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ABSTRACT

In porous or fibrous materials where the pore diameter or interfiber spacing is comparable
to the dimensions of a protein or other macromolecule, the rates of diffusion or convection of the
macromolecule tend to be lower than in bulk solution. This phenomenon, termed "hindered
transport," is explained in large part by a combination of steric and hydrodynamic interactions
between the permeating molecule and the medium. The primary goal of this thesis was to examine
the hindered convection of macromolecules in fibrous gels. This was done by measuring the
sieving coefficient (0, the ratio of filtrate to retentate concentration) of globular proteins and Ficoll,
a crosslinked copolymer of sucrose and epichlorohydrin (Stokes-Einstein radius, r, = 2.5 - 7.0
nm), in agarose membranes as a function of protein size and gel concentration. The proteins used
were lactalbumin (r, = 2.1 nm), ovalbumin (rs = 3.0 nm), bovine serum albumin (BSA) (rs = 3.6
nm), and bovine immunoglobulin G (IgG) (r, = 5.2 nm). The volume fraction of agarose (4) was
varied from 0.04 to 0.08. Agarose membranes were prepared on polyester mesh supports and
studied in a stirred ultrafiltration cell, and the Darcy permeabilities of the gels were determined in
addition to 0. The values of & decreased with increasing r, or 4, as expected. From the
measurements of 0 and estimates of the protein diffusivity and equilibrium partition coefficient, the
convective hindrance factor (K,) was calculated for each protein-gel combination. This is the ratio
of the average solute velocity (in the absence of diffusion) to the superficial fluid velocity. For the
smallest value of 4 (0.04), it was found that K, exceeded unity for all macromolecules studied. At
this gel concentration, K, increased with increasing solute size up to approximately 1.5 for the
largest Ficoll. For larger values of 4, it was found that K, decreased with increasing solute size.
In these gels, K, exceeded unity for smaller solutes, whereas K, < 1 at larger values of rs. At an
intermediate 0 (0.06), K, for the largest Ficoll remained close to unity (0.94). For the most
concentrated gels (0 = 0.08), K, for this Ficoll decreased to approximately 0.5. The observed
experimental behavior for K, was qualitatively, but not quantitatively, consistent with predictions
from existing hindered transport theories for media consisting of parallel fibers or straight pores.
Given evidence from previous partitioning and diffusion data that an agarose gel is better
represented as a randomly oriented array of fibers, the quantitative discrepancies between the data
and models are not entirely surprising. Thus, the present results suggest that there is a need to
extend theories of hindered convection to random arrays of fibers.

In order to correctly interpret the experimental results, the measured sieving coefficients
were corrected for the effect of concentration polarization. A model was developed using laminar
boundary layer theory to quantify concentration polarization in ultrafiltration systems in which the
membrane forms the base of a stirred, cylindrical container. The flow was approximated as a
rigid-body rotation above a stationary surface (B6dewadt flow), with a filtration velocity that
depended on the osmotic pressure of the retained solute, and therefore varied with radial position
on the surface. Because the analysis was limited to moderate solute concentrations and filtrate
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velocities, physical properties were assumed to be constant. Attention was restricted to large
Reynolds and Schmidt numbers, so it was permissible to neglect radial diffusion and to use an
analytical approximation for the velocity field. The axisymmetric convective-diffusion problem
was solved using a finite difference method. One set of simulations focused on the osmotic
reduction in filtration rate caused by a completely retained solute. The boundary layer results were
compared with predictions based on a commonly used stagnant film model, and it was found that
the latter consistently underestimated the reduction in filtration rate, although the discrepancies
were no more than 21%. A comparison was also made with a "hybrid" model in which stagnant
film theory was assumed to be valid locally and local mass transfer coefficients were calculated by
the laminar boundary layer model. The hybrid model also underestimated the reduction in the
filtration rate; however, discrepancies were no more than 15%. A second set of simulations
concerned the effects of polarization on apparent sieving coefficients for permeable solutes. (The
apparent sieving coefficient is the filtrate concentration divided by that in the bulk retentate,
whereas the true sieving coefficient for the membrane is the filtrate concentration divided by that at
the membrane surface.) A comparison of the boundary layer and stagnant film results showed that
the latter consistently underestimated the effects of polarization on sieving. The magnitude of the
discrepancy in the predicted ratio of true to observed sieving coefficient increased with increasing
dimensionless filtration rate and with decreasing sieving coefficient, and was as much as 78% for
the conditions considered. Thus, the stagnant film approach was found to be much less
satisfactory for correcting sieving coefficients than for predicting mean filtrate velocities. It was
found that the hybrid model performed considerably better than the stagnant film model in
estimating the effect of polarization on sieving, especially at very small values of 0. For the
hybrid model, the maximum deviation from the boundary layer results was only 15%. The
predictive capability of the boundary layer model was tested using filtration data with BSA in two
commercial ultrafiltration cells. The agreement was found to be excellent, provided that an
appropriate value was selected for the angular velocity of the bulk fluid.

Thesis Supervisor: William M. Deen
Title: Carbon P. Dubbs Professor of Chemical Engineering
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CHAPTER 1

Background

1.1 Introduction

Hydrogels enjoy many uses in chemical and biomedical research. Techniques such as

liquid chromatography and electrophoresis rely on the use of gels as media, and therapeutic devices

such as contact lenses and certain implantable drug delivery devices are composed of gels.

Additionally, some body tissues display structures which are remarkably similar to hydrogels. A

particularly interesting example is the glomerular basement membrane (GBM). The GBM is the

most significant continuous barrier to the ultrafiltration of blood plasma across the glomerular

capillary walls of the kidney, the first step in the formation of urine. The GBM is a fibrous

structure consisting primarily of Type IV collagen and glycoprotein (Brenner and Rector, 1981).

Robinson and Walton (1987) have suggested that because of its structure, the GBM can be

accurately modeled as a random fiber matrix gel.

This widespread utilization of fibrous hydrogels makes it important to understand the

transport of proteins and other macromolecules through these materials. Such an understanding

would enable the rational design of synthetic media for chromatographic or membrane separations.

An understanding of the transport of nutrients through synthetic gels would aid in the design of

drug delivery devices in which gels are used to encapsulate cells that produce therapeutic agents

(which must in turn be transported out of the gel). The development of an understanding of the

transport of proteins and other macromolecules across barriers such as the GBM is an important

step in understanding glomerular ultrafiltration and the failures in ultrafiltration associated with

disease.
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1.2 Darcy Permeability of Fibrous Media

An important part of evaluating hindered transport of solutes in fibrous gels is the

understanding of low Reynolds number flow through such media. Experiments and theories

related to Stokes flow through fibrous media have been summarized by Jackson and James (1986).

The authors compared experimental data for a wide variety of media ranging from stainless steel

wire crimps to collagen and solutions of hyaluronic acid. They found that the results for different

media collapsed reasonably well if the appropriate dimensionless variables are employed, namely $

(the volume fraction of fibers) and the dimensionless permeability lir2 where rf is the fiber radius

and K is the Darcy permeability. Darcy's Law is stated as

v=- VP (1-1)

where v is the fluid velocity, y is the viscosity, and P is pressure.

Theories discussed in this summary involved solving Stokes' equation inside of a unit cell

with zero velocity at a rod surface and zero velocity gradient at the edge of the cell. These theories

were divided into three categories:

i.) flow parallel to an array of parallel rods

ii.) flow normal to an array of parallel rods

iii.) flow through three-dimensional arrays

The first group of theories were found to overpredict experimental permeabilities. The authors

noted that such a result is to be expected since fibers randomly oriented across the flow would

offer more resistance in experiments. The second group of theories were found to predict

permeabilities that were roughly half as large as those predicted by considering flow parallel to an

array of parallel rods.

The final group of theories consisted of two expressions, the first of which was derived by

Spielman and Goren (1968) by modeling flow through fibrous media as the flow around a single
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circular cylinder surrounded by an infinite homogeneous porous medium (a technique now referred

to generally as "swarm" theory). Their expression for a three-dimensional array (for 0 < 0.75)

was

1 1 +5 _ K_ r / (1-2)

40 3 6 rf KO(rf/61)

where Ko and K, are modified Bessel functions of the second kind. The second expression was

derived by Jackson and James (1982) using a cubical lattice model. In this work, it was argued

that the permeability of a random media is equivalent to the permeability of a cubical lattice formed

of the same material. Their expression was derived by adding the resistances of rods aligned both

with and across the flow, calculated using the model of Drummond and Tahir (1984) for flow

normal to a square array of cylinders. It took the form:

C= -[ln -0.931+ O(In#) (1-3)
rf 20 0

The authors noted that the two models (Eqs. 1-2 and 1-3) agreed reasonably well with each other

and with the experimental data obtained.

Noticeably missing from the experimental data collected by Jackson and James are data for

high porosity hydrogels. Our laboratory provided the first experimental values for the permeability

of agarose gels (Johnson and Deen, 1996). In these experiments, thin gel membranes were cast

onto a rectangular polyester mesh approximately 70 gm thick in order to give them enough rigidity

to withstand significant pressure drops. Using a commercial ultrafiltration cell, the permeabilities

of gels ranging in concentration from 2% to 8% were measured. It was found that Eq. 1-3

significantly underpredicted the Darcy permeabilities of agarose gels, especially at lower values of

0,.

More recently, the permeabilities for monomodal and bimodal periodic and random fibrous
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media were calculated numerically by Clague and Phillips (1997). The authors calculated the

hydrodynamic interactions between fibers by applying a numerical version of slender body theory

to a collection of fibers in a cubic cell. Their model provided predictions for the Darcy

permeabilities of agarose that were higher than those obtained with Eq. 1-3. However, the

numerical estimates for the permeabilities were still smaller than the experimental values of

Johnson and Deen (1996), especially at lower gel concentrations.

1.3 Hindered Transport Theory

1.3.1 Overview

In porous or fibrous materials where the pore diameter or interfiber spacing is comparable

to the dimensions of a protein or other macromolecule, the rates of diffusion or convection of the

macromolecule tend to be lower than in bulk solution. This phenomenon, termed "hindered

transport," is explained in large part by a combination of steric and hydrodynamic interactions

between the permeating molecule and the medium (Deen, 1987). The local flux of solute through

an isotropic medium (or through a medium in which fluxes are one-dimensional) can be written as

N = -KdD.VC + KevC (1-4)

where C is the macromolecule concentration averaged over a volume that is small compared to the

dimensions of the medium but large compared to the pore diameter or interfiber spacing, D, is the

free-solution diffusivity, and v is the superficial fluid velocity. The dimensionless coefficients Kd

and K, describe hindrances to diffusion and convection, respectively. The diffusive hindrance

coefficient equals D/D., where D is the apparent diffusivity within the porous or fibrous material.

The convective hindrance coefficient may be interpreted as the ratio of the average solute velocity

(in the absence of diffusion) to the superficial fluid velocity.
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For the case of one-dimensional transport across a membrane of thickness L, the

macroscopic flux equation can be obtained by integrating Eq. 1-4 over the membrane thickness

subject to boundary conditions at the surfaces. These boundary conditions are established by the

external solute concentrations:

CO = C = (1-5)
CO C'I

where primes denote external solute concentrations and P is the equilibrium partition coefficient.

The resulting expression is

[1 - (C'/C)e (1-6)N =WvC' [1-ePe

Pe = WvL (1-7)
HD.

where H = cPKd, W = PK,, and Pe is the membrane Peclet number. The limiting forms of Eq. 1-6

for the extremes of the PNclet number are:

N = (CO' - C') (Pe <<1) (1-8)
L

N = WvCO' (Pe >> 1) (1-9)

The coefficients P, Kd, and K, are functions of solute size and charge, as well as the properties of

the stationary medium. These coefficients are often expressed in terms of the "solute

permeability," which equals HDJL, and "reflection coefficient" for filtration:
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a- = lim (1 - 9)=1- W (1-10)
Pe-+o

where 0 is the sieving coefficient (see Section 1.4 below). The filtration reflection coefficient can

be interpreted as the fraction of solute "reflected" or rejected by the membrane when convection is

dominant (Pe -* oo).

1.3.2 Porous Media

The objective of research in hindered transport is to establish the relationships between the

structural properties and the transport coefficients. Much of this research has focused on

theoretical or experimental models for transport through arrays of straight pores of regular cross

section. The hydrodynamic theory for hindered transport is well developed for such situations,

especially for spherical macromolecules in long, cylindrical pores (Deen, 1987). One example of

such a theory which is applicable to the entire range of 0 ; A < 1, where A is the ratio of the solute

radius to the pore radius, is based on the hydrodynamic results of Bungay and Brenner (1973).

These authors used singular perturbation techniques to solve the problem of flow around a sphere

positioned eccentrically in a long cylindrical tube. The authors obtained asymptotic expansions for

the torque, hydrodynamic force, and pressure drop for flow past a stationary sphere as well as for

a sphere translating or rotating in a quiescent fluid. Using the results provided by these authors for

the force on a sphere placed on the centerline of the tube, expressions for the coefficients H and W

can be obtained (Deen, 1987). These results are shown in Figure 1.1. From these results the

coefficients Kd and K, are obtained by dividing H and W by 0, which in the case of cylindrical

pores can be evaluated from geometry:

1= (1) A)2

The resulting values of Kd and K, are shown graphically in Figure 1.2. In pores, the diffusivity of
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Deen (1987) (Figure 1.1) by Eq. 1-11. The solid and dotted lines are

coefficients governing convection and diffusion, respectively.
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a solute is always hindered (Kd < 1) due to hydrodynamic interactions between the solute and the

pore wall. However, the convective hindrance coefficient, K,, is always greater than one. This is

due to steric interactions which prevent the solute from sampling the regions of lowest fluid

velocity near the pore walls.

The filtration reflection coefficient, o, for cylindrical pores can be evaluated by using the

result for W (Figure 1.1) in Eq. 1-10. The result is shown graphically in Figure 1.3, where Ojris

plotted as a function of A. Also shown in this figure is the Anderson and Malone (1974) result for

the osmotic reflection coefficient, o,, for cylindrical pores. This reflection coefficient describes the

reduction in the osmotic contribution to flow across a membrane separating two solutions of

different concentration caused by only partial exclusion of solute by the membrane. The volume

flux, J,, across such a "leaky" membrane is given by

J, = LP(AP. - cAJ) (1-12)

where L is the hydraulic permeability of the membrane, P and H are pressure and osmotic

pressure, respectively, and the subscript oo denotes bulk solution conditions on each side of the

membrane. Anderson and Malone (1974) found that for the case of rigid, spherical molecules and

a membrane consisting of long, cylindrical pores

CO = (1- _ )2 (1-13)

Anderson (1981) found that for such a system Eq. 1-13 provided a good approximation for the

filtration reflection coefficient as well. As can be seen in Figure 1.3, the two expressions (Eqs. 1-

10 and 1-13) provide very similar results.
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Filtration and osmotic reflection coefficients for membranes consisting of

long, cylindrical pores. Values for afwere calculated by using the result for

W (Figure 1.1) in Eq. 1-10. Values for a, were calculated from Eq. 1-13.
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1.3.3 Fibrous Media

Although hydrodynamic theory developed for straight, cylindrical pores has been

successful in many cases in correlating transport data in membranes, this theory provides little

insight into the structure-function relationships for fibrous materials, such as crosslinked,

polymeric gels. As stated in Section 1.1, hydrogels are widely used in chromatographic

separations and in therapeutic devices, and a number of body tissues (e.g., capillary basement

membranes) have gel-like properties. Thus, there is ample motivation to develop a better

understanding of hindered transport in gels.

Ogston (1958) was among the first to suggest that a solution of linear polymers, or the

polymeric component of a gel, might be represented as a randomly oriented array of straight

cylindrical fibers. The parameters which characterize the fiber array in this model are the fiber

radius, r. and the volume fraction of fibers, 4. This concept is the basis for much of the

theoretical work on hindered transport in gels, which has focused mainly on equilibrium

partitioning and diffusion. Ogston (1958) predicted partition coefficients for macromolecules in

fiber arrays by determining probability distributions of interfiber spacings. His result is given by

0 = exp[-O(1 + A)] exp(-f) (1-14)

where for the case of fibrous media A = r/jr, Stochastic-jump arguments were used later to derive

an expression for the diffusivity within a fibrous medium (Ogston et al., 1973). These and other

results was adapted by Curry and co-workers for the modeling of microvascular permeability

properties (Curry and Michel, 1980; Curry, 1984). The diffusion theory of Ogston does not

include solute-fiber hydrodynamic interactions, which will reduce the mobility of a permeating

macromolecule. Hydrodynamic interactions were considered by Phillips et al. (1989; 1990), who

used Stokesian dynamics and generalized Taylor dispersion theory to compute the apparent

diffusivity and the convective velocity of a spherical molecule moving through a parallel array of

21



cylinders. Those authors proposed that diffusivities could be estimated for other fiber

arrangements by treating the fiber array as a homogeneous medium characterized by its Darcy

permeability, K. An extension of that idea to account for steric restrictions was described by

Johnson et al. (1996). Their expression for Kd took the form:

Kd = F(r/ F) (1-15)

where F describes the effect of hydrodynamic interactions and S is a steric or tortuosity factor (see

Section 2.3.3). Clague and Phillips (1996) calculated hydrodynamic interactions for the case of a

spherical solute moving through a random array of cylinders by representing the sphere as a

collection of point singularities and accounting for the fibers using a numerical version of slender-

body theory. There are as yet no theoretical results for convection of macromolecules through

random arrays of fibers.

Several methods have been used to measure hindered diffusivities of proteins and other

macromolecules in polymer solutions and gels. Recent work has taken advantage of such

techniques as pulsed-field-gradient NMR (Gibbs et al., 1992), holographic interferometry (Kosar

and Phillips, 1995), and fluorescence recovery after photobleaching (FRAP) (Johnson et al., 1995;

1996). In contrast, very little is known about convective hindrance factors. In what appears to be

the only relevant study to date, Kapur et al. (1997) studied diffusive and convective transport of

two proteins, ribonuclease A and bovine serum albumin (BSA) through poly(vinylidine fluoride)

membranes whose pores were filled with polyacrylamide gel.

1.4 Summary of Thesis Work

The primary purpose of this thesis work was to provide experimental values of Kc as a

function of solute size and gel concentration. To complement previous results for Kd from our

laboratory (Johnson et al., 1995; 1996), globular proteins and Ficoll, a crosslinked copolymer of
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sucrose and epichlorohydrin, were employed with agarose gels. The advantage of agarose,

beyond its ready availability, is that it possesses fibers (consisting of aggregates of x-helical

polysaccharide chains) that exhibit undetectable Brownian motion (Mackie et al., 1978) and have

little net charge. Thus, agarose gels appear to approximate the structural assumptions of the

aforementioned fiber-matrix theories. Values of K, were determined experimentally by measuring

the sieving coefficients (0, the ratio of the filtrate to retentate concentration) of several

macromolecules in agarose gel membranes. The rationale behind the experimental design is seen

by rearranging Eq. 1-6. Given that

N = vCL (1-14)

and defining the sieving coefficient (0) as

9 = CL (1-15)
CO'

the sieving coefficient is found to be related to the hindrance factors by

S= Kc (1-16)
1- (1- OKc)exp(-Pe)

Pe = (PKc)vL (1-17)
(4Kd )D.

Equations 1-16 and 1-17 show that sieving coefficients can be used to determine Kc, provided that

P and Kd can be determined independently. Values for Kd were estimated from previous data

(Johnson et al., 1996), whereas the model of Ogston (1958) was used to calculate (P. The sieving

experiments and the results for the convective hindrance coefficient are discussed in detail in

Chapter 2.
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In order to correctly interpret experimental sieving results, it was necessary to correct these

results for the effect of "concentration polarization," or the tendency of retained solutes to

accumulate near the upstream surface of the membrane (see Section 3.1). In other words,

experimentally what is measured is an "apparent" sieving coefficient:

el= Cf (1-18)
Cb

where C is the concentration of the solute in the filtrate and Cb is the molecule concentration in the

bulk retentate solution. However, what is needed in Eq. 1-16 is the "true" sieving coefficient:

C e = /(1-19)
C,

where Cm is the concentration of the solute at the upstream surface of the membrane. In order to

correct experimental sieving results for the concentration polarization phenomenon, a model was

developed in which laminar boundary layer theory was used to describe polarization in stirred

ultrafiltration cells. The flow in the cell was approximated as a rigid-body rotation above a

stationary surface (B6dewadt flow), with a filtration velocity that depended on the osmotic

pressure of the retained solute, and therefore varied with radial position on the surface. The

resulting axisymmetric convective-diffusion problem was solved using a finite difference method.

