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Abstract

This thesis is concerned with the applications of several "multiscale" concepts to

the description of systems wherein the accompanying physical phenomena afford a

natural delineation of lengthscales. Explicitly, the thesis demonstrates the use and
limitations of the different schemes by invoking specific examples appropriate to each.

The first part of the thesis illustrates the use of spatial averaging techniques to

model two-phase flows through porous media. This exposition commences by re-

viewing and critiquing previous attempts at coarse-graining two-phase flows. Sub-

sequently, we adopt a novel microscale viewpoint (termed the "diffuse interface ap-

proach") wherein the averaging procedure can be effected in a somewhat rigorous

manner. Explicitly, the fine scale (microscale) equations are averaged to effect the

corresponding coarse-grained (macroscale) description. Also illustrated is the use and

role of linear irreversible thermodynamics in the context of obtaining the functional

form of the constitutive equations at the coarse-grained scale. The proposed scheme

possesses conceptual as well as computational and analytical advantages. On the

conceptual side, we are able to clearly define and clarify the macroscale concept of

capillary pressure, which in contemporary literature is incorrectly confounded with

the well-known microscale, pore-level Laplace boundary condition at the curved in-

terfaces between the immiscible phases. In this same context we offer insights into

fundamental issues that have afflicted mixture theories involving 'interpenetrating

continua.' Within this framework we formulate, in a rigorous manner, definitions of

macroscale quantities, following which we identify the pertinent phase-specific Darcy's

laws. Moreover, utilizing the outlined framework, one can, in principle, calculate the

phenomenological coefficients appearing therein in terms of quadratures of the pre-

scribed microscale data.
The second portion of the thesis demonstrates the utility of concepts abstracted

from macrotransport theory to implement coarse-graining procedures in multiscale

systems. The first example considered within this context illustrates the manner in

which macrotransport theory can be employed to provide quantitative measures of

transport rates in flow systems involving laminar chaotic processes. As an illustrative
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example, thermal Taylor dispersion theory for time-periodic systems is used to study
the extent of chaotic laminar heat transfer enhancement and axial thermal dispersion
occurring during combined transverse and axial annular flow between two noncon-

centric circular cylinders undergoing alternate rotations. Calculations are performed
for three different cases: (i) Concentric cylinder rotation (for which case the result-

ing circular transverse flow has no effect upon the effective transport properties);
(ii) Nonconcentric counter-rotating circular cylinders, each undergoing a steady ro-

tation, thereby creating a time-independent transverse flow field; (iii) Nonconcentric

counter- and co-rotating circular cylinders, each undergoing time-periodic alternate
rotation while the other remains at rest. A 'regular' enhancement of the heat transfer

rate over the concentric cylinder case is observed in case (ii), arising from the pres-

ence of a secondary-flow recirculation region. Enhancement due to chaotic advection

is observed in case (iii) [about 50% more than that of case (ii) and more than double

that of case (i), all other things being equal].
In the second example considered within this same section, calculations are pre-

sented for the long-time diffusivity and sedimentation velocity of associating colloids.

Examples of the latter are micellar solutions and microemulsions. The analysis in-

corporates the role of reversible association-dissociation processes accompanying the

physical-space transport of these clusters through the solution. This is accomplished
without the need for pre-averaging by transforming the association-dissociation pro-

cesses into equivalent 'size-space' diffusional processes, which are then embedded into

the simultaneous physical-space transport processes occurring in three-dimensional
space so as to obtain a four-dimensional convective-diffusion equation governing trans-

port of the clusters in both the physical and size spaces. A generic 'projection' scheme

framework based on generalized Taylor dispersion theory is then applied to the prob-

lem, thereby reducing the four-dimensional transport equation to a coarse-grained
three-dimensional physical-space convective-diffusion equation. Effects arising from

the existence of a distribution of cluster sizes are accounted for in the latter formula-

tion governing the mean transport process by the appearance of three coarse-grained

phenomenological coefficients whose values depend inter alia upon the cluster-size

distribution. This section illustrates a novel aspect of "coarse-graining," viz., one
wherein the space which is coarse-grained corresponds to the cluster size, rather than

to the physical spatial scale, the usual circumstances encountered in other examples.

This application serves to illustrate the broad generality of coarse-graining procedures

beyond physical space homogenization schemes.
The final phase of the thesis illustrates the use of scaling concepts akin to those

employed in the description of 'critical-phenomena,' so as to establish the functional

form of physical quantities exemplifying the property of self-similarity. An explicit

account is given of the nonlocal dynamics (in a quasistatic approximation) involved

in two-phase fluid dynamics quantifying flow through porous media. The results ob-

tained are then employed to derive the dynamical equation of motion of a Darcyscale

interfacial fluid front. The resulting model of the physical displacement process is

then utilized to glean insights into the self-similar scaling behavior (quantified in

terms of depinning exponents) of the interfacial fronts observed in experiments on

such systems. Invasion and imbibition phenomena are considered separately, and the
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features responsible for the different depinning exponents observed in the two cases

are pointed out. A Flory-type scaling analysis is also performed on this model, yield-
ing a roughness exponent of a = 3/4 in a range of intermediate length scales, in good

agreement with experimental observations. Our model possesses a number of fea-

tures absent in the model widely speculated to be applicable to this scenario, namely

the Random Field Ising Model (RFIM). Among other things, our model incorporates
physical phenomena existing in actual two-phase fluid flow phenomena that are not
reflected in the RFIM model. Additionally, our model furnishes possible reasons for

rationalizing discrepancies observed between theory and experiments.

Thesis Supervisor: Howard Brenner
Title: Willard H. Dow Professor of Chemical Engineering
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Chapter 1

Overview

This chapter provides an overview of the specific issues and the examples considered

in this thesis. This chapter commences with a brief exposition on the features of

multiscale systems, particularly emphasizing the manifestation of coarse-grained be-

havior. Subsequently, we provide an outline of the different portions of the thesis,

emphasizing their explicit relationship to the broader theme of the whole undertak-

ing. This chapter concludes with a brief discussion on the organization and format

of the thesis.

1.1 Multiscale Systems

This thesis is concerned almost exclusively with unique aspects encountered in de-

scribing multiscale systems. Studies pertaining to multiscale systems are especially

important, embodying both fundamental and practical ramifications. This privileged

importance arises from the ubiquity of such systems in Nature, as well as from the

intellectual challenges they evoke in the course of homogenizing such systems. Prob-

ably the most basic example of a multiscale system is constituted by the atoms which

comprise all the known living and nonliving entities in the universe. Each chemical

entity termed an atom is itself comprised of more fundamental units, designated as
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electrons, protons, etc.1 The motion and the behavior of these fundamental units

is embodied within the quantum mechanical probability density of these entities.

However, despite the incredibly vast amount of information required to quantify the

quantum-probabilistic description of these entities, the macroscopic behavior of the

atom manifests but a few generic physical properties - the magnitude of each being

however, intimately related to and derived from the probability density distribution

of the fundamental entities constituting the atom. This conception provides one of

most fundamental manifestations of 'multiscale' behavior. While at the fine scale, the

description of the systems is enabled by a quantum mechanical description of all the

entities, the macroscopic behavior is described (and governed) by the physical prop-

erties of the atom, which represents a coarse-grained representation of the fine-scale

behavior.

More examples of multiscale behavior can also be envisioned. One of the classic

examples is constituted by the abstract conception of 'life' and its relationship to

the fundamental entities constituting it. At the fine scale we have the elements and

molecules which constitute the biologically fundamental entities like genes etc., while

the organized behavior of the same biologically fundamental entities like genes con-

stitute the macroscale or coarse-grained behavior. In this case however, the complete

resolution of the relationship between the macroscale behavior to the microscale be-

havior is yet to be achieved. This question was first raised (in a formal manner), by

the quantum theorist Schrodinger [1]. While he has been proved to be incorrect in

the context of a number of ideas which he put forth claiming to be the solution of

this issue, nevertheless the fundamental recognition of the multiscale manifestation

still retains its validity.

While the above constitute fundamental examples wherein the multiscale behavior

is evident, practical examples aplenty also manifest multiscale behavior. The equi-

librium and nonequilibrium properties exhibited by fluids and solids are examples

of the macroscale manifestation of the innumerous microscale interactions between

'Fundamental units like electrons might themselves be composed made of yet more fundamental

units like quarks.
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the molecules constituting the fluid or solid. Such equilibrium and nonequilibrium

properties constitute the brain of most of chemical and other technological processes,

thereby rendering studies on multiscale systems important and imperative.

The objectives of this thesis are quite modest in comparison to the grandiose

issues raised in the above discussion. In essence, the underlying question consti-

tuting the entire thesis can be stated as follows: "If the fine scale knowledge of a

system can be embodied within a reasonable microscale model, can we say anything

about the macroscale behavior of the system, explicitly the model applicable thereto

?" The generality of this question would evidently invite a resounding "yes" for an

answer. However, a moment of reflection on the question and the accompanying

answer serves to clarify that the issue in multiscale systems is not the recognition

that the macroscale behavior constitutes a manifestation of the microscale behavior,

but rather, the explicit and possibly quantitative identification of such a relationship.

Towards this objective, the thesis deals with relevant physical examples wherein such

an identification can, with ingenuity, be determined. It is to be clarified at this

juncture that this thesis does not deal with development of general techniques for

coarse-graining. Rather, in most cases it employs methods which have been devel-

oped or implicitly assumed in other contexts. The achievements of this thesis can

be identified as comprising novel formulations of several micros cale-level problems

serving to enable application of appropriate coarse-graining techniques to identify the

corresponding macroscale behavior.

A vast number of coarse-graining (homogenization) techniques have been devel-

oped explicitly and implicitly within different contexts. However, despite the presence

of the requisite tools, neither the exact relationship of the macroscale attributes of

an arbitrary system to its comparable microscale attributes, nor the coarse-graining

technique to be applied to glean such information, is generally self-evident. This thesis

concerns itself with applications of coarse-graining techniques to four distinct exam-

ples, each embodying quite distinct characteristics. We undertake in the following

sections a brief exposition, describing the salient features and the specific achieve-

ments within the examples considered in this thesis. Concomitantly, we outline the
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explicit 'coarse-graining' involved in each of the examples considered. Furthermore,

we also elucidate a brief outline of the organization of each of the different parts of

the thesis.

1.2 Part 1: A Diffuse Interface Model of Two Phase

Flows in Porous Media

A single-phase, two-component mixture Darcyscale model characterized by a diffuse

interface is proposed as a rational alternative to the conventional singular interface

Darcyscale empirical model currently employed for analyzing two-phase flows of im-

miscible fluids through porous media. The proposed scheme possesses conceptual as

well as computational and analytical advantages. On the conceptual side, we are able

to clearly define the macroscale concept of capillary pressure, which in contempo-

rary literature is incorrectly confounded with the well-known microscale, pore-level

Laplace boundary condition at the curved interfaces between the immiscible phases.

In this same context we offer insights into fundamental issues that have afflicted mix-

ture theories involving 'interpenetrating continua.' This is accomplished in part by

clarifying the distinction between whether the continua being referred to constitute

phases (consisting of 'immiscible' multiphase continua) or species (present in an inho-

mogeneous single-phase continuum). In particular, we show that the issue devolves

upon the scale at which the phenomenon is viewed. On the computational and ana-

lytic sides our scheme offers the advantages of dealing with continuous fields rather

than with discontinuous fields, the latter necessitated in contemporary literature by

the existence of singular (mobile) phase boundaries, namely interfaces. Also on the

analytical side, our scheme permits a formal physico-mathematical transition from the

diffuse microscale to the coarser singular-surface scale view, by using singular pertur-

bation techniques to achieve the requisite change in scale. Within this framework we

formulate, in a rigorous manner, definitions of macroscale quantities, following which

we identify the pertinent phase-specific Darcy's laws. Moreover, one can, in principle,
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calculate the phenomenological coefficients appearing therein in terms of quadratures

of the prescribed microscale data. Our macroscale framework treats the Darcyscale

continuum as a multicomponent mixture (referred to as the 'diffuse Darcyscale' view)

rather than adopting the more commonly-employed coarse-grained picture embodied

in interpenetrating continua models or singular-surface Darcyscale models. This fine-

scale viewpoint is directed towards the foundational aspects of two-phase flows at

both the micro- and macroscales - especially with regard to the existence and inter-

pretation of phase-specific Darcy's laws, including capillary pressure as a macroscale

field variable. Eventually, we implement this framework with a simplified linear ex-

ample to substantiate our thesis. Our study embodies several distinct investigations,

logically intertwined by the common objective of erecting rational foundations for

describing and quantifying two-phase flows through porous media.

This part of the thesis implements the most common of the coarse-graining ap-

proaches to multiscale systems, namely the volume averaging technique. Such an

approach is utilized to implement the transition from the microscale viewpoint to

the coarse-grained, macro- or Darcyscale viewpoint. Concomitantly, we elucidate the

issues which typically need to be accounted in defining a volume averaging procedure.

These issues transcend mathematical details, and embody the physical definitions of

the macro- (or coarse-) scale physical quantities themselves. Subsequent to our criti-

cism of earlier theories ('singular' interface models), we invoke the 'diffuse' interface

viewpoint to outline the physical definitions of the macroscale quantities which satisfy

the constraints imposed by the physical meaning of these fields. As is common with

the execution of most volume averaging (and statistical averaging) techniques, we

encounter issues relating to the closure of the macroscale equations. This part of the

thesis also elucidates a specific tool by which such issues can be resolved, enabling us

to propose possible functional forms of the macroscale constitutive equations.

This part of the thesis is organized as follows: Chapter 2 provides a brief introduc-

tion to the theory of multiphase flows in porous media. We review and critique some

of the previous researches, and thereby simultaneously outline the motivations for our

own research. Subsequently, chapter 3 provides an exposition of the novel framework
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(diffuse interface model) used to model two-phase flows in porous media. In chapter

4 we outline a coarse-graining procedure for implementing the transition from the

microscale to the macroscale level, within the framework embodied by the diffuse

interface model. Chapter 5 concerns the explicit identification of the phase-specific

quantities at the macroscale level. Finally, in chapter 6 we utilize considerations de-

rived from nonequilibrium thermodynamics to glean insights into the functional form

of the macroscale constitutive equations.

1.3 Part 2: Applications of Macrotransport The-

ory

This part of the thesis deals with the explicit application of macrotransport theory (or

generalized Taylor dispersion theory) to two novel applications, enabling us thereby

to quantify the macroscale transport and dispersion properties encountered in these

systems. Macrotransport theory constitutes a generalized Taylor dispersion theory,

which furnishes a rigorous coarse-grained description of the convective-diffusion trans-

port of a 'Brownian tracer.' (Chapter 8 elucidates the precise manner in which the

concept of a Brownian tracer can be generalized). At the fine scale the transport

of the Brownian tracer occurs within two orthogonal spaces, termed the "local" and

the "global" spaces respectively. The coarse-grained description of the transport of

the averaged Brownian tracer (averaging being accomplished over the local space)

embodies the convective-diffusive transport of the tracer occurring exclusively within

the global space, albeit with effective transport coefficients. These coarse-grained,

global-space transport coefficients embody the transport process occurring within

the local space in an averaged manner, whereby, the quantitative magnitudes of these

coefficients, along with their physical Lagrangian definitions (refer to chapter 8) pro-

vide a measure of the transport processes occurring within the local space. This

conception is utilized in a novel manner in the examples considered in this part of the

thesis, thereby providing a nontrivial quantitative measure of the transport processes
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occurring within the local space.

This part of the thesis is subdivided into two chapter, each of which individually

concerns the application of the macrotransport theory to the specific example con-

sidered therein. These chapters follow subsequent to a brief elucidation of the salient

concepts of macrotransport theory. Explicit details are furnished in chapter 8.

1.3.1 Chaotic Heat Transfer Enhancement in Rotating Ec-

centric Cylinder Configuration

Thermal Taylor dispersion theory for time-periodic systems is used to study the extent

of chaotic laminar heat transfer enhancement and axial thermal dispersion occurring

during combined transverse and axial annular flow between two nonconcentric circu-

lar cylinders undergoing alternate rotations. A local Newton's 'law of cooling' heat

transfer boundary condition is used on the outer cylinder, whereas the inner cylin-

der is supposed insulated. The effective heat transfer coefficient H*, describing the

global rate of heat loss from the system (differing in general from the true microscale

Newton's law heat transfer coefficient h on the outer cylinder), is calculated as a func-

tion of the system parameters, thereby serving to quantify the extent of chaotic heat

transfer enhancement. The axial thermal Taylor dispersivity provides an indepen-

dent measure of the effects of chaotic mixing, as too does the axial thermal velocity.

Calculations are performed for three different cases: (i) Concentric cylinder rotation

(for which case the resulting circular transverse flow has no effect upon the effective

transport properties); (ii) Nonconcentric counter-rotating circular cylinders, each un-

dergoing a steady rotation, thereby creating a time-independent transverse flow field;

(iii) Nonconcentric counter- and co-rotating circular cylinders, each undergoing time-

periodic alternate rotation while the other remains at rest. A 'regular' enhancement

of the heat transfer rate over the concentric cylinder case is observed in case (ii),

arising from the presence of a secondary-flow recirculation region. Enhancement due

to chaotic advection is observed in case (iii) [about 50% more than that of case (ii)

and more than double that of case (i), all other things being equal]. Concomitant
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values of the axial thermal Taylor dispersivity and axial thermal velocity confirms

the existence of enhanced transverse transport due to chaotic advection. It is ob-

served that the functional dependence of the enhanced heat transfer rate upon the

system parameters does not consistently display the same trends as are qualitatively

suggested by the 'degree of chaoticity' of the comparable Poincar6 plots. This obser-

vation signals the need for caution in simply assuming that the greater the degree of

chaotic 'mixing' implicit in the Poincar6 plot the greater will be the corresponding

global transport rate. By a simple redefinition of the symbols used in the present

research, our energy transport results may be re-interpreted so as to apply to the

case of reactive-species transport involving a first-order irreversible chemical reaction

occurring on the outer-cylinder surface; explicitly, the Nusselt number quantifying

the local heat transfer coefficient rate is simply replaced by a comparable Damk6hler

number quantifying the local kinetics of the surface reaction.

1.3.2 Long-time Non-preaveraged Diffusivity and Sedimen-

tation Velocity of Clusters: Applications to Micellar

Solutions

Calculations are presented for the long-time diffusivity and sedimentation velocity of

associating colloids. Examples of the latter are micellar solutions and microemulsions.

The analysis incorporates the role of reversible association-dissociation processes ac-

companying the physical-space transport of these clusters through the solution. This

is accomplished without the need for pre-averaging by transforming the association-

dissociation processes into equivalent 'size-space' diffusional processes, which are then

embedded into the simultaneous physical-space transport processes occurring in three-

dimensional space so as to obtain a four-dimensional convective-diffusion equation

governing transport of the clusters in both the physical and size spaces. A generic

'projection' scheme framework based on generalized Taylor dispersion theory is then

applied to the problem, thereby reducing the four-dimensional transport equation to a

coarse-grained three-dimensional physical-space convective-diffusion equation. Effects
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arising from the existence of a distribution of cluster sizes are accounted for in the

latter formulation governing the mean transport process by the appearance of three

coarse-grained phenomenological coefficients whose values depend inter alia upon the

cluster-size distribution. These 'macrotransport' coefficients include a mean sedi-

mentation velocity vector arising from the action of external forces (if any), a mean

molecular diffusivity dyadic, and an additional diffusive-type contribution to the dif-

fusivity corresponding to a convective ('Taylor') dispersivity. The latter contribution

arises as a consequence of the spread in settling velocities of the differently-sized clus-

ters. The generic framework developed is illustrated by applications to two classes of

micellar solutions: (i) solutions comprised of spherical micelles; (ii) solutions com-

prised of cylindrical or worm-like micelles (so-called 'living polymers'). Each spherical

micelle is modeled as an impenetrable rigid sphere whose radius is determined by its

aggregation number. The living polymers are modeled by the Debye-Bueche the-

ory, wherein a coiled macromolecular chain is regarded as a Brownian 'sponge-like'

porous sphere through whose interior solvent percolates. Calculations of the result-

ing macrotransport coefficients, including their scaling relationships, are presented

for both cases, and their physical significance discussed in terms of the underlying

microscale physics.

1.4 Part 3: Dynamics of Two-Phase Fluid Inter-

faces in Random Porous Media

This part of the thesis concerns the phenomenological behavior of self-similar sys-

tems. The analysis of systems exhibiting the property of self-similarity is much sim-

plified owing to the fact that the physical properties of interest remain unchanged

in functionality under the operation of coarse-graining. Such a property establishes

an intimate connection between self-similar behavior and power law characteristics.

Utilizing this relationship conjointly with the physical implications of self-similarity

enables the explicit determination of the scaling exponents describing the behavior of
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the self-similar physical property.

This part of the thesis commences (chapter 12) with an exposition on the phe-

nomenon of self-similarity, both in deterministic and statistical context, and their ex-

plicit relationship to power-law behavior. Subsequently, we expound upon the salient

concepts of self similarity in the context of interfacial fluctuations. Such concepts are

utilized in chapter 13 to analyze the problem of interest.

In chapter 13, explicit account is given of the nonlocal dynamics (in a quasistatic

approximation) involved in two-phase fluid dynamics quantifying flow through porous

media. The results are then used to derive the dynamical equation of motion of a

Darcyscale interfacial fluid front. Such a model is then utilized to glean insights

into the self-similar scaling behavior (quantified in terms of depinning exponents)

of the interfacial fronts experimentally observed in such systems. We consider the

cases of invasion and imbibition separately, and point out the features responsible for

the different depinning exponents observed in the two cases. A Flory-type scaling

analysis is also performed on this model, and yields a roughness exponent a = 3/4

in a range of intermediate length scales - in good agreement with experimental

observations. Our model possesses a number of features absent in the model widely

speculated to be applicable to this scenario, namely the Random Field Ising Model

(RFIM). Among other things, it incorporates physical phenomena existing in two-

phase fluid flow phenomena that are not reflected in the RFIM model. Additionally,

our model furnishes possible reasons for rationalizing discrepancies observed between

experiments and theory.

1.5 Conclusions

The exposition of the previous sections outlines specific issues considered in the sev-

eral chapters of the thesis. While their common theme reflects our emphasis on 'mul-

tiscale' modeling, the explicit achievements of any specific example transcend this

commonality. Therefore, in the different sections of the text we specifically allude to

the 'coarse-graining' aspect invoked, only after detailing the conclusions arising from
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the specific achievements. However, based on the above exposition together with the

physical description accompanying the specific examples, the explicit identification

of the 'multiscales' and the 'coarse-graining' is rendered self-evident in the different

examples.

The above discussion in conjunction with the discussion preceding each of the

different examples considered in this thesis serves to underline the importance and

the ubiquitousness of multiscale systems in nature. From a practical viewpoint, it has

become imperative to discover the explicit relationship of the macroscale behavior to

the precursor microscale phenomena, thereby enabling one to facilitate control of the

macroscale behavior by appropriately tuning the microscale properties. This thesis

serves to illustrate some of the techniques available to glean such information.

1.6 Format of Thesis

In view of the diverse nature of the very distinct applications considered, this the-

sis is organized in a manner which attempts to optimize its comprehensibility. For

instance, to ease the efforts requisite to cross-referencing, separate list of references

is provided at the end of each chapter. A roster of all the figures and tables of this

thesis initiate the textual content of the thesis. Further, each of the three distinct

parts of the thesis begins with an introduction, which expounds the specific issues

considered therein, emphasizing the salient concepts utilized in the analysis of that

issue. Following the introduction, we effect the analysis of the particular issue of

interest. The salient features and achievements of each example are recapitulated

in the section concluding the analysis. This section also outlines possible future di-

rections pertinent to the specific example analyzed. Such an exposition eschews the

need for an overall conclusion to this thesis. Indicated within the different portions

of the thesis is the relationship to coarse-graining and multiscales; however, we do

not lapse into a detailed discussion of the same. The underlying reasons for such

an attitude lies in the exposition of the above sections, considered together with our

objective of emphasizing the specific achievements rather than those consistent with
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the broader theme. Finally, in applicable cases, we also indicate at the outset the

literature citation of the publication which the text embodies.
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Chapter 2

Introduction

Reference: Venkat Ganesan and Howard Brenner, "A diffuse interface model of two-

phase flow in porous media," Proc. R. Soc. Lond. A, In press (1999).

2.1 Flows in Porous Media

A plethora of natural phenomena and engineered processes involve the flow of im-

miscible fluids through porous media. For example, the movement of water and air

through soils, relevant to the field of hydrology [39], has long been studied from

both theoretical and experimental perspectives beginning with the pioneering work

of Buckingham [10]. In the field of petroleum engineering, the secondary' and ter-

tiary stages of oil recovery constitute economically important examples of biphasic

flows in porous media. Examples of bi- and multi-phase flows relevant to industrial

applications are far too numerous and well known to require review here. An overall

introduction relevant to applications is provided by Marle [34].

Theoretical analysis of biphasic flows through a porous matrix, which constitutes

the main focus of this part of the thesis, is extremely complicated owing, inter alia,

to the complex geometric configuration of the pore space. Realistic porous-medium

geometries constitute a virtually intractable configuration, even for single-phase flows.

'In the secondary stage of oil recovery, crude oil is often displaced from the interstices of the rock
by injecting water.
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In fact, complete experimental characterization of the skeletal structure of an actual

porous medium is itself an extremely difficult geometric proposition [2].

Given these circumstances, and motivated by both hydrological and petroleum

engineering applications, it has proved expedient heretofore to formulate theoretical

analyses of fluid flow phenomena through porous media at an observable scale (the

Darcyscale or macroscale) through the use of averaged pore-scale (i.e., microscale)

fields. Fundamental to this notion is the assumption that to each macroscale 'point'

there corresponds a microscale volume element encompassing a representative sample

of the local (instantaneous or time-averaged) contents of the porous medium in the

neighborhood of that point [4]. This dual scale 'micro-macro' modeling is justified

under the assumption that there exists a wide disparity in linear dimensions between

the pore and observable scales, whence microscale lengths appear as infinitesimals

at the macroscale. The porous rock formations present in naturally-occurring oil

recovery wells exemplify such disparate length scales. While on the one hand the pore

level is characterized by length scales of the orders of millimeters, with pore sizes of

the order of microns, on the other hand the Darcyscale or macroscale is characterized

by changes occurring on the lengthscales of meters - thereby facilitating such a

'macro' approach [cf. Fig. (2-1) for an illustration of the 'micro-macro' viewpoint].

Figure 2-1: The "micro-" (or pore-level) and the "macro-" (or Darcy level) scale of a
porous medium.
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Under such a micro-macro modeling approach, and for single-phase flows, Darcy's

law governs the slow, monophasic flow of a Newtonian fluid through a porous medium

under the animating effects of gravity and/or externally imposed pressure gradients

[36]. The essence of Darcy's law is the relationship between the macroscopic pressure

gradient Vp and the macroscopic (superficial) velocity vector V. (Notation for the

macroscopic quantities is clarified in a later section):

K
A - (VP - Pg), (2.1)

where [ and -p respectively denote the viscosity and the density of the interstitial fluid,

g is the gravity vector, and K the permeability tensor. The latter phenomenological

coefficient encapsulates all of the macroscopically unobservable microscale phenom-

ena. For a macroscopically inhomogeneous flow the above relationship is convention-

ally assumed to hold at each macroscale point R in the porous medium.

Though proposed empirically based on experimental observations [14], the single

phase Darcy's law (2.1) has subsequently been proved by rigorous theoretical argu-

ments [2, 4, 6, 7, 36]. Such theoretical efforts have primarily focussed on the volume

averaging of the microscale equations utilizing realistic assumptions regarding the ge-

ometrical nature of the porous medium. In general, such studies can be divided into

two categories depending on the particular assumption employed to model the geom-

etry of the porous medium. Studies belonging to the first category employ a periodic

model of the microscale level [2, 6, 7], whereas those belonging to the latter category

employ a disordered, statistical model of the microscale geometry [4, 36]. Both ap-

proaches have been shown to yield predictions which accord semi-quantitatively with

observed experimental facts.

In modeling multiphase flows, Darcy's law has been interpreted as applying to

each phase separately, this multiphase analog of Darcy's law being proposed on an

empirical basis [34]. Explicitly, with V, the superficial or seepage velocity vector of
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phase a relative to the fixed pores, the two-phase form of Darcy's law is taken to be

ve = - 1 KKr - (VP, - Pag) (a 1,2), (2.2)
pa

where Kr, represents the relative permeability of phase a. The latter is defined as

Kra = K/JJKJJ,

with K0 the permeability of the porous medium to phase a, and IIKJI a norm of the

single-phase permeability of the porous medium (assumed to be a strictly geometri-

cal quantity, possessing the same value for each phase) [cf. eq. (2.1)]; PC, denotes the

macroscopic density of phase a (i.e., the mass of phase a per unit of macroscopic

interstitial volume). The presence of more than one phase is conventionally quan-

tified through the saturation s, (Si + s2 = 1), the latter denoting the macroscopic

volume fraction of phase a. Kr, is assumed to be dependent only on the saturations.

Furthermore, P1 -P2 = P,[sI] defines the capillary pressure, assumed to be a function

only of the saturation.

In contrast to the experimental and the theoretical success of single phase Darcy's

law, the biphasic analog (2.2) has defied a complete understanding. The following sec-

tions reviews and critiques some of the aspects which previous theoretical researches

on multiphase flows have focused their efforts upon.

2.2 Review of Prior Studies

Table 2.1 presents a brief literature review of some of the previous researches and the

specific issues addressed therein. The three major fundamental aspects of multiphase

flows towards which prior researches have primarily been directed are as follows:

(i) Many studies (e.g., [16, 32, 34]) have focused on the dynamics of displacement

fronts in two-phase systems, modeling the resulting phenomena using the multiphase

form (2.2) of Darcy's law. Conservation equations for the respective saturations
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si and S2, namely

Osi + V - (sivi) = 0; Os2 + V - (s 2v 2 ) = 0, (2.3a,b)
Ot at

supplement (2.2) - with closure of the system of equations effected by the rela-

tionships P, = Pc[si] and Kra = Kra[s1], the explicit functional relationship being

assumed known from experiments.

Researches on this particular aspect of multiphase flow has been pioneered by

Buckley & Leverett [11] and others (refer table 2.1). A majority of these studies are

concerned with the analysis of the explicit nature of the solutions arising from the

set of differential equations constituted by (2.3a,b) and the two-phase Darcy's laws

(2.2).

(ii) Percolation theories [9] have been used as simplistic models of the complex

pore-level flow phenomena [29]. These theories, which concentrate on universal be-

havior invariant to the quantitative geometrical details of the system (as well as to

the physical properties of the flowing fluids), are usually used to model transitions

occurring between gross types of system behavior. Some such characteristic features

studied by employing such models include the 'critical' transitions observed during

the drainage and wetting processes in two-phase flows. Within the context of per-

colation theories, such transitions are claimed to be a manifestation of a percolation

transition occurring with the system. However, the exact relationship between such

discrete models (employing a lattice structure to characterize the porous medium)

and the actual flow phenomena taking place in porous media has not been rationally

established [1].

(iii) A third aspect of research, pursued primarily by continuum mechanicians

[22, 33], attempts to establish the credibility of the macroscale equations (2.2) to

(2.3a,b), by averaging the 'pore-level' Navier-Stokes and continuity equations under-

lying them, albeit generally by different schemes specific to each investigator. Such

studies are of fundamental importance since, in contrast to the situation accompany-

ing single-phase flows, the two-phase Darcy's laws have not been firmly established
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Table 2.1: A brief literature review of previous researches on two phase flows.

Q Darcy's law to two-phase flows
" Muskat, Wyckoff, Botset and Myres [35]
" Douglas, Blair and Wagner [19]
" Fayers and Perrine [21]

Q Buckley-Leverett approach to two-phase flows
" Buckley and Leverett [11]
" Cardwell [13]
" Fayers and Perrine [21]
" Schmidt, Soo and Radke [43]

o Displacement of interfacial fronts
" Douglas, Blair and Wagner [19]
* Rachford [42]
" Yortsos and Fokas [48]

Q Percolation theories
" Lenormand [30, 31]
* deGennes [16, 17]
" Larson, Scriven and Davis [29]

o Viscous fingering instability
" van Meures and van der Poel [45]
" Rachford [41]
* Homsy [24]

Q Derivation of two phase Darcy's laws
" Whitaker [46]
* Gray and Hassanizadeh [22, 23]
" Marle [33]
" Auriault [3]

39



either on theoretical or experimental grounds. A rigorous derivation of the macroscale

equations for two phase flows, would possibly elucidate the regime of validity of the

Darcy's laws and the other macroscale concepts employed in the description of two

phase flows.

Our own contribution in this work falls into the third category listed above, al-

though from a unique perspective which involves viewing the fluid-fluid interfaces

in a porous medium as diffuse, continuous transition regions, rather than as sin-

gular surfaces separating immiscible phases. It should however be noted that even

the past singular interface efforts [22, 33, 38, 46], aimed at rationally effecting this

micro-macro transition, have generally resulted in only partial (and in some cases

even contradictory) answers, thus embedding the bi-(and multi-) phasic Darcy's law

as yet only within an empirical framework. However, it has long been argued [23]

that empirical approaches to modeling multiphase flows based on assumed analogies

with single-phase flows might be invalidated either by theory, experiments, or both.

We expound below on what we believe to be some of the accepted shortcomings of

such an empirical extension. Eventually, this critique provides the motivation for our

own works:

2.3 Critique of Previous Researches

(a) Whereas Darcy's law for single-phase flow can be proved rigorously [27, 36] begin-

ning with a microscale model of the pertinent flow phenomena, the rational extension

of this approach to multiphase flows has not yet been achieved. Even the choices

for the appropriate variables to describe such multiphase flows (saturation s1, capil-

lary pressure Pc) have yet to rigorously justified [1]. Furthermore, the fundamental

assumption that the seepage velocity of each phase should depend functionally only

upon the pressure gradient existing in that phase has been called into question [16, 261.

(b) A natural fallout arising from the traditional choice of independent variables

is the presence of the capillary pressure Pc, which is usually branded as an 'experi-

mental' quantity [16, 34]. The physical interpretation of this variable has proved a
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major deterrent to many theoretical analyses of multiphase flows for manifold reasons

the primary obstacle being the commonly-observed hysteretic phenomena occur-

ring in experimental capillary pressure vs saturation curves [Fig. (2-2)], depending

on whether drainage (displacement of the wetting fluid) or imbibition (displacement

of the nonwetting fluid) is involved. Though normally represented by two distinct

curves, it is not universally recognized that the capillary pressure may also take on

any value intermediate between the two. Yet to be explained is the fundamental

reason for expecting such a 'phase equilibrium' type of relationship to exist between

the macroscopic pressures in the two flowing phases - neither of which phases exists

in a state of equilibrium, much less with one another. In addition, the experimental

capillary pressure curves are obtained by allowing the multiphase mixture to attain

static equilibrium. It is questionable whether use of the same static data is appropri-

ate for modeling the inherently dynamical phenomena occurring during flow through

porous media, though that is what is frequently done.

P

Z -

residual saturatio4 in
non-wetting fluid

0 s 1
NM

Figure 2-2: Capillary pressure vs saturation relationship. SNM represents the sat-

uration of the nonwetting fluid [adapted from Marle (1981)]. Refer chapter 6 for a

description, and a possible explanation of this plot.
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Our major criticism of prior approaches to multiphase flow modeling lies in their

failure to clearly distinguish conceptually between what constitutes a 'phase' and

what constitutes a 'component' (or 'species') [5]. The confusion is compounded by

loose usage of the concept of interpenetrating continua [22]. Such interpenetrating

continuum (IPC)-type theories of immiscible mixtures were originally formulated in

the context of fluid-solid particle mixtures [37], wherein such a viewpoint seemed in-

tuitively appropriate, especially when no material was exchanged between the solid

and the fluid phases. Among other distinguishing features of this special class of

mixtures is the fact that which of the two phases constitutes the continuous phase is

never in doubt. However, mixture theories for immiscible fluid-fluid systems possess

manifestly contrasting features [5, 18], primarily as a result of the interfacial boundary

conditions as well as of the question of which of the two phases is the continuous phase

(not even addressing the issue of 'bicontinuous' mixtures [15], where neither phase

can be uniquely classified as constituting the continuous or discontinuous phase). Re-

cently, the interfacial boundary conditions were themselves also averaged [22], thereby

creating additional field equations involving new physical variables. The additional

'macroscale' interfacial equations arising from this interfacial averaging scheme then

need to be solved conjointly with the above singular Darcyscale equations. However,

the physical interpretation to be ascribed to such additional interfacial field vari-

ables seems obscure in the context of the IPC picture. Moreover, as indicated below,

the existence of two ad hoc tenets underlying the philosophy of mixture theories has

diminished the practical utility of its predictions:

(a) The spirit of the mixture theories is to accept the macroscale equations (ob-

tained by suitable averaging of the microscale equations) as fundamental, and to

propose constitutive relations for the various macroscale fields appearing therein as

functions of a select set of independent variables (chosen so as to satisfy suitable gen-

eral criteria) [22]. The sentiment is to compare the resulting mathematical predictions

(after complete quantitative calculations of the requisite macroscale field variables) of

such a model with experimental observations so as to authenticate the model - a step

rarely achieved fully in practice owing to the complexity of the governing equations
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as well as of the experimental difficulties in effecting the requisite measurements.

(b) The manner in which mixture theories treat constitutive equations as fun-

damental entities has eventually obscured the physical interpretation of the singular

Darcyscale fields in terms of their precursor singular-interface microscale fields. For

instance, Hassanizadeh & Gray [23] state that: 'The pressures present in the capillary

pressure relationships are not the averages of the (respective) microscopic pressures

but instead are to be determined from a macroscopic constitutive equation for the

Helmholtz free energy A.' However, the precise relationship of the macroscale free

energy A to its microscale counterpart A is never clarified.

2.4 Outline and Summary of Approach

What follows is not a comprehensive program aimed at reformulating the theory of

mixtures as a whole based on the diffuse interface model. Rather, attention is focused

explicitly on the more limited goal of modeling slow biphasic flows through porous

media. Nevertheless, some of the concepts advanced are believed to possess relevance

within the more general context of mixture theory. The philosophy used in our

modeling approach differs from that underlying conventional theories of multiphase

flow through porous media in the following ways:

(a) The central notions of immiscibility, species, and phases at both the micro-

and macro-levels are clarified, invoking a viewpoint different from that employed in

traditional (singular Darcy) approaches to multiphase fluid flow phenomena. Simul-

taneously, those aspects involving interfacial balance conditions are accounted for

in a consistent manner. Purely formal axiomatic continuum-mechanical theories are

eschewed in favor of the physical aspects of the phenomena. For example, rational

mechanical treatments of mixtures establish appropriate thermodynamic identities

through use of the equilibrium version of the Coleman-Noll inequality (cf. [22] and

the references cited therein). In contrast, here it is assumed that those classical in-

tensive thermodynamic identities which are locally valid pointwise for inhomogeneous

microscale continua hold equally well at the macroscale (diffuse Darcyscale). Given
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the simplistic nature of the description afforded by our treatment, we believe that

such a hypothesis would be borne out from the Coleman-Noll inequality too.

(b) Our identification of appropriate macrofields is based upon their rigorous phys-

ical, scale-invariant definitions rather than upon simple ad hoc volume averaging of

the corresponding microfields. For instance (see section 4.5), the continuum-level

Darcyscale mass-average seepage velocity vector V at a given point R, say, is defined

as that field which when scalarly multiplied by an arbitrarily directed Darcyscale

surface element d- situated at R together with the Darcyscale mass density -p gives

the physical mass rate of flow,

dfn = Pd- -V, (2.4)

at which fluid crosses d- in the direction of n (the normal to ds). This continuum-

mechanical definition of V contrasts with the usual definition of V as being the volume-

average of the microfield v taken over some representative volume element V centered

at R:

v = - vdV.

Similarly, the Darcyscale continuum stress field P is defined so as to satisfy the

physical, Cauchy, continuum-mechanical definition

dF = ds -P, (2.5)

where (with the usual convention) dF is the vector force exerted across d9 by the

fluid situated on one side of the surface upon the fluid lying on the opposite side. At

appropriate points in the subsequent text, similar physically-based macroscale defini-

tions will be enunciated relevant to the other pertinent fields there being introduced.

Such considerations are of prime importance since they relate directly to the man-

ner in which an experimental probe, with its appropriately sized aperture, properly

registers the local values of the dynamical variables it purports to measure. Con-

ventional theories, which utilize a mathematical volume averaging of the microscale
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fields to define their respective macroscale counterparts, generally fail to provide such

a physical interpretation of the macroscale fields [46, 47].

(c) The diffuse Darcyscale fields appearing in the macroscale conservation equa-

tions governing the pertinent transport phenomena are explicitly defined through

their microcontinuum counterparts, as they are - after all - a manifestation of the

underlying microscale phenomena viewed on a different length scale. In any ratio-

nal theory, operational definitions of the macroscale quantities calculable in principle

(from solutions of the governing microscale equations) need to be explicitly provided

for those willing to expend the computational resources necessary to literally perform

these calculations based on these 'recipes'. This philosophy is similar to that under-

lying the statistical mechanics of transport processes (the foundations of which were

legitimatized and rendered rigorous by Kirkwood [28]). In particular, that scheme

provides microscopic, molecularly-based expressions for the magnitudes of macro-

scopic transport coefficients like viscosity, etc., despite the fact that the constitutive

equations themselves were already known on the basis of macroscopic experiments

independently of the values of the macroscopic phenomenological coefficients appear-

ing therein. In our analogy we are in some sense, albeit imperfectly, likening: (i) the

discrete molecular, microscale view with the discrete nature of the particle- (or equiv-

alent pore-) level view of the porous medium; (ii) the continuum-level manifestation

of this discrete molecular view, with our continuum Darcyscale view.

Important conceptual differences exist between conventional two-component sys-

tems and two-phase systems, especially with respect to the temporal configurational

evolution of the pertinent fields, where the concept of a 'micro-macro' time scale needs

to be identified and quantified. Our contribution appears to be the first wherein a rig-

orous foundational basis is indicated for a time-averaging scheme (see also [25]). Even-

tually, rigorous, unambiguous, physically-based definitions are adopted for spatially-

and time-averaged diffuse Darcyscale fields in terms of their microscale field counter-

parts. Subsequently, these macroscale definitions are used to derive the Darcyscale

field conservation equations from their pore-level precursors.

Within the proposed framework of a multicomponent mixture description of flow
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at the Darcyscale, the concept of phase-specific pressures is identified with species-

specific pressures, and a relationship for the capillary pressure derived in terms of

appropriately-defined microcontinuum fields. Such an analysis serves to clarify the re-

lationship between our fine-scale, diffuse Darcyscale model and conventional, coarser-

scale, singular-surface Darcyscale models (see section 5.1). Discussion following the

derivation of the capillary pressure relationship in section 5.2 leads to several signifi-

cant observations. As an example illustrating the application of our model in practice,

in section 6.3 we use a phenomenological set of pore-level constitutive equations to

show how the previously empirical two-phase Darcy's law formulation can be de-

rived from first principles via a set of linearizing assumptions. Explicitly, the diffuse

two-component Darcyscale field equations are subjected to a singular perturbation

analysis, enabling us to derive the conventional, otherwise empirical, singular-surface,

Darcyscale equations commonly employed in practice. This illustrates the fact that

the novel framework erected in this paper can serve a dual purpose - namely, to

provide insights into the forms of macroscopic constitutive equations as well as to

derive the more generic macroscale transport equations into which such constitutive

relations are to be embedded.

It is important to delineate the major assumptions involved in the subsequent

analysis so as to both identify the scope of our work and to spur future extensions

thereof. We concentrate on a simple geometric model of a porous medium, namely

a spatially periodic skeletal array [7, 8] (described in section 4.1). Such a definite

geometrical construct, which may at first appear overly restrictive, has been shown

to serve as a good theoretical model for a number of phenomena to date, especially

single-phase flows through porous media [6]. Deterministic models of this nature (in

contrast to statistical models) enable one to define in a completely rigorous manner

all of the macroscopic fields appearing in the Darcyscale description of the several

transport processes, while simultaneously furnishing definitive error estimates arising

in the eventual continuum description resulting from the spatial and temporal ho-

mogenization of the discrete microscale system. Describing the flow and transport in

such model porous media leads to a consideration of what are termed 'homogeneous
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multiphase flows,' defined as follows [40, 47]:

'A porous medium is homogeneous with respect to a given process and averaging

volume when the effective transport coefficients in the volume-averaged equations are

independent of position. If the porous medium is not homogeneous, it is heteroge-

neous. '

Results based on strictly spatially periodic fields can also be expected to apply

in circumstances wherein a slow spatial modulation is superposed on the spatial pe-

riodicity (common models for homogenization theories [3, 6]). One might also hope

that results gleaned from this modulated model could also be used for the macro-

scopic modeling of displacement fronts - by arguing that the macroscopic front is,

in reality, a diffuse transition region extending over a significant microscale distance

(embodying many unit cells of the spatially periodic medium, but nevertheless still

small compared with the overall length of the porous medium in the direction of net

flow). The phenomenon of solid-liquid contact lines [20], both static and dynamic,

as well as issues of wettability of the porous medium are omitted in this initial foray.

Though very relevant to practical flows in porous media, this area remains extremely

controversial. Its role in multiphase flow phenomena is still widely debated to the

extent that even the boundary-condition equations governing the microscale fluid

motions are not yet fully established. 2

Finally, with regard to the thermodynamics of these diffuse 'multiphase' systems,

we make the crucial assumption in the subsequent development that it is permissible

to employ standard thermodynamic identities at both the micro- and macroscales.

This assumption appears reasonable in view of the multicomponent mixture model

(see also [26, 33, 38]) subsequently proposed in chapter 3 as the conception underly-

ing diffuse Darcyscale phenomena. For instance, we hypothesize that a macroscale

thermodynamic chemical potential 7Y can be defined within our diffuse Darcy frame-

21ssues pertaining to wettability can perhaps be incorporated into our work by modeling the

presence of the solid surface through an interaction potential (see [12] and [44]).
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work as

def. OF= --e , (2.6)

given the existence of a macroscopic free energy density function F and a macroscopic

density p, each being derived (in a manner to be discussed) from the respective

comparable continuum microscale fields F and p by well-defined spatial and temporal

averages of the latter.

While a complete explanation of the panoply of multiphase flow phenomena ac-

companying flow through a porous medium of arbitrary configuration is the eventual

goal of our diffuse interface approach, such an effort is overly ambitious at present.

Porous rock formations encountered in oil recovery wells are neither homogeneous nor

possesses a periodic microstructure. Further, the wetting properties of the liquids

play an important role in determining the microscale flow patterns. Moreover, flows

in real rock formations may be characterized by highly nonequilibrium phenomena

like Haynes jumps, etc., representative of high Reynolds number flows. Our assump-

tions, outlined in the previous paragraph and subsequently elaborated in the text,

eschew these complications with the aim of developing a mathematically tractable

model of a porous medium so as to uncover key insights which would hopefully prove

applicable to real flows through the irregular formations encountered in nature.

In essence, this section of the thesis is divided into two distinct complementary

parts. The first part is represented by chapter 3, while the latter part is constituted

by chapters 4, 5 and 6. Chapter 3 provides a self-contained generic introduction to

the diffuse interface model without reference to its subsequent application to porous

medium flows. Chapters 4 - 6 entails specific applications of the generic framework

created in Chapter 3 to situations involving flows through porous media.

Chapter 3 reviews the diffuse interface model embodying our own perspective for

describing immiscible flows, using what we have chosen to call the 'multicomponent

mixture' framework. This approach successfully overcomes many of the difficulties

outlined above that have been encountered in prior analyses. Section 3.1 begins with
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an introduction to the equations and boundary conditions encountered in the con-

ventional or the singular interface model for describing two-phase flows. Section 3.2

reviews the spirit of the diffuse interface model, along with a repertoire of comparable

conservation equations encountered within this framework. Section 3.3 outlines the

constitutive forms for the various fields present in the conservation equations outlined

in the previous section. Section 3.4 is devoted to clarifying issues relating to immisci-

bility, and to the manner in which it is supported within our diffuse interface frame-

work. Finally, in section 3.5 we illustrate (using singular perturbation techniques)

the precise manner in which the diffuse interface equations reduce to the singular-

interface multiphase flow equations. This section also serves simultaneously to clarify

the generic mathematical framework within which the diffuse interface model needs

to be utilized in order to effect analytical calculations of practical fluid-mechanical

problems, viz., through a sequential, successively improvable, singular perturbation

approach.

