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Abstract

The measurement of deuteron tensor polarization using (e, d) elastic scattering was performed in

Hall C, Jefferson Lab by the t20 collaboration at four-momentum transfers of 4.10, 4.46, 5.08, 5.48,
6.23 and 6.65 fm 1 . The scattered electrons were detected by the High Momentum Spectrometer,
and a specially designed magnetic channel was used to detect deuterons in coincidence. The polar-

ization of the recoil deuterons was measured in the polarimeter POLDER, using IH(d,2p)n reaction.

A 12 cm liquid deuterium target was used for (e, d) elastic scattering, and the second scattering
took place in a 20 cm liquid hydrogen target in POLDER. The deuteron arm was fixed at 60.50
while the electron arm angle 0e was changed with different beam energies to obtain different momen-
tum transfers. The extracted values of t 20 (Ge, GQ, GM, 0e), combined with the structure functions

A(Gc, GQ, GM) measured in this experiment and the world data of B(GM), were used to separate

the charge monopole form factor GC and charge quadrupole form factor GQ of the deuteron.
The extracted values of t20 were compared to predictions of different theoretical models of the

electromagnetic form factors of the deuteron. The present data favor the calculations of the "nucleon-

only" models with the inclusion of the relativistic effects and the meson exchange currents. The
position of the node in the GC form factor from the present experiment is somewhat lower in four-

momentum transfer than in a previous Bates measurement. This tends to give a more consistent

position of the node in GC for the two-nucleon and the three-nucleon systems. The need for more

precise polarization data in the four-momentum transfer range of the node in GC is discussed.

Thesis Supervisor: Dr. Claude F. Williamson
Title: Senior Research Scientist, Department of Physics and Laboratory for Nuclear Science
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Chapter 1

Introduction

The deuteron, consisting of a proton and a neutron, is the simplest nuclear system

in nature. It provides one of the best testing grounds for the nucleon-nucleon (NN)

interaction. The deuteron is a bound state of a proton and a neutron coupled in

a spin-one and isospin-zero state. It can be described as a 3S1 state mostly, mixed

with a 3D1 state (between 4% and 7.5%) due to the tensor component of the NN

interaction.

The basic components of the NN interaction are a long-range attraction well de-

scribed by a one-pion exchange potential, an intermediate-range attraction, and a

short-range repulsion. At moderate and short distances, where the NN interaction is

more complicated, a wide variety of interaction models has been proposed, ranging

from one-boson-exchange (OBE) models to models with explicit two-meson exchanges

to purely phenomenological parametrizations. Typical models are Paris [1], Bonn [2],
Argonne v14 [3], and Argonne v18 [4]. The parameters of these potential models, such

as coupling constants and cutoff mass for the form factors are adjusted to fit the

deuteron properties and NN scattering data. While these models produce a qualita-

tively similar description of the NN interaction, such as the deuteron static properties

and NN phase shifts, they have different short-range behavior and different off-shell

14



CHAPTER 1. INTRODUCTION

T matrix elements.

Elastic electron scattering provides further tests of our understanding in investi-

gating the ground state electromagnetic structure of the deuteron with high precision.

For several decades, many experiments have been performed to study the electromag-

netic form factors of the deuteron. They contribute significantly to the description of

the NN interaction, especially its off-shell properties, its behavior at short distances,

and the role of non-nucleonic degrees of freedom.

The cross section for elastic e-d scattering is proportional to A(Q)+B(Q)tan 2 (O/2),

where A(Q) and B(Q), the electric and magnetic structure functions respectively, are

functions of the electromagnetic form factors of the deuteron: charge monopole Gc,

charge quadrupole GQ, and magnetic dipole Gm. The structure functions A(Q) and

B(Q) can be separated with the Rosenbluth method by measuring the cross sections

at different electron angle 0 for the same four-momentum transfer Q. The structure

function B(Q) depends only on Gm, thus Gm can be obtained directly from the B(Q)

result. The charge form factors GC and GQ, contained in the structure function A(Q),

cannot be separated from the inclusive cross section measurements.

The determination of the structure of the deuteron is one of the most funda-

mental task in nuclear physics. The separation of the charge monopole and charge

quadrupole form factors of the deuteron is a necessary input for understanding the

deuteron structure. A third observable is needed to separate GC and GQ. The tensor

polarization of the deuteron can accomplish this goal. With an unpolarized electron

beam, one may use a tensor polarized target to extract the analyzing powers from

the asymmetry of the yields for the scattering. Alternatively, one may measure the

polarization of the recoil deuteron with an unpolarized target, and extract the three

tensor components t 20, t 2 1 , and t 22 simultaneously. The tensor polarization t2o de-

pends on an interference term of GC and GQ and a small term from GM, while t 21

is proportional to GQGM. Both t 2o and t 21 can be used to separate GC and GQ. In
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this experiment, we used t 20 in the separation because it is larger than t21 and almost

independent of the nucleon form factors up to about Q = 6-7 fm- 1. The result of t21

was used to resolve the ambiguity of GC which will be explained in detail in the data

analysis in Chapter 6. Finally, t 22 is proportional to G2 and was used as cross check

for the tensor polarization measurement since GM is obtained from a more precise

measurement of B(Q).

Many models of the deuteron electromagnetic form factors have been proposed.

In the conventional impulse approximation (IA) description of e-d scattering, the

electron interacts with each nucleon in the deuteron via a virtual photon and the

electromagnetic form factors of the interacting nucleons are taken to be the same as

those for a free nucleon. At large four-momentum transfers, various corrections to

the IA model become important. These include isoscalar meson-exchange currents

(MEC), isobar components, relativistic effects, and perhaps quark degrees of freedom.

Relativistic models have been developed both in the light front formalism [5] and by

solving the Bethe-Salpeter equation [6]. Most do not include contributions from

MEC such as the pyr-y process and therefore are referred to as relativistic impulse

approximation (RIA). Some nonrelativistic models used coupled-channel formalism

of nucleons and isobar (A and N*) and included contributions from MEC. At high

four-momentum transfer (Q > 5 fm'1), the deuteron is probed at smaller internucleon

distances, and the quark substructure may manifest itself in the deuteron observables.

Quark configurations are incorporated in several hybrid quark-hadron models. with

a quark confinement radius taken as a free parameter. Some of them give predictions

similar to those of IA model while others have completely different results for the

high four-momentum transfer region. A Skyrme model, which is equivalent to a

low energy version of QCD in the limit of a large number of colors, determines the

form of the one-body and two-body exchange current operators from the Lagrangian

fields and predicts results for the deuteron form factors similar to those obtained
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from conventional nucleon-meson dynamics. Finally, at sufficiently large momentum

transfer, PQCD, which predicts simple relations between the form factors of the

deuteron, is expected to become applicable.

Previous measurements of the tensor polarization t 20 [7, 8, 9, 10, 11, 12] have

been carried out up to a four momentum transfer of Q = 4.6 fm 1 . Most experi-

ments were performed at relatively low momentum transfer (Q < 3 fm- 1) where t20

is well determined by the non-relativistic impulse approximation with small theoret-

ical uncertainties. One recent experiment [12] performed at MIT-Bates extended the

measurement to high four momentum transfer region (up to 4.6 fm- 1 ) and measured

all three tensor moments of the recoil deuteron tensor polarization (t 20 , t 21 , and t22).

In this four momentum transfer region, the predictions from various models differ

significantly, although GC is expected in most models to pass through zero. In the

same experiment, the node of GC was determined to be at Q = 4.39 i 0.16 fm-.

This value for the node for GC presents a serious problem for the potential model

calculations as was pointed out by Henning et al. [13]. These authors have calculated

the isoscalar charge monopole (Gc) form factors to order (v/c) 2 for the deuteron and

for the three-nucleon 3He/ 3H systems using several potential models. If one plots the

predicted position of the node for the GC form factors for the three-nucleon systems

vs. the same quantity for the deuteron, one obtains a rather good linear relationship.

The positions of these nodes for the deuteron [12] and the three-nucleon systems [14]

have been measured experimentally. When plotted on the same graph as above, the

box representing the measurements with their associated errors fails very significantly

to intersect the straight line defined by the calculations (see Figure 8-1).

This failure represents something of a "crisis" in the theory of these few-nucleon

systems. It appeared from the data that existed prior to the present experiment that

standard potential theories with corrections to order (v/c) 2 could not simultaneously

account for the nodes in the Gc form factors for the deuteron and the three-nucleon
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systems.

One of the principal motivations of the present experiment, performed in Hall C at

the Thomas Jefferson National Accelerator Facility (Jefferson Lab) was to obtain po-

larization data with better precision in the region of momentum transfer, Q, expected

to contain the node in the GC form factor. Precise measurements of the structure

function A(Q) were performed in the same time in the present experiment [32] and in

another experiment [33] in Hall A at Jefferson Lab. The present experiment obtained

data for six values of Q in the range 4.1 fm- 1 < Q < 6.7 fm- 1 . The lowest four

values of Q span the region of the node in the GC form factor, and the present thesis

concentrates on the physics to be learned from these data. The higher momentum

data may bear on the PQCD formulation of the two-nucleon system and will be the

subject of a separate thesis [38]. This experiment was carried out by an international

collaboration whose members and affiliated institutions are given in Appendix A.

The groups most heavily involved in the data analysis and the kinematics analyzed

by each group is shown in Table 6.1.

In Chapter 2, the theoretical background is presented, including the deuteron prop-

erties, the description of e-d elastic scattering, the definition of the tensor polarization

and various theoretical models for the deuteron form factors. A survey of previous

experiments is presented in Chapter 3. The experimental setup for this experiment is

introduced in Chapter 4. A separate calibration experiment is described in Chapter

5. The detailed data analysis and results are described in Chapter 6. The comparison

with predictions from different theories is in Chapter 7. Finally, the conclusions are

presented in Chapter 8.
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Chapter 2

Theoretical Background

2.1 Deuteron Properties

The deuteron is the simplest nucleus in nature, consisting of a proton and a neutron

loosely bound by nuclear force. The binding energy EB is 2.22 MeV, much less than

the average value between a pair of nucleons in all the other stable nuclei. The static

properties of the deuteron are listed in Table 2.1. The scale of the separation between

the neutron and the proton is given by the size parameter R,

R =7 = (2mREB) 2 4.31770(2) fin, (2.1)

where mR is the reduced mass of the nucleons in the deuteron. It is more than twice

the average distance between nucleons in heavy nuclei (~2 fm), indicating the loosely

bound nature of the two nucleons as well.
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Spin-parity (JP), isospin (I) 1+, 0 [15]

Mass (Md) 1875.61339(57) MeV/c 2  [16]

Binding energy (EB) 2.224575(9) MeV [17]

Quadrupole moment (Qd) 0.28590(30) fM2  [18]

Magnetic moment (Pd) 0.857406(1) pN [19]

Asymptotic S-wave amplitude (As) 0.8846(8) [20]

Asymptotic D/S-wave ratio (ri) 0.0256(4) [21]

RMS radius (rd) 1.9627(38) fm [22]

Table 2.1: Static properties of the deuteron. Table taken from Ref. [12].

The existence of electric quadrupole moment and the departure of the measured

magnetic dipole moment from the value expected from a pure 3 S1 state for the

deuteron indicates the ground state of the deuteron is an admixture of 3 S1 and 3D1

state. The D-state component is coupled to the S-state component by the tensor

force. The wave function of the deuteron [20] is:

I=1 M - [U(T) + W(r)S12(r)J XIM (2.2)
V 4- r V/8- r

S12(r) = 3(or - f)(O-2 -i) - Or - 92 (2.3)

i r/r, (2.4)

where u(r), w(r), and X1M are the radial S-state, D-state, and triplet spin wave func-

tions respectively, U1,2 are the Pauli matrices, and r is the relative position vector of

the nucleons in the deuteron. The S-state and D-state wave functions are normalized

as

j[u2 + W2 ]dr = 1 (2.5)

Figure 2-1 displays the S-state and D-state wave functions in configuration space for

a particular nucleon-nucleon potential and Figure 2-2 shows the same functions in
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momentum space. For large r, the S-state and

04~

001

504 -

a3s utr)

w (r)

Figure 2-1: S- and D-state wave functions, u(r) and w(r), calculated using the Reid soft core

potential [23]. Figure taken from Ref. [24].

as

Figure 2-2: The same S- and D-state wave functions as in Figure 2-1 in momentum space. Figure

taken from Ref. [24].
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D-state wave functions are approximated by

u(r) Asexp Ydr

w(r) r AD (1 ± +
+ r exp(-rdr
NTr V-ydr)I

where -yd is defined in Eq. 2.1, As (see Table 2.1 and AD are the asymptotic amplitudes

for S-state and D-state respectively. The asymptotic D/S ratio q is given by

AD __r_

r7 -A - lim w(r)
AS r-oo u(r)

(2.8)

2.2 Elastic Electron-Deuteron Scattering

In elastic scattering of an ultra-relativistic electron from a deuteron, the scattered

electron energy Fe, is given by

Eel = fEe, (2.9)

where Ee is the incident electron energy, and f is the recoil factor

1

1 + (2Ee/Md)sif2 ( 0)
(2.10)

Here 6e is the electron scattering angle in the lab frame. The square of the four-

momentum transfer, q2 , carried by a virtual photon exchanged between the electron

and the deuteron is space-like

Q 2 - = 4f Eesin2 (e/2). (2.11)

The electron scattering angle 0e and the kinetic energy Td of the recoil deuteron are

(2.6)

(2.7)
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given below

Td Ee - Ee = 2 (2.12)2Md

cos2 (Od)sin 2 (Oe/2) =o .0d (2.13)1 + (2 + Ee/Md)(Ee/Md)in
2 (0d)(

Many authors[25, 26, 27, 28] have investigated elastic e-d scattering in the liter-

ature. By using the first Born approximation (one-photon exchange approximation)

and imposing relativistic Lorentz and gauge invariance, the differential cross section

can be written as:

do-/dQe = (d-/dQe)Mott[A(Q) + B(Q)tan2 (e/2)] (2.14)

where the Mott cross section describes the scattering of an electron off a pointlike

spinless particle and is given by

(d-/dQe)Mott (ahC) 2cos (Oe/2) f (2.15)
4Esmin 4 (0e/2)

for the deuteron. Here a is the fine structure constant.

Due to angular momentum conservation, parity invariance and time-reversal in-

variance, the electromagnetic structure functions, A(Q) and B(Q), are given in terms

of the three Sachs form factors of the deuteron in elastic e-d scattering : charge

monopole (Gc), charge quadrupole (GQ), and magnetic dipole (GM). In this formal-

ism, A(Q) and B(Q) can be expressed as

A(Q) = G2(Q) + 82G2(Q)±+2,G 2 (2.16)

4
B(Q) = I (1+ 77)G 2(Q) (2.17)

3 =
Q 2 Q/ 4 Md. (2.18)
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The normalization of the form factors Gc, GQ and GM at Q = 0 are chosen so that

Gc(0)

GQ(0) =

Gm(0) =

where Mp is the proton mass.

Using the Rosenbluth separation,

been obtained up to 10 fm- 1 and 8.4

1,

MdQd = 25.830,

(Md/Mp)pa1 = 1.714,

(2.19)

(2.20)

(2.21)

the structure functions A(Q) and B(Q) have

fm- 1 respectively [29, 30, 31, 32, 33].

2.3 Tensor Polarization of the Deuteron

Polarization describes the state of spin orientation of an assembly of particles. The

notations and coordinate systems for describing polarization here are those of the

Madison convention [34]. For spin-one particles, either spherical tensor moments (tkq)

or Cartesian tensor moments (pij and pi) are used to describe the polarization of the

particles. The effect of initial polarization of beam or target on the differential cross

section for a nuclear reaction is described by analyzing powers A and Aij (Cartesian)

or Tkq (spherical). The two sets of operators are given below in terms of the spin-one
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angular momentum operators and the unit matrix:

too = 1 (2.22)

tio - < Sz > (2.23)

tii = -:F(v/2) < S± iSy > (2.24)

t 20 = ( ) < 3S,2- 2 > (2.25)

t2±1 = -(v//2)< (Sxk iSy)Sz + Sz(S ± iSy) > (2.26)

t22= (V/3/2) < (Sx ± iSY) 2 > (2.27)

pi = < Si > (2.28)
3

pij = < S' >= 3< SiS + S Sz > -26ij (2.29)2

i,j = x, y, z (2.30)

The polarization of particles is referred to a right-handed coordinate system with

z-axis along the direction of the outgoing particle momentum, kf, and y-axis along

ki x kf as shown in Figure 2-3. Here ki is the momentum vector of the incident beam.

For the analyzing power, the coordinate system (Figure 2-4) is one in which the z-axis

is along the ki, and the y-axis is along ki x kf, for the reaction in question.
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Xk f *,7 z
%%Y0

Figure 2-3: Right-handed coordinate system for polarization components tkq or pi, pij. Figure taken

from Ref. [34].

.4

~1

.4*x I
.44

-> z

kiX kf

p

Figure 2-4: Right-handed coordinate system for analyzing powers Tkq or A2 , Aij. Figure taken from

Ref. [34].

- M

26



CHAPTER 2. THEORETICAL BACKGROUND

The experiment to measure the deuteron tensor polarization described in this thesis

was a double-scattering experiment. Unpolarized electrons were scattered elastically

from unpolarized deuterons. The recoil deuterons were tensor polarized with com-

ponents t20, t21 and t 22 and were transported to a liquid hydrogen target to undergo

a second scattering, the 1H(d,2p)n reaction, in which the tensor polarization of the

recoil deuterons was measured.

The general relations between the tensor polarization variables and the deuteron

form factors have been studied by Schildknecht [35, 36] and by Arnold, Carlson and

Gross [37]. In terms of Gc, GQ and GM, the tensor polarization tkq of the deuteron

are given as

1 8 8 Q0 17 610 ~2
120 - [-GCGQ + -2G 2 + 1 + 2(1 + T) tan2 0)GJ, (2.31)

t/2I 3 9 32

t21 = 7[71 + 72 sin 2 0] 1/2GmGQ sec -, (2.32)
s/UIo 2 27

t22 - - nG 2  (2.33)

o =A(Q) + B(Q) tan 2 - (2.34)
2

2.4 Theoretical Models of the Deuteron

To understand the structure of the deuteron, many models have been proposed

to describe the elastic e-d scattering. The different models are summarized in six

groups: non-relativistic impulse approximation; relativistic impulse approximation;

coupled-channel models of the nucleons and A isobars; hybrid quark-hadron models;

Skyrmion model; and perturbative quantum chromodynamics (PQCD) model. The

first three groups of models, which are "nucleon-only" models, are described in this

chapter. The last three groups of models involve higher momentum transfer and even

the quark degrees of freedom. The description of these "non-nucleonic" models and

the comparison of their predictions with the experimental data can be found in Ref.
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[38]. In this thesis, the predictions of the various "nucleon-only" models for the A(Q)

and B(Q) structure function are discussed in the subsequent sections. The predictions

for Gc, GQ and t20 from representative calculations based on these models will be

shown and compared to the data in Chapter 7.

As mentioned in Chapter 1, the NN interaction can be described by the exchange

of mesons. The effects of the meson exchange currents (MEC) have been found

to be important to explain experimental data [39, 40]. Because the deuteron is in

a isospin-zero state, only isoscalar MEC's can contribute in elastic e-d scattering.

The contributions of MEC's to the deuteron form factors are generally calculated

perturbatively by evaluating various Feynman diagrams in increasing powers of p/Ma,

where M, is the mass of nucleon and p is some characteristic nuclear momentum. A

detailed discussion of different isoscalar MEC's can be found in Ref. [41].

2.4.1 Non-Relativistic Impulse Approximation (NRIA)

The conventional approach to study the deuteron electromagnetic form factors

(DEFF) is the non-relativistic impulse approximation. In the impulse approximation

(IA) description of e-d elastic scattering, the electron interacts with each nucleon

in the deuteron via a virtual photon and the electromagnetic form factors of the

interacting nucleon are taken to be the same as those for a free nucleon. The deuteron

form factors Gi are given in terms of a product of the isoscalar nucleon form factors

and the integral of the S- and D-state wave functions [1]:

Gc(Q) 2GS(Q)CE(Q), (2.35)

GQ(Q) 2GS(Q)CQ(Q), (2.36)

Gm (Q) = (Md/Mp)(2Gs (Q)Cs(Q) + GS(Q)CL (Q)), (2-37)

where GS and GS are the isoscalar electric and magnetic nucleon form factors re-

spectively. In terms of the proton electric and the magnetic form factors (G' and
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G' ) and the neutron electric and the magnetic form factors (G' and G' ), G1 and

G' are given by:

1
GS(Q) = (GP (Q) + Gn(Q)), (2.38)

1
G (Q) = (GP (Q) + GM(Q)). (2.39)

2m

The structure functions Ci(Q) are expressed by integrals of the deuteron S-state

and D-state radial wave functions u(r) and w(r) respectively, which describe the

distribution of the neutron and proton point currents:

CE u 2(r) W2(r)]jo (k)dr, (2.40)

3 1bi
CQ- w(r) u(r) - I w(r) j 2 (k)dr, (2.41)

Cs= ]{[u2(r) - w2(r)jj(k) + w(r)[v'u(r) + w(r)]j 2(k)}dr, (2.42)

CL 3 w2(r) [jo (k)+ 2 (k)]dr, (2.43)

1
k = Qr, (2.44)

2'

where jo(k) and j 2 (k) are the spherical Bessel functions.

Many calculations of the DEFF within the NRIA framework using different NN

potentials and various parametrizations of the nucleon form factors have been pub-

lished. Several recent and typical NRIA calculations will be described in this section.