The development of this model is discussed in Chapter 3. The results from the model are

compared with the predictions of a stagnant film model in which the apparent and true sieving

coefficients are related by

0'9 = (1-20)
(1- 0')exp(vf /kf) + 0'

where vf is the filtration rate and ksf is the stagnant film mass transfer coefficient. In evaluating the
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usefulness of the stagnant film model, several methods were used to determine k First, the

quantities in Eq. 1-20 were taken to be area averages and the area-averaged mass transfer

coefficient calculated using the boundary layer model was used, in the limit of vanishing filtration

rate. In other words, as might be attempted in practice, ksf was obtained using mass transfer data

from the same system in the absence of filtration. Second, a "hybrid" model was developed in

which Eq. 1-20 was assumed to be valid locally, and local mass transfer coefficients were

calculated by the boundary layer model, again in the absence of filtration. Finally, again taking the

quantities in Eq. 1-20 to be area averages, the area-averaged ks was determined experimentally by

measuring the reduction in filtration rate that occurred across commercial regenerated cellulose

membranes when a concentrated amount of protein was added to an initially protein-free buffer.

Comparisons between these results and those from the rigorous boundary layer model are

presented in Chapter 3.
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CHAPTER 2

Experimental Determination of
Convective Hindrances in Gels

2.1 Introduction

The primary purpose of this thesis work was to provide the experimental data for the

convective hindrance coefficient, Kc, for particular gel/solute combinations. To complement

previous results for Kd from our laboratory (Johnson et al., 1995; 1996), globular proteins and

Ficoll, a crosslinked copolymer of sucrose and epichlorohydrin, were employed with agarose gels.

It was desired to determine the dependence of K, on solute size and on gel concentration.

2.2 Methods

2.2.1 Macromolecules

Four globular proteins, bovine immunoglobulin G (IgG), bovine serum albumin (BSA),

ovalbumin, and lactalbumin and a polydisperse preparation of Ficoll with a weight-average

molecular weight of 70,000 (Type 70) were obtained from Sigma (St. Louis, MO) and used

without further purification. The Ficoll was labelled with 5-([4,6-dichlorotriazin-2-yl]amino)

fluorescein (DTAF) (Sigma) using the procedure described by De Belder and Granath (1973).

Unreacted DTAF was removed by elution through 10 ml disposable desalting columns (Econo-

Pac® 10 DG, Bio-Rad, Hercules, CA). Labelled Ficoll was concentrated in a 200 ml ultrafiltration

cell (Model 8200, Amicon, Beverly, MA) with a 5 kD molecular weight cutoff regenerated

cellulose membrane (PLCC 062 10, Millipore, Bedford, MA). Concentrated samples were freeze-

dried until usage.

Fresh aqueous solutions were prepared by dissolving the macromolecules in buffer

26



consisting of 0.01 M sodium phosphate and 0.1 M KCl at pH 7.0. The solute concentration in all

solutions was 2 mg/mL, and solutions were filtered using a 0.22 jIm syringe filter (Millex®-GV

Filter Unit, Millipore) prior to use in sieving experiments. All four proteins are anionic at neutral

pH, but it was confirmed for three of these proteins (BSA, ovalbumin, and lactalbumin) that at this

ionic strength their diffusivities are not significantly affected by electrostatic interactions, even in

highly charged, sulfated agarose gels (Johnson et al., 1995). Thus, molecular charge was not

expected to be a factor. To confirm this, sieving experiments using ovalbumin were performed in

phosphate buffer containing 1.0 M KCl. The sieving coefficients measured in these experiments

were not significantly different from those measured in buffer containing 0.1 M KCl.

2.2.2 Gel Membranes

Agarose membranes were prepared on polyester mesh supports, as done previously

(Johnson et al., 1996). Slurries were produced by dissolving a measured amount of agarose

powder (Type VI: high gelling temperature, Sigma, St. Louis, MO) in 10 ml 0.01 M sodium

phosphate buffer containing 0.1 M KCl. They were then heated in a 90'C oven for 4.5 to 5.5

hours and shaken by hand periodically to ensure adequate mixing; an extra hour was needed for the

most concentrated solutions to allow all air bubbles to escape. Membranes were cast by placing a

25 mm-diameter piece of polyester mesh (Spectra/Mesh Polyester Filters, Spectrum Medical

Industries, Inc., Houston, TX) on a glass plate (also heated to 90'C) and pouring the hot agarose

slurry onto it. The dimensions of the polyester mesh are shown in Figure 2.1. A second hot glass

plate was placed on top, and any air was squeezed out. The plates were clamped together, placed

in buffer, and stored overnight at 4'C. Membranes were prepared with agarose concentrations of

4, 6, and 8% (w/v). The volume fraction of agarose was obtained by dividing the mass fraction by

1.025 (Johnson et al., 1996).
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FIGURE 2.1: Dimensions of polyester mesh support for agarose membranes.
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2.2.3 Darcy Permeability Measurements

The Darcy permeability of each agarose sample was determined by measuring the hydraulic

permeability of the mesh-supported membrane. Membranes were mounted in a 10 mL

ultrafiltration cell (Model 8010, Amicon, Beverly, MA) which was filled with the sodium

phosphate/KCl buffer. The transmembrane pressure, applied using compressed nitrogen, was

chosen to yield similar filtration rates for all experiments (vf = 10- cm/s). The pressure drop was

monitored using a pressure transducer (Model DP15, Validyne Engineering, Northridge, CA), and

corrections were made to account for hydrostatic pressure. The flow rate of solution through the

membrane was determined by weighing the filtrate. To minimize transient effects, collections were

started 10 to 30 minutes after the application of pressure. The thickness of each hydrated

membrane (L) was measured using a micrometer, by placing the membrane between two glass

microslides of known thickness. These measurements indicated that thicknesses were not

significantly different from that of the polyester supports used (70 Rm). The Darcy permeability

was calculated as

4 QL (2-1)
PA AP

where y is the viscosity of the buffer, Q is the volumetric flow rate of buffer through the

membrane, P is a factor that accounts for the presence of the polyester mesh (Johnson et al.,

1996), A is the exposed membrane area, and AP is the pressure drop across the membrane.

The value of P for the polyester mesh supports used in this work was calculated by solving

Laplace's equation for the pressure field in the gel (Johnson and Deen, 1996):

V2 P=o (2-2)

For these calculations, the gel membrane was modeled as shown in Figure 2.2. The woven
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FIGURE 2.2: Model idealization of polyester mesh.
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polyester mesh was modeled as a square array of intersecting cylinders 40 Rm in diameter, and the

total thickness of the model membrane was brought to 70 gm by adding additional "gel" above and

below the mesh fibers. It was found previously (Johnson and Deen, 1996) that the value of P that

is calculated is insensitive to whether this extra thickness of gel is placed above or below the mesh

or distributed on either side. One quarter of the mesh opening was modeled due to symmetry, and

the boundary conditions used were:

n -VP = 0 (on fiber surfaces and symmetry planes) (2-3)

P = AP (on top membrane surface) (2-4)

P =0 (on bottom membrane surface) (2-5)

Calculations were performed on a Silicon Graphics Indy workstation using FIDAP, a commercial

finite element package (Fluent, Inc., Evanston, IL), and were based on the Galerkin method using

quadratic basis functions. The FIDAP code used is located in Appendix A. Using 7,290 mesh

elements it was found that P3= 0.510, with an estimated error of < 0.1%.

2.2.4 Sieving Measurements

Following the determination of Darcy permeability for a particular membrane, the

ultrafiltration cell was emptied and refilled with sodium phosphate/KCl buffer containing 2 mg/mL

solute. The stirring rate, calibrated using a strobe, was set at 220 rpm and pressure was applied

again. Pressures were chosen to provide filtration rates that would result in membrane Peclet

numbers of order unity for solutes (see Eq. 1-17). After a delay of 30 to 60 minutes to minimize

transient effects and purge the collection line, the filtrate was collected for an additional 30 to 60

minutes. The retentate was then removed from the cell, which was rinsed and again filled with

protein-free buffer. A second measurement of Darcy permeability was performed following the

sieving experiment, and data from an experiment were retained only if the hydraulic permeability
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changed by < 5 %. Each membrane was used only for a single sieving experiment using either one

protein or the polydisperse Ficoll preparation.

For the protein experiments, solute concentrations were measured in the initial and final

retentates and in the filtrate by absorbance at 280 nm with a UV spectrophotometer (Shimadzu,

Columbia, MD). Retentate and filtrate samples from Ficoll experiments were analyzed using gel

filtration chromatography. The column (XK 16, Pharmacia, Piscataway, NJ) was packed with an

agarose/dextran composite gel (Superdex® 200, Pharmacia) and fed at 90 mI/h with a high

precision pump (P-500, Pharmacia). The eluent was analyzed with a spectrofluorometric detector

(RF-55 1, Shimadzu). Molecular size of Ficolls was related to elution time by calibrating the gel

chromatography column with four narrow fractions of Ficoll (2.97, 3.77, 4.64, and 5.87 nm)

obtained by special order from Pharmacia. The apparent sieving coefficient for all solutes was

calculated as

0' Cf (2-6)
Cb

where Cf and Cb are the protein concentrations of the filtrate and the bulk retentate, respectively.

The value of Cb was calculated as the arithmetic average of the initial and final retentate

concentrations, which differed by an average of 9.4% for all sieving experiments.

Analysis of Ficoll samples yielded a sieving curve for a continuous range of Ficoll sizes.

Figure 2.3 shows example chromatograms of an initial solution, final retentate and filtrate from a

sieving experiment with a 6% gel membrane. Shown in this figure is the fluorescence intensity as

a function of elution time. Using the calibration information obtained from the narrow fractions of

Ficoll, the same data is plotted in Figure 2.4 as a function of Ficoll size. To determine the size

range over which reliable sieving coefficients could be calculated, elution profiles for each

experiment were shifted by the standard deviation in the pump flow rate. The standard deviation

(0.4% at 90 ml/h) was determined by pumping solute-free buffer through the column and
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FIGURE 2.3: Example chromatograms from a Ficoll sieving experiment with a 6%

agarose gel. Plotted is the fluorescence intensity in arbitrary units as a

function of elution time in minutes.
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Example chromatograms from a Ficoll sieving experiment with a 6%

agarose gel. Plotted is the fluorescence intensity in arbitrary units as a

function of Ficoll Stokes-Einstein radius (nm).
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repeatedly collecting and weighing the eluent. To maximize the effect of this deviation on the

measured sieving coefficient, filtrate samples were shifted in one direction by this amount and

initial solutions and retentates were shifted in the opposite direction. The effect of these shifts on

the resulting values of the measured sieving coefficient were calculated. The percentage change in

0' caused by these shifts for all experiments with 6% gels are shown in Figure 2.5 as a function of

Ficoll molecular size. From this it was determined that for the size range of approximately 2.5 to 7

nm the uncertainty in the pump flow rate resulted in a change in the measured sieving coefficient of

5% or less. Sieving coefficients were calculated only for this range of molecular sizes.

Concentration polarization caused the protein concentration at the membrane surface (C.) to

exceed that in the bulk retentate. As stated in Section 1.4, true sieving coefficients (0= C/C,)

were calculated using several methods. First, a model was developed from laminar boundary layer

theory to quantify concentration polarization in stirred ultrafiltration cells. In this model the fluid

flow in the cell is approximated as a rigid-body rotation above a stationary surface (B6dewadt

flow), and the axisymmetric convection-diffusion problem is solved using a finite difference

method. It was assumed that solutions were sufficiently dilute so that the effect of osmotic

pressure on the filtration velocity at the surface was negligible. The validity of this assumption is

addressed below. Given this, the filtration rate (and therefore the sieving coefficient; see Eqs. 1-16

and 1-17) used in the model was uniform over the surface of the membrane. To calculate true

sieving coefficients, Cb was set equal to its measured value and 0 was varied until the mixing cup

average of the filtration concentration calculated by the model was equal to the measured value of

Cf

In another approach, values for the stagnant film mass transfer coefficient, kP were

determined experimentally for the stirred cells and used in Eq. 1-20. True sieving coefficients

calculated in this way for BSA, ovalbumin, and lactalbumin were reported in Johnston and Deen
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FIGURE 2.5: The percentage change in measured sieving coefficient caused by shifting

experimental results by the uncertainty in the pump flow rate for all Ficoll

experiments with 6% agarose gels. Results are plotted as a function of

Ficoll molecular size.
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(1999).1 As seen in this paper and in Section 3.3.5, the experimentally measured stagnant film

mass transfer coefficient was found to be a strong function of the filtration rate. It was found that

if kf in Eq. 1-20 was corrected for the different diffusivities of the solutes and allowed to vary

with the filtration rate, the stagnant film values for 1 calculated from Eq. 1-20 differed from those

computed by the laminar boundary layer model by an average of only 0.9% and a maximum of

2.7%. Values of K, calculated from these sieving coefficients were also reported in Johnston and

Deen (1999).2 It was found that these stagnant film values for K, differed from those computed by

the laminar boundary layer model by an average of only 1.2% and a maximum of 4.8%. Because

of these findings and for the sake of clarity, all of the results presented here for the true sieving

coefficients and for the convective hindrance factors are those obtained from the full 2-D laminar

boundary layer model.

To confirm the validity of the sieving coefficient results, the mass balances for the solutes

were checked. These balances were found to close to within an average of 2.2% for all nine

solutes in all three gel concentrations. To verify that charge effects were absent, sieving

measurements using ovalbumin and 6% agarose were also carried out in a buffer containing 1.0 M

KCl. There was no significant difference between the results with 1.0 and 0.1 M KCl, indicating

that electrostatic interactions were negligible. The validity omitting the effect of osmotic pressure

on filtration rate in the laminar boundary layer model was tested using experiments with BSA,

where the relationship between solution concentration and osmotic pressure has been reported

(Vilker et al., 1981). Experiments in which sieving coefficients were lowest (0 = 0.078) were

considered in order to maximize the influence of osmotic pressure. The osmotic pressure

1 In Johnston and Deen (1999), the apparent and true sieving coefficients for ovalbumin in 8%
agarose are incorrectly given as 0.60 and 0.55, respectively. The correct values are 0.62 and 0.57.
Standard deviations are reported correctly.

2 In Johnston and Deen (1999), the K, value for ovalbumin in 8% agarose is incorrectly given as
0.88 ±0.10. The correct value is 0.92 ±0.11.
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difference across membranes was calculated for these experiments and compared to the applied

transmembrane pressure. The concentration at the membrane surface calculated by the model (and

therefore the contribution of osmotic pressure) was greatest in the center of the ultrafiltration cell

(see Section 3.3.2). It was determined that the local transmembrane osmotic pressure difference

never exceeded 0.6% of the applied transmembrane pressure, indicating that omitting its effect was

justified.

2.3 Results and Discussion

2.3.1 Darcy Permeability

The average pressures used and the resulting filtration rates for all permeability

measurements are listed in Table 2.1. The Darcy permeabilities of the agarose gels (calculated

using Eq. 2-1) are listed in this table and shown graphically as a function of agarose volume

fraction in Figure 2.6. For the range of volume fractions examined (0.039 0 0.078), K varied

by more than a factor of ten. Plotted in Figure 2.6 for comparison are the results of Johnson and

Deen (1996), which are seen to be in excellent agreement with the present data. As reported in this

previous paper, substantial variations in permeability were observed between nominally identical

membranes, including those from the same agarose solution. Permeabilities of 4% gels ranged

from 71.5 to 121.5 nm2. Permeabilities of 6% gels ranged from 10.8 to 30.1 nm 2, while

permeabilities of 8% gels ranged from 4.2 to 9.0 nm2.

The effect of the applied transmembrane pressure on the Darcy permeabilities of the gels

was investigated. This was done by preparing 4 additional membranes of each gel concentration

(4, 6, and 8%) and measuring the Darcy permeabilities of these gels at five different pressures

ranging from approximately 2 to 20 kPa. The results of these experiments are presented

graphically in Figure 2.7. The present results indicate less of a dependence of i on the applied

pressure than suggested by Johnson and Deen (1996). In this previous study, the results of a
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TABLE 2.1: Darcy permeabilities of agarose gels. Values are given as mean ± SE for 25

measurements, except for those marked with * (n = 23).

AP (kPa)

1.94 ± 0.05

5.15 ± 0.04

14.55 ± 0.19

v (10-5 cm/s)

14.20 0.50

8.07 0.35

6.41 0.26
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0.039

0.059

0.078

i (nm 2)

95.1 ± 2.8

20.3 ± 0.9

5.7 ± 0.2
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FIGURE 2.6: Darcy permeability of agarose gels, ic, as a function of the volume fraction

of fibers, 4. Symbols show the mean ± SE (n = 5 for the data of Johnson

and Deen, for present data n = 25 for 6% and 8% gels, n = 23 for 4% gels).
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single gel at each of four different values of 0 were presented. Darcy permeabilities for each gel

were measured at five different pressures in the range stated above. It was found that for each gel

the permeability varied roughly linearly with the applied pressure. The slopes of the fitted lines (in

nm2/kPa) were given as -1.59, -1.35, and -0.488 for 0 = 0.038, 0.055, and 0.072, respectively.

In the present study these slopes (given as mean ± SE, also in nm2/kPa) were calculated as -0.46

0.18, -0.21 ± 0.09, and -0.08 ± 0.02 for 0 = 0.039, 0.059, and 0.078, respectively. One

explanation for the difference in these results is the fact that in the previous study (Johnson, 1995),

it was stated that the thickness of gel membranes (prepared on the same 70 rm mesh as in the

present study) was as much as 100 gm. This indicates the presence of an additional gel layer either

above or below (or on both sides) of the polyester mesh. It is possible that this extra gel is more

easily compressed by applied pressure than the gel within the polyester mesh. As stated in Section

2.2.3, the thickness of gel membranes prepared in this study was not found to be significantly

more than the 70 gm mesh thickness.

2.3.2 Sieving Coefficient

The sieving data for the four globular proteins are summarized in Table 2.2. Sieving data

for five selected sizes of Ficoll are summarized in Table 2.3. The Stokes-Einstein radii (ri) of

BSA, ovalbumin, and lactalbumin are those determined by Johnson et al. (1996) from

measurements of D0, by FRAP. The Stokes-Einstein radius of IgG is taken from Potschka (1986).

Molecular sizes of Ficoll were calculated from elution time as described in Section 2.2.4. All of

the true sieving coefficients presented here were calculated from the full numerical laminar

boundary layer model (see Chapter 3) as described above in Section 2.2.4.

As expected, the apparent sieving coefficient (6') and true sieving coefficient (9) both

decreased with increasing r, or increasing 4. The correction for concentration polarization was

modest for most gel/solute combinations, such that 0' exceeded 9 by an average of only 11%.

The difference between measured and true sieving coefficients increased with increasing solute size
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Sieving coefficient results for proteins. Sieving coefficients are given as

mean ± SE for 5 measurements, except for * (n = 3).

Protein rs (nm) 0' 9

0.039 1.01 ± 0.002 * 1.00 ± 0.003 *

lactalbumin 2.1 0.059 0.95 ± 0.005 0.93 ± 0.006

0.078 0.81 ± 0.014 0.79 ± 0.014

0.039 0.97 ± 0.002 0.95 ± 0.002

ovalbumin 3.0 0.059 0.83 ±0.011 0.80 ±0.010

0.078 0.62 ± 0.023 0.58 ± 0.023

0.039 0.94 ± 0.005 0.90 ± 0.007

BSA 3.6 0.059 0.68 ± 0.018 0.63 ± 0.018

0.078 0.44 ± 0.032 0.40 ± 0.028

0.039 0.85 ± 0.008 0.77 ± 0.010

IgG 5.2 0.059 0.41 ± 0.026 0.36 ± 0.021

0.078 0.28 ± 0.016 0.22 ± 0.013
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Sieving coefficient results for selected Ficolls. Sieving coefficients are given

as mean ± SE for 5 measurements.

r, (nm) 0 e' e

0.039 0.96 ± 0.009 0.94 ± 0.012

3.0 0.059 0.80 ± 0.023 0.76 ± 0.022

0.078 0.68 ± 0.017 0.63 ± 0.012

0.039 0.92 ± 0.008 0.88 ± 0.011

4.0 0.059 0.67 ± 0.031 0.62 ± 0.028

0.078 0.49 ± 0.022 0.43 ± 0.014

0.039 0.88 ± 0.012 0.82 ± 0.016

5.0 0.059 0.55 ± 0.037 0.49 ± 0.032

0.078 0.33 ± 0.025 0.28 ± 0.015

0.039 0.83 ± 0.012 0.74 ± 0.014

6.0 0.059 0.43 ± 0.040 0.37 ± 0.033

0.078 0.21 ± 0.022 0.17 ± 0.012

0.039 0.77 ± 0.012 0.65 ± 0.013

7.0 0.059 0.32 ± 0.038 0.26 ± 0.028

0.078 0.13 ± 0.016 0.09 ± 0.008

44

TABLE 2.3:



and increasing gel concentration due to increased extent of polarization. For the largest Ficoll at 0

= 0.078, 9' exceeded 9 by an average of 35%. True sieving coefficients are plotted for all solutes

in the least concentrated 4% gel in Figure 2.8. Results for 6% and 8% agarose are plotted in

Figures 2.9 and 2.10, respectively. As can be seen in these three figures, the agreement between

sieving coefficients of Ficolls and proteins of similar size was very good. Some of the differences

between the proteins and Ficolls may have been due to differences in the Darcy permeabilities of

the gels used in each set of experiments. For example, in Figure 2.9 the average sieving

coefficient for IgG appears to be low compared to that for Ficolls of similar size. However, the

average permeability of the 6% gels used in the IgG experiments was 15.7 nm2, while the average

permeability of the 6% gels used in the Ficoll experiments was over 30% higher at 20.6 nm2.