Chapter 4 begins with a brief introduction to the geometrical characteristics of

the spatially periodic model of a porous medium, placing special emphasis on the

notation and definitions subsequently used in the text. Sections 4.2 and 4.3 consider

the appropriate microscale conservation equations applicable within the binary mix-

ture framework model. Using physically-based definitions outlined in section 4.4 we

execute a rigorous transition from the diffuse microscale to the diffuse Darcyscale to

derive the 'diffuse' Darcyscale equations in section 4.5.

Chapter 5 is concerned the explicit identification of the phase specific quantities at

the macroscale. Such an identification permits the transition from the finer, diffuse

Darcyscale to the coarser, singular Darcyscale. Section 5.1 defines phase-specific

quantities based upon diffuse Darcyscale fields. In section 5.2 we propose a rational

definition of capillary pressure, arising as a natural consequence of the transition

from the diffuse Darcyscale to the singular Darcyscale. Up until section 5.3 the

analysis completely eschews use of the constitutive equations outlined in section 3.3.

In sections 5.3 and 5.4 we utilize the constitutive equations outlined in section 3.3 to

provide a number of new insights into the observed hysteresis phenomena occurring
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during capillary pressure vs saturation experiments. This discussion is supplemented

in section 5.5 with an exposition of results gleaned from the constitutive equations

governing the nonequilibrium conservation equations.

In chapter 6, concepts drawn from irreversible thermodynamics are used in section

6.1 to suggest and illustrate possible forms for the macroscale constitutive relations.

We also analyze a simple linear example in section 6.3 to verify some of the predictions

obtained through the framework of irreversible thermodynamics.

Finally, chapter 7 summarizes our work, pointing out possible future research

directions. Several appendices and footnotes, elaborating details that are glossed

over in the text, complete the analysis.
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Chapter 3

Diffuse Interface Model

This chapter provides a brief introduction and review of the salient aspects of the

diffuse interface model. The main objective of this chapter is to demonstrate the

approach embodied within the diffuse interface model in the context of modeling dy-

namical phenomena in 'multiphase' flows. Such a discussion also serves to clarify the

relationship of the diffuse interface model to the singular interface viewpoint which is

conventionally used in modeling multiphase flows. To accomplish the latter objective

we employ the formal techniques of matched asymptotic expansions to thereby clarify

the asymptotic equivalence of the two seemingly contrasting viewpoints. This chapter

also outlines the constitutive forms of various physical quantities that appear within

the governing transport equations. Such an explicit identification enables the possible

application of numerical techniques to the solutions of the governing microscale equa-

tions. The resulting solutions can then be embedded within the rigorous framework

erected in the subsequent chapter to thereby accomplish the transition from the mi-

croscale to the macroscale level. The conception accompanying the diffuse interface

viewpoint is employed in the subsequent chapters to derive and clarify the multiphase

flow equations and concepts at the macroscale level.

An interface has traditionally been viewed [14] as a singular surface separating

two immiscible bulk fluids or phases. In equilibrium situations these bulk phases are

regarded as being separately homogeneous, although each will generally be inhomo-

geneous in nonequilibrium states. Each bulk phase is separately characterized by its
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own material properties which, while continuous within the individual bulk phases,

may display a sharp jump in magnitude across the interface. This singular interfa-

cial surface is itself endowed with and characterized by its own material properties,

such as interfacial tension, shear and dilatational viscosities, etc. [23]. Traditional

microscale descriptions of two-phase flows (in the absence of the porous medium)

involve conservation field equations written for each of the two bulk phases, together

with corresponding matching conditions imposed on the respective values of the bulk

fields at the interfacial surface - the latter matching conditions being derived by con-

sidering the pertinent transport phenomena occurring across and within the interface

[cf. (3.1) and (3.2)], the latter entailing new, interfacial fields [9, 23].

This two-dimensional, singular view of the interface has, however, long been rec-

ognized as representing only an asymptotic mathematical approximation of the true

physical state of affairs [17, 26]. In reality, when viewed on a sufficiently fine length

scale the interfacial region between two immiscible fluids is a highly inhomogeneous

three-dimensional transition region (even at equilibrium) over which rapid changes in

continuum-mechanical fields and concomitant material properties may occur [10, 15]

[cf. Fig. (3-1)]. In this three-dimensional diffuse view of the interface, the relevant

continuum-mechanical phenomenological properties vary continuously throughout the

entire fluid domain, with some fields experiencing extremely steep gradients within

the interfacial region in a direction normal to the 'interface.' Examples of such rapidly

varying fields include the pressure field and, when a surfactant is 'adsorbed' within

the interfacial region, the three-dimensional mass density field pi of the surfactant

species i [24].

Although the traditional singular-surface view of an interface proves specially con-

venient in many practical contexts, some applications require a finer-scale continuum

view of the interfacial region. Such microscale perspectives have primarily been used

for two different purposes:

(a) Theoretical investigation of transport processes involving moving and deform-

ing interfaces [10, 15, 19]: These works concentrate on the distinction between the

true, diffuse picture of the interface and its approximate representation as a singular
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Singular interface

(2

( Diffuse transition
region

2

(b)

Figure 3-1: The (a) singular and (b) diffuse viewpoints of an interface. p denotes
a generic physical property, like for instance, density, viscosity, etc. In the singular
view (wherein the relevant lengthscale is embodied by the lengthscale of the appara-
tus, denoted L), p exemplifies a sharp discontinuity at the interface, signifying the
distinct physical properties possessed by the two phases. In the diffuse view (the rel-
evant lengthscale is now embodied by the interfacial thickness ), p displays a steep,
nevertheless continuous transition across the interface.
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surface. Such theories attempt a reconciliation of the continuous, diffuse-interface

view, which admits large inhomogeneities in material properties over a narrow transi-

tion region, with the more conventional singular-surface view of the interface, which

lumps the inhomogeneities into so-called 'surface-excess' quantities. One such ap-

plication, emphasized in the work of Mavrovouniotis & Brenner [19], deals with the

distinction between material and nonmaterial interfaces.

(b) More recently, the diffuse view of interfaces has gone beyond simply clarify-

ing the physical meaning of surface-excess quantities. Phenomenological constitutive

equations have been proposed that enable one to work directly with the finer-scale

continuous, three-dimensional, inhomogeneous fluid. This is in lieu of working sepa-

rately with the bulk fluids lying on either side of the singular interface together with

the corresponding matching conditions imposed at that interface. These approaches,

which owe their origin to the seminal work of Cahn & Hilliard [7], have been re-

vived and popularized by Caginalp and coworkers [3, 4], and others. The present

investigation entails one further, albeit novel, application of this approach.

3.1 Singular Interface Equations

The singular interface approach exemplifies the discrete nature of the bulk fluids or

phases of a two-phase system. Such a discrete structure is inherent in the governing

microscale conservation equations [9], which can be written separately for each of the

two phases in the generic form (refer to table 3.1 for specific identifications)

0P+ V - (v@b) + V - J = 7r + C, (3.1)(3.1at

to which are appended matching conditions at the interface embodying the generic

interfacial transport equation:

- - U u- Vs - Vs - (IS -v'O)8 + V, - (Is -J) - 7r' - 0' = -n - [[(v - u)V) + J]].
6t

(3.2)
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Volumetric Volumetric rate of

Physical Volumetric Areal-flux
rate of pro- supply by external

property, P density, V5 density, J
duction, Ir sources, C

Mass p 0 0 0

Species i p JD 0 0

Linear momentum pv -P 0 pF

Table 3.1: Identification of the volumetric and areal flux density terms appearing in

the generic conservation equation (3.1) for the transport property P.

In the latter the superscript s denotes surface-excess quantities ascribed to the sin-

gular interface, whereas n represents the unit normal to the interface, I, -_ I - nn

the surface idemfactor, VS - is - V the surface gradient operator, and u the velocity

of the interface [which in the general case of nonmaterial interfaces can differ from

the bulk velocities v (i.e., v+, v-) on either side of the interface]; [[. . . ]] denotes the

jump in the value of the argument across the interfacial surface. Quantification of the

surface-excess mass balance is achieved through the surface-excess mass density ps,

which is conventionally assumed to be zero. Adsorbed surfactant species at the in-

terface correspond to non-zero values of p (i = 1, 2,...). Furthermore, 6,/t denotes

the interfacial convected time derivative [9, 19].

3.2 Diffuse Interface Model

Theoretical analyses which treat the interface as a region characterized by a con-

tinuous variation of physical properties owe their genesis to the phenomenological

constitutive model proposed by Cahn & Hilliard [7]. The latter can be also be viewed

as a variant of the dynamical Landau-Ginzburg theory of critical phenomena [16].

This model allows for the coexistence of two phases by representing the free energy
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of the interfacial system as a sum of two terms: (a) a free energy function (depen-

dent on the component concentrations) describing the miscibility behavior; (b) a term

dependent on the gradients (commonly truncated at the second order) of the compo-

nent concentrations, serving to model interfacial tension and other capillary effects

(cf. section 3.3). This approach is widely used to model spinodal decomposition

and nucleation phenomena [5, 6]. While it is generally cautioned that such models

intrinsically possess a restricted range of validity [7], being strictly applicable only

near the critical point (or the consolute point, in the case of binary liquid mixtures),

great success has nevertheless been achieved in using this model for studying noncrit-

ical behavior in several other contexts, including the equilibrium thermodynamics of

microstructures [8] as well as the dynamics of solid melts [3]. It is generally believed

that the approximations inherent in using this model for noncritical mixtures do not

result in excessively large errors when applied to binary liquid mixtures [27].

In this section we outline the general form of the two-phase equations, valid for

incompressible and immiscible two-phase mixtures. Discussion of the constitutive

equations required therein, for which we use variants of the Cahn-Hilliard model, is

postponed until the next section.

It is imperative before proceeding further to imbibe the spirit of the diffuse inter-

face model by recognizing that at this fine-scale level of description there no longer

exists a discontinuous or singular surface separating two bulk phases. Rather, the

system is envisioned as being an inhomogeneous single-phase multicomponent mix-

ture, more precisely a solution (the number of components being chosen here as

two), locally described by conventional, spatially varying composition variables [7].

The governing conservation transport equations are then simply the classical mass

conservation equations for each of the two species, together with the momentum

conservation equation for the mixture as a whole; explicitly,

0 Pi + V - (pivi) = 0; OP2 + V - (P2v 2) = 0, (3.3a,b)
at at

61



(pv) +V - (pvv) = -Vp+V -rv+V -rc+Ep2  Fje, (3.4)
at

where pi, vi and Fie (i = 1, 2) respectively denote the species-specific mass density,

velocity, and external force fields.1 As usual, p denotes the pressure field, r, the

viscous deviatoric stress tensor, p the mass density of the mixture (p = P1 + P2), and

v the mass-average velocity of the mixture [cf. (3.7)]. The continuous microscale

vector field V - rc = FP, say, represents the precursor of the macroscale physico-

chemical capillary or interfacial forces, arising as a consequence of the steep species

concentration gradients Opi/&n existing within the diffuse interfacial region in a di-

rection n normal to the 'interface'. The implicit macroscale interfacial tension and

related nonequilibrium capillary effects traditionally associated with the presence of a

singular surface (which includes interfacial viscosities 2) are thus explicitly accounted

for in our model by the appearance of this force field. As such, the physicochemical

volumetric force density field FP constitutes a central feature of our diffuse interface

model, and the ultimate success of this model depends upon our ability to provide a

rational constitutive equation for FP - an issue deferred until the next section [cf.

(3.18)].

We assume at the outset that the mixture as a whole is incompressible. This

assumption allows the microscale pressure field p to be treated as an independent

dynamical variable rather than as a dependent variable, functionally dependent upon

temperature, composition, etc. Further, upon supposing that the law of additive

volumes applies to the mixture, the relation between the density p of the mixture and

1The presence of a body-force field Fie, e.g., a gravity field, ultimately precludes the scenario

of spatially-periodic microscale fields envisioned in later sections in cases where the immiscible

phases possess different densities. However, to maintain generality of the exposition, we eschew that

constraint until section 6.3.
2In the singular interface model, interfacial viscosities are associated with the adsorption of

surfactant species on the 'interfacial surface.' In our diffuse model of the interface, the presence of a

surfactant species in the two-phase mixture would constitute a ternary system. Though most of our

arguments in subsequent sections remain valid in this ternary case, we do not formally delve into the

complexities of such situations in this preliminary report, wherein we confine ourselves exclusively

to binary systems.
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the densities p' of the pure components is given simply by the linear relation [1],

p pC + pO(1 - C), (3.5)

where c denotes the volume fraction of component 1. The latter concentration is

henceforth taken as the relevant composition variable when characterizing our binary

system. The assumption of incompressibility shows that at the microscale only one

composition variable is relevant, namely, the volume fraction c [since pi = cp', and

P2 = (1 - c)p']. This observation also makes the number of scalar equations defined

by (3.3a,b) - (3.4), namely five, consistent with the corresponding number of unknown

scalar variables embodied in c, p and v.

Equations (3.3a,b) may be rewritten as

Pi +V (piv) =-VJi; P2+ V (P2V) = -V - J2,
at at

(3.6a,b)

wherein the mass-average velocity v is defined by the relation

PV = PIV1 + P2V2, (3.7)

and the respective diffusion fluxes J1 and J 2 as

J1 = p1(Vi - v); J 2 = p2 (v 2 - v). (3.8a,b)

[In view of the definition (3.7) of the mixture velocity v, the two diffusion fluxes are

related by the identity J 1 + J 2 = 0, whence we can choose to denote J1 = -J 2  J,

say, and so by adding equations (3.3a,b) obtain the conventional equation of continuity

for the mixture:

+P V - (pv) = 0, (3.9)
at
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together with a diffusion equation for one of the species, say 1:

+V + (c) = -V - J. (3.10)
Ot

While this index-free notation representation will be the form employed in the next

section when dealing with constitutive equations, considerations of invariance afforded

by the interchangeability of the arbitrary labels identifying species "1" and "2" suggest

that for the present we opt for the individual species-specific forms, namely (3.6a,b).]

Equations (3.6a,b) and (3.4) together with appropriate boundary conditions dic-

tated by geometrical and kinematical considerations constitute a complete set of con-

servation equations serving to determine the diffuse microscale fields c, p, v. These

equations are identical to the conventional multicomponent equations used to de-

scribe the flow of miscible, single-phase, binary mixtures (solutions) except for the

appearance of the additional term Fp, representing the microscale precursor of the

macroscopic capillary forces. In the next section it will be shown that the sole differ-

ence between the respective miscibility and immiscibility cases arises in toto from the

forms of the constitutive equations chosen for Fp and J (= J 1 =-J 2). This seem-

ingly subtle feature is the main thrust of our hypothesis. It shows how even immisci-

ble two-phase systems may be alternatively regarded as two-component, single-phase

systems when the system description is appropriately supplemented by constitutive

equations for the diffusive flux J and capillary force field F, [11]. The fact that such

constitutive equations can be provided and embedded in physical context renders our

work novel beyond its classification as a mere academic exercise. Section 3.3, which

follows, thereby constitutes in a fundamental sense a prescription for performing ex-

plicit two-phase flow calculations using the diffuse interface model. Furthermore, it

shows in an explicit manner how the traditional equations governing the singular

interface model can be recovered from the diffuse model through the natural appa-

ratus available for identifying and effecting such microscale/macroscale equivalences,

namely, singular perturbation analysis [19]. Though some related aspects of the sub-

sequent analysis have been dealt with in prior studies by others, we take pains to
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clarify the subtleties involved in such an exercise, enabling us thereby to transcend

the purely numerical or mathematical details of the scheme.

3.3 Microscale Constitutive Equations

This section utilizes the respective forms (3.9) and (3.10) of the diffusion and con-

tinuity equations in place of the precursor pair (3.6a,b). Moreover, constitutive ex-

pressions for J and Fp are discussed.

Constitutive equation for J

The assumption of linear response theory together with the assumed absence of cou-

pling between the fluxes requires that

A = VP, (3.11)
kT

where p denotes the difference in chemical potential between the two species, and kT

is the Boltzmann factor. The mobility coefficient A is, in general, a second-rank ten-

sor and may also depend upon c. However, consistent with the nature of the present

work, stressing only on the simplest physical elements, we eschew both generaliza-

tions. Thus, we assume A to be a concentration-independent scalar constant. For the

chemical potential p we have by definition that

P = , (3.12)
6c,

with F is the free energy density of the mixture and 6/6c the functional derivative

with respect to c. The constitutive form of F is assumed to be that proposed in [7],

namely

F = d3r [f(c) + K(Vc) , (3.13)
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where f(c) denotes the excess volumetric free energy density of the mixture3 and

K is a dimensionless phenomenological coefficient, related to the equilibrium direct

correlation function between the two species [8, 12]. Though K may be a function of

concentration, it is here assumed to be a constant. In this work we use a modified form

of the above equation to explicitly incorporate the interfacial 'thickness' , the latter

representing the characteristic linear dimension of the interfacial transition zone:

Fd= d3r [f(c) + I K 2 (Vc)2. (3.14)

Thus, J takes the form

J=j V( f- K(22c). (3.15)
kT Oc

Substitution into the diffusion equation (3.10) yields

Oc + V - (VC) = I AV 2(Of - K 2v2c) (3.16)
at kT Oc

for the microscale convective-diffusion equation [see also [11] and [1]]. The constitutive

form of f(c) is taken up subsequently.

Constitutive equation for FP

An appropriate constitutive relationship for Fp has been suggested by a number of

researchers, frequently starting from the virtual work principle [11, 25, 1], as well as

3 The actual free energy density of the mixture is of the form:

1
f' = f(c) + fid + K(VC)2,

where fid = cfi(pure) + (1 - c)f 2(pure) denotes the free energy density of an ideal mixture, and

f' denotes the microscale volumetric free energy density. However, in most applications we are

concerned only with Vp, rather than /y itself. As such, fid proves irrelevant.
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other arguments.4 We adopt the following constitutive expression for -r,:

Irc = K [(Vc)(Vc) - 1VcI2I], (3.17)

whence from the definition V* -r, = Fp of the physicochemical force density we obtain

FP = K V - [(VCVc) - |VcI2I]. (3.18)

Constitutive equation for -r,

In view of the fact that the interfacial transition region is strongly inhomogeneous

in a direction normal to the interface, the viscous stress tensor is expected to be

transversely isotropic [10, 15]. However, consistent with our desire to focus attention

primarily on the physicochemical (rather than rheological) aspects of the dynamics,

we adopt the usual simple isotropic Newtonian form for -r,, namely

=2p D - (I : D)I1, (3.19)
3

with

D = [(Vv) + (Vv)t] (3.20)

4Though conventionally derived from a variational formulation, we can heuristically justify the
expression (3.17) for r, in the following manner: Define a pressure

def. 6F
pc = c-- - F

in analogy to the thermodynamic definition

af
p =c-- -f.

This enables a separation of Vpc into the sum Vp + V c, with Vp = V(cf - f), wherein rc is
given as above.
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the deformation gradient and p - p(c) the local viscosity of the mixture (solution),

which by definition satisfies the relation5

{ pt as c -- + 1, (3.21)
pt as c -+0.

Upon using the above identifications, the momentum equation (3.4) adopts the

form

O(pv) + V - (pvv) = -Vp + V --, + KV - [(Vc)(Vc) - IVc 2I] +pg.
at

(3.22)

Form of f (c)

Conventional theories of dynamical critical phenomena [wherein our model is equiv-

alent to that of Model H of [16]] adopt a double-well potential for the free energy

density f (), where '/ represents an order parameter. In a binary liquid system the

order parameter is usually taken to denote the difference in composition between the

two species. Thus, we choose

f (0) ~ (1 - 2)2, (3.23)

where

1b1 = 11 - 2cl.

Consequently, the following form is adopted here for f(c):

f(c) = AK(1 - c) 2c2 , (3.24)

5Though we will have no need here for an explicit functional relationship between P and c, if

necessary one could, in order to satisfy (3.21), simplistically assume p to be linearly related to the

respective viscosities p' and p of the pure species by the expression

y~ ~ = O pi 1-c).
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where A is a dimensionless constant and K is the same phenomenological constant

introduced earlier. Note that f(c) -+ 0 as c -+ 0 and 1; this dual property will later

prove crucial in identifying the compositions of coexisting phases.

This section dealt with the constitutive equations accompanying the diffuse in-

terface viewpoint of an immiscible two phase system. The next section clarifies the

manner in which the above constitutive equations explicitly distinguishes between a

miscible and an immiscible system.

3.4 Immiscibility

This section is devoted to clarifying the notion of immiscibility in the present con-

text of species rather than phases, especially the manner in which immiscibility is

supported by the above equations. To achieve this objective we start with a brief

discussion pertinent to the existence of phase-separated solutions of the modified dif-

fusion equation (3.16). At the outset, we provide a physical argument commenting

on the approach to equilibrium to thereby justify the existence of a phase separated

solution of the diffusion equation. Subsequently, we provide a more detailed exposi-

tion of the thermodynamical features embodied within the excess free energy function

f (c). Eventually, in the following section we perform a singular perturbation analysis

of the governing equations, thereby explicitly demonstrating that our diffuse inter-

face model does indeed furnish an appropriate pair of 'bulk-phase' equations (outer

equations) as well as yielding 'interfacial' transport equations (matching conditions)

connecting these two bulk fields at the 'interface.' And it is these bulk field regions

that constitute the 'immiscible phases' in the macroscale view.

3.4.1 Diffusion Equation

In the interests of simplicity we temporarily ignore hydrodynamical considerations as

well as effects arising from the presence of K in the expression (3.14) for F(c). Figures

(3-2a) and (3-2b) respectively show the general configurations of the concentration-

dependent forms of the excess free energy density function f(c) appearing in (3.24)
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Figure 3-2: Double-well potential form for: (a) Free-energy density f(c); (b) Diffu-

sivity D(c).

as well as the diffusion coefficient D(c), the latter being the term appearing in the

resulting 'diffusion' equation,

ac
= DV 2 c, (3.25)

at'

and defined as

def. A 02fD - . (3.26)
kT Oc 2

Since A > 0 as a consequence of the Second Law of Thermodynamics, we observe

from (3.25) and (3.24) that there exists a range of concentrations over which D(c) < 0

[representing a thermodynamically unstable region, wherein an initially homogeneous

mixture (solution) of composition 0 < c < 1 spontaneously separates into two dis-

tinct 'phases' of respective compositions c = 0 and 1]. In contrast, for a completely

miscible mixture, D(c) > 0 V c, whence an initially homogeneous mixture remains

homogeneous for all time! This observation forms the basis of our two-component

mixture model as supporting phase-separated stable solutions of the modified diffu-
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sion equation.

3.4.2 Thermodynamic Considerations

Considerations pertaining to the thermodynamical equilibrium state enable us to

glean further insights into the notions of miscibility vs immiscibility. Explicitly, the

equilibrium state corresponds to the situation wherein the free energy F is stationary

(as well as a minimum for a stable equilibrium) with respect to infinitesimal variations

in the governing physical properties, i.e.

6F (3.27)
6C equilibrium

Employing the constitutive form (3.13) for F (as stated earlier, we neglect the effects

of the concentration gradients) we obtain

= 0, (3.28)
OCeq

which corresponds to the classical equilibrium condition requiring that the excess free

energy of the mixture be an extremum with respect to variations in the composition.

To illustrate the concepts of miscibility and immiscibility within the context of

the above equilibrium condition (3.28) we employ a generalized version of the free

energy function f(c) earlier proposed in eq. (3.24):

f(c) = X2 + B 4 , (3.29)
2 4

where, x denotes the difference in concentrations between the two species, i.e. x

1 - 2c. In the above expression the physical constant A is assumed to be a function

of temperature, and is chosen in the present discussion to be the simple linear form,

A(T) - a(T - Tc), with a a positive constant. It is pertinent to note here that the

above expression for the free energy is identical to Van der Waal's equation of state
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for fluids.6

Invoking the equilibrium condition (3.28) for a fluid obeying the equation of state

(3.29) yields the following compositions corresponding to the equilibrium scenario:

0 (T > Tc),
xeql 1-2ce ={

10, kV-A(T)IB (T < Te).

In the above equation xeq and ceq denote the values corresponding to the equilib-

rium situation. The above identification implies that the equilibrium composition

requiring c = 0.5 uniformly everywhere (a homogeneous mixture) constitutes the

equilibrium scenario for temperatures T exceeding Tc. Below T, the equilibrium sce-

nario might either correspond to a phase separated system with bulk concentrations

Xeq = ±VA(T)/B, or to the scenario corresponding to a homogeneous mixture with

x = 0.7 The choice of the observed equilibrium solution invokes the considerations

relating to the relative stability of these solutions, and in this case requires the phase

separated solution to be manifested below Tc.

The preceding analysis of the free energy function thereby clarifies the fact that

completely miscible mixtures correspond to a system above its consolute tempera-

ture (Tc). If the consolute temperature possesses an extremely low magnitude, then

a binary liquid system appears to be miscible for practically all ranges of temper-

ature. However, the existence of a high consolute temperature would necessarily

be manifested as partial miscibility.8 Furthermore, dual considerations of stability

and equilibrium compositions determine the kinetic rate of approach to equilibrium,

which, in turn is governed by the diffusion equation. As such, if the equilibrium

situation corresponds to a phase-separated system, the effective diffusion coefficient

for a homogeneous system then acquires a negative value, thereby tending to equi-

librate the system to one wherein the equilibrium compositions correspond to the

6The extraneous factors 2 and 4 present in the above expressions are introduced to enable simpler

algebraic factors in the subsequent discussion. As such, they possess no physical significance.

'Constraints imposed by conservation of mass preclude equilibrium compositions of solutions like

X = 0, V/A(T)/B.
8 Note that immiscible mixtures correspond to equilibrium compositions of ceq= 0 and ceq = 1,

respectively, and may be considered as an extreme case of partial miscibility.
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phase-separated situation.

This preceding discussion was meant to provide a brief overview for readers un-

familiar with the work of Cahn & Hilliard [7]. Excellent reviews and details can be

found in [13] and [18]. However, our work is not concerned with the dynamics of

phase separation, but rather assumes at the outset that a phase-separated mixture

already exists at the microscale, one whose dynamics can be described via the above

system of equations.

Some comments are in order regarding the form of F set forth in (3.14): (i) The

factor 1/ appearing as the multiplier of F is obtained by normalizing the volume over

which F is nonzero; is expected to be small for immiscible systems; (ii) while the

above equations appear to be superficially similar to those possibly encountered for

miscible systems, the contrasting phase behavior of the two systems arises from the

different forms of the excess free energy function f appearing in F above. While the

form of f illustrated in eq. (3.23) supports a phase-separated equilibrium scenario,

the corresponding functional form of f for a miscible system necessarily describes

an equilibrium scenario with partial miscibility; (iii) the factor K and the second

gradient present in the expression for F account for interfacial tension effects [7].

The next section is devoted to effecting a singular perturbation analysis of the

preceding system of microscale equations so as to provide a rational derivation of the

conventional macroscale two-phase equations, (3.1) and (3.2), together with appro-

priate matching conditions. This section also serves to clarify the precise manner in

which analytical calculations of practical fluid-mechanical problems need to be ef-

fected when using the diffuse interface model. Such a procedure necessarily involves

the use of singular perturbation techniques to determine the governing equations and

their solutions at every order of the perturbation analysis.

3.5 Singular Perturbation Analysis

Below, we nondimensionalize the variables appearing in (3.16) and (3.22). To avoid

a proliferation of symbols the same unadorned symbols will be used to denote both
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dimensional quantities and their nondimensional counterparts, imagining that the

preceding dimensional symbols had previously been augmented by an asterisk:

* r* * P*fL -r* L A*TD
V= -r= r , V=LV*p = p = r v A A D

U ' L ' 'oU POU L2

Here, U, L, po and , respectively represent a characteristic velocity, length, density

and viscosity, whereas TD represents a characteristic diffusion time scale. In terms of

these dimensionless variables, equations (3.9), (3.16) and (3.22) respectively become

-- + V - (pv) = 0, (3.30)at

Re [&a) + V - (PVV) = -Vp + V - -r + Ca- 16V- [(Vc)(Vc) - IVc2I] + pg

(3.31)

and

6rD U[O+V.(VC) AV2 ( 2 V2C), (3.32)
L Ot OC

where the following nondimensional parameters have been introduced:

0 pOU L PU A K
Re = - Ca= A=

' L K' LkT'

and where f is now given by the expression

f (c) = A(1 - c) 2 c2 . (3.33)

Re and Ca are, of course, the Reynolds and capillary numbers.

For the immiscible systems contemplated, rD is expected to be very small com-

pared with the convective time-scale L/U. In this section, circumstances will be es-

tablished as to how the above system of equations reduce to the conventional system

of two-phase, singular interface equations. The motivation behind such an exercise
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is to explain the spirit of the diffuse interface model. A description of the actual

dynamics of phase separation [22] is beyond the scope of this work; in lieu of this we

make an a priori assumption as to the existence of an interface characterized by a

transition region with steep variations in physical properties.

The natural mathematical apparatus for extracting the bulk equations and match-

ing interfacial conditions from the above system of equations is singular perturbation

analysis, with the interfacial region representing a thin boundary layer sandwiched

between two outer bulk regions (phases). To the best of our knowledge the only such

interfacial analysis previously effected via this approach is embodied in the work of

Starovitov [25] (see also [3] for an analysis with similar objectives, albeit in a differ-

ent context). However, that analysis was restricted to a one-dimensional interface;

moreover, a number of aspects of that work appear controversial. Here, we treat a

moving material interface in three-dimensional space, characterized by a special met-

rical geometry specially chosen to avoid notational complexities. In this context the

analysis of systems containing mobile interfaces is facilitated by parameterizing three-

dimensional space via a semiorthogonal surface-fixed coordinate system (cf. Fig. 3),

namely (qi, q2, q3 ), with q3 lying normal to the 'parent surface' [19, 9]. Since our aim

is merely to illustrate the spirit of the diffuse interface model without performing

an exhaustive and comprehensive investigation to rigorously justify the applicability

of our results under very general circumstances, we consider a special kind of in-

terface - one in which the interfacial transition region can be characterized by an

orthogonal coordinate system possessing the metrical coefficient h3 = 1 (the 'parallel

surface' representation of Eliassen [10]). Additionally, the interfacial curvature will

be assumed to be much greater than the interfacial thickness [and of 0(1) relative to

the small perturbation parameter 6].

As is conventional with diffuse interface models we identify the macroscopic in-

terface with a so-called 'parent surface,' one whose precise location in the transition

region to within an error of 0(6) is not critical to the subsequent 6 < 1 asymptotic

analysis. This parent surface is parameterized by the normal coordinate q3 = qO3
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Parent
surface

-- ~

q3 =q0

x(q, , q2., n)

Surface-fixe _=- q2
origin Z

q,

Space-
fixed origin

Figure 3-3: Parent surface and representation of the surface-fixed coordinate system;

(qi, q2, n) represent the coordinates of a point in the outer region as measured from
axes fixed on the parent surface.
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whence the variable

n h3 dq3 = q3 - q3 (3.34)
q3

denotes an algebraically-signed distance measured normal to interface. By definition,

n = 0 on the parent surface. Given the presence of the small perturbation parameter 6

in the equations governing the two-component transport process, one can anticipate

the existence of disjoint inner and outer regions. Length scales in the two outer

regions lying on either side of the 'interface' are taken to be macroscopic, with the

magnitudes of physical quantities and their gradients in these regions assumed to be

everywhere of 0(1).

In the outer regions we assume, subject to a posteriori verification, that each phys-

ical variable (here denoted generically by i0) admits a regular perturbation expansion

of the form

i(qi, q2, n, t; 6) = V5 o(gi, q2, n, t) + o~(gi, q2, n, t) +....(3.35)

In contrast, in the inner region, whose thickness is of 0(6), these physical quantities

may display steep gradients. Accordingly, distances in the inner region are normalized

with 6, thereby magnifying them. Explicitly, the independent inner variable,

- def. (q3 - q) (3.36)
n - ,3 (-366

represents an algebraically-signed scaled distance in the inner region, normal to the

'interface.' Concomitant expressions for t and t 2 need to be explicitly rewritten

in terms of (qi, q2 , i). Furthermore, subject to a posteriori verification, the generic

physical variables are each assumed to possess an inner expansion of the form

h (q , q2, ii, t; 6) (oe , q2, h , t) + repe(ti, q2, , t) + r . (3.37)

Matching conditions imposed on the respective outer and the inner fields, bi and )i,
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have been established by Caginalp & Fife [4], albeit in a different context, as

lim '4'(qi, q2 ,it) = i 0 (qi,q2 ,n = 0,t) (3.38)
Jill oo

and

0 o(qi, q2, n, t)
lim V)1(q1Iq2, 7 , t) = V)1(q1, q2, n = 0,70 + ii

I i---oc On n=O
(3.39)

Higher-order matching conditions may also be easily derived; however, the need for

such additional conditions does not arise in the present work as a consequence of the

fact that our theory is strictly asymptotic [19] rather than being serially sequential. As

such, only the leading- and first-order terms of the respective expansions are involved

in the subsequent analysis.

Outer equations

This section addresses the leading-order outer fields. Affixes ± will be used to denote

the respective regions lying on either side of the interface. Upon substituting the

outer expansion into (3.32), the 0(1) diffusion equation is found to be of the form

V2[ f = 0, (3.40)

where the subscript zero denotes the zeroth-order field. Since a soliton solution of

the above equation is anticipated, we assume subject to a posteriori verification that

the appropriate solution of the above equation is

Of- ±
90 = 0.

As noted earlier, f(c) -+ 0 and Of/c -+ 0 as c -+ (0, 1). Consequently, we find

that co = (0, 1) V n lying on either side of the interface. This is consistent with our

physical picture of the two outer regions as constituting immiscible bulk phases. For
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definiteness, we arbitrarily choose co = 1 and co = 0.

At ((1) the equation of continuity becomes

+PO + V - (pO vi) = 0. (3.41)
at

In view of the preceding solution for co on either side of the interface, it follows that

V ±-v = 0. (3.42)

The 0(1) momentum equation here takes the form

Re [D(t =o) = --Vp + V - -rVO + pog. (3.43)

Equations (3.42) and (3.43) represent the outer equations in the respective regions

lying on either side of the interface. These equations accord with the usual bulk-phase

equations employed in conventional singular surface, two-phase models of interfacial

phenomena. Considerations pertaining to the inner equations will be shown to lead

to appropriate matching conditions imposed on these outer fields at their common

interface.

Inner equations

In the inner region the normal-distance coordinate n needs to be rescaled via the

transformation (3.36). Relevant rescalings of the operators thereby obtained, along

with the leading- and the first-order terms that arise, are indicated in Appendix A.

Here, we note that the dynamical evolution of the interface leads to the following

rescaling of the time-derivative [4]:

(3 =(qi, q2 = const.), (3.44)

where, 40 denotes the normal velocity of the parent surface, h = 0. Furthermore,

the metrical coefficients h(qi, q2, i ) and h2 (qi, q2, h) admit inner expansions of the
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respective forms,

hI(qi, q2, fl) = hio(qi, q2 , q', t) - 6hio(q, q2, qO, t)'1(qi, q2, 5, t)t + ... ,

(3.45)

I2 (qi, q2 ii) = h20(q1 , q2, qO, t) - 6h20(qi, q2, q[, t),2(qi, q2, , t)i +

(3.46)

where the definitions (A.4) and (A.5) has been used. Higher-order contributions prove

unnecessary in the subsequent analysis.

At the leading order the continuity equation becomes

- q3-40nN + 0ios3o) =0.
ON

(3.47)

Integration of the latter at constant (q', q2 ) gives,

p&('NO - 43) = g(qi, q2), (3.48)

where g(qi, q2) is an integration function. However, since ' 3 0 = q0 at i! = 0 owing to

the material nature of the interface, it follows that

V3 0 = 43 Vii. (3.49)

Since O is independent of h, this implies that

O0.
On

Moreover, the matching conditions (3.38) require that

v± (n = 0) = 4,
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whence

[[v30]] 0, (3.52)

where we have used the jump operator [[.. .11 of [9] to denote the discontinuity, if any,

in the value of the argument across the parent surface.

At the leading order, the inner form of the diffusion equation yields

Of _ 
2a0= 0. (3.53)

Oc &ii2

Multiplying the above equation by &20/0h and integrating with respect to h gives

f - =1(&) 0 (3.54)
2 Oil'

where the facts that both a0/0ii and f -+ 0 as h -± ±oo have been used. Into the

above expression one can substitute the explicit form of f given in (3.33), subsequently

integrating the resulting equation to obtain the leading-order inner concentration

profile as

exp(251/Z-)
co = . (3.55)

1 + exp(2i5 Z)

(Note that o -+ 0 as h --+ -oo and a0 -+ 1 as ii -- + oc.)

The leading-order inner components appearing in the momentum equation are

OP_1 ( &'1' . (P &i 20 . ( 4 &i'3 0 =
- 13 +lly5 -a A J +12 09 + i ±l3 4I= ,

(3.56)

where (il, i 2, i 3) respectively denote unit vectors along the coordinate axes (q, q2, q3).

Additionally, P-1 denotes the 0(6- 1) inner pressure field. Using (3.50) together with

the fact that f)10 and f20 are finite as f -+ +oo gives

vio = v(qi, q2 ), (3.57)
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V20 = TI(qi, q2 ),

P-1 = 0, (3.59)

in which v and rj denote integration functions. The first pair of the preceding equa-

tions require that

(9f 10 _ ai20 - 01
9ii &i5i

whence

[[vio]] = [[V20]] = 0.

In combination with (3.52) we thereby obtain

[[VO]] = 0,

(3.60)

(3.61)

(3.62)

which is equivalent to (A.13). As such, our considerations of the leading-order terms

of the inner equations lead to the expected jump condition (3.62) imposed on the

velocity field for the case of material interfaces [9].

At the next order the inner form of the continuity equation requires that

V3 1 + Pox = 0, (3.63)

where (3.49) and (3.50) have been used, and wherein x is as defined in (A.11). Con-

sider the ii -+ ±oo limit of the above equation. Since, as a consequence of (3.5) and

(3.55), &,0/&il - 0 exponentially as h -+ ioo, it follows that

x - 0 as h -+ ±oo. (3.64)
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Using (A.10) and (A.12) the momentum equation at first order reads

d iu
IA Of,

I O' 21

+ hio
0q,

Dy30
± h20 dq2

Oq2

dipo & ( Dy31)
-5 + a2p I3
dii dii oil/

2 d(ux)
3 Ohi

+ Ca' (Ki

Integrate (3.65) and (3.66), and use the matching condition

.i V i1 (qi, q2, j , t)ima->oo i5
DOV0(qi, q2, n = 0,t)

dn

together with (3.57) and (3.58) to obtain the jump conditions

p hio O30
aqi

and

- vio1 =1 0=

- V20K2 =0.( h20 lV30
Oq2

Integration of (3.67) yields

- P0 + 2p -
2
-ILx + Ca [(i 1 ± 12) Jdh ( &0 )]

where the right-hand term represents an integration function.

Consider the limit as A -+ ±oo together with the fact that x -+ 0 as h -+ ±oo.
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(3.66)

- V1KI =0,

- V20K2 =0,7

+K{2) ( ) 2]
= 0.

(3.67)

(3.68)

Dy 1 0

On

+ OV2 0

an

(3.69)

(3.70)

(3.71)

= ((qi, q2),



This yields

-po + 2p u%0] = -2O-R, (3.72)
On

with the mean curvature W defined as in (A.16), and the macroscopic interfacial

tension - defined (nondimensionally) in terms of the continuous microscale field o as

+oo 0 2
-=u Ca-1 f d ii (3.73)

The latter expression represents a classical result, one which has been derived innu-

merable times for equilibrium situations [7, 12], albeit by perhaps less formal pro-

cedures. However, our analysis appears to be the first to systematically treat the

complete dynamical situation case, so as to also derive the interfacial matching con-

ditions imposed on the stress and velocity fields. Though we have ignored possible

surface rheological effects arising from the presence of an adsorbed surfactant, it would

be straightforward to incorporate these into the above model by using appropriate

constitutive equations and scalings, and by extending our analysis to include ternary

systems (with the surfactant representing the third species).' Moreover, by retaining

higher-order terms in the perturbation scheme it is possible to proceed along similar

lines to derive the well-known effects of curvature on interfacial tension [2, 21]. How-

ever, in the interests of focusing only on the fundamentals of diffuse interfaces we do

not embark on such extensions in the present contribution.

In summary, the diffuse interface model provides a complete physicochemical iden-

tification of the bulk equations and interfacial boundary conditions employed in con-

ventional singular interface models, albeit one that eschews both interfacial rheology

and large curvature effects. The present section was devoted to rationalizing the

admissibility of incorporating two-phase immiscible systems into the framework of a

two-component mixture model of interpenetrating continua. The microscale constitu-

tive equations introduced were shown to reduce to the conventional singular interface

9For instance, the viscosity would no longer be of 0(1) within the interfacial zone, but might
rather display very large values, eventually leading to nonzero interfacial viscosities [10, 15, 9, 20].
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model through the use of physical scaling arguments accompanied by an asymptotic

singular perturbation scheme. In accomplishing this demonstration, we have also si-

multaneously illustrated the manner in which analytical solution of problems can be

effected using the diffuse interface model. Such a procedure entails use of singular

perturbation techniques concurrently with prescribed constitutive equations to obtain

solutions accurate to the required degree of approximation.

Henceforth, the diffuse interface model will be used exclusively in the subsequent

analysis to treat multiphase flows at the microscale level, appropriate to pore-level

interstitial transport processes, in lieu of the traditional singular interface pore-level

model. However, until the stage where section 5.3 is reached, the subsequent analysis

will be seen to be invariant to the explicit choice of constitutive equations.

Sections 4.3 to 6.3 serve to apply the preceding single-phase (diffuse), two-component,

interstitial microscale description of macroscopically multiphase systems to problems

involving their flow through porous media. Such two-phase flow processes have con-

ventionally been regarded as governed at the (singular surface) microscale level by

equations (3.1) and (3.2) together with appropriate boundary conditions imposed

at the bed-particle surfaces. Our alternative diffuse interface model, however, re-

quires that we instead concern ourselves with the continuous equations (3.4) and

(3.6a,b) together with appropriate bed-particle boundary conditions imposed on the

fields appearing in these equations. These equations form the basis of our analysis

of biphasic flows in porous media. This multicomponent description at the diffuse

microscale leads naturally to a multicomponent description at the diffuse macroscale,

and hence ultimately to an assignation of distinct macroscale pressures to each of

the two 'species' (i.e., 'bulk phases'). The relationship between these two bulk-phase

pressures is shown, in turn, in Section 5.2 to be the formal equivalent of the usual

capillary pressure relationship connecting these 'phase-specific' pressures. The entire

analysis which follows is performed in a manner such as to admit completely general

functional forms for the constitutive equations governing J and FP. However, in sec-

tions 5.3 - 5.5 we use the constitutive equations outlined above to provide a number

of new and fundamental insights into the physical basis of capillary pressure as well
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as into the dynamical equations currently used in the modeling of two-phase flows in

general.
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Chapter 4

Biphasic Flows in Porous Media:

Diffuse Darcyscale

This chapter concerns the specific application of the diffuse interface framework to

biphasic flows in porous media. The ensuing discussion restricts itself in implement-

ing the spirit of the diffuse interface model only to the extent of eschewing the explicit

use of the constitutive equations outlined in section (3.3). In essence, this chapter

deals with the development of the theoretical framework so as to enable the transi-

tion from the microscale to the macroscale level description of the porous medium

flow phenomena. We commence with an elucidation of the physically-based defini-

tions of the macroscale quantities. Subsequent to such an exposition, we derive the

macroscale equations governing the flow through porous media using the preceding

framework. Chapter 4 restricts itself to the derivation of the generic physical quan-

tities and macroscale equations existing within the diffuse Darcyscale level.1 The

explicit identification of the phase specific quantities like phase velocities, capillary

pressure, etc. is deferred to Chapter 5.

'At the diffuse Darcyscale, the flow is envisioned to be that of a binary mixture. In contrast, it is

at the singular Darcyscale level corresponds to the physico-spatial scale at which the 'phase'-specific

physical quantities and equations (biphasic Darcy's law) manifest.
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4.1 Geometry of Unbounded Spatially Periodic Porous

Media

4.1.1 Microscale

A spatially periodic fixed bed-particle configuration and a corresponding (instanta-

neously) spatially- and time-periodic mobile interstitial fluid velocity field is proposed

as a tractable geometrical model of multiphase flow through a porous medium. Ow-

ing to its deterministic configuration, this specific geometrical microcontinuum model

permits a rigorous mathematical analysis of the pertinent physical phenomena using

standard mathematical tools, including Fourier series, Bloch functions [21, and ho-

mogenization techniques [3]. Such models have already been used for computational

purposes with regard to emulsions, suspensions, etc. (cf. [12] and the references

cited therein), albeit at the singular surface microscale level. We are explicitly con-

cerned here with macroscopically homogeneous multiphase flows, where time-averaged

macroscale quantities like saturation, velocity, pressure gradient, etc. are spatially

and temporally uniform throughout the porous medium. However, we will also briefly

indicate the more general forms of equations that would result for circumstances in

which a slow spatial macroscale variation is superposed on the otherwise spatially

periodic configuration (for which our rigorous macroscopic definitions hold locally).

While the model of a spatially periodic medium might appear unnecessarily restrictive

in view of the fact that the entire porous medium is assumed generated by replication

of the unit cell contents (in contrast with the disordered media usually encountered

in practice), it is to be pointed out here that such media do not however exclude a

complex disordered unit cell as the template [4].

Reviews of the properties of spatially periodic media are available elsewhere [1,

4, 5, 6, 7] and will not be repeated here. Rather, we restrict ourselves in what

follows to a brief summary of the notation to be used. Moreover, attention is focused

exclusively on unit cells characterized by planar faces. Extension to curvilinear cells

is straightforward [12].
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Spatially periodic systems are characterized by an associated lattice system em-

bodying the translational symmetries of the medium. The complete lattice is gener-

ated from a single lattice point (the origin) by discrete displacements of the form

Rn = nil, + n 2 12 + n 313 , (4.1)

where {ni, n 2 , n 3} = n is a triplet of integers (ni, n2 , n 3 = 0, t1, ±2, ±3, ... ), and

(11,12,13) a triad of non-coplanar vectors, termed basic lattice vectors. As in the ref-

erences cited in the preceding paragraph, the position vector R of a point denotes

the displacement of the point from a space-fixed origin, whereas r = R - Rn denotes

the intracellular position vector measured from the lattice point Rn, the latter being

taken as a local intracell origin. Furthermore, as regards a unit cell, OT, denotes the

areal domain encompassing the totality of all six faces bounding the cell, whereas

rf and -T denote the respective volumetric domains of the interstitial fluid and su-

perficial cell [Fig. (4-1)]. Within a unit cell the solid particles comprising the porous

medium are stationary. Fluid velocities are to be measured with respect to these fixed

particles. The wetted surfaces of the fixed bed particles within a cell are designated

collectively as sp.

4.1.2 Macroscale

In order that a continuum macroscale description of the microscale phenomena be

valid, there needs to exist a wide disparity in the magnitudes of the characteristic

lengths (and times) separating the micro- and macroscales. Most theories of mul-

tiphase flow in porous media [8, 9, 10, 12] assume the existence of an intermediate

length scale lying between the two - thereby serving to identify a macroscale 'point'

with a nonzero microscale skeletal-space volume. Similarly, a macroscale 'differential

volume' element is infinitesimal only in macroscale terms; in reality it needs to be

sufficiently large to enclose a 'statistically representative' sample of the local skeletal

geometry (as well as its contents). Quantitative details regarding the errors involved

in homogenizing the microscale phenomena by this scheme are set forth in the work
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of Nitsche & Brenner [12], with special emphasis on the kinematical aspects of the

flow phenomena.

Since interest centers in this paper only on the physical aspects of two-phase

flows in porous media, we concentrate on a rudimentary description of the micro-

macro transition, as expounded by Brenner [5] (see also [7]). In this description a

'macroscopic point' (whose macroscopic position vector will be denoted by R) refers

to a conveniently chosen reference lattice point located within the microscale unit cell

R, (e.g. at its centroid):

R= R. (4.2)

While the lattice points Rn denote a discrete, infinitely denumerable set of points at

the microscale, the macroscopic description treats R as a continuum of vectors, with

the 'infinitesimal' displacement vector defined as

dR_ =k (4.3)

wherein lk (k = 1, 2, 3) denotes a basic lattice vector. More explicitly, to remove any

confusion between the equivalence of the continuous vector field R and the discrete

set of vectors Rn, in place of (4.2) we heuristically write R= R + 0(9111), where 1

denotes the characteristic linear dimension of a unit cell.