The authors used "realistic" modern potentials in their calculations: Paris in Ref.

[1], Argonne V14 in Ref. [42], Argonne v18 in Ref. [4], Paris and various versions of

Bonn potential in Ref. [43]. In addition, various relativistic corrections, MEC contri-

butions and the effects of different parametrizations for the nucleon electromagnetic

form factors were included in the calculations of the DEFF to study their importance

at high momentum transfers.
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1. Mosconi and Ricci Calculation

Mosconi and Ricci [1] performed the DEFF calculation using the Paris potential

[44] with relativistic nucleonic and mesonic corrections. They used four different

parametrizations of nucleon electromagnetic form factors Gn: Iachello, Jackson and

Lande (IJL) [45]; JJL with the Gn taken from that of Galster et al.. (IJLG) [46];

H6hler (H) et al. [47]; Gari and Kriimpelmann (GK) [48, 49]. The relativistic correc-

tions (RC) in their calculations include:

1. One-body relativistic corrections due to the Darwin-Foldy and spin-orbit contri-

butions, to the order of O(1/M 2 ) for the charge operator and to the order of O(1/M 3)

for the current operator.

2. One-body corrections from the relativistic modifications of the wave functions

due to the nuclear motion (NM).

3. Pionic contributions to the charge density operator to the order of O(1/M 3).

4. Two-body corrections due to the p-exchange processes to the order of O(1/M 3)

for the charge operator, and to the oder of O(1/M 2 ) for the current operator.

5. Two-body corrections due to pyry MEC.

The hadronic form factors in the conventional monopole form were inserted at the

meson-nucleon vertices

A 2 - M2
FaN- a t (2.45)

A2 + k2

where a' = -F, p. They used the cutoff masses: A, = 1 GeV and A, = 1.5 GeV. The

coupling constants for the p and p7ry MEC's they used were: k = 6.6, g2/4w= 0.55,

and gp,, = 0.4.

Among the four parametrizations, the results for A(Q) calculated by Mosconi and

Ricci using the H parametrization give the best agreement with the A(Q) data. Both

the full calculations (IA+RC+MEC) and those without p and pwry MEC's using the

H parametrization overestimate the experimental A(q) for 5 fm- 2 < 2 < 15 fm-2.
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2. Schiavilla and Riska Calculation

Schiavilla and Riska [42] calculated the DEFF using the Argonne V14 potential [3].

The parametrizations for the nucleon form factors they used are: the IJL, the H, the

GK and a dipole form D with G' given by
E1

G' (Q) = - Q2 2  GP (Q), (2.46)
4N 2 N

where , = -1.913, and mN is the mass of nucleon.

In this calculation, the exchange-current operator was separated into a "model-

independent" term and a purely transverse "model-dependent" term. The "model-

independent" term corresponds to the spin-orbit, quadratic spin-orbit and L 2 com-

ponents of the potential. The "model-dependent" term is unconstrained by the NN

interaction and included the pion-exchange-current, p-meson-exchange-current, the

pry and the wiry exchange-current operators. The authors investigated the sensitiv-

ity to the cutoff parameters. The cutoff masses in the monopole form factor inserted

at the meson-nucleon vertices are A, = 1.2 GeV, and A, = AW = 2 GeV. The pzyr

and w7r-y coupling constants used are gp,,, = 0.56, and goy = 0.63.

The most important charge-exchange operators are model dependent and are

viewed as relativistic corrections. Charge-exchange operators due to 7r, p, W MEC's

and due to the charge component of the piry process, were taken into account. The

value 14.6 was used for g, the wNN coupling constant. The Darwin-Foldy and the

spin-orbit relativistic corrections to the nucleon charge operator were also included

in the calculations.

At the meson-nucleon vertices for the p7y and w-meson exchange-charge operators,

a hadronic monopole form factor was inserted with A, = 1.2 GeV and A, = AW =

2 GeV to take into account the structure of the nucleon. For the pion and p-meson

charge-exchange operators, their propagators were not multiplied by hadronic vertex

form factors. Instead, to reduce the model dependence of those charge-exchange

31



CHAPTER 2. THEORETICAL BACKGROUND

operators, their bare propagators were replaced by generalized meson propagators

constructed from the Fourier transforms of the isospin dependent spin-spin and tensor

components of the NN potential.

For A(Q), their full calculation (IA+MEC) gives better agreement than the IA

calculation. The difference of the results of A(Q) using various nucleon form factor

parametrizations is large for Q2 > 20 fm- 2 . For B(Q), both IA and the full calculation

describe the data well up to Q2 = 40 fm- 2. Above Q2 = 40 fm- 2, the full calculation

overestimates the data while the IA result underestimates them. The calculations

using the H, IJL, GK, and D form factor parametrizations give similar results for

B(Q). The sensitivity of the B(Q) results to different cutoff masses was also studied

and it was found that the cutoff masses A, = 0.9 GeV and AP = 1.5 GeV give a

reasonably good fit to the data.

3. Wiringa, Stoks and Schiavilla Calculation

Wiringa, Stoks and Schiavilla [4] calculated the DEFF using the Argonne v18 po-

tential, which is an updated version of the Argonne v14 potential. The Argonne v18

potential was obtained by writing the strong interaction potential in an operator that

depends on the values of S, T and T, of the NN pair. Then the potential was projected

into a charge-independent part with 14 operator components (as in the older Argonne

v 14 potential) and a charge-independent breaking part with three charge-dependent

and one charge-asymmetric operators. A complete electromagnetic potential, con-

taining Coulomb, Darwin- Foldy, vacuum polarization, and magnetic moment terms

with finite-size effects, was also included in this potential. This potential gives an

excellent fit to pp, np, low-energy nn scattering data and the deuteron binding en-

ergy. The authors used the isoscalar electromagnetic current operators in Schiavilla

and Riska Calculation [42]. In addition, they considered the two-body charge and

current operators associated with the pir-y mechanism. The H parametrization was

used for the nucleon form factor and an w-pole term form factor was included at the
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p7ry electromagnetic vertex. The predicted results for A(Q) including the relativistic

corrections and MEC's are in good agreement with the experimental data. For B(q),

their results overestimate the experimental data in the momentum transfer range 10-

45 fm-2 . They indicated that the contributions due to the spin-orbit and quadratic

spin-orbit components of the interaction are of opposite sign and the cancellation

between them is not enough to describe the data. The contribution from the pwr7

current is small for the momentum transfer range considered in their calculation.

4. Pauschenwein, Plessas and Mathelitsch Calculation

Calculations of the DEFF have also been performed by Pauschenwein, Plessas and

Mathelitsch [43] using the Paris potential, various versions of the Bonn potential:

Bonn OBEPR, Bonn OBEPQ and full Bonn in Ref. [2] and folded-diagram full Bonn

in Ref. [50]. Bonn OBEPR and Bonn OBEPQ potentials are energy independent

while full Bonn potential contains an explicit energy dependence. The energy de-

pendence is removed by folded-diagram technique in the folded-diagram full Bonn

potential. The authors included relativistic corrections (Darwin-Foldy, spin orbit and

nuclear motion) as well as MEC's (7r pair, 7r retardation and p7ry with gp,, = 0.578) in

their calculations. For the DEFF calculations using the Bonn potentials, the hadronic

vertices for the MEC's were treated consistently with the underlying potentials. They

used the Dirac form factors and the H parametrization of the nucleon form factors.

The results of A(Q) and B(Q) in their calculation agree with each other and with

the data for Q < 4 fm-1. For Q > 5 fm- 1, the prediction of A(Q) using the full Bonn

potential give the best agreement to the data while the predictions for B(Q) disagree

with the data for Q > 5 fm- 1.

2.4.2 Relativistic Models

At high momentum transfer, the usual non-relativistic description of the nucleus

is no longer reliable, and it is necessary to develop relativistically covariant models of
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the nuclear system in the DEFF calculation. According to the choice of the kinematic

four-momentum variable, relativistic models can be summarized in two approaches:

instant form and front form [5]. The instant form relativistic calculations are based on

the relativistic Bethe-Salpeter equation (BSE). The front form approach, light-front

quantum mechanics (LFQM), is a form of relativistic Hamiltonian quantum dynamics

applied to systems with a fixed number of particles.

1. Instant Form Calculations

Several authors have developed DEFF calculations in the instant form type. Gross

[6] originated the relativistic-impulse approximation (RIA) formalism. Starting from

relativistic BSE, he assumed that the spectator nucleon is on the mass shell and the

interacting nucleon is off shell. In his calculation, relativistic corrections were calcu-

lated perturbatively. The nucleon current was expanded to order O(1/M 2 ) and the

effect of the deuteron motion on the deuteron wave function was calculated relativis-

tically to order O(1/M 2) (where M is the nucleon mass). Friar [51] performed the

DEFF calcultaion relativistically with a different method and obtained the Darwin-

Foldy, the spin-orbit terms, together with the terms due to nucleon motion. The

correction terms due to the NN interaction were not included in his derivation as

they were in the Gross calculation. Coester and Ostebee [52] derived the relativistic

corrections based on the Lorentz covariance of the four vector charge-current density

operators. In their calculation, the potential is local and the correction due to the

NN potential is the largest correction. Their results are close to those of Gross. In

the DEFF calculations, some relativistic effects were already included in MEC correc-

tions as illustrated by Gross [53]. The relativistic correction due to the NN potential

was interpreted in his calculation as a sum of the contributions from the pair and

retardation currents.

Arnold, Carlson, and Gross [54, 55] extended the original RIA formalism without

making non-relativistic approximations or Q2/M 2 expansion. They retained terms
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to all orders in (v/c)2 or Q2 /M 2 . They assumed that at least one nucleon is off the

mass shell while the spectator nucleon is on shell. To describe the deuteron-nucleon-

nucleon vertex function, four invariants or scalar functions were rewritten to have the

character of wave functions and corresponded to the S-, D-, 1P-, and 3 p_ state

wave functions. The authors used the relativistic wave functions from a relativistic

one boson exchange model with 7r, u, p, and w exchanges [6]. The w-NN vertex is a

mixture of -y5 and -y5-y,, couplings, with the mixing parameter A defined such that the

coupling is independent of A when both nucleons are on shell, and is pure -5 when

A = 1 and pure -y 5-y when A = 0. The P-state wave function turned out to increase

nearly linearly with A.

The A(Q) and B(Q) structure functions from Arnold, Carlson, and Gross's cal-

culations using the Reid soft core (RSC) potential [23] and the dipole nucleon form

factors for different values of A were compared with the experimental data. The re-

sults for A(Q) are below the experimental results and are reduced by a factor of 2 to

5 at Q2 of 100 fm- 2 over those for the nonrelativistic approximation. The predictions

of B(Q) shift the position of the minimum to lower four-momentum transfers. The

authors indicated that the discrepancy between their predictions and the data could

be removed by adding pw'y MEC and isobar effects which were not included in the

calculation. The G, not well known, is another factor that could cause a discrepancy

between the prediction and the data.

Zuilhof and Tjon [56, 57, 58] demonstrated the importance of treating relativistic

effects and MEC's within a consistent framework. They used the Bethe-Salpeter

equation in the ladder approximation using one-boson-exchange (OBE) model to

generate the NN interaction. Their results for A(Q) and B(Q) are similar to those

obtained by Arnold, Carlson, and Gross [55].

Hummel and Tjon [59, 60] performed the calculation of p-Fy and wo-y MEC con-

tributions to the deuteron form factors in a relativistic quasipotential OBE model.
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Their calculation is consistent with the NN dynamics. It was shown that the recoil

correction could not be neglected at high momentum transfer. In the analysis of the

pinry and way MEC's, they used a relativistic OBE model with the six mesons: 7r,

p, o, -, q , and 6. The matrix elements of the MEC operators were calculated in a

quasipotential approximation using the prescription of Blankenbecler and Sugar [61]

and Logunov and Tavkhelidze [62]. Boost effects and contributions from negative

energy states were studied and were found to be small. The p7ry calculation included

the negative energy state contributions and the boost effects while the Wor-y graph

was evaluated without them (or called in a static approximation).

The hadronic form factors of the monopole form were used at the meson-nucleon

vertices:

Fa (k) = A2 - (2.47)

where a represents one of the six mesons mentioned above and k is the momentum

of the meson. The cutoff mass, A2 = 1.5MN, was used, where MN is the nucleon

mass. The coupling constant, gpr = 0.56, and electromagnetic form factors derived

from vector-meson dominance model were used for the pir-y vertex. The authors used

gW' = -gpr = -0.56 for the calculation of the w7r process.

Hummel and Tjon used H and GK parametrizations of the nucleon form factors

in their DEFF calculation. For A(Q), the piry MEC is the largest contribution which

is partially cancelled by the contribution from the winy MEC. For B(Q), the effect of

the piy is negligible up to Q2 = 40 fm-2. The contribution from the waiy MEC shifts

the minimum of B(Q) to higher momentum transfer. The predictions are insensible

to the H and GK parametrizations up to Q2 = 45 fm-2, but the prediction for B(Q)

using the H parametrization falls below that using the GK parametrization for Q2 >

45 fm-2. The authors also indicated that their calculations are sensitive to the wony

coupling constant.
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2. Light Front Calculations

The light-front quantum mechanics (LFQM, or also called light-cone quantum

mechanics), as mentioned before, is another approach to perform a relativistically

covariant calculation of the DEFF. Several authors have calculated the DEFF with

the LFQM formalism.

Chung, Coester, Keister, and Polyzou [5] have calculated the DEFF using the light-

front dynamics. They used six different potential models for the deuteron wave func-

tion: Reid soft core; Argonne v14 ; Paris; and three Bonn potentials: Bonn OBEPR,

Bonn OBEPQ, and full Bonn. They used four different parametrizations of the nu-

cleon form factors: GK, H, Lomon [28], and Dipole. The prediction of A(Q) exhibits

significant difference for different potential models and different parametrizations for

Q2 > 2 GeV 2 . The calculated A(Q) with the Paris or the Argonne v 14 potential and

the GK parametrization is in good agreement with the data. The calculation for

B(Q) using the Argonne v 14 and the GK parametrization gives the closest agreement

with the data.

Carbonell, Desplanques, Karmanov, and Mathiot [65] also performed the DEFF

calculation using light-front dynamics with the following light-front equation:

[4(q 2 + m2) - M 2] , q, d, M 2 )4( , ?) (2.48)

where V is the interaction kernel. They solved the light-front equation perturbatively

with the Bonn OBEP potential. The deuteron wave function in their calculation was

written as:

1 1 1
T q, -) = fi# + -f2[34(4.) - o] + -f 3[3n(n.-) - 5]

1
+ f4[34(#.d) + 3il(q.5) - 2(q.n)a]

2

+i635( x n--) + 23 f6[( n a~ ] (2.49)
2 WX' 1
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where fl-6 are scalar functions, n' is the unit vector for the spatial direction of the light

front, 7 is the relative momentum, and a is the Pauli matrix. At the non-relativistic

limit, where fi -4 +us, f2 -+ -UD, and f3-6 -- 0, the wave function becomes:

iT~ US UD
(q) s - 2 [34(4.) -- ] (2.50)V2 2

They took into account the sum over the six mesons that contribute to the Bonn

potential for the contact interaction NNMy, where M = -F, p, w, a, r, and 6. To

study the influence of relativistic effects on the structure of the deuteron, the authors

first calculated the DEFF in the non-relativistic impulse approximation with the

S- and D-waves of the Bonn-QA wave function [2]. In the light-front formalism,

they performed the calculations in three approximations: one with the relativistic

deuteron components fi and f2 only, one with the addition of component f5, and one

including a contact term together with the above three components. Their prediction

for B(Q 2) is more sensitive to the different approximations and contributions than

that for A(Q 2). The relativistic deuteron component f5 has important influence in the

DEFF calculations. The minimum of B(Q 2) in their calculation is the consequence

of the f5 component.

3. Relativistic One Boson Exchange Model

Van Orden, Devine, and Gross [66] presented a third approach to the relativistically

covariant calculation of the DEFF based on field theory. They calculated the DEFF

in the context of a one-boson-exchange model using the Gross or spectator equation

[67]. The formalism is manifestly covariant and gauge invariant. Some effects of the

underlying quark-gluon structure of nucleons and mesons were included through the

introduction of phenomenological form factors. The form factors were simplified in a

factorable form [68, 69]

F(p'2,P 2, 12) = h(p'2 )h(p 2 )f (12)
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where p and p' are the initial and final nucleon four-momenta, I = p - p' is the meson

four-momentum, and the f( 2 ) and h(p2) are meson and nucleon form factors, respec-

tively. The interaction model they used was a one-boson-exchange kernel containing

six mesons: 7r, r, -, o-,, w, and p. Four wave functions were used for the deuteron:

the usual S and D wave functions and the singlet and triplet P wave functions of

relativistic origin.

The Feynman diagrams for the Gross current matrix element the authors used in

their calculation are displayed in Figure 1 in Ref. [66]. Diagrams (a)-(c) are related to

relativistic impulse approximation. The combination of them represents a complete

gauge invariant description of the Gross one-body current matrix elements. This

description is called the complete impulse approximation (CIA). They included the

contribution of the pir-y MEC in the calculation of the DEFF using three different

form factors: the VMD (vector dominance model) form factors, the quark model

form factors by Gross and Ito [70] and by Mitchell and Tandy [71]. The pr-y MEC

increases A(Q 2) and moves the minimum of B(Q 2). For both A(Q 2) and B(Q 2), the

VMD form factors give large effects, while the softer quark model form factors give

smaller effects.

2.4.3 Coupled-Channel Models

In addition to MEC's and relativistic corrections, non-nucleonic degrees of freedom,

such as isobar components or even possibly quark effects, are expected to become im-

portant at high Q2. The approach which includes isobar components in the deuteron

wave functions is called coupled-channel (CC) model.

Sitarski, Blunden and Lomon [72] calculated the DEFF using coupled-channel

formalism of nucleons and isobar components. In addition to the NN(3S, 3 D1) com-

ponents, the AA( 3S,1
3 D1, 7 D1 ) and the NN*(3S1 ) components were included in their

calculation. For the NN interaction, the Feshbach-Lomon (FL) potential [73], which
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includes exchanges of 7r, 27r, I, p and w mesons, was used. The parameters for the

FL potential were fitted to the NN scattering data for Tab < 1 GeV. They imposed a

homogeneous condition at ro, within which the hadronic components of the deuteron

wave function vanish. Two boundary condition radii, rFL - 0.74 fm and r'BM = 1.05

fm, were obtained by fitting the NN scattering data using FL potential and a cloudy

bag model (CBM) separately. They presented six different models:A, B, C, D, E, and

F. Each model is characterized with a combination of the boundary condition radius

(rFL or r CBM), isobar channels coupling to the NN channel and the distributions of

probabilities among the isobar components. The contributions of the NN and the iso-

bar channels to the DEFF were calculated in the impulse approximation (IA). Three

sets of nucleon form factor parametrizations were used, the H parametrization, the

GK parametrization and a third one which is a mixture of different parametrizations:

IJL for G' and G' , Bartel parametrization [74] for G , and Galster parametrization

[46] for G n. The form factors for the A and N* were assumed to have the same form

as those for nucleons with a scaling factor. The MEC contributions from the pair

currents (7r, p and w ) and p-ry were added to the IA results. Hadronic form factors

with the monopole form as shown in Eq. 2.47, were inserted at the meson-nucleon

vertices with A, = 1.0 GeV and AP = A, = 1.44 GeV. They used coupling constants,

gp = 0.406 and 0.56 separately in the calculations to study the contribution of pr-y.

Model C and D give a reasonably good description of the data for the A(Q) and

B(Q) structure functions. The channels in these two models are NN(3 S, 3 D1 ) and

AA(3S, 3 D1 ,7 D1 ) with the AA probabilities of 1.76% and 7.20% for model C and

model D respectively. The H parametrization gives the best agreement with the data

for A(Q), while the GK parametrization provides the best agreement with the data

for B(Q).
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2.4.4 Other Models for High Momentum Transfers

For electron scattering at high momentum transfers, it may be necessary to take

into account the quark-gluon degrees of freedom in the calculation of the DEFF. One

approach is the quark-hadron hybrid model. The quark configurations were consid-

ered in a quark cluster model or a quark compound bag model. Another approach

to calculate the DEFF is the Skyrme model, which describes baryons as topological

solitons of a self-interacting meson field. Finally, Perturbative QCD (PQCD) predicts

the DEFF at sufficiently high momentum transfers and obtained the simple relation

between GC and GQ and the value of the t20:

2
lim GC = -rqGQ, (2.52)

Q2_+0 3

lim t20 = -v/2. (2.53)
Q2-+oo

Detailed descriptions of these models involving high momentum transfer can be found

in Ref. [38].



Chapter 3

Survey of Previous Experiments

As mentioned before, deuteron structure functions A(Q) and B(Q) obtained from

the Rosenbluth separation of the elastic e-d cross section can not separate the charge

form factor GC and the quadrupole form factor GQ of the deuteron. A third oberv-

able is necessary to separate Gc and GQ. To achieve this goal, tensor polarization

observables were measured in several previous experiments mainly using two different

techniques: one method was to extract the analyzing power T2j from asymmetries in

elastic scattering of unpolarized electrons from a polarized deuteron target; the other

was to measure the tensor polarization t2j of recoil deuterons from e-d elastic scat-

tering with unpolarized electron beams. The analyzing power T20 has been measured

for the four-momentum transfer Q up to 3.6 fm- 1 in experiments at Novosibirsk [7, 8]

and NIKHEF [9, 10]. The tensor polarization t20 was measured up to 4.6 fm- 1 for the

four-momentum transfer at Bates [11, 12] Three recent experiments will be described

briefly in this chapter.