2.3.3 Convective Hindrance Coefficient

To calculate K, from 0 using Eq. 1-10, it was necessary to estimate P and Kd. Following

Ogston (1958), partition coefficients were calculated for each gel-protein combination using

2~

0 = exp - 1 + -s-j exp(-f) (2-7)
rf

where rf is the number-average radius of an agarose fiber, calculated from the SAXS data of

Djabourov et al. (1989) to be 1.9 nm. The use of Eq. 2-7 is justified by its success in correlating

experimental data for the partitioning of proteins and Ficoll in agarose gels with concentrations

ranging from 2 to 8% (Johnson, 1995). Diffusive hindrance coefficients for all solutes except IgG

were evaluated using the data of Johnson et al. (1996) for these macromolecules in agarose gels.

Values of Kd for selected sizes of Ficoll were obtained by curve fitting the data for Ficoll in this

previous paper. Due to the lack of data for the hindered diffusion of IgG, it was assumed that Kd

for this protein was equal to that obtained for a Ficoll molecule of identical size.

Because the gel properties obtained previously did not exactly match those of the present
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FIGURE 2.8: True sieving coefficients, e, for solutes as a function of the solute size, r ,

in 4% agarose gels. Symbols show the mean ± SE (n = 5, except for

lactalbumin, where n = 3).
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FIGURE 2.9: True sieving coefficients, 0, for solutes as a function of the solute size, r ,

in 6% agarose gels. Symbols show the mean ± SE (n = 5).
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FIGURE 2.10: True sieving coefficients, 19, for solutes as a function of the solute size, r,,

in 8% agarose gels. Symbols show the mean ± SE (n = 5).
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study, the experimental results for Kd were adjusted by using the effective medium theory of

Johnson et al. (1996) to describe the dependence on ic and 0. The expressions used were

Kd = F(r/ -,FW)S(f) (2-8)

F(r, = 1+ / J) + r/ )2 (2-9)

S(f)= exp(-0.84f1 -09 ) (2-10)

where F describes the reduction in diffusivity due to solute-fiber hydrodynamic interactions (based

on Brinkman's equation) and S is a steric or tortuosity factor. The expression for F is from

Solomentsev and Anderson (1996). Their result (as given by Eq. 2-9) represents a correction to

the Brinkman factor employed by Johnson et al. (1996) and others; the difference is the coefficient

"1/9" instead of "1/3." The expression for S comes from the results of Brownian dynamics

simulations of Johansson and Lfroth (1993).

The results for K, for the four globular proteins and selected Ficolls are shown in Tables

2.4 and 2.5, respectively, together with the corresponding values of 4, 1C, ', and Kd. Again, all

of the results presented here for the convective hindrance coefficient were calculated from true

sieving coefficients obtained using the full 2-D laminar boundary layer model. The agreement

between Kc values calculated for globular proteins and Ficolls of similar size is good. However,

this agreement was not as good as that observed in the case of the true sieving coefficients. In

other words, small differences in true sieving coefficients resulted in larger differences in

convective hindrance coefficients. Similar agreement between Kd values for proteins and Ficolls

was observed by Johnson et al. (1996). Determination of convective hindrance coefficients

allowed for the final calculation of membrane Peclet numbers for the sieving experiments (Eq. 1-

17). As stated in Section 2.2.4, a Peclet number of order unity was desired for all experiments.
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TABLE 2.4: Partition and hindrance coefficients for proteins. Hindrance coefficients are

given as mean ± SE for 5 measurements, except for those marked with * (n

= 3).

Protein 0 K (nm 2) < Kd Kc

0.039 82.1 ± 6.1 0.84 0.65 ± 0.005 * 1.19 ± 0.004 *

lactalbumin 0.059 22.7 ± 2.0 0.77 0.45 ± 0.006 1.18 ± 0.012

0.078 5.1 ± 0.3 0.71 0.28 ± 0.005 1.05 ± 0.030

0.039 111.0 2.3 0.77 0.62 ± 0.001 1.23 ± 0.003

ovalbumin 0.059 22.7 1.4 0.68 0.40 ± 0.006 1.14 ± 0.024

0.078 5.6 0.4 0.60 0.24 ± 0.005 0.92 ± 0.047

0.039 88.2 4.2 0.72 0.63 ± 0.004 1.24 ± 0.010

BSA 0.059 20.0 1.2 0.61 0.36 ± 0.006 0.97 ± 0.039

0.078 5.1 0.5 0.52 0.21 ± 0.008 0.68 ± 0.074

0.039 97.6 6.8 0.58 0.43 ± 0.006 1.33 ± 0.018

IgG 0.059 15.7 1.7 0.44 0.27 ± 0.011 0.78 ± 0.060

0.078 6.8 0.1 0.33 0.22 ± 0.002 0.65 ± 0.041
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TABLE 2.5: Partition and hindrance coefficients for selected Ficolls. Hindrance

coefficients are given as mean ± SE for 5 measurements.

r, (nm) 0 K (nm 2) 0 Kd k

0.039 91.5 ± 3.1 0.77 0.58 ± 0.003 1.21 ± 0.017

3.0 0.059 20.6 ± 2.6 0.67 0.44 ± 0.013 1.04 ± 0.057

0.078 6.1 ± 0.8 0.59 0.30 ± 0.012 1.01 ± 0.032

0.039 0.69 0.51 ± 0.003 1.28 ± 0.016

4.0 0.059 same 0.57 0.38 ± 0.014 1.04 ± 0.068

0.078 0.47 0.26 ± 0.012 0.89 ± 0.039

0.039 0.60 0.44 ±0.003 1.38 ±0.027

5.0 0.059 same 0.46 0.31 ± 0.013 1.04 ± 0.081

0.078 0.36 0.22 ± 0.011 0.76 ± 0.047

0.039 0.51 0.37 ± 0.003 1.46 ± 0.028

6.0 0.059 same 0.36 0.25 ± 0.011 1.01 ± 0.096

0.078 0.26 0.18 ± 0.010 0.63 ± 0.051

0.039 0.43 0.30 ± 0.003 1.54 ± 0.031

7.0 0.059 same 0.27 0.19 ±0.009 0.94 ±0.105

0.078 0.18 0.15 ± 0.009 0.51 ± 0.049
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Because all sizes of Ficoll were run in a single filtration experiment, this necessarily resulted in a

range of Peclet numbers. Overall, Peclet numbers ranged from 0.9 to 15.8.

The results for Kc as a function of solute size for all solutes in 4% agarose are shown

graphically in Figure 2.11. Similar results for 6% and 8% agarose are shown in Figures 2.12 and

2.13, respectively. Although P and Kd decrease monotonically with increasing molecular size or

gel concentration, the convective hindrance coefficient does not display this monotonic behavior.

In 4% agarose (Figure 2.10), Kc increases with increasing solute size from a theoretical value of 1

for a point-sized solute to as high as 1.54 for the largest Ficoll reported here. In 6% agarose

(Figure 2.11), Kc was found first to increase from unity with increasing solute size and then

decrease as solute size was increased further. This trend is slightly more apparent in the globular

proteins studied. Although the same behavior was observed for the Ficolls, none of the Kc values

calculated for Ficoll were significantly different from unity in this gel concentration. In 8%

agarose (Figure 2.13), Kc > 1 for only the smallest molecule studied (lactalbumin). Otherwise, Kc

was observed to decrease with increasing solute size down to an average of 0.51 for the largest

Ficoll studied.

Also plotted in Figures 2.11 through 2.13 for comparison are the theoretical predictions for

Kc for a parallel array of fibers from Phillips et al. (1990). The data and theory are in qualitative

agreement; in particular, note the prediction that KC > 1 for intermediate values of 4. This is due to

the fact that the finite size of the solute prevents it from sampling regions near solid boundaries,

where the fluid velocity is lowest. Both the data and the theory show that as molecular size and/or

gel concentration increases, Kc decreases to values below 1. This behavior is a result of the

hindering effect of the fibers, which causes the solute velocity to fall below the average fluid

velocity. However, although the theory predicts this decline in Kc at 0 = 0.039, experimental

values of Kc are continually increasing with increasing solute size at this gel concentration, even for

the largest solutes studied. This decline in K, is not observed in the data from agarose until the gel

becomes more concentrated. Note also that the theory predicts that as solute size is increased at a
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FIGURE 2.11: Values of the convective hindrance coefficient, Kc, for solutes as a function

of molecular size, r,, in 4% agarose gels. The dotted line is the result of the

Phillips et al. (1990) theory for parallel arrays of fibers.
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FIGURE 2.12: Values of the convective hindrance coefficient, Kc, for solutes as a function

of molecular size, r,, in 6% agarose gels. The dotted line is the result of the

Phillips et al. (1990) theory for parallel arrays of fibers.
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FIGURE 2.13: Values of the convective hindrance coefficient, KE, for solutes as a function

of molecular size, r,, in 8% agarose gels. The dotted line is the result of the

Phillips et al. (1990) theory for parallel arrays of fibers.
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given 4, eventually K, - 0. This is due to the fact that the fiber array considered by the theory is

oriented in a parallel lattice. As solute size increases, eventually the permeating molecule becomes

too large to fit through the space size of the lattice. Because the fibers of agarose gels are randomly

oriented, this behavior is not observed experimentally since there inevitably exist gaps in the gel

which are large enough to permit passage of even the largest solutes. The lack of quantitative

agreement between the data and the theory is not surprising due to the random orientation of

agarose fibers. Indeed it has also been found that the diffusivities of proteins and Ficoll in agarose

gels are more accurately explained by a model with random fiber orientation. Although the theory

for parallel fibers also predicts that Kd -> 0 at a given 0, this behavior was not observed in

experiments with agarose gels (Johnson et al., 1996).

The discussion thus far has viewed 4 as the primary variable that distinguishes one agarose

membrane from another. However, one might also regard the Darcy permeability as the

distinguishing characteristic; K and 0 are, of course, inversely related (see Figure 2.6). Because of

the variations in K from sample to sample, a plot of Kc versus K might be expected to reveal a more

continuous trend. Such a plot is shown for the globular proteins studied in Figure 2.14, where it

is seen that for all four proteins, Kc increased with increasing Darcy permeability. At smaller

values of K, Kc values were smallest for the largest protein (IgG). In other words, the hindering

effect of the fibers had the greatest impact on the transport of the largest solute. Similar behavior

was observed with the Ficolls studied. At larger values of K the trend was reversed, with K

values being smallest for the smallest protein (lactalbumin). In this region, Kc > 1 and the

deviation from unity was caused by the fibers excluding the solute from the regions of lowest fluid

velocity. This inaccessible region was largest for the largest solutes, causing K to deviate more

from unity as solute size was increased. Again, similar behavior was observed with the Ficolls

studied. Finally, it seemed that Kc for all solutes was more sensitive to changes in K at smaller

values of the Darcy permeability. In principle, K -> 0 for all macromolecules as K -4 0. As K

was increased from zero, Kc increased rapidly with increasing Darcy permeability such that Kc > 1
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FIGURE 2.14: Values of the convective hindrance coefficient, K , for proteins as a function

of the agarose Darcy permeability, i.
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for all solutes by i~ 30 nm2. At larger values of the Darcy permeability, Kc was much less

sensitive to changes in K. For example, studies with IgG in 4% agarose showed only an 8.5%

increase in KC when K was increased 46.9% from 83 to 122 nm 2. Just as Kc --+ 1 as r--> 0, it is

expected that Kc -- 1 as K -> oo. However at the Darcy permeabilities studied this eventual

decrease in Kc with increasing K was not observed.

The effect of uncertainties in estimates for ( and Kd on the calculation of Kc were

investigated. This was done by taking all of the data for sieving coefficients of solutes, changing

the calculated values of either 0 or Kd by a specified amount and recalculating Kc. Increasing (P by

10% resulted in an average decrease in Kc of 9.9%. Decreasing O by 10% resulted in an average

increase in Kc of 12.0%. The convective hindrance coefficient was much less sensitive to changes

in Kd. Increasing Kd by 10% resulted in an average decrease in Kc of only 0.9%. Decreasing Kd

by 10% resulted in an average increase in Kc of only 0.8%. These results are not surprising given

the form of Eqs. 1-16 and 1-17.

The current results can be compared with some previous work on hindered convection of

solutes in pores by considering the filtration reflection coefficient, or, which is given by Eq. 1-10.

As stated in Section 1.3.2, Anderson and Malone (1974) derived an expression for the osmotic

reflection coefficient ((T,) for neutral spheres in cylindrical pores (Eq. 1-13), and Anderson (1981)

found that result to be a good approximation also for the filtration reflection coefficient in

cylindrical pores, and for either reflection coefficient in straight pores of noncircular cross-section.

Indeed, as seen in Figure 1.3, the filtration and osmotic reflection coefficients for membranes

consisting of long, cylindrical pores are very similar. Curry and Michel (1980) speculated that Eq.

1-13 may be applied also to fiber-matrix membranes. To test whether that is true for agarose, the

present results are compared with the predictions of Eq. 1-13 in Figures 2.15 through 2.17.

Equation 1-13 did a remarkably good job of predicting values of cffor solutes in 4% agarose gels

(see Figure 2.15). However, as 0 was increased, the experimental behavior of af as a function of

( changed, and the agreement between the data and Eq. 1-13 worsened. Two possibilities exist
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FIGURE 2.15: Values of the filtration reflection coefficient, a-, for solutes as a function of

the partition coefficient, (Pin 4% agarose membranes. The solid line is the

theoretical expression developed by Anderson and Malone (1974) (Eq. 1-

13).
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FIGURE 2.16: Values of the filtration reflection coefficient, (-, for solutes as a function of

the partition coefficient, 0D in 6% agarose membranes. The solid line is the

theoretical expression developed by Anderson and Malone (1974) (Eq. 1-

13).

60

f

1

0.8

0.6

0.4

0.2

0



0 Ficoll
x lactalbumin
- ovalbumin

BSA
A IgG

Anderson an

I I I I I-

0.2 0.4 0.6 0.8

FIGURE 2.17: Values of the filtration reflection coefficient, o-, for solutes as a function of

the partition coefficient, < in 8% agarose membranes. The solid line is the

theoretical expression developed by Anderson and Malone (1974) (Eq. 1-

13).
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pertaining to the agreement between Eq. 1-13 and the experimental data for solutes in 4% agarose

membranes. The first is that something in the structure of agarose causes the gel membranes to

present the same hindrances to solutes as porous membranes in the limit of small gel concentration.

Testing gels where 0 < 0.039 would provide information as to whether or not the behavior

observed in 4% agarose represents an asymptotic lower limit. However, agarose membranes with

0 < 0.039 were not studied due to the lack of data for hindered diffusion at lower gel

concentrations and the lack of structural integrity of the gels. Also, it was believed that with the

solutes used this would not provide useful information as in most cases it is likely that the

reflection coefficient would be very close to zero. The second possible explanation is that the

agreement observed in Figure 2.15 is coincidental. Although it is possible that the data obtained

for 4% agarose does represent an asymptotic limit in the behavior of the filtration reflection

coefficient, it seems more likely that the agreement between this data and Eq. 1-13 is largely

coincidental.

Kapur et al. (1997) measured the reflection coefficients of ribonuclease A (RNAse) and

BSA using poly(vinylidine fluoride) membranes whose pores were filled with polyacrylamide gel.

The polyacrylamide fiber volume fraction was varied from 0.04 to 0.09. Estimating partition

coefficients from hindered diffusion studies carried out using these same membranes, they found

good agreement between their data for BSA and the prediction of Eq. 1-13. However, their data

for RNAse deviated significantly from this model. In this paper the authors presented the

following empirical equation which was a fit to their experimental data for both solutes:

1-af = 1+127 -j j (2-11)
rf r

The present experimental data is plotted in Figure 2.18 along with Eq. 2-11. Although it appears

that the data may be expressed entirely as a function of the proposed variable ((r,/rf)O), the

agreement between the present data and Eq. 2-11 is poor. An analogous fit to the present data is

62



1

0.8

0.6

0.4

0.2

0

FIGURE 2.18: The sieving coefficient in the limit of infinite membrane Peclet number (1-

01) for solutes in agarose gels. The solid line is the fit of the present data

(Eq. 2-12). The dotted line is the empirical correlation of Kapur et al.

(1997) (Eq. 2-11).
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given by

1-- = 1 + 2400 rf j (2-12)

The lack of quantitative agreement between the two sets of data is not surprising considering the

structural differences between the membranes prepared here and the

polyacrylamide/poly(vinylidine fluoride) membranes prepared in this previous work. Kapur et al.

(1997) also found differences between the diffusive hindrance coefficient behavior they observed

in their membranes and that reported by Johnson et al. (1996) for agarose.

2.4 Conclusions

Novel data were obtained for the convective hindrance coefficients of proteins and Ficolls

in agarose gels of varying concentration. Aside from qualitative trends, these results are not

represented well by the available theories either for parallel arrays of fibers (Figures 2.10 through

2.12) or for straight pores (Figures 2.14 through 2.16). Given evidence from previous

partitioning and diffusion data that an agarose gel is better represented as a randomly oriented array

of fibers, the large quantitative discrepancies between the data and models are not entirely

surprising. Thus, the present results suggest that there is a need to extend theories of hindered

convection to random arrays of fibers. Given the paucity of data on the convective transport of

macromolecules in gels, additional experiments using well-characterized materials would also be of

value.
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CHAPTER 3

Concentration Polarization in
Stirred Ultrafiltration Cells

3.1 Introduction

A well-known phenomenon in ultrafiltration, termed "concentration polarization," is the

tendency of retained solutes to accumulate near the upstream surface of a membrane. High solute

concentrations at the membrane surface reduce filtration rates (either osmotically or by surface

blockage), and also tend to increase solute passage through the membrane. Thus, concentration

polarization both degrades separations and complicates efforts to use sieving measurements to

characterize membranes.

The simplest description of concentration polarization is derived from a stagnant film

model, used by Sherwood et al. (1965) to analyze reverse osmosis and first applied to

ultrafiltration by Michaels (1968). The stagnant film model has been used in many subsequent

ultrafiltration studies (e.g., Opong and Zydney, 1991; Zydney, 1997; Johnston and Deen, 1999).

In this approach, attention is focused on a thin layer of fluid next to the membrane, and a one-

dimensional problem is obtained by assuming that the solute concentration depends only on

distance from the membrane surface. Only convection and diffusion normal to the membrane are

considered explicitly. The effects of convective transport parallel to the membrane surface are

embedded in the value of the effective film thickness (b). The analytical solution to this one-

dimensional problem yields an expression for what is termed the "polarization factor" (B),

B= C1 - C exp (3-1)
Cb - Cf ksf)

where Cm, C. and Cb are concentrations at the membrane surface, in the filtrate, and in the bulk
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retentate solution, respectively, and vf is the filtrate velocity (i.e., the volume flux relative to the

membrane). The mass transfer coefficient for the stagnant film model (ksf) is related to the solute

diffusivity (D) and film thickness by kSf = D/8. Equation 3-1 captures the essential feature of

concentration polarization, which is that it is worsened as v/kSf is increased. Only for v/kSf -> 0

does B -- 1, indicating that polarization is negligible.

Equation 3-1 is attractive because of its simplicity, but its predictive ability is limited by the

unknown nature of 6 for many systems. Although 6 can be estimated from experimental

information on the mass transfer coefficient for a given solute and a given filtration rate, there is no

guarantee that the same value of 8 will be applicable to other conditions, as one might hope.

Indeed, an analysis of ultrafiltration data for bovine serum albumin (BSA) solutions in small stirred

cells yielded apparent values of kSf (and hence 3) that were quite sensitive to vf (see Section 3.2

and Johnston and Deen, 1999). Moreover, even for mass transfer in systems without filtration,

scaling arguments based on laminar boundary layer theory show that effective film thicknesses

must vary with D (e.g., Deen, 1998, p. 422-425).

More rigorous analyses of concentration fields in ultrafiltration are complicated by the fact

that such problems are usually made nonlinear by the dependence of vf on the solute concentration.