The macroscopic differential directed areal surface element is identified with any

one of the six directed surface areas of the cell faces:

A.= Sk,(4.4)

with Sk = -Sk (k = t1, ±2, t3), and where the index v connotes the direction of

the normal vector to the face. Henceforth, however, we will resort to the notation ds

to represent the macroscopic areal element, unless a specific need exists for explicitly

identifying the particular face in question. (Proof of the facts that dR and ds respec-

tively constitute acceptable definitions for the infinitesimal displacement vector and
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areal element at the macroscale [explicitly, that both can be chosen to be of arbitrary

magnitude and orientation in a macrosense] is discussed by Brenner [5] and Nitsche

& Brenner [12]).

a ---------------- --- ---------------------

Lattice Points/

I Particles

12

----

It I

Origin, 0

Figure 4-1: Spatially periodic medium (two-dimensional projection) comprised of

particles of arbitrary shape. 0 refers to the lattice origin, Rn the centroid of the

cell, and r a point within a unit cell as measured from the centroid; a, a' denote

representative lattice points, whereas rf, ro respectively denote the domains of the

interstitial fluid and the unit cell.

The macroscopic infinitesimal volume element is taken to be the superficial volume

of the unit cell:

d3 B _

a fact consistent with (4.3) in conjunction with the relation To = 11 X 12 13. It follows

from (4.3) and (4.4), together with the identity

To = Ik * sk
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(valid for k = 1, 2 or 3), that

d3A = d9 - dR.

4.2 Microscale Fields

Due to the spatially periodic geometry of the porous medium, the instantaneous

microscale fields p, c and v can be expected to be spatially periodic with periods

{11, 12, 13} along the three lattice directions. In such a scenario, we have using (4.1),

the generic relation

(r + Rn, t) = V5(r, ) V r E f, (4.5)

where b collectively denotes the fields (c, p, v) as well as pi. As a specific application

of the above formula we have that:

ILPf = 0, (4.6)

where 11,011 denotes the (algebraically-signed) jump in the value of / at equivalent

points lying on opposite cell faces.2  The microscale spatial periodicity condition

embodied in (4.6) eventually enables us to define macroscopic quantities as averages

over a unit cell, a procedure carried out in the next section.

Under the assumption that -r, and rc are functions at most only of: (i) the ve-

locity v, (ii) the concentration c, and (iii) their respective gradients, we have

ir-(R + R,, t) = -r(R, t) (4.7)

and

-rc(R + R,, t) = rC(R, t). (4.8)

2 This unit cell face operator ... 11 should be carefully distinguished from the interfacial jump

operator [[...]] defined following equation (3.2).
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In view of the above facts it follows from (4.12) that the pressure gradient is also

spatially periodic:

Vp(R + Rn, t) = Vp(R, t). (4.9)

The time-dependence of the various microscale fields requires special comment.

On the whole, microscale issues regarding the temporal evolution of two-phase flow

fields are rarely discussed in the literature, especially in circumstances where the

mean fields are themselves time independent. The implicit assumption of quasi-

stationarity thereby implied tends to be all pervasive. Ad hoc 'volume-averaging'

is usually applied to some 'random quasistatic configuration,' the latter taken to

denote some 'representative' time-averaged geometric configuration. However, at the

(singular surface) microscale level, two-phase flows of the respective fields inherently

involve time evolution of the pertinent fields due to the relative motion of the two-

phases with respect to one another, as well as with respect to the fixed particles

comprising the porous medium (see also [11, 121, and the comments therein). The

corresponding macroscale flow may either be steady (the common assumption under

which the multiphase Darcy's law is employed) or unsteady. In the former case, the

manner in which a microscopically unsteady motion can result in a macroscopically

steady motion leads in our analysis to the formal concept of a 'micro-macro' timescale.

To the best of our knowledge this feature has not previously been explicitly identified

in the context of biphasic flows, though various arguments have been proposed for

operationally performing the requisite time averaging [13]. Further concerns regarding

the evolution of the system in relation to the ergodicity of the spatial averages, often

used to justify the time-averaging hypothesis, are indicated in the work of Nitsche &

Brenner [12]. However, even such measure-preserving flows as those we envision in a

unit cell (equivalent to flows on a torus) can exhibit a wide range of droplet behavior,

including periodic evolution, almost periodic evolution, and even chaotic motion [14].

Accordingly, it is virtually impossible to state anything of general validity about the

time dependence of the singular surface microscale field variables in spatially-periodic
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porous media (whose time dependence arises from the gross motions of the droplets

relative to fixed bed particles). Here, we make the following plausible assumption

regarding the time dependence of the diffuse microscale field variables for a flow

which is specified to be macroscopically steady (albeit unsteady at the microscale

level):

ASSUMPTION 1 Let f be any bounded function inside the unit cell, i.e. on a

suitable norm,

|flf<;C,

where C is a constant. We assume that 3 a T such that

- ±f(t + T) - f (t) 1 < O(T) Vt. (4.10)
T

Though formally stated above in a perhaps pontifical aphysical manner, the fact

that the functions f are assumed to be dependent upon time only through the in-

stantaneous location and configuration of the 'droplets' requires the latter to return

to, or at least approach very closely, their original configurations after a time T. (Of

course, in using coarse-scale words like 'droplets' in our diffuse microscale description

we are speaking loosely, since such terminology is strictly appropriate only at the sin-

gular microscale view.) This time periodic (or almost time periodic [15]) assumption

represents the dynamical constraint analogous to the geometrical constraint imposed

by spatial periodicity. However, while an explicit length scale exists for the porous

medium (viz. L) to compare with 1, the variable T presents no such explicit choice in

view of the steadiness of the macroscale fields. Thus, T can be considered infinites-

imal compared with the relaxation time of the measuring instruments employed at

the macroscale. Accordingly, the above assumption assures the requisite smoothness

(on the time scales of measuring instruments) of the macroscale temporal derivatives.

The quantity T, which is of course finite at the microscale, will be identified later

as constituting an infinitesimal macroscale time element dt, whence the group of terms
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appearing on the left-hand side of equation (4.10) will be identified as representing

the definition of the macroscopic time derivative. Furthermore, the identification of

T defines the time interval over which the physical variables need to be time averaged

in order to complement the spatial averaging. Both are needed to derive expressions

for the macroscale fields from their microscale counterparts.

4.3 Microscale Conservation Equations

This section discusses the conservation equations governing the microscale-level (dif-

fuse interface) transport processes.

At the pore-space (microscale) level of description our biphasic flows are mod-

eled from a diffuse interface viewpoint. The conservation equations governing species

transport at the microscale correspond to the convective-diffusion and linear mo-

mentum equations outlined in section 3.2. They are summarized here, along with

the corresponding microscale transport equations for both energy and moment-of-

momentum.

Diffusion equations:

+ V - (piv) = -V -J; + V - (p2 v) = -V -J 2.at at
(4.11a,b)

Momentum equations:

(a) Linear momentum 3

(pv) + V - (pvv) = -Vp + V r+ V rc+ pigi, (4.12)

3 To be consistent with the spatially periodic interstitial-fluid field model of a porous medium here

envisioned, gravity forces cannot strictly be included within this framework since the concentration of

the individual species (and hence pi) vary over the unit cell. However, as will be made clear during the

subsequent exposition, the spatially periodic model serves as a backbone for constructing rigorous,
physically-based definitions of the macroscale fields in terms of the microscale fields. The final forms

of the macroscale transport equations, namely (4.53a,b) - (4.56), are expected to be independent

of this strict periodicity assumption. In line with such an approach, we ignore the inconsistency

arising from the inclusion of gravity forces within the spatially periodic model. Alternatively, the

inconsistency can be removed by setting the gravity terms to zero.
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where gi is the external body force per unit mass exerted on species i.

(b) Moment-of-momentum: Define -r df- + Tc and assume the fluid to be non-

polar. In such circumstances we have that [16]

-r = rt. (4.13)

Energy equation [17]:

[p(e + }v 2 )] 1 2)V2-+V. -P(e +-v2) + q + vp - V.Ir
at 1 2

- E(piv + Ji) -gi = 0,

(4.14)

where e denotes the volumetric internal energy density4 and q the heat-flux vector.

The pore-level boundary conditions are dictated by the geometry of the system.

At the surfaces of the bed particles we have: (i) the no-slip condition,

V =0 ons (4.15)

and (ii) the condition of no net normal flux, which together with the vanishing of the

convective flux on the bed particles as implied by (4.15) requires that

(4.16)

with v the unit normal on the bed particles. Consistent with the diffuse interface

model, no interfacial boundary conditions exist.

" For liquid mixtures as considered in this article, the difference between the internal energy

density and the free energy density is expected to be negligible, thereby requiring that the volumetric

density p e be identical to f', whose definition was outlined in footnote 3.
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4.4 Macroscale Definitions

4.4.1 Time Scales

As already observed in connection with the temporal evolution of the microscale

fields accompanying the flow, the relative motion of the two 'phases' leads to an

inherently unsteady phenomenon at the diffuse (as well as the singular) microscale

this despite the fact that the macroscale flow may itself be steady, that is time

independent! In such circumstances one can identify the concept of a micro-macro

time interval in accordance with the assumption of time-periodic or almost time-

periodic flows, with T (Assumption 1) constituting an infinitesimal time interval dir,

say, at the macroscale. Consequently, time intervals of order T will be regarded as

being differentials at the macroscale. The macroscale manifestation of the underlying

microscale phenomena is observed only in a time-averaged sense at the macroscale,

consistent with the continuum description. Therefore, we write

dt= T, (4.17)

where f constitutes the macroscale time. In analogy with the previous definition of

macroscale lengths following (4.3), one can heuristically write f = t + O(T). Further-

more, all subsequent definitions of macroscale fields will involve a time averaging of

the comparable microscale fields of the generic form

t+T

-T 2 (...)dt. (4.18)
T -2

For simplicity of notation, we henceforth use the succinct abbreviation

2(...)dt =(4.19)
T -2

to denote the time-averaging operator.

The subsequent analysis focuses primarily on flows that are steady at the macroscale

(i.e. satisfy Assumption 1). The ensuing macroscale equations are then generated
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by appropriately space- and time-averaging the microscale equations. In view of the

assumed spatial- and time-periodicity (or, less stringently, almost time-periodicity)

of the microscale fields, space-averaging is equivalent to averaging over a unit cell T0 ,

and time-averaging to averaging over one period T. Quantities of 0(l1111) and O(T)

are subsequently neglected,5 consistent with the identification of such quantities as

being infinitesimal at the macroscopic level. While the main focus of our work will be

on flows that are steady at the macroscale, we will also indicate the manner in which

the definitions of the macroscale fields can be extrapolated to include time-dependent

macroscale fields as well, albeit only those macroscale fields which vary on a much

longer time scale than their microscale counterparts. In such circumstances the above

definitions can be assumed to hold at a particular macroscopic instant t, with the av-

erages allowed to be functions of the macrotime t. Similar generalizations may be

applied to slowly varying spatial phenomena, thereby allowing for the possibility of

spatially inhomogeneous macroscale fields.

Notation: We distinguish macroscale fields and operators from their microscale

counterparts by affixing an overbar to the latter. Examples include the macroscale

position vector R, the phase-specific pressures pi, P2, and the macroscale gradient

operator V

4.4.2 Macroscale Physical Quantities

Macroscale physical quantities are defined 'pointwise' at the position R and 'instan-

taneously' at the time f as being the respective volume averages of comparable mi-

croscale physical quantities. With 4' representing the volumetric density of a generic

macroscale physical property, the definition of the corresponding interstitial macro-

51n the case of almost time-periodic functions, the definition [15]

1 f+T' def. ^
lim - f (t)dt = f,

T'-+oo T '

of f is such that that the convergence to f occurs uniformly in t. As such, one can identify a finite

time interval T sufficient to define a mean value of f that is independent of t to within an error of

O(T). This permits one to define macroscopically steady values for almost time-periodic microscopic

fields, since quantities of O(T) are considered infinitesimal at the macroscale.

101



scopic density is [cf. (4.48)]

def. 1 3f(.0// d3r 4. (4.20)
Tft Jr

By integrating only over Tf we have implicitly assumed that the bed particles are im-

permeable to transport through their interiors of the physical property in question.

The definition (4.20) is consistent with the usual viewpoint adopted by a macroscopic

observer in representing the total amount, ft ff dar '4, of a 'physical quantity' instan-

taneously present in a macroscopic differential (interstitial) volume as the product of

a macroscopic volumetric density '4 and the magnitude Tf of the 'differential' volume

element. However, in view of the fact that only a fraction of the pore space is occu-

pied by interstitial fluid, the volumetric density can also be defined equivalently to

(4.20) as

13
f= - dar4', (4.21)

where E = r/ro represents the interstitial void fraction or porosity of the porous

medium. In the standard parlance of flow through porous media [5, 7], ' represents

the interstitial volumetric density and F'tW the superficial volumetric density of the

macroscale property in question.

The generic definitions outlined in Section 4.4 lead us to identify the following

physical diffuse Darcyscale densities:

Mass density:

E def. d 3r p; (4.22)
To it Jr

6In the case where 4' is assumed to be spatially nonuniform (possessing weak gradients) the

above definition of the macroscale physical quantities, together with the definition of their respective

macroscale gradients, cf. eq. (4.49), requires 1 to be small compared with the length scale of the second

derivatives in order to justify the neglect of second derivatives.
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Mass density of species 1:

-ef. d3r pl. (4.23)

The latter enables us to define a macroscale volume fraction (or saturation) of phase

1 as

def. 13f
EC - d3 r c, (4.24)

so that -P = po-j and P2 pO(I - c) p(l - ) Hence, we find from (3.5) that

TP +± P2 (4.25)

=pJZ! + pO(1 - )

consistent with expectations. In view of the assumed incompressibility of the mixture

at both the micro- and the macroscales, it is not surprising that the conventional

definition of saturation appears as the natural choice for the physical composition

variable in our continuous multicomponent description (of what is normally regarded

as a two-phase system).

The definition of macroscale momentum density leads to the following definition

of the macroscale interstitial velocity V of the binary mixture (with E V representing

the so-called superficial or seepage velocity of the mixture):

___def. 1 3fEpv = / d r pv. (4.26)
To i 7-

The velocity V appearing in the above expression also constitutes the mass-average

velocity (cf. Appendix C). In contrast with conventional two-phase theories of av-

eraging, involving a singular interface Darcyscale description of the pertinent phe-

nomena [8, 10], it will prove unnecessary for us to define individual phase velocities

V1 and '2 at the macroscale. This innovation is consistent with our diffuse Darcyscale

model, which utilizes a multicomponent (rather than multiphase) viewpoint account-
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ing for the several species present, and where accordingly the only relevant velocity

is the mixture velocity. Nevertheless, for the sake of comparison with existing theo-

ries of multiphase flow, individual macroscale diffusion fluxes of the two species will

be defined in the next chapter, enabling us to indirectly identify species velocities

(equivalent to so-called phase velocities). In turn, this will enable us to relate our

fine-scale diffuse Darcyscale description to its more traditional, coarser-scale, singular

Darcyscale counterpart.

It is important to emphasize the fact that the velocity V plays a dual role as both:

(i) the momentum density (per unit mass) in a dynamical context; and (ii) the mass

flux vector in a kinematical context. Hence, our subsequent generic definition of the

macroscopic fluxes in (4.32), when applied to the mass flux, should (and does) furnish

an expression identical to (4.26) for the macroscopic velocity (see Appendix C).

Angular momentum density

For a polar microscale interstitial fluid continuum the total angular momentum

density (per unit mass) will generally include an intrinsic pseudovector contribution

1 from the internal angular momentum in addition to the usual contribution arising

from the moment of the linear momentum [18]. However, it is a consequence of our

assumption regarding the nonpolar nature of the fluid at the microscopic level, that

1= 0. Nevertheless, the macroscale intrinsic angular momentum density will generally

embody within it a nonzero contribution arising from external moment-of-momentum

considerations in relation to the screw-symmetric nature of the particles comprising

the skeletal porous medium [5, 19]. Thus,

e 5(I+ ARx) = d r pR x v. (4.27)

Together with the definitions R = Rn + r and R = R, the latter reduces to the

following expression whereby I can be calculated from the microscale data as:

-def. 13
/ 0 it If d3 r pr x v. (4.28)

Fao is n

From the latter definition of 1 one can discern that it is O(1111). Accordingly, to
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maintain consistency with the subsequent analysis 1 will henceforth be neglected.

The macroscale energy density - per unit volume is defined by the relation

2) 1 2), (4.29)+2 T 7- fre +, 2

which furnishes the following explicit expression for the internal energy density i:

... def. 1 3f
_p1e If d r p(e + vv'). (4.30)

To tlr 2

The latter integrand includes contributions from the microscale internal energy den-

sity e, as well as a kinetic energy contribution arising from the distinction between

V2 and iV2 with v' = v - V.' Furthermore, for reasons identical to those eluci-

dated in footnote 4, the difference between the macroscale free energy density and the

macroscale internal energy density is expected to be negligible. Thereby, we obtain

def. 1 3I 1 /

darp(e+-vv') (4.31)
T t II 2

wherein F denotes the macroscale volumetric free energy density.

4.4.3 Macroscopic Fluxes

The following generic definition is adopted for superficial macroscale areal flux den-

sities:

DEFINITION 1 At a point R of the porous medium, the macroscale flux-density

tensor M M(R)' of the comparable microscale flux density tensor M M(R, t)

7This phenomenon, whereby the clear distinction between 'internal' and 'external' energies at

one scale becomes blurred at a coarser scale, is analogous to comparable phenomena at the pre-
continuum, discrete molecular scale, whereby, say, the kinetic energy of discrete molecules becomes

a part of the internal energy of the system at the continuum scale (so that the sum of the kinetic
energies of the molecules is not identical with the kinetic energy of the continuum) [20].

8Note that M = M(R, t) in the case of a flow varying temporally on the macroscopic time scale.
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is defined generically as

Sk e.M j J ds-M. (4.32)
Sk - L-Jt sk nds-M

Inasmuch as sk = ds, the preceding expression constitutes a Eulerian definition of the

macroscale flux provided that M can be shown to be independent of the orientation

Sk of the cell face. This fact is demonstrated by Brenner [5] (see also [12]) for spatially

periodic fields M, albeit without the temporal integration. This Eulerian definition

eventually enables us to satisfy the physical requirements demanded of any proposed

definition of a macroscale flux density, e.g., the stress tensor, since in this case, the

right-hand side of the above equation respectively represents the force exerted on a

mass flowing across an area which is 'infinitesimal' at the macroscale. The following

results, proofs of which are furnished in Appendix B, are consequences of the definition

(4.32).

THEOREM 1 When the instantaneous gradient VM of the microscale flux density

M is spatially periodic, the macroscale flux density M(R), defined so as to possess the

areal property (4.32) [albeit only to 0(|1ll|) termsj, is explicitly given by the expression

M = -j rds -M. (4.33)

Moreover, M defined in this way possesses a macroscale gradient, expressible as

1f
VM = -] ds M. (4.34)

Upon scalar contraction the latter yields

7-M = i-f ds - M. (4.35)
'TO , 'T,
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The preceding properties possessed by M enable us to explicitly identify the following

superficial areal flux densities, each respectively associated with a different choice of

physical property:

Mass flux-density vector

def. 1 prds -v. (4.36)

Proof of the fact that the above definition is consistent with one's expectation that

JM should be expressible in terms of the macroscale variables p and V as JM = E 1v

is presented in Appendix C.

Diffusion flux-density vector

-def.1

N df I rds -N 1 , (4.37)

where N 1 = p1v + J 1 . Here, N 1 denotes the net macroscale flux-density of species

1 (relative to the stationary porous medium) arising from both microscale convec-

tion and diffusion processes. Analogous to the comparable microscale decomposition

appearing in the diffuse interface description, one can separate N 1 into a sum of

convective and diffusive fluxes:

N, = E 1V + J 1, (4.38)

where the macroscale diffusion flux j1 is defined as

- def. 1Ij
'1 = T rds - (piv' + J1), (4.39)

and v' is defined following (4.30), being the deviation from the mean velocity. Simi-

larly, one can define the macroscale momentum flux-density dyadic

- def
-PM =~ EiVV±+P, (4.40)
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with the macroscale stress tensor P defined as

pdeI rds - (pvv' + P), (4.41)
TOt laOo

in which P = -p1 + -r denotes the microscale stress tensor.

Appendix D discusses the manner in which P as defined above can be expressed as

the sum of a macroscale pressure p and a (generally asymmetric) macroscale deviatoric

stress tensor 'F:

P = -PI +;, (4.42)

wherein

_def. Jf 0 (.3
P 3r ti~ r - ds -(pvv'+ P) (4.43)

and

_def.1f1

1 def /1 (rl - -Ir) ds - (pvv' + P). (4.44)
T0 t 0 io 3

As further discussed in Appendix D, it is the macroscopic pressure gradient that is

physically significant, rather than the macroscale pressure itself. Indeed, according

to (D.8),

- 1f
VP =ds p. (4.45)

To it J r

Similarly, the net macroscale energy flux-density vector is defined as

e _V 2+ V _ -V + ,(4.46)
2

with

je'f rds - q + p(e + v 2)v'- P v' (4.47)
TO t L 2

108



identified as the macroscopic heat flux-density vector. This completes the definitions

adopted for the diffuse Darcyscale fluxes pertinent to our analysis.

4.4.4 Macroscopic Source Terms

Macroscale source terms are defined as being the volume averages of the respective

microscale source terms. Again, this is consistent with measurements that would be

registered by a macroscale experimental probe; that is, a probe whose aperture is of

the order of the cell size.

Upon using equation (4.23) defining E , the momentum source term is given by

&i E Pigi. The macroscopic energy dissipation due to the diffusive flux is given by,

Zl _1 (E ,5V + ji) -gi, where the definition (4.39) of JI has been used.

To effect the averaging procedure enabling the transition from microscale to

macroscale we require use of the following generic definition of the macroscale gradi-

ent:

4.4.5 Macroscopic Gradients

DEFINITION 2 For a function of volumetric density 4 whose macroscale value is

defined as

def d3r , (4.48)
TO t ro

the corresponding macroscopic spatial gradient is defined as

V f ds 4', (4.49)
Tf Jt Jia'

and the macroscale time derivative as

T- 1  d3rr 0(t + ) dr (t -T)J. (4.50)
TOtet or 2 idfi 2 )

The latter is consistent with our time-element identification in (4.17). Functions
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satisfying Assumption 1 possess a macroscopic time derivative that is identically zero:

0. (4.51)

However, in the general case where the flow is macroscopically unsteady, (4.50) trans-

lates as

- = 1 [ r . (4.52)
at T5 fat t

The above identifications permit derivation of the pertinent field equations govern-

ing transport at the macroscale starting from the corresponding microscale transport

equations, a topic addressed in the following section.

4.5 Macroscale Equations

Averaging the microscale equations over time and space (the former over one time-

period T and the latter over the unit cell T), and using the preceding definitions of

the macroscopic time derivative together with the expressions for the macroscopic flux

densities and their divergences jointly with the boundary conditions (4.15), (4.16),

yields the following diffuse Darcyscale field equations:

Diffusion equations:

at at
(4.53a,b)

Momentum equation:

-(E V ) F, (4.54)
-P V) P+ + gi + -

where

F ef ds - P (4.55)FP
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denotes the macroscopic volumetric force density arising from the immobility of the

bed particles. 9

Energy equation:

± 2) + [ - + 2) pv+ + I) - g = 0.

(4.56)

All quantities appearing in these diffuse Darcyscale field equations have been

rigorously defined so as to maintain consistency with the physical measurements dis-

cernible to a macroscale observer. Moreover, they are operationally expressed entirely

in terms of spatial and temporal quadratures of well-defined microscale fields. As the

subsequent analysis will be primarily concerned with inertia-free and isothermal mi-

croscale flows, effects arising from the existence of the macroscopic stress tensor as

well as from energy considerations are consequently irrelevant and hence will not be

further pursued except insofar as they prove necessary in our generic discussion of

macroscale irreversible thermodynamic principles.

4.6 Conclusions

In this chapter we erected the infrastructure prerequisite to a rigorous transition from

the microscale to the macroscale level of the porous medium flow phenomena within

the context of the diffuse interface model. Subsequent to a brief introduction expound-

ing the assumption of the geometrical periodicity, we elucidated the physically-based

definitions of the macroscale physical quantities. Thereby we derived the transport

equations governing the temporal evolution of macroscale physical variables. The

9The genesis of F lies in the no-slip condition on the solid particle surfaces. Slip or other forms of

boundary conditions resulting from the presence of contact lines would presumably lead to different

boundary conditions at the solid surfaces, and hence would also change the constitutive form of

the force appearing in the final expression. However, there does not exist an analogous term in the

macroscale energy equation (4.56) even for varying temperature fields. The underlying reason for

this is that the force F is of a physicochemical nature, arising from the stationarity of the particles,
rather than being externally imposed. Were the latter the case, this force would then have necessarily

appeared in the energy equation. This subtle feature plays a crucial role in determining the form of

Darcy's law from considerations of irreversible thermodynamics, as is outlined in Section 6.1.

111



framework outlined in this chapter thus enables computation of the macroscale fields,

therefore constituting an implicit ratification of the functional form of the macroscale

equations. In principle, the rigorous framework outlined in this chapter enables the

following dual purposes: (a) computation of the macroscale fields from the precursor

microscale fields; (b) construction of the macroscale constitutive equations, pending

the specification of the microscale constitutive equations.

The subsequent chapter implements the diffuse Darcyscale framework outlined

in the present chapter so as to identify the phase-specific quantities and governing

equations. We also provide significant insights into the the functional form of the

macroscale physical quantities by utilizing the microscale constitutive equations out-

lined in chapter 3. (The entirety of our preceding discussion had explicitly avoided

incorporating any specific form for the microscale constitutive equations.) The pre-

scription of the microscale constitutive equations enable one, in principle, to derive the

macroscale equations based on our framework. However, the constitutive equations

outlined in the previous chapter are highly nonlinear in their functionality, thereby

precluding the possibility of an analytical averaging procedure. Consequently, instead

of directly utilizing the microscale constitutive equations to derive the comparable

macroscale equations, we rationally 'guess' the forms of the macroscale constitutive

equations based on considerations of irreversible (or nonequilibrium) thermodynam-

ics. Such a procedure, effected in chapter 6, enables justifying the biphasic Darcy's

laws and their generalizations. Eventually, we consider a simple linearized example to

verify the functional forms suggested by our irreversible thermodynamic arguments.
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Chapter 5

Biphasic Flows in Porous Media:

Singular Darcyscale

The preceding chapter was explicitly concerned with developing the macroscale frame-

work accompanying the diffuse Darcyscale viewpoint, the conception of which entailed

the flow of a binary 'mixture' at the Darcyscale. This physically-based framework,

outlined therein, enables identification of the transport equations applicable at the

diffuse Darcyscale. However, conventional efforts at modeling biphasic flows in porous

media (cf. chapter 2 and the references cited therein) are typically concerned with

'phase-specific' quantities. Examples of such concepts include phase-specific pres-

sures, velocities, Darcy constitutive laws, etc. Consequently, in order to make an

explicit connection with the conventional modeling framework (which we term the

"singular Darcyscale"), in this chapter we utilize the diffuse Darcyscale framework

to identify the physical definitions of the phase-specific quantities and the equations

governing them.

The following sections are concerned with a rigorous thermodynamic framework

for identifying 'phase-specific' quantities at the singular Darcyscale from their precur-

sor 'mixture' quantities describing the diffuse Darcyscale. Such an approach embodies

the philosophy whereby one identifies 'phase-specific' quantities with the 'species-

specific' quantities characterizing the mixture. We utilize this framework to derive

relationships between the phase-specific quantities and their diffuse Darcyscale pre-
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cursors. Such a procedure yields an explicit expression for the capillary pressure,

which has hitherto confounded most macroscale researches in terms of its rational

understanding. Furthermore, we utilize the microscale constitutive equations to pro-

vide new insights into the nature of the hysteresis observed in experimental mea-

surements of capillary pressure. Subsequently, we argue that the macroscale energy

equation needs to be incorporated within any macroscale modeling framework so as

to enable closure of the dynamical equations requisite to modeling multiphase flows

at the Darcyscale level.

5.1 Phase-Specific Quantities

This section provides an interpretation of the conventional empirical singular Dar-

cyscale phase-specific quantities appearing in the ubiquitous two-phase Darcy flow

equation (2.2). This is achieved by correlating these phase-specific fields with our

two-component microscale quantities. The basis for accomplishing this lies in the

diffuse two-component mixture formulation that we have adopted at both the micro-

and macroscales. The approach used in this section involves relating phase-specific

(or, more properly, species-specific) macroscale fields appearing in the singular Dar-

cyscale description (2.2) to their diffuse Darcyscale counterparts. Thus, in contrast

with many prior analyses [4, 6, 10], singular Darcyscale phase-specific quantities will

not be defined as averages of their (singular interface) microscale counterparts - so

that, for instance,

1 ff
3- drP. (5.1)

Only inertialess (slow) and isothermal flows are addressed in the ensuing discus-

sion.
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5.1.1 Phase Velocities

The diffuse Darcyscale formulation that we have adopted serves to define V and Ji

in a rigorous manner. A macroscale observer then discerns the individual 'phase

velocities' V, and V2 only indirectly, namely from measurements of J1 and J2 , by

pursuing the following argument: By definition,

J1 = T51(V1 - V); J2 = P2(V2- V). (5.2a,b)

Consequently,

Ji J
V=Ti + V; V2 = P2 + V.(5.3a,b)

P1 P2

It is readily established that the above definitions imply that

E pjv 1 = 1 3dr pivi, (5.4)
Jot J1f

together with a comparable relation for species 2. However, our interpretation of

Vi and V2 is independent of (5.4) et seq., since at the diffuse interfacial microscale

only the mixture velocity V is physically relevant in the context of our model.

5.1.2 Phase-specific Pressures

Before dealing with the concept of phase-specific pressures (in the context of the

singular Darcy description), and as a preliminary to the subsequent development, we

define the following diffuse Darcyscale quantities:

9 Macroscale chemical potential

Consistent with the assumption stated in the Introduction, we hypothesize that

conventional thermodynamic identities among microscale quantities hold equally well

when macroscale thermodynamic quantities (such as free energy) are involved. A

similar assumption has been made by others [4, 6, 9], who likewise employed conven-

tional thermodynamic identities at the macroscale. Thus, we define the macroscale
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chemical potentials:

def. OF def. OF
A i - ;P 1 2 - ._2 (5.5a,b)

The indicated differentiations are to be performed while keeping constant all other

physical variables other than species density.

9 Phase-specific pressures

With the above considerations in mind we propose the following definitions for

the singular Darcyscale phase-specific pressures:

1 V9P2 = 72 (5.6a,b)
p p

These relations are exact for homogeneous (and weakly inhomogeneous) systems at

thermodynamic equilibrium. Their extension to nonequilibrium situations, as in our

case, is linked to the assumption of local equilibrium - discussed in section 6.1. In

fact, Kirkwood & Bearman [5] in their discussion of transport processes in multi-

component mixtures propose identical relations, albeit for species-specific pressures.

The above definitions do not incorporate effects arising from incompressibility. This

restriction is incorporated into our work by a novel method first proposed by de-

Gennes [21, although in a different context. Its implementation involves assuming

that the incompressibility condition can be viewed as resulting from the action of

fictitious physicochemical forces, represented here by the gradient of some macroscale

potential U. Explicitly,

'V9 = 9(f1 ±+U); 9 2  2(T 2 +O), (5.7a,b)

where U is determined by imposing the incompressibility condition:

VP 1 + VP2 = V. (5.8)

Upon solving for U in the above equations and substituting the resulting expression
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into (5.7a,b) one obtains:

P P P P
(5.9a,b)

The latter pair of equations constitute the operational definitions of the singular

Darcyscale phase-specific pressures. It is appropriate here to review the evolution

that led to these definitions. In particular, these pressures have not been obtained

by averaging respective phase-specific microscale pressures pi and P2 arising in the

singular interface view, as has been done in the past by other researchers. Indeed,

such individual pressure fields have no existence in our diffuse, strongly inhomoge-

neous, single-phase view. Rather, in our diffuse microscale view, the pressure p of

the mixture ('solution') as a whole was identified by its contribution to the linear

momentum transport process. Rigorous definitions of the diffuse Darcyscale fluxes

(in terms of the microscale fluxes) subsequently yielded the diffuse Darcyscale pres-

sure of the mixture. Within this mixture, individual species (or 'phase-specific')

macroscale pressures pi were identified with the corresponding gradients VT7i in chemi-

cal potential, consistent with the local equilibrium assumption. Incompressibility was

incorporated through fictitious physicochemical forces. This conceptual foundation

underlying Vpi and VP2 is subsequently used in the next section to explain the phase-

equilibrium-type of relationship postulated [3, 7] to exist between Vpi and VP 2.

Note: In this and subsequent sections we will be concerned exclusively with slow,

isothermal flows characterized by weak spatial gradients. The temperature depen-

dence of the various physical quantities, especially the free energies, will not be ex-

plicitly displayed unless essential to the development.

5.2 Capillary Pressure

As noted in the Introduction, the singular Darcyscale description of multiphase flows,

being based upon phase-specific Darcy's laws, requires knowledge of the so-called
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capillary pressure Pc[c] to effect closure of the resulting system of equations [3, 7].

However, prior analyses have been unable to convincingly identify the fundamental

source of the hypothesized capillary pressure-saturation relationship underlying such

theories. While it has always been conjectured that the capillary pressure-saturation

relationship represents a macroscale manifestation of the microscale singular-surface

Laplace interfacial boundary condition [cf. (3.72)] [10], attempts to relate quantities

like p, and P2- resulting from volume averaging - to microscale matching condi-

tions, which are valid only at interfaces [3], are not wholly convincing. Moreover, the

Laplace equation derives from equilibrium considerations, whereas the Darcy-flow

case necessarily entails nonequilibrium processes! As such, prior theoretical argu-

ments proposed for the existence of a capillary-saturation relationship are at best

conjectural and incomplete.

In contrast, the present work adopts an innovative formalism for describing mi-

croscale two-phase flows, where one no longer deals with intrinsically macroscopic

terms like 'interfaces.' As a consequence, the Laplace boundary condition no longer

manifests itself in an explicit manner, thereby enabling rigorous operational defini-

tions to be set forth for the diffuse Darcyscale pressure field P in terms of quadratures

of microscale fields. In turn, knowledge of this macroscale pressure, together with

use of other equally well-defined macroscale fields, has enabled us to derive singular

Darcyscale phase-specific pressures P, P2 through rigorous operational definitions of

the latter. This led, in turn, to the expressions (5.9a,b) for Vpl and VP2-

Subtraction of the latter pair of equations yields

P P(5.10)
Pi P2

At equilibrium, when both Vjip and V2 vanish identically, so that ji and P2 (and

hence p) are each independent of position, it follows from the above that

Pi - 2 = [t2. (5.11)
Ti T2

The left-hand side of the above equation constitutes our proposed definition of the
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heretofore elusive capillary pressure, namelyl

Pc _P - -P2. (5.12)
Pi P2

The definition (5.12) constitutes the logical outcome of our designation of species-

(or phase-) specific pressures, starting from the concept of the total pressure p of the

mixture. The above equation also embodies a definitive scheme for calculating the

capillary pressure from the microscale data, since )i and T!2 are eventually defined

in terms of their relationship to microscale quantities. We believe that our investi-

gation is the first to propose a rigorous, physically-based, operational definition of

the capillary pressure as a true continuum field concept. In a deeply intuitive study,

Hassanizadeh & Gray [3] hint at similar considerations; but in view of the absence of

a suitable micro-macro homogenization scheme in their proposal, the physical basis

for such a hypothesis is lacking.

Until now our discussion was completely independent of the choice of the mi-

croscale constitutive equations adopted for J1, J 2 and r, in equations (4.11a,b) and

(4.12). In the following sections, namely 5.3 - 5.5, we adopt the constitutive equations

outlined in section 3.3, enabling us thereby to provide a number of significant insights

into macroscale concepts which have heretofore defied completely rational elucidation

in previous investigations. In view of our rigorous definitions linking microscale and

macroscale physical quantities, we are able to furnish exact statements regarding the

functional dependencies of the macroscale physical quantities. These dependencies

constitute the appropriate form of an equation of state for macroscale-level model-

ing. We also display the complete set of equations required for macroscale modeling

which embody the variables consistent with such an equation of state. An experimen-

tally determined equation of state, in conjunction with the complete set of macroscale

equations, thereby provides a framework for a macroscale modeling scheme, one which

is devoid of the need for actually computing the microscale solutions appropriate to

'This pressure is defined in a manner different from that advocated by others, who employ a

volume-averaging procedure (cf. the review by Adler & Brenner [1])
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the porous-medium geometry. Such a framework is developed in the following three

sections.

5.3 Macroscale Free Energy Density

Preliminary to seeking insights into the physical basis of capillary pressure, a topic

which is discussed in the next section, we first analyze the functional form of the

macroscale free energy density.

Calculation of the capillary pressure via (5.19) rests upon knowledge of the macroscale

chemical potentials, )71 and 72. However, the macroscale chemical potential is calcu-

lated via (5.5a,b) through the macroscale free energy density F, which is defined in

eq. (4.31):

-deif3 1  ,
eF it f] d r p(e + 2v -v). (5.13)

We consider the constitutive form proposed in footnotes 3 and 4 for the definition of

the internal energy density e required above, thereby allowing us to write (5.13) as

e d r [f (c) + (5.14)

Note that the energy density F possesses contributions arising from three sources:

(i) Microscale bulk internal energy; (ii) Microscale kinetic energy; and (iii) Gradient

energy. Contributions from sources (i) and (ii) are present in the macroscale energy

density in single-phase, binary mixture flows. However, the third contribution, rep-

resenting gradient effects, arises exclusively as a consequence of the presence of the

second phase. To facilitate the analysis of the respective functional dependence of the

macroscale free energy upon each of these contributions, we divide the contributions

into two groups, denoting by Fbulk the sum of the contributions (i) and (ii), and by

Fgrad that resulting from the gradient terms. Consequently,

1ff 1
eybulk -= -- dr (f + fid + - v'). (5.15)

TO 2 7
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The functional dependence of each of the terms appearing above may be analyzed

as follows: (i) In view of the fact that f(c) = 0 for c = 0 and 1, f(c) is nonzero only

in the interfacial region. Furthermore, since f(c) is of 0(1) everywhere (even within

the interfacial region, since there exists no explicit dependence of f upon gradients)

the contribution of f(c) to Fbulk is of O(6 1/3) (6 denoting the width of the interfacial

region). As such, the contribution of this term proves negligible compared with that

of the other terms; (ii) The contribution of fid = cf + (1- c)f 2 to Fbulk is functionally

dependent only upon - (in addition to temperature); (iii) The contribution arising

from the kinetic energy term can influence the macroscale free energy through the de-

pendence of the latter upon the macroscale temperature, in a manner not unlike that

of the contribution of molecular motion to the continuum-scale internal energy den-

sity. However, since subtle differences existing between the macroscale and microscale

temperatures are peripheral to the focus of this article we eschew this complication

by assuming that the contribution arising from the microscale kinetic energy term is

negligible for the slow, low Reynolds number flows considered here.

The suggested functional dependencies of the individual contributions lead us to

conclude that Fbu1 lk Fbuik(e, T).

Consider the gradient contribution to the macroscale free energy:

1ff 1 ffd1
& Pgrad = -] d3 rpegrad - - -K(Vc)2. (5.16)

By definition, egrad is nonzero only in diffuse interfacial regions. Using (3.73), relating

the interfacial surface tension to the concentration gradient, it is easily seen that igrad

is identically equal to a, where a and a respectively refer to the interfacial tension

and the specific surface area 2 (interfacial area per unit volume) between the phases.3

2The concept of interfacial area is absent when the diffuse interface microscale model is adopted.

Since o- and d always appears as the product &-a, a microscale researcher can calculate this quantity

as
- j d3 r -K(Vc)2

using his microscale solutions.
3Incorporation of wetting effects would necessarily involve the solid-fluid surface tensions and

areas, neither of which is present in our expression since we eschewed such effects in our analysis.
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Based upon this identification, we discern that Fgrad -

In combination, the above results lead to the following functional dependence of

the macroscale free energy density:

F F(c, ). (5.17)

(The dependence of the latter upon the macroscale temperature T is not displayed

explicitly, as in all prior cases.) The identification of i as a relevant variable in the

macroscale description of two-phase flows is particularly significant. Hassanizadeh

& Gray [3] also claim that F should depend upon i. However, they offer neither a

concrete proof of this fact (as we have done) nor is the basis for F (as required by the

distinction between species and phases) provided in their work. Other researchers who

have undertaken to model directly at the macroscale (with no concession to microscale

considerations) have also intuitively recognized the fact that saturation alone might

not constitute the only variable required for a complete macroscale description of

the phenomena. In a sense, the above analysis constitutes a proof, albeit one based

upon our constitutive assumptions, that the macroscale free energy F is functionally

dependent not only upon saturation, but upon specific surface area as well.

Upon utilizing (5.5a,b) we further obtain

i -_ 17i (T, d) (i = 1, 2), (5.18)

the significance of which is analyzed in the next section.

5.4 Capillary Pressure-Saturation Relationship

This section is explicitly concerned with the experimental measurements quantifying

the capillary pressure-saturation relationship. Utilizing the results obtained in the

preceding sections we provide significant insights regarding the nature and the cause

of hysteresis observed in such experiments. However, prior to embarking on such

an effort, in subsection 5.4.1 we indulge in clarifying some salient aspects of the
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capillary pressure-saturation relationship by utilizing simplistic examples to illustrate

the hysteresis observed in such experimental measurements. Eventually, in subsection

5.4.2 we combine results obtained in section 5.2, concerning the definition of the

capillary pressure jointly with the results obtained in the previous section, relating

to the functional dependencies of the macroscale free-energy density and chemical

potentials. These are utilized to draw pertinent conclusions regarding the existence

of a relationship between capillary pressure and saturation, as well as regards the

likely source of the hysteresis repeatedly observed in such experiments.

5.4.1 Hysteresis in Capillary Pressure-Saturation Measure-

ments

This section utilizes simple examples to illustrate the hysteresis phenomena observed

in experimental measurements of the capillary pressure-saturation relationship. These

examples invoke the distinct wetting properties of the fluids to account for the hys-

teresis phenomena. In the next subsection we outline novel insights into the functional

form of the capillary pressure, wherein we reconsider these examples so as to demon-

strate the plausibility of our hypothesis in explaining the observed hysteresis.4

Example 1

Figure (5-1a) is a pictorial representation of the system considered for our first ex-

ample. The system contains a reservoir of a wetting fluid (RI) linked through a

cylindrical capillary tube of radius R to a geometrically identical reservoir (R2) con-

taining a nonwetting fluid.5 Further, we assume that the reservoirs are connected to

external pressure pumps which enable the maintenance of arbitrary pressure differ-

ences between the two reservoirs RI and R2.

4The examples in this section were borne out of a discussion with Prof. Deen. The author is

indebted to Prof. Deen for suggesting the outline of the following example, and also to Prof. Nadim

for discussions pertaining to the same. A survey of the literature revealed that a similar example
has also been considered by Muccino et al. [8].

51n the spirit of simplicity, we assume that the wetting fluid contact angle is 0 = 0, and the

nonwetting fluid contact angle is 0 = 1800.
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In the following we outline a thought experiment to discern the capillary pressure-

saturation relationship. At the completion of each of the steps of the experiment, we

monitor the equilibrium state of the system, quantified by the difference in the pres-

sures of the two reservoirs, and the volume fraction (cm) of the wetting phase. Figure

(5-1b) portrays the equilibrium states of the system attained in the course of execut-

ing our thought experiment. We envision an initial state wherein the capillary tube

is filled with the wetting fluid while the pressures are being maintained equal in the

two reservoirs (corresponding to the state denoted "a" in the figure). Subsequently,

we consider the effect of an increase in the pressure in reservoir R2 containing the

nonwetting fluid. As such, this act does not produce any perceptible effect on the vol-

ume fraction of wetting fluid in the capillary until the juncture (state "b") wherein

the pressure difference Pnw - Pw between the reservoirs infinitesimally exceeds the

value corresponding to equilibrium, namely 2u/R, where u- denotes the interfacial

tension between the wetting and the nonwetting fluids. In such a scenario (state "c")

the nonwetting fluid invades the capillary tube, thereby draining the wetting fluid

(cW = 0).

Now, we conceptualize a reversal of the above thought experiment, starting how-

ever from the state achieved at the end of the above experiment (state "c"). If the

pressure in the nonwetting fluid Pn, is now reduced, no change is perceived in the

volume fraction cw until the pressure pn, acquires a value such that Pnw -Pw < 2-/R.

Subsequent to such a scenario, the wetting fluid invades the interior of the capillary

tube, thereby draining the nonwetting fluid (the direction of the arrows in the figure

indicate the path of the thought experiment).

It is evident from the above thought experiment that the system described in this

example possesses a manifestly regular, nonhysteretic capillary pressure-saturation

relationship. 6 In the next section we consider a simple geometrical modification of the

6Jt is to be cautioned here that our usage of the term capillary pressure to denote the difference

in the pressures between the two phases is not accurate within the implications of real two-phase
flows in porous media. As such, capillary pressure denotes a macroscopic quantity, which is related
to the microscale pressures by some coarse-graining procedure. The examples considered in this
section, however, deals with the difference in the microscale pressures. Our misusage of the proper
terminology can, however, be justified within the crude geometrical model of a porous medium
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Figure 5-1: (a) Pictorial representation of the system considered in example 1; (b)
Capillary-pressure-saturation behavior resulting from the thought experiment de-
scribed in the text.

system considered in this example. Thereby we explicitly demonstrate the existence

of hysteretic phenomena.

Example 2

Figure (5-2a) presents a schematic representation of the system considered in this

second example. The feature that distinguishes this system from that considered

in the first example resides in the presence of a second capillary tube (which, for

simplicity has been assumed to be of radius 2R). It is pertinent to indicate the

presence of a wide body of literature pertaining to capillary models of porous media.

These models represent the porous medium as a set of connected capillary tubes (of

constant and/or varying diameters) within which the motion of the two fluids occur.

In a sense, our examples constitute a rudimentary version of such models.

We envision effecting a thought experiment similar in spirit to that outlined in

the previous example. Upon increasing the pressure in the nonwetting reservoir R2,

envisioned to consist of a single capillary tube.
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Figure 5-2: (a) Pictorial representation of the system considered in example 2; (b)
Capillary-pressure saturation behavior for the thought experiment described in the
text.

one observes behavior identical to that postulated in the previous section, namely

that drainage of the wetting fluid occurs when the pressure in the nonwetting fluid

exceeds that of the wetting fluid by 2-/R. However, upon reversing the experiment,

we observe behavior qualitatively and quantitatively different from that envisioned

in the previous example. Upon decreasing the pressure in reservoir R2, the first

perceptible change again occurs at the stage wherein the pressures Pnw and pw satisfy

Pnw - pw < 2o/R. In such a scenario the wetting fluid again invades the capillary

tube, but is however stopped at the neck representing the transition between the two

capillary tubes (state "d"). At this juncture, the wetting fluid is unable to penetrate

any further. This therefore, represents a state wherein the wetting and the nonwetting

fluid coexist in the capillary tube (with a nontrivial value of cw). Upon decreasing

the pressure in R2 further, no perceptible change occurs in the volume fraction of

the wetting fluid until the pressure in the nonwetting fluid satisfies Pnw - Pw < O-/R

(state "e"), beyond which the wetting invades the larger throat of the capillary tube,

thereby draining the nonwetting fluid from the entirety of the capillary tubes (state
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"f").

It is evident from our above discussion that the system considered here exhibits

hysteresis in the functional form of the capillary pressure-saturation relationship. The

'phase-diagram' resulting from our thought experiment also qualitatively resembles

that observed in the real experimental scenario [refer fig. (2-1)]. This simple example

provides an illustration of the hysteretic phenomena observed in capillary pressure

measurements. It seems remarkable that hysteretic behavior can be triggered by a

mechanism as simple as the incorporation of an additional extra capillary tube. This

observation rationalizes the existence of hysteresis observed in real porous media,

which are constituted by innumerous capillary tubes of varying diameters and tortu-

osities. For instance, fig. (5-3b) depicts the path of the states in a system wherein

there exists an capillary constriction of radius 4R in addition to the capillary tubes

of radii R and 2R. The qualitative resemblance of fig. (5-3b) to the real experimental

measurements [depicted in fig. 2-1)] is striking.
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Figure 5-3: (a) Pictorial representation of the system considered in the discussion of
example 3; (b) Capillary-pressure saturation behavior for the thought experiment; c
designates the concentration of the wetting fluid.