3.1 Experiments at Novosibirsk

An internal-target technique was first used to measure the tensor analyzing power

T20 in electron-deuteron elastic scattering in the experiment [8] performed at the 2-
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GeV electron storage ring VEPP-3 in Novosibirsk. Electron bunches were circulated

in the ring to form a 0.1-0.2 A current. The internal target was an aluminum tube

(called a storage cell) with polarized deuterium atoms injected into it. The storage

cell was coaxial with the electron beam in the ring and was installed in a straight

section of the ring. The polarized deuterium atoms were provided from an atomic-

beam source with tensor polarization pzz close to unity. The total thickness of atoms

in the cell was approximately 3 x 1012 cm- 2 which was 15 times larger than the

thickness of the atomic beam. The polarization of the atoms was aligned along one of

the two directions which were perpendicular to the electron beam axis. The scattered

electrons and recoil deuterons were detected in coincidence in four almost identical

detector systems placed symmetrically around the electron-beam axis. The scattered

electrons were detected with the scattering angle 0 from 10' to 22' and azimuthal angle

of a 400 range, while the deuterons were detected from 68' to 80' for the scattering

angle. A six plane drift chamber in each system was used for the tracking information

of the particles. Behind the electron drift chamber was a Pb converter followed by a

10 mm thick plastic scintillator. Three thin plastic scintillators were installed behind

the deuteron drift chambers and were followed by thick plastic scintillator or a Nal

counter. During the data taking, the sign of pzz was reversed every 200 s.

The tensor analyzing power T 20 was extracted from the asymmetries formed with

four systems, two polarization directions, and two values of pzz (see Ref. [8] for

details). The target polarization pzz was not measured absolutely. It was determined

by normalizing the datum at the lowest value of Q to the theoretical value of T 20

given by the Paris potential, thus inducing additional systematic error for the results.

The value of pzz was found to be 0.572 ± 0.053. The terms involving T 21 and T22 were

corrected by integrating the predictions of the Paris potential over the acceptance of

the apparatus. The results of T 20 in the four-momentum transfer range of 2-3 fm-1

were consistent with theoretical predictions. However, these predictions do not differ
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significantly in this range of Q. To distinguish between theories, data with Q values

larger than 3 fm 1 are necessaray.

3.2 Experiments at NIKHEF

The experiments on the absolute measurement of the tensor analyzing power T20

in elastic e-d scattering with four-momentum transfer from 1.8 to 3.2 fm were

performed at the Amsterdam Pulse Stretcher Ring at NIKHEF [10]. Unpolarized

electrons of 704 Mev were scattered from a polarized deuterium internal target. The

scattered electrons were detected in an electromagnetic calorimeter with 6 layers of

CsI(Tl) crystals. The electron trigger was provided by two plastic scintillators. A pair

of chambers was used to determine the trajectories of the scattered electrons. The

central angle of the calorimeter was set at 45'. The recoil deuterons were detected

in coincidence in a 16 layer plastic scintillator range telescope positioned at a central

angle of 62.3'. The tracking information of the recoil deuterons was provided by two

wire chambers.

The polarized deuterium was provided by an atomic beam source. The deuterium

atoms with spin up electrons were focused by two sextupole magnets. Transitions

between the hyperfine states were induced by RF units and resulted in a tensor

polarization P,(P,+) with zero vector polarization. The atomic beam was fed into

a T-shaped dwell cell with a temperature of 150 K. The integrated target density

was 2 x 1013 atoms/cm2 . Two polarimeters, a Breit-Rabi polarimeter and an ion-

extraction system, were used to measure the polarization of the deuterium atoms.

The effective target polarization was found to be APz = P;+ - Pzz = 1.175 ± 0.057.

To extract the tensor analyzing power, an asymmetry A was formed using the

expression

A T N+ - N-
A- = Pz2(3.1)

Pz~z N +
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where N+ (N-) is the number of the events when the target polarization was positive

(negative) (see Ref. [10] for details).

It was claimed in Ref. [10] that the non-relativistic calculation of Ref. [4] gave the

best description of their results and the meson exchange currents was important to

describe the data.

3.3 Experiments at Bates

Two experiments [11, 12] using the polarimeter technique were carried out at

MIT-Bates to measure the tensor polarization t20 of the recoil deuterons in elastic e-d

scattering. The recent one [12] is described in this section. It was the first experiment

to measure the tensor polarization of deuteron at a high momentum transfer range

of 3 fm- 1 < Q < 6 fm- 1, where the theoretical predictions vary significantly and the

charge form factor Gc of the deuteron was expected to pass zero. The short-distance

structure of the deuteron and non-nucleonic degrees of freedom are expected to be

significant at this Q range.

The electron beam, provided by the MIT-Bates Linear Accelerator Center with

energies of 653, 755, and 853 MeV, was incident on a 7 cm long liquid deuterium

target. The scattered electrons were detected in the OHIPS spectrometer. The recoil

deuterons were selected in coincidence in a specially designed magnetic channel, fixed

at an angle of 41'. The deuteron channel consists of a QQD section, an intermediate

focus detector (IFD) used for tuning, and a QQQD section. The polarimeter AHEAD,

based on d-p elastic scattering [82], was installed at the end of the channel. The

trajectories of the deuterons were determined by two MWPC's. Two scintillators

provided the trigger information. The deuterons were incident on a 27 cm long liquid

hydrogen (LH 2) target where the elastic d-p scattering took place. The asymmetry of

the scattered particles from the second scattering was measured with two cylindrical

wire chambers (CWC's), which were installed concentrically around the LH 2 target.
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An array of six AE and eighteen E plastic scintillators were placed outside of the

CWC's to identify the particles through their energy loss.

The polarimeter AHEAD was calibrated at the Laboratoire National Saturne with

a deuteron beam of known polarization. The analyzing powers and the yield for the

scattering of unpolarized deuterons was measured for the deuteron energies of 120,

145, and 170 MeV. The calibration results were interpolated for the deuteron energies

used in the tensor polarization measurement at Bates. With the interpolated unpolar-

ized yield and the analyzing powers, the tensor polarization components t20 , t21 , and

t22 were extracted from the asymmetry in 0 and q of the d-p elastic scattering. The

deuteron charge form factor GC and quadrupole form factor GQ were separated with

their measurements of t20 and the world data for the A and B structure functions.

The results were compared with various theoretical predictions. The data unambigu-

ously showed a sharp rise of t20 from a minimum towards less negative values. The

first node of GC was determined to be at Q = 4.39 ± 0.16 fm- 1 .
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CEBAF Experiment

4.1 Introduction

The present experiment to measure the tensor polarization of the deuteron in

elastic electron deuteron scattering was performed in Hall C at the Thomas Jefferson

National Accelerator Facility (TJNAF, previously named CEBAF) from April to

September in 1997. During the running of this experiment, CEBAF provided high

current, continous wave (CW) unpolarized electron beams with the energies up to

4 GeV and currents up to 120 pA. The high energy and high current beam made

it possible to extend the tensor polarization measurement of the deuteron to higher

four-momentum transfer regions with good precision.

The experimental arrangement is illustrated in Figure 4-1. The apparatus mainly

consists of the following pieces: High Momentum Spectrometer (HMS), high power

liquid deuterium (LD2) target, deuteron transport channel, and polarimeter (POLDER).

This experiment was a coincidence, double scattering experiment. The electron

beam was incident on the deuterium scattering target. The scattered electrons were

detected by the High Momentum Spectrometer (HMS) between the angles of 20.3' and

35.8'. A specially designed magnetic channel was used to detect the recoil deuterons
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HMS spectroxneter

JLD2 target

Elec on
Deuteron Ina

POLDE channel

Figure 4-1: The plan view of the experimental setup in Hall C. Figure taken from Ref. [89].

in coincidence with the electrons and was fixed at 600. The angle of the HMS varied

with different beam energies to achieve six four-momentum transfers. The kinematics

for the six points measured in this experiment are shown in Table 4.1. The polar-

ization of the recoil deuterons was measured in the polarimeter POLDER, using the

1H(d,2p)n reaction. The angular distribution of the protons coming from this re-

action was measured in POLDER and compared to the angular distribution when

unpolarized deuterons were used for the second scattering. The tensor polarization

of the recoil deuterons was extracted from this comparison. In the following sections,
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the accelerator and beamline, the liquid deuterium target, the deuteron channel and

the spectrometers used in this experiment will be explained separately.

Kinematics Ebeam (GeV) 0e (degree) Q (fm-1) Td (MeV)

1 1.412 35.83 4.10 174.5

2 1.646 33.60 4.46 206.5

3 2.098 29.93 5.08 268.1

4 2.447 27.62 5.48 311.7

5 3.251 23.36 6.23 402.9

6 4.046 20.33 6.65 459.0

Table 4.1: Kinematics of the six points measured in this experiment. The quantities displayed are:

electron beam energy Ebeam, electron scattering angle 0e, four-momentum transfer Q, and mean

value of the energy of the recoil deuterons Td.

4.2 Accelerator

Injector

We

Experimental Halls

A

C

North Linac

st Arc East Arc

South Linac

Figure 4-2: Schematic of CEBAF accelerator

A schematic of the accelerator at CEBAF is shown in Figure 4-2. The electron

beam is first accelerated by an injector to an energy of 45 MeV, then sent to the

T 

We
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superconducting linacs ( South Linac and North Linac) and arcs ( East Arc and West

Arc) for circulations. The beam is accelerated an additional energy of 400 MeV by

superconducting radio frequency cavities in each linac and is deflected 180' in each

arc. In one complete circuit, the beam gains an energy of 845 MeV. After the beam

passes through the South Linac, it can be extracted to the three experimental halls,

or it can be sent through the west arc for additional acceleration in the linacs. The

electron beam can be recirculated through the system up to 5 times and delivered

to the three experimental halls (hall A, B and C) independently and simultaneously

after each pass. The available beam energies were 0.845, 1.645, 2.445, 3.245 and

4.045 GeV. In addition, the linacs can be set to provide energies less than 800 MeV

to provide different beam energies than the above values. The characteristics of the

beam at CEBAF at the time of this experiment is illustrated in Table 4.2.

Maximum energy 4.045 GeV

Duty cycle 100%, CW

Emittance 2x10- 9 m

Energy spread (4a-) 104

Maximum intensity 200 pA

Vertical size (4cr) 100 pm

Horizontal size (4c-) 500 pm

Table 4.2: Characteristics of the beam at CEBAF at the time of this experiment.

In this experiment, data were taken at six beam energies of 1.411, 1.646, 2.098,

2.447, 3.251 and 4.046 GeV, corresponding to six values of four-momentum transfer

of 4.10, 4.46, 5.08, 5.48, 6.23 and 6.65 fm 1 .

4.3 Hall C Beamline

The control and measurement equipment used in the Hall C beamline execute these
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functions:

* 1. Determination of the beam energy

* 2. Control of beam position, emittance and energy stability

* 3. Determination of the beam current, total charge and luminosity

INSIDE HALL C ARCOVE ARC SECTION
i 0 41 41

Superharp: HOO

L BPM: HOOA

L Slow Raster

BPM: HOOB
Towards

- Superharp: HOOA

BCM3

Target

New BPM

DRAFT: MARCH 5, 1997

BCM2

V-BCMI

Superharp: C17A Superhar : C07A

BPM: C17 -- BPM:- CO7

Fast....ter Superharp: C17B Superharp: C07B

. Fast Raster Superharp: C12B BPM: C12 Superharp: C12A

DISTANCE FROM T4RGET Lin Meters)

New BPM -2.500 Target 0

BCM3 1.311

Superharp: HOOA 1.473

BPM: HOOB 1.637

Slow Raster 2.199 (Y)

2.799 (X)

Superharp: HOO 3.290

BPM: HOOA 3.455

Fast Raster 20.71 (Y)

21.11 (X)

SQUID 24.94

BCM2 25.94

Unser 26.24

BCM) 26.54

Figure 4-3: Instrumentation in the Hall C beam line

The equipment in the beamline include various magnets (dipoles, quadrupoles,

sextupoles, beam corrector) to focus and steer the beam, and beam diagnostic devices

(BPM, harp, BCM) to measure the energy, position and profile of the beam. Figure

4-3 illustrates the instrumentation in the Hall C beam line, which is described in the

next sections.
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4.3.1 Beam Position Measurement

The position of the beam in Hall C was monitored with five beam position monitors

(BPM). Before the target, two BPMs (HOGA and HOOB) were used to measure the

position and the direction of the beam incident on the target. The beam position on

the target in the horizontal and vertical directions was stable within ±1.25 mm, and

the angles stable with ±0.5 mrad. Detailed descriptions of the BPMs can be found

in Ref. [831.

4.3.2 Beam Current Measurement

The beam current to Hall C was measured by three RF cavity beam current mon-

itors BCM1, BCM2 and BCM3. They provided very good relative measurement of

currents by measuring the power of the RF radiation coupled in the cavity. An Unser

current monitor was also used to measure the absolute current. The three BCMs

were periodically calibrated absolutely using an Unser current monitor. Detailed

description of these devices are in Ref. [84].

4.3.3 Superharp System

The superharp system was used as the standard beam profile monitor and as a

reference for BPM calibration. The schematic of the superharp system is shown

in Figure 4-4. A superharp consists of a fork with three wires, two vertical wires

that measure the horizontal beam profile and one horizontal wire that measures the

vertical beam profile. When a stepper motor connected to the fork moves, the wires

pass through the beam and the ADC signals were generated. A position encoder

measures the position of the fork. The position information from the encoder and the

ADC signal were used to extract the position and the profile of the beam. As shown

in Figure 4-3, three pairs of superharps are located at the beginning, the mid-point

and the end of the Hall C arc. Separate superharps in combination with BPM's are
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located in the Hall C beamline segment close to the Hall C target.

Beam

F Preamp H ADC s

Computer

Position -Readout

Encoder

Stepper
Motor

Figure 4-4: Schematic of the superharp system

The superharps in the Hall C arc were mainly used for beam energy measurement.

The three pairs of superharps were successively operated to obtain the positions

and orientations of the incident and outgoing beam, which renders also the central

trajectory. The combination of beam positions and beam profile as given by the three

superharp pairs, together with the known field integral of the arc bend magnets, can

be used to derive the beam energy and also the beam emittance and dispersion.

Details of the beam energy measurement will be described in Section 4.3.6.

4.3.4 Raster System

Due to the high current and the small size (FWHM G 300 pm) of the beam,

local heating in the target would cause boiling of the liquid deuterium if measures

were not taken to reduce the power density. To minimize the reduction of the target

liquid density and to prevent possible damage of material by overheating, vertical and

horizontal air-core magnets were used to impart a rastering pattern to the beam on
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the Hall C target (Fast Raster or FR) and Hall C beam dump (Slow Raster or SR).

During this experiment, the raster size of the beam before the target was t2 mm.

4.3.5 Scattering Chamber

The scattering chamber in Hall C was a cylinder. The cutouts on the cylinder

for the High Momentum Spectrometer (HMS) and the deuteron channel were large

enough to cover angular acceptances of HMS and the deuteron channel . In addition,

there were entrance and exit openings for the beam as well as a pumping port and

several viewing ports. The HMS window was 20.32 cm tall and covered with a 0.04064

cm thick Aluminum window. The beam exit window consisted of a Titanium foil,

approximately 60 mg/cm 2, 136.5 cm high. There was a 24m long beamline between

the target and the beam dump.

4.3.6 Beam Energy Measurement

The Hall C arc transport beamline was used as a spectrometer to measure the beam

energy and energy spread. During the beam energy measurement, the arc optics were

set from the normal achromatic mode to dispersive mode by setting all non-dipole

elements (quadrupoles, sextupoles) to a zero of fBdl value. The beam correctors

were used to compensate the terrestrial field. The absolute transverse beam position

and orientation at the entrance, the mid-point, and at the end of Hall C arc line were

measured by a set of two pairs of superharps (see Figure 4-3) equipped with absolute

position encoders with an accuracy of 10 p. The current in the calibrated bending

magnets was varied to set the position of the beam to be along the central ray of the

dipoles in the arc. The current was then transferred into a f Bdl value for the dipoles

through precalibrated f Bdl - I data. Thus the beam energy Eo is determined. The

dispersion of the arc is 12.5 cm/% with all the quadrupoles, sextupoles, and beam

correctors switched off. The effective length of the arc is 300 cm.
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Figure 4-5: Residual field for both Arc dipole degaussing procedures and the errors induced in the

beam energy measurement. The top figure shows the residual field for the two different degaussing

procedures. The bottom figures shows the correction to the beam energy caused by using the two

different degaussing procedures as described in the text. Figure taken from Ref. [85].

With the precise knowledge of the field, and the absolute beam positions measured

with the superharps, the field integral can be calculated with high precision. The

beam energy can then be determined with an uncertainty of Sp/p 2x 10-4. However,

it was discovered that the degaussing procedure used for the arc dipoles during the

energy measurements was not the same as was used when the dipole fields were
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initially mapped. In the mapping of the dipole fields, the dipoles were first ramped

up to 300 Amps, then reduced to the desired current values. During data taking,

the dipoles were only ramped to 225 Amps. This caused a difference in residual

field which led to overestimated beam energies. Figure 4-5 shows the residual field

versus beam energy for the degaussing procedure and the errors of the Hall C arc

measurement of the beam energy due to this effect. An additional uncertainty was

introduced due to this correction: 0.01% for energies below 3 GeV, 0.02% for higher

energies. The energies used in this experiment were corrected for this effect and are

listed in Table 4.3.

Kinematics beam energies corrected beam energies

from arc measurement

1 1.413 GeV 1.412 GeV

2 1.647 GeV 1.646 GeV

3 2.100 GeV 2.098 GeV

4 2.449 GeV 2.447 GeV

5 3.255 GeV 3.251 GeV

6 4.054 GeV 4.046 GeV

Table 4.3: Results of beam energy measurement using Hall C arc method and their values after the

correction of the different residual field effect.

Another method used to determine the beam energy kinematically was to calculate

the beam energy from the scattered electron momentum and the scattering angle

reconstructed in the HMS. Due to the limited precision of this method, it was only

used to study the stability of the beam energies during the experiment, instead of the

absolute beam energy determination.

When the electron beam is incident on the deuteron target, it loses energy (E10 S. 1)
in the liquid deuterium before scattering. The energy of the electron at the vertex of
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the scattering (Ebeamcor) is

Ebeamcor = Ebeam - Elossi (4.1)

The energy of the scattered electron at the vertex (Ehmscor) is obtained after adding

the energy loss of the scattered electron in the target (Eoss2 ) to the scattered electron

energy (Ehms) measured in the HMS.

Ehnscor = Ehms + Eloss2  (4.2)

At the vertex of the scattering, Ebeamcor and Ehmscor are related by

Ehmscor 2Ebeamcor f20 (4.3)
1+ Mbe"m"0rs 2

MD

where 0
e is the scattering angle of the electron, MD is the deuteron mass. So the

beam energy can be calculated as follows:

Ehms + Ejoss2
Ebeam = 2E+ E10ssi (4.4)

2(Ebeamcor+Eloss2)sin2

MD

A typical spectrum for the reconstructed beam energy using this method for Kine-

matics 1 is shown in Figure 4-6. Events in the shaded area, representing the e-d elastic

scattering events, were obtained after applying cuts on the scattered electron energy

Ehms and the scattering angle Oe. It was then fitted with a Gaussian function. The

peak value from the fit was used as a measure of the beam energy. The reconstructed

beam energy for each run for different kinematics is shown in Figure 4-7. The beam

energies were stable within the level of 10-3.
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Figure 4-6: Spectrum of reconstructed beam energy for Kinematics 2

4.4 Liquid Deuterium Target

The Hall C scattering chamber contained two target ladders, one for cryogenic

targets as shown in Figure 4-8 and one was for solid targets. When the solid target

was in use, a target lifting mechanism and a rotating mechanism were used to lift the

cryogenic target out of the beam and rotate it out of the way so that the solid targets

could be inserted. In this experiment, the cryogenic target was used. The solid target

was used only in the optics study of the HMS spectrometer.
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Figure 4-7: Stability of reconstructed beam energy for the six kinematics.
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Loopl-Hydrogen

Loop2-Empty

Loop3-Deuterium

4 cm dummy

Beam Direction

Figure 4-8: Side view of the full cryotarget ladder

The cryogenic system had three separate loops for Hydrogen, Deuterium and He-

lium targets (see Figure 4-8). The Helium targets in loop 2 were empty during this

experiment. The side view of an individual target loop is shown in Figure 4-9. Two

target cells, 4 cm and 12 cm long separately, were attached to an aluminum cell block

for each target loop. The desired target cell could be moved into the path of the elec-

tron beam with the target lifting mechanism. The cells were thin aluminum cylinders

made from beer can stock, 6.731 cm in diameter, with 0.0178 cm walls. Inside of the

large cells were smaller aluminum flasks. The entrance and exit endcaps were both

curved slightly, which gave a thickness variation with beam position.
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Figure 4-9: Side view of a cryotarget loop. Figure taken frim Ref. [89].

Each ioop consisted of a circulation fan, two target cells, heat exchangers and high

and low power heaters. The heat exchangers were used to remove the heat deposited

by the beam by bringing the target fluid into thermal contact with 4 K cold helium

provided by the CEBAF End Station refrigerator. In the loops, an axial fan inside

a heat exchanger forced the target liquid to flow through the cell as shown in Figure

4-10. High power heaters were used to maintain a constant heat load for the system,

so that the cooling power stayed constant as the beam current changed. Low power

heaters maintained the cryotargets at their operating temperatures, and corrected for

small fluctuations in the beam current.