That is, the osmotic pressure opposing filtration is determined by the solute concentration at the

upstream membrane surface. Unless the osmotic pressure is much smaller than the applied

transmembrane pressure, this precludes attempts to compute the velocity field without

simultaneously addressing the mass transfer problem. In concentrated solutions, the complexity

may be exacerbated by variable viscosities and/or diffusivities. Nonetheless, detailed analyses are

available for certain geometries. A number of authors have computed two-dimensional

concentration fields for laminar crossflow ultrafiltration in tubes or parallel-plate channels (Shen

and Probstein, 1977; Gill et al., 1988; Denisov, 1994; Bhattacharjee et al., 1999). Other systems

for which there have been detailed analyses include spiral wound membrane modules (Madireddi et

al., 1999) and two-dimensional stagnation flow (Kozinski and Lightfoot, 1971). Some authors
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have employed a "hybrid" approach, which applies the stagnant film model locally, in combination

with theoretical information on mass transfer coefficients in the absence of filtration. This

approach, which has been applied mainly to crossflow systems, avoids having to assume that S is

spatially uniform and thereby allows vf and C, to vary with position (Blatt et al., 1970; Zydney,

1997). The hybrid approach appears to be most useful when a simple expression is available for

the mass transfer coefficient, as in the entrance region of a tube or parallel-plate channel.

Systems in which the membrane forms the base of a stirred cylindrical cell are often used

experimentally, but have received relatively little theoretical attention. In what appears to be the

only detailed analysis of convective diffusion in this type of ultrafiltration system, Saksena and

Zydney (1997) approximated the flow as a rigid-body rotation above a stationary surface (known

as B6dewadt flow), and included filtration by superimposing on the main flow a small velocity

normal to the surface. A very similar fluid dynamical model was used previously by Smith and

Colton (1972), who analyzed mass transfer to the base of a stirred cylindrical container in the

absence of filtration (e.g., a dialysis cell). For the ultrafiltration problem, Saksena and Zydney

used a similarity transformation to reduce the axisymmetric species conservation equation to an

ordinary differential equation, which was solved numerically. This transformation was made

possible by assuming that the product of vr) and concentration boundary layer thickness was a

constant, where r is radial position. Although not emphasized by those authors, it was necessary

also that the filtrate concentration be independent of radial position. The main objective of that

work was to examine the effects of solute-solute diffusional interactions in concentrated solutions,

but the same assumptions would be required to apply the similarity transformation to dilute

solutions. Those approximations limit the generality of that approach.

The purpose of the present study was to investigate further the Bbdewadt flow model for

stirred cell ultrafiltration. By solving the axisymmetric species conservation equation numerically,

restrictions on the radial variations of vf and filtrate concentration were avoided. The analysis is

limited to laminar flow at high Reynolds number and high Schmidt number. [In stirred cells the
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transition from laminar to turbulent flow occurs at a Reynolds number of approximately 3 x 104

(Colton and Smith, 1972), and Schmidt numbers for protein solutions are typically >104.] Solute

concentrations were assumed to be moderate, as is typical of membrane characterization

experiments, allowing the viscosity and diffusivity to be regarded as constants. The boundary

layer formulation and solution methods are described first. Then, certain general results are

discussed in comparison with predictions of stagnant film and hybrid models. Finally, the

predictions of the boundary layer model are tested using data on the filtration of BSA solutions in

commercial ultrafiltration cells.

3.2 Model Development

3.2.1 Overview

The system of interest is depicted schematically in Figure 3.1. An ultrafiltration membrane

forms the base of a cylindrical cell of radius R. The cell is partially filled with a macromolecule

solution, which is stirred by an impeller that rotates at an angular velocity o,. A desired filtration

rate is set by controlling the gas pressure, and the liquid volume is assumed to be sufficiently large

that the process is pseudo-steady. This system was modeled as shown in Figure 3.2b, in which a

semi-infinite solution undergoes rigid-body rotation above a stationary surface, with the angular

velocity of the bulk liquid denoted as a. This representation was motivated by the fact that

rotational flow above an impermeable, planar surface (Bdewadt flow) has been well characterized

(Schlicting, 1979, pp. 225-230; Rogers and Lance, 1960), and the observation that those velocity

results are readily modified to include moderate rates of filtration (Saksena and Zydney, 1997). In

the model the membrane is considered to occupy a circular area of radius R within a larger surface.

Because the stirrer must overcome the torques exerted on the fluid by the side and bottom of the

cell, the rotation rate of the stirrer must exceed that of the bulk fluid; that is, afo(, < 1, as will be

seen in the discussion of the experimental results.
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R

FIGURE 3.1: The flow in a typical stirred ultrafiltration cell (panel a) is modeled as a

semi-infinite fluid rotating above a surface (panel b). The membrane radius

is R. The angular velocity of the stirrer (co) differs from that of the bulk

fluid in the model (c).
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The omission of the impeller from the model system (Fig. 3. lb) is justified by the fact that

the momentum and concentration boundary layer thicknesses in such systems are often much

smaller than the impeller-surface separation. For laminar flow at high Reynolds number (Re), the

momentum boundary layer thickness (3m) is expected to scale as

~ Re-1 2  (3-2)
R

where Re = wR 2/v and v is the kinematic viscosity (Deen, 1998, p. 338). If the Schmidt number

(Sc = v/D) is also large, the concentration boundary layer thickness (63) will vary as

- Re-1 2 sc-13  (3-3)
R

(Deen, 1998, p. 424). Thus, even for Re = 103 and Sc = 104, which are not particularly large

values for protein solutions in stirred cells, 3c would be only about 0.1% of R. This indicates that

it is sufficient to focus on the region very near the membrane surface. The pressure and velocity

fields in this thin region are discussed next, followed by a description of the convective diffusion

problem.

3.2.2 Pressure Field

It was assumed that the dynamic pressure in the liquid (92) is approximately that for a fluid

undergoing rigid-body rotation,

9(r)= --pO2r2 (3-4)
2

where p is density. Here the arbitrary constant in the dynamic pressure was chosen so that QP = 0

at r = 0. The radial variation in pressure described by Eq. 3-4, when imposed on the boundary
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layer, results in a flow near the membrane that is directed inward (i.e., toward the axis of rotation).

It follows that the concentration boundary layer begins to develop at the outer edge of the

membrane (r = R).

To calculate the filtrate velocity, an expression was needed also for the transmembrane

pressure difference. Adding static pressure variations to those in Eq. 3-4, the actual liquid

pressure (P) was found to be

1 2
P(r,z)= 9(r)- pgz+ c =-p)2 r - pgz+ c (3-5)

2

The constant c was determined by returning to the system in Figure 3.1, equating pressures at the

gas-liquid interface, and specifying the total volume of liquid. This was sufficient to define the

height of the gas-liquid interface, which was found to be parabolic in r with a minimum at the

center. The transmembrane pressure difference (AP) was then evaluated as

1 2F2(r> 11(-6AP = P(r,0)- P = PO - + pghO + pa) R I _ (3-6)

where PO is the gas pressure, ho is the liquid height under static conditions, and Pf is the pressure

in the filtrate (assumed constant). The last term in Eq. 3-6 is usually a small fraction of AP, so that

in all simulations AP was assumed to be independent of r. For the experimental conditions

discussed later, it was calculated that the radial variations in AP never exceeded 0.6% of its mean

value.

3.2.3 Velocity Field

The equations of motion for this system can be reduced to a set of ordinary differential

equations by assuming a solution of the form
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vr = roF(4), vo = roG(4 , v, = 0vH(') -vf(r)

where v/r) is the local velocity normal to the membrane surface (> 0 for filtration) and

4= z i
V

(3-7)

(3-8)

The dimensionless axial coordinate { is of order unity at the edge of the momentum boundary layer

(Rogers and Lance, 1960). The inclusion of vf as an additive term in vz follows Saksena and

Zydney (1997). Using primes to denote derivatives with respect to 4, the continuity equation

becomes

H'+2F = 0 (3-9)

and the r- and 0-components of the Navier-Stokes equation transform to

F" - F 2 +G 2 -HF' + ( F' =1

G"- 2FG - HG'+ Vf G =0'=O

(3-10)

(3-11)

The z-component of the Navier-Stokes equation is not needed. The boundary conditions which

express no slip at the membrane surface, vz = -vf at the surface, and rigid-body rotation far from

the surface, are

F(0)= G(0)= H(0)= 0 , F(oo)= 0 , G(oo)=l (3-12)

Equations 3-9 through 3-12 reduce to those applicable in the absence of filtration, provided
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that

vf(r) <<1 (3-13)
-VO)

Therefore, if Eq. 3-13 is satisfied, previous results for F(), G(), and H() can be used for the

filtration problem. 3 Equation 3-13 is not difficult to satisfy; for the experiments discussed later,

(Vf ) / v ~ 10-4, where (vf) is the filtrate velocity averaged over the membrane surface.

The thinness of the concentration boundary layer, relative to the momentum boundary

layer, allowed the velocity field to be simplified by using expressions valid for small (. Thus,

F() was approximated by its Maclaurin series expansion,

1
F( ) = F'(O) + - F" + ... (3-14)

2

(note the omission of F(0), see Eq. 3-12). From Rogers and Lance (1960), F(O) = -0.94197,

indicating that the radial flow near the surface is directed inward, as already mentioned. 4 By fitting

a curve to other results for F() tabulated in Schlichting (1979, p. 228), with the values of F(0)

and F'(0) fixed as just described, it was found that F'(0) = 1.10. From continuity (Eq. 3-9),

H() was expressed as

1
H( )= -F'(0)( 2  F"(0)( 3 +... (3-15)

3

3 The functions defined here as F(), G(), and H() are those denoted in Rogers and Lance
(1960) as 5() %(), and W( ), respectively. In their analysis the bulk fluid and the surface were
assumed to have angular velocities o and uo, respectively, so that B6dewadt flow corresponds to
their special case of o-= 0.

4 Following Eq. 21 of Saksena and Zydney (1997), the constant 0.94197 is given incorrectly as
0.525.
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An expression for G() was not needed to compute the axisymmetric concentration field.

The filtration velocity was calculated from the transmembrane pressure drop and the

osmotic pressure difference (All) using

vf = L,(AP - GAH ) (3-16)

where L is the membrane hydraulic permeability and cy is the reflection coefficient. As discussed

later, All was related to the solute concentration by using either the Van't Hoff equation or certain

empirical expressions.

3.2.4 Concentration Field

The steady, axisymmetric species conservation equation for the stirred cell is

aC dCD d2C 1 d dCl
VX + VX = D 2+ - r X (3-17)

'dr dz I + r dr Ir

where C(r,z) is the solute concentration. The boundary conditions used were

C(R,z) = Cb (3-18)

dCr,=oo) 0 (3-19)
dz

dC(r, 0) v,(r) )rO)(-0
'- - (1- 0)CQr,0) (3-20)

dz D

where 0= Cr)IC(r,O) is the local value of the membrane sieving coefficient. Equation 3-18

requires that the concentration at the outer edge of the membrane (the "leading edge" for the

concentration boundary layer) equal the bulk concentration. Equation 3-19 specifies that axial
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gradients in concentration vanish in the bulk solution, far from the surface. Equation 3-20 was

derived by equating the axial flux at the membrane surface with the flux of solute in the filtrate.

In all of the present calculations 0 was regarded as a constant. Thus, to the extent that the

concentration at the upstream membrane surface varied with radial position, the filtrate

concentration did also. In general, for a given membrane-solute combination, 9 will depend on v,

Constancy of 0 requires either that vf be constant or that the membrane Peclet number be large (see

Section 1.4 and Deen, 1998, p. 67).

The species conservation equation was made dimensionless by introducing the following

quantities:

Y =1 r -(3-21)
R

Z=Sc"13 =Sc 13z (3-22)

C
(3-23)

Cb

a(Y)= (ScY 2/3  (3-24)

The reversed radial coordinate (Y) allows the numerical solution to proceed from the outer edge of

the membrane, where the concentration is known. The new axial coordinate (Z) is scaled for the

concentration boundary layer; that is, its order of magnitude is unity within that region. The

function a(Y) is a dimensionless filtration rate, scaled as shown by Sc 2/3 in order to remove the

Schmidt number from the boundary condition at the membrane surface. Substitution of these

variables and the expansions for vr and vz in Eq. 3-17 gives
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1 ~Z2 1 ~dT
-(1- Y) F'(0)Z + -F"(0)Z2Sc-13 [F'(0)Z2 + F"()Z3Sc-1/3 + a(Y) (3-25)

_2 dY 3 .dZ

d2 1 Fd2T 1 d1
- + ReSc2 /3 [dy 2  (1 _ y) Y

Because the present analysis was restricted to the case of high Re and Sc, the radial diffusion term

in Eq. 3-25 was neglected. Preliminary calculations revealed that for the large values of Sc of

interest here (> 104), the F'(0) terms in the velocity components had a negligible effect on the

model results. For example, for Sc = 1.5 x 10 4, inclusion of these higher order terms resulted in

<0.5% changes in both the area-averaged mass transfer coefficient and the area-averaged surface

concentration calculated by the model. Accordingly, Eq. 3-25 was simplified to

-(1 - Y)F'(0)Z d I [F'(0)Z2 + a(Y)] -= 2 (3-26)
dY dZ dZ2

The boundary conditions for (YZ) are

T(0, Z) = 1 (3-27)

d W(Y,oo) 0 (3-28)
dZ

dF(Y,0)
= -a(Y)[ - O]W(Y,0) (3-29)

Note that with the scaling employed, which is valid for asymptotically large Sc, neither Re nor Sc

appears in Eqs. 3-26 through 3-29. Thus, W is dependent only on position (YZ) and the

parameter a.

The local mass transfer coefficient is defined as
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k - D -C (3-30)
(Cm - Cb) OZ z=

Given the functional dependence of I and the relationship between Z and z (Eq. 3-22), it follows

that the local Sherwood number is of the form

kR
Sh = - = f(Y,a)Re ScS1 3  (3-31)

D

where the coefficientf(Y,a) is computed from the values of Wand d9'/dZ at Z = 0. In general,

those results must be obtained numerically. However, for the region near the outer edge of the

membrane and for small filtration rates, an analytical solution can be found, which provides a

useful check on the numerical results. That solution (using similarity) is described next, and then

the numerical procedure is outlined.

3.2.5 Similarity Solution Near Membrane Outer Edge

As pointed out in Smith and Colton (1972), at the outer edge of the membrane axial

convection is negligible for a= 0. This suggests that for Y << 1 and a -> 0, Eq. 3-26 can be

approximated as

-F'()Z---=- (3-32)
dY -Z2

For a -> 0 and a fixed value of 1, Eq. 3-29 also reduces to a simpler form, corresponding to

specification of a constant value of dI/dZ at the membrane surface. For the calculation of mass

transfer coefficients, the magnitude of that constant is immaterial. Thus, the simplified boundary

condition at the membrane surface was written as
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d =(YO) -- 1 (3-33)
dZ

The other boundary conditions, given by Eqs. 3-27 and 3-28, remain the same. This problem was

solved by assuming that IF= IF(s) only, where

F'O -1/3(34
S = Z _ y (3-34)

(-F'(0)

Using this similarity solution, the coefficient in the Sherwood number was found to be

f(Y,0) = F(2/3)[ F /-1/3 = 0.6381Y-1/ 3  (Y << 1) (3-35)

In order to provide a second check of the validity of the numerical method employed

(discussed below), the similarity solution was also determined for the case of a constant

concentration at the membrane surface. To obtain this solution, the boundary condition in Eq. 3-

29 was replaced with

W(Y,)= 2 (3-36)

As with the constant flux boundary condition mentioned above, the value of the concentration at

the membrane surface was immaterial. Using the similarity variable in Eq. 3-34, the coefficient in

the Sherwood number for the constant concentration case was found to be

f(Y,O)= 3 [-F()-1/3- 1/3 = 0.5277Y- 3  (Y <<1) (3-37)
( 1/ 3) _ 9 _
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3.2.6 Numerical Solution

The complete boundary value problem given by Eqs. 3-26 through 3-29 was solved using

a modified Crank-Nicolson method. Using this method, each step in Y was broken down into two

half-steps. If j and k are indices for the Y and Z directions, respectively, beginning at (j, k) the

first half-step was taken to (j+1/2, k). At this point, the finite difference representation of Eq. 3-26

used was

- +Y )F'(o)Zk 2[' - [F'( )Z2 + a(Y 2 )][,)k+1 - §k1 (3-38)

_F+1/2,k+l 7j+1/2,k + j+1/2,k-1
(A)2

The second half step was then taken to (+1, k). The finite difference equation used for this half-

step was

- +, YYi)F'(o)Zk [ ' -k F'(o)Z + a(Y+ )][ F+1/2,k+l j+1/2,k-1 (3-39)
(1-Y+)F()kI AY IF()kI 2AZ_

=-I ~[j+1,k+1 -
2

Wj+1,k +9
j+1,k1 + F

1
,k+1 - 2 'j,k +'j,k- 1

2 (AZ)2 (AZ )2

The FORTRAN code that was written to perform this solution is located in Appendix B. For

simulations involving dilute solutions it was assumed that AIl= 0, making vf a constant that could

be specified in advance. With vf independent of the concentration field, the latter could be

computed in one step. For more concentrated solutions (AIlnot negligible), an iterative procedure

was required. An initial guess of a constant filtration rate was entered, and the concentration field

was computed using this initial v, The osmotic pressure at the membrane surface was then

calculated, and Eq. 3-16 was used to update vfr) for use in the next iteration. The filtration rate

was updated according to
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V'+ = vi + fvf [C'(r,0)] - v'} (3-40)

where the superscripts indicate the iteration. Depending on the value chosen for the "relaxation

factor"f in Eq. 3-40, the filtration rate used in iteration i+ 1 was somewhere between that used in

iteration i and that calculated from the concentration profile determined by iteration i. Iteration

continued until the area-averaged filtration rate converged to within a relative tolerance of < 10-5.

For most simulationsf= 0.5 was sufficiently small to ensure convergence.

To accommodate a finite grid, the boundary condition at Z = oo (Eq. 3-28) was usually

imposed at Z = 10. Increasing this value to 20 resulted in only a 0.5% change in the average

surface concentration calculated by the model, confirming that 10 was sufficiently large. A 100 x

100 grid was found to provide results for the average surface concentration that were accurate to

within 0.1%.

3.3 Results and Discussion

3.3.1 Mass Transfer Coefficient

Smith and Colton (1972) investigated the problem of mass transfer in Bddewadt flow in the

absence of filtration. They included radial diffusion, and computed the steady state solution as the

large-time limit of a transient problem, using an alternating-difference implicit procedure. Three

types of boundary conditions were considered. The present results were compared with those of

Smith and Colton by setting a(Y) = 0 in Eq. 3-26 and replacing Eq. 3-29 with a constant

concentration condition (Eq. 3-36). The results from the current model and the results from Smith

and Colton (1972) are plotted in Figure 3.2 as Sh Re-1/ 2 Sc-113 versus dimensionless radial

position. Also plotted in this figure is the similarity solution for the constant concentration

boundary condition (Eq. 3-37). Both models show good agreement with the similarity solution for

Y << 1. Instabilities in the present model were observed for small values of Y when the constant
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FIGURE 3.2: Dimensionless mass transfer coefficient as a function of radial position for

the constant concentration boundary condition (Eq. 3-36). Results from the

boundary layer model are shown along with the results of Smith and Colton

(1972). The curve labeled "similarity" was calculated from Eq. 3-37.
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concentration boundary condition (Eq. 3-36) was used. This was due to the singularity at Y = Z =

0. That is, the boundary conditions in Eqs. 3-27 and 3-36 impose two different values of T at this

point. For the conditions used (Re = 104 and Sc = 105), the two sets of mass transfer coefficients

were indistinguishable in the range 0 5 Y 0.97. The present model did not allow calculation of

mass transfer coefficients for larger values of Y, due to instabilities in the concentration field that

appeared as Y -4 1. A likely reason for failure of the numerical solution in this region is that the

radial convection term in Eq. 3-26 vanishes, so that the partial differential equation loses its

parabolic character. It should be noted also that the present formulation becomes inaccurate for Y

-4 1, because the neglect of radial diffusion makes it impossible to impose the symmetry condition

at the axis of rotation, namely, dIIdY = 0 at Y = 1. The numerical difficulties notwithstanding, it

was possible in all simulations to obtain stable concentration values over 99.9% of the membrane

area.