It is pertinent to observe here that the above examples were however concerned
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with a microscale interpretation of the hysteretic behavior. In contrast, in the fol-

lowing subsection, we provide a macroscale interpretation of hysteretic phenomena

in capillary pressure measurements by utilizing our novel viewpoint for envisioning

biphasic flows in porous media. Subsequent to this exercise, we return to the above

examples in order to verify the consistency of our macroscale interpretations with the

results obtained above.

5.4.2 Capillary Pressure-Saturation Relationship: Possible

Reasons for Hysteresis

In this subsection we utilize the results obtained in sections 5.2 and 5.3 to elucidate

the functional form of the macroscale capillary pressure. Such an exercise suggests

the necessity of including the specific surface area as a macroscale variable in deter-

mining the capillary pressure. In turn, this result provides a plausible macroscale

interpretation of the hysteresis observed in experimental measurements. Our discus-

sion continues that initiated in section 5.2.

Upon combining equations (5.11) and (5.12) we obtain

PC = i - A2. (5.19)

This relation is responsible for the phase-equilibrium type of relationship existing

between Pc and saturation -c, since both j77 and 712 are functions of -c. In our diffuse

Darcyscale model, where the total pressure p and the macroscopic saturation - con-

stitute the appropriate two-phase entities, the existence of a relationship between the

macroscale pressures p1 , P2 and - is not surprising. In contrast, however, other (singu-

lar) Darcyscale studies treat the microscale pressures pi and P2 as being independent

microscale variables. As such, their macroscale counterparts, namely p, and p2, neces-

sarily manifest themselves as being independent quantities. As a result, the existence

of a functional relationship between A and P2, as embodied in the capillary pressure

concept, appears to be not only ad hoc, but indeed mystifying.

In combination, equations (5.19) and (5.18), yield P. = Pc(, -). Thus, according
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to our analysis, the phenomenon of capillary pressure hysteresis arises from the non-

uniqueness of Pc(h, -) under specification of only one of the two governing variables

- namely, the saturation. Specification of Z alone does not suffice to render the

value of Pc unique. Since the variables d and Z are wholly independent of one other,

each being fixed appropriately by the solution of microscale problem, situations can

arise wherein identical macroscale saturations involving different zi's become possible. 7

Such circumstances would necessarily lead to different values of Pc, thereby explaining

the apparent hysteresis loop as observed in Pc vs - curves. In sum, our hypothesis

is that this hysteresis is simply a result of the projection of the three-dimensional P,

- - d surface onto the two-dimensional Pc - Z plane !

To verify the plausibility of our above arguments, we depict [cf. fig. (5-4)] the

equation of state Pc(, -) for the examples considered in the previous subsection [cor-

responding to figs. (5-2) and (5-3)]. In both cases, it can be observed that the general-

ized equation of state depicts a single-valued, nonhysteretic function. The projection

of this function onto the space of reduced dimensionality constituted by the capillary

pressure and saturation, exhibits hysteresis, identical to that displayed in figs. (5-2)

and (5-3). This simple demonstration lends support to the plausibility of the argu-

ments elucidated above. Further, numerical simulations embodying a larger number

of capillary tubes, and in more exotic patterns, reported in [8] also lends credibility

to our claim. Our diffuse interface framework thereby provides a rational explanation

of the observed hysteresis by hypothesizing the existence of a generalized equation

of state which quantifies the capillary pressure as a function of both specific surface

area and saturation.

'One possible mechanism by which such a situation might occur corresponds to the scenario

wherein the wetting properties of the fluids are taken into account.
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5.5 Dynamical Equations for Macroscale Descrip-

tion

In the previous section we rationalized the nature of the hysteresis observed in ex-

perimental measurements of capillary pressure vs saturation experiments as being

a direct consequence of the fact that the macroscale free energy density, and hence

the capillary pressure is, in addition to the saturation, also a function of the specific

surface area. In this section we complement the above result by expounding the argu-

ment that the mathematical modeling of multiphase flows needs to address the issue

of macroscale energy transport in order to complete the set of equations governing

two-phase flow phenomena.

As observed in the preceding section, a complete macroscale equation of state

would necessarily involve the relationship of capillary pressure to both specific surface

area and saturation. Such an equation of state complements Darcy's laws [derived

in the next chapter - cf. eq. (6.8), (6.9)], and the diffusion equations (4.53a,b).

However, these equations do not describe the evolution of the specific surface area a,

the latter constituting a variable wholly independent of the saturation. Consequently,

a complete the set of equations purporting to describe the temporal evolution of

the independent variables requires that we need to consider the macroscale equation

governing energy transport.

Based upon the equivalence between the macroscale free energy density and the

macroscale internal energy density, and utilizing the results of section 5.3 we find that

E(c, d) = Ebulk(c) + o-d. (5.20)

Under the assumption of slow, isothermal flows with weak gradients, such has per-

vaded the entirety of our discussion, the macroscale conservation equation for -,

namely (4.56), acquires the following form:

O(E -) (E -Ebulk) 2
- = ( + EJi - gi - F-v (5.21)

Of 8i=1
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where jI and F obey the uncoupled version of the constitutive equations elucidated

in section 6.1. The above equation serves as the governing equation for the evolution

of the specific surface area a. This evolution equation is nonconservative owing to the

fact that interfacial area can be either created or destroyed by the respective breakup

or coalescence of the droplets comprising the discontinuous phase.

The above equation complements the phase-specific Darcy's law, [cf. eqs. (6.8)

- (6.9)], as well as the diffusion equations, (4.53a,b). Along with a capillary pres-

sure equation of state Pe(d,c), the resulting system of equations provides a complete

description of slow, isothermal8 biphasic flows through porous media.

5.6 Conclusions

In this section we outlined the framework whereby the identification of the phase-

specific quantities can be effected utilizing the diffuse Darcyscale physical fields. The

implementation of this procedure enables the rigorous derivation of the functional

form of the capillary pressure, and a possible explanation for the nature of hysteresis

observed there within. The identification of the capillary pressure and its charac-

teristics is one of the main achievements of our work. Such an accomplishment was

enabled by our conception of the diffuse interface model at the microscale, and its

comparable analog at the diffuse Darcyscale. Theoretical efforts of the past which

lacked such a rigorous, physically based framework generally also fails to interpret

the capillary pressure and its experimental manifestation.

Further, we argued the need for the consideration of the macroscale energy equa-

tion to enable the closure of the framework for macroscale modeling. The diffusion

equations derived in the previous chapter [cf. (4.53a,b)] and the energy equation out-

lined in this chapter [cf. (5.21)] complement the phase-specific Darcy's law which

8 For nonisothermal flows the above equation needs to be replaced by two species-specific energy
equations together with the requirement of local thermal equilibrium in order to satisfy the mandated
equivalence between the required number of equations and the number of independent variables.
However, such issues take us far from the scope of the present work. As such, they will not be
addressed here.
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is derived in the next chapter [cf. eqs. (6.8) and (6.9)] to thereby furnish the com-

plete set of equations to be utilized for the macroscale modeling of biphasic flows in

porous media. Requisite to the solution of these equations is an equation of state

which embodies capillary pressure as a function of its dependent variables, namely

the saturation c and the specific surface area a.

In the next chapter, we utilize concepts from nonequilibrium thermodynamics to

derive the macroscale constitutive equations. This framework is subsequently used

to derive the phase specific Darcy's laws appropriate to the singular Darcyscale de-

scription of the transport. However, in contrast to the simple decoupled form of the

Darcy's law conventionally used in two-phase flow modeling [cf. eq. (2.2)], we obtain

a generalized version of the Darcy's law. Finally, we also consider a simplified exam-

ple to illustrate the implementation of our complete framework within an analytical

approach.
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Chapter 6

Biphasic Flows in Porous Media:

Macroscale Constitutive Equations

Preceding chapters outlined a framework for accomplishing the transition between the

microscale and macroscale descriptions of the porous medium. This framework em-

bodied rigorous, physically-based definitions of the macroscale quantities, both at the

diffuse and the singular Darcyscales. Furthermore, such a framework also enabled the

derivation of the respective (transport) equations governing the physical fields. Sub-

sequent to the prescription of the microscale constitutive equations, this framework

enables, in principle, establishing the functional form of the macroscale constitutive

equations. However, implementation of this framework for the specific microscale

constitutive equations outlined previously in section 3.3 proves to be analytically

intractable.1 Within such a scenario, nonequilibrium thermodynamics provides a ra-

tional route for guessing the possible forms of the macroscale constitutive equations

within our diffuse Darcyscale viewpoint.

This section employs considerations abstracted from nonequilibrium thermody-

namics so as to glean insights into the macroscale constitutive equations. Such an

exercise is effected on the diffuse Darcyscale equations derived in section 4.5 to furnish

the constitutive equations at the macroscale, albeit at the diffuse Darcyscale level.

1No such constraints manifest if, however, we implement the framework in a strictly numerical

context.
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Subsequently, utilizing the framework erected in the preceding chapter, we identify

the 'phase-specific' constitutive equations. The constitutive equations at the diffuse

Darcyscale yield the macroscale 'mixture' Darcy law, with the comparable equation

for the singular Darcyscale embodied within the generalized 'phase-specific' Darcy's

laws. In the final section, 6.3, we implement the complete micro-macro framework for

a simple illustrative linearized example so as to explicitly display the computations

entailed by the analytical framework. Such a procedure also enables verification of

the heuristic constitutive equations proposed, based on considerations drawn from

nonequilibrium thermodynamics.

6.1 Nonequilibrium Thermodynamics and Macro-

scopic Constitutive Equations

Nonequilibrium thermodynamics provides a convenient formalism for establishing the

functional forms of the macroscale constitutive equations required in the macroscale

field equations, at least in circumstances where these constitutive relations are lin-

ear. The methodology employed involves the identification of forces and fluxes in

the entropy source term of the generalized entropy balance, subsequent to which one

proposes a general linear relationship between these forces and fluxes [7]. The fun-

damental basis for constructing such an entropy balance lies in the assumption of

local thermodynamic equilibrium, which posits that thermodynamic identities valid

at equilibrium continue to remain locally valid in nonequilibrium circumstances. Al-

though one can thereby identify the constitutive forms of the pertinent linear force-

flux relationships within the framework of linear nonequilibrium thermodynamics,

the formalism itself provides no insight into the magnitudes of the phenomenological

coefficients appearing therein (with the possible exception of their algebraic signs), in-

cluding whether coupling occurs between the different fluxes owing to the presence of

nonzero phenomenological 'cross-coupling' coefficients. Furthermore, it is not possible

to predict the functional dependence, if any, of the phenomenological coefficients upon
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the (macroscale) physical properties. Despite such limitations, the success of linear

nonequilibrium thermodynamics in providing valuable insights into the possible forms

of constitutive equations cannot be denied. In this section we apply such concepts to

the dependent macroscale field variables quantifying our 'two-phase' system.

In view of the relative simplicity of the preceding system of diffuse Darcy macroscale

equations, the generalized entropy balance equation is easily obtained along the lines

outlined by deGroot & Mazur [7]. For brevity we sketch only essential details.

The kinetic energy balance is obtained from the momentum equation (4.54) as

+ (E.v2 2

2Of + 6 - p V2V) =( -P - + F' -V +( pV - gi. (6.1)
i=1

Upon performing an analysis predicated along the same lines as outlined by deG-

root & Mazur [7], the following entropy transport equation is obtained (where the

macroscopic volumetric entropy density - is defined as usual in terms of macroscopic

thermodynamic quantities as Tds= de + pdv-,2 with ;F = 1/T):

2 2
T = -- V - (4-Z 7ik) T q -VT - jk - (V gk ) -F V) -s:D,

k=z1 k=1
(6.2)

wherein d/df -& /&t+:V V represents the macroscale material derivative, and PEk the

macroscale chemical potential of species k. Furthermore, D denotes the macroscopic

version of the deformation tensor [cf. (3.19)], and FS the symmetric part of the macro-

scopic deviatoric stress tensor. As the distinction between microscale temperature T

and the macroscale temperature T is peripheral to the dynamical issues of interest, it

is not further addressed here, whence we denote the macroscale temperature also by

2 Strictly speaking, the mean pressure P is not the same as the thermodynamic pressure, whence

one should define P = -pI + 7'I + ;, where PT now refers to the thermodynamic pressure, with

the difference p - pT denoted as 7'. The subsequent analysis requires knowledge of only that portion

of P excluding the thermodynamic pressure fiT. Since the diagonal tensor 'I contributes only to

the symmetric part of F, we combine 'I with ;F and denote the sum also by T'. However, the

distinction between the thermodynamic and the mean pressures vanishes when V -V = 0 [5], which

condition applies to the class of flows eventually considered here.
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Physical Entity Generalized Force Generalized Flux

Diffusion flux iV V/k - gk

Body-force density F V - U

Deviatoric stress (symmetrized) YS

Heat flux VT

Table 6.1: Identification of the respective forces
appearing in the generalized entropy balance.

and fluxes in the entropy source terms

T.3 Consistent with the assumptions of linear response theory, the respective forces

and fluxes can be identified from the entropy source term (table 6.1). The above list

constitutes only the nonequilibrium contributions to the fluxes. To remind readers

of the reference frame in which V is measured, these fluxes include the translational

velocity U of the porous medium as a whole (measured relative to an inertial reference

frame). This also renders the constitutive equations objective [17].

Based on the above identifications, together with the assumed absence of cou-

pling between fluxes of tensorial orders differing by an odd integer, which holds true

for a porous medium composed of centrally-symmetric particles [14], the following

macroscopic constitutive equations are obtained:

J=A- (Tk - gk) + All -V

2

=A", .V+ EA'. (VThk - gk)
k=1

(k = 1, 2),

(k = 1, 2),

3At issue here is the question of whether or not a continuum that is isothermal at the macroscale
is also necessarily isothermal at the microscale, and, if so, is T = T ?
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; = AV:VV. (6.5)

(Here, in contrast to the tabulation in table 6.1, we have reverted to our earlier

convention of measuring velocities relative to the fixed porous medium, whence U has

been set equal to zero.) The individual diffusive fluxes J, and J2 are not independent

variables since i +j 2 = 0, whence only two of the four coefficients A', A', A", A" are

independent. Furthermore, invocation of the Onsager reciprocity principle, assumed

applicable at the macroscale [6, 9], leads to the observation that only three of the

phenomenological coefficients, A', A", A"' and A1V(k = 1, 2), are independent.

A major limitation of nonequilibrium thermodynamics lies in its inability to pro-

vide any indication of the magnitudes of these phenomenological coefficients, except

possibly their algebraic signs. Moreover, the above relations are purely phenomeno-

logical, and hence do not constitute a self-contained theory. As a consequence, their

applicability to the phenomena at hand needs to be ratified either through com-

prehensive experiments or a detailed microscale theory, or both. While the former

verification mode is left to experimentalists, section 6.3 provides an illustrative anal-

ysis (albeit in the somewhat restricted context of quasistatic microscale behavior) of

the manner in which the second mode of confirmation may be implemented.

Under the dual assumptions of slow flows and weak macroscale gradients in the

mean velocity V, we may neglect effects arising in the macroscale equations from: (i)

the presence of fluid inertia; (ii) the existence of a deviatoric stress tensor. Further-

more, neglect of coupling between the fluxes ik and the force F leads, upon substi-

tuting the above relation for F into (4.54), to the relation

2

VP = AM1 -V + Ti gi, (6.6)
i:=1

which constitutes a diffuse, macroscale, single-phase, multispecies Darcy's law. In the

case where gi = 92 = g, say, where g is the acceleration of gravity, we find upon
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inverting equation (6.6) that

V = (A"')~1 - (VP - P g). (6.7)

It is not surprising that through linearized nonequilibrium thermodynamic argu-

ments we have obtained a macroscale form of Darcy's law, which is itself a linear

constitutive relation. A more rigorous derivation of (6.7) from first principles, is pre-

sented in section 6.3. Prior studies by others [9, 11] have also indicated how Darcy's

law may be obtained by using constitutive relationships derived from nonequilibrium

thermodynamics or some other basis. At a later stage [see equations (6.8), (6.9)] we

address the more general case where coupling between the fluxes is included.

Sections 6.2 and 6.3, which follow, are devoted to clarifying the concept of phase-

specific Darcy's laws in an effort to relate our work to more conventional singular, Dar-

cyscale formulations of two-phase flow phenomena. By so doing, our two-component

mixture framework renders rational the previously empirical two-phase Darcy field

equations.

6.2 Phase-specific Darcy's laws

In this section we the definitions of the phase-specific quantities, previously in chapter

5, jointly with the constitutive equations obtained in section 6.1, to derive phase-

specific Darcy laws underlying the singular Darcyscale description of multiphase flows.

As such an exercise entails manifold algebraic manipulations, pertinent details are

relegated to Appendix E. The final results obtained are

V = (Al)-' - p - Eipgl) + (A' 2 ) (VP2 - Eji 2 g2 ), (6.8)

V2 = (A' 1)-' (V1 - Epigl) + (A' 2 ) ' - E p2 2 ), (6.9)
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in which the dyadics (or, equivalently, 3 x 3 matrices) A' are tensorial phenomeno-

logical coefficients. From our analysis it was established that only three of the above

four tensor coefficients A'j (i, J = 1, 2) are independent. However, we were unable

establish any symmetries of the cross-coupling tensors [6, 9].

The forms of the pertinent constitutive equations obtained from nonequilibrium

thermodynamic considerations, supplemented by our definitions of phase-specific quan-

tities, thus yield the generalized two-phase form of Darcy's law, namely equations (6.8)

and (6.9), hypothesized by a number of other researchers [6, 9, 15]. Fundamental to

these singular Darcyscale laws is, however, the precursor multicomponent mixture,

single-phase, Darcy's law (6.7) that we derived. This approach contrasts with that of

other investigators, who treat the phase-specific Darcy's laws as fundamental entities,

necessitating a closure relationship for the capillary pressure Pc[e] [2, 3]. Since our

preceding phase-specific relationships were developed from mixture-based laws, we

are as a consequence able to provide rational and explicit expressions for the cap-

illary pressure as well as other elements appearing as ad hoc continuum-mechanical

identities in singular Darcyscale theories (cf. section 5.2).

6.3 Illustrative Example

This final section explicitly illustrates how our microscale model can be used to rig-

orously derive and hence formally justify linear macroscale constitutive relations that

accord with those previously postulated axiomatically on the basis of irreversible

thermodynamic arguments. Additionally, it is shown explicitly how one may, in prin-

ciple, calculate the Darcyscale phenomenological coefficients appearing therein from

the specified microscale data. Section 6.1 illustrated the form of the constitutive

equations, without however specifying the manner in which the phenomenological

coefficients A' could be theoretically calculated. The analysis of the present section,

designed to rectify this omission, is directed to the elementary case of two-phase

flow through a spatially periodic model of a porous medium under the additional

constraints of small capillary and Reynolds numbers. At the macroscale this de-
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scription eventually leads to a homogeneous multiphase flow configuration, wherein

macroscale quantities like saturation, velocity, and pressure gradient are all uniform

throughout the porous medium [18]. Complete analytical treatment of the more gen-

eral case presents insuperable difficulties owing to the severe nonlinearities present

in the problem formulation, most notably in r, and F(c). However, at least in prin-

ciple, numerical evaluation of the requisite macroscale phenomenological coefficients

is made possible by their rigorous definitions in terms of the prescribed microscale

data. In turn, this enables use of solutions of the microscale equations to confirm the

predictions of linear irreversible thermodynamics, and concomitantly to determine

the numerical values and parametric dependence of the phenomenological coefficients

embodied in the various A's.

Physical description

In this section we elucidate the basic physics underlying the illustrative example

accompanying the mathematical details elaborated in subsequent sections.

Consider the generic case of uniform two-phase flow through a porous medium

animated by an external pressure gradient. This applied macroscopic pressure gra-

dient generates a flow at the microscale, resulting in motion of the two species. In

the following sections we analyze the governing microscale equations arising from this

pressure gradient. An analytical solution of this problem would be extremely com-

plicated owing to the underlying nonlinearities. These, in turn, are related to the

classical nonlinearities appearing in the singular microscale approach, which result

from having to satisfy interfacial boundary conditions on a surface whose unknown

shape needs to be determined as a part of the solution of the problem.

However, in view of our prior arguments based on nonequilibrium thermodynamic

concepts, it is to be expected that the two-phase Darcy's law will be applicable in

some linear limit of the problem. Anticipating such a simplification, in what follows

we analyze the microscale problem in the linear limit. This limit corresponds to

the leading-order, small perturbation approach devised by G. I. Taylor [16], wherein

the interfacial boundary conditions are initially enforced on a surface whose shape
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is assumed known a priori. Departures from that assumed shape are then derived

sequentially by employing the solutions of the governing equations (sans the normal

stress interfacial boundary condition) at successively higher orders of approximation

in the perturbation parameter.

We consider the microscale equations and boundary conditions outlined in sec-

tion 4.3 together with the constitutive equations outlined in section 3.3, subject to

the constraint that the macroscale pressure gradient be equal to the applied pressure

gradient. Equation (4.43) suggests that this macroscale pressure gradient constraint

is equivalent to a comparable constraint imposed on the microscale pressure gradient.

The applied macroscopic pressure gradient thereby acts as an animating force driving

the microscale flow, which can, in principle, be determined by the solving the govern-

ing microscale equations. The microscale velocity field generated in this manner is

manifested as a uniform macroscale flow (at least for the case of homogeneous flows,

under the assumed spatial and temporal flow characteristics outlined previously) -

the dependence of which on the macroscale pressure gradient is subsequently proved

to be linear, in accordance with the Darcy's laws. This section thereby constitutes

an ab initio proof of the validity of the heretofore empirical two-phase Darcy's laws,

albeit for the limited case wherein only the linear limit of the microscale equations is

considered.

Microscale problem

The microscale equations appropriate to a quasisteady, zero Reynolds number, small

capillary number description of multiphase flow is obtained by setting Ca = 6 and

TDU/L = 6 (6 < 1). To simplify the analysis we ignore the effects of gravity, thereby

obtaining the trio of equations

op-P + V - (VP) = 0, (6.10)
at
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- 6Vp + 6V - + 6V (Vc)(Vc) - IVc12I = 0,

V2 OC (vc)] = AV2(Of - 62V2c). (6.12)
1 t IOC

These equations are to be solved subject to the periodicity conditions (4.6) together

with the no-slip and no-flux boundary conditions (4.15) and (4.16), respectively, on

the bed particle surfaces. Furthermore, subject to a posteriori verification the fol-

lowing expansions are proposed for the relevant physical variables (corresponding

expansions for the inner variables being obtained by imposing a tilde ornation):

p = 6-'p 1 (q1 , q2 , n, t) + po(q, q2, n, t) + 0(6), (6.13)

{v, c} = {v, c}o(qi, q2, n, t) + 6{v, c} 1(qI, q2, n, t) + 0(62). (6.14)

The fluid motion is assumed to be driven by an externally-imposed, time-independent,

macroscale pressure gradient Vp, taken to be uniform throughout the porous medium.

This macroscopic pressure gradient, defined through (4.45), serves as a constraint on

the solution of the above system of equations. While the solution of the complete

dynamical problem subject to this constraint possesses nontrivial uniqueness prop-

erties, the fact that the dynamics in this section is assumed to involve a quasis-

teady response of the pressure field requires that an instantaneous version of 4.45)

(that is, excluding the time averaging) be specified in order to assure uniqueness of

the resulting solutions of the microscale equations. Thus, for purely mathematical

reasons pertaining to uniqueness, we invoke a quasisteady analog of (4.45), namely

that the instantaneous spatial average of the microscale pressure field constitute the

macroscale configuration-specific pressure gradient:

1
9p=- ds p. (6.15)

T0 J o
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Inner and outer equations

We employ the same notation as in section 3. To leading order in 6, a quasisteady

analysis requires a priori specification of the location of 'interface' (cf. [13] and the

references cited therein). However, the shape of the interface also constitutes an

unknown of the problem, which has to be determined concurrently with the solution

of the equations of motion. The assumption of small Ca makes it possible for one

to assign, at the leading order, a macroscopic interfacial configuration, one whose

curvatures i1, K2 are independent of (qi, q2). This requires that a similar condition

be satisfied by the normal component of the zeroth-order velocity field vo at the

interfacial surface. Continuation of the perturbation expansion to determine higher-

order corrections to the interfacial shape is then carried out in a systematic manner

similar to that of section 3, with the concentration field c used to establish corrections

to the shape (say, by arbitrarily choosing the macroscale interface to coincide with

the isoconcentration surface c = 0.5). Details of such an analysis are similar in

spirit to those outlined in section 3.5, but quickly become algebraically unwieldy

at higher order. Inasmuch as such extended calculations are not wholly relevant

in this initial foray into the field, they are omitted here in the interests of brevity.

Accordingly, we assume that the leading-order terms in the perturbation expansion

suffice to adequately represent the required microscale fields. The resulting equations

are summarized below.

* Outer equations

V -V = 0, (6.16)

Vpg = paLV 2 v. (6.17)

These are to be solved subject to the following jump conditions imposed across the

interface, such conditions being derived in a manner similar to those outlined in
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section 3.4:

[[Vo]] = 0, (6.18)

[In - rvo]] - IS = 0, (6.19)

112 ds.[[n - roo]] = 0, (6.20)

n -vo = u. (6.21)

Each of the above conditions is to be imposed at the parent surface, the unit normal to

which is denoted by n (not to be confused with the cell number). Further, the integral

condition (6.20) imposed on the stress is not a result of the singular perturbation

analysis, but is rather a result of physical considerations accompanying the small

Ca approximation [16]. The singular perturbation analysis results in the boundary

conditions previously derived in section 3.5 [wherein equation (6.18) = (3.62) and

(6.19) - (3.69) + (3.70)]. However, the normal stress condition (3.72) cannot be

satisfied on the surface of the drop with an a priori shape assumed. Hence, based on

physical considerations we impose the conditions (6.20) and (6.21) [13] to establish

the higher-order corrections to the droplet shape.

* Inner equations

This section is concerned primarily with the normal component of the momen-

tum equation in the inner region. Its purpose is to illustrate the fact that the mi-

croscale pressure gradient possesses a purely normal component in the interfacial

region, whence its contribution to the macroscopic pressure gradient vanishes upon

integration over the interfacial region contained within the unit cell. Perturbation

analysis of both the concentration equation and the tangential component of the mo-

mentum equation are performed in a manner similar to that employed to establish
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(3.55), (3.69) and (3.70) in section 3.5.

For the normal component, at the leading order it is found that

OPD
On

+ (K1 0,
+ K2 )( ) = 0,

Oh
(6.22)

representing the Laplace condition imposed on the leading-order outer pressure fields,

P-i [13]. At the next order in 6 we find that

a + a2p Of3
Of , Of, j a )

2 9(tx)
3 Ohi

+ 2(K1i + K2) ~iJ W) =0,
(Of, Oh

(6.23)

where 1 is the 0(6) inner concentration term. Integration yields

2
3

+ 2 f(i + K 2 ) (D0 &J1 dh
+ \2) 5 N )

(6.24)

where, as already noted,

h2 D () + aq2
Oq2 (hi )

1 Di031
+ IOh 1

h2hi Oh

- a
+ v3 0 -

Oh' h2 h I)]

Upon taking the limit of the above expression as ii -+ ±oo, and using (3.57),

and (3.68), it is found that

(6.25)

(3.58)

lim x - hih2n -00
1 ( + & ( 0 + 1 D30

Dqi h2 Dq2 ± h2hi On
a+ V30 (K1

Of,

The assumption that 3 O, K, iK2 are independent of (q1 , q2), requires that

- independent of (qi, q2),
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(6.26)

(6.27)

P0 + tt O'31 - = a (qi, q2),

hih2 [ 1(1)+ 6- 020)Oq1 h2 Oq62 h1,



whence

x = independent of (qi, q2). (6.28)

These intermediate results are required in the next section.

Composite solutions

Solutions of the inner and the outer equations may be used to obtain a composite

solution, defined generically as [12]

0 =O -O + 1 - 7m.c., (6.29)

where m.c. denotes the matching condition. However, in view of the fact that the

boundary layer is of the intermediate layer kind, it is necessary to define two (rather

than one) composite solutions:

O= 0 + 0 0 - O+m.c.. (6.30)

Note that these composite fields are continuous across the 'interface.' Thus, at the

leading order we take the microscale fields in equations (4.21) - (4.29) to be repre-

sented by ?P±. Further, we define the continuous composite field

VcO = +O + V)-, (6.31)

with 0+, 7p- respectively defined on either side of the interface, as appropriate, and

set equal to zero on the other side.

Use of the above definitions together with the results (3.50) and (3.60) yields

V± = V± (6.32)
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vco = vo +

We also have that

Moreover,

where (6.28) has been used to denote

( 31 + _ Ov+_) 2
2p 85 2p -n -3Px = .OfOn O3f/q

(6.37)

The fields P_1 (pl are constants), which are functions only of ii, are denoted by ((h)

in the above. The development of the prior section is to be construed as preliminary

to the observation that / is functionally dependent only upon h. In addition, we have

that

PcO = P+O Po. (6.38)

Macroscopic quantities

With equations (6.33) - (6.38) defining the continuous microscale fields, equation

(4.26) furnishes the macroscopic velocity,

6p5v= --- d3 r [po - (po - po)Co .
Tro 'rI 1 1 2 C

(6.39)
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(6.33)

cc0 = + o,

PcO = Pi + (pi - pi)a0 .

(6.34)

(6.35)

P * -- 2 00 (r.1 + r2) & di + 0(ii) + C(ii), (6.36)



The macroscopic pressure gradient is obtained as

dsp ' + ds p-. (6.40)
T0 Ian Do Jar0

[The extra terms in (6.36) result in a contribution to (6.15) of the form (i)i 3 in the

interfacial region. Integration of this purely normal component over the interfacial

transition region results in no net contribution.]

The macroscopic diffusion flux Ji is obtained from (4.39) as

J1= - j rds - [p'(vo -v)1, (6.41)
To it a -,

where we have used the fact that Ji = 0 at leading order; J 2 is obtained from J1 as

J 2 = -J 1. (6.42)

Computations of the macroscale fields are seen to involve only the solutions of the

outer equations, jointly with the solution for 0. The solution for a0 is completely de-

termined once the location of the interface is specified via an appropriate constitutive

equation for F [cf. (3.13) and (3.55)]. This solution is independent of the externally-

applied macroscopic pressure gradient, Vp. However, the time-dependence of the

microscale quantities in the above equations arises from the dynamical evolution of

the interface, which depends nonlinearly on 9 through the relation

dq= (6.43)
dt

In the general case the latter equation implies that the macroscale quantities depend

nonlinearly upon Vp. However, for the special dynamical evolution considered, viz.,

time periodic or almost time periodic motions, it is possible to replace the time

averaging by a space-averaging procedure [1]. Consequently, we will henceforth utilize
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the equivalence (refer to Fig. (6-1) for the definition of L)

(6.44)

As such, it is unnecessary to be concerned explicitly with the relationship between

Figure 6-1: Space-averaging domain L for: (a) Periodic motions.
straight line; (b) Almost-periodic motions. Due to the densely-filling
domain L constitutes the entire cell.

Domain L is a
ergodic motion,

the dynamical evolution of the system and the macroscale pressure gradient Vp.

Linearity and Darcy's laws

The outer equations are linear, enabling solutions thereof to be obtained in terms of

modified tensor fields (V, P, T) defined as follows:

{v , p+,*} = {V, P, T} -j. Vii. (6.45a,b,c)

In terms of these modified fields the outer equations adopt the respective forms

V -V± = 0, (6.46)
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VP= +p2v, (6.47)

subject to the following jump conditions imposed across the interface:

[[Vol] = 0, (6.48)

Is - [[n -Tvo]] = 0, (6.49)

JA - n - To]] = 0, (6.50)

1 1 l
I =- ds P++ ds P 7. (6.51)

To Jr 0  To r.

In the terminology of homogenization theories [2, 4], the above problem constitutes

the 'unit cell' problem. Observe that the solution of the above quasisteady problem

is independent of the macroscopic pressure gradient Vp.

With the identifications made in this and previous sections the Darcy multiphase

flow laws can be obtained as follows: From (6.39),

v=KV.i, (6.52)

in which

K =- d3r [p - (p - p)o] Vco, (6.53)
E P ff To If 1 5 VO

with Vco defined in a manner similar to vco. Since Vco and a0 are independent of

Vp, the above equation constitutes the macroscopic mixture Darcy law. Moreover,

equation (6.53) gives the prescription for calculating the phenomenological tensor

coefficient A' appearing in (6.7) (namely, A," = K- 1), which was the objective of

this section.
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Furthermore, from (6.41),

J = K'. VP, (6.54)

wherein

K' = rds-[p(VO - K)]. (6.55)/C To kr,,

Using the above relations together with the definitions of the phase-specific macroscale

quantities, one obtains the following phase-specific Darcy's laws:

;Vi = (K + _' - 9; V2 = K -_ -K1) 2
(6.56a,b)

In the simplified spatially periodic model analyzed above, Vph = 0 and Vc = 0,

whence the capillary pressure adopts the simple form

P, = const. (6.57)

throughout the system. This spatial uniformity is consistent with the homogeneity

of the macroscale fields.

Discussion

Calculations presented in this section have served to illustrate the formalism involved

in computing the macroscale fields. The desire for analytical tractability forced us

to choose an extremely simple example. Nevertheless, the analytical scheme leading

to the multiphase Darcy law description is clearly nontrivial despite the apparent

simplicity of the model. Numerical solutions of the unit cell problem also promise

to be formidable. It needs to be emphasized here that despite the resemblance of

the system of outer equations to the conventional singular interface equations, our

formalism defines the pertinent macroscale fields in terms of the complete, continuous
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fields, rather than in terms of the outer solutions alone. As such, it is likely that

a schism will develop in more comprehensive studies between conventional singular

interface analyses, where one deals with discontinuous fields, and our diffuse interface

analysis, involving continuous fields. Moreover, in our simplistic case, the interfacial

conditions played a subsidiary role in determining the solutions of the unit cell

problem. In particular, it was unnecessary to deal with averaging these conditions at

any stage in the analysis (in contrast with the treatments of Gray & Hassanizadeh [8]

and Whitaker [18]). A useful exercise would be to illustrate the above formalism for

other similar problems so as to highlight the conceptual advantages and the formalism

embodied in our approach. However, such an effort entails manifold details, a number

of which prove to be repetitive in terms of the examples addressed in this section and

in section 3.5.

Outstanding issues regarding uniqueness of solutions of the outer equations are

easily resolved by pursuing conventional uniqueness arguments, e.g., employing the

energy dissipation theorem [10]. As such, further discussion of the uniqueness issue

is omitted here. Questions pertaining to the symmetry properties of the phenomeno-

logical coefficients K, K' are also omitted in the interests of brevity, except for the

observation that these dyadics are not generally symmetric unless u in (6.21) is set

to zero. This conclusion is consistent with that of other researchers [2, 18].

6.4 Conclusions

This chapter addresses the functional form of the macroscale constitutive equations.

The macroscale constitutive equations thereby obtained were also verified subse-

quently by employing a simplified linear example, which served the dual purpose

of illustrating the complete framework outlined in the preceding chapters.

The macroscale constitutive equations obtained were respectively identical to

Darcy's law and its two-phase generalization Darcy's laws within the diffuse and

the singular Darcyscales. Furthermore, our results cast doubts on the accuracy of

claims concerning the symmetry properties of the cross-coupling permeability ten-
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sors. The exercise effected in this chapter thereby renders rational the previously

empirical two-phase Darcy field equations. Concomitantly, our framework furnishes

valuable insights into the concepts of phase-specific quantities.
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Chapter 7

Conclusions and Summary

The preceding analysis outlines a novel, generic framework for modeling multiphase

fluid flow through porous media. Our perspective involves treating pore-scale flow

phenomena from a diffuse interface point of view, in contrast to the more usual

singular interface viewpoint. In our scheme, two-phase flows are likened to the Navier-

Stokes flow of a single-phase, two-component mixture possessing steep gradients in

physicochemical properties across the interfacial transition zone. Initially, to keep the

arguments as simple as possible, we examined the admissibility of immiscible two-

phase mixtures under the diffuse interface model in the absence of the porous medium.

This involved a rigorous singular perturbation analysis to derive the conventional

bulk-phase equations, as well as the kinematical and dynamical matching conditions

- the latter yielding the usual Laplace interfacial tension boundary condition.

Using such a framework we shifted the focus to comparable flows in porous me-

dia, where we defined all macroscale (diffuse Darcyscale) quantities in a rigorous

and physically plausible manner in terms of their microscale, Navier-Stokes coun-

terparts. Special emphasis was placed on oft-neglected considerations regarding the

time evolution of the pore-level fields [1]. Though the analysis was performed for a

special geometric model of porous medium, namely one possessing a spatially peri-

odic skeletal structure, we also indicated the existence of other cases to which we

believe our scheme could be applied. Using physically-based definitions we derived

the diffuse Darcyscale transport equations from their microscale counterparts. Ar-
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guments from irreversible thermodynamics were also invoked to suggest linear forms

for the macroscale constitutive equations connecting the dynamical and kinematical

macroscale fields.

We believe that one of the main achievements of this work lies in clarifying the

distinction between phase-specific and species-specific quantities. This identification

was based upon a combination of physical and thermodynamic arguments. Such an

interrelationship was shown to result from correlating the respective diffuse and sin-

gular Darcyscale approaches. This led us phenomenologically to the underlying basis

for the existence of classical phase-specific Darcy's laws. In addition, our scheme fur-

nished useful insights into both the definition and interpretation of capillary pressure

as a continuum Darcyscale field concept. Eventually, we used a simple illustrative

example, derived formally from our microscale equations by singular perturbation

methods, to provide some justification for the linear macroscopic constitutive equa-

tions originally proposed purely phenomenologically on the basis of irreversible ther-

modynamics.

Our development invoked a number of simplifying assumptions at various stages

of the analysis. It is useful to recall these, and hence the potential limitations thereby

imposed, so as to concurrently point towards possible future research directions involv-

ing more realistic models of multiphase flows, albeit built upon the generic framework

embodied in our diffuse interface approach. One of our main assumptions involved

the neglecting the wetting properties of the two fluids. A wide variety of experimental

observations [2] have demonstrated the relevance of wettability and contact-line phe-

nomena to multiphase flow in porous media, neither of which phenomena falls under

the purview of this thesis. Furthermore, we have restricted our attention exclusively to

isothermal flows. In nonisothermal situations the averaging procedure, as well as the

definition of macroscale temperature, can be expected to raise fundamental questions

(although we believe these to be relatively unimportant in most applications). More-

over, no numerical results were cited to corroborate our macroscale theory. Model

porous systems which facilitate numerical computations of the pertinent microscale

problems, simultaneously suggesting comparable experimental observations, repre-
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sent potential future research directions towards ratifying the theoretical framework

presented here.

Our analysis deliberately straddled the boundary between physical concepts and

mathematical rigor, albeit without straining too much into the latter, as is usual in

such cases. We believe that the diffuse interface, mixture-theory model outlined in

this paper has the potential to clarify a number of fundamental issues prerequisite to

a deeper understanding of two-phase flow phenomena in porous media. At a practical

level the model outlined herein can also be used to effect explicit numerical microcon-

tinuum computations based upon representative geometric models of porous media.

Such calculations are greatly facilitated by the fact that the major computational

issue of temporally evolving 'interfaces,' together with their concomitant spatial dis-

continuities, is no longer explicitly present in our diffuse interface model (although it

is, of course, implicitly present). Furthermore, our model can presumably be used to

acquire useful insights into the forms of the pertinent constitutive equations as well

as into the magnitudes of the phenomenological coefficients appearing therein.

This part of the thesis, constituting a major portion of text, serves to illustrate a

number of issues encountered within the coarse-graining procedures, which we recapit-

ulate below to highlight the path of our own framework. These issues are emphasized

below by italic typeface. The model chosen at the microscale level must be validated

by the apparent agreement of its macroscale predictions with qualitative experimental

observations. Within such a philosophy, we adopted a novel, physically-based view-

point for modeling the underlying microscale flows. Subsequent to the adoption of

any microscale model, the explicit relationship of the measurable macroscale quantities

to their precursor microscale counterparts needs to be established. This fact is funda-

mental to any rational theory of the phenomena. Such relationships must completely

accord with the physical definitions of the macroscale quantities so as to enable an

unambiguous interpretation of experimental measurements. In chapters 4 and 5 we

outlined such a framework based upon our 'diffuse interface' conception. Finally, the

coarse-graining procedure needs to be effected, utilizing the microscale model together

with the definitions of the macroscale quantities. In some cases (one such instance rep-
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resented by the example considered in the preceding chapters) the final step cannot be

accomplished in an analytical manner, thereby forcing one to rely on approximations

to determine the macroscale-level equations. Some of the common approximations

employed in coarse-graining procedures include closure schemes, Taylor series ex-

pansions etc. In this context, we utilized the framework embodied in nonequilibrium

thermodynamics to provide rational insights into the possible forms of the macroscale

constitutive equations. A major limitation of irreversible thermodynamics lies in its

inability to provide any indication of the magnitudes of these phenomenological co-

efficients, except possibly their algebraic signs. Moreover, the above relations are

purely phenomenological, and hence do not constitute a self-contained theory. As a

consequence, their applicability to the phenomena at hand needs to be ratified either

through comprehensive experiments or a detailed microscale theory, or both. Similar

issues confront most of the approximations effected at the macroscale level. We pro-

vided a partial justification of the predictions of nonequilibrium thermodynamics by

employing a simplified linear example to verify the results obtained within the diffuse

interface framework of the overall model.

In a sense, this portion of the thesis, justifiably the longest of the thesis, pro-

vides a detailed illustration of most of the procedures and the issues accompanying

the implementation of a coarse-graining procedure. In subsequent parts of the the-

sis, we consider examples which possess certain special properties (elucidated at the

appropriate junctures of the text), which enable the coarse-graining procedure to be

effected in an exact manner, without introducing any ad hoc approximations.
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Chapter 8

Macrotransport Theory

In this part of the thesis we outline two novel applications of a multiscale coarse-

graining technique referred to as macrotransport theory. In contrast to the other

coarse-graining techniques outlined in different sections of this thesis, macrotrans-

port theory constitutes a generalized dispersion theory for characterizing the solute

transport in continuous and discontinuous microscale systems. The main feature that

accompanies the class of generalized dispersion problems amenable to a 'macrotrans-

port' (or coarse-grained) description is the presence of a global (unbounded) and a

local (which can either be bounded or unbounded) phase-space within which solute

transport occurs [3]. Within this broad context, macrotransport theory provides

a paradigm for calculating the parameters characterizing the transport of the local-

space averaged solute concentration. The transport of the 'mean' solute concentration

is typically characterized by a mean solute velocity vector (denoted U*) and a mean

dispersivity dyadic' D* [14]. Situations can also arise which might entail the presence

of a mean reaction coefficient (denoted K*) quantifying the microscale consumption

of the solute due to bulk and surface reactions [13]. In the context of the nonreactive

case, macrotransport theory thereby represents a generalized version of G. I. Taylor's

dispersion analysis of a solute in a Poiseuille flow [14]. Therefore, macrotransport

'In contrast to the exact description of the solute transport which involves a 'diffusive' contri-

bution to the transport, the mean solute concentration possesses a 'dispersive' contribution which

embodies implicit contributions from both the the microscale diffusive and convective transport

processes.
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theory is also sometimes referred to as the generalized Taylor dispersion theory.

This chapter provides a brief introduction to the salient concepts which accom-

pany the application of the 'macrotransport paradigm.' However, we eschew the

elaboration of the details of the derivations that accompany the cited results, instead

referring the reader to the book by Brenner & Edwards [4] (this book will be referred

to as BE in subsequent sections of the text) which presents detailed derivations of

the results as well as numerous applications thereof. A brief outline of this chapter

is as follows: In section 8.1 we use simple physical examples to clarify the notation

employed in the application of the macrotransport paradigm. Specifically, we focus

on elucidating the concepts of a generalized Brownian tracer, and the meaning of

local and global subspaces. Section 8.2 elaborates the transport equation governing

the evolution of the probability density of the generalized Brownian tracer. In the

case of a nonreactive Brownian solute, this equation is the conservation equation for

the probability density, and embodies the transport due to convective and diffusive

processes in both local and global spaces. For the case of a reactive Brownian solute

the probability density is no longer conserved, whence requires a quantification of

the consumption rate of the solute. In section (8.4 we highlight the typical form of

the 'macrotransport equation,' and thereby simultaneously highlight the calculations

that accompanies the utilization of the paradigm. Finally, we conclude the chapter

with a discussion clarifying the physical basis of macrotransport theory in terms of

the delineation of the timescales of the transport processes involved. This discussion

also serves to clarify the possibilities for generalizing the macrotransport theory to

encompass situations wherein some of the requirements imposed on the local and

global subspaces might not be strictly satisfied.
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8.1 Notation

8.1.1 Generalized Brownian Tracer

As we clarified in the Introduction, the theory of macrotransport process is con-

cerned with the dispersion of a solute due to convective and diffusive processes. In

macrotransport theory the transport of the solute is identified with the transport of

the probability density field of an ideal Brownian particle.2 The probability den-

sity of the Brownian particle is equivalent to the corresponding solute concentration

field on the assumption that the system is sufficiently dilute to behave ideally in a

physicochemical sense [8]. Conventionally, the Brownian tracer particle representing

the solute does not possess an intrinsic structure, whereby enabling us to utilize the

probability density of the center of the Brownian tracer to model the transport of

solute particles. However, in the more general case, the solute particles can be ex-

pected to posses internal structure involving extra degrees of freedom for generalized

displacements [2, 11]. In such a case, the Brownian tracer quantifying the solute par-

ticle also possesses internal structure which is kinematically and dynamically identical

to that of the solute particles. In such a generalized scenario, the probability density

field of the Brownian tracer particle is typically a function both of its internal degrees

of freedom and the positional coordinate of its center of mass. Furthermore, in such a

case the solute concentration field (the number density) would be identical to the pro-

jection of the probability density field onto the spatial coordinates (i.e. by integrating

out the internal degrees of freedom). The use of a generalized Brownian tracer par-

ticle thereby enables us to obtain the coarse-grained or macrotransport description

of systems wherein the positional solute diffusion equation embodies contributions

arising from the internal degrees of freedom. Such a procedure is rendered formal

by the identification that the internal degrees of freedom constitute the local space

2 In this context, ideality refers to the situation wherein the non-equilibrium and comparable

effects animating the Langevin description of the Brownian motion are absent - thereby allowing

us to use the simple results accompanying the classical Einstein's theory of Brownian motion [8].
This requirement is to be carefully distinguished from the requirement that the pervading solvent

be physicochemically an ideal solution.
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and the positional coordinates of the Brownian tracer constitute the global space [see

next section for a discussion on global and local subspaces]. Figure (8-1) depicts an

example of a generalized Brownian tracer along with the identification of the local

and the global spaces.

More exotic situations can also be envisaged wherein the tracer particle quanti-

fies the transport of temperature or momentum rather than material solute. These

generalized tracers are termed as 'thermions' [1] and 'momentons' [9] respectively.

Further, the dispersion processes involving thermions and momentons can be han-

dled in a manner analogous to the theory pertaining to the transport of the Brow-

nian particle. Explicitly, the conservation equation governing the transport of the

probability density of a thermion would be identical to the heat transport equation.

Analogously, the transport of the momenton is governed by the momentum transport

equation (Navier-Stokes equation or a comparable equation thereof). In the following

chapter we encounter the application of macrotransport theory to thermion disper-

sion processes to thereby enable quantification of the macrotransport coefficients in

a situation involving heat transport.

In the following sections we refer to the tracer particle consistently as a Brownian

particle. The theoretical development corresponding to a thermion is completely

analogous to the Brownian particle case and will not elaborated here. The dispersion

theory for momentons is still under development. The rudiments of the theory can

be found in BE [4].

8.1.2 Global and Local Spaces

The class of problems that are amenable to the application of macrotransport theory

and a macrotransport description typically involve the existence of two distinctly dif-

ferent sets of independent coordinate variables characterizing the instantaneous 'posi-

tion' of the Brownian solute particle. These variables are designated as the global and

the local variables, and are denoted in the text by the symbols Q and q respectively.