Each target loop had its own intelligent temperature controller, Oxford ITC-502,

which could monitor three independent sensors. Two channels of each ITC-502 were

dedicated to reading the temperature of the target fluid from a pair of Cernox resistors

which were mounted at either end of the low power heater carrier board. These

resistors provided sensitive measurements of the temperature with an accuracy of

~100l mK.
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Figure 4-10: Inside structure of a cryotarget cell. Figure taken from Ref. [89].

The cryogenic system was controlled using the Experimental Physics and Industrial

Control System (EPICS). It consisted of operator Interfaces (OPI's - typically X terms)

and Input Output Controllers (IOC's - typically single board computers). The com-

munication between the OPI's and the IOC is via Ethernet. To operate the cryogenic

system safely, it was important to monitor the state of the target constantly. For

this purpose, software for user interface was developed by the author to record con-

tinuously various parameters, such as the temperature, the pressure, and the power

readings of the power heaters.

For the experiment, the 12 cm deuterium target was used with an operating tem-

perature of 22K. The targets were run at a maximum beam intensity of 110 pA with

a t2 mm beam raster. The beam deposited about 500 W of power in the 12 cm deu-

terium target cell when running at 110 pA. The total cooling power of the cryogenic

target system was about 600 W, which was adequate for this experiment.
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4.5 High Momentum Spectrometer (HMS)

The High Momentum Spectrometer in Hall C was used to detect the scattered

electrons in the experiment. The HMS was composed of three quadrupole magnets,

Q1, Q2, and Q3, and one superconducting dipole magnet D. The three quadrupoles

were cold iron superconducting magnets. The basic parameters for the quadrupoles

are contained in Table 4.4. The HMS dipole was a warm iron superconducting,

cryostable magnet. Its basic parameters were an effective length of 5.26 meter, a

bend radius of 12.06 meter, and a gap width of 42 cm. Its actual size was 5.99 meter

long, 2.75 meter wide, and 4.46 meter high. The bending angle of the dipole was 25*.

Figure 4-11 shows a side view of the HMS spectrometer and the detector hut.

Dipole
Q 1 Q2 Q3

27m

Figure 4-11: Side view of the HMS

The magnets were operated in a point-to-point focus tune in both the dispersive

direction and nondispersive direction. In this tune, Q1 and Q3 focused in the dis-

persive direction and Q2 focused in the transverse direction. The HMS had a large

acceptance, fairly large solid angle, and extended target acceptance. The design goals

[86] and final performance of the HMS are listed in Table 4.5.
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magnet effective inner pole I,a

length radius

Q1 1.89 m 25.0 m 580 A

Q2 2.155 m 35.0 m 440 A

Q3 2.186 m 35.0 m 220 A

Table 4.4: Operating parameters of the HMS quadrupoles

The magnetic fields were set remotely from the counting room. The field of the

dipole was regulated using an NMR probe located in a region of uniform field. The

quadrupoles were regulated by current. The fields of dipole and quadrupoles were

stable at the 10-4 level.

Design Goal Final Performance

Maximum central momentum 6.0 GeV/c 7.4 GeV/c

Momentum bite [(Pmax - Pmin)/Po] 20% 20%

Momentum resolution [6p/p] 0.1% 0.02%

Solid angle (no collimator) 10 msr 8.1 msr

Angular acceptance - scattering angle ± 32mr

Angular acceptance - out-of-plane ± 85mr

Scattering angle reconstruction 0.1 mr 0.5 mr

out-of-plane angle reconstruction 1.0 mr 0.8 mr

Vertex reconstruction accuracy 1 mm 2 mm

Table 4.5: HMS design goals and final performance

A slit system before Q1 was used to insert various collimators. Three collimators

and one blank space were in the slit box. Two collimators were octagonal apertures

designed to limit the solid angle acceptance of the HMS. They were not used in this

experiment. The third collimator was a 3.175 cm thick sieve slit used for optics study,

shown in Figure 4-12. It was an array of small holes, each with 0.508 cm diameter.
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Each hole allowed particles with a certain polar and azimuthal angle to pass through.

The vertical hole spacing corresponds to 19.90 mr steps, and the horizontal spacing

corresponds to 11.93 mr steps. Thus the optics of the spectrometer could be studied

by comparing focal plane distributions to data with known angular distributions. Two

holes were missing in the sieve slit in order to verify proper left-right and top-bottom

reconstruction. The central hole was smaller than the others in order to obtain the

resolution of the angular reconstruction. Figure 4-13 shows the scatter plot of the

reconstructed events at the front of the sieve slit.

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

00 0 00 00 0

0 0 00 0 0QQ0Q

000 001 2.54 cm

0 0 0 0 0 0 0 0-0

1.524 cm

Figure 4-12: Schematic of the HMS sieve slit. Two holes are missing for left-right and top-bottom

reconstruction. The central hole is smaller than the others to measure the angular resolution.
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Figure 4-13: Scatter plot of the events at the front of the sieve slit. One can see that two holes were

missing and the central hole was smaller than the others. Figure taken from Ref. [87]

The HMS detector package consisted of two drift chambers, two sets of scintillator

hodoscopes, a gas Cerenkov detector and a lead glass shower counter calorimeter. A

schematic of the HMS detector package is shown in Figure 4-14.

DC1 DC2 SIX SlY
Cerenkov

S2X S2Y Calorimeter

Figure 4-14: Schematic diagram of the HMS detector hut
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4.5.1 Drift Chambers

The two Drift Chambers provided the position and angle information of the scat-

tered electrons. This information was combined with the optics of the spectrometer

to infer the trajectory of electrons at the target. Each chamber consisted of six planes,

X, Y, U, V, Y' and X' as shown in Figure 4-15. X and X' wires measured position

along the dispersive direction. Y and Y' wires measured in the transverse direction

while the U and V planes were inclined 15 degree with respect to the X planes to

provide the stereo measurements. The active area of the chambers was about 113 cm

(x) by 52 cm (y) with 1 cm spacing wires. Each plane was separated by 1.8 cm and

the two drift chambers were separated by 81.2 cm. The chambers were filled with a

mixture of Ar(49.5%), Ethane(49.5%) and Isopropyl Alcohol(1%). The resolution of

the chambers was 140 pm. The efficiency was greater than 98%.

Incident
Electrons

X

1.8 cm

Y U V Y, X,

113 X, X' wires
107 U, V wire
52 Y, Y' wires
1.000252 cm wire spacing

Amplifier/Discriminator cards

Figure 4-15: Front view of the HMS drift chambers

Incident Y
Electrons

U V

X, X'
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4.5.2 Scintillator Hodoscopes

The scintillator hodoscopes provided a fast, clean trigger and particle identification

by time of flight (TOF). These detectors consisted of two pairs of spatially separated

scintillator layers: a pair comprising of SIX and SlY, and approximately 2 meters

away a pair comprising of S2X and S2Y. Each hodoscope plane was constructed of 9

to 16 elements. The hodoscope elements were long narrow strips of scintillator with

light guides and phototubes on both ends. Each scintillator was read out by two

photomultiplier tubes (PMT's). The specific dimensions for the scintillator elements

in the HMS can be found in Table 4.6.

thickness width length number

X 1 cm 8.0 cm 75.5 cm 32 units

Y 1 cm 8.0 cm 120.5 cm 20 units

Table 4.6: Dimensions of the scintillators of HMS

4.5.3 Gas Cerenkov Detector

The gas Cerenkov detector in the HMS consisted of a large cylindrical tank with

a diameter of 59 inches and a length of 60 inches. Two mirrors were contained

in the tank to focus light onto two 5 inch PMT's. The tank was filled with N2

at the desired operating pressure, about 1 Atm. A Cerenkov counter is used to

discriminate between particles of different masses which have the same momentum.

A charged particle travelling faster than the speed of light in the medium will emit

Cerenkov radiation which is distributed about the trajectory of the particle, with an

angle 0, given by cosO = /(&n), where the index of refraction n=c/u and =- v/c,

with c the speed of light in vacuum, u the speed of light in the medium, and v the

speed of the particle. The index of refraction allows one to control the threshold
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particle velocity VT = u = c/n, below which there is no Cerenkov light produced,

and above which there is Cerenkov light produced. For a gas, the quantity n-1 is

proportional to the pressure, so adjusting the pressure of the gas allows one to select

the threshold velocity. Given the same momentum, two particles of different mass will

have different velocity. Therefore, a Cerenkov detector can be tuned to distinguish

particles of different masses. For this experiment, the HMS was operated to detect

only scattered electrons from the e-d elastic scattering with no other particles (such

as pions) being detected; therefore although the Cerenkov detector was active in this

experiment, it actually had no significant effect on the results.

4.5.4 Lead Glass Shower Calorimeter

The lead glass shower calorimeter was used to provide additional triggering and

particle identification. It consisted of four stacks of TF1 leaded glass. Each stack

contained thirteen blocks lying lengthwise along the dispersive direction. The blocks

were 10 cm by 10 cm by 70 cm and were read out at one end by a PMT. High energy

particles emit Oerenkov radiation when passing through the glass, and a signal is

collected that is proportional to the sum of the path lengths traveled by all the

shower particles which are above the threshold for Cerenkov emission. Very light

particles, such as electrons, shower heavily and deposit much of their energy in the

first one or two layers. Heavier articles, on the other hand, do not shower heavily and

tend to deposit about the same amount of energy in all layers. Thus it is possible to

distinguish electrons from other heavier particles by comparing the energy deposited

in the first layers of lead glass. During this experiment. the calorimeter was not

used to perform particle identification since very clean elastic e-d events were selected

by the kinematics setup of the spectrometers and applying cuts on the momentum

detected in the HMS. These cuts are described in Section 6.2.2.
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4.6 Deuteron Transport Channel

to beam dump

to POLDER

D

Q3 Q ~ 60' to HMS

QI

Figure 4-16: Top view of deuteron transport channel.

The deuteron arm was fixed at 60' for the experiment, as shown in Figure 4-16. It

was a specially designed magnetic channel to focus the maximum number of deuterons

onto the polarimeter target and to protect the polarimeter from a direct view of the

primary target of deuterium. This channel was in a QQSQD configuration, where

the S subscript means additional coils for sextupole corrections which were built

into the quadrupole. The dipole was used to bend the trajectories of the deuterons

horizontally through 300. This unit was supplied and field mapped by the MIT group.

The first quadrupole Q1 and the third quadrupole Q3 focused vertically. These

units were supplied and mapped by CEBAF and the Indiana Univeristy group. The

second quadrupole Q2 focused horizontally. This was a specially designed quadrupole

with sextupole components to minimize the size of the deuteron distribution on the

70



CHAPTER 4. CEBAF EXPERIMENT

polarimeter. This unit was designed, built, and field mapped by the Saclay group.

For the deuteron channel, the following coordinate system was used: z coordinate was

the optical axis, x and 6 were the coordinate and angle in the dispersive (horizontal)

plane, and y and q referred to the vertical plane. The first order tune of the dipole

and the quadrupoles were given with the conditions (yJ)=0 and (xl)+ k(x16)=0.

Details of the deuteron channel can be found in Ref. [88]. For the deuteron channel,

the acceptance of the vertical angle q was ±130 mrad, while the theta and momentum

acceptance overlapped completely with the HMS acceptance.

For each kinematics, the magnets were tuned during the commissioning of the

experiment using a test detector supplied by the Rutgers group, which consists of

straw chambers and scintillator detectors. The method used was to adjust the fields

of the magnets so that the deuteron beam spot size on POLDER was minimized and

compatible with the size of the POLDER detectors.

Most of the charged-particle background was rejected in the deuteron channel.

Only the protons which came from the inelastic e-d scattering and had similar mo-

mentum of the deuterons, were left. After the deuteron channel, the deuterons arrived

at the polarimeter POLDER, where the second scattering took place and the angular

distribution of the protons from 1H(d,2p)n reaction was measured.

4.7 Polarimeter (POLDER)

4.7.1 Introduction

A polarimeter is usually based on a nuclear reaction and designed to measure the

asymmetries of the particles out of this reaction corresponding to the incident particle

polarizations. The cross section for this reaction is as follows:

or(O, ) =uo(9)[1+2ituiT (9)+t 2oT 20(0)

+2t 21T21(9) cos 0 + 2t 22T22 (6) cos 2q$] (4.5)
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where tkq are the polarization coefficients of the beam and Tkq the analyzing powers.

o is the cross section for unpolarized beam and < is the angle between the normal to

the reaction plane and the spin axis of the incident particles. An important character

of polarimeters is called figures of merit given by :

(Fq)2  f (Tkq)2C(Q)dQ (4.6)

where c, called the efficiency, is the ratio of the number of detected reactions to the

number of incident particles. The integration is over the phase space covered by the

polarimeter. Fkq is a function of the cross section, target thickness and all detector

efficiencies. It is related to the statistical error through

Atkq FkqI__ (4.7)
FkqV/Nine

with Ninc the number of incident particles.

The analyzing powers Tkq and the unpolarized cross section o for a polarimeter

are obtained first in a calibration experiment using beams with known intensity and

polarization. Then with the calibrated polarimeter, the polarization coefficients of in-

cident particles can be determined through an asymmetry measurement in a separate

experiment.

POLDER [89] was designed and built by the Grenoble and Saclay group. It was

based on the 1H(d,2p)n reaction proposed by Bugg and Wilkin[90]. In this reaction as

shown in Figure 4-17, the neutron in the deuteron exchanges charge with the proton

in the hydrogen target so that two protons come out after the reaction with the

same velocity. According to Pauli principle, two protons with the same momentum

(or velocity) must be in different spin states so that the neutron flips its spin in

the charge exchange reaction. The spin-flip increases the analyzing powers of the

charge-exchange reaction significantly. At 200 MeV the measured figures of merit

(F 20 and F2 2 ) in the 1H(d,2p)n reaction [91] were found to be comparable to those
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of the 1H(dp)X reaction used in the AHEAD polarimeter [92]. However the crucial

feature of the 'H(d,2p)n reaction is that its figures of merit remain large up to at

least 500 MeV [91] whereas those of the 'H(d,2p)X reaction fall quickly above 200

MeV [82]. The figure of merit F, for the vector analyzing power

P P +
d q - k/2

E.C.

P
n

Figure 4-17: Diagram for 1H(d,2p)n (charge-exchange) reaction.

is zero for this reaction. Further the 1H(d2p)n reaction is well understood in terms

of the impulse approximation [93].

The detectors of POLDER are shown in Figure 4-18. There were three parts with

specific tasks: the target in which the reaction 1H(d,2p)n took place; the detectors

before the target used for beam monitoring (direction and intensity); the detectors

after the target used to measure the outgoing protons from this reaction.

4.7.2 Detection of the Incident Deuterons

1. The start detectors Si and S2

The number of deuterons incident on the target was determined by a coincidence

between two start detectors S1 and S2 which were placed before the target. These

detectors were composed of thin fast plastic scintillators (1 mm thick for S1 and 2

mm thick for S2) optically coupled to two phototubes. The coincidence signal from
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S1 and S2 was part of the hardware trigger and was used as the start signal for the

time-of-flight measurement of the protons produced in the reaction. The coincidence

between the signal from the scintillators

H (d, 2p) n
P Ed= 200 -- 400 MeV

d

Figure 4-18: Sketch view of the POLDER polarimeter.

in HMS and the coincidence signal from S1 and S2 rejected the background particles

reaching POLDER. The analog signals of the start detectors were also recorded to

permit additional discrimination between deuterons and background protons of the

same momentum.

2. MultiWire Proportional Chambers

The measurement of the precise direction and impact points of the deuterons inci-

dent on the target was performed by two multiwire proportional chambers (MWPC1/2)

placed at 92.75 cm and 44.35 cm upstream of the target respectively. Each cham-

ber was composed of three planes tilted at 120* to one another as shown in Fig-
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ure 4-19. The plane spacing was 4 mm. Each plane consisted of 158 wires 1 mm

apart. The chambers were operated with a gas mixture of Ar(70%), Ethane(30%)

and Freon(0.5%) and provided 100% efficiency separately. These detectors were also

capable of detecting multi-hit events with good precision, thus rejecting events with

two charged incident particles (the proton background). A third chamber (not shown

in Figure 4-18) was identical with the first two and was 191.8 cm behind the hydrogen

target used for the alignment of the detectors in POLDER. The alignment parameters

used in the data analysis were from the Saclay group.

MWPC 2 -44.3

TARGET 0
MWPC 3 +191.8

rwpc 3 ~

Wfr.,O...157
L.n h. 7Ug'

Pr

Y

-Wi..I7I5- ..

- Fh..I

Figure 4-19: Layout of MWPC.

4.7.3 The Liquid Hydrogen Target

The 1H(d,2p)n reaction took place in a liquid hydrogen (LH 2) target developed at

the Laboratoire National Saturne [94]. This target was of cylindrical shape, 20.6 cm

long and 14 cm in diameter with the total volume of 3.08 1 (see Figure 4-20). The

target cell was made of 170 pm thick mylar fixed onto a ring of aluminum located at
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the entrance side and of an entrance window of 120 pum thick kapton. The cell was

mounted in a vacuum chamber whose entrance and exit windows were made of 0.05

mm and 0.10 mm thick titanium respectively, backed by kevlar.

E L = 206 mm

Kapton 120 um

Mylar 170um

Figure 4-20: Sketch view of the liquid hydrogen target cell.

The target was operated at a temperature of 23.5 K with a 20 W cryogenic system.

The working pressure of the target was 1075 mbar. The temperature and pressure

were controlled by a monitoring system (called AUTOMATION) which was run on a

PC. The precise measurement of the target shape was sufficient to control corrections

for the incident deuterons hitting the target on its border. These corrections will be

described in detail in Section 6.4.

4.7.4 Detection of the Protons

The protons produced in the 1H(d,2p)n reaction were detected in two hodoscopes

placed after the target, as shown in Figure 4-18. The one closer to the target was the

small hodoscope (called Hi), the other was the large hodoscope (called H2). The solid

angles covered by HI and H2 were matched. Their distances to the target varied with

incident deuteron energies. Three sets of distances for H1 and H2 were used during
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the experiment and were referred to position 1, position 2 and position 3. The values

of the distances for the three positions, together with the corresponding deuteron

energies, are shown in Table 5.1. Each position was optimal for a given energy range

considering the requirements of large solid angle and good angular resolution. These

features permitted the detection of protons from the 1H(d,2p)n reaction in the range

of momentum transfer to the neutron q = 0 - 300MeV/c with good efficiency, almost

independent of beam energy. In fact, most of the cross section of the 1H(d2p)n

reaction with low pp excitation energy is located in this momentum transfer region

(corresponding to a cone of 15' opening angle at 400 MeV and 20' at 200 MeV), and

here the analyzing powers are large [91].

The small and large hodoscopes were put in three groups of positions for the

various deuteron energies. The positions of the hodoscopes for each position set are

listed in Table 5.1. Each position was optimal for a given energy range considering

the requirements of large solid angle and good angular resolution.

Each hodoscope consisted of a X plane and a Y plane. Each plane consisted of 30

bars of plastic scintillators for HI and 24 bars for H2. The scintillator bars in H1 were

37.5 cm long, 1.12 cm wide, 2 mm thick with a 1.15 cm spacing. In H2, the scintillator

bars were 84.5 cm long, 3.38 cm wide, 1cm thick with a spacing of 3.4 cm. Each plastic

bar was optically coupled to a phototube at only one end. From the positions of the

bars fired in HI and H2, the directions of the protons were determined and thus

the angular distribution of the protons were obtained. To remove ambiguities in the

determination of the directions of the protons, H1 was rotated by 45'.

In this experiment, the characteristics and kinematics of the 1H(d 2p)n reaction

allow one to discriminate charge exchange events from other parasitic reactions by

imposing the condition that two charged particles are detected at forward angles and

at velocities close to those of the incident deuteron. The thin plastic scintillators mak-

ing up POLDER were mostly sensitive to charged particles. Thus the coincidence of
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signals in several bars of the hodoscope was a reliable signature of the detection of

a charged particle, and no particle identification was necessary. The velocity of the

detected particles (protons) was obtained by measuring the time of flight between the

start detector placed before the target and the second hodoscope. Energy measure-

ments and particle identification for the protons were therefore not necessary and the

selection of charge exchange events relied on quantities which were not sensitive to

changes in experimental conditions. This feature reduced the problems of cuts and

event selections in the data analysis.

Finally, a veto detector was placed on the beam axis to reject background events

associated with the detection of at least one incident deuteron. An energy degrader

was used to stop the protons of the 'H(d,2p)n reaction while deuterons of same

velocity, which had different energy loss from the protons, were detected in a plastic

scintillator placed after the degrader.

4.8 Trigger and Data Acquisition

4.8.1 Trigger

The trigger electronics in Hall C provided single triggers and coincidence triggers.

The trigger Supervisor (TS) was programmed to accept, reject, or prescale each of

the different trigger types. The trigger electronics in the HMS and POLDER, shown

in Figure 4-21, generate single electron events (HMS event), single POLDER events,

coincidence e-d events and Charge Exchange (CE) events.

1. HMS event

The single arm trigger event in the HMS was an HMS event. The electronics

for HMS trigger is shown in Figure 4-22. The hodoscopes in the HMS provided the

trigger information. Each hodoscope plane consisted of 9-16 individual elements.

The signals, read out from both ends of the tubes (positive and negative ends), were
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amplitude discriminated. The tubes from the positive and negative ends were OR'ed

to generate the signals SIX+, SIX-, etc. A hit in a given plane was defined as a

coincidence of a hit in one of the positive tubes and a hit in one of the negative tubes.