The behavior of the local mass transfer coefficient in the presence of filtration was

investigated using several constant values of the dimensionless filtration rate, a. (As noted earlier,

a is constant when osmotic effects are negligible.) The results are plotted in Figure 3.3, again as

Sh Re-112 Sc-1 3 versus dimensionless radial position. Shown for comparison is the similarity

result for the constant flux boundary condition given by Eq. 3-35. In all cases, there was a rapid

decline in mass transfer coefficient when moving inward from the outer edge of the membrane, a

consequence of the increasing thickness of the concentration boundary layer (see below). For a

given radial position, the mass transfer coefficient decreased as the filtration rate was reduced. The

asymptotic limit reached for a -> 0 was in excellent agreement with the similarity solution for the

outer 10-15% of the membrane radius. The results for a = 0.001 (not shown) were

indistinguishable on this plot from those for a = 0.01. As shown in Figure 3.3, the agreement

with the analytical result was much worse for a = 1. For filtration rates of that magnitude, the

region in which axial convection may be neglected is much smaller (Y1/3 << 1). This is seen by

performing an order of magnitude analysis of Eq. 3-26. The orders of magnitude of each term are:
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FIGURE 3.3: Dimensionless mass transfer coefficient as a function of radial position for

the constant flux boundary condition (Eq. 3-33). Results from the

boundary layer model are shown for several values of the dimensionless

filtration rate (a). The curve labeled "similarity" was calculated from Eq. 3-

35.
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d7F A V-(1 - Y)F'(O)Z - 6 (3-41)
dY Y

(O)Z2 + a(Y)] ( + A (3-42)
-F dZ (4 + a) 6

322 d yj A yj(3-43)
dZ 52

where 3c is the thickness of the concentration boundary layer. Equating the orders of magnitude of

radial convection (Eq. 3-41) and axial diffusion (Eq. 3-43) gives

C Y1/3  (3-44)

In order for axial convection (Eq. 3-42) to be negligible

(3 + a3c)<<1 (3-45)

For the case of a -* 0, Eq. 3-45 is equivalent to setting Y << 1. For a - 1, the requirement for

neglecting axial convection becomes Y1/3 « 1.

The area-averaged mass transfer coefficients for the case of constant concentration (Figure

3.2) and constant flux as a -+ 0 (Figure 3.3) at the membrane surface were determined. In doing

so the mass transfer coefficient for Y < 0.1 was calculated from the corresponding similarity result

(Eq. 3-37 for constant concentration, Eq. 3-35 for constant flux). The results, given in the form of

Eq. 3-31, were

(Sh) = (k)R = 0.775Re"2 Sc1 3  (3-46)
D
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for the case of constant concentration and

(Sh) _ (k)R = 1.0 1Re1 2 Sc1 /3  (3-47)
D

for the case of constant flux (a -> 0). It was observed for both cases that the difference between

the numerically determined mass transfer coefficient and the similarity result was approximately

linear in Y. A least-squares fit to the numerical results lead to

f(Y,0) = 0.5277Y-1 /3 -0.53Y (3-48)

for the case of constant concentration

f(Y,0) ~ 0.6381Y-" -0.41Y (3-49)

for the case of constant flux (a -> 0). Equations 3-48 and 3-49 are sufficiently accurate that, when

averaged over the membrane area, they give 0.773 and 1.01 for the coefficients in Eqs. 3-46 and

3-47, respectively. The numerical results forf(Y,0) for each case are plotted along with Eqs. 3-48

and 3-49 in Figures 3.4 and 3.5.

3.3.2 Concentration Field

Concentration contours representative of the behavior at moderate filtration rates are plotted

in Figure 3.6. These calculations were performed for an ideal semipermeable membrane (i.e., a=

1 in Eq. 3-16 and 0= 0 in Eq. 3-29) and assumed that 7oc C, as in the Van't Hoff equation.

Under these conditions the only remaining dimensionless parameters are
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FIGURE 3.4: Dimensionless mass transfer coefficient as a function of radial position for

the constant concentration boundary condition (Eq. 3-36). The curve

labeled "numerical" is the result of the boundary layer model (Figure 3.2).

The curve labeled "fitted" is given by Eq. 3-48.

86

-Lnumerical

fitted

-I



10

f(Y,0) 1

0.1
0 0.2 0.4 0.6 0.8 1

1-Y

FIGURE 3.5: Dimensionless mass transfer coefficient as a function of radial position for

the constant flux boundary condition (Eq. 3-33). The curve labeled

"numerical" is the result of the boundary layer model for a -* 0 (Figure

3.3). The curve labeled "fitted" is given by Eq. 3-49.
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FIGURE 3.6: Contours of constant concentration computed for ao = 1 and #= 0.5.
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a0  Vf 0 Sc 2/3= LP(AP -b) Sc 2/3  (3-50)
4VO) V5O)

# P (3-51)
AP

where v, and Ilb are the filtration velocity and osmotic pressure, respectively, based on the bulk

solute concentration. The parameter ao is a scaled filtration velocity, and # is a measure of the

importance of osmotic effects. For the results shown in Figure 3.6, ao = 1 and /#= 0.5. As seen,

each concentration contour had an inflection point. Taking the IF= 1.01 contour as an index of the

boundary layer thickness, there was a rapid increase in thickness near the outer edge of the

membrane, a leveling off at intermediate positions, and then another rapid increase near the center

of the cell. The initial increase and tendency to level off are typical of boundary layers developing

along surfaces (e.g., for flow parallel to a flat plate), whereas the final increase is due to the

upward axial velocities that become dominant as the axis of rotation is approached. The plume-like

behavior of the concentration field near the center of a stirred cell was examined in more detail by

Smith and Colton (1972). As already mentioned, numerical instabilities precluded the calculation

of the concentration field all the way to Y= 1. The size of the unstable region varied from the inner

3% of the cell radius at the membrane (Z= 0) to about the inner 20% of the cell radius at Z = 10, as

indicated by the termination of the contours in Figure 3.6. For these conditions the product of

dimensionless filtration rate (a) and dimensionless boundary layer thickness (Z for T = 1.01) was

0 at Y= 0, 0.84 at Y= 0.4, and 1.24 at Y= 0.8. This indicates that the similarity transformation of

Saksena and Zydney (1997), which requires that product to be constant, would not have been

applicable.

3.3.3 Effect of Polarization on Filtration Rate

The next set of simulations illustrates the effects of concentration polarization on the

filtration rate averaged over the membrane surface. As with the calculations for Figure 3.6, it was
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assumed for simplicity that the membrane was perfectly semipermeable and the solution was ideal.

The results were expressed by dividing the area-averaged filtration rate by that which would exist if

polarization were absent. Thus, the quantity examined was

(v,) AP-(H,) (3-52)
Vf0  AP - b

where the brackets denote averages over membrane area and Hm = H(C) = F[C(r,O)]. This

relative filtration rate is plotted in Figure 3.7 as a function of ao, for several values of /. As

indicated by the solid curves, increasing ao at constant # decreased the relative filtration rate,

because concentration polarization was enhanced. At a given ao, increasing # also decreased the

relative filtration rate, because it amplified the effects of osmotic pressure and thereby allowed

polarization to play a greater role. For / = 0 (no solute in the system), polarization would be

absent, and the relative filtration rate would remain at unity for all values of ao.

The dashed curves in Figure 3.7 represent predictions based on the stagnant film theory.

To obtain these curves, all stagnant-film variables were interpreted as area averages. Setting C, =

(Cm) and vf= (vf), and using Cf= 0 and H oc C as before, Eq. 3-1 becomes

_= exp(Vf (3-53)

To evaluate kSf in Eq. 3-53 in a self-consistent manner, the area-averaged mass transfer coefficient

calculated using the boundary layer model was used, in the limit of vanishing filtration rate (Eq. 3-

47). In other words, as might be attempted in practice, ksf was obtained using mass transfer data

from the same system in the absence of filtration. If kSf is set equal to (k), Eq. 3-53 becomes

(Im) = flx( ,o) (3-54)
AP 1.04(1 - ) AP )
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FIGURE 3.7: Ratio of average filtration rate to that in the absence of concentration

polarization, as a function of the dimensionless filtration rate without

polarization (a), for the boundary layer, stagnant film, and hybrid models.

The results are for an ideal semipermeable membrane.
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Equation 3-54 was solved iteratively to determine (Hm)/AP. This allowed direct comparisons to be

made between the stagnant film and boundary layer results. As seen in Figure 3.7, the relative

filtration velocity predicted by the stagnant film model exceeded that obtained from the more

rigorous boundary layer theory for all values of ao and P. In other words, the stagnant film

approach always underestimated the effects of concentration polarization on filtration velocity.

However, the difference between the two predictions was relatively small, the stagnant film value

being at most 21% higher than that from the boundary layer theory. Similar trends were observed

when the osmotic pressure was assumed to be a quadratic function of solute concentration. That

is, it appears that there is always a small to moderate overestimation of filtration rate by the

stagnant film model, whether or not the solution is thermodynamically ideal.

The dotted curves in Figure 3.7 were obtained from a hybrid model, which was derived as

follows. Letting g(Y) = I'm/I'b, the assumptions of an ideal semipermeable membrane and ideal

solution lead to

(V) - (g) (3-55)
Vf0  1-P

(g) = 2f g(Y)(1 - Y)dY (3-56)
0

Assuming that the stagnant film result (Eq. 3-1) is valid locally, and interpreting kSf now as the

local mass transfer coefficient in the absence of filtration, the following expression for g was

obtained:

g = exp ao I- I (3-57)
If(Y,0)( 1- 0

Using Eq. 3-49 to evaluatef(YO), Eq. 3-57 was solved iteratively to determine g(Y), from which

the average filtration velocity was found. As shown in Figure 3.7, the hybrid model yielded
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predictions which were somewhat more accurate than those of the stagnant film model, although it

too consistently overestimated the relative filtration velocity. For the hybrid model, the maximum

deviation from the boundary layer results in Figure 3.7 was 15%.

3.3.4 Effect of Polarization on Sieving

The objective of the next set of simulations was to determine the relationship between the

apparent sieving coefficient (6' = C/Cb) and the actual sieving coefficient (6 = C/Cm), as a

function of filtration conditions. As discussed in connection with Eq. 3-20, & was regarded as a

constant. What is ordinarily measured is the concentration in the mixed filtrate divided by that in

the bulk retentate, or (9') = (vJCf)I(vf)Cb. However, in the simulations to be discussed the

osmotic pressure was assumed to be negligible (P -> 0), making the filtration velocity independent

of radial position. That is, the macromolecule solutions were assumed to be dilute, as is the case in

membrane characterization experiments using tracers. Consequently, the apparent sieving

coefficient could be calculated simply as (e') = (Cf)/Cb. Figure 3.8 shows the ratio of actual to

apparent sieving coefficient as a function of the dimensionless filtration rate (a), for values of 6

ranging from 0.01 to 0.75. The results for & = 0.01 represent lower limits, in that they were

indistinguishable on this plot from those for 1 = 0.001. The boundary layer results are shown by

the solid curves. As the filtration rate was increased at a given value of 9, polarization was

augmented and 9/(6') fell more and more below unity. At a given filtration rate, smaller values of

& resulted in larger percentage differences between the apparent and actual sieving coefficient. In

other words, the more effectively the solute is retained by the membrane, the greater is the

influence of polarization on sieving.

To obtain comparable sieving predictions from the stagnant film theory, Eq. 3-1 was

rearranged to give
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FIGURE 3.8: Ratio of actual sieving coefficient (0) to apparent sieving coefficient (0') as

a function of dimensionless filtration rate (a), for the boundary layer,

stagnant film, and hybrid models. The effects of osmotic pressure were

neglected (# = 0).
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O' B
(3-58)

O 1-0(1-B)

and assumed that 0' = (0') and B = exp((vf)/(k)). As shown by the dashed curves in Figure 3.8,

the values of 0/(1') from the stagnant film model always exceeded those from the boundary layer

theory. The magnitude of this overestimate increased with increasing filtration rate or with

decreasing sieving coefficient. At a = 1 and 0 = 0.01, the stagnant film prediction for 1/(0') was

78% too large. Thus, using the stagnant film model to correct measured (apparent) sieving

coefficients may lead to systematic errors that are much larger than those made in estimating

filtration rates.

The corresponding hybrid model was derived by using the local values of vf and k to

evaluate the polarization factor. From Eqs. 3-1 and 3-49, the following expression for B was

obtained:

B(Y)C= ()Cf [ = exp (3-59)
Cb - Cf(Y) 0.6381Y 1 3 -0.410Y1

Averaging Eq. 3-58 over the membrane surface then gives

1 B(Y)(1 - Y)=_ 2 Y (3-60)
0 1- 0[1-- B(Y)]

As shown by the dotted curves in Figure 3.8, the predictions of the hybrid model were

significantly more accurate than those of the stagnant film approach. A particularly dramatic

improvement was seen for very small sieving coefficients (e.g., 0= 0.01). For the hybrid model,

the maximum deviation from the boundary layer results in Figure 3.8 was 15% (for 0= 0.1 -

0.2).
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3.3.5 Comparisons with Experimental Data

Before the development of the laminar boundary layer model, the first approach taken to

correct measured sieving coefficients for the effects of concentration polarization was to determine

the value of the stagnant film mass transfer coefficients (ksf) for the stirred cell in a separate set of

experiments (Johnston and Deen, 1999). Filtration rates across regenerated cellulose membranes

were measured in the presence and absence of BSA. The reduction in filtration rate caused by

osmotic pressure was related to the concentration of BSA at the membrane surface, using a

semiempirical correlation from the literature (Vilker et al., 1981). This allowed kf to be computed

for BSA. The stagnant film mass transfer coefficients for the other proteins were calculated from

this value by using laminar boundary layer theory to correct for differences in the diffusivities.

These experiments were performed using the same 10 ml ultrafiltration cell employed in the

sieving studies, and also a 3 ml cell (Model 3, Amicon, Beverly, MA). Scale drawings of the two

cells are shown in Figure 3.9. The solution used was 0.15 M NaCl, either protein-free or

containing 4 g/dl BSA, with the pH adjusted to 7.4 using 0.1 N NaOH and 0.1 N HC1. The

membranes were regenerated cellulose with a molecular weight cutoff of 30 kD (Amicon, Beverly,

MA, and Millipore, Bedford, MA). Pressure drops ranging from 2.7 to 13.3 kPa were applied

using compressed nitrogen and measured with a pressure transducer. In all experiments the

angular velocity of the impeller (>) was maintained at 220 rpm, resulting in Reynolds numbers of

approximately 880 and 2690 for the 3 ml and 10 ml cells, respectively. The filtration rate was

measured first using the protein-free buffer, then using the BSA solution, and then again with the

protein-free buffer. After a 10 to 30 minute equilibration period following each change, the filtrate

was collected for 30 minutes and weighed. With the BSA solution, the concentrations of BSA in

the filtrate and retentate were measured.

The hydraulic permeability (L ) of the membrane is related to the filtrate velocity (vf) by

Eq. 3-16. The value of L was determined from the protein-free filtrations by dividing the

filtration rate by AP. Data from an experiment were retained only if the values of L in the first
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Front

Amicon Model 8010
10 ml cell

1 cm

Amicon Model 3
3 ml cell

FIGURE 3.9: Scale drawings of the Amicon stirred cells used in the filtration experiments

with BSA. The fluid levels indicated correspond to the nominal capacities.

The values of R and the impeller-membrane separation were 1.05 and 0.14 -

0.18 cm, respectively, for the 10 ml cell, and 0.6 and 0.10 cm,

respectively, for the 3 ml cell.

97

Side



and third periods differed by less than 5%. To determine the concentration of BSA at the upstream

surface of the membrane, the following semiempirical correlation was used (Vilker et al., 1981):

-2 -1/2

IIBSA RT 2  BSA + 2 -
BSA (2M BsA ) S - (3 61)

RT
+ MBSA (CBSA+ ACB. + A 3 CB.)

where R is the gas constant, T is temperature, z is the charge number for BSA (z = -20.4 at pH =

7.4), CBSA is the concentration of BSA in g/l, MBSA is the molecular weight of BSA (68,000

g/mol), and ms is the molar salt concentration. The coefficients A2 and A3 are equal to -1.089 x

10-2 and 1.243 x 10-4, respectively, for the conditions used here.

To obtain the concentration of BSA at the upstream membrane surface, Eqs. 3-16 and 3-61

were solved simultaneously for All and CBSA (= Cm). In this calculation it was assumed that the

membrane PNclet number was large, so that a- = (1- Q). Because & ~ 10-3, this assumption

caused little error. Rearranging Eq. 3-1, the mass transfer coefficient was calculated as

kSf = V[n CM - Cj (3-62)
(Cb - Cf

The results for the stagnant film mass transfer coefficient for BSA are shown in Figure 3.10. For

filtration rates ranging from 0.3 to 1.8 Jm/s, the results for both ultrafiltration cells were in good

agreement. A linear increase in k with vf was observed. The best-fit line is given by k = 1.36 +

2.40v, where kSf and vf are both in gm/s. The mass transfer coefficients for the other proteins

were calculated by assuming that kSf oc (D.) 2/3 , as suggested by laminar boundary layer theory

(Eq. 3-31).

The ability of the laminar boundary layer model to predict the reduction in filtration rate

observed in these experiments was tested. As stated above, nearly perfect rejection of the 68 kD
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Vf (gm/s)

FIGURE 3.10: Experimental values of the stagnant film mass transfer coefficient, k S as a

function of filtration velocity, vp for BSA.
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BSA was observed ((1') 10-3), so the membranes were modeled as ideally semipermeable. The

osmotic pressure was related to the BSA concentration using Eq. 3-61. The predicted and

measured filtration rates for the 10 ml cell are compared in Figure 3.11. Values of P for this data

set ranged from 0.37 to 0.66; values of a calculated using n, ranged from 0.07 to 0.27. When the

angular velocity of the bulk fluid was equated with that of the stirrer (,y= ow, = 1), the filtration

rates predicted by the model exceeded the measured values by approximately 20%. However, as

mentioned earlier, to impart a torque that will balance those exerted on the fluid by the bottom and

side of the cell, the angular velocity of the stirrer must exceed that of the bulk fluid. In other

words, it is expected that y< 1. As shown in Figure 3.11, when it was assumed that y= 0.25, the

predicted filtration rates underestimated the measured values, whereas y = 0.36 was found to

minimize the sum of the squared errors. Colton and Smith (1972) measured the rate of benzoic

acid dissolution from the base of a different stirred cell and compared the results with boundary

layer predictions for a constant concentration boundary condition, thereby concluding that y=

0.49. Inasmuch as ymust depend on the cell and impeller geometry, this difference in angular

velocity factors is not surprising.

The results for the 3 ml cell, where the best-fit value was y = 0.87, are shown in Figure

3.12. Values of # for this data set were similar to those for the 10 ml cell, ranging from 0.39 to

0.62. Values of a, calculated using (o, were also similar (0.06 - 0.26). However, in this case the

agreement between the model and data was somewhat less satisfactory than for the 10 ml cell. In

particular, for the 3 ml cell a fixed value of ydid not match the data equally well over the entire

range of filtration rates, larger values of ytending to work better at the higher filtration rates.

Possibly contributing to this trend is the fact that the mean fluid heights were significantly lower at

the higher values of (v), due to the small volume of this cell. By reducing the wetted area, this

would have lowered the torque exerted on the fluid by the side of the cell, and thereby reduced the

value of w, - o needed to balance that torque. A reduction in os - o corresponds, of course, to

values of ycloser to unity.
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FIGURE 3.11: Comparison of average filtration rates predicted by the boundary layer

model with those measured in the 10 ml cell. Predictions are shown for

three assumed values of y= O'w>; the best-fit value was y= 0.36.
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FIGURE 3.12: Comparison of average filtration rates predicted by the boundary layer

model with those measured in the 3 ml cell. Predictions are shown for three

assumed values of y= 'cdo,; the best-fit value was y= 0.87.
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As shown above, the stagnant film model can be fitted to the BSA data if kSf is allowed to

be a strong function of the filtration rate. However, the results from the boundary layer model

indicate that the true area-average mass transfer coefficients (calculated by averaging local values

obtained from Eq. 3-30) are not strongly dependent on the filtration rate. For example, the mass

transfer coefficients calculated by the boundary layer model for BSA in the 10 ml cell ranged only

from 4.2 to 4.5 gm/s, while the empirical expression for k f yields values ranging from 2.1 to 4.2

gm/s. Evidently, most of the empirical dependence of ksf on (vf) is needed merely to compensate

for errors made in using area-averages for the various individual quantities in Eq. 3-1.

Finally, the true sieving coefficients calculated by the stagnant film model using the

empirical expression for kSf and those calculated from the laminar boundary layer model with y=

0.36 were compared for a subset the experiments described in Chapter 2. Again, the values for &

listed in Johnston and Deen (1999) for three of the proteins studied were calculated using Eq. 3-1

in conjunction with the expression for ksf shown by the solid line in Figure 3.10. The

corresponding values for 0 listed in Chapter 2 were calculated using the laminar boundary layer

model with y= 0.36. As stated in Chapter 2, these values differed only by an average of 0.9% and

a maximum of 2.7%. Apparently, although the mass transfer coefficients calculated using these

two methods are not in good agreement, the extents of polarization predicted are very similar. The

errors involved in these predictions were minimized due to the small amount of polarization in the

experiments. For this reason, only the values calculated using the laminar boundary layer model (y

= 0.36) were listed in Chapter 2.