Each of these variables might themselves be scalars or vectors, and also possibly of

different dimensionalities. Together, the vectors (Q, q) constitute a multidimensional
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Brownian Spheres

Finitely extensible

flexible connector

Space-fixed Origin

Figure 8-1: An example of a generalized Brownian tracer. The composite tracer
particle is comprised of the two Brownian spheres along with the flexible string that
connects them. The location of the Brownian tracer is identified by the position vector
of one of the spheres (denoted R) and the vector signifying the internal displacement
r. The finite extensibility of the string imposes the boundedness of the internal
displacement vector r. In this example, the unbounded vector R constitutes the global
space coordinate Q and the bounded vector r constitutes the local space coordinate
q. This figure is adapted from Brenner & Edwards [4].
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phase space (denoted Q E q) within which the convective and diffusive solute-particle

transport processes occur. The global space Q characterizing the solute transport

will be assumed to be necessarily unbounded, in contrast to the local subspace of

transport q which will be assumed to be bounded. Such an identification thereby

renders the distinct delineation of global vs local spaces explicit. However, the above

constraint posed on the topological compactness of the local subspace constitutes a

strong and sufficient condition for the applicability of macrotransport paradigm. To

enable the application of macrotransport theory to situations wherein such a strong

condition might not be applicable, a weaker necessary condition is expounded in sec-

tion 8.5 which thereby delineates the subspaces in terms of a temporal distinction.

This condition subsequently enables the application of macrotransport theory to the

issue considered in chapter 10 which possesses a local space with a noncompact sup-

port (unbounded). However, the focus of the rest of the development in this chapter

is concerned with the case wherein the local space is bounded in extent, and thereby

enables a geometrical distinction between the subspaces. The extension of the theory

to situations involving unbounded local space is quite straightforward.

8.2 Evolution Equation for the Probability Den-

sity P

8.2.1 Conditional Probability Density

As expounded in the previous section, the convective and diffusive transport of the

solute particles is modeled by the equivalent probability density field of a Brownian

tracer particle. Let the nonnegative scalar P(Q, q, tIQ', q', t') denote the conditional

probability density that the Brownian particle is situated at (Q, q) at a time t,

given that it was initially introduced into the system at the position (Q', q') at a

time t' < t. In almost all cases of interest, the conditional probability density of the

Brownian particle is invariant to translational displacements along the global space

coordinates (since the global space is assumed to be unbounded). Furthermore, in the
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absence of exotic physicochemical effects,3 the probability density of the Brownian

particle is expected to be invariant to translations in time. The preceding two physical

requirements constrain the conditional probability density to depend only on the

relative global displacements Q - Q' and the temporal displacement t - t'. Therefore,

without loss of generality we can set Q' = 0 and t' = 0, thereby obtaining

P - P(Q, q, tIq'). (8.1)

Further, the transport of a nonreactive Brownian tracer is characterized the conser-

vation of the total solute concentration which equivalently requires the presence of

the Brownian particle at some local and global space coordinate at any time t > 0,

i.e.

J dQ j dqP 1, t > 0. (8.2)

In the above equation Qoo and qO denote the volumetric expanse of the global and the

local spaces respectively. Moreover, to ensure that the constraints posed by causality

are satisfied we require

P = 0 for t < 0. (8.3)

8.2.2 Conservation Equation

The physicochemical transport of the solute particle is explicitly quantified by the

convective-diffusive transport equation of the probability density P(Q, q, tjq'). For

the case of a nonreactive Brownian particle this equation acquires the form [10]

op
+ VQ -J + Vq j = 6(Q)(q - q')6(t). (8.4)et

30ne such example involves the diffusion in glassy systems which exhibits aging characteristics.
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In the above equation 6 denotes the Dirac delta function. The terms on the right

hand side of the equation quantifies the introduction of the Brownian tracer at t = 0

at the spatial coordinate q = q' and Q = 0. In the above equation J and j represents

the fluxes of the probability density in the global and local spaces respectively. These

fluxes embody within them inter alia the convective and the diffusive transport of

the Brownian tracer in the global and local spaces respectively.

The constitutive equations for the fluxes present in the above conservation equa-

tion are assumed to be of the respective linearly additive forms,

J = U'(q)P - D(q) VQP + M(q) -F(q)P (8.5)

and

j = u(q)P - d(q) VqP + m(q) -f(q)P. (8.6)

The above constitutive equations embody the following contributions: (i) convective

fluxes arising from the global solute velocity U and the comparable local velocity

U; (ii) Fickian diffusive contributions to the global and the local spaces quantified

by the respective diffusivity dyadics D and d; (iii) Transport arising from animating

external forces quantified by the contributions from global and local space forces F,

f and the respective mobilities M, m in the subspaces.

In the above equations note that the convective and diffusive fluxes are assumed

exclusively to be functions of the local space coordinates. Generalizations of macro-

transport theory permit time-periodic [7] (with a single time-period T characterizing

all unsteady functions) convective and diffusive transport mechanisms. In the next

chapter of this thesis we encounter one such application of macrotransport theory,

namely wherein the convective contributions are time-periodic. However, the devel-

opment of the macrotransport paradigm enabling the treatment of more general time

dependencies (like for instance, almost time-periodic functions etc.) are still as yet

to be accomplished. More importantly, the theoretical development accompanying

the paradigm of macrotransport theory as yet enables only treatment of situations
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wherein the convective and diffusive-flux contributions are exclusive functions of local

space variables (in addition to possibly being time-periodic). However, despite this

constraint the macrotransport theory encompasses a number of wide-ranging exam-

ples, and thereby constitutes an important physical theory of coarse-graining (in this

context see also an interesting work by Bryden & Brenner [5]).

Equation (8.6) embodies the conservation of the solute when concomitant con-

vective and diffusive transport processes are present. Subsequent generalizations of

macrotransport theory has enabled analysis of the case wherein a first order (bulk

and/or surface) reaction accompanies the convective and diffusive transport processes.

In such a case, the evolution equation of the conditional probability density P acquires

the form

6P
+ VQ J + Vq - j + KP = 6(Q)(q - q')6(t), (8.7)at

where K = K(q) (and possibly time-periodic) denotes the rate constant for the first

order bulk reaction that depletes the solute.

The above equations (8.4) [or (8.7)] - (8.6) constitute the complete set of transport

equations governing the probability density of the Brownian tracer particle. These

equations are to be supplemented by the local and global space boundary conditions

to enable the solution. These boundary conditions are considered in the next two

sections.

8.2.3 q-space Boundary Conditions

In the absence of surface reactions, the local space flux is constrained to satisfy the

absence of a normal flux component at the boundary of the local space. If we denote

the boundary of the local space by &q0, this condition is mathematically quantified

as

n j = 0 on &q0, (8.8)
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wherein n denotes the surface normal to the boundary &q,.

The above equation permits the conservation of the Brownian tracer particle fol-

lowing its introduction into the system. However cases which involve the occurrence

of surface reactions require modification of the above boundary condition to incor-

porate the consumption of the solute. The example considered in the next chapter

belongs to this category of transport processes.

8.2.4 Q-space Boundary Conditions

The normalization condition embodied in (8.2) imposes constraints on the form of

the probability density P to ensure convergence of the global space integral present

therein. However, in the theoretical development of the macrotransport paradigm,

one typically encounters similar normalization conditions imposed on the higher order

global space moments of P. To enable such terms to converge, a slightly stronger

condition is imposed on the probability density to thereby require that

Q 'P -0 and QI'J - 0 as IQJ -+ oo (8.9)

for arbitrary nonnegative integers m.

8.3 Lagrangian Definitions of the Mean Solute Ve-

locity and Dispersivity

Prior to outlining the macrotransport paradigm which furnishes the local-space aver-

aged transport equation and the coefficients present therein, it is pertinent to clarify

the physical meaning of the macrotransport coefficients which will appear in the

macrotransport equation. In this section we adopt a Lagrangian viewpoint to define

the mean solute velocity and the mean dispersivity of the Brownian tracer particle.

The mathematical development accompanying the theory of macrotransport processes

(the details of which can be found in BE [4]) involves the implementation of this La-

grangian approach to derive the macrotransport paradigm. This unique viewpoint,
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which contrasts with the traditional Eulerian approach to defining the mean trans-

port coefficients, subsequently (see the next two chapters) yields considerable physical

insights into the nature of the transport processes that are manifest.

As a prelude to identifying the macrotransport coefficients, we define the following

quantities:

(i) The mean displacement vector Q of the Brownian tracer particle (released at

Q = 0 at time t = 0) at a time t is defined as

J dQ dq Q P. (8.10)

(ii) The mean-squared dyadic global displacement of the Brownian tracer particle

measured from its mean global position Q is defined as

(Q-Q)2 de dQ dq(Q - Q) 2 P. (8.11)

In the above equation we have used the truncated notation V 2 = VV to denote

dyadic products.

Based on the above definitions (8.10) and (8.11), the mean displacement vector Q

and the mean-squared displacement (Q - Q)2 can both be expected to be functions

of the initial local space coordinate q' and the time t. However, within the framework

of macrotransport theory, it has been proved that after the lapse of a sufficiently

long time [see section 8.5 for a discussion pertaining to quantitative constraints on

timescales] both Q and (Q - Q) 2 become independent of the initial local space co-

ordinate q', and thereby depend only on time elapsed, t. Further, within the same

limiting constraints imposed on the time t, it can be proved that both the mean dis-

placement and the mean-squared displacement increases linearly with time. Based on

the above facts, and the accompanying analogy with the theory of Brownian motion4

we can define the mean global-space velocity U* and the dispersion dyadic D* by the

4 1n the theory of Brownian motion [6], the mean displacement and the mean-squared displacement
of the Brownian particle varies linearly with time. The proportionality constants governing the
relationship defines respectively the mean velocity and the diffusivity of the Brownian particle.
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following asymptotic relations

Q = U*t (8.12)

and

(Q - Q)2 = 2D*t. (8.13)

The latter definitions embody the Lagrangian viewpoint definitions of the mean solute

velocity and the mean solute dispersivity.

The implementation of the definitions embodied in equations (8.10) - (8.13) on

the microscale conservation equation (8.4) subsequently yields the macrotransport

paradigm for calculating the mean-solute velocity U* and the dispersion dyadic D*

in terms of microscale data and equations. It is a nontrivial task to prove that the

mean velocity and the mean dispersivity characterizing the transport of the local-

space averaged probability density is identical to the above Lagrangian definitions.

The details elaborating the proof can be found in BE [4]. In the next section we

outline the macrotransport paradigm or a recipe to obtain the above macrotransport

coefficients in terms of more detailed microscale quantities.

8.4 Macrotransport Paradigm

In this section we outline the macrotransport description and the paradigm to eval-

uate the coefficients appearing therein. As an illustrative example, we consider the

convective and diffusive transport of a nonreactive Brownian tracer in a steady or

time independent scenario. The paradigms corresponding to time-periodic and reac-

tive scenarios can be found in BE [4] and also in the next chapter.

In the asymptotic long time limit expounded in the previous section, the generic

microscale transport equation (8.4) governing the conditional probability density

P(Q, q, t) can be coarse-grained to thereby obtain the macrotransport equation gov-

erning the coarse-grained macroscale probability density P(Q, t) characterizing the
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totality of the molecular solute species being transported, irrespective of the local-

space coordinate in which the tracer molecule characterizing the chemical species

being transported finds itself at any given instant of time. Mathematically, the coarse-

grained probability density is obtained from the detailed fine-scale probability density

by projecting out the degrees of freedom corresponding to the local-space coordinates,

i.e.,

P(Q, t) dqP(Q, q, tIq') (8.14)

The less detailed density distribution P(Q, t) quantifies the solute species transport

process through the global or Q-space, accounting for the transport in the local or q-

space in an appropriately averaged manner. This coarse-grained density is expected to

evolve according to the macroscale, i.e., global-space convective-diffusive conservation

equation [4]

OP
at + U* - VQP = D* : VQVQP, (8.15)

wherein the time- and position-independent vector velocity U* and dispersion dyadic

D* respectively quantify the coarse-grained convective and diffusive solute transport

mechanisms in the fluid continuum. Implicitly embedded within these coefficients are

the overall effects of the comparable microscale transport processes arising from the

transport within the local space. The above equation is also referred to as the macro-

transport equation or the macrotransport description corresponding to the microscale

equation (8.4).

The macrotransport paradigm furnishes a recipe to evaluate the mean global-

space velocity U* and the dispersion dyadic D* present in the above equation (8.15).

To illustrate the manner in which the mean or macrotransport coefficients are to

be obtained, we outline below the macrotransport paradigm which accompanies the

evaluation of these quantities for the dispersive transport of a nonreactive Brownian

tracer under the animating action of steady flow fields and forces. This exposition

serves as an illustration of the details typically involved in the computations of the
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macrotransport coefficients.

8.4.1 Macrotransport Coefficients

The macrotransport equation (8.15) governing the evolution of the coarse-grained

probability density P(Q, t) embodies convective and diffusive transport contributions

quantified by the macrotransport coefficients U* and D* respectively. The macro-

transport paradigm furnishes relations expressing these coefficients as a function of

two independent, microscale fields PO (q) and B(q). Explicitly,

* =j dqU(q)PO (q), (8.16)

and

D* = fM + f), (8.17)

where

DM = symj dq D(q) PO (q) (8.18)

represents the contribution of the molecular diffusivity, and

fc = sym dq Po (VqB)t -symd - (VqB) (8.19)

represents the convective contribution to the dispersivity. In eq. (8.16) we have in-

cluded within the global space solvent velocity the convective contributions arising

from the animating actions of the global space forces, and have denoted the resulting

sum as U, i.e. U = U'+ M - F. In the above equations, the presence of 't' operator

denotes the transposition of the dyad. Further, the operator 'sym' denotes that a

symmetrizing operation is effected on that dyad, i.e., for an arbitrary dyad V

1
symV = -[V + Vi]. (8.20)

2
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The microscale field Po (q) present in the above equations represents the solution

of the following microscale boundary value problem:

Vq -j = 0, (8.21)

where

j (q) = u(q)PO - d(q) -VqP + m(q) -f(q)PO, (8.22)

subject to the boundary condition,

n-j= O on q,. (8.23)

and the normalization condition

jdq Po = 1. (8.24)

On the other hand, the microscale field B(q) represents the solution of the fol-

lowing set of equations:

0(Po B) + j Vq * B - Vq - (Po d- VqB) = Po (U - U*), (8.25)
at

subject to the boundary condition

n -d -VqB = 0 on q0 . (8.26)

Solution of equation (8.25) presumes knowledge of the mean velocity U* which can

be obtained using the solution of eqs. (8.21) - (8.24) in eq. (8.16).

This section was meant to clarify the procedure to obtain the macrotransport

coefficients characterizing the transport of local space averaged solute concentration.

Explicitly, it was demonstrated that in the simplest scenario (steady flows involving

a nonreactive solute) the macrotransport coefficients are themselves given inter alia
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in terms of two independent microscale fields PO and B which are to be determined

by solving microscale boundary value equations. The knowledge of these microscale

fields furnishes the values acquired by the macrotransport coefficients for different

values of the parameters present therein. The paradigm outlined in this section

is utilized in the subsequent chapters in two distinct applications to determine the

macrotransport coefficients in the respective cases. However, to maintain continuity

within the text within each of the chapters we provide a self-contained description of

the accompanying paradigm utilized there.

In the next section we clarify the fundamental physical basis of macrotransport

theory by addressing the question: "when and why is it possible to provide a macro-

transport description ?" The resolution of this question is explicitly accomplished

by delineating the different time scales accompanying the convective and diffusive

transport of the Brownian tracer. This exposition on the time scales also serve to

quantitatively clarify the regime of validity of the macrotransport description.

8.5 Basis of Macrotransport Theory

In the previous sections we outlined the paradigm furnished by the macrotrans-

port theory (or generalized Taylor dispersion theory) for deriving long-time asymp-

totic macroscale transport equations and the phenomenological coefficients appearing

therein. This paradigm derives from the recognition that the microscale transport

occurs in a phase space (Q (D q) composed of two orthogonal subspaces parameter-

ized by the global coordinates Q and the local coordinates q respectively. As such,

the existence of two time scales is already implicit in the underlying microscale con-

servation equation governing the conditional probability density P. Specifically, the

transport of the Brownian tracer within the local and global spaces necessarily entails

an individual time scale characterizing the former transport (through the local space)

and a distinct time scale characterizing the latter transport processes (through the

global space). Based on such an identification, the main principle underlying macro-

transport theory can be stated as follows: The local-space equilibration time should
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furnish the 'fast' time scale for transport, while the characteristic global time scale

should furnish the 'slow' time scale intrinsic to the external space transport processes.

Therefore, the necessary condition for a macrotransport description to be feasible

requires that the time scales accompanying transport of the tracer in the local space

should be significantly smaller than the time scales of transport in the global space.

The fulfillment of this condition would thereby enable the Brownian tracer to reach a

state of equilibrium with respect to transport within the local space in time intervals

much less than comparable global-space transport times, thereby allowing a macro

(or global scale) transport description of the Brownian tracer on time scales greater

than the local space equilibration time scale.

Underlying the macrotransport theory was the assumption made at the outset

requiring the existence of an unbounded global space and a bounded local space.

This assumption implies that the time scales quantifying the transport in the former

subspace is necessarily large compared to that of the latter. Whence, the ratio of the

local equilibration time scale to the global time scales can be expected to be a small

parameter. The mathematical framework of multiple time scale analysis constitutes

a systematic perturbation procedure for the analysis of such temporal phenomena

which are characterized by the presence of more than one time scale which differ

amongst themselves significantly in their magnitudes. The formal perturbation the-

ory accompanying the microscale conservation equation (8.4) has been effected by

Pagitsas et al. [12] to obtain results completely equivalent to that obtained by a

more intuitive procedure (the results are listed in the previous section and constitute

the macrotransport paradigm). However, the formal mathematical framework con-

comitantly furnishes a procedure to extend the asymptotic leading order theory to

higher orders, as well as to situations wherein the strict requirements on the bound-

edness of the spaces are not satisfied (cf. chapter 10). In the following we provide

a brief quantitative discussion of the time scales characterizing the transport of the

Brownian tracer. Thereby we identify the small parameter enabling the perturbation

analysis. However, we eschew the details of the perturbation analysis and the iden-

tification of the macrotransport paradigm. The interested reader is referred to the
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work of Pagitsas et al. [12].

The microscale conservation equation for the probability density P is embodied

in eq. (8.4). For the sake of simplicity we assume the absence of external forces (in

both local and global spaces) animating the transport of the Brownian particle. In

such a scenario, the constitutive equations for the local and the global space fluxes

adopt the following forms [cf. eqs. (8.5) and (8.6)]:

J =U'(q)P - D(q) . VQP (8.27)

and

j =u(q)P - d(q) - VqP (8.28)

The implementation of a perturbation analysis is preceded by the nondimensional-

ization of the equations to thereby identify the small parameter. The global space

transport is nondimensionalized by utilizing a characteristic global space diffusivity

D, a length scale lQ and a velocity scale U. Implementing these scalings in eq. (8.27)

we obtain,5

U
J = -[U'(q)P - PeQ1D(q) - VQ P]. (8.29)

lQ

In the above equation PeQ lQU/D represents the global space Peclet number. An

analogous nondimensionalization of the local space fluxes quantified by eq. (8.28) is

accomplished using a characteristic diffusivity d, a lengthscale lq and a velocity scale

u to thereby yield

j = [Pequ(q)P - d(q) - VqP]. (8.30)
q

In the above equation, the Peq lqu/d denotes the local space P~elet number.

'To avoid excessive proliferation of symbols we have utilized the same notation to denote both

the non-dimensional and the dimensional quantities.
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Based on the above nondimensionalizations effected on the global and the local

space flux equations, we can identify the presence of atleast four distinct time scales

(more timescales could exist in cases where external forces contribute to the convective

transport of the Brownian tracer) characterizing the transport of the Brownian tracer.

These timescales respectively characterize the local space convective and diffusive

transport, and the global space convective and diffusive transport. The presence of

four distinct time scales enables the construction of three distinct ratios involving

these time scales:

1 u Time scale for local space diffusion
Peq =- q (8.31)________________

d Time scale for local space convection

lQ U _ Time scale for global space diffusion
P D Time scale for global space convection

E 2U Time scale for local space diffusion

dLQ Time scale for global space convection

The global and local Peclet numbers respectively quantify the ratios of the time scales

embodied in the convective and diffusive transports within a subspace. Whereas,

the parameter e in eq. (8.33) quantifies the ratio of the timescales of transport in

the two different subspaces. As we expounded earlier in this section we require the

Brownian particle to reach equilibrium with respect to transport within the local space

at a time much earlier than a comparable event in the global space. Physically, such

an expectation would be satisfied under the mathematical requirement that F < 1.

Implicit in the delineation of these time scales is the assumption that the global and

local P~elet numbers are 0(1) to thereby enable the choice of a single timescale to

characterize the transport in each subspace.

The above dual requirements quantify the qualitative statements outlined in the

beginning of this section. The identification of the small parameter E also enables

the application of a macrotransport description to problems wherein some of our
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earlier strict requirements on the boundedness of the respective spaces can fail. For

instance, consider the following possible scenarios: (i) Global space is bounded (with

a characteristic length scale 1Q) and the local space is bounded (with a characteristic

length scale lq): The macrotransport description is then applicable for the times t

satisfying the inequality lj/d < t < lQ/U [12]. (ii) Local space is unbounded and

the global space is unbounded: The macrotransport description is applicable for the

times t >> Tq, where Tq denotes a characteristic time scale for transport in the local

space which might arise from other physicochemical constraints present within the

local space (see chapter 10). (iii) Finally, when the local space is bounded and global

space is unbounded (corresponding to the assumption underlying the majority of the

preceding sections of the text): The macrotransport description is applicable for the

times t >> l2 d.

This section quantitatively and qualitatively delineates the constraints which need

to be necessarily satisfied by the appropriate physical processes to render a macro-

transport description accurate. In the subsequent chapters we consider the application

of macrotransport theory to two distinct examples to thereby derive the phenomeno-

logical macrotransport coefficients present within the macrotransport equation. Such

a procedure when coupled with the physical meaning of these macrotransport coeffi-

cients furnishes significant insights regarding the coarse-grained transport processes

occurring in these systems. The chapters embody a self-contained review of the

macrotransport equations and the paradigm governing the particular example under

consideration.
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Chapter 9

Chaotic Heat Transfer

Enhancement in Rotating

Eccentric Cylinder Configuration

Reference: Venkat Ganesan, Michelle Bryden and Howard Brenner, "Chaotic heat

transfer enhancement in rotating eccentric annular-flow systems," Phys. Fluids A, 9,

1296 (1997).

This chapter deals with a novel application of the macrotransport paradigm out-

lined in the previous chapter. Specifically, we explicitly quantify the role of the chaotic

advection in the enhancement of transport rates. As an illustrative model system,

we consider the transport rate enhancements in an eccentric annular-flow configura-

tion. We quantitatively demonstrate that the presence of chaotic advection leads to

a significant enhancement in the heat transport rates. Explicitly, such a procedure

is accomplished by utilizing the macrotransport paradigm for reactive thermal dis-

persion processes. We also contrast our quantitative results with more qualitative,

pictorial kinematical measures of transport enhancement to demonstrate some of the

shortcomings inherent in these other approaches.

This chapter begins with a brief introduction to the phenomenon of chaotic ad-

vection. Subsequent to this discussion, we motivate the application considered in this

chapter. In section 9.2 we detail the geometry of the flow situation and the different
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illustrative velocity protocols considered in our application. In section 9.3 we briefly

discuss the concepts of micro and the macroscale equations (which has been elab-

orated in the previous chapter) in the specific context of thermal Taylor dispersion

theory for time-periodic reactive systems. An analytical solution of the concentric

cylinder protocol is presented in section 9.4, and is followed by a brief description of

the numerical details pertinent to the other flow situations considered. The results

for the concentric cylinder case serve as a 'ground state' for comparison of the results

in the other cases. The results obtained for the other flow situations are presented in

section 9.5. Overall conclusions are detailed in 9.6.

9.1 Chaotic Advection

Chaotic behavior in simple dynamical systems with area-preserving flows has gen-

erated considerable interest in recent years [11, 26]. In this context, laminar chaos

(chaotic advection) in simple creeping flows constitutes a current focus of research ac-

tivity. The existence of chaotic phenomenon in laminar flows seems surprising at first

thought. Turbulent flows for example, possess a highly irregular velocity structure,

typically defined by its statistics, and are purported (though not proved conclusively)

to be a canonical example of a chaotic flow. In view of the typical 'regular' flow struc-

tures encountered in laminar flows, the occurrence of the phenomena of chaos (which

is qualitatively synonymous with irregular or random) in laminar flows seems like

an oxymoron. However, contrary to intuition, laminar chaos refers to a kinematical

phenomena in which motion of the fluid particles is chaotic (in a Lagrangian sense)

even though the velocity field is regular (i.e., nonchaotic). In contrast, 'turbulence'

typically refers to the scenario wherein the fluid velocity itself possesses a chaotic or

a random structure (Eulerian chaos).

To clarify the above statements consider the Lagrangian equation of motion of a

fluid element whose center of mass is instantaneously at the position x:

dx
= u(x, t), (9.1)

dt
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where u(x, t) refers to the Eulerian velocity field at the position x and time t. The

motion of the fluid elements themselves provide valuable insights into the mixing

processes undergone by these material elements. In view of the fact that these mix-

ing processes typically impact on transport rates within a system, the kinematical

motion of the fluid elements in turn provides a qualitative measure of the transport

rates occurring within the system. However, despite this relationship between the

Lagrangian motion and the transport rates in the system, previous researches have

not explicitly focussed on this quantification. The main reason for such an attitude

is the ubiquitous presence of two-dimensional steady laminar flows which constrain

the fluid elements to follow the innocuous regular patterns embodied in streamlines.

This observation suggests the presence of other nonconvective transport mechanisms,

like molecular diffusion, to enable cross-streamline transport and mixing. However,

during the past decade, the situation underwent a dramatic change. Simple manipu-

lations of steady flow fields were shown to lead to highly irregular or chaotic motion of

fluid elements, even in laminar flows, thereby obviating the necessity for other trans-

port mechanisms to enhance mixing of fluid elements [1, 9, 20]. This realization was

founded upon the logic that the above equation (9.1), when stripped of its physical

meaning, represents a set of ordinary differential equations which can exhibit chaotic

phenomena depending on the functional form of the velocity field u [11, 26]. This

suggested that enhancement of transport rates can possibly be achieved by tuning

the kinematical features of the flow fields.

The pioneering studies of Aref [1], Ottino [20], and their co-workers, as well as

others pointed attention towards the possibility of exploiting the enhanced mixing

rates accompanying chaotic flows to increase transport rates in laminar flow sys-

tems. Since Lagrangian chaos can be achieved even under Stokes-flow conditions,

the enhancement in heat (or mass) transport rates is not generally accompanied by

corresponding increases in pressure drop or local shear rate, such as would be the case

if turbulent flows were employed to enhance the rate. This makes such chaotic flow

phenomena technologically attractive to contemplate - for example in the biotech-

nology industry, where laminar flows are necessary to minimize cell damage during

191



growth [13].

Efforts to quantitatively demonstrate the enhanced effectiveness achieved by chaotic

mixing have yet to come to complete fruition, primarily because of the lack of simple

quantitative measures of global mixing and transport rates in chaotic systems. Ap-

plications involving measures of transport rates involve dynamical aspects of chaotic

advection through the different time-scales of transport by convective and diffusive

mechanisms. Chaos, being purely kinematical in nature, impacts only in the con-

vective aspects of dynamical transport processes, such as heat and mass transfer

processes. However, dynamical processes also involve molecular transport, which

possesses a time scale distinct from that of convection. (Indeed, at small Peclet num-

bers, where diffusive or conductive molecular transport dominates over convection,

chaotic effects on global transport rates may be minimal.) Accordingly, in dynamical

applications, calculations of Liapunov exponents, attractor dimensions, and Poincar6

plots rarely provide more than a qualitative kinematical, and often asymptotic, de-

scription of the pertinent 'mixing' phenomena. (This limitation is corroborated inter

alia by our results, which indicate that the observed values of the effective or global

transport coefficients do not always manifest the same parametric trends as do the

corresponding Poincar6 plots.)

Several earlier studies do address quantitative aspects of the chaotic enhancement.

Thus, Jana and Ottino [14] considered heat transfer in cavity flow and found signifi-

cant enhancement within the chaotic flow regime. Closer to our own study, Ghosh et

al. [10] investigated heat transfer between two nonconcentric counter-rotating cylin-

ders when the cylinders were maintained at different temperatures. Their work, which

was restricted to small eccentricities with no axial flow, confirmed the existence of

significantly enhanced transport rates.

Most analyses performed to date have restricted themselves to two-dimensional,

purely transverse flows, ignoring axial transport phenomena. While this may be

acceptable in the context of verifying the existence of chaotic enhancement, it does

not provide a good model of real continuous flow heat-exchanger performance. In

contrast, the analysis of Bryden & Brenner [8] provides a quantitative measure of
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mixing and transport in such systems, while also including axial flow. Their work

considers transverse transport and axial flow accompanied by molecular diffusion

during creeping flow in the annular space between two eccentrically-positioned circular

cylinders which rotate alternately and periodically in the presence of an infinitely

fast surface chemical reaction occurring on the outer cylinder. Our work differs from

theirs primarily in the fact that their calculations were restricted to the limiting

case where (in our heat transfer terminology) the local heat transfer coefficient h is

effectively infinite. In contrast, we study here the effects of finite Nusselt numbers

(which introduces another time scale of transport) upon the chaotic heat transfer,

in addition to other related topics like co- vs counter-rotation, not systematically

covered in their investigation.

The present work utilizes time-periodic thermal Taylor dispersion theory [4] to-

gether with the model of a prescribed microscale heat transfer coefficient h at the

outer cylinder surface to determine the effective (macroscale) heat transfer coefficient

H* for the case of axial annular flow between non-concentric alternately rotating cir-

cular cylinders. This flow configuration is widely used to study Lagrangian chaos,

partly because of the availability of an analytical solution for the transverse velocity

field (in the Stokes-flow approximation) [3, 15], and partly because of the possibility

of experimental verification of the calculated behavior [17, 25].

While methods like Melnikov theory [10], lobe dynamics [16], etc. do provide a

quantitative measure of chaotic mixing, they are valid only for small time-dependent

perturbations (or slow perturbations [16]) of the steady flow field. In contrast, our

methods can be used for any arbitrary time-periodic flow fields. Moreover, the in-

clusion of an axial flow field adds to the applicability of both our specific results and

general techniques to problems of potential industrial interest. The novelty of our gen-

eralized Taylor dispersion scheme [7] for calculating the effective macroscale system

parameters from the prescribed microscale data lies in the fact that it obviates the

need to solve the full three-dimensional energy equation for the microscale tempera-

ture field T(q, z, t) governing the heat transfer process. Rather, only a pair of two-

dimensional equations [which are remarkably alike in structure - cf. eqs. (9.20a,b)]
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need to be solved to obtain the macroscale transport coefficients. These coefficients

serve to quantify the overall heat transfer process after an initial transient phase.

The non-asymptotic transport processes occurring during this initial phase are in-

corporated into the macrotransport description through the use of a fictitious initial

condition [represented by the field A(q, t) - f. eq. (9.11)].

Three different classes of annular rotary flow fields are considered in our work to

illustrate the modes of chaotic enhancement, as well as to demonstrate the general

applicability of our methods in such disparate cases: (i) In the first case considered the

cylinders are concentric, whence the transport is unaffected by the rotary transverse

flow field; (ii) The second case is that of non-concentric counter-rotating cylinders

in steady rotation, for which case only regular enhancement (over and above that

of the concentric case) is present as a consequence of the transverse flow; (iii) Fi-

nally, the cases of time-periodic counter- and co-rotating flows are considered for the

eccentrically-positioned configuration. In each case, the calculated relationship be-

tween the local (h) and overall (H*) heat transfer coefficients furnishes a quantitative

global measure of the effectiveness of the transverse convective fluid motion ('mix-

ing') in enhancing the overall rate of heat transfer from the system. Additionally, the

resulting axial thermal Taylor dispersivities * are calculated for each case to pro-

vide further data on the effectiveness of the kinematical mixing processes occurring in

the annulus. Whereas convection transports energy over large distances, conduction

involves processes occurring at the molecular scale. As such, the Taylor dispersivity

provides information regarding the interplay between these different energy transport

modes. The axial thermal velocity U* displays qualitatively the same behavior as that

of the axial thermal dispersivity due to similar controlling factors; accordingly, in the

interests of brevity, the results obtained for this velocity are not explicitly presented

here.
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9.2 Geometry of Flow

As in Fig. (9-1), consider an infinitely long circular cylinder of radius Ri positioned

eccentrically within a second cylinder of radius R0, with e the center-to-center dis-

tance. Cylindrical bipolar coordinates [12] (ij, ) are used in the subsequent analysis.

A point within the annular space between the two cylinders is denoted by (q, z), with

z the axial position and q = q(77, ) the transverse position vector in a plane perpen-

dicular to the z axis. With these geometrical identifications the identification of the

local and the global space coordinates becomes explicit. In the parlance of macro-

transport theory outlined in the preceding chapter, the bounded cross sectional space

identified by the cylindrical bipolar coordinates constitutes the local space, while the

orthogonal unbounded space represented by the axial or the z coordinates constitute

the global space.

When the cylinders are counter-rotated in a regular (i.e. steady, time-independent)

manner the heat transfer rate is increased, over and above the pure conduction rate

that would otherwise exist, due to the creation of a recirculation region in the annular

gap (see Fig. (9-2c). The latter arises from a hyperbolic saddle point stemming from

the intersection of two streamlines. This recirculation region produces regular mix-

ing owing to reduction of the temperature gradient within the recirculation region.

(Indeed, to a good approximation the temperature can be considered uniform within

that region [10].) Outside of this recirculation region, conduction zones exist in which

the heat transfer occurs primarily by molecular transport.

On the other hand, when the cylinders are rotated in a time-periodic manner,

chaotic mixing occurs - allowing a material particle to be transported across the

bounding streamlines of the recirculation region. Time-periodicity of the flow in our

analysis is achieved by counter-rotating the inner and outer cylinders alternately for

the same period Ja (the latter denoting the actual period of rotation, in contrast

to the dimensionless period J defined later), albeit at generally different angular

velocities Qj and Q,. The instantaneous quasisteady transverse velocity field thereby
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T 1 = T lb

1P

Figure 9-1: Geometry of the system. The axial coordinate z is directed into the plane
of paper. The scalars Q, and Rj are each taken to be positive when the cylinders
rotate in the directions indicated by the arrows.
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generated is given by the expression :

t ui(q), 2nJa < t < (2n + 1)Ja, (9.2)
uo(q), (2n + 1)Ja < t < (2n + 2)Ja,

(n = 0, 1, 2, ... ), where ui and uO represent the respective quasisteady transverse

Stokes-flow velocity fields (expressed in bipolar coordinates [3]), resulting from rota-

tion of the inner and outer cylinders. The Stokes-flow assumption is valid provided

that the transverse Reynolds number Re = R2Q/v is less than unity [22], with v

the kinematic viscosity and Q = max(Qi, Q,). Additionally, the quasisteady flow

assumption is justified so long as the modulation period Ja is large compared with

that of the viscous time scale, L 2 /v (i.e. the Strouhal number satisfies the inequality,

Sr -_ L 2 / < 1), where L is a characteristic transverse length, say RO - Ri. For

regular mixing [case(ii)], the steady velocity field is given by'

u(q) = - [ui(q) + u.(q)]. (9.3)
2

Superposed on the above transverse field is a steady axial laminar velocity field U(q)

in the z direction. Expressions for this annular Poiseuille-like bipolar-coordinate field

are given by Snyder and Goldstein [24] among others [21].

9.3 Macrotransport Equations

9.3.1 Microscale Equation

The temperature field T(q, z, t) is governed by the three-dimensional energy equation,

pCP ET + U(q) T + U(q t) -VT - kT (9 2 T + V T = 0, (9.4)

'We are grateful to one of the anonymous referees of our article for pointing out that a factor of

2 was necessary in the velocity field expression eq. (9.3) in order that the distance traversed by the

cylinders in a period in the steady rotation case be identical to that for the time-periodic case.
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(a) (b)
00

Figure 9-2: Typical transverse streamline profiles: (a) Inner cylinder
alone rotates; (b) Outer cylinder alone rotates; (c) Steady

counter-rotation of both cylinders (for Ri/QG, = 6)

(C)



satisfying the boundary conditions

kTn . VqT+hT = 0 on &q0, (9.5)

kTn -VqT = 0 on &qi, (9.6)

and subject to the arbitrarily prescribed initial temperature distribution

T(q, z, 0) = T,(q, z). (9.7)

To make explicit connection with the macrotransport concepts outlined in the previ-

ous chapter, the global (z) and the local (q) transport variables have been separated

in the above equations. In the above, Vq = /&q denotes the transverse gradient

operator, while Oqi and &q, respectively denote the surfaces of the inner and outer

cylinders, and n is the unit outer normal to a cylinder. In eq. (9.5) the heat is as-

sumed transferred to an external ambient environment maintained at temperature

T = 0. In the initial condition, eq. (9.7), it is supposed that T0(q, too) = 0.

The Taylor macrotransport paradigm for reactive, time-periodic systems [7] will

be used in the subsequent analysis to obtain the effective transport coefficients.

In the case of thermal transport, a comparable nonmaterial tracer (designated a

'thermion' [4, 7]) is imagined to exist, and a micro/macro axial moment-matching

scheme employed to calculate the transport coefficients appearing in the macrotrans-

port equation,

O(T)(T) -*(T 02(T+ U*- + 0*(z = * (9.8)
at Oz TOZ2

governing the area- and time-averaged mean temperature field, (T) (z, t) [cf. eqs. (9.12)

and (9.13) for the respective definitions of these averages]. The three macrotransport

coefficients U*, H* and a* appearing above respectively denote the mean axial veloc-

ity at which heat is conveyed down the tube, the effective heat transfer loss coefficient,
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and the effective axial thermal diffusivity - the latter being equivalent to k*/pCp,

with I4 the effective axial thermal conductivity and pC taken to be constant.

Denote by pCpP(q, z, t q', z', t') the conditional probability density for finding a

thermion at position (q, z) at time t, given that it was introduced into the system

at position (q', z') at time t = t'. Given the equality [18] between this probability

density and the Green's function for the system of equations (9.4)-(9.7), we have that

T(q, z, t) - T, =J pCP( q, z, t, q', z', t')[T(q', z', t') - Tr]dV', (9.9)

where Tr is an arbitrary reference temperature and dV = dqdz denotes a volume

element of the annular space, with dq an areal element in the annular cross-sectional

space. The domain of integration V,'0 represents the infinite annular space, (-o <

z' < 00, 0 < ' < 27r, io < q' < 7).

The Green's function P constitutes the solution of a three-dimensional energy

equation identical to (9.4), in which P now appears in place of T and in which an

instantaneous unit heat source term, 6(z - z')6(q - q')6(t - t') with 6 the Dirac delta

function [equivalent to the introduction of a thermion into the system at (q', z', t')],

now appears on the right-hand side of (9.4) [also cf. eq. (8.4)]. Additionally, P

satisfies boundary conditions identical to (9.5) and (9.6) in which T is replaced by P.

Moreover, P satisfies the boundedness condition

Iz-z'P"MP -+0 as z - z' -+oo, (9.10)

the latter assuring convergence of the axial moments of P at all orders (required in the

implicit micro/macro moment matching scheme [7]) [The above equation is equivalent

to our abstract, general equation (8.9) wherein we have replaced Q by z - z'].
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9.3.2 Macrotransport Formulation

By a moment-matching scheme [7, 5], for long times times t satisfying the inequality2

t > R2/a(a = kT/pCp) the following macrotransport description of the mean trans-

port process applies

O(P) O(P) 02 (P)( + U*K + H*(P) - * OZ2 - A(q', t')6(z - z')6(t - t').
at Oz D

(9.11)

The field A(q', t') appearing in the above equations [and explicitly defined in eqs. (9.20a,b)-

(9.24a,b)] represents a 'fictitious' initial condition. Its presence takes account of

the transport and concomitant heat loss from the system occurring at short times,

t <; O(R /a), to which the asymptotic macrotransport equation (9.11) [as well as

(9.8)] is inapplicable. This new feature contrasts with the paradigm pertaining to

the nonreactive solutes outlined in the prior chapter. As a result of this new feature,

the definition of the macrotransport coefficients explicitly include this ficticious ini-

tial condition [cf. eqns. (9.15) - (9.19)]. [For simplicity, in defining (P) appearing in

eq. (9.11), the factor pC,, which is assumed constant, has been combined with P,

and the resulting product pCP denoted here and henceforth by P as in the case of

material tracers.] In the above we have used both areal and time averaging, with the

respective averages defined as

(z, t) = dq g(q, z, t) (9.12)

and

1 ft+2J
(g)(q, z, t) = dt g(q, z, t). (9.13)

2Ja it

2Refer section (8.5) for a justification of the constraints on the timescales.
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In the preceding, Sq denotes the areal annular domain (0 < ' < 27, 77 < 7 < 77).

Condition (9.10), requiring boundedness of the axial moments, here necessitates that

Iz - z'IM (P) -- +0 as z-z' -+ 00. (9.14)

In the subsequent analysis it will prove convenient to introduce the following

nondimensional variables:

t 0Z q Pe Vil R0  u U e
T = , q Peq " Pe. = -, U E = o i

U' 0  P 0 R , A=AR , Vq =RoVq, Nu hRO

In the above,

fs U(q)dq

fsq dq

and

=JaR2/a,

respectively denote the tangential speed of the outer cylinder, the average axial fluid

velocity, and the nondimensional period of rotation. Pe, and Peq respectively denote

the axial and transverse P6clet numbers, and PO denotes the long-time asymptotic

zeroth-order axial moment of P [7] [also cf. eqs. (8.21) - (8.24)]. Additionally, fs, dq =

7r(R2 - R2) denotes the cross-sectional annular area.

In terms of the above variables the corresponding nondimensional macrotransport

coefficients appearing in eqs. (9.8) and (9.11) are to be computed as follows:

Ro Pez 2 5 dr dq- (C)P (4, T)A(, -r), (9.15)
a 2J0 J sq

R = N (9.16)
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d* a*-T -+ 1,
a a

_* Pe~ 2 2j

Y 2z 0 dT,

or, equivalently,

* _Pe

a 2J J 2 ddT Jr d4P (&, T)Z(q, T)VqB - qE.
(9.19)

The a* term represents the convective or Taylor contribution to the effective thermal

dispersivity.

The Pj' and A fields appearing in the above equations respectively represent the

solutions of the following adjoint pair of eigenvalue problems, with 'W the correspond-

ing eigenvalue [7, 5] common to the pair:

+7 -- Poc, AI = 0 ,Peqf -9q){

(9.20a,b)

(n

(n

q+ Nu){ Po, A = 0

q){ ZP Al = 0 C

on Oq, (9.21a,b)

(9.22a,b)n Oqi,

{oo A}(4, T + 2J)

I f +2j
2j r

d4Poo{1,} Zl
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and

wherein

(9.17)

d p (q, A)Z(4, -r)EB(4, T)[U(4) - U] (9.18)

(9.23a,b)

- 1. (9.24a,b)

t

= I Po , A I(q-, r),



The product field P B required in (9.18) represents the solution of the inhomoge-

neous equation

&( B + Peqf - q(Po"f) - (PQ f) - 77(Pb) = pQ7( - U),

(9.25)

satisfying boundary and periodicity conditions identical to (9.21a,b) - (9.23a,b). Note

that this field is uniquely determined only to within an arbitrary additive, position-

independent, time-periodic function [7].

When the transverse velocity field is steady, the time derivatives appearing in

(9.20a,b), and (9.25) drop out in the long-time limit.

9.4 Analysis of Different Protocols

9.4.1 Case (i) Concentric Cylinders (e = 0)

We use cylindrical polar coordinates (r, 0) for this special case. Symmetry considera-

tions dictate that the P , A and b fields all be independent of the angular coordinate

0. Since the local velocity field is of the tangential form U- = u(r)b, with 6 a unit

vector in the 0 direction, the transverse convective contributions to the transport

equations governing these fields vanish identically. For this same reason, these fields

are also necessarily independent of time.

The equation (in non-dimensional form) for P O(r) becomes

I dPd
(r ) + Po = 0, (9.26)

r dr dr

subject to the boundary conditions

dpo
d + NuPO = 0 on r=1, (9.27)

dr
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dP
= 0 on r = k, (9.28)

dr

with k = Rj/RO, and where r has been rendered dimensionless with R,. The general

solution of eq. (9.26) in the annular space k < r < 1 simultaneously satisfying the

boundary condition (9.28) on the inner wall is

P = C [Jo(r J) J1 (k ) YO(r -)1, (9.29)
Y1(k 7)

with JO and Y Bessel functions of order zero. Equation (9.27) thereby furnishes the

following transcendental equation for the eigenvalue W:

Ji(kVW_)[-vWY(v/_) - NuYo(-v)]_ = Y(kVW_)[v1WJj1d) - NuJo(v'W)].

(9.30)

The A* value calculated via (9.16) from the eigenvalue W above will be denoted as

H* in subsequent discussions.

The equations governing A(r) are identical to those for PO, whence we obtain a

solution for A identical in form to (9.29) in which a new constant, E1 , appears in

place of C1.

The constants E1 and C1 are to be determined by use of the pair of normalization

conditions (9.24a,b). Since only the product PA is needed in subsequent applica-

tions, rather than P7 and A separately, it suffices to determine only the product

E1C1 . Using (9.24a,bb) we thereby obtain for this product

(E 1 C1 )~1 =wr r2(J2(r VH) + Jj2(r ) A2 [YO2(r VW) + Y1
2 (r -'H)

- 2A(Ji(r VW)Y(r VW) + Jo(r 7i)Yo(r VW)) I ' (9.31)

wherein A = Ji(kvi7)/Y(kv/7d). The non-dimensional axial thermal velocity &*
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may be obtained from the expression

U = 27r U(r)P (r)A(r)rdr, (9.32)

where for axial concentric annular Poiseuille flow the nondimensional velocity field

reads: [6]

(2 - 2 1 - k 4 1 - k 2
U(r)= 2[1-r ±+ln(1/k)Inr 1 - k2 - ln(1/k) (9.33)

In the present case eq. (9.25), together with the specified boundary and initial con-

ditions governing the product field PB in conjunction with (9.26) - (9.27) governing

P, (r), furnishes the following differential equation and pair of boundary conditions

governing the E(r) field:

d2$ 2dP 1NdB*
+ - + -- = U - U, (9.34)

dr 2  Poo dr r dr

dB
= 0 on r = I and k. (9.35a,b)

dr

Here, b is uniquely determined only to within an arbitrary additive constant. A first

integration of (9.34) with the help of the integrating factor (PT) 2r followed by the

use of (9.19) thereby yields

-2

= 27r [r( - 2' rdr (9.36)
-' k 2J1r [1ko k*koor

Except for the required quadratures, we have now effected the calculation of HO*, U and ~*

for the concentric cylinder case. [The a* value calculated above for the Nu = 0 case

will be denoted in what follows as (a*)o.]
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9.4.2 Case (ii) Steady Transverse Flow Field in a Noncon-

centric Annulus

For the case of a steady transverse flow field ft imposed on the eccentrically-positioned

cylinders the time derivatives disappear from (9.20a,b) and (9.25).

In cylindrical bipolar coordinates [12] (,q, ) [Fig. (9-1)] the transverse velocity

field fi(77, ) is given by the superposition of the respective velocity fields arising when

each cylinder is rotated separately, whence

1
6i(n, 2) = U - [(I, 0) + lo (y, ),(.)

as in eq. (9.3). Streamline plots for this case are shown in Fig. (9-2c). A matched

asymptotic analysis of 1o [physically equivalent to the temperature field T(q, t)] for

this steady-state case, with 'isothermal' wall boundary conditions appearing in place

of (9.5) and (9.6) (and no axial flow) was performed by Ghosh et al. [10] for small

eccentricities. Since one of our aims was to demonstrate the applicability of general-

ized Taylor dispersion theory [7] over a wide range of operating conditions, we solved

the steady-state version of the system of equations (9.20a,b) - (9.25) numerically

for an extensive parametric range (details being outlined in the next section). The

PO, A and B fields thereby obtained were used to evaluate the three macrotransport

coefficients. [An attempt to carry out a 'domain perturbation' expansion in E so as

to obtain some analytical results led to the recognition that the first-order correction

to 7 is of O(E 2 )]

9.4.3 Case (iii) Time-Periodic Flow Field in a Nonconcen-

tric Annulus

Transport enhancement due to chaotic advection is expected in circumstances for

which a time-periodic flow field is imposed in the form of alternate rotation of the

cylinders, as in eq. (9.2). Due to the time-periodic modulation, the streamlines shift

at the end of each period. As such, the streamlines at two successive instants of
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time, immediately preceding and following the switchover from inner/outer cylinder

rotation, appear to cross [Figs. (9-2a) and (9-2b)]. This constitutes one of the nec-

essary conditions for a flow to produce a 'horseshoe map' [20]. It has been proposed

[19] that the use of any wave form for the modulation would qualitatively produce

the same effect, so long as the area under the angular speed vs time curve (i.e. the

angular displacement) was the same. We concern ourselves here with the simplest

configuration, namely the square-wave form. The transverse velocity field for this

case is given by eq. (9.2) with q= (r-, =). The equations governing 15, A and $

are as set forth in (9.20a,b) - (9.25). A Melnikov analysis for the case of continuous

time-periodic modulation has previously been carried out [10] for small eccentricities

and large angular speeds. The latter work was important inter alia in establishing

the existence of an optimal rotation period that maximized the heat transfer rate.