Both tubes did not have to be on the same scintillator. The trigger 'STOF' required

the coincidence of one of the planes in the front hodoscope and one of the planes in

the back hodoscope. This trigger was the minimum requirement for a good time of

flight measurement in the scintillators. The trigger 'SCIN' required 3 of the 4 planes

fired, and provided a tighter scintillator trigger. Obviously, the 'SCIN' trigger was

included the 'STOF' trigger. For this experiment, 'SCIN' was used as the electron

trigger.

2. e-d event

The start detectors Si and S2 in POLDER were used to provide the deuteron

trigger. The deuteron candidate was found when there was a coincidence between S1

and S2. The e-d events were defined as the coincidence of an electron from HMS and

a deuteron from POLDER.
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Figure 4-21: Electronics diagram for t20 experiment. Figure taken from Ref. [89].
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Figure 4-22: Diagram of electron trigger in the HMS

3. POLDER event

The POLDER event was the single arm trigger event in POLDER. The hodoscopes

in POLDER provided the trigger information for protons. The coincidence between

the signals from the start detectors S1 and S2 and the signal from the hodoscopes

generated a POLDER event.

4. CE event

The coincidence of the electron from the HMS, the deuteron from the start de-

tectors, and the protons from the hodoscopes generated the CE (Charge Exchange)

event.
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4.8.2 Data Acquisition
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Figure 4-23: Schematic of the Data Acquisition System in Hall C

CODA ( the CEBAF Online DATA Acquisition system) [95] was the data acqui-

sition system at CEBAF. The system for Hall C is shown in Figure 4-23. The data

were read from Read-Out controllers (ROC's). The ROC's were CPU's in Fastbus

and VME crates in Hall C and in the electronics rooms. These crates contained the

ADC's, TDC's, and scalers that recorded the event information. The Trigger Super-

visor (TS) controlled the state of the run, and generated the triggers that caused the

ROC's to be read out. The Event Builder subsystem (EB) read the data fragments
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from the ROC's and collected the data together into an event. After the event was

built by the EB, it was placed into a buffer, after which it could be tested and ana-

lyzed (online data analysis), or sent to disk or tape and analyzed later ( offline data

analysis). A graphical user interface (RunControl) in CODA allowed the user to start

and stop runs, as well as define run parameters.

The data files for the runs contain both event information and slow controls read-

out. There were three main types of events: status events that had information about

the run, physics events that contained data read out from events in the spectrometer,

and EPICS (Experimental Physics Industrial Control System [96]) events which had

readout from slow controls.

The status events were the first events in the log file for each run. When the state

of the run changed, the prestart, start, pause or end events were generated. At the

beginning of the run, the user could enter information about the run (kinematics,

magnetic settings, comments) in a Tk/Tcl window. This information was stored in

the beginning of the run event. In addition, at the beginning of the run, there were

status events that recorded the ADC threshold values that were programmed in at the

beginning of the run. This allowed the analysis software to compare the set thresholds

to the desired values, as determined by the pedestal events.

The physics events contained data for single events from the HMS or POLDER,

as well as coincidence events from them. Both TDC's and ADC's were read out in

sparsified mode. The LeCroy 1881M ADC's had programmable thresholds for each

channel. The thresholds at 15 channels were set above the pedestal. To measure

the centroids and widths of the pedestals, 1000 random triggers were generated at

the beginning of each run. Some beam related quantities, such as beam position

monitors, beam loss monitors, and beam raster readback values were also recorded in

each event.

In addition to the physics events, other user event types could be defined in CODA,
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allowing readout of hardware scalers or execution of user scripts. The hardware HMS

and POLDER scalers were read out every two seconds. The detector and beamline

controls and readouts were triggered every 30 seconds. These readouts were put in the

EPICS database. Values such as spectrometer magnet settings, accelerator settings,

and target status variables were accessed this way.



Chapter 5

Saturne Calibration Experiment

As mentioned before, a polarimeter must first be calibrated to measure the analyz-

ing powers and the unpolarized cross section. The calibration experiment [89] for the

polarimeter POLDER was performed at the Laboratoire National Saturne in 1996.

Polarized deuteron beams were delivered by the Saturne synchrotron. The axially

symmetric source HYPERION provided deuterons of known polarization in eight dif-

ferent spin states. Four of them (5,6,7,8) were used during the calibration experiment.

The four spin states had vector and tensor polarizations (pio, P20) of (1/v/6, 1/v's), (-

1/,46, 1/,/2), (1/v', -1/y'F) and (-1/v6_, -1/V2) respectively. The deuteron beams

were delivered in bursts every second with the four spin states in sequence as illus-

trated in Figure 5-1. The polarizations of the deuteron beam was measured by a

low-energy polarimeter during the calibration experiment.
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beam burst

NIM logic 5 6 7 8 5 ...

0 0.6 1 time in second

Figure 5-1: Logic signal of the deuteron beam bursts in four spin states delivered by HYPERION.

The polarimeter POLDER was installed in the focal plane of the spectrometer

SPES1, which was placed at 0' with respect to the incident deuteron beam. The

beam as delivered had no longitudinal component of polarization. A superconducting

solenoid was used to rotate the spin axis of the beam by 90' from the vertical to the

horizontal plane. The spin of the beam was precessed in the SPES1 spectrometer

through an angle a given by:

a = 70,Gd (5.1)

where -y is the Lorentz factor, Gd - gd - 1 - 0.143, and 0, is the bend angle in

SPES1 (970).

The efficiency c for the 1H(d,2p)n reaction, as defined in Section 4.7.1, is the ratio

of the number of detected reactions and the number of incident deuterons. In the

Saturne calibration experiment, the efficiency was grouped in bins of 0 and # and
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expressed in the helicity frame as:

c(0, 0) co(O)(1 + 2piosin(/)cos(#)iTn (0) + p2 O[ (3Cos2 (3) - 1)T 20 (O)
2

v'6sin(3)cos(#)sin(#)T21(0) - 0sin2 (f)cos(20)T22 (0)]) (5.2)

where 0 the scattering angle for the center of mass of the two protons, #, Tkq were

defined in Section 4.7.1, co is the unpolarized efficiency, # is the angle between the

beam momentum and its spin axis and given by:

#3 = 7r/2 + a (5.3)

where a was defined in Eq. 5.1.

With the known beam polarizations pio and P20, the analyzing powers and the

unpolarized efficiency were extracted from Eq. 5.2 by constructing vector RV and

tensor RT asymmetries

6 (0, C5 ) + 7(6, ) - E6(0, 0) - 8(0 , #)Ry (0, ) = (5.4)
E5(0, 0) + 67, ) + E6(, ( ) + E8(0, 0)

RT(O0) 5(, ) + E6 (0, ) - 67 (0, #) - Cs(0, )(55)
Es(0, #) + E7(0, #0) + C6(0, 0) + E8(0, 0)

where ej are efficiencies measured for beam state 'i'. These efficiencies were normalized

to the same number of incident deuterons in the four beam spin states. So the

sum of the normalized efficiencies provided the efficiency for unpolarized beam. The

asymmetries are related to the analyzing powers by:

Rv (0, #) = V/-pio(iTii(q))sin(#3)cos(0)
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1 I

R (0, p20[ 2( 3c0s(# 3) - 1)T 2o(q) + V6sin(#)cos(3)sin(#)T21 (q)

-0 sin2 (3)cos(20)T22 (q)] (5.7)

POLDER was calibrated for incident deuteron energies from 140 MeV to 520

MeV with a step of 10 to 20 MeV. The small and large hodoscopes were put in three

groups of positions for the various deuteron energies. The positions of the hodoscopes

and the corresponding energies for each position set are listed in Table 5.1. For a

given hodoscope position, the data were taken at several energies. This allowed

interpolation for a given incident deuteron energy in the CEBAF experiment when

POLDER was run as a polarimeter. The analyzing powers and unpolarized efficiencies

were deduced from Eqs. 5.4-5.7 with a x 2 minimization procedure (MINUIT).

Setup HI position in cm H2 position in cm Deuteron energies in MeV

position 1 32 110 140,160,170,180,200,210,220

position 2 40 135 240,250,260,280,300,320,340

position 3 49 165 360,375,390,420,450,485,520

Table 5.1: Distances of the hodoscopes to the center of the target for the three different setups of

POLDER and the corresponding energies measured in the calibration runs
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Data Analysis and Results

6.1 Overview

The standard HALL C event reconstruction software ENGINE was used for the

data analysis. ENGINE was developed at CEBAF to analyze the raw data from the

standard detector packages, the HMS and the SOS (Short Orbit Spectrometer). For

this experiment, the parts for SOS were substituted by the software package for the

polarimeter POLDER, which was developed at Saclay and Grenoble in France. The

whole software including the codes for the HMS and POLDER was written to run

under HP unix system. The MIT group converted the software to a new version that

can be run under Linux system. In ENGINE, the event reconstruction code read

the raw events, decode the detector hits, generated tracks and particle identification

information for each event, and performed physics calculations. In addition, it kept

track of the hardware scalers and generated software scalers for the run. Four forms

of output files were generated from ENGINE:

" Report files containing hardware software scalers and calculated detector effi-

ciencies.

* HBOOK files containing the histograms to check detector performance and mon-
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itor the hardware during a run.

" Ntuple files containing the event by event information for the physics analysis.

" Text files containing necessary information for the extraction of the tensor po-

larization of the deuteron.

The input parameters, software scalers, histograms and tests were handled by

the CEBAF Test Package (CTP) [97]. In this chapter, the methods and procedure to

analyze the data from the CEBAF experiment and the Saturne calibration experiment

will be explained in detail. The dataflow chart in the data analysis is given in Figure

6-1. For the CEBAF data, after the coincidence trigger between the HMS and the

POLDER, cuts on the quantities measured in the HMS were applied to the e-d events

and charge-exchange (CE) events (as defined in Section 4.8.1). Therefore the events

left were mostly elastic e-d scattering events. Then cuts on the coincidence time

of flight (TOF) between HMS and POLDER was applied to these events to remove

most of the proton background. Next, the same data analysis procedure in POLDER

was applied to the e-d and CE events in both the CEBAF experiment data and

the calibration data. Various cuts (software constraint) to identify good deuterons

and good CE events are displayed in the dataflow chart. The e-d events surviving

the cuts on the ADC signals from the start detectors, the deuteron tracking in the

chambers, and the external cone of the deuteron were good deuteron events. The CE

events, which passed the above three cuts, the cuts on the time of flight (TOF) of

the hodoscopes, proton trajectories in the hodoscopes, and the internal and external

cones of the protons were good CE events. These various cuts will be explained in

detail in the following sections. Finally, with the number of good deuterons and good

CE events, the efficiencies related to the angular distribution of the two protons were

calculated.

The data analysis in the HMS is first described in Section 6.2, followed by Section

6.3 for the data analysis in POLDER. The efficiencies are discussed in Section 6.4. The
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interpolation of the calibration results and the extraction of the tensor moments are

explained in Section 6.5 and 6.6 respectively. The Instrumental asymmetries in < are

discussed in Section 6.7. The correction of the tensor moments due to the precession

of the deuteron in the Dipole is described in Section 6.8. The systematic uncertainties

are discussed in Section 6.9. The separation of the monopole and quadrupole form

factors of the deuteron is described in Section 6.10. A comparison of the extracted

and calculated t2 and t 22 is discussed in Section 6.11.

Calibration

TRIGGER

t 20 Experiment

TRIGGER

4HM S

TOF
CE Event

e-d Event

ADC

1 particle in chamber

External Cone

0

0

*0
0
0

hodoscops TOF

Proton trajectories

Internal Cone

External Cone

Efficiency Calculation

Figure 6-1: Dataflow Chart for the Saturne Calibration and the CEBAF Experiment.
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The analysis of the six kinematics was carried out simultaneously and indepen-

dently by four different groups. Each kinematic point was analyzed by at least two

groups, and good agreement was obtained except for kinematics number 2. There is

presently a significant discrepancy between the Saclay and MIT results. The MIT

results are presented in this thesis. Table 6.1 shows the four groups involved in the

data analysis and the kinematics analyzed by each group. The MIT group has an-

alyzed kinematics 1-4, and numerical results are given below only for these points.

Numerical results by other groups are given in Refs. [101, 38]. All six kinematics are

shown in the graphs in Chapter 7 for the comparison with theories.

Kinematics Grenoble Saclay Maryland MIT

1 x x x

2 x x x

3 x x

4 x x x

5 x x

6 x x

Table 6.1: Four groups involved in the data analysis and the kinematics analyzed by each group.

6.2 Data Analysis for the High Momentum Spectrometer

(HMS)

6.2.1 Tracking in the HMS

The scattered electrons from e-d scattering were detected by the HMS. The trajec-

tory of the electron was measured with two drift chambers. As described in Section

4.5.1, there are four x-like planes (x,x',u,v) and two y-like planes (y,y') in each cham-

ber. In order to obtain both x and y information for the event reconstruction, it was

required that 4 out of the 6 planes were fired and at least one y plane was fired for
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each chamber. After the number of hits in each chamber was identified, the following

main steps were done to find the track.

For each group of hits within a chamber, all the intersections of each pair of

non-parallel wires were formed. The distance between all combinations of these inter-

sections was calculated and tested to see if it were less than the space point criterion

(typically 1.2 cm). Hits which satisfied this condition were grouped to form space

points in each drift chamber.

To resolve the left-right ambiguity for each wire in the space point, short tracks

in a given chamber (also called stubs) were fit to all possible left right combinations

and the stub with the smallest x2 was chosen.

Finally, tracks were fit for each pair of stubs in the two chambers. The track with

the least X2 was chosen and its position in the detection plane was recorded.

Z

I

Target

Detection Plane

Focal Surface

Dipole

Wire Chambers

Figure 6-2: The HMS focal plane and its coordinate system.

The detection plane (also called the focal plane) was defined as the mid plane

between the two drift chambers. the true focal plane of the spectrometer is actually
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a surface tilted about 850 from the detector focal plane. At the focal plane, a given x

corresponds to a certain value of momentum for a track. The right-handed coordinate

system at the focal plane was defined as follows: x is the coordinate in the dispersive

plane and i points downwards; y is the coordinate in the non-dispersive plane with

y points to the left when looking at the spectrometer from the target; i is along the

central ray with z=O at the focal plane. The trajectory of the particle in the focal

plane was described in terms of two positions (xfp and yfp) and two angles (x' and

The focal plane and the coordinates at the focal plane are shown in Figure

6-2. In terms of the quantities in the focal plane, the position and momentum of

the particle at the target were reconstructed via Taylor expansion. The quantities

reconstructed at the target were the relative momentum Ap/p (also called 6), the

position and angle in the scattering plane (ytar, y'ar) and the angle in the dispersive

plane (x'ar) of the event, with respect to the central ray in the spectrometer. The

position in the dispersive direction (xtar) was assumed to be known (usually xtar=O)

in the momentum reconstruction and was not reconstructed. Usually, the angles x',

y'p, Xtar and y'ar were small enough that they were defined as the slopes of dx/dz

and dy/dz at the focal plane and at the target separately. The target quantities can

be expressed in terms of the quantities at the focal plane and the coefficients of the

Taylor expansion, the transfer matrix elements.

Xi = Z RijX (6.1)

Xi stands for the target quantities and i refers to Ytar, x'tar, y'tar, and 6. Xj stands

for the focal plane quantities and j refers to xfp, yfp, x' and y',. Rij is the transfer

matrix element.
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6.2.2 Cuts in the HMS

The deuterium target used in this experiment was an extended target with a to-

tal length of 12.4 cm. In the data analysis in the HMS, cuts on the reconstructed

quantities at the target (ytar, y'a, and x'a,.) were applied to the data to make sure the

scattering took place in the target. Figure 6-3, Figure 6-4, and Figure 6-5 show the

distribution of ytar, y'ar and x'a before (total) and after (shaded) the cuts respec-

tively. Most of the events in these spectra were selected except some events in the tail

of each spectrum. The coordinate z, for the vertex position in the target was given

by z, = ytar/sinOe (here 0e is the electron scattering angle). The spectrum of Ytar

reflects the length (12.4 cm) of the deuterium target. z, was used in the calculation

of the energy loss for the incident electrons, the scattered electrons, and the recoil

deuterons. The spectrum of x'tar and y'tar exhibit the acceptance of the spectrometer

HMS in 0 (±30 mr) and the azimuthal angle <$ (±70 mr).
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Figure 6-3: Spectra of ytar for the four kinematics points. ytar is related to the vertex position Zbeam

along beam direction via Yta, = ZbeamsinO, where 6 is the electron scattering angle. The spectra

reflect the length (12 cm) of the extended target.
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as dxta,/ dz. It shows the

In addition, a radiative cut was applied to the data on quantity cor, which is the

relative momentum (6) after correcting for kinematic broadening. Thus the width of

the spectrum of 6 cor is only due to the resolution of the spectrometer. Typical spectra
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of the relative momentum 6 and the relative momentum 6, after the kinematic

correction are shown in Figure 6-6. The right peak in each spectrum consists of e-

d elastic scattering events, while the inelastic events are in the right bump in the

spectrum. Obviously, because of the kinematic correction, the elastic peak in the 6co,

spectrum was much sharper than in the uncorrected spectrum. Thus a cut on 6co, is

more efficient and reasonable to choose the elastic events than a cut on 6. The spectra

of 6co, for the four kinematics points before (total) and after (shaded) the radiative

cut are shown in Figure 6-7. By requiring 6co, to be in the range of the elastic peak,

most of the elastic e-d scattering events were selected and were analyzed later for the

good deuteron and CE event identification.

14 -12 -10 -8 -6 -4 -2 0 2
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Figure 6-6: Spectrum of relative momentum 6 (top) and 6co. (bottom). 6, the relative momentum,

is defined as 6 = (p - po)/po where po is the central momentum of the spectrometer. 6cor is the

relative momentum after the kinematic correction.
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6.3 Data Analysis in POLDER

The recoil deuterons from e-d elastic scattering were transported by the deuteron

channel and were incident on the liquid hydrogen target (LH 2) where the charge ex-

change reaction 1H(d,2p)n took place. As described in Section 4.7.2, the deuterons

triggered two thin scintillator detectors S1 and S2. The tracking information of the

deuteron was provided by the two multiple proportional chambers. The angular

distribution of the protons from the 'H(d2p)n reaction was measured with two ho-

doscopes. In POLDER, the coordinate system (see for Figure 6-8) to describe the

tensor polarization is right-handed with y axis downward, z is along the central axis

of the detectors in POLDER, and as a result x pointing to the left when one looks

in the direction of the incident deuteron. 0 is the angle between incident deuterons

and the center of mass of the two protons from the charge exchange reaction, < is the

angle between the e-d scattering plane and the 'H(dc2p)n reaction plane.

e'

Elastic e-d Scattering D( e,e d)

Charge Exchange Reaction H( d,2p)n

Figure 6-8: The coordinate system for t20 in POLDER: z is along the central axis of the detectors,

y is downward, and x points to the left when one looks in the direction of the incident deuteron.
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6.3.1 Deuteron tracking

The trajectory of the incident deuteron was reconstructed in the two wire chambers.

Each chamber consisted of three planes. These wire chambers were able to detect

multiple hits. For this experiment, the recoil deuteron was incident on the liquid

hydrogen target, passing through the chambers. If more than one particles were

found in the chambers, the event was classified as a background event. Therefore it

was required that only one track be found in the chambers.

In each plane of a chamber, the TDC signal for each wire that fired was recorded

and was tested to see if the TDC were smaller than a predetermined constant tmax

and bigger than another predetermined constant tmin based on the TDC spectra. The

hits which met these conditions were used to reconstruct the track of the deuteron.

Hits close to one other within a criterion formed a cluster. A wire began a new cluster

when its adjacent wire was not fired or the TDC difference with the adjacent wire

was bigger than a predetermined criterion tdiff. Otherwise, this wire was in the same

cluster with the adjacent wire and was added to the cluster. The coordinate of a

cluster was the average coordinate for the hits in that cluster. The TDC of a cluster

was the average value of the TDC's for the hits in that cluster. In each chamber,

at least two planes with only one cluster were required for the clean track of the

deuteron. The x and y coordinates of the deuteron at each chamber were calculated

with the positions of the track in each plane. The directions dx/dz and dy/dz were

calculated with the x and y information in the two chambers and the distance between

them. The track of the deuteron was projected onto the midplane of the target and

the planes of the two hodoscopes HI and H2.

6.3.2 Proton tracking

The trajectories of the protons from the 1H(dc2p)n reaction were reconstructed in

the small hodoscope (H1) and large hodoscope (H2). The scattering angle 0 and the
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azimuthal angle # were calculated from the tracking information of the two protons.

The distributions of protons in 0 and 0 were recorded and were used to extract the

tensor polarization.

Each of the two hodoscopes had two planes, with bars along x and y direction

separately. All TDC's of the hits in each plane were first checked to see if they were

in a range between limits thodomin and thodomax determined from the TDC spectra.

