respective matches.

While both agents are just about as simple as possible, this supports the notion among

poker players that being aggressive is better than being passive.

5.3 MIT Poker Competition

The second annual MIT Poker Competition was held in January of 2012. About 27 teams

submitted computer agents to play in matches of three-player poker. Our agent, Chezebot,

46

which is based on most of the concepts described in this thesis but with a number of

modifications to fit the three-player format, placed first in the competition. The only

major conceptual difference was in the decision making component. Due to time

constraints that did not make simulations possible, the agent evaluated its hand strength

against the belief state of the opponent's hole cards and used a heuristic to convert the

hand strength into a mixed strategy.

47

48

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we have presented an opponent modeling approach to creating a computer

poker agent. First we discussed the challenges in modeling a strategy for the game of

poker and presented corresponding solutions. We also described the method used to

estimate the strategy of new opponents with the help of data mining.

Next we showed how the computer agent makes use of the opponent model to arrive at

a robust counterstrategy against that opponent. In the process, we described the belief

state update in the agent as response to observations, and we discussed a number of

simulation techniques used to estimate expected return of different actions.

Finally, experimental results are presented in which duplicate poker matches are used

to evaluate the performance of different versions of the agent against benchmarks.

49

6.2 Future Work

Our agent now plays only at a low to medium amateur level. A number of future changes

could be made to improve its performance.

6.2.1 Improving data mining

Due to the lack of hole card information in our dataset, currently a heuristic is needed to

convert the mapping from action sequence to action distribution into a full scale strategy.

This greatly decreases the accuracy of the list of strategies from players in the dataset. If

we are able to use a large dataset of hand histories that includes hole cards, then it would

remove the need for a heuristic and allow us to calculate a much better opponent model

from the dataset.

6.2.2 Choosing Action Based on Opponent's Exploitability

Against an opponent that plays a static strategy, using the best-response would be the

optimal strategy. However, if the opponent is a good player who also adapts quickly, then

it would be wiser to play closer to a Nash-Equilibrium. Therefore, we can try to

approximate how well the opponent adapts to determine what strategy our agent will use,

moving toward equilibrium when results seem unfavorable [4].

Between each hand (or a number of hands), the agent can measure how well its own

strategy is exploiting the opponent by measuring the change in profit per hand.

50

Figure 6.1 illustrates a visual representation of the balanced strategy and shows how it is

calculated.

Exploitability should be directly proportional to profit per hand. If profit rate is high or

increasing, then it would show that the opponent is not adapting quickly enough, and the

agent can play slightly closer to the best response. If the profit rate is low or decreasing,

then the agent will play a more mixed strategy. An exploit factor between 0 and 1 is

stored to indicate the balance between equilibrium and best response as shown in Figure

6.1. This factor increases or decreases based on the change in exploitability. This idea is

not new as it was also mentioned in (Bowling, M., et al. 2007) as a possible

implementation of a robust counter-strategy, but it may still be an improvement from

using the same counter-strategy without considering profitability [1].

51

e = Exploitability Factor

A = Equilibrium

B = Best Response

C = (1- e) * A + e * B

Strategy Space

A

C

B

52

Bibliography

[1] Bowling, M., Johanson, M. and Zinkevich, M., "Computing Robust Counter-
Strategies", University of Alberta, 2007.

[2] FIDE Top Players. 2012. World Chess Federation. 26 Aug. 2012.
<http://ratings.fide.com/top.phtml?list=men>.

[3] Gilpin, A., Sandholm, T., "Better Automated Abstraction Techniques for Imperfect
Information Games, with Application to Texas Hold'em Poker", Carnegie Mellon
University, 2007.

[4] Groot, Bastiaan de., "Wolf-Gradient, a multi-agent learning algorithm for normal
form games", Master's thesis, University of Amsterdam, 2008.

[5] Johanson, M.B., "Robust strategies and counterstrategies: Building a champion level
computer poker player", Master's thesis, University of Alberta, 2007.

[6] Jonathan, R., Watson, I., "Computer poker: A review", Artificial Intelligence, 2011.

[7] Kan, M. H., "Postgame analysis of poker decisions", Master's thesis, University of
Alberta, 2007.

[8] Oliehoek, F., "Game theory and AI: a unified approach to poker games", Master's
thesis, University of Amsterdam, 2005.

[9] Sandholm, T., "The State of Solving Large Incomplete-Information Games, and
Application to Poker", Carnegie Mellon University, 2011.

[10] Schaeffer, J., et al., "Checkers Is Solved," Science Vol. 317, 2007.

[11] Schauenberg, T., "Opponent modeling and search in poker", Master's thesis,
University of Alberta, 2006.

[12] Schnizlein, D., Bowling, M. and Szafron, D., "Probabilistic state translation in
extensive games with large action sets", UCAI, 2009.

[13] Silver, D., Veness, J., "Monte-Carlo Planning in Large POMDPs".

[14] The SSDF Rating List. 2012. Swedish Computer Chess Association. 26 Aug. 2012.
<http://ssdf.bosjo.net/list.htm>.

53

[15] Zinkevich, M., Johanson, M., Bowling, M., and Piccione, C., "Regret minimization
in games with incomplete information", University of Alberta, 2007.

54