However, such methods are necessarily highly restricted with respect to the param-

eter ranges that can be investigated. A semi-numerical analysis of this protocol was

carried out by Atobe and Funakoshi [2]. These authors assumed that the area of the

chaotic region (calculated numerically) could be directly correlated with the degree

of transport enhancement. However, as shown by Bryden & Brenner [8] (as well as in

the present work), this general assumption is not universally borne out by the facts.

A numerical solution of the above equations was effected using an implicit elliptic

scheme with a finite-difference (centered-difference) mesh for the spatial coordinates

and a backward Euler scheme for the temporal domain. P was transformed into a

new variable p' via the definition

00 = PO exp(-7ir) (9.38)

in order to solve for the eigenvalue 7- of the problem from the equations governing

PO. Thereby, eq. (9.20a,b) became

0p + Pe0q VP - t2 po = 0, (9.39)
at

with a similar transformation applied to the A field in eq. (9.20a,b), namely a =
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A exp(HT). The system of equations governing p' and a were then solved with ever-

increasing accuracy until convergence of the three macrotransport coefficients was

secured, with the W value obtained from the expression

1 p (t + 2)
= ln 0 Po . (9.40)

2J p (t)

In particular, it was found unnecessary to go beyond a 50 x 60 mesh in (I, ) coor-

dinates. Large P~elet numbers, Peq, posed no apparent problems. Calculations were

performed on a SUN Sparc 5 machine.

In addition to performing calculations for the counter-rotating case, we also ob-

tained results for the comparable co-rotating case. As subsequently discussed, com-

parison between the two furnished useful insights into the limitations of qualitative

methods like Poincare maps for understanding chaotic enhancement phenomena.

9.5 Results and Discussion

9.5.1 Heat Transfer Coefficient

Energy transfer from the fluid to the environment involves two serially consecutive

transport processes, namely heat transfer through the annular fluid to the wall and

subsequently from the wall to the surroundings. As such, the global heat transfer

coefficient necessarily embodies contributions representative of both transport mech-

anisms. Thus, the value of the effective heat transfer coefficient R* increases with

Nusselt number for small Nu, for which circumstances heat transfer from the wall to

the surroundings constitutes the rate-limiting step. Eventually, an asymptotic value

is attained at large Nu, for which circumstances transport of heat to the wall through

the fluid becomes the limiting mechanism.

Figure (9-3) depicts the variation with both modulation period J and Nusselt

number Nu of the normalized global heat transfer coefficient H*/H*, where H,* rep-

resents the heat transfer coefficient calculated for the case of concentric cylinders in
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section (9.4.1). As expected, transport enhancement (i.e. H*/H,* > 1) occurs over

and above the concentric cylinder case. For a fixed Nu the degree of enhancement

shows an initial increase with increasing time period, followed by a subsequent de-

crease. The same trend was observed by Bryden & Brenner [8] as well as by Ghosh et

al. [10]. Whereas for small rotation periods the kinematical particle motion is unable

to exploit fully the chaotic transport due to time-periodic modulation of the stream-

lines, large time periods result in a state of quasi-steady transport during each of the

rotation cycles, whence there exists an optimum time-period of rotation. Different

eccentricities were observed to yield different optimal time periods. It is interesting

to note that the optimal time period was higher in the case where the cylinders were

co-rotated than counter-rotated.

Figures (9-4a) and (9-4b) respectively show the variation of the normalized global

heat transfer coefficient with inner/outer angular velocity ratio for the steady and

time-periodic cases. Since the velocity field is obtained by superposition of the in-

dividual fields [3], the ratio of angular velocities constitutes a representation of the

relative importance of the cylinder rotations. As Qi/Q0 increases, for a prescribed Nu

the normalized heat transfer coefficient is seen to increase for both the steady and

chaotic-enhancement cases. For the steady rotation case our observations agree with

those of Ghosh et al. [10]. In this case the observed behavior can be explained as

resulting from the increased width of the recirculation region between the cylinders

[Fig. (9-2c)]. This region, which has been characterized [10] as the 'well mixed' region,

is one of the main factors responsible for regular enhancement. In the time-periodic

case the observed behavior can be explained in terms of the location of the separation

point arising from the inner cylinder rotation. Rotation of the inner cylinder creates

a separation point on the outer wall, whence the fluid in proximity to that wall mixes

with that from the central core of the annulus [Fig. (9-2a)]. Consequently, transport

to the wall is enhanced.

Figures (9-5a) and (9-5b) depict the variation of the normalized heat transfer

coefficient H*/5,* with the transverse Peclet number. For reasons that are intuitively

obvious, an increase in Peq leads to an increase in the transverse transport rate, and

211



0

10

2.5

C:
a)
- 2.0

a)
0
0
U'
a)

Z1.5
- -

0

Nusselt number, Nu
(a)

6

101 102
Nusselt number, Nu

(b)

Figure 9-4: Dependence of the normalized heat transfer coefficient on the angular
velocity ratio: Peq = 5, 000, Ri/R, = 0.3, & = 0.5. (a) Steady-flow case; (b) Time-
periodic case. Note the different scales used for (a) and (b).

212

2,

-~1.9.

1 .7

a'
01.6
C-)

1.5
CZ

1.3

N 1.2

"1.1
0

Z

io 0
I I I I I I I I I I I I I I I I . . . .i i a ll

101



hence to a concomitant increase in the R* as well. It is interesting to note that

at small values of Peq, enhancement effects in the time-periodic case are minimal.

In fact, surprisingly, the normalized heat transfer coefficient is slightly larger in the

steady-flow case than in the time-periodic case for these small P~elet numbers. On

the other hand, at the larger Peclet numbers the overall heat transfer coefficient in

the time-periodic case is more than twice that realized in the comparable concentric

cylinder case, and almost 50% more than that achieved in the regular enhancement

case.
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Figure 9-5: Effect of transverse Peclet number on the normalized global heat transfer
coefficient: Rj/R, = 0.3, E = 0.5, Qj/Q, = 6. (a) Steady-flow case; (b) Time-periodic

case. Note the different scales used for (a) and (b).

Figures (9-6a) and (9-6b) illustrate the variation of the normalized global heat

transfer coefficient with eccentricity. In the steady rotation case the effective heat

transfer rate is seen to initially increase with eccentricity. This may be regarded as a

direct consequence of the increase in size of the recirculation region with increasing
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eccentricity [3]; however, the occurrence of a maximum does not appear explicable

by purely fluid-dynamical arguments. For the time-periodic rotation protocol, en-

hancement in the heat transfer rate is clearly evident. Moreover, this enhancement

attains a maximum value at an intermediate eccentricity. This seems to be a signifi-

cant observation, and may be a result of the nature of chaos itself. This is consistent

with the results of Atobe and Funakoshi [2], where the numerically calculated area

of the chaotic region achieved a maximum with eccentricity (and for some specific

parameter values, even two maxima).
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Figure 9-6: Dependence of the normalized heat transfer coefficient on the eccentricity:
Peq= 5, 000, Ri/RO = 0.3, Qj/Q, = 6. (a) Steady-flow case; (b) Time-periodic case.

Note the different scales used for (a) and (b).

9.5.2 Convective Dispersivity

Taylor dispersion arises from the interaction of two separate transverse 'mixing' mech-

anisms: (i) Convection acting on the transverse length scale of the apparatus in which
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the experiment is conducted; (ii) Diffusion acting on a molecular length scale. The

phenomenon of chaotic advection, an offshoot of Hamiltonian chaos, was pathbreak-

ing in that it shattered the myth that molecular diffusion was necessary to achieve

'mixing' in laminar flow systems.

As in eq. (9.17) the thermal Taylor dispersivity includes contributions from two

distinct sources: molecular conductivity and convective dispersivity. The magnitude

of the latter is enhanced by the following factors: (i) A larger probability of thermions

preferentially sampling those axial streamlines across which larger transverse axial

velocity gradients exist (viz. the slower-moving streamlines); (ii) A decrease in the

size of the well-mixed region.
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Figure 9-7: Effect of transverse Peclet number on the normalized Taylor convective
dispersivity: Ri/RO = 0.3, E = 0.5, Qi/Q 0 = 6. (a) Steady-flow case; (b) Time-

periodic case. Note the different scales used for (a) and (b).

Figure (9-7a) displays the variation with transverse Peclet number of the (normal-

ized) convective Taylor dispersivity contribution for the steady-flow case [see section
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(9.4.1) for the definition of (*),]. The streamline patterns for the case of steady

flow reveal the existence of a recirculation region near the center of the annulus, sur-

rounded by regions where the streamlines appear almost circular, so that transport

through these latter outer regions towards the wall is purely through conduction [10].

Net transport of heat to the environment can be imagined as being equivalent to

the consumption of the thermions at the outer wall, where the slower-moving axial

streamlines are located. At small Peq values, consumption of these thermions at the

wall leads to larger transverse thermal gradients in the conduction zones, resulting

in a larger heat flux across the axial streamlines. This may formally be regarded as

being equivalent to a lower molecular conductivity in a Fourier's law sense. As such,

convective dispersivity, which is inversely proportional to the molecular conductivity,

increases slightly. At these small Peq values, the large values of the convective dis-

persivity together with their insensitivity to Nusselt number variations indicate the

inefficacy of the transverse mixing process. At larger transverse Peclet numbers the

transverse convective transport becomes the more effective of the two mechanisms,

whence the transverse gradients in the conduction zones become of lesser significance.

In such circumstances the consumption of thermions at the wall reduces the probabil-

ity of their being found in the slower-moving axial streamlines near the outer-cylinder

wall, thereby leading to a decrease in dispersivity with increase in Nu.

Figure (9-7b) shows the comparable results for time-periodic flow. At very small

Peq values the normalized dispersivity decreases with increasing Nu, although the

trend is much less pronounced at larger Peclet numbers (where the dispersivity is

practically a constant). This behavior can be rationalized in the following manner:

At small Peq the transverse convection is ineffective, whence effects stemming from

the consumption of thermions at the wall (a result of the increasing Nu) reduces

the dispersivity. At larger Nu, transport to the wall becomes the rate-limiting step,

whence the effects of consumption becomes less significant. The latter observation is

consistent with the observed existence of asymptotes. The initial dispersivity increase

(Peq= 25 vs Peq = 10) results from the increased probability for finding thermions

in the slower-moving axial streamlines, owing to the existence of the recirculation
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region. At still larger P6eclet numbers the transverse transport rate increases, allow-

ing thermions to more rapidly sample the axial streamlines, thereby eliminating the

distinction between those sampling the faster- and those sampling the slower-moving

streamlines. This is equivalent to a 'well-mixed' condition, leading to a smaller dis-

persivity. In this case the transverse transport rate becomes the significant factor,

rationalizing the almost constant values obtained for the normalized dispersivity.

The Peq dependence of the thermal Taylor dispersivity provides further evidence

of the effect of chaotic advection on transport. The time-periodic values achieved at

large Peclet numbers are seen to be only about 10% of the comparable steady-flow

values. This illustrates the better degree of mixing achieved in the time-periodic case

as a consequence of the chaotic advection. Moreover, one can observe a transition

to a transport-limited regime (at large Nu) in the steady-flow case, even at high Peq

values, whereas no such regime is observed for the time-periodic case (almost constant

dispersivities indicating the transport effectiveness).

Figures (9-8a) and (9-8b) serve to illustrate the functional dependence of the nor-

malized axial dispersivity on the complex factors governing the transverse transport.

In the case of steady rotation a recirculation region (the 'well-mixed' region) exists

near the center of the annulus, whose size increases with relative rotation rate, Qj/Q 0 .

At small Nu the wall heat transfer rate has little effect on the dispersivity, whence the

dispersivity decreases with increasing relative rotation rates. At intermediate values

of Nu a larger relative rotation rate is seen to yield a larger dispersivity. This is

likely a result of the greater efficiency of those flows characterized by higher relative

rotation rates to replenish the consumed thermions (consumption of which has now

become more significant at these Nu values), resulting from the increased size of the

recirculation regions. At the larger Nu values none of these rotary flows is able to

replenish the consumed thermions, whence those flows characterized by better mix-

ing (i.e. higher relative rotation rates) yield lower dispersivities. Simultaneously, this

regime is characterized by very small values of the dispersivity. In the time-periodic

flow case the dispersivity decreases with increasing relative rotation rate Qj/QO due

to the more efficient sampling of all of the axial streamlines at the larger Qj values.
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Here again we note how the presence of chaos leads to an enhanced degree of mixing,

yielding dispersivities which are an order-of-magnitude less in the time-periodic case

than in the steady-flow case.
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centricity: Peq = 5, 000, Ri/Ro = 0.3, QG/Qo = 6. (a) Steady-flow case; (b) Time-

periodic case. Note the different scales used for (a) and (b).

Figures (9-9a) and (9-9b) portray the variation of the normalized convective dis-

persivity with eccentricity. In the case of steady rotation occurring at small values of

Nu, where the rate of thermion consumption at the wall is relatively low, the larger

eccentricities are seen to result in larger dispersivities. This behavior results from

the increased transverse axial velocity gradients arising at the larger eccentricities,

and is consistent with the results of Shankarsubramaniam and Gill [23] who analyzed

material Taylor dispersion in the absence of both wall mass transfer and transverse

flow. At the larger eccentricities the observed decrease in dispersivity with increasing

Nu is easily explained, as in the prior cases, as being a direct result of the increased
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consumption of thermions brought near to the wall by the recirculation region. For

the case of time-periodic flows the dispersivity is seen to initially decrease with an

increase in eccentricity (despite increased transverse axial velocity gradients), sub-

sequently displaying a relatively large dispersivity at e = 0.6. This observation is

easily explained from a kinematic viewpoint. The Poincare plots show [9] increas-

ingly chaotic behavior with increasing eccentricity in the range E = 0.1 to 0.5. Thus,

the improved mixing overcomes the increasing velocity gradients, leading to a de-

crease in dispersivity. The Poincard plots for the larger eccentricities are seen [9] to

possess extensive regular (hyperbolic) regions in the center of the annulus. This fact,

in combination with the steep transverse axial velocity gradients, is responsible for

the larger values of dispersivity observed for this case.

The preceding axial Taylor dispersivity calculations, wherein the steady- and time-

periodic-flows display widely differing behaviors, serves as additional proof of the role

of chaotic advection in enhancing the overall heat transfer rate. In particular, the

axial dispersivity values, when extrapolated to zero Nusselt number, constitute a

measure of mixing which is independent of the heat transfer kinetics at the wall. The

trends displayed in this limiting case validate our discussion of the role of chaotic

advection in mixing.

9.5.3 Counter-rotation vs Co-rotation

The results cited above apply for counter-rotation of the cylinders. Comparable co-

rotation calculations of the global heat transfer coefficient for time-periodic flows in

the same parametric ranges yielded values that were almost always slightly less (a

phenomenon overlooked by Bryden & Brenner [8] due to minor numerical discrep-

ancies). However, in contrast with our quantitative heat transfer rate comparison of

the two cases, a qualitative comparison of the comparable Poincar6 plots [9] as in the

example of Fig. (9-10) would incorrectly suggest that the co-rotation case, appear-

ing to be the more significantly chaotic of the two, should result in a larger rate of

heat transfer. The virtually identical heat transfer values obtained for the two cases

despite the vastly different appearance of respective Poincar6 plots exemplifies the
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non-existence of a strict correlation between purely visual quantifications of chaotic

intensities and global transport rates. Additional evidence is provided by the compa-

rable values of the convective dispersivity noted in Fig. (9-10), which in contrast to

what might otherwise be expected upon comparing their respective Poincar6 plots,

are very nearly equal. This disparity illustrates and underscores the point that graph-

ical representations like Poincar6 maps suffice only to provide a qualitative picture

of the kinematics of fluid particles. Qualitatively, however, such purely kinematical

transport measures may lead to erroneous conclusions when it comes to predicting

actual trends, like heat- and mass-transfer rates in dynamical phenomena, where the

relative time scales of transport via different mechanisms - namely, convection and

conduction, as embodied in the dimensionless transverse P~elet number - play a

critical role.

9.6 Conclusions

Time-periodic thermal Taylor dispersion theory [4] was used to calculate the three

thermal macrotransport coefficients, namely R*, U* and *, for the case of alternately-

rotating, nonconcentric cylinders within which an axial annular flow occurs, and with

heat transfer to the ambient environment taking place at the outer-cylinder wall.

Calculation, inter alia, of the overall rate of heat transfer from the system as em-

bodied in the coefficient R*, which was previously shown [8] to provide an excellent

global measure of the chaotically-enhanced transport process, constitutes one of the

main achievements of the present work. The functional dependence of this heat

transfer coefficient upon a wide variety of system parameters was illustrated, and the

qualitative aspects of this dependence explained in terms of the physical processes

occurring. Parameters studied included Nusselt number, transverse Peclet number,

eccentricity, modulation period, and co- vs counter-rotation protocols. Concomi-

tant axial dispersion calculations furnished independent quantitative evidence of the

existence of chaotically-enhanced heat transfer rates, consistent with the previous ob-

servations of related physical situations by several authors. In the interests of brevity,

222



the calculated values of the axial thermal velocities U* were not displayed owing to

their qualitatively similar behavior to that of the axial dispersivity. Finally, we have

pointed out that qualitative kinematical measures of mixing, such as Poincare maps,

may suggest incorrect parametric trends as regards the global effectiveness of chaotic

mixing in dynamical phenomena. Our Taylor dispersion methods for globally quan-

tifying chaotic thermal transport rates permits the exploration of parameter ranges

lying significantly beyond those previously investigated. It is hoped that our con-

tribution will accelerate translation of the growing body of theoretical work on the

novel subject of chaotic advection towards the solution of practical industrial design

problems.
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Chapter 10

Long-time Non-preaveraged

Diffusivity and Sedimentation

Velocity of Clusters: Applications

to Micellar Solutions

Reference: Venkat Ganesan and Howard Brenner, "Long-time Non-preaveraged Dif-

fusivity and Sedimentation Velocity of Clusters: Applications to Micellar Solutions,"

Phys. Rev. E, 59, 212 (1999).

The present chapter utilizes macrotransport theory to study the diffusion and

sedimentation of size-fluctuating Brownian 'clusters' through otherwise quiescent,

unbounded fluid continua. These Brownian solutions are assumed to be sufficiently

dilute with regard to cluster concentration such that individual clusters do not inter-

act hydrodynamically or physicochemically with one another. Clusters are envisioned

as being composed of aggregates of solute molecules, i. e. 'monomers' (cf. [18] for a

general discussion of systems comprising examples of this category). Each cluster is

assumed to undergo a reversible association-dissociation (A - D) process, leading to a

continuous temporal variation in the number of monomer molecules instantaneously

constituting the aggregate. (In the following, the terms 'size' and 'aggregation num-
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ber' are used interchangeably except where a need arises to distinguish between them.)

A situation of dynamical equilibrium as regards the cluster-size distribution is ulti-

mately expected to arise locally at each point of the fluid as a consequence of the

inherently reversible nature of these A - D processes coupled with the relative rapid-

ity of their kinetics compared with physical-space cluster transport rates. Because of

this, it suffices to focus attention on the transport of a single representative cluster,

hereafter termed a 'tracer.' The focus of our analysis is to quantify during such a

scenario the transport of such a tracer cluster through the fluid continuum. The clus-

ter is assumed to undergo both physical-space diffusion (due to thermal fluctuations)

and sedimentation (due to external forces, if any), simultaneously accompanied by a

continuous variation in its size due to the A - D processes. Of course, sedimentation

will be absent in the case of force-free solute molecules, in which circumstances only

molecular diffusion of the cluster occurs.

The novel feature of this problem, which has not previously been addressed in a

systematic and rigorous manner, is the effect of the short-time cluster-size variation

(due to the A - D processes) on the long-time physical-space transport processes.

This temporal variation in cluster size manifests itself via an instantaneous size-

specific translational diffusion coefficient and sedimentation velocity, each of which

varies continuously during the movement of the cluster through the solution owing to

changes in its size arising from the A - D processes. This temporal variation in size

has a nontrivial effect on the physical-space transport properties of such dispersions.

Most prior studies of cluster transport processes have been limited to evaluating the

cluster mobility for the pre-averaged case, where the cluster size is assumed to remain

fixed at its equilibrium mean value during its entire motion through the solvent (see,

for example, [22]). In contrast, we treat here the non-preaveraged case, where the

cluster is allowed to undergo relatively rapid fluctuations in its size due to the A - D

processes as it wends its way through the solution.

Practical motivations for studying cluster transport processes are manifold. As-

sociation colloids are ubiquitous in nature, micellar dispersions and microemulsions

[15, 20] representing common examples. Equilibrium aspects of these solutions have
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been widely studied, including elucidating the many size and shape distributions

thermodynamically possible in such systems. In contrast, the transport or nonequi-

librium properties of these entities have received only sparse attention. In this context

it is pertinent to note the emergence of recent interest in quantifying the rheology of

clustering systems, exemplifying the more general class of so-called soft glassy sys-

tems [17, 24]. The same features that lead to intriguing thermodynamics [15] (namely,

equilibrium size and shape distribution features) make the analysis of transport prop-

erties equally interesting, albeit more complex. In this initial foray into the field we

do not address larger issues relating to the rheology of these systems when they un-

dergo shear. Rather, we study only those more limited features accompanying the

transport of clusters through otherwise quiescent systems in which shear is absent.

Owing to the polydispersivity of cluster sizes, transport processes occurring in

these systems exhibit interesting attributes not present in monodisperse systems.

Explicitly, we will quantify both the diffusivity and sedimentation (i.e. mobility) co-

efficient in dilute clustering systems. The diffusion coefficient is shown to involve an

additional contribution (termed the 'convective' or 'Taylor' dispersivity) above and

beyond the ordinary molecular contribution, which arises from the distribution of

settling velocities among the differently-sized clusters. Furthermore, our analysis in-

dicates that the size-fluctuation processes accompanying the microscale physical-space

cluster transport processes may have a significant effect upon the macroscale physical-

space transport coefficients. On the practical side we note that self-diffusion coeffi-

cients are widely used to characterize such features as size, shape, and cluster-cluster

interactions in these systems [7, 8, 25]. As such, our analysis points up a scheme

whereby key phenomena arising in these polydisperse systems can be accounted for

when interpreting experimental self-diffusion and electrophoretic measurements in

such clustering systems.

A modest prior literature examines several elements closely related to our study.

Notably, Cussler [9] considered cluster diffusion in solutions near the consolute point,

where very large sizes of the diffusing units ('clusters') - certainly bigger than the

underlying monomeric molecular units - are to be expected. Frankel et al. [14]
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investigated a system similar in spirit to ours, relating to diffusion and sedimentation

coefficients in solutions of coiled linear polymer molecules, and arising from Brownian

size fluctuations stemming from the inherently flexible nature of such entities. Our

goal here is the development of a generic conceptual framework for quantifying the

transport of dispersions of association colloids, with the accompanying association-

dissociation process viewed as diffusional processes in 'size' - or 'aggregation number'-

space (cf. also Ziabicki [29]).

The scheme ultimately developed will be illustrated by applications to two distinct,

but interrelated examples of micellar cluster geometries. The first involves a micellar

solution composed of spherical micelles, for which the size distribution encountered

in practice is typically confined to a relatively narrow range centered about the mean

aggregation number [20]. In the second case we consider similar phenomena for

cylindrical micelles, frequently termed 'living polymers.' The latter exhibit a wide

range of cluster sizes, ranging from monomeric to polymeric, the latter involving very

large aggregation numbers. Pioneering studies of these systems appear in the works

of Cates [5, 6], Bouchaud [3, 23], and others, who investigated the dynamics of these

systems in the entangled-regime domain. Our analysis will focus on the diffusive and

sedimentary aspects of these systems, albeit in the dilute regime.

In the dilute cluster solution limit it suffices to focus attention on the transport of

a single cluster. In the subsequent analysis, hydrodynamic as well as physicochemical

intercluster interactions are neglected, permitting attention to be focused exclusively

on the effect of the internal A - D processes. Furthermore, owing to the dilute nature

of the dispersion, only pairwise A - D reactions need to be considered. These as-

sumptions, which hold in the dilute solution limit, ensure that the effective transport

properties of the solution can be discerned by employing a tracer cluster to sample the

configurational space (size- plus physical-space coordinates) of the clusters present in

the solution. An exact microscale description of the transport process would require

calculating the multivariate probability density function P(R, n, t) of the tracer clus-

ter, defined in the four-dimensional configurational space described at time t by the

three scalar physical coordinates parameterizing the instantaneous position vector R
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(of say, the center of mass) of the cluster in physical space, and the cluster aggre-

gation number n. In most cases, however, physical interest does not center on the

detailed microscale description provided by P(R, n, t) but rather on a coarse-grained

macroscale probability density P(R, t) characterizing the totality of the molecular

solute species being transported, irrespective of the size of the cluster in which the

monomer molecule characterizing the chemical species being transported finds itself

at any given instant of time. The less detailed density distribution P(R, t) quan-

tifies the solute species transport process through three-dimensional physical space

(i.e. through the solution), accounting for variations occurring in cluster size in an

appropriately averaged manner which eschews pre-averaging.

This coarse-grained density is expected to evolve asymptotically according to the

macroscale i.e. physical-space convective-diffusive conservation equation [4]

U VP=b :VVP, (10.1)
at

wherein the time- and position-independent sedimentation vector velocity U and

dispersion dyadic b respectively quantify the coarse-grained convective and diffusive

solute transport mechanisms in the fluid continuum. The above equation is analogous

to the macrotransport equation (8.16), wherein the global space Q is represented by

the physical space R. Implicitly embedded within these coefficients are the overall

effects of the comparable microscale transport processes arising from the continuous

variations in cluster size. For a monodisperse system (of aggregation number i) these

coefficients are respectively identical to the Stokes settling velocity U = U(i) and

molecular diffusivity D = D(A) appropriate to clusters of size h. Our objective is,

starting from the specified microscale transport data, to calculate the coefficients

U and D governing the macroscale transport processes for circumstances where a

distribution of cluster sizes exists owing to the A - D processes.
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10.1 Formulation

As indicated in the Introduction, attention is directed towards the transport of a

single cluster undergoing fluctuations in size due to the reversible A - D processes.

Conformational changes in shape, though potentially interesting, are not considered in

this work. A variety of schemes can be imagined for the A - D processes accompanying

the physical-space transport. However, many such processes lead to reaction schemes

that can be represented physically as size-space diffusional processes, with an internal

force-derived potential energy function restricting the cluster size range. Our analysis

will, in general, focus only upon those reaction schemes for which such a diffusion

equation representation is consistent with the underlying physics [29].

The starting point for our analysis is the four-dimensional microscale conservation

equation governing both size-specific spatial (R) and position-specific aggregational

(n) transport of the tracer cluster through the unbounded fluid:

OP
+ V - J = nj - jn-1, (10.2)

at

where P - P(R, n, tIR', no) - P(R - R', n, tjno) represents the complete microscale

conditional probability density (Green's function) signifying the probability that at

a time t the tracer cluster is of aggregation number n and is located at position R,

given that at time t 0 the cluster was centered at position R' and was of size

no.1 The operator V (O/OR)n,t denotes the size-specific physical-space gradient

operator. The physical- and size-space fluxes of the probability density P, are denoted

respectively by J and j. In situations wherein a large range of aggregation numbers

are possible (such as will be assumed of all the examples considered in this paper),

it is permissible to replace the above discrete 'diffusion equation' (10.2) by a version

involving a continuously varying index n:

OP OJ
P+ V -J + =0, (10.3)

at On

'Because the physical space is assumed infinite and homogeneous throughout, only the difference

R - R' appears, rather than R and R' separately.
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wherein j = j(R, n, t In,) now represents the size-space flux, a continuous function of

n, and O/On - (O/On)R,t denotes the position-specific size-space gradient operator..

The fluxes J and j, can be expected constitutively [4] to possess conventional

convective and diffusive contributions as follows:

J = M(n)F(n)P - D(n)VP, (10.4)

OP
j = m(n)f(n)P - d(n) , (10.5)

On

wherein M(n) denotes the physical-space cluster mobility coefficient, and F(n) the

external vector force exerted on the cluster as a whole. Their respective counterparts

in size space are denoted by m(n) and f(n). Diffusivities in physical and size space,

respectively denoted by D(n) and d(n), are related to the respective hydrodynamic

mobility coefficients through configuration-specific Stokes-Einstein relations [11]:

D(n) = kBT M(n); d(n) = kBT m(n), (10.6)

with kB the Boltzmann constant. For the reversible reaction schemes subsequently

considered, the scalar force f(n) can always be written as the negative size-space

gradient of a potential energy function V(n) [see sections 10.2 and 10.4]. Use of this

information together with eq. (10.6) permits (10.5) to be rewritten as

j = -d(n) exp [-V(n)/kBT] Pexp [V(n)/kBT)] (10.7)

The above microscale data are to be supplemented by respective physical- and

size-space boundary conditions. The former is embodied in the generic requirement

that all the algebraic moments of the distribution function P converge, namely [13]

[also cf. eq. (8.9)]

IR - R'ImP -+ 0 (m = 0, 1, 2,.. .) as IR - R'l -+ oo, (10.8)
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and the latter as

j. =0 for n=1,oo. (10.9)

In addition, we have for the initial condition that

J6(R - R')S(n - n,) (t = 0), (10.10)

0 (t < 0),

with 6 the Dirac delta function, and n, the initial size of the cluster at time t = 0.

Satisfaction of (10.8) assures the convergence of the various momental integrals arising

in the general theory [4]. It is also readily verified from the above system of equations

that the solution P satisfies the normalization condition

// P(R - R', n, tino) dn d3R = 1 (t > 0) V(n 0, R').

(10.11)

In the above, d3R denotes a volume element in three-dimensional physical space and

dn the comparable-size space incremental element. Size space is assumed to extend

from the basic monomer unit (n = 1) to clusters of size n = oc. Note that we

have used the Euler-Maclaurin sum formula to replace the sum over the discrete

index n by a comparable integration over the continuous index n. Equation (10.11)

shows that the total probability of finding the tracer somewhere in physical space,

R") : {-oo < xi < oo;i = 1,2,3}, and contained within a cluster of some size

n: {1 < n < oo} is conserved at each instant.

As stated in the Introduction, physical interest generally centers not on the four-

dimensional microscale distribution P, but rather only on the coarse-scale macro-

scopic descriptor P of the transport processes occurring in three-dimensional physical

space, as embodied in the macroscale conditional density:

P(R - R', tno ) de. 0/P(R - R', n, tln,) dn. (10.12)
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It is an immediate consequence of (10.11) and (10.12) that this coarse-grained prob-

ability is conserved in physical space:

JR P(R - R', tno)d3R = 1 (t > 0) V(no, R'). (10.13)

Asymptotically, for sufficiently long times (see below), P is independent of the initial

cluster size no [4], and hence is functionally of the form P(R - R', t).

The initial- and boundary-value problem posed by the system of microscale equa-

tions (10.3) - (10.11) possesses the same physico-mathematical structure as that of

the generic problem of macrotransport theory outlined in the previous chapters. This

equivalence is established when one identifies the size (n) and physical-space po-

sition (R) with the respective 'local' (q) and 'global' (Q) coordinates of the lat-

ter theory. In this case, macrotransport theory shows that, for long times, namely

d(n)jjt/ 2 >> 1 (with jjd(n)jj denoting some norm of the size-space diffusivity, and

h denoting the mean aggregation number), the asymptotic solution P of eq. (10.3)

satisfying (10.4) - (10.11) matches momentwise the comparable dominant long-time

asymptotic solution of P, whose transport through physical space is governed by

eq. (10.1) together with the respective boundary and initial conditions

JR-R' m P-+0 (m=0,1,2,...) as IR - R'l -+ oo

(10.14)

and

_6(R - R') (t = 0),
P = (10.15)

0 (t < 0).

Furthermore, by virtue of having matched the respective moments of P and P, the

theory also provides an explicit scheme for determining the macrotransport coeffi-

cients U and D via appropriate quadratures of the specified microscale phenomeno-

logical data [data explicitly embodied in the microscale transport coefficients, and
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implicitly appearing in eqs. (10.3) - (10.5)] over the cluster-size domain.

Implementation of the theory [4] requires, inter alia, knowledge of the solution of

a steady-state scalar field PO (n), the latter corresponding to the steady, long-time

limit of the unsteady-state conditional probability density,

Po (n, t In,) V ROP(R - R'/, n, t~no) d3R,7

that the cluster possesses a size n at time t irrespective of its physical-space location R.

The equations and the boundary conditions satisfied by the field PO (n) was outlined

in a chapter 8 [refer eqs. (8.21) - (8.24)]. However, to maintain continuity within the

text, in what follows we list the comparable equations and the boundary conditions

satisfied by PO (n) for the specific case wherein the 'size' coordinate constitutes the

local space of transport. Thereby, the field PO (n) satisfies the steady-state differential

equation

djO =0, (10.16)
dn

with

0 (n) -dexp(-V/kBT) [P0 exp(V/kBT)], (10.17)

in which the latter flux density satisfies the boundary conditions

j0 = 0 at n =1, oo (10.18)

together with the normalization condition

j P,00 dn = 1. (10.19)
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The solution of eqs. (10.16) to (10.19) is

PO (n) = exp [-V(n)/kBT] dn exp [-V(n)/kBT].

(10.20)

The macrotransport coefficients U and D appearing in eq. (10.1) are expressed in

terms of respective quadratures of PO (n) [cf. eq. (8.16)]. In this manner, the average

settling velocity U of the cluster is given by

V = U, (10.21)

where

defU 0(
U =-(U(n)) =]I driPO'(n) U (n),

U(n) = M(n)F(n)

is the settling velocity of an aggregate of size n, and F = F/F(n) represents a unit

vector in the spatial direction parallel to the applied force F, in which F(n) = IF(n) .

The dispersivity dyadic is represented by the sum [4]

D = DMI + DCP , (10.24)

wherein

DM - (DM ()) I j dn PO' (n) D(n) IkBT dn PO(n)M(n)

(10.25)
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is the average physical-space molecular diffusivity of the cluster, and

DC _j dnPO (n)B(n)[U(n) - U] (10.26)

represents the Taylor or convective contribution to the dispersivity. The latter con-

tribution stems from the continuous variation in settling velocity arising from the

size-space transport processes (i.e. due to continuous changes in the size of the clus-

ter as it traverses the fluid).

Appearing in the latter integral is the other scalar field, B(n) which represents

the solution of the differential equation [4]

dB
JO (n) d [Po d(n) =Bdn dn

Po (n)[U(n) - U], (10.27)

subject to the boundary conditions:

dB
-= 0 at
dn

n = 1,00. (10.28)

The solution of eqs. (10.27) - (10.28) can easily be obtained from the knowledge of

the field PO' given by (10.20), yielding

dn' exp [V(n')/kBT] n
d(n/) I

dii[U() - U] exp[-V(h)/kBT],

(10.29)

where bo is an integration constant whose numerical value is irrelevant in establishing

DC via (10.26). Substitution of (10.29) into (10.26) yields the following expression

for D0 :

dnexp[-V(n)/kBT] j0
exp[V(n")/kBT]

d(n")

{ n /
dn'[U(n') - U] exp[-V(n') /kBT]} (10.30)

Explicit calculation of U, DM and D0 from the preceding formulas requires speci-
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fying constitutive equations for both the size- and physical-space mobility coefficients,

m(n) and M(n), respectively, as well as the size-space potential V(n). As already

indicated, a variety of schemes can be imagined for constitutively quantifying the A -

D size-space transport processes. However, the above formulation is sufficiently gen-

eral to provide robust generic prescriptions for determining the three macrotransport

coefficients pending explicit specification of the requisite constitutive relationships.

An outline of the rest of the paper is as follows: To place the preceding concepts on

a firmer basis while also illustrating the significance of size variation effects, two dis-

tinct A - D schemes will be considered. Sections 10.2 and 10.4 each outline respective

schemes whereby the the master equation for the size-space transport processes can

be recast into a diffusion equation format, thereby identifying both d(n) and V(n).

In sections 10.3 and 10.5 we revert to the generic quadrature formula developed in

section 10.1, using appropriate models for the physical-space transport coefficients

M(n)[and hence D(n)] to obtain the macrotransport coefficients U and D. Section

10.6 concludes with an outlook for future research directions.

10.2 Size-space Diffusion Equation Describing Step-

wise Association

10.2.1 Basic Reaction

Step-wise association schemes serve as models of the association - dissociation (A -

D) processes governing the growth of spherical micelles [1]. Herein, the basic unit is

taken to be a monomer, denoted by A1 . The A - D scheme can then be portrayed as

a reversible reaction of the following general form

k+
An_ 1 A1  An, (10.31)

wherein An denotes a cluster containing n monomers. The micellar solution is as-

sumed to be at equilibrium (size-wise) at the start of the observation process. We
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then select a monomer molecule bound to a cluster as our tracer and subsequently

follow its evolution as it moves through the solvent. This monomer tracer can undergo

the following transport processes: (i) diffusion and sedimentation bound to a cluster

of the same size; (ii) transport bound to a cluster of a different size resulting from

A - D processes of monomers to and from the original cluster; (iii) dissociation of

the tracer monomer from the cluster to recombine with another cluster. During each

of these processes the tracer undergoes physical-space transport representative of a

cluster whose dimensions are identical to that of the cluster to which the monomer is

instantaneously attached. As such, the monomer tracer undergoing these transport

processes may be equivalently represented by a tracer cluster undergoing continuous

changes in size, simultaneous with the cluster undergoing movement through the fluid

continuum. In the following, a tracer cluster will be taken to denote a cluster with

n > 2. As elucidated later, transport by mechanism (iii), which occurs when the

tracer is present as a monomer, is accounted for in an indirect manner.

The procedure employed to derive the size-space diffusion equation is outlined

below. This scheme is identical to that employed in the next section to derive the

comparable equation for the case of a worm-like micelle. In either case we consider

a solution initially at equilibrium with respect to transport in size space (i.e. one

wherein the equilibrium size distribution prevails). Into this solution we imagine a

tracer cluster to be added, which then undergoes physical-space transport as well as

the reversible A - D processes described by eq. (10.31). As is rigorously proved within

the framework of generalized Taylor dispersion theory, the initial size of such a clus-

ter proves irrelevant in the calculation of macrotransport coefficients. In addition to

the original assumption of an equilibrium solution (requiring that the concentration

of 'non-tracer' clusters satisfy the law of mass action 2) we subsequently we employ a

master equation approach to quantify the rate of change of the cluster probability dis-

2Note that the assumption of an initially equilibrium solution is not equivalent to the (incorrect)

requirement that the size-space probability distribution of the tracer cluster possesses its equilibrium
value. The introduction of a tracer cluster into a bath of clusters which are at equilibrium disturbs

the bath only mildly; nevertheless it has a non-trivial effect on the unsteady-state development of

the cluster size-space probability distribution.

240



tribution, thereby obtaining an appropriate continuous size-space transport equation

governing movement of the tracer cluster.

10.2.2 Master Equation for the Tracer

Based on the above reaction scheme for representing the A - D processes one can

write a master equation for P(n) (whose explicit time dependence is notationally

suppressed), namely the probability that the tracer is present in a cluster containing

n monomers, including itself, irrespective of its position in the physical space. Such

an equation is derived by considering the possible A-D reactions undergone by the

tracer cluster containing n monomers (denoted as A*):

A*n + , A A (10.32)

k+
A* + A1 AA (10.33)

Accordingly, the master equation governing the probability P(n) satisfies the equation

dP(n) = k_ P(n - 1)X1 - k-_ 1 P(n) + k- P(n + 1) - k+ P(n)X1 ,
dt

(10.34)

in which X 1 denotes the concentration of the free monomeric species. As a simplifi-

cation we assume that k- is independent of n. This will subsequently be shown to

be equivalent to the assumption that d(n) in (10.5) is independent of n. While the

prescription in section 2 is general enough to treat other cases, we nevertheless invoke

this assumption so as to focus exclusively upon the effect of the A - D processes on

the physical-space macrotransport coefficients. Based on the above assumption we
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obtain that

dP(n) - k- [k1 P(n - 1)X1 - P(n) + P(n + 1) - 1P(n)X1
dt Ik- k- 1-5(10.35)

Equilibrium considerations for reactions (10.32) and (10.33) on the other hand

require that

k- kBT (B
L k (10.36)

in which p* denotes the standard-state chemical potential of the cluster of size n. The

latter is equal to the free energy change occurring when a cluster of size n is introduced

into the pure solvent; po represents the comparable standard-state chemical potential

of the monomer [19]. For the dilute solutions assumed, the chemical potential P1 of

the monomer can be expected to obey the ideal solution relation

p, = pi+ kBT In X1. (10.37)

Upon using eq. (10.37) and writing go = npy - (n - 1)[py we obtain

k-_1X f [p(n) - p(n - 1)] k+X _ [p(n + 1) - p(n)]

k- kBT eXp - kB )}
(10.38)

In the above, P(n) - /* - nim. Insertion of the above identification into eq. (10.35)

yields

d = k- P(n - 1) exp [h(n) - (n -11 -P(n) + P(n + 1)
dt kBT I

P (n exp [p(n + 1) - /p(n)](1.9-P(t)exp ~ kBT ' (10.39)

van Kampen's [26] expansion method may be utilized in the above discrete master

equation to derive the aggregation-space diffusion equation corresponding to the limit
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of a continuous variation of sizes. This continuum limit is obtained by introducing a

parameter Q denoting the density of the discrete variable n, followed by an expansion

in 1/Q. Upon setting x = n/Q, P(xQ) = p(x) and p(xQ)/kBT 'v(x), eq. (10.39)

becomes

dp(x) - k- p(x - ) exp{-[v(x) -v(x - 1/Q)]} -p(x) + p(x +

- p(x) exp{-[v(x + 1/Q) - v(x)]I}. (10.40)

The right-hand side of the above equation can be expanded in a Taylor series around

x and the resultant expression simplified. For the sake of brevity the details of such

an exercise are omitted here, ultimate result being

Op(x) _ k- 9 Op OV 1
a QOIO+ P(x) + +O( Q4). (10.41)

To terms of leading order the above equation resembles a diffusion equation in the

presence of a field of force, which can be recast in terms of our original variables as

=P(n) - k + P(n) .n)kBT] (10.42)
Ot On On On

The latter is equivalent to the diffusion equation

OP(n) j = 0, (10.43)
Ot On

[cf. eqs. (10.3) and (10.7)], wherein the following identifications hold [in (10.5)]:

m(n) = k-; V(n) = p(n); d(n) = k-. (10.44)

The relationship between eqs. (10.43) and (10.3) is such that the former may be

regarded as a transport equation in size-space for circumstances where the 'source-

term' V -J = 0, such as would be the case when the probability density P appearing

in eqs. (10.3) - (10.7) was independent of R.
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10.2.3 Model for [to

This section deals with the identification of the potential V(n) _ p(n). Experimental

observations [19] in spherical micellar solutions indicate the existence of an equilib-

rium size distribution characterized by a slight degree of polydispersivity centered

around a mean aggregation number. Based on these observations we propose the

following simple quadratic model for the potential:

V(n) (-- f )2
kBT # + , (10.45)

where ii represents the mean aggregation number and a quantifies the degree of poly-

dispersivity. The numerical value of constant V0 - V(i)/kBT proves to be irrelevant

under subsequent normalization. Furthermore, in the ensuing analysis k- will be set

to unity without any loss of generality. This completes the size-space identifications

prerequisite to performing explicit calculations of the macrotransport coefficients.

10.2.4 Time Scales

Our coarse-grained quantification of the overall transport process can be justified only

in circumstances for which the time scales T characterizing the A - D processes are

much less than those characterizing the physical-space transport processes, thereby

enabling us to assume an instantaneous size-space equilibrium distribution despite

a comparable lack of equilibrium in physical space. Typical values describing the

kinetics of the aggregation process involve time scales of micro- to milli-seconds [18, 1].

On the other hand, transport in physical space typically involves a diffusion coefficient

of O(10 5 cm 2/s) [8]. For a dilute solution (wherein the mean interparticle separation

is quite large) one can easily corroborate the assertion that T(physical-space diffusion)

> T(kinetics).
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10.2.5 Transport by Mechanism (iii)

In the above analysis the cluster has been consistently assumed to be of a size such

that n > 2, with the possibility of transport as a monomer ignored. The reason for

such an approach resides in the fact that a monomer does not satisfy the general

form of the master equation (10.34). Under the long-time limit considered in section

3, the tracer can be expected to possess a probability X 1 /X, - p of evolving as a

monomer, where X, is the total solute concentration in the solution. Thereby, the

normalization condition (10.19) needs to be modified to the form

dn PO = I - p. (10.46)

However, we ignore the above constraint with the understanding that the macrotrans-

port coefficients U, D, etc., as calculated in section 3, need to be corrected for the

presence of monomer transport by appropriate renormalization, e.g.,

( (actual) p M(monomer)
Mi(Section 4) = , etc. (10.47)

10.3 Macrotransport Coefficients for Spherical Mi-

cellar Solutions

Identification of the size-space mobility coefficient m(n) and the potential energy

driving force V(n) for the spherical micelle case was effected in section 10.2. The

latter identified the potential in terms of the mean aggregation number A and spread o

in the chemical potential distribution. Calculation of the macrotransport coefficients

requires specification of the physical-space mobility coefficient M(n) and force F(n).

For the present spherical micellar case the physical-space mobility coefficient can be

obtained from Stokes law by modeling the cluster as an impermeable sphere of radius

r. The corresponding mobility then scales inversely with the radius of the sphere.
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The radius of the spherical micelle can itself be related to the aggregation number as

r(n) cc n 1/3 (10.48)

whence the mobility obeys the relationship

M(n) n-1/ 3  (10.49)
Mwi) ii-1/3

Furthermore, using the fact that the force F(n) on a cluster scales with n, we have

that

U(n) _ n2/3. (10.50)
U(h) ii2/3

This serves to identify the physical-space coefficients prerequisite to calculating the

macrotransport coefficients U, D via eqs. (10.21) - (10.25) and (10.30). The remaining

size-space coefficients are identified in section 10.2 [cf. eqs. (10.44), (10.45)].

Use of the preceding identifications in eq. (10.20) yields

PO (n) = dn exp[ (n-f02 exp 20(n .f)2]

(10.51)

The fact that the lower limit of integration in the normalizing weight function is

cut off at n = 1 rather than n = 0 results in analytic expressions that are quite

cumbersome. However, the computed values do not depend crucially on the lower

limit used in evaluating the above integrals so long as the mean aggregation number

is sufficiently large and the distributional spread small compared with the mean ag-

gregation number. This represents the situation typically encountered for spherical

micellar solutions [20]. In such circumstances it is possible to replace the lower in-

tegration limit by n = 0 without significant error. The resulting expressions for the

macrotransport coefficients obtained from eqs. (10.21) - (10.25) and (10.30) can then
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be generically expressed in terms of a scaling function as

= "f (&), (10.52)

wherein V' represents a generic macrotransport coefficient and f denotes a scaling

function that exhibits the following behavior:

1 (X - 0),

XCI (X > 1),

in which the exponents a and v depend' upon the specific transport coefficient being

considered. Also appearing in (10.52) is the weighted distributional spread:

~def. J'
S- /2 (10.53)

When the lower limit in eq. (10.51) cannot be replaced by zero, such as occurs when

the spread satisfies the inequality 6 > 1, the above scaling arguments do not hold

and the resulting transport coefficients depend nontrivially on the mean aggregation

number A. Despite the fact that some of the assumptions underlying the analysis do

not remain rigorously valid in such circumstances [cf. the discussion preceding eq.

(10.45)] we have nevertheless also studied such cases.