Hits that satisfied this condition were accepted as good hits and were used for the

tracking of protons. A quantity multiplicity p was defined as the number of bars hit

in each hodoscope. To reconstruct the tracks for the two protons, p was required to

be greater than 2 for both HI and H2. In each hodoscope, a hit in a x-plane bar

and a hit in a y-plane bar determine the position of a proton at this hodoscope. A

pair of such positions at the two hodoscopes forms a possible track of a proton. All

possible tracks were examined by looping over all hit bars in the four planes to form

various combinations of proton trajectories. Three points for each combination, the

hit positions P1 and P 2 at the two hodoscopes and the point V where the deuteron

was incident on the hydrogen target at z=0 plane, were checked to see if they were

in an almost straight line for a track. The angle a, which is P 1VOP 2 , was calculated

and required to be smaller than a criterion amax (see Figure 6-9). In case several

combinations satisfied this condition, the combination with the smallest a was ac-

cepted as the track of one proton, and the combination with the second smallest a

was accepted as the track of the other proton. A typical a spectrum for Kinematics

4 is shown in Figure 6-10.
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z=O

alpha
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-eI P2

Target --

Small Hodoscope

Large hodoscope

Figure 6-9: Schematic for a angle in geometry. a was

intersection of the deuteron track with the z=0 plane.

in H1 and H2 respectively.

defined as the angle P1VOP 2, where V is the

P1 and P2 are the positions for the bars fired

The coordinates x and y for the impact position of a proton in each hodoscope

were calculated from the bars fired in the hodoscope. A randomization over the width

of a fired bar was performed to fix a position for the proton. The resolution of x or y

obtained in this way is the width of the bar. Although the randomization implies a

degrading of the vertex and angle resolution, it is necessary to obtain smooth angle

distribution for the extraction of the tensor polarizations from the MINUIT fit, which

is explained in Section 6.6.

deuteron
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Figure 6-10: Spectrum of a angle in degree for Kinematics 4. A cut of a < 3.5' was applied to the

data of Kinematics 4 for good proton tracks.

The vertex for the Change Exchange reaction was reconstructed from the trajec-

tories of the incident deuteron and the two protons from this reaction. A vertex was

calculated as the point that minimizes X', the sum of distances to the three tracks.

Because the deuteron track was defined with mm precision and the proton tracks

with about 1 cm precision, the weights 100, 1, and 1 were applied to the deuteron

track and to the proton tracks respectively in the sum of distances. Figure 6-11 is

the spectrum for the vertex in the target. The resolution is about ±10 cm.
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Figure 6-11: Spectrum of the z coordinate of the vertex in the hydrogen target.

In the Charge Exchange reaction, the two protons with similar momentum come

out of the hydrogen target. The scattering angle (polar angle) 0 for this reaction

was calculated as the angle between the direction of the incident deuteron and the

direction of the center of mass of the two protons. The azimuthal angle # was cal-

culated as the angle between the e-d scattering plane and charge exchange reaction

plane as shown in Figure 6-8. The direction of the center of mass of the two protons

was determined using the vertex and the mid point between the two proton positions

at H2.

-30 -20 -10 0
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6.3.3 Cuts for good deuterons

Within the HMS momentum acceptance, many protons coming from the inelastic e-

d scattering were detected in coincidence with the scattered electrons. These protons,

with similar momenta to those of the recoil deuterons, had different velocities from

that of the deuterons. In this experiment, most of these protons were removed from

the raw data using the electronics by adjusting the coincidence timing between the

deuteron channel and the HMS. The remaining background of random protons were

almost completely removed with ADC and TDC cuts in the data analysis. The time

spectra were measured with three methods for the coincidence timing between the

deuteron channel and the HMS:

" TOF1, e-d coincidence time with the coincidence of S1 and S2 as the start signal

and a resolution of 0.5 ns per channel;

" TOF2, the same definition as TOF1, but with a higher resolution of 0.1 ns per

channel;

" TOF3, the coincidence time with the HMS trigger as the start signal and a

resolution of 0.1 ns per channel.

Cuts were made on all three TDC spectra to identify the deuterons from the protons

in the data analysis. TOF1, TOF2, and TOF3 are shown in the left spectra of Figure

6-12. The peaks for the deuterons are on top of the random proton background in each

spectrum. The extra sharp peak in the right of the TOF3 spectrum was generated

by the stop signal in the electronics.

The ADC from the start detectors S1 and S2 were also used to distinguish the

deuterons from the background protons. After the deuteron triggered S1 and S2, the

ADC signals were collected from the phototube at each end of S1 and S2. The sum

of the ADC from S1 and S2 are shown at the top two spectra of Figure 6-13. Each

ADC spectrum has two peaks. The peak with higher amplitude is for deuterons and

107



CHAPTER 6. DATA ANALYSIS AND RESULTS

the other peak is for protons.

In order to have clean cuts on the TDC's, strict cuts on ADC from S1 and S2

were applied to the data such that only events in the second peak for the deuterons

were chosen, as shown in the bottom of Figure 6-13. Then the three TDC spectra

for these deuterons are plotted, as shown in the right of Figure 6-12. The cuts on

TOF1, TOF2, and TOF3 were obtained from these clean spectra. A Gaussian fit was

applied to the ADC spectrum after the strict cuts and the ADC cuts were obtained

from the fit. After the ADC and TDC cuts, the proton background was only about

0.1%.

In the data analysis, the incident deuterons were tuned to ensure that the two

protons hit the effective area of the two hodoscopes with no <$ asymmetry bias. This

was done by requiring the trajectories of the incident deuterons be in a cone. This

cut, called the external cone cut, is equivalent to the requirement that the projections

of the incident deuterons on HI and H2 be within small circles. Typical spectra of

the distance between the deuteron projection point and the center at Hi and H2 are

shown in Figure 6-14. The two dimensional scatter plot of the deuterons at the target

and the two hodoscopes are also shown in Figure 6-15 to give a clearer picture of this

external cone cut. The radius Td of the circle at each hodoscopes was optimized from

the experimental data. Deuteron candidates which passed the HMS cuts, the ADC

and TOF cuts, the timing cuts for the wires in the chambers (mentioned in Section

6.3.1, and the external cone cut were accepted as good deuterons.
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Figure 6-12: ed coincidence time spectra before (left) and after (right) the ADC cuts. The widths
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Figure 6-15: Scatter plot for the deuterons at the hydrogen target, H1 and H2.

6.3.4 Cuts for good protons

An external cone cut was applied to the protons as well. The protons were required

to hit the effective area of each hodoscope within a ring centered at the deuteron

projection point. The purpose for this cut is the same as for the deuteron external cone

cut, i.e., there should be no # asymmetry in geometry brought into the distribution

of protons. The inner radius of the ring was the same as rd used in the deuteron

external cone cut. The outer radius of the ring was the radius of the effective area
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for each hodoscope.

In addition, an internal cone cut was the requirement that the distance between

the deuteron and a proton at the each hodoscope be bigger than a minimum value

rmin. This cut eliminated events with protons too close to the deuteron track. It

was originally introduced to get rid of accidental double deuterons at the SATURNE

calibration run. In the end, the CE events surviving the HMS cuts, the TOF and

ADC cuts, the proton trajectory cuts as described in Section 6.3.2, and the external

cone and internal cone cuts were accepted as good CE events.

6.3.5 Special Proton Tracking Algorithm for Kinematics 1

The preliminary calibration results of the polarimeter POLDER showed that the

unpolarized efficiencies decreased rapidly below 180 MeV [98]. The strong dependence

of the unpolarized efficiency on the deuteron energy at these lower energies was due

to the stopping effect of the low-energy protons from the charge exchange reaction.

In Ref. [98], the percentage of events with more than 2 particles detected in the two

planes of H2 was studied. This percentage decreased from 85% at 210 MeV to 30%

at 140 MeV at the second plane, while it was roughly constant at 90% at the first

plane for all the energies in the calibration experiment. This fact indicated that at

least one proton from the charge exchange reaction stopped in the first plane of H2

for low-energy incident deuterons. As a result of the stopping effect, some CE events

lost the multiplicity required at H2 and were not identified as good CE events. Thus

the efficiency decreased rapidly with decreasing energy, leading to a larger systematic

error for a given uncertainty of the deuteron energy. Losing protons could also cause

a bad trajectory reconstruction since the angles 0 and 0 were calculated with the

information at H2, as described in Section 6.3.2.

The mean deuteron energy for Kinematics 1 in the CEBAF experiment was about

170 MeV. It was in this energy range that the unpolarized efficiency was very sensitive
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to the deuteron energy. A different algorithm [99][100] from the standard one (de-

scribed in Section 6.3.2) was developed for the tracking of protons at this kinematics.

In the new algorithm, the requirement of the multiplicity at H2 (P2) was changed

from P2 > 2 to P2 > 2. After a randomization at the bars of H1 and H2 for the proton

positions, the vertex was reconstructed and was checked to see if it lay within the

geometrical bound of the hydrogen target cell. The reconstructed vertex was used to

calculate the a angle which was used to select the tracks for the two protons. Due

to the stopping effect at H2, the trajectory of the second proton was reconstructed

using HI instead of H2.

In addition to the new algorithm, a special external cone cut was applied to the

data for Kinematics 1. A small value of 5 cm and a large value of 8 cm were used for

the radius of the cone at HI and H2 respectively. Therefore, most protons were cut

at HI where the proton coordinates were determined more accurately.

With the new algorithm, the statistics of calibration data was increased by 10% at

170 MeV deuteron energy [100]. The spectrum of 0, 0, and relatzve (the angle between

the two protons) with the standard and the new algorithm are almost the same as

shown in Ref. [100]. This implies that the new algorithm does not change the angular

distribution of the charge exchange events, and the tensor moments extracted should

be the same as those with the standard algorithm. Detailed description of this new

algorithm can be found in Ref. [101].

6.4 Efficiency

In the data analysis, the efficiency c is defined as:

= NCE (6.2)
Ni

where Nd is the number of good deuterons, NCE is the number of good CE events,

114



CHAPTER 6. DATA ANALYSIS AND RESULTS

and L is the average length of the deuteron trajectory in the hydrogen target for the

CE events. L was calculated as the distance between the two intersection points of

the deuteron track with the upstream and end window of the hydrogen target. The

profile of the upstream window of the target was fit with an analytical function given

by

z,, = Ar 2 + Br4 , (6.3)

where zu, is the coordinate in mm in the beam direction, r is the radius in mm

on the window, and A and B are the coefficients of the fit. The coordinates of the

intersection point of the trajectory with the upstream window are the solutions of

the two functions: the above fit function for the upstream window and the one for

the trajectory of the deuteron. An iteration was used to get the solutions instead

of a complicated analytical solution. The end window of the target consisted of two

spherical parts and an annular part. The intersection point with the annular part of

the end window was determined through an iteration while the cross point with the

spherical part was calculated analytically, as shown in Figure 6-16.
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Figure 6-16: Geometry for the end window of the hydrogen target for the calculation of the inter-

sections with the deuteron track. Figure taken from Ref. [102].

In Figure 6-17 and Figure 6-18, the efficiencies with the statistical error for each

run for the four kinematics are displayed. Two dotted lines in the figure indicate

±1% of the average efficiency for all the runs. Two solid lines denote the statistical

error of the average efficiency. From the figure, one can conclude that the efficiency

was stable at 1% level during the experiment.
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6.5 Interpolation of Calibration Results

The analyzing powers and unpolarized efficiencies for the 1H(d,2p)n reaction were

measured for the deuteron energies from 140 MeV to 520 MeV with 10 to 20 MeV

in steps in the calibration experiment. In the CEBAF experiment to measure the

tensor polarization, the energies of the recoil deuterons did not necessarily match the

energies of the deuteron beams in the calibration experiment. An energy interpolation

was applied to get the analyzing powers and unpolarized efficiencies for the recoil

deuterons at energies of interest. The uncertainty of the deuteron energy affects the

accuracy of the interpolated analyzing powers and unpolarized efficiency. As a result,

it affects the accuracy of the tensor moments extracted. In this section, the method

of calculating the deuteron energy and the procedure to do the energy interpolation

are explained.

6.5.1 Determination of Deuteron Energy

The energy Td of the recoil deuteron from the e-d elastic scattering is related to

the electron beam energy Ebeam, the scattering angle 0e and the momentum of the

scattered electron. Ebeam was measured using the Hall C arc beamline as described

in Section 4.3.6. The angle 0, and the momentum of the scattered electron were re-

constructed in the HMS. A combination of any two among these three quantities can

determine the energy of the recoil deuteron. Other methods, such as the kinematic

shift in elastic and inelastic electron scattering from different mass target, were con-

sidered. The method using Ebeam and 0 e was determined to have the best accuracy

and was used to calculate the deuteron energy in the data analysis:

Td Ebeam - 2beam . (6.4)
1+2Ebeam sin2 )1

1± MD

The average energy loss of both incident and scattered electrons in the deuterium
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target and of the deuterons up to the first chamber of POLDER were taken into

account. As described in Section 6.2.2, the coordinate z, of the e-d scattering vertex

was calculated using the coordinate ytar of the scattered electron in the target. z,

was used in the determination of the path length of the particles in the target for the

energy loss calculation. The spectra of the deuteron energy for the six kinematics

points are shown in Figure 6-19. The deuteron energies had large spreads of 20-60

MeV (FWHM). The shapes of the deuteron energy spectra were not symmetric. Due

to this effect, the tensor polarization components were extracted at the weighted mean

value Td [103}. The errors due to this method are listed in Table 6.6 in Section 6.9 for

the systematic error analysis for t20. The four momentum transfer Q was calculated

from the mean value of the deuteron energies at the vertex of the e-d scattering using

Eq. 2.12.

Another method to determine the deuteron energy was used from the optics of the

deuteron channel. This work was done by the Saclay group. It was found that the

difference between the deuteron energy using this method and the values calculated

kinematicaly was roughly 2 MeV for all the six kinematics. This difference of the

deuteron energy was taken into account in the uncertainty of the deuteron energy

determination.
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Figure 6-19: Deuteron energies for the six kinematics using the beam energy and the scattering

angle of the electron.

6.5.2 Interpolation

The calibration data were taken at several incident deuteron energies for each of
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the three positions of the two hodoscopes. During the CEBAF experiment, the ho-

doscopes were set at position 1 for Kinematics 1 and 2, at position 2 for Kinematics

3 and 4, and at position 3 for Kinematics 5 and 6 according to the deuteron ener-

gies. The interpolation of the unpolarized efficiency and the analyzing powers was

done for each position separately. The results from the calibration were fit with a

parametrization of the form

b c
y = a + + (6.5)

Td Td2

where y is either the efficiency co or one of the three analyzing powers T2q at a given

angle 0 of the pp pair from the 1H(d,2p)n reaction. a, b, and c are the coefficients

from the fit.

The results for the analyzing powers and unpolarized efficiencies are shown in

Figure 6-20, 6-21, 6-22, and 6-23 for the beam energies of 170, 200, 260, and 300 MeV

which correspond approximately to the mean values of the deuteron energy in the

four kinematics respectively. In the actual data analysis, the interpolation were made

for the mean value of the deuteron energy distribution. The data exhibited a very

smooth dependence on the four momentum transfer q. As shown in the figures, T2 0

and T2 1 are large for 0-bin number 1-9, while The T21 is small. T11 is consistent with

zero. The effective unpolarized cross section, shown in the figures, were not corrected

for geometrical detection efficiencies in the hodoscope and the rapid fall above 250

MeV/c was due to a decreasing detection efficiency in POLDER at large angles. The

unpolarized efficiency is stable at 1% level as indicated by two dotted lines. Two solid

lines stand for statistical error of the efficiency.

The unpolarized efficiency co, the figure of merit F20 , and the analyzing power T20

as functions of the deuteron energy Td for hodoscope position 1 and 2 are shown in

Figure 6-24. The points in circle and square stand for the results for position 1 and 2

respectively. The points in filled and blank circle stand for the results using the new
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(Saclay) and the standard proton tracking algorithm respectively. The unpolarized

efficiency co is roughly constant for position 2, but it decreases with decreasing energy

at the low deuteron energies for position 1. So the t 2o extracted is very sensitive to

the deuteron energy. F20 and T20 don't change too much with the deuteron energy

Td.
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results were obtained using the new (Saclay) proton tracking algorithm.
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Figure 6-21: Analyzing powers, effective unpolarized cross section, and unpolarized efficiencies mea-

sured with the polarimeter POLDER for 200 MeV deuterons. The width of the 0 bin is 2*. The

results were obtained using the standard proton tracking algorithm.
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Figure 6-22: Analyzing powers, effective unpolarized cross section, and unpolarized efficiencies mea-

sured with the polarimeter POLDER for 260 MeV deuterons. The width of the 0 bin is 1.67*. The

results were obtained using the standard proton tracking algorithm.
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Figure 6-23: Analyzing powers, effective unpolarized cross section, and unpolarized efficiencies mea-

sured with the polarimeter POLDER for 300 MeV deuterons. The width of the 0 bin is 1.67*. The

results were obtained using the standard proton tracking algorithm.
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Figure 6-24: Unpolarized efficiency co, figure of merit F20, and analyzing power T20 as functions

of the deuteron energy for the hodoscope position 1 and 2. The points in circle and square stand

for the results for position 1 and 2 respectively. The points in filled and blank circle stand for the

results using the new (Saclay) and the standard proton tracking algorithm respectively.
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6.6 Extraction of Tensor Moments

The efficiency for the scattering of polarized deuteron beam in the CEBAF exper-

iment is given by

E(0, 0) = keo(0, #)[1 + t2 0T2 0 (9) + 2t 2 1T2 1(0)cos + 2t 22T22()cos(20)] (6.6)

where Eo is the efficiency for the scattering of unpolarized deuterons, k is a normaliza-

tion factor, tkq are the tensor moments of the deuteron, Tkq are the analyzing powers

for the polarimeter POLDER, 0 and q are defined in Section 6.3 as shown in Figure

6-8. The tensor moment t2o depends only on the 0 distribution, while t21 and t 22

depend also on the q distribution.

The efficiency (or angular distribution) for the scattering of tensor polarized deuterons

measured in this experiment was grouped in 12 bins in 0 and 12 bins in #. Then the

angular distribution was integrated over # from 0' to 360' and Eq. 6.6 becomes

E(0) = kco(0)[1 + tt2oT20 (0)] (6.7)

To extract the values of t 20, the data in the CEBAF experiment were fit using Eq.

6.7 first, with k and t2o as free parameters. In this fit, the normalization factor k was

introduced as a free parameter. The polarimeter POLDER was operated in the same

condition in the CEBAF measurement experiment as in the SATURNE calibration

experiment, thus k should be close to 1. In the data analysis, once k was determined

close to one, the data were fit again using Eq. 6.7 with k fixed to 1. The error of the

extracted value of t 20 with fixed k is smaller than that for free k. The fitting results

with fixed k were chosen. The tensor moments t2 1 and t2 2 were extracted together

with tensor moment t20 by fitting the data using Eq. 6.6, again with k free and k

fixed to 1. The results with k fixed to 1 were chosen as the extracted values of t21

and t22 .
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The x2 minimization technique was applied in the fit. The data were assumed to

be sample from a Gaussian parent distribution and were grouped into 12 6-bins and

12 q-bins, covering the angular ranges 0 < 0 < 24' and 0 < # < 360'. Some of the

bins in the CEBAF data contain very few counts for the kinematics with high four

momentum transfer. In these cases, it was assumed that the data were a sample from

a Poisson parent distribution.

The method of maximum likelihood was used to derive the condition for the best

fit. For Poisson statistics, the probability of observing NB(i) counts in bin i is given

by

NC (i)NB (i) ci
Pp(NB(i), Nc(i)) NB(! eN(i))

NB ()

where Nc(i) is the mean value for the number of counts in bin i. If the number of

counts in each bin is independent of each other, the probability of obtaining a given

distribution is the product of the probabilities for each bin

PT (NB (i),I Nc (i)) = p P(NB (1), Nc (i)) (6.9)

The most probable parameters are obtained by maximizing PT, which is equivalent

to minimizing the following quantity [104, 41]

2 Nc (i) - NB(i) + NB()ln N ( -) (6-10)

To extract the tensor moment tkq and k, Nc(i) was replaced with the expression in

Eq. 6.7 and NB(i) with the efficiency of the CEBAF data. The minimization code

MINUIT [105] was used to minimize the quantity 2. The results of the fit for the

tensor moments t20, t21 , and t 22 are listed in Table 6.2. The uncertainties of tkq are

statistical uncertainties which represent one standard deviation uncertainty in the fit.

The results of the fit for t 20 for the four kinematics using Eq. 6.7 are shown in
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Figure 6-25 to 6-28. The cross points with a thin line joining them are the CEBAF

data for the efficiency as a function of 6-bin number. The thick line stands for the

unpolarized efficiency from the Saturne calibration experiment. The fitting results

are listed in the bottom of the figure. the results for k were from the fit with k free.

the results for t20 were from the fit with k fixed to 1. Two numbers following the

value of k or t2o are the statistical errors from the calibration data and the CEBAF

experimental data respectively. The X2 per degree of freedom in the figures were

calculated using the standard X2 formula,

2 -1 [NB (0i) - NC(O,)]2 (-1= N(O)(6.11)X 10 NB (0i)

where NB(0i) is the number of counts in bin 9i from the CEBAF data, NC(Oi) is the

counts in bin Oi from Eqn. 6.7, and the factor 1/10 reflects 10 degrees of freedom in

the data analysis for this experiment. The number of degrees of freedom was obtained

by subtracting the number of parameters used (k and t 20) from the number of bins (
12 0 bins).

An example of the 0 distributions for the various 6-bins is shown in Figure 6-29.

