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ABSTRACT

An experimental study was performed to produce spherical iron powders from irregularly

shaped water atomized powders. This process consists of re-melting the water atomized

powders in a drop tube at temperatures above the particles' melting point. The proposed

process consists of a drop tube heated by electric resistors in which small irregularly

shaped iron particles rapidly melt by thermal radiation and form spherical particles by

means of surface tension. Since the process is carried out in a vacuum, convective heat

transfer is negligible compared to the radiative heat transfer.

Although this technique has been used in the past to produce single particles, its use to

mass-produce spherical iron powder has not been employed. The purpose of this work is

to extend this process to mass-production of spherical iron powder from atomized

powders and to develop a better understanding of this technique and its application to

processing iron or other iron alloy powders.

Laboratory tests proved this process successful to spheroidize irregularly shaped particles

at low feed rates, however, this process can be easily adapted to produce larger quantities

of material without significant changes in equipment configuration.
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Thesis Reader: Jung-Hoon Chun
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Chapter 1 Introduction

1.1 Background

Over the past two decades, metal powder use has increased due to new technologies and

applications. The principal rise in metal powder utilization appeared with the advent of

powder metallurgy as a near net shape manufacturing process for metallic components,

and as an alternative to the conventional production technologies of melting, casting and

machining.

Furthermore, with the development of new technologies for producing metal parts and

near net shapes, such as powder injection molding and spray forming processes, the use

of metallic powders has risen even more. However, some of these technologies require

spherical metallic powders as the raw material, and some other uses, such as magneto-

rheological fluids, require this particle shape as well.

Consequently, a number of powder production techniques have been developed and

optimized in order to fulfill the increasing demands of powder quality. These techniques

allow manufacture of a wide spectrum of metal powders designed to meet a variety of

applications. Powders of virtually all metals can be produced. Various processes allow

precise control of the chemical composition and physical characteristics of powders

suitable for specific applications.

As emerging applications appear, new processes or innovations to existing methods arise

to meet the quality, cost and performance requirements of these new applications.

Hereinafter, a brief discussion of some of the standard technologies and some newer

technologies for the production of iron powder will be presented [1].
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1.2 Fabrication technologies for iron powder

Iron powder is used in multiple applications such as powder metallurgy, welding rods,

flame cutting, food enrichment, and other electronic, magnetic and chemical applications.

Powder metallurgy uses the greatest quantity of iron powder, as only one third of the total

iron powder produced is used in applications other than powder metallurgy.

There are many technologies for the production of iron powder, which, depending on the

nature of the process can be broadly classified as mechanical processes and chemical

processes. The most common processes use water and gas atomization, milling,

mechanical alloying, electrolysis and chemical methods including reduction of oxides.

1.2.1 Oxide Reduction

The oldest of these methods is the Hdegands process. This process was developed in

Heganas, Sweden, and consists of the reduction of iron oxide, in particular, the

reduction of iron ore by carbon. Although this process was intended to produce metallic

iron in sponge form as the raw material for steelmaking, it proved very useful for the

production of iron powder. The use of iron powder produced by this method is limited

because of the content of impurities and poor physical and mechanical properties, such as

particle size and distribution, particle shape and internal porosity.

The Pyron process is an alternative method to produce iron powder by oxide reduction. In

contrast with the H6eganas process that uses ground iron ore, the Pyron process uses mill

scale taken from steel mills that make plain carbon steel products. In this process, the

scale is magnetically cleaned and ground in a continuous ball milling operation. This

milling ensures the desired particle size distribution. After the milling stage is complete,

the material is oxidized to convert the oxides present in the mill scale, FeO and Fe30 4 , to

ferric oxide (Fe2O3) which is later reduced by hydrogen in electric furnaces to convert it

to iron:
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Fe 2O 3 +3H 2 ->2Fe+3H 20 ( 1.1 )

Pyron iron powder has fine porosity and a sponge-like microstructure. It also has an

irregular shape.

A third type of oxide reduction process is the Fluidized Bed process. Some variations of

this process include fluidized-bed combustion, gasification, heat treatment and catalytic

reactions. Fluidized-bed reduction was primarily used in the decade of 1960. Thereafter,

electrolytic decomposition, atomization, the carbonyl process and oxide reduction

processes replaced this process

In the fluidized-bed, a granular material is kept in fluid motion using a fluidizing gas,

which reacts chemically with the granular solid. In the case of fluidized-bed oxidation,

the gas typically is air or oxygen. On the other hand, in the fluidized-bed reduction, the

fluidizing gas contains hydrogen or carbon monoxide, or a mixture of the two.

1.2.2 Atomization

Atomization processes are widely used for making both iron and steel powders. This

process consists of mechanical disintegration of a molten metal stream into small droplets

that are rapidly cooled by means of conductive and/or convective heat transfer.