3.4 Conclusions

A laminar boundary layer analysis based on B6dewadt flow was used to quantify

concentration polarization in stirred, cylindrical ultrafiltration cells. The predictive capability of the

boundary layer model was tested using filtration data with BSA solutions, and the agreement was

found to be excellent, provided that an appropriate value was selected for the angular velocity of
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the bulk fluid. Comparisons of the boundary layer results with those obtained from a conventional

stagnant film model showed that the latter gave reasonably accurate values for mean filtrate

velocities, but made substantial errors in converting apparent sieving coefficients to actual

membrane sieving coefficients. The errors were lessened by use of a hybrid model, where the

mass transfer coefficient was allowed to vary with position according to boundary layer theory. It

appears that the main difficulty with the stagnant film model arises from the implicit averaging of

concentrations and filtrate velocities over the membrane surface. Of course, the use of such

position-independent quantities is what was needed to yield a one-dimensional problem with a

simple analytical solution. It is concluded that the one-dimensional nature of the stagnant film

model, which is its main strength, is also its main weakness.
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APPENDIX A

FIDAP Code: Determination of the
Polyester Mesh Correction Factor

The following Appendix contains the FIDAP code (FDREAD file) created in Fidap 7.6

(Fluent, Inc., Evanston, IL) to determine the value of the polyester mesh correction factor, # (see

Section 2.2.3). The FDREAD file was created using the graphical user interface of the software

package to manually draw the mesh and define the problem.

TITLE (

Polyester Mesh
FI-GEN( ELEM =

MFAC = 1, BEDG

WINDOW (CHANGE=

1.000000

.000000

.000000

.000000

-10.00000

WINDOW( CHAN =

1, 0,
0, 1,

0, 0,
0, 0,

-10, 10,

POINT( ADD, COO

POINT( ADD, COO

POINT( ADD, COO

POINT( ADD, COO

POINT( ADD, COO

POINT( ADD, COO

POINT( ADD, COO

POINT( SELE, ID

POINT( SELE, ID

POINT( SELE, ID

CURVE ( ADD, ARC

Correction Factor

1, POIN = 1, CURV = 1, SURF = 1, NODE = 0, MEDG = 1, MLOO = 1,

= 1, SPAV= 1, MSHE = 1, MSOL = 1, COOR = 1)

1, MATRIX

.000000 .000000 .000000
1.000000 .000000 .000000

.000000 1.000000 .000000

.000000 .000000 1.000000

10.00000 -7.50000 7.50000 -7.50000 7.50000

1, MATR )

0, 0

0, 0
1, 0

0,

-7.5,

R, X =

R, X =

R, X =

R, X =

R, X =

R, X =

R, X =

=2)

1)

1

7.5, -7.5, 7.5
0.002, Y = 0.002, Z = 0.0035
0, Y = 0, Z = 0.0055
0, Y = 0, Z = 0.0015
0, Y = 0, Z = 0.007
0.0035, Y = 0.0035, Z = 0.00
0, Y = 0, Z = 0 )
0.0035, Y = 0.0035, Z = 0

7 )
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POINT( SELE, ID = 4 )

POINT( SELE, ID = 2 )

CURVE( ADD, LINE )

POINT( SELE, ID = 3

POINT( SELE, ID = 6

CURVE( ADD, LINE )
POINT( SELE, ID = 5

POINT( SELE, ID = 7

CURVE( ADD, LINE )

POINT( SELE, ID = 4

POINT( SELE, ID = 5

CURVE( ADD, LINE )
POINT( SELE, ID = 6

POINT( SELE, ID = 7

CURVE( ADD, LINE )

WINDOW( CHAN = 1, MATR

1, 0, 0, 0
0, 1, 0, 0
0, 0, 1, 0
0, 0, 0, 1

-0.0007, 0.0042, -9e-05, 0.00359, -0.00018, 0.00718

45, 45, 45, 45
WINDOW( CHAN = 0, SIDE

WINDOW( CHAN = 1, MATR

-1, 0, 0, 0
0, 0, 1, 0
0, 1, 0, 0
0, 0, 0, 1

-0.00665, 0.00315, -0.00017, 0.00718, -9e-05, 0.00359

45, 45, 45, 45
POINT( SELE, ID, WIND = 1

2

1

3

CURVE( ADD, CIRC

CURVE( SELE, ID, WIND = 1
7

CURVE( DELE

POINT( ADD, COOR, X = 0.001414, Y = 0.001414, Z = 0.004914
POINT( ADD, COOR, X = 0.001414, Y = 0.001414, Z = 0.002086
POINT( SELE, ID, WIND = 1

2

8

1

CURVE( ADD, ARC

POINT( SELE, ID, WIND = 1

3

9

1
CURVE( ADD, ARC

POINT( SELE, ID, WIND = 1
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CURVE( SELE, ID, WIND = 1

1

CURVE( DELE

POINT( SELE, ID, WIND = 1

8

5

CURVE( ADD, LINE

POINT( SELE, ID, WIND = 1

9
7

CURVE( ADD, LINE

POINT( ADD, COOR, X = 0.0035, Y = 0.0035, Z = 0.0035

POINT( SELE, ID, WIND = 1

1

10

CURVE( ADD, LINE

CURVE( SELE, ID, WIND = 1

7

POINT( SELE, ID, WIND = 1 )

8

CURVE( SPLI

CURVE( SELE, ID, WIND = 1 )

8
POINT( SELE, ID, WIND = 1 )

9

CURVE( SPLI

CURVE( SELE, ID, WIND = 1 )

4

POINT( SELE, ID, WIND = 1 )

10

CURVE( SPLI

CURVE( SELE, ID, WIND = 1 )
2

9
11
10

3

5

12

13

16

17

15

14

6

UTILITY( UNSE, ALL

CURVE( SELE, ID, WIND = 1

2

9
11
10
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3
MEDGE
MEDGE

1

ADD, FRST, INTE = 9, RATI = 0.05, 2RAT = 0.05, PCEN = 0
SELE, ID, WIND = 1)

2

3

4

5
MEDGE( MODI, FRST, INTE = 9, RATI = 0.05, 2RAT = 0.05, PCEN = 0
CURVE( SELE, ID, WIND = 1

5

12

16

13

17

15

6

14

MEDGE( ADD, SUCC, INTE = 9, RATI = 0.05, 2RAT = 0.05, PCEN = 0
MEDGE( SELE, ID, WIND = 1

6

7

8

9
10

11

12

13

MEDGE( MODI, SUCC, INTE = 9, RATI = 0, 2RAT = 0, PCEN = 0
CURVE( SELE, ID, WIND = 1

2

5

9

12
UTILITY( UNSE, ALL
MEDGE( SELE, ID, WIND = 1

6

12
MEDGE( MODI,

MEDGE( SELE,

7

13

MEDGE( MODI,

CURVE( SELE,

2

5

9

12

FRST, INTE =

ID, WIND = 1

FRST, INTE =

ID, WIND = 1

9, RATI = 0.05, 2RAT = 0.05, PCEN = 0

9, RATI = 0.39, 2RAT = 0.39, PCEN = 0

MFACE( WIRE, EDG1 = 1, EDG2 = 1, EDG3 = 1, EDG4 = 1

CURVE( SELE, ID, WIND = 1

9
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16

11

13

MFACE
CURVE

WIRE, EDG1 = 1, EDG2 = 1, EDG3 = 1, EDG4 = 1

SELE, ID, WIND = 1 )

17

11

15

MFACE( WIRE, EDG1 = 1, EDG2 = 1, EDG3 = 1, EDG4 = 1

CURVE( SELE, ID, WIND = 1
3

6

10
14

MFACE( WIRE, EDG1

POINT( ADD, COOR,

POINT( ADD, COOR,

POINT( ADD, COOR,

POINT( ADD, COOR,

POINT( ADD, COOR,

POINT( ADD, COOR,

POINT( ADD, COOR,

POINT( ADD, COOR,

POINT( ADD, COOR,

POINT( ADD, COOR,

WINDOW( CHAN = 0,

WINDOW( CHAN = 1,

= 1, EDG2 = 1, EDG3 = 1, EDG4 = 1

X = 0.00465, Y = 0.002, Z = 0.0035

X = 0.00465, Y = 0, Z = 0.0055 )

X = 0.00465, Y = 0, Z = 0.0015 )

X = 0.00465, Y = 0, Z = 0.007 )

X = 0.00465, Y = 0.0035, Z = 0.007
X = 0.00465, Y = 0, Z = 0 )

X = 0.00465, Y = 0.0035, Z = 0
X = 0.00465, Y = 0.001414, Z = 0.004914

X = 0.00465, Y = 0.001414, Z = 0.002086
X = 0.00465, Y = 0.0035, Z = 0.0035

ISOM

MATR

-0.707107, -0.408248, 0.57735,
0.707107, -0.408248, 0.57735,

0, 0.816497, 0.57735,

0

0

0
0, 0, 0, 1

-0.00667, 0.00667, -0.00405, 0.00595, -0.00024, 0.00967

45, 45, 45, 45
POINT( SELE, ID = 12 )
POINT( SELE, ID = 18 )
POINT( SELE, ID = 11
CURVE( ADD, ARC )
POINT( SELE, ID = 11

POINT( SELE, ID = 19

POINT( SELE, ID = 13

CURVE( ADD, ARC )
CURVE( SELE, ID, WIND = 1

18

POINT( SELE, ID, WIND = 1

18

CURVE( SPLI )
CURVE( SELE, ID, WIND = 1

19
POINT( SELE, ID, WIND = 1

19
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CURVE( SPLI )

POINT( SELE, ID, WIND =

ADD, LINE )

SELE, ID, WIND

1 )

= 1 )

ADD, LINE )

SELE, ID, WIND = 1

14
12

CURVE
POINT

14

15

CURVE
POINT

15

18

CURVE
POINT

15

20

CURVE
POINT

20
11

CURVE
POINT

20

17

CURVE
POINT

17

19

CURVE
POINT

17

16

CURVE
POINT

16
13

CURVE
POINT
POINT
POINT
POINT

POINT
POINT
POINT
POINT
POINT
POINT

22

28
21

CURVE

= 1)

= 1)

= 1)

= 1)

ADD, LINE )

SELE, ID, WIND = 1

ADD, LINE )
SELE, ID, WIND = 1

ADD, LINE )

ADD, COOR, X =
ADD, COOR, X =
ADD, COOR, X =

0.002, Y = 0.00465, Z = 0.0035
0, Y = 0.00465, Z = 0.0055
0, Y = 0.00465, Z = 0.0015

ADD, COOR, X = 0, Y = 0.00465, Z = 0.007 )

ADD, COOR, X = 0.0035, Y = 0.00465, Z = 0.007

ADD, COOR, X =

ADD, COOR, X =

ADD, COOR, X =
ADD, COOR, X =

SELE, ID, WIND

0, Y = 0.00465, Z = 0 )
0.0035, Y = 0.00465, Z = 0
0.001414, Y = 0.00465, Z = 0.004914
0.001414, Y = 0.00465, Z = 0.002086
= 1 )

ADD, ARC )
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ADD, LINE )

SELE, ID, WIND

ADD, LINE )

SELE, ID, WIND

ADD, LINE )

SELE, ID, WIND

ADD, LINE )

SELE, ID, WIND



SELE, ID, WIND = 1 )

ADD, ARC )

SELE, ID, WIND = 1

SELE, ID, WIND = 1

POINT

21

29

23
CURVE

CURVE

33

POINT

28

CURVE

CURVE

34
POINT

29

CURVE

POINT

24

22

CURVE

POINT
24
25

CURVE

POINT

25

28

CURVE

POINT

POINT

25

30

CURVE

POINT

30

21

CURVE

POINT

30

27

CURVE

POINT

27

29

CURVE

POINT

27

26

CURVE

POINT

26

23

WIND = 1

WIND = 1

WIND = 1

ADD, LINE )

SELE, ID, WIND

ADD, LINE )

SELE, ID, WIND

ADD, LINE )

ADD, COOR, X = 0.0035, Y = 0.00465, Z = 0.0035
SELE, ID, WIND = 1

ADD, LINE )

SELE, ID, WIND = 1

ADD, LINE )

SELE, ID, WIND

ADD, LINE )

SELE, ID, WIND

ADD, LINE )

SELE, ID, WIND =

= 1)

= 1)

1 )

ADD, LINE )

SELE, ID, WIND = 1
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SPLI
SELE, ID,

SELE, ID,

SPLI
SELE, ID,



CURVE( ADD, LINE )
CURVE( SELE, ID, WIND = 1

25

24

20

26

21
22

23

32

31

30
29

27

28

40

41

35
39
42

43

36

37

45

44

46

47

38

UTILITY( UNSE, ALL

MEDGE( SELE, ID, WIND = 1

CURVE( SELE, ID, WIND = 1

25

20

21
27
22

23

31

29
44

42

40

46

38

37

36

35

MEDGE( ADD, SUCC, INTE = 9, RATI = 0, 2RAT = 0, PCEN = 0
CURVE( SELE, ID, WIND = 1

24
26
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22

UTILITY( UNSE, ALL
CURVE( SELE, ID, WIND = 1

24

26

28

30

32

47

45

43

41

39

MEDGE
CURVE

24

25

26

ADD, FRST, INTE = 9, RATI = 0.05, 2RAT = 0.05, PCEN = 0
SELE, ID, WIND = 1 )

20
UTILITY( UNSE, ALL
MEDGE( SELE, ID, WIND = 1

14

20
25

24

MEDGE( MODI, FRST, INTE = 9, RATI = 0.05, 2RAT = 0.05, PCEN 0
MEDGE( SELE, ID, WIND = 1

15

19
26

29

MEDGE

CURVE

24

25

26

20

MFACE

CURVE

26
27

28

21

MFACE

CURVE
30

29

28

MODI, FRST, INTE = 9, RATI = 0.39, 2RAT = 0.39, PCEN = 0
SELE, ID, WIND = 1)

WIRE, EDG1 = 1, EDG2 = 1, EDG3 = 1, EDG4 = 1
SELE, ID, WIND = 1 )

WIRE, EDGI = 1, EDG2 = 1, EDG3 = 1, EDG4 = 1
SELE, ID, WIND = 1 )

CURVE( SELE, ID, WIND = 1 )
22

MFACE WIRE, EDG1 = 1, EDG2 = 1, EDG3 = 1, EDG4 = 1 )
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CURVE
32

CURVE
31

30

23

MFACE
CURVE

39

40

41

35
MFACE
CURVE

41

42

43

36

MFACE
CURVE

45

44

43

CURVE
37

MFACE
CURVE

47

46

45

38
MFACE
POINT
POINT
CURVE
POINT
POINT
CURVE
POINT
POINT
CURVE

POINT
POINT
CURVE
POINT
POINT
CURVE
POINT
POINT
CURVE

POINT

WIRE, EDGI = 1, EDG2 = 1, EDG3 = 1, EDG4 = 1
SELE, ID, WIND = 1

SELE, ID, WIND = 1

WIRE, EDG1 = 1, EDG2 = 1, EDG3 = 1, EDG4 = 1
SELE, ID, WIND = 1 )

WIRE, EDGI = 1,

SELE, ID = 11
SELE, ID = 1
ADD, LINE

SELE, ID = 12

SELE, ID = 2

ADD, LINE

SELE, ID = 13

SELE, ID = 3

ADD, LINE

SELE, ID = 14

SELE, ID = 4

ADD, LINE

SELE, ID = 15

SELE, ID = 5

ADD, LINE

SELE, ID = 16

SELE, ID = 6

ADD, LINE

SELE, ID = 17

EDG2 = 1, EDG3 = 1, EDG4 = 1 )
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SELE, ID, WIND = 1

SELE, ID, WIND = 1

WIRE, EDG1 = 1, EDG2 = 1, EDG3 = 1, EDG4 = 1
SELE, ID, WIND = 1 )

WIRE, EDG1 = 1, EDG2 = 1, EDG3 = 1, EDG4 = 1
SELE, ID, WIND = 1 )



POINT( SELE, ID = 7

CURVE( ADD, LINE

POINT( SELE, ID = 18

POINT( SELE, ID = 8

CURVE( ADD, LINE

POINT( SELE, ID = 19

POINT( SELE, ID = 9

CURVE( ADD, LINE
POINT( SELE, ID = 20

POINT( SELE, ID = 10

CURVE( ADD, LINE

POINT( SELE, ID = 21

POINT( SELE, ID = 1
CURVE( ADD, LINE

POINT( SELE, ID = 22 )
POINT( SELE, ID = 2

CURVE( ADD, LINE

POINT( SELE, ID = 23 )

POINT( SELE, ID = 3

CURVE( ADD, LINE

POINT( SELE, ID = 24 )
POINT( SELE, ID = 4 )
CURVE( ADD, LINE

POINT( SELE, ID = 25 )
POINT( SELE, ID = 5 )
CURVE( ADD, LINE

POINT( SELE, ID = 26 )
POINT( SELE, ID = 6 )

CURVE( ADD, LINE

POINT( SELE, ID = 27 )

POINT( SELE, ID = 7 )

CURVE( ADD, LINE

POINT( SELE, ID = 28 )
POINT( SELE, ID = 8 )
CURVE( ADD, LINE

POINT( SELE, ID = 29 )
POINT( SELE, ID = 9 )
CURVE( ADD, LINE

POINT( SELE, ID = 30

POINT( SELE, ID = 10

CURVE( ADD, LINE

CURVE( SELE, ID = 48

CURVE( SELE, ID = 49

CURVE( SELE, ID = 50

CURVE( SELE, ID = 51

CURVE( SELE, ID = 52

CURVE( SELE, ID = 53

CURVE( SELE, ID = 54

CURVE( SELE, ID = 55

CURVE( SELE, ID = 56

CURVE( SELE, ID = 57
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CURVE( SELE, ID = 58

CURVE( SELE, ID = 59

CURVE( SELE, ID = 60

CURVE( SELE, ID = 61
CURVE( SELE, ID = 62

CURVE( SELE, ID = 63

CURVE( SELE, ID = 64

CURVE( SELE, ID = 65

CURVE( SELE, ID = 66
CURVE( SELE, ID = 67

MEDGE( ADD, SUCC, INTE

CURVE( SELE, ID = 48

UTILITY( UNSE, ALL )
CURVE( SELE, ID = 51

CURVE( SELE, ID = 24

CURVE( SELE, ID = 49

CURVE( SELE, ID = 2

MFACE( WIRE, EDG1 = 1,
CURVE( SELE, ID = 49

CURVE( SELE, ID = 20

CURVE( SELE, ID = 55

CURVE( SELE, ID = 12

MFACE( WIRE, EDG1 = 1,
CURVE( SELE, ID = 55

CURVE( SELE, ID = 21

CURVE( SELE, ID = 48

CURVE( SELE, ID = 13

MFACE( WIRE, EDGI = 1,
CURVE( SELE, ID = 48

CURVE( SELE, ID = 22

CURVE( SELE, ID = 56

CURVE( SELE, ID = 15

MFACE( WIRE, EDG1 = 1,
CURVE( SELE, ID = 56

CURVE( SELE, ID = 23

CURVE( SELE, ID = 50

CURVE( SELE, ID = 14

MFACE( WIRE, EDG1 = 1,
CURVE( SELE, ID = 61

UTILITY( UNSE, ALL )

CURVE( SELE, ID = 50

CURVE( SELE, ID = 32

CURVE( SELE, ID = 53

CURVE( SELE, ID = 3

MFACE( WIRE, EDG1 = 1,

CURVE( SELE, ID = 61

CURVE( SELE, ID = 39

CURVE( SELE, ID = 59

CURVE( SELE, ID = 2

MFACE( WIRE, EDG1 = 1,

CURVE( SELE, ID = 59 )

= 9, RATI = 0, 2RAT = 0, PCEN = 0

EDG2 = 1, EDG3 = 1, EDG4 = 1

EDG2 = 1, EDG3 = 1, EDG4 = 1

EDG2 = 1, EDG3 = 1, EDG4 = 1

EDG2 = 1, EDG3 = 1, EDG4 = 1

EDG2 = 1, EDG3 = 1, EDG4 = 1

EDG2 = 1, EDG3 = 1, EDG4 = 1

EDG2 = 1, EDG3 = 1, EDG4 = 1
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CURVE