The analytic quadratures obtained by substituting eqs. (10.49) - (10.51) into

(10.21) - (10.25) for the n = 0 case can be expressed in terms of parabolic cylin-

der functions, whose asymptotic expansions are well documented [16]. In the fol-

lowing discussion, however, owing to their algebraic complexity we do not present

explicit analytic expressions for the resulting macrotransport coefficients, as such for-

mulae are not very illuminating in and of themselves. Instead, we indicate qualitative

features (obtained numerically) describing the functional dependence of the macro-

transport coefficients upon the spread in cluster sizes. All of the resulting features are

3The exponent v can be obtained from the knowledge of the variation of # with A for a monodis-

perse solution.
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graphically indicated in terms of the scaling variable &. Even in those cases wherein

replacement of the lower integration limit by zero does not strictly hold, we found

that the qualitative features displayed in the subsequent plots are not significantly al-

tered. Accordingly, we have restricted ourselves in what follows primarily to studying

the effect of the scaled variable & upon the three macrotransport coefficients.

Mean Velocity of Settling: Figure (10-1) depicts the effect of the size-distribution

spread upon the ratio of the mean cluster settling velocity U to that of the settling

velocity U(ii) = M(ii)F(ii) at the mean aggregation number. Initially, for small

departures from monodispersivity, this ratio decreases below unity, followed by a

steep rise thereafter. The physical explanation of this behavior is straightforward:

As already noted, the settling velocity scales as n2/3 . For small values of the spread

&, the smaller values of n are sampled more frequently than are the larger values.4

This leads to a reduction in the mean settling velocity below that which would have

occurred had the tracer size simply coincided with the mean aggregation number.

However, at the larger values of & the lower limit is cutoff at n = 1, whereas no

such constraint exists for the upper limit. Thus, when the chemical potentials are

such that a large spread in the distribution occurs, the mean settling velocity will

generally far exceed the settling velocity occurring at the mean aggregation number.

Furthermore, from the computed values it can be discerned that the scaling function

in the above exhibits exponents v = 1/3 and a ~ 2/3.

Mean Diffusivity: Polydispersivity effects on the normalized mean molecular diffu-

sivity, DM/DM(i) are portrayed in Fig. (10-2). Since the microscale diffusivity D(n)

scales as n-1/ 3 the observed variation is consistent with the expected initial rise deriv-

ing from the preferential sampling of the smaller aggregation numbers, followed by a

manifestation of the effect of the cut off at the lower aggregation number limit. Scaling

exponents for this case were determined from the plots to be v = -1/3 and a = -0.4.

4Denote n/f = x. Then the average of weights of two sizes n - i! and n + i on either side of the

mean aggregation number is oc }[(I - X)2/3 + (1 + X)23C (1 X2 ) < 1.
5Since n2 / 3 -* 0 as n -+ 0, for large & the expression for the mean velocity can be written

approximately in this limit as fo7 dnn 2/ 3 exp(- 2 /2& 2 )/ fo7 dnexp(-n 2 /2& 2 ) _ &2/3 by simple

scaling arguments.
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Figure 10-2: Effect of the polydispersivity & on the normalized mean molecular dif-

fusivity DM/D(i) for spherical micellar solutions.

Convective Dispersivity: Figure (10-3) depicts the effect of varying the size dis-

tribution on the convective dispersivity, indicating a monotonic increase with in-

creasing departure from monodispersivity. No counterpart of this Taylor dispersion

phenomenon arises during either the diffusion or sedimentation of monodisperse clus-

ters. The qualitative trends depicted in Fig. (10-3) are completely consistent with

the fluctuational origins of D0 .

Significance of results: The above plots display the respective variations in the

three macrotransport coefficients caused by the size-induced spread in chemical po-

tential. Each manifests polydispersivity effects resulting from the reversible A - D

processes, wherein the cluster-size growth mechanism occurs by stepwise association

processes. In practical situations involving spherical micellar solutions the above ef-

fects are unlikely to prove very significant owing to the relatively low polydispersivity
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indices typically encountered in such systems. Nevertheless, our analysis provides rig-

orous estimates of the magnitudes of such effects. A perhaps unexpected feature of

this example is the existence of a convective or Taylor contribution to the diffusional

process, a phenomenon which has no counterpart in monodisperse micellar solutions.

It might appear that the above features with respect to both the mean molecular

diffusivity and mean settling velocity could be subsumed under the choice of an

appropriately defined mean aggregation number. For instance, one might propose to

define a mean aggregation number, n, say, based upon the observed settling velocity:

U i2/3
(10.54)

U(ii) ii2/3'

This choice would, however, imply that

DM j-1/ 3

D-f) $(10.55)
D(ft) ii-1/3'

an apparent violation of the Stokes-Einstein equation owing to the fact that

U = (M(n)F(n)) $ (M(n))(F (n)). (10.56)

If, alternatively, one chose to define a mean mobility coefficient such that

defn)) e. U (10.57)
(M( (F(n))'

then

DM kBT(M(n)) # kBT(M(n)). (10.58)

The latter serves to quantify the apparent violation of the Stokes-Einstein relation-

ship. Figure (10-4) displays the ratio (M(n))/(M(n)) obtained for different &.

Illustrated in this section were several effects arising from the spread in cluster

sizes about a mean aggregation number. Specifically, the spherical micellar solution

case was motivated by the availability of the constitutive equations for the microscale
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size- and physical-space transport coefficients. The next section quantifies similar

behavior for another important case, wherein the cluster size distribution exhibits

novel features not present in the spherical micellar case.

10.4 Size-space Diffusion Equation for a Worm-

like Micelle (Living Polymer)

Worm-like micelles provide an interesting class of micellar entities, distinct from the

spherical micelles considered in the previous section. Studies of these systems were

pioneered by Cates [5, 6]. Unlike spherical micellar solutions, which display an equi-

librium size-distribution peaked around a mean aggregation number A, worm-like

micelles manifest a range of sizes extending over a significant interval. The latter sce-

nario provides a natural background to illustrate extremal size-distribution effects.

Explicitly, this section is concerned with the derivation of the size-space diffusion

equation for a tracer cluster (the labeling of which is carried out in a manner similar

to that of the previous section). Since a number of details are similar to those of the

preceding section, only essential distinguishing features are outlined here.

10.4.1 Basic Reaction

In contrast to the stepwise association scheme of the preceding case, we here assume

scission, recombination, and growth from micelles of arbitrary sizes. The reaction

step is represented by the equation

k+±(n;n')
An + An, An+n, (10.59)

k- (n+n')

As in the previous section we consider a solution which is originally at equilibrium (in

size space) wherein we effect the tracer observation. Furthermore, as in the preceding

example, k- (n) is assumed to be independent of n.
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10.4.2 Master Equation for the Tracer

The above reaction scheme for characterizing the A - D process enables us to write

a master equation for P(n), the probability that the tracer is present in a cluster

containing n monomers (including itself). The reaction pathways undergone by the

tracer cluster are represented by the scheme

k±+(n; n')
A* + An, A

n ~k- n'
(10.60)

A*, +An/
k+(n-n';n')

k A .

The above reaction sequence yields

dP(n) = Jdn' [k-P(n + n')
dt

- k+(n; n')P(n)C(n') + k+(n - n'; n')P(n - n')C(n') - k-P(n)],

(10.62)

wherein C(n) represents the concentration of clusters of size n in the solution. Equi-

librium considerations, however, require that

k+ (n; ni ) - (/*n+n -An - PkB )

k- kBT

k+(n - n'; n') = ex _- - n _n __n,)

k- kBT
(10.63)

where the symbols p*, etc. possess the same meanings as encountered in section

10.2. Furthermore, since the original solution was assumed to be at equilibrium

in size space, the chemical potentials of clusters of sizes n, n' and n + n' (denoted

respectively as 1A, pA and bn+n') satisfy the equilibrium condition corresponding to

the reaction (10.59), viz.,

1n' + Pn = pn+n,, (10.64)
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where the pu's are assumed to obey an ideal solution law of the form

Pn = + kBT InC(n). (10.65)

Based upon the above considerations it is straightforward to implement an expan-

sion of the above master equation, as was done in the preceding section. The resulting

equation is of the same form as follows from eq. (10.34) [cf. remarks following (10.44)

for the correspondence to eq. (10.3)], wherein the following identifications hold:

m(n) = k~; V(n) = p(n) =_ p* - 1' kBTInC(m) d(n) = k-.

(10.66)

In addition to a different size distribution from the spherical micellar case we observe

another interesting feature of this model, namely the dependence of V(n) upon the

micellar concentration of the solution through C(n). It is pertinent to observe that

the solution is nevertheless still considered to be a dilute, ideal solution, in which

hydrodynamic and inter-cluster physicochemical interactions are both completely ne-

glected. The manifestation of the A - D processes through the concentration de-

pendence of the macrotransport coefficients provides an interesting, unconventional

source of nonideality.

10.4.3 Equilibrium

Calculation of the transport coefficients necessitates obtaining the equilibrium concen-

tration distribution in the micellar solution. Upon invoking the equilibrium condition

for eq. (10.59) we find that

k+(n; n') C(n + n') - 0B -(0.7
exp - . (10.67)

k- C(n) C(n') kBT
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Based on the latter we make the following ansatz for the equilibrium concentration

(cf. also Cates [5]):

C(n) = exp(-p" - an), (10.68)

where a is a constant to be determined via the normalization condition imposed upon

the concentration. Additionally, p,' represents the standard chemical potential of a

cluster consisting of n monomers.

For worm-like micelles, which are inherently two dimensional, it is conventional

to assume a standard chemical potential of the form [19]

A= + -, (10.69)
n n

where A is a constant reflecting the energetic interactions occurring within the cluster,

and

Sdef lim "
0 n-.oo n

This prescription for the standard chemical potential pj4 retains the form of the ansatz

proposed for the equilibrium concentration 0(n), wherein the constant a is replaced

by another constant, namely, a' = a + A' %. Consequently,

C(n) = #3exp(-a'n), (10.70)

with # a constant that can be determined from the specified microscale parameters.

Use of the normalization condition for the total solute concentration C, namely

00
dn n C(n) = C, (10.71)

yields

C. (10.72)
(0'2
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If we define a mean aggregation number i as

fo' dn n C(n)= (1.)
fo dnC(n) 

' n

then, using eqs. (10.66), (10.68) - (10.73), we obtain

V(n) = - + vo, (10.74)

with Vo = V(0) an arbitrary constant which will prove irrelevant under normalization

of the probability.

This completes our identification of the potential V(n) in terms of the aggrega-

tion number n. This potential is dependent upon the single parameter i, the latter

representing the mean aggregation number. In contrast with the spherical micellar

solution case, this mean aggregation number can be shown [19] to be proportional to

C [using eqs. (10.72), (10.73)]. As such, investigating the effect of the parameter

i on the transport coefficients is equivalent to investigating the comparable effect of

micellar concentration. As already noted, this concentration effect on the transport

coefficients, even in the dilute limit considered, constitutes an interesting phenomena

with origins in the clustering phenomena taking place within these systems.

10.4.4 Time scales

As in the preceding section we need to justify a posteriori the legitimacy of the coarse-

graining process in terms of the time scales involved. Typical values of the kinetic

time scales arising in these systems are quoted by Bouchaud et al. [23], wherein

the time scale of recombination and scission was estimated to be of the order of

100 milliseconds. In contrast, the time scales characterizing physical-space diffusion

of these especially large molecules through dilute systems, such as here envisioned,

can be expected to be of the order of hours. This justifies our assumption that

the size-space diffusional process can be 'projected out,' resulting in a coarse-grained

three-dimensional diffusion process that accurately portrays the overall transport phe-
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nomena in physical space without invoking the classical pre-averaging assumption.

10.5 Macrotransport Coefficients for Worm-like Mi-

cellar Solutions

Results are presented in this section for the macrotransport coefficients arising in sit-

uations for which the aggregation processes are represented by eq. (10.59). Derivation

of the required size-space diffusion equation was effected in section (10.4, wherein we

identified the size-space transport coefficients in eqs. (10.66) and (10.74). Interesting

features of this example, which contrast with the preceding spherical micellar case

are: (i) dependence of the mean aggregation number on micellar concentration; and

(ii) the unique form of the potential energy function governing the size distribution.

As in the spherical micellar example, the force F(n) scales with n. The mobility coef-

ficient M(n), however, requires a bit more explanation. This example is analyzed in

the spirit of extreme simplicity, omitting complications that necessarily accompany

more realistic descriptions of polymer solution behavior, especially with regard to

excluded-volume issues and the like [28]. Complications accompanying a more rigor-

ous analysis can easily be accommodated within the general framework outlined in

section 2.

Since our primary aim is to illustrate macroscopic effects resulting from fluctua-

tions in the cluster aggregation number, rather than concentrating on detailed theories

of polymer behavior in solutions we instead consider a simplistic model for the mo-

bility of a polymer cluster, namely the classical Debye-Bueche porous sphere model

[10]. Research on the dynamics of polymer solutions is often based upon the geometric

representation of polymers as macromolecular chains possessing an enormous number

of degrees of freedom, and subsequently employing simplified kinetic models such as

'bead-spring' or 'bead-rod' models as well as extensions thereof (cf. Bird et al. [2]). In

these models, hydrodynamic interactions among beads are either completely neglected

or simplistically accounted for via use of the equilibrium pre-averaged Oseen-Burgers
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tensor. In contrast, the porous sphere model proposed by Debye-Bueche accounts for

hydrodynamic interactions by considering the hindered flow of the solvent through

a permeable sphere composed of a cluster of resisting beads. Felderhof and Deutch

[12] studied the relationship between the Kirkwood-Risemann [21] and Debye-Bueche

theories. They concluded that both theories possessed an equivalent microscopic sta-

tus, differing only in the statistical assumptions underlying their derivation. Further

details regarding both motivation for and use of the porous sphere model can be

found in Frankel et al. [14], wherein a related example involving size fluctuations of a

porous-sphere, polymer model was studied. The essential scenario studied therein is

similar in spirit to the case analyzed here, except that there the size fluctuations re-

sulted from the inherently flexible nature of the polymer molecule undergoing thermal

fluctuations, rather than from the A - D mechanism as outlined here.

According to the Debye-Bueche theory, the mobility coefficient of a uniformly

homogeneous porous sphere of radius r and permeablilty K' moving through a solvent

of viscosity [ is

1 [1 + (3/2)K(1 - K 1/2 tanh K-1/ 2 ) 1
M(r) = 1 2 ah 1 / ,(10.75)

67rp-r I 1 - K1/2 tanh K-1/2>

where K = K'/r 2 is the dimensionless Darcy permeability. The dimensional perme-

ability is known [27] to scale inversely with the volume fraction of the chains (i. e.

beads) comprising the porous sphere. In conjunction with the fact that the radius of

the sphere scales with n1 / 2 , for an ideal random walk we obtain

K = An-1/2 (10.76)

where A is a nondimensional proportionality constant. Using representative para-

metric values provided in Debye-Bueche's article the constant A was estimated to be

0(1), whereupon we adopt the value A = 5 in this analysis. Substitution of (10.76)

into (10.75) yields the requisite expression for M(n).

The essential framework of the subsequent theory is similar to that illustrated

in the preceding section. Accordingly, we restrict ourselves in what follows only to
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the unique features of the worm-like micelle case, followed by a brief discussion of

the results obtained. One of the features distinguishing the present case from the

previous one is the concentration dependence of the mean micelle length. While this

feature makes the present case more interesting, it simultaneously imposes certain

constraints upon the mean aggregation number owing to our prior assumption of

diluteness. Large mean aggregation numbers would necessarily imply high concentra-

tions, nullifying the assumption of a dilute system. And at these high concentrations

one encounters regimes wherein concentration effects arising from entanglement and

reptation of polymer chains acquire heightened significance. Bouchaud and cowork-

ers [3, 23] have observed several interesting features accompanying diffusion in these

regimes, including evidence for Levy flights (in contrast to the normal Brownian ran-

dom walk). These effects, though interesting, are beyond the scope of the present

work. We thus proceed with this caveat of limitations imposed by the diluteness

criterion.

Using (10.74), Po (n) can be obtained from eq. (10.20) as

Po (n) = [jdn exp(-n/h) exp(-n/ii). (10.77)

This expression indicates that at a given value of n, Po (n) is functionally dependent

only upon the mean aggregation number 5. In a manner similar to the scaling ansatz

made in the previous section, all the macrotransport coefficients can be expected to

scale as f (A), with f (x) -+ x0' for x > 1. Results obtained for the mean settling

velocity, mean molecular diffusivity, and convective dispersivity are discussed below.

Mean Velocity of Settling: Figure (10-5) indicates the effect of cluster polydisper-

sivity on the mean settling velocity U. This mean settling velocity is almost identical

to the settling velocity U(A) at the mean aggregation number. The source of this

behavior can be comprehended by analyzing the variation of the size-specific set-

tling velocity U(n) with aggregation number n. Figure (10-6) qualitatively depicts

the settling velocity for different aggregation numbers. Due to a combination of ef-

fects resulting from the dependence of the force and mobility upon the aggregation
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number, this velocity increases with increasing aggregation number. On the other

hand the probability distribution (10.77) for the cluster size indicates an exponential

decrease with aggregation number. Thus, larger velocities are sampled only infre-

quently and vice versa. Together, these factors nullify one another, resulting in an

almost imperceptible effect of size distribution upon mean settling velocity.

A

Cl)

0
I I I I I i

250 500

Aggregation Number,

1000750

n

Figure 10-6: Variation of the settling velocity U(n) with cluster size n for monodis-
perse wormlike micellar solutions. Since only the qualitative features of this behavior
are of interest we do not explicitly display values for U(n) (a dimensional quantity).

Mean diffusivity of Settling: Figure (10-7) depicts the effect of aggregation number

on the mean molecular diffusivity. In contrast to the comparable settling velocity case,

size effects here are quite significant. Mean diffusivity values at different aggregation

numbers (in regimes which are expected to be classified as dilute) are seen to be

greater by a factor of almost 2 to 3 than those arising at the mean aggregation number.

The underlying reason for such behavior resides in the preferential sampling of the

low aggregation number clusters, which in turn possess larger mobilities [Fig. (10-8)].
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At high aggregation numbers the mean diffusivity appears to reach an asymptotic

limit characteristic of the fact that the mobility and probability distribution both

fall to zero at large n. However, at such large aggregation numbers the transport

coefficients will depend primarily upon entanglement effects, in which circumstances

the assumption of a dilute solution would clearly be invalid.

A

0 250 500 750 1000

Aggregation Number, n

Figure 10-8: Variation of the mobility M(n) with size n for monodisperse wormlike

micellar solutions. Since only qualitative features of this behavior are of interest we

do not explicitly display values for M(n) (a dimensional quantity).

Convective Dispersivity: Figure (10-9) displays the functional dependence of the

convective dispersivity upon the mean aggregation number. Such size effects can be

expected to be much more dramatic for the convective dispersivity case than for the

other two macrotransport coefficients. As already noted, the convective dispersivity

arises solely in response to the distribution of micelle sizes. An increase in mean

aggregation number leads to a wider spread in the size distribution, exemplifying

the exponential distribution (10.77) of sizes. Such behavior is consistent with the
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observed increase in convective dispersivity with increasing mean aggregation number.

Based upon the dispersivity values observed at large aggregation numbers the scaling

exponent a for DC/[lU(j)] 2 is empirically established to be about a 0.7.

0.018 -

0.016 -

>0.014 -

0.012 -a)
CL
.U)
0 0.010-

0.008 -
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Figure 10-9: Dependence of the normalized convective dispersivity 0C/[AU(ii)]2 on

mean aggregation number A for worm-like micellar solutions.

Mean Mobility: As in the spherical micelle case a mean mobility based on mean

settling velocity can be defined [cf. eq. (10.57)]. The variation in the resulting ratio

of apparent-to-actual mean mobility is indicated in Fig. (10-10), again quantifying

the apparent violation of the Stokes-Einstein relation.

Significance of results: The preceding discussion deals with size distribution ef-

fects on the macrotransport coefficients U, DM and DC characterizing the transport

of polydisperse worm-like micelles through the solution. Such polydispersivity effects

appear to be specially pronounced for the mean molecular diffusivity case. Moreover,

the presence of a Taylor dispersion contribution stems entirely from the polydispersiv-

ity of the micellar system. An order-of-magnitude estimate for this additional diffusiv-
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ity contribution serves to quantify its significance in relation to the mean molecular

diffusivity. From Fig. (10-9) we extract a 'typical' value of Dc/[nU(i)]2 = 1000.

Consequently,

f)C io3P U(h)2
~ 10.. 3 (10.78)

DM kBTM(fi)(

Using approximate scaling relationships, namely U(i) ~ n1/2 and M(h) ~ n-1/2

(not rigorously true for the porous sphere model) together with characteristic values

of M(fi) to obtain the prefactor, we find that

M 10- 28Ii4.5 2 , (10.79)

with g denoting the dimensionless force. This suggests that the extra contribution to

the diffusivity becomes significant only for very long macromolecules subject to large

accelerations (such as would arise during ultracentrifugation). Despite the relatively

small value predicted for the convective dispersivity under normal sedimentation con-

ditions, we have shown that the effect of polydispersivity on the molecular diffusivity

is a nontrivial one, leading to an increase in cluster mobility by a factor of almost

3. Furthermore, we have evaluated the functional dependence of the macrotransport

coefficients on the mean aggregation number h. In view of the relationship that exists

between A and micellar concentration the above result can, inter alia, be considered as

representing the effect of concentration on the transport coefficients. It is interesting

to note that such an effect arises even in the dilute solution regime.

10.6 Conclusions

The preceding analysis furnishes a general framework for analyzing diffusion and

sedimentation phenomena in systems exhibiting a distribution of cluster sizes stem-

ming from the existence of reversible association-dissociation processes. Examples

of such systems include micellar solutions and microemulsions. The generic scheme

developed describes the transport of dilute dispersions of clusters through an other-
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wise quiescent solvent via the use of coarse-grained, size-independent, physical-space

transport coefficients appearing in a convective-diffusion equation governing the local

spatial cluster concentration (probability density). This was achieved through use of

generalized Taylor dispersion theory.

Our scheme was illustrated by analyzing two practically-motivated examples en-

countered in dealing with micellar solutions. In the first case we studied the afore-

mentioned effects for a solution composed of spherical micelles. In such a scenario

the cluster size is characterized by a Gaussian distribution about a mean aggrega-

tion number. Using known information about such solutions we quantified the mean

transport coefficients in terms of typical micellar data available in literature. In the

second case, similar effects were studied for cylindrical or worm-like micelles. Due

to the reversible scission processes present in these latter systems they are widely

regarded as models of 'living polymers.' Interesting features arising for this case

include an exponential attenuation of the size distribution with mean aggregation

length. Furthermore, in such systems the mean aggregation length depends upon the

micellar concentration. Thus, for this class of systems the macrotransport coefficients

obtained in our work serve to quantify the variation of the transport coefficients with

micelle concentration, at least in dilute systems.

A number of potential applications arise from the above results. Self-diffusion

coefficients are often employed to provide a measure of mean aggregation numbers

in spherical micellar solutions, at least in circumstances where such solutions may

be regarded as being approximately monodisperse. Our analysis provides a scheme

whereby polydispersivity effects can be incorporated into the interpretation of exper-

imental results so as to furnish estimates of the errors arising from a lack of true

monodispersivity. Moreover, our analysis is sufficiently general to also embrace the

effects of micellar shape (such differences being embodied in the constitutive forms

assumed for the microscale potential and the mobility coefficients) on the macroscale

transport coefficients. This constitutes a possible future application for determining

the mean properties of such micelles in solution from measurements of their settling

(or electrophoretic) velocities and mean self-diffusivities [7]. Furthermore, the fact
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that our generic analysis is not restricted exclusively to micellar applications permits

possible extensions towards studying the effects of 'mixing' on the kinetics of aggre-

gation processes. Such an investigation would involve the opposite extreme of time

scales, whereby the A - D kinetic time scale is more sluggish than the physical-space

transport time scales. Our analysis points up a scheme whereby a systematic study

of these effects could be pursued.
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Chapter 11

Summary

This portion of the thesis was explicitly concerned with applications employing macro-

transport theory (or generalized Taylor dispersion theory) to effect the coarse-graining

of multiscale systems. Chapter 8 elucidated the basic concepts of this generalized so-

lute dispersion theory, along with the prerequisites demanded of the physical param-

eters in order to enable a "macrotransport" description. Our exposition underlined

the need for two distinct subspaces within which the transport of the solutes occur.

These two subspaces were respectively termed the "local" and "global" spaces. While

we outlined a sufficiency criterion based on geometric compactness (or boundedness)

to distinguish between the subspaces, a more rigorous condition for the delineation of

the two subspaces based on the time scales of transport within each of the subspaces

was subsequently proposed, permitting a quantitative delineation of the respective

subspaces. Explicitly, we required the timescales for transport in the local space to

be significantly smaller than for global space values. Fulfillment of such a condition

requires that the transport processes occurring in the local space attain a state of equi-

librium within time scales significantly smaller than that embodying the comparable

global space transport processes. This enabled us to propose a "macrotransport"

description of the transport processes, one governing the global space transport of

the average solute concentration. Furthermore, the macrotransport "paradigm" fur-

nishes an explicit procedure whereby the phenomenological coefficients present in the

macrotransport description can be determined. These phenomenological coefficients
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quantitatively embody, in an averaged manner, the transport processes occurring in

the local space. Physical interpretations were also furnished for these "macrotrans-

port coefficients," thereby providing significant insights into the transport processes

occurring within the system.

The first application of macrotransport theory was considered in chapter 9 wherein

thermal Taylor dispersion theory for time-periodic systems was used to study the ex-

tent of chaotic enhancement of laminar heat transfer and axial thermal dispersion

occurring during combined transverse and axial annular flow between two noncon-

centric circular cylinders undergoing alternate rotations. A local Newton's 'law of

cooling' heat transfer boundary condition was used on the outer cylinder, whereas

the inner cylinder was supposed insulated. The effective heat transfer coefficient H*

describing the global rate of heat loss from the system (differing in general from the

true microscale Newton's law heat transfer coefficient h on the outer cylinder) was

calculated as a function of the system parameters, thereby serving to quantify the

extent of chaotic heat transfer enhancement. The axial thermal Taylor dispersivity

provided an independent measure of the effects of chaotic mixing, as too did the axial

thermal velocity. Calculations were performed for three different cases: (i) Concentric

cylinder rotation (for which case the resulting circular transverse flow has no effect

upon the effective transport properties); (ii) Nonconcentric counter-rotating circular

cylinders, each undergoing a steady rotation, thereby creating a time-independent

transverse flow field; (iii) Nonconcentric counter- and co-rotating circular cylinders,

each undergoing time-periodic alternate rotation while the other remains at rest.

A 'regular', nonchaotic enhancement of the heat transfer rate over the concentric

cylinder case was observed in case (ii), arising from the presence of a secondary-flow

recirculation region. Enhancement due to chaotic advection was observed in case (iii)

[about 50% more than that of case (ii) and more than double that of case (i), all other

things being equal]. Concomitant values of the axial thermal Taylor dispersivity and

axial thermal velocity confirmed the existence of enhanced transverse transport due

to chaotic advection. It was observed that the functional dependence of the enhanced

heat transfer rate upon the system parameters does not consistently display the same
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trends as were qualitatively suggested by the 'degree of chaoticity' of the comparable

Poincare plots. This observation signals the need for caution in simply assuming that

the greater the degree of chaotic 'mixing' implicit in the Poincare plot the greater

will be the corresponding global transport rate. By simple redefinition of the sym-

bols used, our energy transport results may be re-interpreted so as to apply to the

case of reactive-species transport involving a first-order irreversible chemical reaction

occurring on the outer-cylinder surface; explicitly, the Nusselt number quantifying

the local heat transfer coefficient rate is simply replaced by a comparable Damk6hler

number quantifying the local kinetics of the surface reaction.

In chapter 10 we considered another application of macrotransport theory. Cal-

culations were presented for the long-time diffusivity and sedimentation velocity of

associating colloids. Examples of the latter are micellar solutions and microemul-

sions. The analysis incorporated the role of reversible association-dissociation pro-

cesses accompanying the physical-space transport of these clusters through the so-

lution. This was accomplished without the need for pre-averaging by transforming

the association-dissociation processes into equivalent 'size-space' diffusional processes,

which were then embedded into the simultaneous physical-space transport processes

occurring in three-dimensional space so as to obtain a four-dimensional 'microtrans-

port' convective-diffusion equation governing transport of the clusters in both the

physical and size spaces. A generic 'projection' scheme framework based on gener-

alized Taylor dispersion theory was then applied to the problem, thereby reducing

the four-dimensional microtransport equation to a coarse-grained three-dimensional

physical-space macrotransport convective-diffusion equation. Effects arising from the

existence of a distribution of cluster sizes were are accounted for in the latter formula-

tion governing the mean transport process by the appearance of three coarse-grained

phenomenological coefficients whose values depended inter alia upon the cluster-size

distribution. These macrotransport coefficients included a mean sedimentation ve-

locity vector arising from the action of external forces (if any), a mean molecular

diffusivity, and an additional diffusive-type contribution to the diffusivity dyadic,

corresponding to a convective ('Taylor') dispersivity. The latter contribution arose as
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a consequence of the spread in settling velocities of the differently-sized clusters. The

generic framework developed was illustrated by applications to two classes of micel-

lar solutions: (i) solutions comprised of spherical micelles; (ii) solutions comprised

of cylindrical or worm-like micelles (so-called 'living polymers'). Each spherical mi-

celle was modeled as an impenetrable rigid sphere whose radius is determined by its

aggregation number. The living polymers were modeled by the Debye-Bueche the-

ory, wherein a coiled macromolecular chain was regarded as a Brownian 'sponge-like'

porous sphere through whose interior solvent percolates. Calculations of the result-

ing macrotransport coefficients, including their scaling relationships, were presented

for both cases, and their physical significance discussed in terms of the underly-

ing microscale physics. Possible applications and potential extensions of the generic

framework were outlined.

In conclusion, the preceding chapters expound the versatility and use of macro-

transport theory for coarse-graining multiscale systems. Despite the limitations im-

posed, requiring the presence of two distinct subspaces, significant applications could

nevertheless still be envisioned. Within the generic context of coarse-graining the-

ories, macrotransport theory falls under the general category of projection operator

theories (Pagitsas et al. [1]). However, the physico-mathematical framework which

accompanies the development of the macrotransport theory enables significant phys-

ical conclusions to be drawn based upon implementation of the scheme. Such a

physical link is typically lacking within more formal, albeit general, theories of pro-

jection operator coarse-graining schemes. The achievement of this physical link was,

however, not accomplished without severely restricting the class of problems which

are amenable to a "macrotransport description." Efforts are underway, aimed at ex-

tending macrotransport theory to broader classes of problems (so as to include, for

example, momentum dispersion processes, "almost" time-periodic systems, etc.). If

the physical, Lagrangian link could be sustained within such extensions (in contrast to

more formal techniques, such as multiple time scale analyses), potential applications

of macrotransport theory would be increased manifold.
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Part 3: Dynamics of Two-Phase
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Media
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Chapter 12

Scaling Concepts for Interfaces

The vast diversity of shapes that surround us has had a profound impact on the qual-

ity of our lives. A quantitative characterization of natural forms would constitute

an important step towards understanding their origins and behavior. Unfortunately,

until recently, there have been very few general approaches towards the quantita-

tive description complex disorderly patterns that characterize most of the natural

phenomena. To a certain extent, the inherently nonequilibrium nature of pattern

formation processes have contributed to the slow development of the requisite tools

pertaining to their characterization.

However, the outlook has improved substantially in the past two decades. The

pioneering interdisciplinary work of Mandelbrot [16] has demonstrated that mathe-

matical concepts, once believed to be of little relevance to the real world phenomena,

can provide us with creative ways of describing and thinking about an amazingly

broad range of structures and phenomena [7]. In addition, scaling concepts that

were originally applied to describe a relatively narrow range of physical problems,

such as critical phenomena, structure of macromolecules, etc., have been successfully

extended and applied to much broader ranges of problems [4, 9]. In fact, fractal

concepts are now utilized to provide a theoretical basis for the description of objects

of diverse shapes and sizes, ranging for instance from small polymer molecules [9] on
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the one hand to the coastlines of continents [16] on the other.1 Fractal phenomena

and the accompanying characterization methodologies are however too numerous to

be completely enumerated in this thesis. Barabasi and Stanley [1], and Meakin [18]

constitute useful pedagogical references oriented towards fundamental concepts and

applications to a number of practical problems.

In the following section we give a brief description of 'scaling' concepts which

possess special relevance in the context of 'self-affine fractals.' Subsequently, we

specialize these general mathematical concepts to characterizing the morphology of

interfaces.

12.1 Self-Affinity and Power Laws

Within a mathematical framework, self-similarity constitutes an example of a sym-

metry group. A symmetry group embodies a transformation law, requiring that the

object which exhibits the symmetry be invariant under the specified transformation

[11]. For example, a function y(x) possessing translational symmetry is unchanged

under a transformation T : x -+ x + d. In an analogous manner, the property of

self-similarity requires that the system be invariant to a transformation embodying

an isotropic dilation. For instance, if 0 denotes an object which is self-similar, then

invariance under an isotropic dilation requires that, if X denotes the set of points

{x 1, x 2, -. , Xn} contained within 0, and if the dilation operation corresponds to

stretching (or compressing) the coordinates of each and every point by a factor b, then

the new set of points X' (represented by {x', x',-' , x'}, where x' = bxi, V i = 1, n)

satisfy X' C X [1]. Figure 12-1 shows one such example of a self-similar fractal object

known as the Sierpenski Gasket. (The figure explicitly demonstrates the procedure

for the construction of a Sierpenski Gasket. The object so obtained by continuing the

procedure ad infinitum constitutes a self-similar fractal.) In this part of the thesis,

we are however concerned with an extended concept of self-similarity termed as self-

'Even one of the major contenders for the theoretical description of the cosmological genesis of
the Universe, viz., the 'inflationary model,' possesses an underlying fractal basis [12].
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affinity. An object is self-affine if it exhibits invariance under an anisotropic scaling,

i.e. dilation by disparate factors in different spatial (and possibly temporal) directions

[17].

Step 1 Step 2

uui

Step 3 Step 4

Figure 12-1: The Sierpenski gasket: An example of a deterministic fractal

Power laws play a central role in the description of self-affine fractals and their

scaling [14]. A function f(x) is said to be a power law function of x if it is of the form

f (x) = cx" (12.1)

where c is a constant independent of x. A special symmetry property exhibited by

the above function enables clarifying the explicit nature of our interest in such power

laws. In the above equation we consider implementing a dilation operation, quantified

by a rescaling of the length scale x by a factor A, thereby yielding

f(Ax) = c(Ax)'

= CAmX.
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The latter result implies that

f(Ax) = Atmf(x). (12.3)

The above property quantifies the invariance of the set {f(x), x} under a dual,

anisotropic scaling2 generated by the transformation x -4 Ax, f -+ Amf .3 Fur-

thermore, a direct and important consequence of this scale invariance posits that the

exponent m is independent of the units which are employed to measure x or f.
The above demonstration elucidates the role of power-laws in the context of char-

acterizing self-affine functions. As such, the above illustration proves that a self-affine

function necessarily needs to be a power law function of its dependent variables. Fur-

thermore, the magnitude of the scale invariant exponent 'm' embodies a quantitative

characterization of the function f. This philosophy embodies the entirety of the

analysis accomplished in this part of the thesis.

Note: In subsequent sections the symbol "~" will be employed to denote the

phrase 'scales as,' i.e., f(x) x x' implying, f(x) = cxm, where c is constant, typically,

but not necessarily, of magnitude 0(1).

It is pertinent to elucidate the typical physical scenarios accompanying a power

law or self-affine behavior. Empirical experimental observations have suggested that

power laws can possibly arise in two distinct contexts: (a) As a consequence of a single

process that possesses no inherent length scale apart from an inner and outer cutoff

lengthscale (serving to impose geometrical compactness) that implicitly determine

the range of validity of the power law behavior. In such a scenario, a homogeneous

2Note the connection to self-affinity.
3In fact, it can be proved that the only function which exhibits this 'self-affine' property is the

power law function. The proof is as follows:

f (Ax) = Amf(x),
df(Ax)] (

dA (12.4)

or, x d[f(Ax)] _Amlf W.
d(Ax)

Setting A = 1 in the final equation and then integrating yields f(x) = cx m .
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power law description characterizing the self-affine function can be constructed, which

possesses validity over the entire range of length scales. An example wherein such

behavior is evinced includes the power law divergences observed in the functional

form of thermodynamic properties near second-order critical points [8, 14]; (b) Alter-

natively, power law behavior may arise as a consequence of a number of small-scale

processes, each possessing its own length scale. In these situations, the functional

form of the power law is typically inhomogeneous, being modified upon spatial mod-

ulation. In such cases, interest is typically centered upon the behavior exhibited by

the self-affine function at large length scales (termed "hydrodynamic" behavior) -

though situations might arise requiring one to consider the intervening length scales.

(The following chapter constitutes an example wherein such an analysis is effected.)

In this section we briefly reviewed the concepts of scale invariance and self-affinity.

The remainder of the chapter concentrates on phenomenological models of interfa-

cial dynamics, enabling similar conclusions to be drawn regarding the statistics of

interfacial fluctuations. Interfacial fluctuations are characterized by fluctuations in

the magnitude of the interfacial height, which is a statistical quantity animated by

thermal fluctuations and other sources of stochasticity. Characterization of the mor-

phology of interfaces therefore requires extension of the concept of self-affinity to em-

body statistical quantities. In this context, a statistical quantity is termed self-affine

if the parameters characterizing its distribution (like for instance, the mean, variance,

skewness, curtosis, etc.) remain invariant under an anisotropic scaling. This property

is employed in subsequent sections as well as in the next chapter to glean quantitative

insights into the characterization of interfacial fluctuations. Preliminary to the dis-

cussion we clarify the concepts of dynamic scaling in the context of interfaces, thereby

laying the foundations for the subsequent analyses in this and the following chapter.

This also enables us to clarify the notation which we have used in describing the

interfacial dynamics. Following this, we consider some well-known phenomenological

equations postulated for describing evolution of the interfaces, including illustrating

the basic concepts of underlying Flory scaling analysis. The motivation in this sec-

tion is intended to provide an illustration of some concepts used in the next chapter.
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Accordingly, we herein eschew an elaborate review of literature pertinent to the vast

field of interfacial growth models (cf. [1, 18] for more details).

12.2 Dynamic Scaling

In the ensuing discussion in this chapter, and in the subsequent chapter, we restrict

our discussion to continuum models of interfacial growth. While discrete models for

interfacial growth have played a very important role in explaining observed phenom-

ena (even in situations where continuum models have sometimes failed), the discrete

models typically involve a computational simulation of the growth rules to draw con-

clusions based on the results obtained by such schemes [23]. As such, our motivation

is to seek models wherein analytical techniques are implementable, thereby enabling

us to glean physical insights into the issues of interest.

h(x, 0)hmt

Xi I i M L
__ __i=1 i mi=L

(a) (b)

Figure 12-2: Interfacial representation in: (a) continuous; and (b) discrete formula-
tions.

Figure (12-2) describes the notation used in this part of the thesis. The interfacial

height h - h(x, t), and is a function of the transverse spatial coordinate x and time

t. Due to the fluctuating nature of the interface (possible origins of which are clari-

fied in subsequent sections), we confine our interest to the statistical features of the

interfacial height h(x, t) rather than attempt an exact description of the interfacial

configuration. In this context, one of the most commonly studied statistical features
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in problems relating to interfacial growth corresponds to the mean-squared displace-

ment of the interface measured from its mean position. To facilitate the definition of

the appropriate quantities, we consider the simple case wherein the transverse space

is restricted to one dimension. It is quite straightforward to generalize the follow-

ing definitions to cases wherein the interface possesses higher dimensionality. In the

one-dimensional case, let us further assume that the transverse space is discretized

and enumerated by a discrete variable i running from 1 to L. Then, we define [1] the

mean height of the interface as

1L
h (t) = h(i, t). (12.5)

Li=1

The corresponding interfacial width (which characterizes the roughness of the inter-

face) is defined as

1 L
w(L,t) = LZ[h(i, t) - h(t)]2 . (12.6)

i=1

A typical experimental observation monitoring the time evolution of the interfacial

width resembles the morphology illustrated in Fig. (12-3). From the figure we dis-

cern that the time evolution of the surface width displays two distinct, characteristic

scaling regions with the crossover between them occurring at time t ~ tx.

1. In the first scaling regime, the width grows algebraically as a function of time,

i.e.,

w (L L t) ~0t t < tx . (12.7)

The exponent 3, termed the dynamical exponent, characterizes the temporal evolu-

tion of the roughening process.

2. The power-law increase in the width saturates at t ~ tx, beyond which the

width maintains a constant value, Wsat. It has further been determined from experi-

mental observations (and numerical simulations based on interfacial growth models)
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In w

In tx In t
Figure 12-3: Evolution of the interfacial width

that wsat obeys the following scaling relationship as a function of the length of the

apparatus L:

Wsat ~ L . (12.8)

The exponent a which quantifies the fluctuations of the interface (as deviations from

its mean value) is appropriately known as the roughness exponent of the interface.

The requirement of a smooth matching at the crossover point furnishes one further

scaling relationship relating the crossover time tx to the length of the apparatus L:

tx ~ L', (12.9)

where z = a/0.

Based on the above two observations, it has been proposed on an empirical basis

[6] (and confirmed experimentally) that the width of the interface, w(L, t), normalized
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by the saturation width wsat obeys the scaling relationship

~ L tf ( ) (12.10)
Wsat tX

where the scaling function f possesses the following properties:

« u n'n 1, (12.11)
1 u > 1.

The above scaling hypothesis for the width of the interface is known as the Family-

Viscek scaling hypothesis, it forms the basis for most studies involving the statistics

of interfacial growth.

To determine the dynamical and the roughness exponents through a scaling proce-

dure one needs to utilize the general properties of self-affine functions outlined in the

preceding section. The interface is assumed to be statistically self-affine and single-

valued.4 Further, the roughness exponent a is assumed to be less than or equal to

1. The latter assumption is requisite to the formulation of a gradient theory of the

fluctuations of the interface. If a < 1 then Vh - L 1 which becomes negligible for

L > 1. This permits one to formulate a gradient theory of interfacial fluctuations

by retaining the dominant terms of a gradient expansion. This simplification facili-

tates construction of phenomenological equations and enables scaling analysis based

conclusions to be drawn.

The properties of self-affine functions outlined in the previous section lead us

to expect statistical self-similarity of the interface upon rescaling the spatial and

temporal variables. Suppose that the spatial variable x is rescaled in the following

manner:

x' - bx. (12.12)

4There are a number of cases of practical interest wherein the assumption that our interfacial

coordinate system yields a single-valued representation of the interfacial height is inapplicable; some
examples in this category are the morphology of the interfaces formed during fingering instabilities
in porous media [22], patterns encountered during diffusion-limited aggregation processes [25], etc.
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This requires that the temporal variable t be rescaled as

t' -+ bt (12.13)

to ensure that the ratio t/tx remains unchanged. The transformation (12.12), used

in conjunction with the Family- Viscek scaling hypothesis requires that the interfacial

height h(x, t) simultaneously be transformed as

h' - b h. (12.14)

Under the triplet of transformations (12.12) - (12.14), the statistical properties of the

interface described by h'(x', t') are expected to be identical to those of the original

interface, namely h(x, t). Therefore, h'(x', t') would also be expected to satisfy an

equation identical to that for h(x, t). This conclusion enables explicit determination

of the dynamical and roughness exponents of the interface.

It is pertinent to recall here the assumptions that were effected in the preceding

analysis, so as to delineate the conditions under which the above-outlined procedure

retains accuracy. This would also thereby clarify the shortcomings of the approach,

enabling us to highlight other important as well as more rigorous techniques for effect-

ing similar conclusions. Scaling analysis is inherently a 'mean-field' type of analysis.

In most instances a and 3 acquire only rational values - in contrast to numerical

simulations and more rigorous analytical calculations where irrational values are pos-

sible. For instance, a scaling analysis that establishes a roughness exponent a greater

than one suggests a need for more rigorous analysis incorporating the fluctuations

from the mean-field results. Furthermore, scaling analysis is performed on a specific

model, the choice of which is decided at the outset during the problem formulation.

Scaling concepts cannot provide any indication of the terms that might, in fact, be

present within the model, or be subsequently generated in the analysis.

Renormalization group techniques constitute a more rigorous approach towards

describing the statistical properties of the interfacial dynamics [1, 19]. These tech-

niques incorporate the effect of fluctuations rigorously, thereby furnishing an accurate
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determination of the exponents, albeit in most cases as an asymptotic series. Renor-

malization group techniques are also powerful enough to treat cases of generalized

stochasticity (see the next section), enabling conclusions to be drawn even when the

scaling analysis either fails or yields incorrect results.5 However, this method is quite

involved as regards technical details, and its use for complicated scenarios tends to

require further development as the situation demands [24]. In such cases, scaling anal-

ysis usually provides a good estimate of the exponents, values which would possibly

be obtained from more sophisticated renormalization group arguments [13].

The formulation of a model for the interfacial dynamics is a broad subject, one

which lies is beyond the scope of this thesis [15]. In general, symmetry principles akin

to Landau's original conception [10] are typically utilized to determine the terms

that are present. Other approaches employed to derive and/or propose interfacial

dynamical equations include considerations of microscopically occurring processes for

the description of the macroscopic interfacial dynamics. (A specific context will be

illustrated in the next chapter via our formulation of the problem.)

In this section we discussed the general characteristics of interfacial fluctuations

arising from its self-affine nature, and the consequences thereof in terms of scaling

laws. In the next section we discuss the origins of the stochastic fluctuations present

in the dynamics of these interfaces together with some common representations em-

ployed to model these features.

12.3 Stochasticity

Physically, stochasticity can arise from a number of different sources, the most com-

mon of which includes: thermal fluctuations, random driving forces, disorder in the

environment, or even as a manifestation of the microscopic degrees of motion. The

statistical nature of the interface derives from this stochastic component, which influ-

ences the dynamical evolution of the interface. Within a mathematical framework, the

'The accuracy of the results can be determined by a direct numerical simulation of the continuum

equation.
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stochastic noise usually provides the random component appearing in the evolution

equation for the interfacial dynamics. As such, i.e. thereby plays an important role in

determining the statistical properties of the self-affine interface. The noise function

(denoted by q in our text) is mathematically represented by a random function which

is specified by the functional form of its correlations. Therefore, one would expect

different functional forms for the correlations to lead to different statistical behaviors

for interfaces, which might in fact be governed by identical deterministic components.

Below, we give a brief introduction to some of the commonly employed models for

noise, while simultaneously highlighting the features that the model represents. This

list is by no means exhaustive. For more details refer to [1].

12.3.1 Annealed Noise

The most common model for noise, namely "annealed noise," is a random function

of both spatial and temporal coordinates. The origin of such a noise term may result

from thermal fluctuations present in the system, or as from an external forcing which

is random in both space and time. In most cases the noise is assumed to be delta-

correlated in space and time (equivalent to extremely short-ranged correlations):

(77(x, t)q(, i)) = 2A6d(x - R)6(t - i), (12.15)

where A measures the amplitude of the noise, 6 denotes the Dirac delta function, and

d is the dimensionality of the transverse space. The delta-correlated annealed noise

is sometimes also termed thermal noise.

A generalized form of the above noise is one which exhibits long-range correlations

in space and time of the form:

(M(x, tq(R, t')) ~I _x - I2p-dt _ 20- 1, (12.16)

where p and 0 are exponents characterizing the spatial and temporal correlations of

the noise. While the physical origin of such correlations is unclear, mathematically

291



such correlations might arise via the mathematical elimination (projection) of those

physical quantities that exhibit relaxation timescales much smaller than those pos-

sessed by the other quantities present (as will be illustrated in the next chapter).

12.3.2 Quenched Noise

Quenched noise [3] is usually used to model stochasticity arising from the disorder

present within the medium wherein the interface evolves. The statistical nature of the

medium is assumed to be unchanging in time (within the time scales of interest). As

such, the functional forms chosen for the noise correlations are explicitly independent

of time, i.e. = q(x, y), where y is the distance normal to the plane of the inter-

face. The functional form for the correlations of the corresponding delta-correlated

quenched noise is

(q(x, y)n(k, )) ~ 6d(x - :R)6(y - f). (12.17)

Figure (12-4) illustrates a physical scenario wherein the dynamics modulated by the

random medium can be modeled by incorporating a quenched noise within the evo-

lution equation.

12.3.3 Scaling of the Noise

In the previous section we discussed the triplet of scaling transformations [cf. (12.12)

- (12.14)] which need to be effected to impose invariance of the statistics of the self-

affine interface. However, as a result of the transformations undergone by the spatial

and the temporal coordinates, the strength of the noise needs to be appropriately

rescaled. In this section we consider the rescaling transformation which needs to be

effected on the noise term to thereby account for the spatio-temporal transformations.