This figure shows the 0 distributions and the fitting results for t 20, t21 , and t22 for

Kinematics 4. The q distributions for the other data points are qualitatively similar.
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Asymmetry Fit for Kinematics 1
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Figure 6-25: Fitting results for t 20 for Kinematics 1. The cross points with the thin line joining

them are the CEBAF data for the efficiency as a function of 9-bin number. The thick line stands for

the unpolarized efficiency from the Saturne calibration experiment. For both k and t 20, the fitting

results (first number) together with the statistical errors from the calibration data (second number)

and the CEBAF experimental data (third number) are listed in the bottom of the figure. For x 2 ,

the result is shown with its statistical error.
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Asymmetry Fit for Kinematics 2
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Figure 6-26: Fitting results for t 20 for Kinematics 2. The same notation as in Figure 6-25.
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Asymmetry Fit for Kinematics 3
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Figure 6-27: Fitting results for t20 for Kinematics 3. The same notation as in Figure 6-25.
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Asymmetry Fit for Kinematics 4
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Figure 6-28: Fitting results for t 20 for Kinematics 4. The same notation as in Figure 6-25.
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_A Asymmetry Fit from p distridbution for Kinematics 4
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Figure 6-29: <0 distribution and fitting results for t20 , t21 , and t 22 for Kinematics 4.
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Q (fm- 1 ) t2 0  t21 t22

4.10 -0.675±0.038 0.413±0.053 0.115±0.044

4.46 -0.281±0.034 0.315±0.045 -0.028±0.034

5.08 0.154±0.033 0.194±0.043 -0.008±0.029

5.48 0.255±0.049 0.210±0.058 0.028±0.036

Table 6.2: Fitting results of t 20 , t 21 , and t22 using MINUIT. The uncertainties are statistical uncer-

tainties which represent one standard deviation in the fit.

6.7 Unpolarized Asymmetries in q

Some small instrumental asymmetries in the azimuthal angle # were found both

in the Saturne calibration data and the CEBAF experimental data. The asymme-

tries, intrinsic to the detectors in POLDER or the data analysis, bring bias into the

extraction of the tensor polarization moments t20, t21 , and t22. The asymmetries

were studied in both the calibration and experimental data and their effects on the

extraction of the tensor polarization moments were evaluated analytically [98][106].

In general, the instrumental asymmetries in / are expressed by including two terms

of A(0,#) and B(0,#) in Eq. 6.6 as follows:

6(, #) EO(0, 0)[1 + t2oT20(O) + 2t 2 1T2 1(0)cosO + 2t 22T22 (0)cos(2#)]A(O, #)

+B(0, q). (6.12)

If there be asymmetry from background, the term B(0,0) will be nonzero. This was

found not to be the case in this experiment. When the asymmetries are related to the

detectors or generated in the data analysis, term A(0,0) will not be 1. The possible

intrinsic asymmetries could come from a bad alignment of the detectors in POLDER,

the assumption that the X and Y planes in a hodoscope have the same z position while

they were not, or the geometry cuts used in the data analysis. The asymmetries were
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studied by expressing A(0,0) in the Fourier form of functions cos(n#) and sin(n),

00

A(O, #) = Y[an()cos(n0) + bs(O)sin(n)], (6.13)
n=O

where fJ0A(,#)d# = 1, a,(O) and bn(O) are the coefficients of asymmetry related to

terms cos(n#) and sin(n) respectively.

The asymmetry coefficients an(O) and bn(O) were evaluated using the unpolarized

calibration data. The quantities an(O) and bn(O) were calculated as follows:

an(O) = N(O, #)cos(n)/[ N(O, q) Y cos 2( )/12] (6.14)

bn(0) = N(O, #)sin(nr)/[[ N(9, q) 1:sin 2 (nO)/12] (6.15)

where N(0,0) is the efficiency or yield for the 'H(d,2p)n reaction. For the calibration

data, the unpolarized efficiency which is the sum of yield for spin states 5 to 8,

should not exhibit any asymmetries and the coefficients an(O) and bn(0) should be

zero. Non-zero coefficients implies the existence of the asymmetries. The results

of the asymmetry coefficients al, a2, bi, and b2 from the unpolarized calibration

data are shown in Figure 6-30 to Figure 6-33. In these figures, the coefficients are

shown versus the 6-bin number for the deuteron energies of 170, 200, 260, and 300

MeV, which correspond approximately to the mean deuteron energies for the first

four kinematics in the CEBAF experiment. One can see that the # asymmetry exist

for the large 9-bin numbers (> 6) and the asymmetry effect is bigger for Kinematics

1 and 2 than Kinematics 3 and 4.
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Figure 6-31: The same coefficients as in Figure 6-30, but for 200 MeV deuteron beams.

cos@

260 MeV

26 4 6 8
0-bin number

2 4 6
8-bin number

2

CD

-- 1-
-2

10 0

2-

1-

-o -1

-2_
10 0

260 MeV

2 4 6 8 10
0-bin number

2 4 6
O-bin number

10

Figure 6-32: The same coefficients as in Figure 6-30, but for 260 MeV deuteron beams.
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Figure 6-33: The same coefficients as in Figure 6-30, but for 300 MeV deuteron beams.

The effects of the asymmetries on the extraction of the tensor moments t j were

estimated. Considering only the major contributing terms with coefficients a,, a2, bi,

and b2, one has the following equation:

E(0, #) = Eo(0, q)[1 + t 20T20 (0) + 2t 2 1T2 1(0)cosO + 2t 22T22 (0)cos(2#)]

[1 + alcos# + a2cos2 + bisin + b2sin2o] (6.16)

An ad hoc simulation was used to estimate the asymmetries effect. A certain

number of events were generated with the distribution in Eq. 6.16 Then these events

were fit with the standard tij extraction program. The difference between the tensor

moments evaluated in this way and the tensor moments evaluated with no asymmetry

is the systematic error due to the instrumental q asymmetries. The errors obtained

for t20 was negligible while the error for t2 1 and t 2 2 could not be neglected and had

to be considered. The results are shown in Section 6.9 in the discussion of systematic
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uncertainties.

6.8 Precession of the Deuteron Spin in the Dipole

When a deuteron passes through a magnetic field, its spin precesses in the field.

The tensor polarizations of the deuteron after exiting the field are changed due to

the precession and can be expressed as combinations of various components of the

tensor polarization. The relation between unprecessed tensor moments tkq and the

precessed tensor components tpq has been derived by Schulze [107] and are expressed

below:

tpo 1 - (3/2)sin2(A) (3/2)1 /2sin(2A) (3/2) 1/ 2sin 2(A)

t - -(3/8) 1/2sin(2A) cos(2A) (1/2)sin(2A)

t2 (3/8)1/2sin 2 (A) -(1/2)sin(2A) (1/2)(1 + cos 2 (A)) J
where A = -(Pd - 1)OB; -y is the usual relativistic Lorentz factor; Pd is the deuteron

magnetic moment; and OB is the bend angle of the dipole magnet.

The dipole magnet in the deuteron channel had a bend angle of 300. From the

above equation, the unprecessed tensor polarizations t20, t21 , and t22 are expressed in

terms of the precessed tensor components tio, t 1, and tp2 as following:

t20 = coot20 + c01t 1 + c02t22  (6.17)

= ciot 0 + c1 1t41 + c 12 t42  (6.18)

t22 = c20t20 + c2 1t21 + c22t22  (6.19)

where ci, i, j = 0, 1 are coefficients as listed in Table 6.3. Most of the correction for

t20 came from the term coite1 , where co, is roughly a constant of 0.2. The correction

for t21 mainly come from the term cioti0 , where cio is roughly a constant of -0.1. For

t22, the corrections are from both terms of t20 and t 21 . The extracted values of t20,
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t 21 , and t22 after the precession corrections are listed in Table 6.4.

Table 6.3: Coefficients for the correction

dipole magnet in the deuteron channel.

of t 2o due to the spin precession of the deuteron in the

Q (fm- 1) t20 t21 t22

4.07 -0.585±0.038 0.484±0.053 0.079±0.044

4.47 -0.214±0.034 0.337±0.045 -0.055±0.034

5.09 0.193±0.033 0.174±0.043 -0.024±0.029

5.50 0.297±0.049 0.182±0.058 0.011±0.036

Table 6.4: Results of t 20 , t 21 , and t 22 after corrections due to

uncertainties are statistical uncertainties only.

the precession of the deuteron. The

6.9 Systematic Uncertainties

The systematic uncertainties of the extracted tensor moments tj are mainly di-

vided into six groups of sources: the radiative cut, the uncertainty of the incident

deuteron energy Td, calibration, POLDER analysis, instrumental asymmetry, and the

precession in the dipole magnet of deuteron channel.

The systematic uncertainties due to the radiative cut were estimated by varying

the 6o. in the radiative tail by ±0.5% and rerunning the data. The average difference

between the extracted tensor moments with the varied cuts and with the normal cuts

are regarded as the uncertainties due to the radiative cut.

The tensor moment t20 depends on the energy of the deuteron Td, especially for

Q (fm- 1 ) coo coi c0 2  c10  c11  c12  c 20  c2 1  c22

4.10 0.990 0.200 0.008 -0.100 0.987 0.081 0.004 -0.081 0.997

4.46 0.990 0.203 0.008 -0.101 0.986 0.083 0.004 -0.083 0.997

5.08 0.989 0.209 0.009 -0.104 0.985 0.085 0.004 -0.085 0.996

5.48 0.989 0.212 0.009 -0.106 0.985 0.087 0.005 -0.087 0.996
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the lower energy kinematics. The values of d' 2 0 for each kinematics are listed in Tabledd

6.5. They are the average change of t 20 when Td is varied by ±1 MeV manually in the

extraction of t 20. The error of Td is summed in quadrature over the individual errors

due to the uncertainty of the scattering angle in the HMS (2 mrad), the uncertainty

of the electron beam energy (1.5 x 10-3), and the electron beam offset which was

found to be 2mm with an error of ±1 mm, the error due to the energy interpolation

at the mean value of Td from its asymmetric distribution, and the uncertainty of the

energy determination from the deuteron channel measurement.

point 1 point 2 point 3 point 4

dt 20/dTd 0.07 0.02 0.001 0.002

Table 6.5: Dependence of t 20 on the deuteron energy Td.

The systematic uncertainties from the calibration exist in the following sources: the

Ti statistical errors, the polarization measurement of the incident deuteron beams,

and the stability of the normalization factor k. The error of Tij from the fit contains

both the statistical and random systematic errors. There was also an error due to the

uncertainty in the absolute measurement of the polarization of the beam [108]. Due

to the stability of POLDER during calibration, k was stable at a level of ±0.006. In

the experimental data analysis, k was changed by this amount ±0.006 and t20 was

refit. The difference of t 20 was taken as the uncertainty due the stability of k.

In the analysis of POLDER data, there were errors arising from the a0 angle cut,

the randomization used in the hodoscopes for the position of the protons, the external

cone cut, and the uncertainty of the hodoscope z positions. These uncertainties were

estimated by varying the a angle by ±10, changing random number seeds in the

randomization, changing the external cone cut for the two hodoscopes, and changing

the z position of the hodoscope by ± 0.1 mm respectively. Each time after changing a

cut, the experimental data were reanalyzed to extract tensor moments. The difference
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between the new results and the normal results are regarded as the uncertainties of

the tensor moments due to that particular source.

The instrumental asymmetries in # and their effect on the tensor moments were

discussed in Section 6.7. The systematic uncertainties due to precession correction

mainly come from the uncertainty of t21 and are roughly the product of the uncertainty

of t21 and the coefficient 0.2 for each kinematics. The uncertainties due to the proton

background are negligible. Table 6.6 lists the values for the systematic uncertainties

due to various sources mentioned above. These values are the results of input from

the entire t20 collaboration. The total systematic uncertainties from different sources

were combined in quadrature and are given in the same table.

The main sources for the uncertainties of t 21 and t22 considered here are the uncer-

tainty due to the instrumental 0 asymmetry, the uncertainty due to different external

cone cuts, the T 3 statistical error from the fit and the error from the dipole precession

correction. Values of these uncertainties for t21 and t22 are listed in Table 6.7 and

Table 6.8 respectively.
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sources point 1 point 2 point 3 point 4

6cor 0.02 0.01 0.01 0.02

9 0.06 0.024 0.001 0.003

Ebeam 0.03 0.012 0.006 0.002

beam offset 0.01 0.003 0.001 *

Td distribution shape 0.034 0.014 0.004 0.008

DC measurement 0.136 0.04 0.008 0.010

Tij Stat 0.003 0.016 0.003 0.006

beam polarization 0.02 0.01 0.006 0.009

k stability 0.03 0.03 0.04 0.04

a cut 0.02 0.016 0.008 *

ECC 0.012 0.008 0.02 0.03

H1 z pos 0.02 * * *

inst. asymmetry 0.01 0.008 0.003 0.004

precession 0.02 * * *

total 0.162 0.065 1_0.048 1J0.057

Table 6.6: Systematic uncertainties in t20. * denotes the error is negligible.

sources point 1 point 2 point 3 point 4

ECC 0.09 0.01 0.05 0.04

inst. asymmetry 0.030 0.040 0.014 0.004

Tij Stat 0.013 0.007 0.029 0.037

precession 0.017 0.007 0.007 0.009

total 0.097 0.042 1_0.060 0.055

Table 6.7: Systematic uncertainties in t2 1. * denotes the error is negligible.
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Table 6.8: Systematic uncertainties in t 22 . * denotes the error is negligible.

6.10 Separation of Deuteron Form Factors

As described in chapter 1, the charge monopole factor GC and quadrupole form

factor GQ cannot be separated from the cross-section measurement of elastic e-d

scattering. A measurement of another observable which depends on a combination of

Gc, GQ, and GM different from those for the A(Q) and B(Q) structure functions is

necessary to extract the charge monopole and quadrupole form factors individually.

The method used to separate the charge monopole and quadrupole form factors for

this experiment is described in this section.

In e-d elastic scattering, the tensor polarization t20 of the recoil deuterons, together

with the structure functions A(Q) and B(Q) from the cross section measurement,

allow the separation of the three form factors: GC, GQ and Gm. In terms of GC, GQ

and GM, A(Q), B(Q) and t2 o are given below:

A(Q) = G2(Q) + 8 r2G2 (Q) + 2r7G 2(Q) (6.20)
4

B(Q) = r(1 + rI)G2M(Q) (6.21)3
1 8 8 2 22

t2 = - 1 IGeGQ + Qr/2G2 + 37(l + rf)KGMj (6.22)
V/I 3rGG 92C 3r(

sources point 1 point 2 point 3 point 4

ECC 0.02 0.01 0.006 0.003

inst. asymmetry 0.030 0.020 0.020 0.017

Tij Stat 0.003 0.001 0.000 0.001

total 0.036 0.022 0.021 0.017
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where

r = Q2/4Md (6.23)
1

K = + tan2 _e (6.24)
2(,q + 1) 2

Io =A(Q) + B(Q) tan2 e.(6.25)

The normalizations of Gc, GQ and GM at Q = 0 fm- are given in Eq. 2.19, 2.20,

and 2.21.

The above equations can be solved analytically for Gc, GQ and Gm. The solutions

are functions of A(Q), B(Q) and t 20 : Gc(A, B, t20), GQ(A, B, t 20) and GM(B).

The results for A(Q) [32] and t20 from this experiment and the world data of B(Q)

were used to extract Gc, GQ and Gm. The solutions of GC and GQ were expressed

as functions of Io, B(Q), and t 20 instead of A(Q), B(Q), and t 20 . The measurements

for Io, B(Q) and t 2o are independent of each other and thus the errors from them are

uncorrelated. Only diagonal elements of the error matrix contribute to the errors of

GC and GQ.

To simplify the notation, the following definitions were made:

x = GC (6.26)
2

y = -TGQ (6.27)
3
1 1

F1 = -[t 20 i 0 V2+ -KB(Q)] (6.28)
2 2

F2 =I10 - KB(Q) (6.29)

The equations below are derived from Eq. 6.20, 6.21, and 6.22.
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x2 ,2 X2 + 2(6.30)
F2  F2

2

x = - (6.31)
2y

Eq. 6.30 is the equation of an ellipse. Eq. 6.31 is the equation of a hyperbola.

The solutions of x and y are the coordinates of the intersections of these two curves.

Figure 6-34 shows the curves and the intersections for the six kinematics data re-

spectively. This set of curves for each kinematics gives four possible pairs of x and y

as the solutions: (X1 , yi), (x 2 , Y2), (x 3 , Y3), (X4 , y4). However, (X1 , Yi) = -(x 3 , Y3) and

(X2, Y2) = -(X 4 , y4), they differ only by an overall phase change. Since the overall

phase is arbitrary, the solution (Xi, Yi) is the same as (X3 , Y3) and the solution (x2, Y2)

is the same as (X4 , y 4).
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Figure 6-34: Ellipse and hyperbola representing Eq. 6.30 and 6.31 respectively.

The extracted values of t 21 from this experiment were used as additional informa-

tion to choose the physics solution from the four possible solutions. In terms of Gc,

GQ and Gm, t 2 1 is given by

t21= 2 7P(I + r7sin I GmGQ secS (6.32)
vf351o 2 2

Using previously defined relationships, Eq. 6.33 is derived:
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y= i 21 I/B se 2J 21(6.33)
3 B(seC2 le +, tan2 )

Equation 6.33 is the functions of two lines which are parallel to the x axis. If

the error of t21 is considered, two bands are obtained as shown in Figure 6-34. The

intersection for the physical solution should be inside the bands. It can be seen from

Figure 6-34 that (x1 , yi) or (x 3 , Y3) is the physical solution unambigously for all the

four kinematics. The phase of GQ can be chosen arbitrarily to be positive. Therefore,

(x 1 , yi) is selected for all the four kinematics.

The errors of Gc and GQ were calculated as the quadratic sum of the errors from

1o, t2o and B(Q).

"2 2 .2 (6.34)

F Z( i)2 (6.35)

where wi = Io, t20 , B(Q).

The error of GC is dominated by the error of t20 . The error of GQ is dominated

by the error of Io. The values of t20, A(Q), B(Q) and the separated Gc, GQ for each

kinematics are shown in Table 6.9. The node of GC is determined to be at Q = 4.03

t 0.06 fm-- by a fourth order polynomial fit to the Gc data. Here the uncertainty

was obtained from the uncertainty in the calculation of Q from the deuteron energy.
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Q ( fm') t20 A(Q) B(Q) Gc GQ
(x10 2 ) (x10- 5 )

4.10 -.607± .166 326±12 5.28 -.00084 ± .00153 .395 ± .009
4.46 -.229 .073 204±8 2.138 -.00331 ± .00050 .261 ± .006
5.08 .186 ± .058 91±4 .461 -.00409 ± .00029 .126 ± .003
5.48 .292 ± .075 54±2 .167 -.00354 ± .00030 .081 ± .003

Table 6.9: Results of GC and GQ together with values of t20 , A(Q), and B(Q) used in the separation
of Gc and GQ. Values of t 2 o and A(Q) are the measured results from this experiment. Values of
B(Q) are from the fit to world data.

6.11 Calculation of t21 and t 2 2 from GQ and B(Q)

In addition to t 20, the tensor moments t21 and t 22 were also extracted from the k

distribution of the data in this experiment and the results are shown in Table 6.2.

Since t21 is related to GQGM in Eq. 2.32 and t22 is related to G 2 in Eq. 2.33, they

can be calculated using the separated results of GQ and the results of GM from the

world data of B(Q). The calculated results of t 21 and t 22 at the six four-momentum

transfers are listed in Table 6.10.

In Figure 6-35, the values of t21 (circles) extracted from the / distribution in

this experiment are compared with the calculated values of t21 (squares) using the

separated GQ from this experiment and the world data of B(Q). The results of t 21

using the two methods are in good agreement with each other within their error bars.

The values of t 22 using these two methods are shown in Figure 6-36 with the same

notations as in Figure 6-35. They agree with each other within their error bars for

Kinematics 2, 3, and 4. For Kinematics 1, the values of t22 are inconsistent. The

results of t 21 and t22 will be compared with some typical theoretical calculations in

chapter 6.

152



CHAPTER 6. DATA ANALYSIS AND RESULTS 153

Q (fm 1) t2l t22

4.10 0.42t0.04 -0.033±0.003

4.46 0.33t0.04 -0.021±0.002

5.08 0.21t0.05 -0.010±0.002

5.48 0.16±0.04 0.006±0.001

Table 6.10: The values of t 21 are calculated using GQ extracted from this experiment and the world

B(Q) data. The values of t2 2 are calculated using the world B(Q) data.

0.6 t 2

0.4-

0.2

-0.0-

3 4 5 6 7
Q (f m)

Figure 6-35: Comparison of t 21 (circles) extracted in this experiment and t 21 calculated (squares)

using the separated GQ from this experiment and the world B(Q) data. The error bars are the

combination of the statistical and systematic errors in quadrature.
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Figure 6-36: Comparison of
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t22 (circles) extracted in this experiment and t 22 calculated (squares)
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Chapter 7

Comparison with Theories

7.1 Introduction

As mentioned before, the predictions of the tensor moment t20 from different models

diverge in the four-momentum transfer range 4.02 fm- 1 < Q < 6.7 fm-1 . The position

of the node in GC is sensitive to various corrections, such as MEC's, relativistic effects,

isobar components, and possible quark degrees of freedom. Experimental data with

high precision in this four-momentum transfer range are necessary to study these

effects and thus probe the short-range behavior of the NN interaction. The experiment

[12] performed at MIT-Bates first measured t 20 of the deuteron in the four-momentum

transfer range where t20 starts to rise from the minimum. The experiment described

in this thesis extended the measurement to higher momentum transfer and provided

data with good precision. In this chapter, the results of t20 , the charge monopole form

factor Gc and charge quadrupole form factor GQ from this experiment are compared

to the predictions from different theoretical models described in Chapter 2. The

results of the tensor moments t2 1 and t22 from this experiment are also compared

with some theoretical predictions. The uncertainties for all the results shown in this

chapter are the quadratic sum of the systematic and statistical uncertainties. Since
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most of the existing theoretical predictions for t 2o are given for 0e = 70', the results

of t20 from this experiment were adjusted to 0e = 700 and are shown in the figures.