CURVE

CURVE

MFACE

CURVE

CURVE

CURVE

CURVE

MFACE

CURVE

CURVE

CURVE

CURVE

MFACE

CURVE

CURVE

CURVE

CURVE

MFACE

CURVE

CURVE

CURVE

CURVE

MFACE

CURVE

CURVE

CURVE

CURVE

MFACE

CURVE

CURVE

CURVE

CURVE

MFACE

CURVE

CURVE

CURVE

CURVE

MFACE

CURVE

CURVE

CURVE

CURVE

MFACE

CURVE

CURVE
CURVE

CURVE

MFACE

CURVE

CURVE

SELE,

SELE,
SELE,

WIRE,

SELE,
SELE,

SELE,

SELE,
WIRE,

SELE,

SELE,
SELE,

SELE,

WIRE,

SELE,

SELE,
SELE,
SELE,
WIRE,

SELE,
SELE,

SELE,
SELE,
WIRE,

SELE,
SELE,
SELE,

SELE,
WIRE,

SELE,
SELE,

SELE,

SELE,
WIRE,

SELE,
SELE,

SELE,
SELE,

WIRE,

SELE,

SELE,

SELE,

SELE,
WIRE,

SELE,

SELE,

SELE,
SELE,

WIRE,
SELE,
SELE,
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ID = 35

ID = 65

ID = 12

EDG1 = 1,
ID = 65

ID = 36

ID = 58

ID = 13

EDG1 = 1,
ID = 58
ID = 37

ID = 66

ID = 15

EDGI = 1,
ID = 66

ID = 38

ID = 60

ID = 14

EDGI = 1,
ID = 60

ID = 47

ID = 63

ID = 3

EDG1 = 1,
ID = 51

ID = 25
ID = 52
ID = 5

EDG1 = 1,
ID = 55

ID = 26

ID = 52

ID = 9

EDG1 = 1,

ID = 48

ID = 28
ID = 57

ID = 11

EDG1 = 1,

ID = 56

ID = 30

ID = 54

ID = 10

EDG1 = 1,
ID = 61

ID = 40
ID = 62

ID = 5

EDG1 = 1,
ID = 65

ID = 41

EDG2 = 1, EDG3 = 1, EDG4 = 1

EDG2 = 1, EDG3 = 1, EDG4 = 1

EDG2 = 1, EDG3 = 1, EDG4 = 1

EDG2 = 1, EDG3 = 1, EDG4 = 1

EDG2 = 1, EDG3 = 1, EDG4 = 1

EDG2 = 1, EDG3 = 1, EDG4 = 1

EDG2 = 1, EDG3 = 1, EDG4 = 1

EDG2 = 1, EDG3 = 1, EDG4 = 1

EDG2 = 1, EDG3 = 1, EDG4 = 1

EDG2 = 1, EDG3 = 1, EDG4 = 1



CURVE( SELE, ID = 62

CURVE( SELE, ID = 9

MFACE( WIRE, EDG1 = 1, EDG2 = 1, EDG3 = 1, EDG4 = 1

CURVE( SELE, ID = 58

CURVE( SELE, ID = 43
CURVE( SELE, ID = 11

CURVE( SELE, ID = 67

MFACE( WIRE, EDG1 = 1, EDG2 = 1, EDG3 = 1, EDG4 = 1

CURVE( SELE, ID = 58

CURVE( SELE, ID = 43

CURVE( SELE, ID = 67
CURVE( SELE, ID = 11

MFACE( WIRE, EDGI = 1, EDG2 = 1, EDG3 = 1, EDG4 = 1
CURVE( SELE, ID = 66

CURVE( SELE, ID = 45

CURVE( SELE, ID = 64

CURVE( SELE, ID = 10

MFACE( WIRE, EDG1 = 1, EDG2 = 1, EDG3 = 1, EDG4 = 1

CURVE( SELE, ID = 53

CURVE( SELE, ID = 31

CURVE( SELE, ID = 54
CURVE( SELE, ID = 6

MFACE( WIRE, EDGI = 1, EDG2 = 1, EDG3 = 1, EDG4 = 1
CURVE( SELE, ID = 63

CURVE( SELE, ID = 46

CURVE( SELE, ID = 64

CURVE( SELE, ID = 6

MFACE( WIRE, EDG1 = 1, EDG2 = 1, EDG3 = 1, EDG4 = 1
CURVE( SELE, ID = 52

CURVE( SELE, ID = 27

CURVE( SELE, ID = 57

CURVE( SELE, ID = 16

MFACE( WIRE, EDGI = 1, EDG2 = 1, EDG3 = 1, EDG4 = 1
CURVE( SELE, ID = 57

CURVE( SELE, ID = 29

CURVE( SELE, ID = 54

CURVE( SELE, ID = 17

MFACE( WIRE, EDG1 = 1, EDG2 = 1, EDG3 = 1, EDG4 = 1
CURVE( SELE, ID = 62

CURVE( SELE, ID = 42

CURVE( SELE, ID = 67

CURVE( SELE, ID = 16

MFACE( WIRE, EDG1 = 1, EDG2 = 1, EDG3 = 1, EDG4 = 1
CURVE( SELE, ID = 67

CURVE( SELE, ID = 44

CURVE( SELE, ID = 64

CURVE( SELE, ID = 17

MFACE( WIRE, EDG1 = 1, EDG2 = 1, EDG3 = 1, EDG4 = 1
POINT( ADD, COOR, X = 0.00465, Y = 0.00465, Z = 0.007
POINT( ADD, COOR, X = 0.00465, Y = 0.00465, Z = 0.0035
POINT( ADD, COOR, X = 0.00465, Y = 0.00465, Z = 0 )
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POINT( SELE, ID = 15

POINT( SELE, ID = 31

CURVE( ADD, LINE

POINT( SELE, ID = 31

POINT( SELE, ID = 25

CURVE( ADD, LINE

POINT( SELE, ID = 20

POINT( SELE, ID = 32

CURVE( ADD, LINE

POINT( SELE, ID = 32

POINT( SELE, ID = 30

CURVE( ADD, LINE )

POINT( SELE, ID = 17

POINT( SELE, ID = 33

CURVE( ADD, LINE )

POINT( SELE, ID = 33

POINT( SELE, ID = 27 )

CURVE( ADD, LINE )
POINT( SELE, ID = 31 )

POINT( SELE, ID = 32 )
CURVE( ADD, LINE

POINT( SELE, ID = 32 )

POINT( SELE, ID = 33 )
CURVE( ADD, LINE

CURVE( SELE, ID = 68 )
CURVE( SELE, ID = 69 )
CURVE( SELE, ID = 70

CURVE( SELE, ID = 71

CURVE( SELE, ID = 72

CURVE( SELE, ID = 73

CURVE( SELE, ID = 74

CURVE( SELE, ID = 75

MEDGE( ADD, SUCC, INTE

CURVE( SELE, ID = 52 )

CURVE( SELE, ID = 68 )
CURVE( SELE, ID = 69

CURVE( SELE, ID = 62

MFACE( WIRE, EDGI = 1,

CURVE( SELE, ID = 48 )
UTILITY( UNSE, LAST

CURVE( SELE, ID = 57 )

CURVE( SELE, ID = 67 )

CURVE( SELE, ID = 71 )

CURVE( SELE, ID = 70 )

MFACE( WIRE, EDG1 = 1,

CURVE( SELE, ID = 54 )

CURVE( SELE, ID = 64 )

CURVE( SELE, ID = 73 )

CURVE( SELE, ID = 72 )
MFACE( WIRE, EDG1 = 1,

CURVE( SELE, ID = 68 )

= 9, RATI = 0, 2RAT = 0, PCEN = 0

EDG2 = 1, EDG3 = 1, EDG4 = 1

EDG2 = 1, EDG3 = 1, EDG4 = 1

EDG2 = 1, EDG3 = 1, EDG4 = 1
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CURVE( SELE,

CURVE( SELE,

CURVE( SELE,

MFACE( WIRE,

CURVE( SELE,

CURVE( SELE,

CURVE( SELE,

CURVE( SELE,

MFACE( WIRE,

CURVE( SELE,

CURVE( SELE,

CURVE( SELE,

CURVE( SELE,

MFACE( WIRE,

CURVE( SELE,

CURVE( SELE,

CURVE( SELE,

CURVE( SELE,

MFACE( WIRE,

MFACE( SELE,

MFACE( SELE,

MFACE( SELE,

MFACE( SELE,

MFACE( SELE,

MFACE( SELE,

MSHELL( ADD,

MFACE( SELE,

MFACE( SELE,

MFACE( SELE,

MFACE( SELE,

MFACE( SELE,

MFACE( SELE,

MSHELL( ADD,

MFACE( SELE,

MFACE( SELE,

MFACE( SELE,

MFACE( SELE,

MFACE( SELE,

MFACE( SELE,

MSHELL( ADD,

MFACE( SELE,

MFACE( SELE,

MFACE( SELE,

MFACE( SELE,

MFACE( SELE,

MFACE( SELE,

MSHELL( ADD,

MFACE( SELE,

MFACE( SELE,

MFACE( SELE,

MFACE( SELE,

ID = 27

ID = 70

ID = 74
EDG1 = 1, EDG2 = 1, EDG3 = 1, EDG4 = 1)
ID = 70

ID = 29

ID = 72

ID = 75

EDG1 = 1, EDG2 = 1, EDG3 = 1, EDG4 = 1)
ID = 69

ID = 74

ID = 71

ID = 42

EDG1 = 1, EDG2 = 1, EDG3 = 1, EDG4 = 1
ID = 71

ID = 44

ID = 73

ID = 75

EDG1 = 1, EDG2 = 1, EDG3 = 1, EDG4 = 1
ID = 5

ID = 1

ID = 13

ID = 14

ID = 26

ID = 25

VISI, NOSH
ID = 6

ID = 2

ID = 26

ID = 15

ID = 27

ID = 35

VISI, NOSH
ID = 7

ID = 3

ID = 16

ID = 28

ID = 36

ID = 27

VISI, NOSH
ID = 8

ID = 4

ID = 17

ID = 18

ID = 33

ID = 28

VISI, NOSH

ID = 9

ID = 1

ID = 19

ID = 20
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MFACE( SELE, ID = 30

MFACE( SELE, ID = 29

MSHELL( ADD, VISI, NOSH
MFACE( SELE, ID = 10

MFACE( SELE, ID = 2

MFACE( SELE, ID = 30

MFACE( SELE, ID = 21

MFACE( SELE, ID = 31

MFACE( SELE, ID = 37

MSHELL( ADD, VISI, NOSH

MFACE( SELE, ID = 11 )
MFACE( SELE, ID = 3

MFACE( SELE, ID = 31 )
MFACE( SELE, ID = 22 )
MFACE( SELE, ID = 32

MFACE( SELE, ID = 38

MSHELL( ADD, VISI, NOSH

MFACE( SELE, ID = 12

MFACE( SELE, ID = 4

MFACE( SELE, ID = 23

MFACE( SELE, ID = 24

MFACE( SELE, ID = 34

MFACE( SELE, ID = 32

MSHELL( ADD, VISI, NOSH

MFACE( SELE, ID = 39 )
MFACE( SELE, ID = 40 )
MFACE( SELE, ID = 35 )
MFACE( SELE, ID = 37

MFACE( SELE, ID = 44

MFACE( SELE, ID = 42

MSHELL( ADD, VISI, NOSH

MFACE( SELE, ID = 40 )
MFACE( SELE, ID = 41 )
MFACE( SELE, ID = 38 )
MFACE( SELE, ID = 36 )
MFACE( SELE, ID = 43 )
MFACE( SELE, ID = 45 )
MSHELL( ADD, VISI, NOSH

MSHELL( SELE, ID = 1)

MSOLID( ADD, MAP

MSHELL( SELE, ID = 2 )

MSOLID( ADD, MAP

MSHELL( SELE, ID = 3 )
MSOLID( ADD, MAP

MSHELL( SELE, ID = 4

MSOLID( ADD, MAP

MSHELL( SELE, ID = 5

MSOLID( ADD, MAP

MSHELL( SELE, ID = 6

MSOLID( ADD, MAP

MSHELL( SELE, ID = 7
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MSOLID( ADD, MAP

MSHELL( SELE, ID = 8

MSOLID( ADD, MAP

MSHELL( SELE, ID = 9
MSOLID( ADD, MAP
MSHELL( SELE, ID = 10

MSOLID( ADD, MAP

MSOLID( SELE, ID = 1

ELEMENT( SETD, BRIC, NODE

MSOLID( MESH,

MSOLID( SELE,

MSOLID( MESH,

MSOLID( SELE,

MSOLID( MESH,

MSOLID( SELE,

MSOLID( MESH,

MSOLID( SELE,

MSOLID( MESH,

MSOLID( SELE,

MSOLID( MESH,

MSOLID( SELE,

MSOLID( MESH,

MSOLID( SELE,

MSOLID( MESH,

MSOLID( SELE,

MSOLID( MESH,

MSOLID( SELE,

MSOLID( MESH,

END(

FI-BC(

WINDOW(CHANGE=

-. 707107

.707107

.000000

.000000

MAP,

ID =

MAP,

ID =

MAP,

ID =

MAP,

ID =

MAP,

ID =
MAP,

ID =

MAP,

ID =

MAP,

ID =

MAP,

ID =

MAP,

ENTI =

2 )

ENTI =

3 )
ENTI =

4 )
ENTI =

5 )
ENTI =

6 )

ENTI =

7 )
ENTI =

8 )

ENTI =

9 )
ENTI =

10 )
ENTI =

1, MATRIX

-. 408248

-. 408248

.816497

.000000
-. 00666 .00666 -

WINDOW( CHAN = 1, MATR )
-0.707107, -0.408248, 0.57735,
0.707107, -0.408248, 0.57735,

0, 0.816497, 0.57735,

-8)
gel ALG1 )

"gel", ALG1

"gel", ALG1

"gel", ALG1

"gel", ALG1

"gel", ALG1

"gel", ALG1

"gel", ALG1

"gel", ALG1

"gel", ALGI

.577350 .000000

.577350 .000000

.577350 .000000

.000000 1.000000

.00403 .00595 -. 00024

0

0

0
0, 0, 0, 1

-0.00666, 0.00666, -0.00403, 0.00595,
BGADD( SELE, FACE, INCL, ID, WIND = 1
BGADD( SELE, FACE, INCL, ID, WIND = 1

20

37

-0.00024, 0.00965

BGADD( SELE, FACE, INCL, ID, WIND = 1

45

BGADD( ADD, FACE, ENTI = "inflow", INCL
BGADD( SELE, FACE, INCL, ID, WIND = 1

4
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24

39
BGADD( ADD, FACE, ENTI =

BGADD( SELE, FACE, INCL,
2

BGADD( SELE, FACE, INCL,
7

BGADD( SELE, FACE, INCL,
13

BGADD( SELE, FACE, INCL,
18

BGADD( ADD, FACE, ENTI =

BGADD( SELE, FACE, INCL,
23

BGADD( SELE, FACE, INCL,
27

BGADD( SELE, FACE, INCL,
32

BGADD( SELE, FACE, INCL,
36

BGADD( ADD, FACE, ENTI =

BGADD( SELE, FACE, INCL,
1

BGADD( ADD, FACE, ENTI =

BGADD( SELE, FACE, INCL,
22

BGADD( ADD, FACE, ENTI =

BGADD( SELE, FACE, INCL,
17

BGADD( ADD, FACE, ENTI =

BGADD( SELE, FACE, INCL,
35

BGADD( ADD, FACE, ENTI =

BGADD( SELE, FACE, INCL,
3

BGADD( SELE, FACE, INCL,
8

BGADD( SELE, FACE, INCL,
14

BGADD( SELE, FACE, INCL,
19

BGADD( SELE, FACE, INCL,
40

BGADD( SELE, FACE, INCL,
43

BGADD( ADD, FACE, ENTI =

BGADD( SELE, FACE, INCL,
26

BGADD( SELE, FACE, INCL,
30

BGADD( SELE, FACE, INCL,

"outflow", INCL

ID, WIND = 1

ID, WIND = 1

ID, WIND = 1

ID, WIND = 1

"fiberl", INCL
ID, WIND = 1

ID, WIND = 1

ID, WIND = 1

ID, WIND = 1

"fiber2", INCL

ID, WIND = 1 )

"symmetryl", INCL

ID, WIND = 1 )

"symmetry2", INCL
ID, WIND = 1 )

"symmetry3", INCL

ID, WIND = 1 )

"symmetry4", INCL

ID, WIND = 1

ID, WIND = 1

ID, WIND = 1

ID, WIND = 1

ID, WIND = 1

ID, WIND = 1

"symmetry5", INCL
ID, WIND = 1

ID, WIND = 1

ID, WIND = 1
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34
BGADD( SELE, FACE, INCL, ID, WIND = 1

38

BGADD( SELE, FACE, INCL, ID, WIND = 1
41

BGADD( SELE, FACE, INCL, ID, WIND = 1
44

BGADD( ADD, FACE, ENTI = "symmetry6", INCL
BCSENTITY( BCNO )
BCSENTITY( SELE, ID, WIND = 1 )

6

8
BCSENTITY( SELE, ID, WIND = 1 )

11

BCNODE( UY, GSEL, ZERO
UTILITY( UNSE, ALL
BCSENTITY( BCNO )
BCSENTITY( SELE, ID, WIND = 1

7
BCSENTITY( SELE, ID, WIND = 1

9
BCSENTITY( SELE, ID, WIND = 1

10

BCNODE( UX, GSEL, ZERO
UTILITY( UNSE, ALL
BCSENTITY( BCNO )
BCSENTITY( SELE, ID, WIND = 1

4

BCSENTITY( SELE, ID, WIND = 1
5

BCNODE( UN3, GSEL, ZERO
UTILITY( UNSE, ALL
BCSENTITY( BCFL )
BCSENTITY( SELE, ID, WIND = 1

2

BCFLUX( Z, GSEL, CONS = 133322.3684
END( )
FIPREP(
EXECUTION( ADD, NEWJ
PRESSURE( ADD, MIXE = le-23, DISC
PROBLEM( ADD, 3-D, INCO, STEA, LAMI, NONL, NEWT, MOME, ISOT, FIXE, SING
SOLUTION( ADD, SEGR = 500, PREC = 21, ACCF = 0, PPRO
ENTITY( ADD, NAME = "gel", PORO
ENTITY( ADD, NAME = "inflow", PLOT
ENTITY( ADD, NAME = "outflow", PLOT
ENTITY( ADD, NAME = "symmetryl" , PLOT )
ENTITY( ADD, NAME = "symmetry2", PLOT )
ENTITY( ADD, NAME = "symmetry3", PLOT )
ENTITY( ADD, NAME = "symmetry4", PLOT )
ENTITY( ADD, NAME = "symmetry5", PLOT )
ENTITY( ADD, NAME = "symmetry6", PLOT )
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ENTITY( ADD, NAME = "fiberi", SLIP )
ENTITY( ADD, NAME = "fiber2", SLIP )
DENSITY( ADD, SET = 1, CONS = 1 )
PERMEABILITY( ADD, SET = 1, ACOE, CONS = 100, X = 2.1697e-13, Y = 2.1697e-13,

Z = 2.1697e-13 )

VISCOSITY( ADD, SET = 1, CONS = 8.904e-05

END( )

CREATE( FISO

RUN( FISOLV, IDEN = "mesh", FORE, FISOLVME = 2000000, COMP
FIPOST( )

FLOWRATE( ENTI = "inflow"

END( )
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APPENDIX B

FORTRAN Code: Laminar Boundary Layer
Model for Concentration Polarization in

Stirred Ultrafiltration Cells

The following Appendix contains the FORTRAN code used to solve the boundary value

problem given by Eqs. 3-26 through 3-29 using the numerical method outlined in Section 3.2.6.

The code was compiled using FORTRAN77 on an Athena workstation.