Consider the structure of the correlations of delta-correlated annealed noise. If

we employ the transformations (12.12) and (12.13), by rescaling the spatial coordinate

x -+ x' (with a similar transformation being applicable for R) and t -+ t' (and similarly for t),
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The movement of an interface in a

random medium. The random medium is manifested as a 'quenched' (assuming that

the distribution is fixed in time) random force on the interface.

we obtain,6

(r(bx, bzt)q(b:R, bzt')) = 2Ab-(d+z)6d(x - t)6(t - i). (12.18)

Thus, the strength of the rescaled noise is modulated by a multiplicative factor

b-(d+z)/2 . This suggests that the transformations (12.12) - (12.14) require trans-

forming the noise simultaneously (for a delta-correlated annealed noise) as:

7b' -+ (+z)/2 (12.19)

For situations wherein quenched noise is present, one typically encounters a situ-

ation where the amplitude and the correlations of the noise at the interfacial position

6In the equation (12.18) we utilized the following identity pertaining to Dirac delta functions:

6d(bx) = 1 6d(x).
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is the relevant quantity, in which case the noise term appears in the functional form

rj(x, h). In such cases, the appropriate transformation, which can be determined along

the same lines as indicated above for the delta-correlated noise, is of the form

-b-( (12.20)

12.4 Simple Examples of Flory Scaling Analysis

In this section we illustrate the spirit of Flory scaling analysis by means of three simple

examples. Each example represents a widely used model for interfacial growth. In

all three cases we eschew details regarding the origin and the derivation of these

equations, except for a brief description of the physical significance of the terms

present in the model. Subsequently we focus on determining of the roughness and

dynamical exponents, based on the simple scaling principles elucidated in the previous

sections.

12.4.1 Edwards-Wilkinson Equation

One of the simplest models for interfacial growth processes is the Edwards-Wilkinson

model [5]:

Oh
= o-V 2 h + 7(x, t). (12.21)

The above model was proposed to quantify the growth of interfaces during a ran-

dom deposition process. The random deposition processes are modeled through the

stochastic annealed noise term q(x, t), which is assumed to be delta-correlated. The

term UV 2h describes the surface-diffusional relaxation processes that accompany the

interfacial evolution. The above equation can also be used to describe the dynamics

of the thermal fluctuations of a fluid interface. In this context o- corresponds to the

interfacial tension of the fluid, and q(x, t) to the thermal fluctuations of the interface.

In the latter case, the above equation can be derived as a Langevin equation from the
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corresponding Hamiltonian that embodies the energy cost of interfacial fluctuations.

To perform a scaling analysis of the above equation we assume a priory that the

interface and its statistics are self-affine. This allows us to assume that the rescaled

equation [governing h'(x', t')] also satisfies an equation identical in form to the above.

Therefore,

Oh'
Ohl= -V 2 h' + r1'(x', t'). (12.22)
at,

Inserting the transformation laws described by eqs. (12.8) - (12.12) and eq. (12.19)

into the above equation yields

ba-zh = b- 2uV 2 h + b-(d+z)/2r/(X, t). (12.23)
at

Further, since eq. (12.21) represents the dynamical equation for h(x, t), we require

that

bC-z -2 = (d+z)/ 2 . (12.24)

Equating exponents furnishes the following three equalities:

2-d 2-d (12.25)
2 4

The above analysis demonstrates the utility of scaling analysis in determining

statistical exponents without explicitly invoking the exact solution of the complete

dynamical model. However, it must be borne in mind that the above analysis needs

to be confirmed by more rigorous methods, like that of the renormalization group.

Within renormalization group theories the scaling forms arise naturally, in contrast

to the above case where it was necessary to make an a priori assumption regarding

the self-affinity of the interface. In this particular model the rigorous analyses yields

precisely the same exponents as obtained through our scaling analysis. The reasons

for this coincidence are embodied within the linear nature of the governing equations
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In fact, one can speculate the possibility of o- being transformed during a scale

transformation. In this case it can be proved (based on more rigorous methods) that

such a renormalization is absent. This again underlines the utility of rigorous analysis

in situations wherein such an analysis is indeed possible.

12.4.2 Interfaces in Random Field Ising Model

The Edward-Wilkinson model can be appropriately modified for the situation wherein

the disorder is quenched rather than annealed, as assumed above. Such a modification

is used to model interfaces between two spin phases (as in an Ising model), wherein

a random force acts simultaneously on the spins [3]. Such systems are of interest

in condensed matter theory, where they are encountered in the context of sliding

charge-density waves, vortex lines in superconductors, etc. Upon effecting this modi-

fication, the Edwards-Wilkinson model for the dynamics of interfacial profile is then

transformed to the form

Oh
= _UV 2 h + (x, h). (12.26)Ot

In the next chapter, we indicate the Hamiltonian from which the above equation can

be derived using a Langevin formulation. For the purpose of the present discussion we

consider the scaling analysis of the above equation. Using the transformation princi-

ples outlined in the previous example, along with the corresponding transformation

outlined for the quenched noise [cf. eq. (12.20)], we obtain:

Oh
bi-z = ba-20.V 2 h + b-(d+a)/27q(x, h). (12.27)

at

Comparison with eq. (12.26) yields

ba-Z = b-2 = b-(d+a)/2, (12.28)
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which, upon equating the respective exponents yields,

4-d 4-d(1.9
a - d z = 2; 3 = . (12.29)

3 6

The above scaling analysis yields both the roughness and the dynamical exponent

for the Random Field Ising Model. The presence of the quenched noise term acts as

a nonlinear forcing mode in the dynamical evolution of the interface [since the noise

term is also a function of h(x, t)]. In such a scenario the scaling analysis would be a

bit suspect due to possible renormalizations under the transformations (for instance,

the surface tension - could possibly be renormalized). A rigorous analysis of the

above example requires the use of an intricate form of functional renormalization

group analysis. Such a procedure yields an identical value for the roughness exponent;

however, the dynamical exponent is different from that obtained in the scaling analysis

above. The physical origin of the breakdown in our scaling analysis arises from the

fact that the functional form of the noise becomes transformed during the rescaling

process. Details of the intricacies accompanying such a 'functional' renormalization

can be found in [20, 21]. This example serves to underline the caution that needs to

be exercised in interpreting the results of the scaling analysis.

Finally, the spirit of Flory scaling analysis is illustrated by the following simple

example.

12.4.3 Growth During Molecular Beam Epitaxy (MBE)

In the section we consider one of the simplest models involving the presence of two

distinct length scales. Thereby, this example thereby to illustrate the principles of

Flory analysis as employed in the next chapter. The following model is proposed for

the evolution of the interfacial profile during MBE processes [26], embodying within

itself the surface diffusion and the desorption processes taking place in conjunction

with the random deposition:

Oh
= u-V2 h + KV 4 h + ?(x, t). (12.30)

Ot
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Here q) is assumed to be an annealed noise having no long-range correlations, whereas

K represents a phenomenological coefficient.

Rescaling the above equation, yields

ba-Z Oh = b" -T2.gh + b"-4 KV4 h + b- (d+z)/2M Tj( 131)
&t

If we proceed as in the previous examples by equating the exponents in the above a

contradiction arises, since this would require that

b ba = b = b-(dz)/2 . (12.32)

The contradiction is resolved by noting that the above model is characterized by the

presence of more than one term governing the dynamics (in addition to the noise,

which is essential to provide the stochasticity in the dynamics). As such it and

therefore involves the presence of more than one length scale. In such situations we

need to delineate the distinct length scales at the outset to determine the different

scaling regimes.

In the above model, let us first assume that the second gradient term dominates

over the fourth gradient term (which proves to be reasonable in the long wavelength

limit being considered). This will be valid for length scales 1 such that

h h
-- >> K-. (12.33)
1 2 14

Equivalently,

1 >> * . (12.34)

In this regime the V 4 h term can be neglected in the analysis, thereby yielding the same

identical exponent values as the Edwards-Wilkinson model [cf. eq. (12.25)]. Thus, the

characteristic fluctuations of the interface, as measured on lengthscales 1 such that

1 > 1*, exhibit self-affine characteristics with exponent values identical to those of the
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Edwards-Wilkinson exponents. However, situations may arise wherein the physical

dimensions of the apparatus do not allow 1 to satisfy the above inequality. In such

cases, wherein 1 < 1* the V4 h term dominates over the V2 h term. This identification

would require us to match the corresponding exponents arising from these terms,

requiring that

ba-Z _ ba-4 - b-(d+z)/ 2 , (12.35)

thereby yielding

4-d 4-d
a - -, z=4; 83- (12.36)

2 18

Consequently, on scales such that 1 < 1* the interface is self-affine with exponents

given by eq. (12.36).7

Through the above simplistic example we clarified the nature of Flory analysis and

its underlying basis in terms of the delineation of the appropriate length scales and

thereby determining the scaling regimes by matching the corresponding exponents.

This type of Flory analysis, and the general principles outlined in this chapter will

be used extensively in the next chapter to derive and analyze the dynamical equation

for the problem of interest.

7Note that the above scaling argument yields that a = 3/2 for d = 1. This suggests that our

continuum approximation which led to eq. (12.30) breaks down for d = 1.
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Chapter 13

Two-Phase Fluid Interfaces in

Random Media

Reference: Venkat Ganesan and Howard Brenner, "Dynamics of Two-Phase Fluid

Interfaces in Random Porous Media," Phys. Rev. Lett., 81, 578 (1998).

In the preceding chapter we expounded some of the salient features commonly em-

ployed in the description of the statistical properties of fluctuating interfaces. These

interfaces are 'roughened' by stochastic inputs, which are either inherently present

within the system (as in the case of thermal noise), or may arise from sources ex-

ternal to the system (like a random deposition or externally applied random forces).

In this chapter we utilize some of those quantitative techniques to analyze the effect

of disorder on the morphology of moving interfaces. Explicitly, this analysis is ef-

fected within the specific context of two-phase fluid flow through porous media. The

interfacial morphologies displayed during the displacement of one fluid by another in

a porous medium display a rich variety of behaviors depending upon the respective

viscosities and wetting properties of the two fluids [32]. Some characteristic behavior,

which have been observed during experiments (performed on lab-scale porous media)

include:

1. The displacement of a viscous fluid by a less viscous fluid leads to the well-

known phenomenon of fingering instability. In a generic sense, this instability is

related to the Saffman-Taylor instability proposed based on theoretical and experi-
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mental studies on Hele-Shaw cells [30]. The original study (cf. [28] for a collection of

papers related to studies on viscous fingering instabilities) did not explicitly address

the influence of the wetting properties of the respective fluids on the fingering pat-

terns. Subsequent experimental studies [23, 32] probed the specific effects of wetting

properties, and observing the presence of a rich variety of behavior wherein: (i) when

the non-wetting fluid constituted the displacing fluid, the finger widths were found to

be comparable to the pore size of the porous medium; (ii) however, when the wetting

fluid was the displacing fluid, the finger sizes were found to scale with the capillary

number Ca as (/-/Ca)1 /2 , where r, denotes the permeability of the porous medium.

The origin of this new length scale constitutes an hitherto unresolved issue in the

modeling of interfacial fronts in porous media (cf. also Weitz et al. [35] for a deeper

exposition of this issue).

2. In the opposite viscosity ratio limit, namely the case where the displacing fluid

is of higher viscosity than the displaced fluid, the interfacial front is stable. Despite

the fact that at the fine-scale' the interfacial front manifests singularities and dis-

continuities (due to the presence of boundaries arising from the porous structures),

at the coarse-grained scale the interface can be viewed as a continuous entity, which

has been nevertheless 'roughened' because of the existence of the porous structures

[29]. [This viewpoint is explicitly displayed in Fig. (13-1).] Experiments probing the

morphology of this roughened interfacial front (within the continuous representation)

have concluded that the interfacial front possesses statistical self-affinity. This obser-

vation has subsequently led to a number of experiments performed with the objective

of quantifying the roughness exponents of the self-affine interface. Even, within this

relatively simpler 'stable-front' situation, these experiments nevertheless suggested

the presence of a rich diversity of behaviors:

a. The random pinning forces (arising from the porous structures) compete with

the applied driving pressure, resulting in a critical threshold force which needs to

'In the notation of the previous section of the thesis, the phrase 'fine scale' corresponds to the
'microscale,' and the corresponding 'coarse-grained scale' the 'macroscale.'
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Figure 13-1: "Fine scale" and the "coarse-grained scale" representations of the inter-
face.

be overcome before the interface starts moving. The transition from the trapped

metastable state (i.e. pinned interface) to a (depinned) moving state is purported to

be a nonequilibrium phase-transition [33, 35]. Considerable interest exists in studying

the morphology of the fluid interfacial fronts in the regime near this phase transition,

when the applied pressure just exceeds the critical pressure. This regime is qual-

itatively similar to the regime existing near an equilibrium critical point [17], and

has been analogously found to exhibit characteristic universal behavior in laboratory

scale experiments.2 Some salient experimental observations in this regime include:

(i) In the case termed Forced Fluid Invasion (FFI), wherein a 'depinning tran-

sition' occurs at a critical value of the applied pressure gradient, experiments have

unequivocally indicated that a range of interfacial scaling exponents is possible, de-

pending upon the magnitude of the capillary number. At very low capillary numbers

the roughness exponent a was found to be equal to 0.8 [13, 29]. An increase in the cap-

illary numbers (achieved by increasing the invasion velocity) displayed a concomitant

2In this context, universality refers to identical interfacial scaling statistics for different systems.
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gradual crossover to a roughness exponent of 0.5 [11].

(ii) In the case wherein the displacing fluid invaded the porous medium by virtue

of its own capillary forces [termed as imbibition invasion (IMI)], the system exhibits a

'pinning transition' wherein the interface gets pinned because of its inability to over-

come the random forces. This moving-pinned transition has also subsequently been

claimed to be an example of a nonequilibrium phase transition, with the comparable

experiments manifesting a roughness exponent of a = 0.63 [1].

b. Finally, when a nonwetting fluid displaces a wetting fluid (still within the stable-

front regime), a self-similar fractal structure of the interfacial front has been observed

[24].

Due to the universal nature observed in the experiments, this regime has attracted

a number of phenomenological modeling efforts (cf. Stepanow [31]) to accurately

explain the physics of the phenomena at hand. Despite innumerous experimental

and theoretical studies, a unifying feature of the entire gamut of observations is still

fundamentally lacking. In this work we formulate and analyze a model based on a

gradient expansion of the interfacial fluctuations to thereby providing some unifying

aspects of the observed phenomena.

13.1 Philosophy of the Analysis

In the following analysis, we focus on those scenarios wherein experiments have re-

vealed a self-affine interface. Further, we specifically concentrate on the regime near

the 'depinning (and pinning) transition,' since a number of experiments have pur-

ported to observe universal values for the exponents in this regime. Our analysis

performed will be purely at a macroscopic level - in contrast to the previous sec-

tions of the thesis - which dealt with the explicit transition from the microscale to

the macroscale. The following remarks constitute the philosophy underlying the sub-

sequent macroscopic phenomenological analysis: near a critical point (the depinning

transition), the macroscopic details of the system become independent of most of the

innumerable microscopic details of the systems studied [9], and instead depend upon
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only on a few salient features of the system. These basic microscopic features can be

captured by appropriate phenomenological parameters within a macroscopic model.

Quantification of these parameters would require detailed analysis (along the lines

of the preceding parts of thesis) to effect the transition from the microscale to the

macroscale level. However, even in the absence of such an explicit identification of the

macroscopic parameters, we can deduce certain universal macroscale properties of the

system (near its critical point) based on quantitative analysis of the phenomenological

model. It will be shown in the following analysis that the roughness exponent is one

such result which can be deduced based upon considerations of the phenomenological

model [19].3

Based on such a philosophy, we eschew consideration of details of the porous

medium, and instead content ourselves to represent the latter as a 'quenched random

force' acting on the fluid. The origin of this force can be heuristically justified in

terms of the respective wetting properties of the fluids and the accompanying gain

in chemical potential due to invasion [4]. Furthermore, we represent the interfacial

structure by a coarse-grained parameter h, which is assumed to be a continuous func-

tion of the transverse spatial coordinate (denoted by x in our analysis). Despite

the innumerous discontinuities which occur at the microscale level, construction of a

coarse-grained interfacial representation is justified in the self-affine case where the

interface is smooth, i.e. Vh L - 1 -+ 0, as L -+ oc. Further, we concentrate on

capturing the physics accompanying fluid flow phenomena (thereby distinguishing it

from magnetic systems), which features where overlooked in the previous theoretical

researches on this issue. These researches are briefly summarized in the next sec-

tion along with their predictions, most of which we believe are either incorrect or

incomplete.

Subsequent to the derivation of a new model representing the phenomena, we

resort to a simplistic scaling analysis of our model so as to elucidate the possible

3The burden of the entire analysis is to formulate a reasonable phenomenological model to quan-

tify the situation. The test of the model lies in a comparison of its predictions with experimental

observations.
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roughness exponents predicted by the model. As cautioned in the preceding chapter,

scaling analysis is a bit suspect when nonlinearities arising from quenched roughness

are present. However, in most of the previous researches which dealt with the rigor-

ous renormalization group analysis of quenched random systems, Flory analysis has

predicted the roughness exponent quite accurately [25]. Therefore, in this work we

utilize scaling analysis to predict the roughness exponent in our model. Moreover,

experiments measuring the dynamical exponents are too few and contradictory (see

for instance [15]) to draw meaningful conclusions sufficient to enable comparison of

predictions derived from theoretical models.

13.2 Review of Previous Studies

Analogies between the behavior exemplified by two-phase fluid interfaces and inter-

faces occurring in condensed matter systems (for example, between the two phases of

magnets) have led to the claims that same phenomenological model might be used to

characterize the interfacial dynamics in both cases. The model most widely proffered

for the depinning transition case is the dynamical version of RFIM [5], namely

Oh 2h
= F + o- 2 + 7(x, h), (13.1)

at OX2

wherein h denotes the interfacial position of the front in the longitudinal y direction

and x the transverse coordinate (we are concerned exclusively with the experimental

case where x is one-dimensional). o- denotes the so-called macroscopic interfacial

tension and F the applied force. 77(x, h) constitutes the quenched random noise,

representing the affinity of the disordered medium for one of the two phases. For

random field disorder the noise term is assumed to be delta-correlated in both the

x and y directions with a zero mean value, i.e.

(7(x, h)) = 0.(13.2)

(r(x, h)77(x', h')) = Ao6(x - x')6(h - h').
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In the above equation A, quantifies the strength of the noise.

Studies of eq. (13.1) have hitherto yielded inconclusive results regarding the scaling

exponents a and z observed in the fluid-flow experiments. As expounded earlier, two

distinct universality classes are believed to exist for the scenario accompanying fluid-

flow experiments:

(a) Forced fluid invasion (FFI): Experiments corresponding to this situations in-

volves the displacement of one fluid by another due to an applied pressure gradient.

In such cases renormalization group arguments based on eq. (13.1) predict a = 1

[25, 26], whereas numerical algorithms based on the above model yield a = 1.25 [22]

(also cf. Kessler et al. [20]). In contrast, experiments performed for such a scenario

result in a range of exponents, a = 0.5 - 0.8 (cf. [11, 13, 29]), depending upon the

magnitude of the capillary number. Zhang [36] proposed (subsequently corroborated

by experiments of Horvath et al. [14]) that an uncorrelated annealed noise with a

power law distribution of noise amplitudes could possibly rationalize the roughness

exponents observed in experiments. In a seminal computer simulation investigation

of the fluid invasion phenomena, Nolle et al. [27] obtained a = 0.8, further showing

that for a medium with quenched disorder the definition of the noise as proposed in

[14] would yield the noise statistics proposed by Zhang. Since power law statistics

manifest difficulties in interpreting the exponent [36] we content ourselves here with

representing the porous medium as a quenched random field disorder.

(b) The second universality class corresponds to the imbibition invasion (IMI) of

one fluid into another by capillary forces. In this case, the experimentally observed

depinning exponent of a = 0.63 is justified by a phenomenological mapping onto

Directed Percolation Depinning (DPD) [2, 34]. The continuum model believed to

be appropriate for this scenario is obtained by incorporating a nonlinear term into

eq. (13.1) [1]:

Oh 02 h Oh'\2
= F + a- + A 2+ r(x, h). (13.3)

t dx2 us

The basis for the difference in universality classes of FFI and IMI phenomena, as
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well as the observed discrepancies between theoretical and experimental values of a in

FFI, remain unresolved. Some of the salient features which distinguish the FFI and

IMI cases are: (a) the absence of an external driving force in IMI; (b) weak strength of

the disorder in FFI, contrasted with the strong disorder characterizing IMI. However,

based on these two features it has not yet been possible to justify the applicability of

continuum equation (13.1) for FFI and (13.3) for IMI.

In the following sections we use a more microscopic-based derivation of a model for

describing the two-phase fluid interfaces in random media. Subsequently, this model

will be shown to reduce to the above two models under appropriate limiting scenarios.

Thereby our model yields a unified representation of the phenomena occurring during

fluid flows in porous media.

13.3 Derivation of Dynamical Equation

Our analysis examines an oft-neglected issue (although, see He et al. [11] and Krug

& Meakin [21]), one which distinguishes two-phase fluid flows from random magnets.

This relates to the nonlocal nature of the flow field characterizing two-phase flows.

While models involving local dynamics can be obtained from symmetry considera-

tions, nonlocal models necessitate a more detailed microscale analysis. In our case,

such a description of the dynamics is obtained from Darcy's law, which is assumed

to govern the fluid motion at the macroscale. The latter relates the velocity field to

the pressure gradient4 rather than to the driving pressure itself. This feature which

distinguishes the dynamics of magnets and fluid-flows turns out to be a crucial aspect,

and enables the rationalization of experimental observations.

We consider an experimental scenario in which water constitutes the displacing

fluid, and air the displaced fluid (allowing us to set the viscosity ratio to 0, thereby

simplifying the analysis considerably). Furthermore, we assume a quasistatic response

of the pressure field to the instantaneous interfacial configuration. We believe that

such an approximation is reasonable near the depinning transition, where the mean

4The dependence on the gradient of the pressure constitutes the 'non-locality' in the phenomena.
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velocity V of the interface approaches zero. For simplicity, in the following analysis we

confine ourselves to the experimentally relevant case of one-dimensional interfaces. A

new model of interfacial dynamics is thereby derived by adapting the RFIM. Based on

this equation derived from microscopic considerations, we outline the expected form of

the general equations for FFI and IMI regimes. For the FFI regime a dynamical Flory-

type scaling analysis is carried out on the model, carefully delineating the length scales

of its validity, thereby enabling us to speculate on the magnitude of the roughness

exponent a. This yields a = 3/4 which accords well with experimental results. We are

also able to justify the observed cross-overs in the roughness exponents observed at

higher capillary numbers. Furthermore, we also heuristically justify the difference in

universality classes between FFI and IMI based on the absence of an applied pressure

gradient and the strength of the disorder. The notation used in the following analysis

is clarified in Fig. (13-2).

h (x, t)
h W)

water

air
h(x, t)

Vp W

y

' x

Figure 13-2: The notation used in the analysis of the problem. h(x, t) denotes the
instantaneous configuration of the interface. h(t) denotes spatially averaged mean
position of the interface, and h(x, t) the deviation of the interface from its mean
position. 1 denotes the macroscopic length scale of the porous medium and represents
the length scale at which the exponents are measured.

Two-phase flows in porous media are governed by Darcy's law,

v = -KVp, (13.4)

relating the pressure gradient Vp to the velocity field v. K represents the permeablilty
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of the porous medium, which in our work will be taken to be a spatially uniform scalar

quantity.5 The assumption of fluid incompressibility requires that

V -v = 0. (13.5)

This volume conservation feature which contrasts two-phase fluid flows from random

magnets has also been indicated in the work of Delker et al. [7]. Utilizing eqs. (13.4)

and (13.5) we obtain

V 2p = 0. (13.6)

Equation (13.6) possesses the general solution

P = -Piy + - Jdk elklie ikx 0(k), (13.7)
27r

where pi represents the applied average pressure gradient, and Q the deviation from a

flat interface situated at the mean position [see Fig. (13-2)]. The Fourier components

#(k) of the pressure field are unknown as yet, and are to be determined from the

boundary condition imposed at the interface.

For fluid-fluid interfaces the Laplace condition relating the difference in the local

pressures on the two sides of the interface to the local curvature of the interface

constitutes the appropriate boundary condition.6  However, for fluid interfaces in

random media, this boundary condition needs to be modified to account for the

random forces which act on the interface. The appropriate boundary condition is

thereby derived starting from the Grinstein - Ma expression for the energy 'W of an

5In the spirit of simplicity, we ignore the possible tensorial nature of the permeability.
6This boundary condition is an equilibrium boundary condition, and needs to be supplemented

by the deviatoric stress terms to account for any nonequilibrium phenomena that might be present.
However, the assumption of a quasistatic response of the pressure field enables us to utilize an identi-
cal boundary condition for the situation at hand despite the presence of nonequilibrium phenomena.
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interface in a random medium [10]:

'W =Jdx 2 -x 2 0h dy [p(x, y) - 7(x, h)]. (13.8)

The appropriate boundary condition is obtained by then assuming quasistatic dy-

namics, thereby requiring that

0 =- p(x, h) = - + q (x, h). (13.9)

In the absence of the the random noise term the above boundary condition reduces

to the classical Laplace boundary condition.

The field 0(k) is now obtained by first Fourier transforming eq. (13.9) and subse-

quently invoking eq. (13.7). For small deviations from a flat interface ( k h < 1), the

leading-order term in the expansion adopts the form

O(k) = pih(k) + u-k2 h(k) + r(k), (13.10)

where

h(k) = dx e-ikxh(x) (13.11)

and

,(k) = dx e-ik [x, h(x)] (13.12)

denote the respective Fourier transforms of h(x) and q[x, h(x)]. (In the interests of

notational conciseness, the explicit time-dependence of h has been suppressed.)

The dynamical evolution of the interface is described by the normal component

of Darcy's law:

h - n -Vp, (13.13)at

313



where n represent the local unit normal to the interface. For a surface described

parametrically by

y h(x, t), (13.14)

the unit normal is given by,

n Vh . (13.15)
1 + (Vxh)2

In the above expression k and y denote the unit vectors in x and y directions respec-

tively. Utilizing the above equation in eq. (13.13) we obtain

Oh= - Op Oh (13.16)
at Oy OxOx

(In the above equation, based on considerations of power counting we have neglected

terms involving the products of time derivatives and spatial derivatives. This simpli-

fication is subject to a posteriori verification.) Substitution of (13.10) into (13.16),

with p given by (13.7), leads to the Fourier representation of the dynamical equation

of motion:

=(x) [p1 - V ](k) - rip1|k|h(k) - ro--k2|Jklh(k) + v(k)
at

- pi dk' [k - k'][k']h(k - k')h(k') - ro dk' [k - k'][k'] 3h(k - k' I

with h(k) the Fourier transform of h(x), which in turn denotes the deviation from a

flat interface moving at a velocity V. The v(k) term represents the noise obtained

from effecting the substitutions above.

Before discussing the individual cases of FFI and IMI in the context of eq. (13.17),

we consider the noise v(k). The expression for p obtained by substituting (13.10) into

(13.7) contains the term

((x, Y) = dk eikx elkI] dx' eiko' r[x', h(x')], (13.18)
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representing the manifestation of the noise term r1. From (13.18), the resulting two-

point correlation of ( thereby obtained is

y + y'
(~(,y)((X',y')) + y (13.19)

MX1 X( YT -(X - X')2 + (y + y')2

As is intuitive, translational symmetry in the y direction is lost. We observe that

the noise term ((x, y) exhibits long-range correlations in both x and y space. This

results from the quasistatic assumption used to project out the fast relaxing variables,

together with the special form of the driving field p, which necessarily needs to satisfy

the Laplace equation (13.6) - features not accounted for in past works. Noise terms

with long-range correlations have been studied in the past, albeit in a different context

[18]. In a recent work, Chow [6] has proposed that a > 1/2 would require the presence

of long-range correlations in the noise. Our analysis appears to be the first to postulate

the existence of such noise accompanying fluid flow through porous media. As is

easily verified, long-range correlated noise of the type (13.19) modifies the scaling of

the noise, whence ( scales as 1-1/2. The inverse Fourier transform of v(k), viz. v(x),

involves a dominant term of the form 0((x, h)/&h, which can be expected to scale as

h- 1 - 1/ 2. This behavior contrasts with random field noise, which scales as h-'/21-1/2.

In contrasting eqs. (13.1) and (13.17), note that the last two terms of (13.17) are

nonlinear in h. One might expect, and indeed confirm, that similar nonlinear terms

arise from the next-order term in the expansion of 0(k). For example, a nonlinear

term of the form hV 2h (in physical space) is generated by such a procedure. However,

for the eventual scaling analysis we have performed, the results are not modified by

the presence of these additional terms (i.e. the leading nonlinear term scales as h2 1- 2).

Accordingly, we do not dwell upon them here. More importantly, one should note

the structure of the terms appearing in eq. (13.17). Explicitly, the first two terms

exemplify the nonlocal nature of the dynamics in the normal driving force. The

Jkj term has been predicted in the context of capillary line depinning, which also

involves nonlocal dynamics [16]. Thus, from our microscale analysis of the equations

of motion, we discern at least two main features distinguishing two-phase flows from
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RFIM dynamics: (a) the structure of the noise term; and (b) the nonlocal nature of

the terms present in the dynamical equations.

13.4 FF1 - Depinning

In this section we consider the features specific to the experiments accompanying FFI

depinning. In this case, pi is finite even though the mean velocity V may approach

zero. Hence, the third term in (13.17), representing a nonlinear term is nonzero de-

spite the proximity of the system to the depinning transition. Several mechanisms

have been proposed to justify the presence of such a nonlinear term in the dynam-

ics [34]. Through our analysis we propose one further possible source namely, the

anisotropy of the driving force, coupled with the fact that the driving force at every

interfacial point acts normal to the interface at that point. However, as we subse-

quently find, such a nonlinear term is irrelevant in the dynamical description of FFI

depinning.

What is the nature of the roughness exponent that would be expected to arise

from eq. (13.17) ? Two important features arise in this context :

(i) In addition to those terms explicitly indicated in the equations, the capillary

term ,o-k 2 |kI h might, in the presence of a nonlinear term v, generate a Darcy-scale

'surface tension'-like term (we eschew the details of this claim, which can be proved

by a rigorous field-theoretic perturbation analysis). In such circumstances, we expect

a general equation of the form,

=h(k) P1 kl h(k) + P2k2 h(k) + v(k) +
at

P1 Jdk' [k - k'] [k'] h(k - k')h(k'), (13.20)

wherein the other terms in eq. (13.17) have been discarded on the basis of power

counting arguments.7 Algebraic sign issues for the above coefficients necessarily play

71n the long length scale limit we can neglect terms based on the powers of the lengths which

appear in the equation. Such a quantification is enabled by the utilization of the dynamical scaling
h-~ l.
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a crucial role in interfacial stability, requiring a more sophisticated treatment than

that attempted here.

(ii) The Iklh(k) term dominates in the hydrodynamic (large wavelength) limit.

However, flow experiments in porous media have persistently shown that the observed

roughness exponents constitute an intermediate length scale phenomenon, rather than

being a manifestation of asymptotic behavior [11]. Thus, we employ a dynamical

Flory-type scaling [12] to analyze the intermediate length scales representative of

experimental conditions. For instance, the small capillary number regime suggests a

scenario wherein Pi is small compared with the capillary terms (represented by P2).

Respective scalings of various terms on the RHS of eq. (13.20) are as follows: 8

|kI h(k) ~ h/l; k2 h(k) ~ h/l 2 ; dk' (k-k') k' h(k-k')h(k') ~ h2/1 2 ; v(k) ~ A1/2Ihl 1/2

(wherein AO represents the strength of the disorder). These scaling relations permit

us to calculate the roughness exponents by matching the scalings of the individual

terms with those of the noise. At long length scales the noise can be expected to

occur as an delta-correlated annealed noise (cf. Narayan & Fisher [25] and Horvath

et al. [13]). However, here we consider only the regime wherein the noise manifests

as a quenched noise.

The results of such a Flory analysis are:

(a) Matching the second term with the noise yields

h /4 for < Min(P2/A P/3 4/3 P 2/p).

The scaling exponent obtained in this regime (a = 3/4) agrees well with the experi-

mentally observed value of a = 0.8. The length scales also appear to correspond to

the experimental conditions as a consequence of the small capillary numbers charac-

terizing such experiments.

81n contrast to the previous chapter, wherein the concepts of scaling where illustrated by rescaling

the equation and then subsequently using the original equation, we use a more direct but completely

equivalent approach here. In this approach, we equate the scalings of the different terms and allow

the roughness exponent to be obtained as a direct result of the analysis.
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(b) A similar exercise in matching the nonlinearity with the noise yields

h '--1/2 for p /3p « 1/i P«

The self-consistency condition for the existence of such a regime (the nonlinear term

dominates the linear term) requires that

whence suggesting that this regime probably does not exist in the FFI case at low

capillary numbers due to the weak strength of the disorder. However, manifestations

of this regime are likely to appear at higher capillary numbers.

Thus, we propose that the long-range correlated nature of the noise, unique to two-

phase fluid flows, is responsible for the anomalous exponents observed in experiments.

The observed range of exponents is a manifestation of cross-over behavior at higher

capillary numbers. Furthermore, the nonlinear terms which are generated prove to

be irrelevant at low capillary numbers due to the weak nature of the disorder and the

presence of long length scale viscous smoothing effects.

13.5 IMI - Depinning

In this section we propose an explanation for the different behaviors exemplified by

the FFI and IMI regimes, hitherto unresolved. In the case of IMI, due to the strong

disorder forces, the motion of the interface at any point depends only on the local

disorder forces. In two dimensions, the pinning transition was argued by previous

researchers [2] to be of the same universality class as the transitions occurring in

directed percolation depinning (DPD), wherein the interface becomes pinned when

strong impurities that stop its motion span the system. The main feature of IMI is

the lack of an external driving force, in lieu of which capillary forces drive the flow.

Consequently, we set P, = 0 in our equations. In such circumstances we expect a
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general equation of the form

h(k) = P2k2 h(k)+ P3lklk 2 h(k) +v(k)
at

+ P5 j dk'[k - k'][k'] 3 h(k - k')h(k'). (13.21)

The latter equation reveals that rotational symmetry about the surface normal is

broken due to the presence of the nonlinear term Vh - V(V 2h).9 Thus, even in a

geometrically isotropic porous media, anisotropy can be generated by the dynamics.

Reasons for the presence of such a term can be attributed to a combination of two

factors: (a) The driving force for the dynamics is the gradient of the pressure field,

rather than the pressure itself; (b) The fact that the pressure field p satisfies the

Laplace equation leads to an exponential decay of the pressure field in the direction

normal to the interface. As postulated by Tang et al. [34], the presence of anisotropy

in the dynamics can lead to the generation of a nonlinear term of the form (Vh)2 .

Such terms, which were shown to be irrelevant in the FFI case, can be shown (by

rigorous arguments, which are omitted here for the sake of brevity) to be relevant

in this case, the reasons for which can be attributed to the strength of the disorder

and the absence of the IkI term. The presence of anisotropy places this model in

the same universality class as DPD, which also constitutes an example of anisotropic

depinning, thereby explaining the observed roughness exponent of a = 0.63.

Thus, we propose that the anisotropy generated in the description of dynamics is

responsible for the universality class of imbibition, corresponding to a = 0.63. We be-

lieve that our arguments provide the first theoretical rationale for the experimentally

observed distinction between FFI and IMI.

13.6 Summary

In summary, we have derived a new model for two-phase frontal displacement flows in

random porous media. The underlying analysis utilizes a quasistatic approximation

9We are grateful to Prof. M. Kardar for this remark.
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for the pressure field, along with Darcy's law governing the dynamical evolution of

the interface. The resulting evolution equation contains nonlocal terms as well as a

noise term, the latter exhibiting long-range correlations.

For FFI, a Flory-type scaling analysis was performed and the possible scaling

regimes carefully delineated. Such an analysis yielded results in good agreement with

experimental observations. Despite the success of our scaling analysis it is to be

cautioned here that dynamical Flory-type analysis does not enjoy the same success

as equilibrium Flory scaling [18]. It does, however, provide a lower bound for RG

calculations.

We also studied the IMI regime, pointing out the distinctions between FFI and

IMI, and justifying anisotropic depinning in the IMI case. Our analysis points up

the marked contrast between two-phase fluid dynamics in random media and random

magnets, thereby rationalizing existing discrepancies between experimental measure-

ments of two-phase flows and analytical calculations thereof based on RFIM.
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Chapter 14

Summary

In this part of the thesis we outlined some salient concepts utilized in the quantitative

description of 'self-similar' and 'self-affine' systems. In particular, we claimed that

self-similarity and self-affinity requires that the system be identical to itself under

appropriate rescalings of the spatial and temporal variables.' In such a scenario,

the requirement of similarity of the system at all scales constrains the equations

governing the rescaled variables to be identical to the original equation, except for

possible renormalizations of the coefficients present therein.

We then extended the concept of self-affinity to encompass random fractals, wherein

the statistical properties of the fractal satisfy the constraints imposed by self-affinity.

This feature enabled us to calculate the statistical properties of random interfaces

based on simple scaling analysis. The implementation of these scaling analyses typ-

ically required a coarse-graining of the system (or rescaling of the spatial variables),

followed by implementation of the constraint arising from the self-affine nature of

the functions. This is in contrast to the rest of the thesis, which required elaborate

calculations pertaining to the coarse-graining of the microscale system.

Subsequently, we elucidated the power of the scaling concepts and the accompa-

nying subtleties by utilizing it for modeling and predicting the roughness exponents

of two-phase fluid interfaces in random media. The explicit results derived from such

'This rescaling procedure must, of course, be such that the rescaled lengths be greater than a
lower cutoff length and smaller than some upper cutoff length.
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an analysis represented what we believe to be one of the first theoretical explanations

of existing experimental observations. Explicit account was given of the nonlocal dy-

namics (in a quasistatic approximation) involved in two-phase fluid dynamics quanti-

fying flow through porous media. The results were then used to derive the dynamical

equation of motion of a Darcy-scale interfacial fluid front. We then considered the

cases of invasion and imbibition separately, and pointed out the features responsible

for the different depinning exponents observed in the two cases. A Flory-type scaling

analysis was also performed on this model, yielding a roughness exponent a = 3/4

in a range of intermediate length scales - in good agreement with experimental ob-

servations. Our model possessed a number of features absent in the model widely

speculated to be applicable to this scenario, namely the Random Field Ising Model

(RFIM). Among other things, our model incorporated physical phenomena existing

in two-phase fluid flow phenomena that are not reflected in the RFIM model. Addi-

tionally, our model furnishes possible reasons for rationalizing discrepancies observed

between experiments and theory.
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Appendix A

Scaling in the Inner Region

The following identities are easily obtained (refer [1]; the truncated versions appearing

below retain only those terms necessary in the subsequent analysis):

_ i i - ahi 701
i2 0 + i3 

0
6 Oh

(A.1)
h20 q2

- hih2 q2

hh + (h2
1 2 qi h 2 & qi q2 I, Oq 2

(A.2)1 ( _3

+ ,

62 Of' hih2 O'h).
(A.3)

Further, as a consequence of our requirement that the curvatures be macroscopic, the

principal curvatures [2]

1 a11
K1 = 5hio j5 f-o,'

1 0I2
K2  = ~ ,

h 20 On i-=0

(A.4)

(A.5)
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are assumed to be 0(1). (Refer to section 3.5 for the definitions of hl, h 2 .)

The following expressions furnish the leading-order terms for some of the quantities

appearing in equations (3.31). Using (A.2) we obtain

I : D = hIh 2
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whereas the corresponding contribution at 0(1/6) is

i1 h1oh2oh3o 0 ( 2 Ov 30 1
3 Oh h20)

___0 &v30
+ a p ~ft+h10

Of, Of, Oq1

+i 2 hoh 2oh 3o
+ 3 h j& q 2

+i3{hioh 2oh 3o a
( 6 aq1

2 Ov30 1
3 a h10

2 Ov10(h20 a5

+ A O'21 +y Of+1 n (a aq30
Oq1

a ( 11 v20+ h1oh2 oh30 q ( h2 0
Oq2 h20 Oft

-V 2 0 K2 ± 20 K+ N(1x)

a 2p T_

2 A 130
3 il

328

(A.6)

[ f)3
Iqj

(A.7)

(A.8)

(A.9)

-viori) ± Of10
+Ofx

1120
/1- K2

Of, }
2 a(x)
3 On

+

(A.10)

1 (42
+ Z

Oq2 i

~ 10 1
-VJK1+- 6

2
TV = A li111+022 I

+K2)+[I O'1 K1
of,



In the above, X denotes the quantity

X = hioh2 ( ') + 1+Oqi h2o Oq 2 hio

1 a(f31)
h2ohio Oft Oft h2hi,

Using the solution of the diffusion equation (3.55) at leading order, we find that

the 0(1/62) contribution to V -i is identically zero, whereas at 0(1/6) we obtain

V -= i 3 Ca (K1 + K2 ) .ii
(A.12)

Summarized below are the respective forms of the various matching conditions

derived within the framework of the singular surface model for the specific geometry

chosen to represent the interface [2]. The velocity matching condition for this material

interface is

V + =-V0 = 0 at n = 0 (A.13)

or, equivalently,

[[vo]] = 0. (A.14)

The stress matching condition is

n - [[Po]] = -2o-1n at n = 0, (A.15)

where - denotes the interfacial tension, n the unit normal to the interface (pointing

in the direction from - to +), and

1 1 + K2

2

the mean curvature of the interface. In terms of the semi-orthogonal curvilinear
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(A.11)

(A.16)



coordinates (qi, q2, n) the above conditions can be written as

-po + 2p =V3 -2o-W, (A. 17)
On

p yhio + - 0, (A.18)

p (h 20 V3 0 + DV20 - V20K2 = 0. (A.19)
Dq2 +n Dr

Consistent with our earlier assumptions, surface rheological effects have been assumed

absent.
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Appendix B

Proof of Theorem 1

This section is largely based on Brenner [1]. We use the following identities, proofs

of which are left as an exercise for the interested reader.

Identity 1 A time periodic (or almost time periodic) function 4' possessing a spa-

tially periodic gradient can be decomposed as follows:

=(R, t) + R -F + R . F/(t), (B.1)

where 4'(R, t) is a spatially- and time-periodic function, and

F = ds 4',
T0 t OA

F' = ds 4 -P.

TO '7

(B.2)

(B.3)

It follows easily that

(B.4)
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IF'/ = 0.



For 4 a spatially periodic function, the following identity holds:

1
-Sk
TOt sk ds - 0

t frd - v.y

In what follows, we outline the proof of Theorem 1.

Proof of Theorem 1

The macroscopic flux density tensor M is defined as

Sk .M = jds . M.

Using Identity 1 we have that

Sk.Mjds -[M(R, t) + R -G +

where G and G' are defined as in (B.2) and (B.3). Upon using (B.4) and neglecting

O(ll1I) terms [i.e. writing R = + O(1lI1)], we obtain

Sk M ds - I(R t + Sk . R - G.

Identity 2 thereby yields

Sk - Sk
TO 11870rds - +Sk . R -G.

Using Identity 1 to write M in terms of M, G and G(t), and upon further neglecting

terms of order O(IlII), one thereby obtains

(B.10)SkM Sk If - M + Sk - rds-G'.
TO t 70 T 0 t rO

Subsequent use of (B.4) jointly with the fact that Sk can be of arbitrary magnitude

and direction thereby furnishes a proof of the first part of Theorem 1.
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(B.5)

(B.6)

(B.7)

(B.8)

(B.9)

Identity 2

R - U(t) ,I



To prove the second part of the theorem we observe that the spatial periodicity

of the porous medium requires that Sk{nl} = Sk{n + dn}, where n + dn denotes the

face of an adjacent cell. Consequently, (4.32) implies that

Sk - M(Rn+dn) - M(R)] =
1kn ds - [M(sk{n + dn}) - M(sk{n)] .

(B.11)

However, since R, - R and Rn+dn - R + dR, it follows that

[M(Rn+dn) - M(Rn)I = VM - .

Application of Identity 1 to the right-hand side of (B.11) yields

i ik ds* [M(sk n + dn}) - M(Skfl})J =* Sk.

Upon combining the above two results, one verifies the second part of Theorem 1. Q.

E. D.
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Appendix C

On the Equivalence of Mass Flux

and Momentum Density

Definitions of the Macroscale

Velocity

Consider (4.36), representing the definition of the macroscopic velocity based upon

the mass flux:

_ 1ff
Ep V=-- rds - pv. (C.1)

Gauss's divergence theorem yields

tEpTV = - j
TO tT

V - (pvr) dar, (C.2)

in which we have utilized the fact that in our diffuse interface model all fields are

continuous throughout the unit cell, except at the surface of the solid particle, where

v = 0. The right-hand side can be simplified further as

EPv = j rV -(pv) d3r + pvd r,
TO i r TO t

(C.3)
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which upon using the microscale equation of continuity (3.9) for the mixture can be

written alternatively as

1
EPV = f

TO t o i pv d3 r. (C.4)
I0

Interchange of the space and time integrations in the first integral gives

p v =-T ITOrd3r (- + 1
t at TO

pv d3r. (C.5)

The first integral vanishes in view of the assumed steadiness of the macroscale fields,

whence (4.26) is obtained. Q. E. D.
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Appendix D

On the Definitions of the

Macroscopic Pressure and the

Stress Tensor

The macroscopic stress tensor is defined in (4.41). Separation of the latter into respec-

tive pressure and deviatoric stress contributions is arbitrary. Usually, the quantity of

significance is the pressure gradient rather than the pressure itself [1]. Here, we adopt

the convention of assigning the mean stress to the pressure term. Thus, we define

def. 1 (D.1)
3

whence

= P - -I(I:P). (D.2)
3

This decomposition furnishes expressions (4.43) and (4.44). Upon applying Identity

1 to (4.44) one obtains, upon neglecting O(Hl11) terms,

[ (rI - Ir) - ds - (pvv' + ). (D.3)
To r 3
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(The value of the integral multiplying R - G is identically zero.)

quadrature involves averaging spatial- and time-periodic functions respectively over

a unit cell and one time period, we find that

(D.4)

Thus,

V . F = -Vp. (D.5)

V -;F = 0.

Using Theorem 1 it follows that

= I j ds -P,

which requires that

TO
(D.7)i

S= - Ij dsp
To0 aBO

1

S ds - r.

The second integral vanishes in view of the spatial periodicity of -r, whereupon (4.45)

is recovered.
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(D.6)

Explicitly,

(D.8)

Since the above

ds-o - ( - pI + -r).
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Appendix E

Generalized Darcy's Law

We assume a general form for the constitutive equations, allowing for coupling be-

tween the fluxes. However, recognition that 1 + j 2 = 0 requires that only two of

the phenomenological tensors Alk, A2k (k = 1, 2) be independent quantities. Conse-

quently,

i = -2= A' * V (1yi -A2) +A'/ V

F = A'CV+A'-

where the symmetry of the coupling tensors has been invoked.

into the linear momentum equation (4.54) gives

- VP + A V + E E igi + A'b -
i=1

Substituting (E.2)

V(i 1 - 72 ) 0; (E.3)

equivalently,

2

and

(E.1)

(E.2)

(E.4)
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- A'b - 9(Al - T12).



[When coupling between the fluxes is neglected, the above reduces to the Darcy

mixture law (6.7).] Furthermore, use of the relations

Aa - v); +

epivi =A'> - 9( 1 - #2) +

2 = E -2(V2 V)

2

A' ( - E Pig)

=A2 v2 = A' (T 2 - 1 ) +A/'

where the A', A', A'' and A'' are combinations of A' A'b and A'Ic. Knowledge of

the explicit forms adopted by A", A", A", and A' will prove unnecessary; however,

no symmetry in the coupling tensors could be identified despite the fact that only

three of the above four phenomenological coefficients are independent. Use of (5.9a,b)

gives

P2
(E.8)

which may be written alternatively as

(il - T12) = - E1 )
VP2(P2 (E.9)

Substitution into in (E.6) and (E.7) thereby yields

vi = (A',)-' - (Vj -Ep1) + (A' -1

- Ep1 g1) + (A22) (9T2
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yields

and

(E.5a,b)

(E.6)

(E.7)

- (V72 - EP292), (E.10)

(E.11)

- (*p- e EPigi),

9(Al - T12 = 1

01

-EP292),V =(A21)



where, again, the exact forms of the A' (i,j 1...4) are unimportant.
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