The results of the absolute value of Gc are plotted on a log scale for 0 fm- 1 < Q <

8 fm- 1 and on a linear scale for 3.6 fm- 1 < Q < 5.1 fm 1 to locate the node of Gc

for each calculation. For convenience of comparison, the results from the previous

experiments are also displayed in the figures.

7.2 Comparison of Data with Theories

7.2.1 Non-Relativistic Impulse Approximation

The results for t 20, GC, and GQ calculated by Mosconi and Ricci [1] with the Paris

potential are shown and compared with the data in Figures 7-1-7-5. The results

for impulse approximation (IA, dotted curve), IA with relativistic corrections (RC,
dashed curve), and the full calculations (IA+RC+MEC, solid curve) are illustrated in

each figure. For the t2o results, the inclusion of both RC and MEC increase the value

of t 20 for Q > 3.5 fm 1 . The full calculation including the relativistic corrections, p

exchange, and pwry MEC's gives the best overall agreement with the data. The data for

the lowest three kinematics of the present experiment favor the full calculation, while

the Bates data, which were in the four-momentum range overlapping with the first

two points, are best described by the IA calculation with the relativistic corrections.

The results of Gc and GQ using H6hler (H) parametrization for the nucleon form

factor are shown in Figure 7-2 and 7-3 respectively. Again the full calculation pro-

vides the best predictions for the present data, consistent with the comparison of t2 0.

Among the three calculations, the full calculation gives the smallest Q for the position

of Gc node which is closest to the GC node from this experiment. For the results

of GQ, the difference among the three calculations is negligible and the predictions

from the three calculations give good agreement with the data. The sensitivity of Gc
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and GQ to different nucleon form factor parametrizations (H, GK, IJL, and IJLG) is

shown in Figure 7-4 and 7-5 respectively. All four parametrizations predict almost

the same GC node position. The results of the predicted Gc using GK form factor

lies above the predictions with the other three parametrizations, and the IJL form

factor gives the lowest prediction of Gc. The predictions using the H and IJLG form

factors are indistinguishable. All the predictions reasonably agree with the present

data. The comparison of the prediction of GQ using different nucleon form factor

parametrizations with the data is similar to the comparision for Gc.
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Figure 7-1: Comparison of data with predicted t20 from Mosconi and Ricci [1] using H form factor:

IA, IA+relativistic corrections (RC), IA+RC+MEC.
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Figure 7-2: Comparison of data with predicted G0 from Mosconi and Ricci [1] using H form factor:

IA, IA+relativistic corrections (RC), IA+RC+MEC.
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Figure 7-3: Comparison of data with predicted GQ from Mosconi and Ricci [1] using H form factor:

IA, IA+relativistic corrections (RC), IA+RC+MEC.
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Figure 7-5: Comparison of data with predicted GQ from Mosconi and Ricci [1] using various nucleon

form factor parametrizations: H, GK, IJL, and IJLG.
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Figure 7-6: Comparison of data with predicted t 2o from Schiavilla and Riska [42]: IA, IA+RC+MEC.

The results for t20 calculated by Schiavilla and Riska [42] using the Argonne V14

potential are shown and compared to the data in Figure 7-6. The full calculation

(IA+RC+MEC) agrees with the data, while the IA result underestimate the data.

The results of Gc are shown in Figure 7-7. The relativistic corrections and the MEC's

in the full calculation shift the node of GC to lower four-momentum transfer. The

present data strongly favor the full calculation, while the IA prediction underestimates

the data after Gc passes its minimum. For GQ, although the difference between the

IA prediction and the full calculation is small, the present data agree better with the

full calculation as shown in Figure 7-8.
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Figure 7-7: Comparison of data with predicted Gc from Schiavilla and Riska [42]: IA,
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Figure 7-8: Comparison of data with predicted GQ from Schiavilla and Riska [42]: IA,
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Figure 7-9: Comparison of data with predicted t 20 from Pauschenwein, Plessas, and Mathelitsch [43]

using Paris potential: IA, IA+RC, IA+RC+MEC.

The predictions of t 2o by Pauschenwein,Plessas, and Mathelitsch (PPM) [43] using

the Paris, Bonn OBEPR, Bonn OBEPQ, full Bonn, and folded-diagram full Bonn

potentials are shown in Figure 7-9-7-12. In all these calculations, the relativistic

corrections shift the IA results down, while the MEC's move the IA result up for 3.5

fm- 1 < Q < 8 fm- 1. As shown in Figure 7-9, the full calculation using Paris potential

agrees well with the present data while the IA and IA+RC results underestimate the

present data, especially the lower kinematics data which have small error bars. The
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comparison of the predictions of Gc and GQ by PPM using Paris potential with the

data also indicates that the full calculation is in good agreement with the present

data as shown in Figure 7-10 and 7-11. The comparison of the full calculations using

different potentials with the data is shown in Figure 7-12. The full calculations using

Paris, Bonn OBEPR, and folded-diagram full Bonn potentials give similar predictions

of t2 o and reasonably agree with the present data, while the predictions of t20 using

Bonn OBEPQ and full Bonn potentials underestimate the data.
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Figure 7-10: Comparison of data with predicted G0 from Pauschenwein, Plessas, and Mathelitsch

[43] using Paris potential: IA, IA+REL, IA+REL+MEC.
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Figure 7-11: Comparison of data with predicted GQ calculated by Pauschenwein, Plessas, and

Mathelitsch [43] using Paris potential: IA, IA+REL, IA+REL+MEC.

169

CQ

NN



CHAPTER 7. COMPARISON WITH THEORIES 170

1.0-

0.5 - t (700)- 20

0.0-

-0.5 -}-

!L

-1.5--

-2.0 111111114 -
0 2 4 6 8

Q (f m 1)
o Bates 84 ------ Paris
* Novosibirsk 85 - - Bonn OBEPR
A Novosibirsk 90 Bonn OBEPQ
n Bates 91 ---- full Bonn
o NIKHEF 96 - - - folded Bonn
* NIKHEF 97
* TJNAF

Figure 7-12: Comparison of data with the predicted t20 of the full calculation by Pauschenwein,

Plessas, and Mathelitsch [43] using various potentials: Paris, Bonn OBEPR, Bonn OBEPQ, full

BonnL, folded-diagram full Bonn.
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Figure 7-13: Comparison of data with predicted t20 from Wiringa, Stoks, and Schiavilla [4] using

Argonne v 18 potential.

The comparison of the results for t20, Gc, and GQ with calculations using Argonne

v18 potential by Wiringa, Stoks, and Schiavilla [4] is shown in Figure 7-13-7-15. In

Argonne v18 potential, three charge-dependent and one charge-asymmetric operators

are added to the 14 operator components in the V14 potential. The IA prediction for

t20 in Figure 7-13 underestimates the four lowest Q data points, but agrees with the

two highest Q data points within error bars. The full calculation of, which includes

the relativistic effects and MEC's, is reasonably consistent with the present data.

Comparison of the Gc data with the calculations is shown in Figure 7-14. Again, IA

underestimates Gc, while the full calculation agrees with the data. For G(Q), the
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difference between these two calculations is small at low Q, but becomes apparent at

Q > 5 fm- 1. The present data favors the full calculation for GQ.
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Figure 7-14: Comparison of data with predicted GC from Wiringa, Stoks, and Schiavilla [4] using

Argonne v1 8 potential.
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Figure 7-15: Comparison of data with predicted GQ from Wiringa, Stoks, and Schiavilla [4] using

Argonne v 18 potential.
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7.2.2 Relativistic Calculations
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Figure 7-16: Comparison of

H form factor: IA, IA+pir-y,

85
90

IA
IA+piry
IA+pir-+waoy

data with predicted t 20 calculated by Hummel and Tjon [59, 60] using

IA+p7r7+wo-y.

Hummel and Tjon [59, 60] performed a relativistically covariant calculation includ-

ing the contributions from the pir'y and wa-y MEC's. The data of t20, Gc, and GQ is

compared to their calculations using H nucleon form factor parametrization in Fig-

ures 7-16-7-18. As shown in Figure 7-16, pr-y MEC increases the values of t20 in the

four-momentum transfer range of interest, while wo-y MEC contributes to t 20 in the

174
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opposite direction with a bigger effect. As a result, the IA+p7y+wu-y curve for t 20

lies below the IA curve, while the IA+pry curve is above the IA curve. The IA+p7ry

calculation is in fair agreement with the present data. The IA calculation agrees with

the last three data points, but underestimates the first three points. The inclusion

of the wa-y MEC makes the prediction underestimate the data. For Gc (see Figure

7-17), the IA+pry curve is above the IA curve, while the IA+pw7+wu 1 curve is

under the IA curve. None of these calculations predicts the data well, while IA+p7ry

calculation is the closest to the data. The sequence (from left to right) of the Gc node

positions predicted by these calculations is: IA+pry, IA, and IA+p7ry+wu-y. For GQ

(see Figure 7-18), the wauy MEC contribution is in the opposite direction to that of the

pir-y MEC, but with roughly the same magnitude. Therefore, IA and IA+p7r-y+wy

curves are almost indistinguishable. All the three calculations underestimate the GQ

data.
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Figure 7-17: Comparison of data with predicted GC from Hummel and Tjon [59, 60]. Same notations

as in Figure 7-16.
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Figure 7-18: Comparison of data with predicted GQ from Hummel and Tjon [59, 60]. Same notations

as in Figure 7-16.
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The comparison of the t 2o data with the calculation from Chung, Coester, Keister,

and Polyzou [5] using the Paris potential is shown in Figure 7-19. The calculation

is in fair agreement with the data of Bates 91, but underestimates the present data.

In Figure 7-20, the Gc data were compared with the calculation using four differ-

ent nucleon form factor parametrizations (H, GK, L, and D). The four calculations

predict roughly the same position of the Gc node. The calculations using H, L,

and D parametrizations are almost identical, while the calculation using the GK

parametrization is slightly above the other three. All four calculations underestimate

the Gc data. As a results of this, the predicted position of GC node is at larger Q
than the data. The data of GQ is compared with the calculations in Figure 7-21. The

calculation using the GK parametrization is above he calculations using the other

three parametrizations. The data is in good agreement with the calculation using

GK parametrization.
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Figure 7-19: Comparison of data with predicted t 20 from Chung, Coester, Keister, and Polyzou [5]

using the Paris potential and H nucleon form factor.
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Figure 7-20: Comparison of data with predicted GC from Chung, Coester, Keister, and Polyzou [5]

using the Paris potential and different nucleon form factor parametrizations: H, GK, L, and D.
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Figure 7-21: Comparison of data with predicted GQ from Chung, Coester, Keister, and Polyzou [5].

Same notations as in Figure 7-20.
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The t20 , Gc, and GQ data are compared with the covariant relativistic CIA cal-

culation from Van Orden, Devine, and Gross [66] in Figure 7-22-7-24. The present

data are all in fair agreement with the calculations.
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Figure 7-22: Comparison of data with predicted t 20 from Van Orden, Devine, and Gross [66].
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Figure 7-23: Comparison of data with predicted GC from Van Orden, Devine, and Gross [66].
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Figure 7-24: Comparison of data with predicted GQ from Van Orden, Devine, and Gross [66].
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Figure 7-25: Comparison of data with predicted t20 from Carbonell, Desplanques, Karmanov, and

Mathiot [65].

The comparison of the t20 , Gc, and GQ data with the calculations from Carbonell,

Desplanques, Karmanov, and Mathiot [65] using light-front dynamics is shown in

Figures 7-25-7-27. For the predictions for t 20 shown in Figure 7-25, the short-dashed

curve is the NRIA calculation with the S- and D- waves of the Bonn-QA wave func-

tions [2], the dotted curve is calculated using the light-front dynamics with compo-

nents fi and f2 only in the deuteron wave function, the long-dashed curve corresponds

to the calculation with component f5 in addition to fi and f2, and the solid line in-
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cludes, in addition to those included in the long dashed curve, the contact term.

The incorporation (solid and long-dashed curves) of the component f5 significantly

increases t 20 for Q > 3.2 fm- 1. The effect of the contact term is very small. The

data favors these two calculations (solid and long-dashed curves). In Figure 7-26 and

Figure 7-27, the GC and GQ data are compared with the calculations with fi, f2, f5

and the contact term included. The predictions are in fairly good agreement with

the present data. The additional contact term only slightly changes the calculations

that include the component f5. These two calculations provide a better fit to the

data than the NRIA calculation and the calculation without the f5 term. In Figure

7-26 and 7-27, only the results of GC and GQ with all components of fi, f2, f5, and

the contact term are plotted. The predictions are in fairly good agreement with the

present data.
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Figure 7-26: Comparison of data with predicted GC from Carbonell, Desplanques, Karmanov, and

Mathiot [65].
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Figure 7-27: Comparison of data with predicted GQ from Carbonell, Desplanques, Karmanov, and

Mathiot [65].
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7.2.3 Coupled-Channel Model

Sitarski, Blunden, and Lomon [72] calculated t20, GC, and GQ using coupled-

channel formalism of nucleons and isobar components. Comparison of the data with

these calculations is shown in Figure 7-28-7-30. The predictions of Gc using H

nucleon form factor parametrization for models C and D are plotted in Figure 7-

28. The calculation of GC with model D overestimates the present data, while the

calculation using model C are in fairly good agreement with the data. Compared to

model C, model D predicts a lower Q for the position of the GC node. In Figure 7-29,

the GC data is compared with the calculation for model C using different nucleoon

form factor parametizations H and GK. These two curves differ slightly for Q < 5

fm-1 which includes the GC node. As a result, the positions of the GC node using

these two parametrizations are almost identical. For Q > 5 fm- 1, the difference

becomes gradually noticeable. The data appears to favor H parametrization. In

Figure 7-30, the GQ data is compared with model C and D using nucleon form factor

parametrizations H and GK. Model D predicts a minimum of GQ around 6.0 < Q <
7.0 fm- 1 it has not been observed in the data. This would seem to rule out model

D as a valid description of deuteron structure. The calculation using model C is in

good agreement with the data. The difference between the calculations using H and

GK parametrization is small. In general, model C with H parametrization provides

good agreement with the data.
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Figure 7-28: Comparison of data with predicted GC from Sitarski, Blunden, and Lomon [72] using

H form factor parametrization and two different models: C and D.
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Figure 7-29: Comparison of data with predicted G0 from Sitarski, Blunden, and Lomon [72] using

model C and two different nucleon form factor parametrizations: H and GK.
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Figure 7-30: Comparison of data with predicted GQ from Sitarski, Blunden, and Lomon [72] using

two different models: C and D; and two different nucleonn form factor parametrizations: H and GK.
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7.3 Comparison of t2 1 and t22 with Theories

In Figure 7-31 and 7-32, the extracted t 2 1 and t22 (circles) from the <$ asymmetry

data in this experiment are compared with four typical calculations: non-relativistic

impulse approximation (NRIA) by Wiringa, Stoks, and Schiavilla [4] using Argonne

v18 potential, the same calculation as above but including relativistic corrections

and MEC's, the complete impulse approximation (CIA) by Van Orden, Devine, and

Gross [66] and the relativistically covariant calculation by Carbonell, Desplanques,

Karmanov, and Mathiot [65] using light-front dynamics. t21 and t22 calculated us-

ing GQ from this experiment and the world B(Q) data are also compared with the

theoretical predictions in the figures.

For t 21 , these four calculations reasonably agree with the data. The extracted t21

from this experiment is consistent with the calculated t 21 within their error bars. For

t 22, the calculations do not differ too much, give good agreement with the extracted t22

for Kinematics 2, 3, and 4, but disagree with the extracted t22 for the first kinematics.

The calculated t22 agrees with the theoretical calculations.
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Figure 7-31: Comparison of the extracted t21 (circles) with various calculations: nonrelativistic im-

pulse approximation by Wiringa, Stoks, and Schiavilla [4] using Argonne v18 potential, the same

calculation as above but including relativistic corrections and MEC's, the complete impulse approx-

imation (cia) by Van Orden, Devine, and Gross [66] and the calculation by Carbonell, Desplanques,

Karmanov, and Mathiot [65] using Ligh Front dynamics. The square are t21 calculated using GQ

from this experiment and the world B(Q) data.
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The squares are t2 2 calculated using GQ from this experiment and the world B(Q) data.
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Chapter 8

Conclusions

A summary of the representative sample of theoretical calculations presented here

and a somewaht subjective evaluation of their goodness of fit to the present CEBAF

data and the previous Bates [12] data are shown in Table 8.1. Although the two data

sets agree within their error bars, the present data are systematically more positive

than the Bates data in the Q range where they overlap.

This difference results in a significant deviation of the evaluation of goodness of fit

of the various calculations to the two data sets. The present data set favor calculations

5, 8, and 14 in Table 8.1, whereas the Bates data favor calculations 2, 10, 13 and

15. In some cases, a calculation that gives a qualitatively good fit to one data set

will give a poor fit to the other. It would appear that in general the Bates data

prefer potential model calculations that contain no meson exchange currents. The

present data, on the other hand, prefer potential model calculations containing meson

exchange currents.

The relativistically covariant calculations present a somewhat more confusing pic-

ture. These in general either lie between the two data sets or show some preference

for the Bates data.
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The present data exhibit a node in the monopole charge form factor at Q = 4.03

+ 0.06 fm- 1 . This is at a somewhat smaller momentum transfer than previously

reported [12]. The implications in terms of the analysis of Henning et al. [13] (see

Chapter 1) is shown in Figure 8-1. The straight line is the best linear fit to calculations

based on six different non-relativistic potential models. The longer box to the right

is the region allowed by the data of Ref. [12], whereas the smaller box to the left is

the region allowed by the present data.

20-

18-

16-

E 14-

E .

Q 12-

10
10 15 20

2min [fM-2] ( 2H)
25 30

Figure 8-1: Predicted positions of the node for the charge monopole form factors for three-nucleon

systems and the deuteron. A linear relationship was obtained from the calculations using six non-

relativistic potential models [13]. The longer box indicates the region allowed by the data of Ref.

[12], whereas the smaller box indicates the region allowed by the present data.

The present data clearly tend to give a more consistent position of the node for
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GC for the two-nucleon and three-nucleon systems with respect to the theory when

compared with the results of Ref. [12]. However, theoretical calculations are not

acceptable arbiters of the real world. There is a real experimental discrepancy that

must be resolved. Resolving this discrepancy would require an experiment of much

higher precision in the momentum transfer range 2 fm-' < Q < 4.7 fm- 1. This

would also include the minimum in the Gc form factor, which is a strong constraint

on the various models. It has been pointed out by Turchinetz, et al. [109], that

the BLAST facility at the Bates Linear Accelerator Center would be ideal for this

experiment. BLAST will be equipped with a polarized internal deuteron target. By

taking advantage of its large phase space acceptance and the high intensity stored

electron beam of up to 1 GeV in energy in the Bates South Hall Ring, an experiment

of about 1000 hours would produce a detailed mapping of the tensor moments in this

Q range with statistical accuracy of a few percent. Such an experiment would severly

constrain the acceptable choice of theoretical models.
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I.D. Authors Potential or Model Included CEBAF Fit Bates Fit

1 Mosconi and Ricci [1] Paris IA Poor Fair

2 Mosconi and Ricci [1] Paris IA+RC Poor Good

3 Mosconi and Ricci [1] Paris IA+RC+MEC Fair Fair

4 Schiavilla and Riska [42] Argonne v 14  IA Poor Fair

5 Schiavilla and Riska [42] Argonne V1 4  IA+RC+MEC Good Poor

6 Pauschenwein et al. [43] Paris IA Poor Fair

7 Pauschenwein et al. [43] Paris IA+RC Poor Poor

8 Pauschenwein et al. [43] Paris IA+RC+MEC Good Poor

9 Pauschenwein et al. [43] Bonn OBEPR IA+RC+MEC Fair Fair

10 Pauschenwein et al. [43] Bonn OBEPQ IA+RC+MEC Poor Good

11 Pauschenwein et al. [43] Full Bonn IA+RC+MEC Poor Fair

12 Pauschenwein et al. [43] Folded Bonn IA+RC+MEC Poor Fair

13 Wiringa et al. [4] Argonne v18  IA Poor Good

14 Wiringa et al. [4] Argonne v18  IA+RC+MEC Good Poor

15 Hummel and Tjon [59, 60] quasipotential OBE IA Poor Good

16 Hummel and Tjon [59, 60] quasipotential OBE IA+pry Fair Fair

17 Hummel and Tjon [59, 60] quasipotential OBE IA+pr7+w7-y Poor Poor

18 Chung et al. [4] Paris (LFD) Poor Fair

19 Van Orden et al. [66] CIA pry Fair Fair

20 Carbonell et al. [65] Bonn QA NRIA Poor Poor

21 Carbonell et al. [65] LFD hi+f2 Poor Poor

22 Carbonell et al. [65] LFD fl+f2+f5 Fair Fair

23 Carbonell et al. [65] LFD fi+f 2 +f 5 +contact Fair Fair

24 Sitarski et al. [72] Coupled Channel Model C Fair Poor

25 Sitarski et al. [72] Coupled Channel Model D Poor Poor

Table 8.1: Summary of the representative theoretical calculations presented here and a subjective

evaluation of their goodness of fit to the present CEBAF data and the previous Bates [12] data.

Abbriviation used are: IA = Impulse Approximation; RC = Relativistic Corrections; MEC = Meson

Exchange Currents; NRIA = Non-relativistic Impulse Approximation; CIA = Complate Impulse

Approximation; LFD = Light Front Dynamics.
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