* This program uses a modified Crank-Nicolson method to solve for the *
* concentration of a solute in a stirred UF cell in the presence of *

* Bodewadt flow. For more information on this problem, see memo from *

* WMD on this topic (7/31/97). The form of the equation is: *
* *

* (Y-1) (fp*Z+gamma*Z^ 2)*(df/dY)-(fp*Z^2+delta*Z3+alpha)*(df/dZ) *

* = d2f/dZ2 *
* *

* where: f = psi *

* Y = non-dim. radial coord. = 1 - r/R *

* Z = non-dim. axial coord. (see definition in thesis) *

* fp = F'(0) = -0.941971 *

* gamma, delta = higher order velocity terms (see below) *

* alpha = non-dim. filtration term *

* other notation: *

* Sc = Schmidt number *

* beta = F'(0) *

* fpp = F''(0) = 1.10 *

* vavg = average filtration velocity *

* omega = stirring rate *

* nu = kinematic viscosity *

* mtcavg = average mass transfer coefficient *

* diff = diffusivity *

* Lp = hydraulic permeability *

Cinf = bulk solute concentration *
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* sigma = filtration reflection coefficient *

* R = gas constant *

* T = temp. (K) *

* charge = molecule charge (for Vilker et al. expression) *

* A2, A3, ms = see Vilker et al. expression *

* MWbsa = molecular weight of albumin (Vilker et al.) *

* factor = iteration factor (given as f in text) *

* Cavg = average concentration at membrane surface *

* Pavg = pressure (not osmotic) average at membrane *

* Darcy = Darcy permeability *

* thick = thickness of membrane *

* mixcup = mixing cup average of filtrate conc. *

* Cfavg = measured filtrate concentration *

* theta = sieving coefficient (true) *

PROGRAM polarize

INTEGER zmax, f dim, ydim, count

DOUBLE PRECISION ystep, zstep, Z, Y, beta, delta

DOUBLE PRECISION gamma, Sc, fpp, fp
DOUBLE PRECISION vavg, omega, nu, epsilon, mtcavg, mtcavgn

DOUBLE PRECISION change, errtol, diff, mtcsum, Lp, Cinf

DOUBLE PRECISION sigma, R, T, charge, A2, A3, MWbsa, ms

DOUBLE PRECISION slope, vavgold, Cavg, Pavg, xcoord, ycoord
DOUBLE PRECISION factor

DOUBLE PRECISION Darcy, thick, mixcupold, mixcup, Cfavg
DOUBLE PRECISION theta, Nfavg

c Note: Code is commented out for runs where solute has been
c assumed to be dilute enough so that osmotic pressure
c does not affect results. Uncomment lines as necessary!

c Set iteration factor

c PARAMETER (factor = 0.5)

c Set parameters

c Note: Code is written for Ficoll (7.0 nm). Change numbers
c as needed (diff, Sc)

PARAMETER (Sc = 15728.3333*6.0/3.571)
PARAMETER (fp = -0.941971)

PARAMETER (fpp = 1.10)

PARAMETER (beta = fp)

c If including higher order velocity terms:

PARAMETER (delta = 1.0/3.0*fpp*Sc**(-1.0/3.0))
PARAMETER (gamma = 0.5*fpp*Sc**(-1.0/3.0))
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c If neglecting higher order velocity terms:

PARAMETER (delta = 0.0)
PARAMETER (gamma = 0.0)

PARAMETER

PARAMETER

PARAMETER

PARAMETER

PARAMETER

PARAMETER

PARAMETER

PARAMETER

PARAMETER

PARAMETER

PARAMETER

PARAMETER

PARAMETER

PARAMETER

PARAMETER

PARAMETER

(omega = 23.034*0.36)

(nu = 0.009437)
(errtol = 0.000000000000001)

(diff = 0.0000003571)
(R = 62.36)

(T = 298.0)
(A2 = -0.008252433)
(A3 = 0.000106579)
(charge = -18.144528)

(MWbsa = 68000.0)
(ms = 0.1)

(zmax = 10)

(zstep = 0.1)

(ystep = 0.01)

(fdim = (zmax/zstep) + 1)

(ydim = (1.0/ystep) + 1)

c If have Lp, enter Lp, if have Darcy, enter

c Darcy and calculate Lp from Darcy (below)

c PARAMETER (Lp = 6.17592e-9)

PARAMETER (Darcy = 4.64615e-14)

PARAMETER (thick = 0.007)

c For comparing to Smith and Colton:
c Lp = 0.0

PARAMETER (theta = 0.135)

c PARAMETER (sigma = 1.0 - theta)

c An initial guess

PARAMETER (Cinf = 2.17290595)

c Arrays

DOUBLE PRECISION f(fdim), ft(fdim), fn(fdim), LHS1(fdim,3)

DOUBLE PRECISION LHS2(fdim,3), ff(fdim,ydim), 1(fdim), d(fdim)
DOUBLE PRECISION u(fdim), RHS1(fdim), RHS2(fdim)

DOUBLE PRECISION vf(ydim), alpha(ydim), V(ydim),dfdZ(ydim)
DOUBLE PRECISION dfdzeta(ydim), dfdzee(ydim), mtc(ydim)
DOUBLE PRECISION Cm(ydim), DPstat(ydim), DPi(ydim)
DOUBLE PRECISION nalpha(ydim)
DOUBLE PRECISION Cf(ydim)
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c Calculate Lp from Darcy permeability (my mesh factor)

Lp = 0.510*Darcy/(0.009437*thick)

c Setup initial filtration information

DO i=l,ydim

Cm(i) = 2.75116364

Cf(i) = 0.35370021

c To use Vilker expression:

c DPi(i) = R*T*(2.0*((charge*Cm(i)/(2.0*MWbsa))**2 +
c & ms**2)**(0.5) - 2.0*ms) + R*T/MWbsa*
c & (Cm(i) + A2*Cm(i)**2 + A3*Cm(i)**3) -
c & (R*T*(2.0*((charge*Cf(i)/(2.0*MWbsa))**2 +
c & ms**2)**(0.5) - 2.0*ms) + R*T/MWbsa*
c & (Cf(i) + A2*Cf(i)**2 + A3*Cf(i)**3))

c Static pressure (neglect or keep radial variation)
c Note need for number for cell radius (1.05 for 10 ml cell)

c DPstat(i) = 137499.7352
DPstat(i) = 140550.6998 + (omega**2*1.05**2/2.0)*

& (((1.05*(1.0 - (i-l)*ystep))/(1.05))**2 -

& 0.5)

c Filtration rate (with or without osmotic pressure)

c vf(i) = Lp*(DPstat(i) - sigma*DPi(i)*

c & 1.01325e5/760.0*10.0)

vf(i) = Lp*(DPstat(i))

ENDDO

c Calculate vavg using Simpson's Rule

vavg = 0.0

DO i=l,ydim

IF (i .EQ. 1) THEN

vavg = vavg + vf(i)*(1.0 - (i-l)*ystep)

ELSEIF (i .EQ. ydim) THEN

vavg = vavg + vf(i)*(1.0 - (i-l)*ystep)
ELSEIF (MOD(i,2) .EQ. 0) THEN

vavg = vavg + 4.0*vf(i)*(1.0 - (i-l)*ystep)
ELSE

vavg = vavg + 2.0*vf(i)*(1.0 - (i-l)*ystep)
ENDIF

ENDDO
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vavg = 2.0/3.0*ystep*vavg

c vavg = vf(l)

epsilon = vavg/(omega*nu)**(0.5)

DO i=l,ydim

V(i) = vf(i)/vavg
alpha(i) = epsilon*Sc**(2.0/3.0)*V(i)

c For comparison with Smith and Colton:
c alpha(i) = 0.0

ENDDO

count = 0

c Iterate on the mixing cup average or vavg

c vavgold = 0.00001
mixcupold = 5.0

c Calculate first mixing cup average

mixcup = Cf(l)

c BEGIN OVERALL ITERATION

c 100 change = (vavg - vavgold)/vavgold
100 change = (mixcup - mixcupold)/mixcupold

WRITE(*,*) count

IF (change .LT. 0.0) THEN
change = change*(-1.0)

ENDIF

IF (change .LT. errtol) THEN
GOTO 500

ENDIF

count = count + 1

c Initialize ff (matrix to store final conc. field)

DO i=l,fdim

DO j=l,ydim

ff(i,j) = 0.0
ENDDO

ENDDO
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c Write BC for cell wall (Y = 0) into f and ff matrix

DO i=l, fdim
f(i) = 1.0

ff(i,1) = f(i)

ENDDO

Y = 0.0

c **********BEGIN ITERATION***********

DO k = 2, ydim

Y = (k - 1.0)*ystep

Z = 0.0

c Initialize vectors

DO i=1, fdim

ft(i) = 0.0
fn(i) = 0.0

l(i) = 0.0

d(i) = 0.0
u(i) = 0.0

RHS1(i) = 0.0

RHS2(i) = 0.0

ENDDO

c Initialize LHS1 and LHS2

DO i=1,fdim
DO j=1,3

LHS1 (i, j)
LHS2 (i,j)

ENDDO
ENDDO

c Form LHS1

&

= 0.0
= 0.0

DO i=l,fdim
Z = (i - 1.0)*zstep
IF (i .EQ. 1) THEN

DO j=1,3

IF (j .EQ. 1) THEN

LHS1(i,j) = 0.0
ELSE

IF (j .EQ. 2) THEN

LHSl(i,j) = (alpha(k)*(1.0 - theta)

- (1.0/zstep))

131



c For comparing with Smith and Colton (constant conc. at surface):

LHS1(i,j) = 1.0

ELSE
LHS1(i,j) = 1.0/zstep

For comparing with Smith and Colton (constant conc. at surface):

LHS1(i,j) = 0.0

ENDIF

ENDIF

ENDDO

ELSE

IF (i .LT. fdim) THEN

DO j=1,3

IF (j .EQ. 2) THEN

LHS1(i,j) = -2.0/zstep**2 - 2.0*(1.0-

(Y-0.5*ystep))*

(-1.0*beta*Z-gamma*Z**2)/ystep

ELSE

LHS1 (i, j)
ENDIF

ENDDO
ELSE

DO j=1,3

= 1.0/((zstep)**2)

For constant conc. at large Z:

IF (j.EQ. 2) THEN

LHS1(i,j) = 1.0

ENDIF

For zero gradient at large Z:

IF (j .EQ. 1) THEN

LHS1(i,j) = -1.0

ELSE

IF (j .EQ. 2) THEN

LHS1(i,j) = 1.0

ELSE

LHS1(i,j) = 0.0
ENDIF

ENDIF

ENDDO
ENDIF

ENDIF

ENDDO

c Write pieces of LHS1 into the 3 vectors for Thomas algorithm

DO i=1,fdim
1(i) = LHS1(i,1)

d(i) = LHS1(i,2)
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u(i) = LHS1(i,3)
ENDDO

c Form RHS1

Z = 0.0
DO i=1,fdim

Z = (i - 1.0)*zstep

IF (i .EQ. 1) THEN

RHS1(i) = 0.0

For comparing with Smith and Colton (constant conc. at surface):
RHS1(i) = Cm(i)/Cinf

&
&

&

&

ELSEIF (i .LT. fdim) THEN

RHS1(i) = -(alpha(k)+beta*Z**2+delta*Z**3)*
(f(i+1)-f(i-1))/

(2.0*zstep)-2.0*(l.0 -
(Y-0.5*ystep))*

(-1.0*beta*Z-gamma*Z**2)*f(i)/ystep

ELSE

For constant concentration at large Z:

RHS1(i) = 1.0

c For zero gradient at large Z:

RHS1(i) = 0.0
ENDIF

ENDDO

c Thomas Algorithm

DO i=2,fdim

d(i) = d(i) - (1(i)/d(i-1))*u(i-1)

ENDDO

DO i=2,fdim

RHS1(i) = RHS1(i)-(l(i)/d(i-1))*RHS1(i-1)
ENDDO

ft(fdim)=RHS1(fdim)/d(fdim)

DO i=fdim-1,1, -1

ft(i) = (RHS1(i) - u(i)*ft(i+1))/d(i)

ENDDO

c Begin second half step

Z = 0.0

c Form LHS2
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DO i=1,fdim
Z = (i - 1.0)*zstep

IF (i .EQ. 1) THEN

DO j=1,3
IF (j .EQ. 1) THEN

LHS2(i,j) = 0.0

ELSE

IF (j .EQ. 2) THEN

LHS2(i,j) = (alpha(k)*(1.0 - theta)

- (1.0/zstep))

c For comparing with Smith and Colton (constant

c LHS2(i,j) = 1.0

conc. at surface):

ELSE

LHS2(i,j) = 1.0/zstep

c For comparing with Smith and Colton

c LHS2(i,j) = 0.0

(constant conc. at surface):

ENDIF

ENDIF

ENDDO
ELSE

IF (i .LT. fdim) THEN

DO j=1,3
IF (i .EQ. 2) THEN

LHS2(i,j) = -1.0/(zstep)**2 - (1. 0-Y) *

(-1.0*beta*Z-gamma*Z**2)/ystep

ELSE

LHS2(i,j) = 1.0/(2.0*(zstep)**2)

ENDIF

ENDDO

ELSE

DO j=1,3

For constant conc. at large Z:

IF (j.EQ. 2) THEN

LHS2(i,j) = 1.0

ENDIF

For zero gradient at large Z:
IF (j .EQ. 1) THEN

LHS2(i,j) = -1.0

ELSE

IF (j .EQ. 2) THEN

LHS2(i,j) = 1.0

ELSE

LHS2(i,j) = 0.0
ENDIF

ENDIF
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ENDDO
ENDIF

ENDIF

ENDDO

c Write pieces of LHS2 into the 3 vectors for Thomas algorithm

DO i=l,fdim

1(i) = LHS2(i,1)

d(i) = LHS2(i,2)

u(i) = LHS2(i,3)

ENDDO

c Form RHS2

Z = 0.0

DO i=l,fdim

Z = (i - 1.0)*zstep

IF (i .EQ. 1) THEN

RHS2(i) = 0.0

c For comparing with Smith and Colton (constant conc. at surface)
c RHS2(i) = Cm(i)/Cinf

ELSEIF (i .LT. fdim) THEN

RHS2(i) = -0.5*((f(i+1)-2.0*f(i)+f(i-1))/(zstep**2))

$ -(alpha(k)+beta*Z**2+delta*Z**3)*

$ ((ft(i+l) - ft(i-1))/(2.0*zstep))

$ -(1.0-Y)*(-1.0*beta*Z-gamma*Z**2)*f(i)/ystep
ELSE

c For constant conc. at large Z:
c RHS2(i) = 1.0
c For zero gradient at large Z:

RHS2(i) = 0.0
ENDIF

ENDDO

c Thomas Algorithm

DO i=2,fdim

d(i) = d(i) - (i)/d(i-1)*u(i-1)
ENDDO

DO i=2,fdim

RHS2(i) = RHS2(i)-(l(i)/d(i-1))*RHS2(i-1)

ENDDO

fn(fdim)=RHS2(fdim)/d(fdim)

DO i=fdim-1,1, -1
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fn(i) = (RHS2(i) - u(i)*fn(i+l))/d(i)

ENDDO

c Write fn into the ff matrix

DO i=l,fdim

ff(i,k) = fn(i)
ENDDO

c Rewrite f

DO i=1,fdim

f(i) = fn(i)

ENDDO

ENDDO

c Calculate average mass transfer coefficient

c Finish region near center, first capping concentration

c at equilibrium value

DO i=ydim-2,ydim

ff(l,i) = ff(l,ydim-3)

ff(2,i) = ff(2,ydim-3)
ENDDO

DO i=l,ydim

dfdZ(i) = 0.0

dfdzeta(i) = 0.0

dfdzee(i) = 0.0

mtc(i) = 0.0
ENDDO

DO i=l,ydim

dfdZ(i) = (ff(2,i) - ff(l,i))/zstep

dfdzeta(i) = dfdZ(i)*Sc**(1.0/3.0)
dfdzee(i) = dfdzeta(i)*(omega/nu)**(0.5)

mtc(i) = -1.0*diff*(1.0/(ff(1,i) - 1.0))*dfdzee(i)
ENDDO

mtcsum = 0.0

DO i=2,ydim-1

mtcsum = mtcsum + mtc(i)

ENDDO

mtcavg = mtcavgn

mtcavgn = 0.0
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DO i=2,ydim-1

IF (i .EQ. 2) THEN
mtcavgn = mtcavgn + mtc(i)*(1.0 - (i-l)*ystep)

ELSEIF (i .EQ. ydim-1) THEN

mtcavgn = mtcavgn + mtc(i)*(1.0 - (i-l)*ystep)

ELSEIF (MOD(i,2) .EQ. 1) THEN
mtcavgn = mtcavgn + mtc(i)*4.0*(1.0 - (i-l)*ystep)

ELSE

mtcavgn = mtcavgn + mtc(i)*2.0*(1.0 - (i-1)*ystep)

ENDIF
ENDDO

mtcavgn = 2.0/3.0*ystep*mtcavgn

c Calculate new velocities

c Write vavg into vavgold

c vavgold = vavg

c Finish

DO i=l,ydim

Cm(i) = ff(1,i)*Cinf

c If using osmotic pressure, uncomment lines below:

c DPi(i) = R*T*(2.0*((charge*Cm(i)/(2.0*MWbsa))**2 +
c & ms**2)**(0.5) - 2.0*ms) + R*T/MWbsa*
c & (Cm(i) + A2*Cm(i)**2 + A3*Cm(i)**3)
c vf(i) = Lp*(DPstat(i) - sigma*DPi(i)*

c & 1.01325e5/760.0*10.0)

ENDDO

c calculate vavg using Simpson's Rule

c vavg = 0.0

c DO i=1,ydim

c IF (i .EQ. 1) THEN
c vavg = vavg + vf(i)*(1.0 - (i-l)*ystep)
c ELSEIF (i .EQ. ydim) THEN
c vavg = vavg + vf(i)*(1.0 - (i-l)*ystep)
c ELSEIF (MOD(i,2) .EQ. 0) THEN
c vavg = vavg + 4.0*vf(i)*(1.0 - (i-l)*ystep)
c ELSE
c vavg = vavg + 2.0*vf(i)*(1.0 - (i-l)*ystep)
c ENDIF
c ENDDO
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c vavg = 2.0/3.0*ystep*vavg

c epsilon = vavg/(omega*nu)**(0.5)

c DO i=l,ydim
c nalpha(i) = 0.0
c ENDDO

c DO i=l,ydim
c V(i) = vf(i)/vavg
c nalpha(i) = epsilon*Sc**(2.0/3.0)*V(i)
c ENDDO

c DO i=l,ydim
c IF (nalpha(i) .LT. alpha(i)) THEN
c alpha(i) = alpha(i) - factor*(alpha(i)
c & - nalpha(i))
c ELSE
c alpha(i) = alpha(i) + factor*(nalpha(i)
c & - alpha(i))
c ENDIF
c ENDDO

c Calculate Cf(r) and mixing cup average

DO i=l,ydim

Cf(i) = theta*Cm(i)
ENDDO

c Use Nfavg for variable filtration rate. If rate
c does not vary with radial position, mixing cup is
c jut equal to area average.

Cfavg = 0.0
Nfavg = 0.0

DO i=l,ydim

IF (i .EQ. 2) THEN
Nfavg = Nfavg + vf(i)*Cf(i)*(1.0 - (i-l)*ystep)

ELSEIF (i .EQ. ydim-1) THEN

Nfavg = Nfavg + vf(i)*Cf(i)*(1.0 - (i-l)*ystep)
ELSEIF (MOD(i,2) .EQ. 1) THEN

Nfavg = Nfavg + vf(i)*Cf(i)*4.0*(1.0 - (i-l)*ystep)
ELSE

Nfavg = Nfavg + vf(i)*Cf(i)*2.0*(1.0 - (i-l)*ystep)
ENDIF

ENDDO

c DO i=l,ydim
c IF (i .EQ. 2) THEN
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Cfavg = Cfavg + Cf(i)*(1.0 - (i-1)*ystep)

ELSEIF (i .EQ. ydim-1) THEN

Cfavg = Cfavg + Cf(i)*(1.0 - (i-1)*ystep)

ELSEIF (MOD(i,2) .EQ. 1) THEN

Cfavg = Cfavg + Cf(i)*4.0*(1.0 - (i-l)*ystep)

ELSE

Cfavg = Cfavg + Cf(i)*2.0*(1.0 - (i-1)*ystep)

ENDIF
c ENDDO

Nfavg = 2.0/3.0*ystep*Nfavg
c Cfavg = 2.0/3.0*ystep*Cfavg

Cfavg = Nfavg/vavg

mixcupold = mixcup

mixcup = Cfavg

GOTO 100

500 DO i=1,ydim

WRITE(*,*) Cm(i),' ',Cf

ENDDO

DO i=1,ydim
IF (i .EQ. 1) THEN

Cavg = Cavg + Cm(i)*(1.0 - (i-1)*ystep)

ELSEIF (i .EQ. ydim) THEN

Cavg = Cavg + Cm(i)*(1.0 - (i-1)*ystep)

ELSEIF (MOD(i,2) .EQ. 0) THEN

Cavg = Cavg + 4.0*Cm(i)*(1.0 - (i-1)*ystep)

ELSE

Cavg = Cavg + 2.0*Cm(i)*(1.0 - (i-1)*ystep)

ENDIF

ENDDO

Cavg = 2.0/3.0*ystep*Cavg

Correct final mtcavg for the fact that part of the
area was not used in determining the average. This

correction will vary with step size in the radial
direction!

mtcavgn = mtcavgn/0.98

WRITE(*,*)'final mtcavg = ',mtcavgn

WRITE(*,*)'final vavg = ',vavg

WRITE(*,*)'final Cavg = ',Cavg

WRITE(*,*)'final Cfavg = ',Cfavg
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OPEN (UNIT = 10, FILE = 'f.out', FORM = 'formatted',

& STATUS = 'unknown')

OPEN (UNIT = 20, FILE = 'v.out', FORM = 'formatted',

& STATUS = 'unknown')

50 FORMAT (1X, 5001E25.10)

DO i=1,ydim
WRITE (10,50)(ff(j,i),j=1,fdim)

ENDDO

DO i=1,ydim

WRITE(20,*) vf(i)

ENDDO

END
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