The atomization process can be sub-classified depending on the atomization medium, as

it can either be done by using inert gas, oil or water as the atomization medium [2]. Other

modified versions of atomization are centrifugal, vacuum, ultrasonic and rotating disk

atomization.

The water, oil and gas atomization processes consist of hitting a molten stream of liquid

metal with a jet of gas or water to break it into small particles. When gas breaks up the
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molten stream, the cooling rate is lower, allowing surface tension to re-shape the

resulting droplets into spherical particles before they solidify [3].

Inert gas atomization is the leading process for the production of high-grade metal

powders whose specific quality criteria are spherical particle shape, high bulk density and

flowability as well as high purity with low oxygen content. On the other hand, water

atomization yields irregularly shaped particles due to a higher cooling rate, although it is

also very widely used in industry due to a larger production rate and lower costs than the

gas atomizing process.

One variant of the atomization processes, the impact atomization process, consists of

breaking up the stream of molten metal by mechanical means, usually a palette rotating at

very high speeds. These blades break the stream into very small droplets that are thrown

into a falling stream of water, solidifying them on contact [4]. The cooling process can

vary to accommodate different cooling rates and control the final shape of the particles.

In this process, the final particle shape and size depend on the size of the stream and its

velocity, on the stream-breaking mechanism as well as the rotating speed and atomization

angles. This mechanism is also a combination of two phenomena, the pure impact

mechanism and the centrifugal effect, which are explained to more detail below.

Centrifugal atomization processes are different from these previous processes in the way

that they also use a mechanical force to atomize the liquid metal, but in this case the

centrifugal force is exerted on the metal in a different manner. The molten metal is

poured into a rotating disc with small orifices in the outer diameter. This way, the melt is

driven to the outer surface of the disc and is forced out of the disc through these orifices

to cool down while falling into a collector system or to an outer cup containing a cooling

liquid [5]. These processes can vary in terms of cooling mechanisms and equipment

layout, but the essence of the process is the one described above.
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Ultrasonic atomization processes use high frequency vibration to break a molten stream

of metal into fine particles. These vibrations can be imposed by either mechanical or

electromagnetic means. In the case of mechanical methods, the primary mechanism of

break-up is imposing high frequency vibration on the melt stream at the moment it is

exiting the crucible where the material is being melted. This operation can be done with a

piezoelectric crystal by alternating the electric signal applied to the crystal. The

piezoelectric will transmit its vibration to an attached mechanism that imposes the same

vibration to the melt and to the melt stream breaking it up into small particles.

Processes such as spray forming have been optimized using this principle, allowing for

uniform particle size distribution by controlling both the vibrating frequency and the exit

orifice of the melt [6].

Another example is a variation of the Plasma Rotating Electrode Process (PREP), usually

applied to produce particles larger than 80pm in diameter. In centrifugal atomization, the

usual configuration both in laboratory and large scale industrial practice is the PREP

process, used to melt a cylindrical rod using a stationary electric arc while the rod is

rotated at high speeds of 10,000 to 20,000 r.p.m. Even though this process is effective,

the facility needs a special high speed driving motor and supporting mechanics for the

rotating components, which are disadvantageous from a cost-benefit perspective.

A variation of this process is to use the same equipment configuration except for the

rotation of the bar. Instead of bring rotated, the bar is attached to a vibrating mechanism

at ultrasonic frequency which causes the molten material on top of the bar to form

capillary waves and to be atomized into droplets. Other variations of this technique exist,

but the principle remains the same: atomization through vibrations.

Recently, some newer techniques that combine other melting mechanisms with

atomization techniques have been developed. Two examples of new methods are Plasma
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Melting in combination with Gas Atomization and Electrode Induction Melting in

combination with Gas Atomization.

In the Plasma Melting process, the material is melted in a water-cooled metallic crucible

with plasma heat sources to avoid any contamination of the particles by contact with

ceramic crucibles. Once the material is molten, it is atomized with inert gas, assuring

minimum contamination of the particles [7]. This process, as well as the Electrode

Induction Melting process, yields superclean materials.

The Electrode Induction Melting process also avoids contamination due to contact with

liner ceramics. A vertical rotating electrode is continuously melted at the front-end

section; therefore the electrode is dipped into a specially design coil [7]. Through an

automatic control system of the feeding speed, the melting power and the subsequent

atomization setup, a continuous atomization is possible. Atomization is done by inert gas

atomization.

1.2,3 Chemical Decomposition

Very fine iron powders can be produced by carbonyl decomposition [8]. This process

yields ultra fine spherical particles ranging from 1 to 10 pim in diameter. The starting raw

material for the production of iron micropowders is a relatively coarse iron. The iron is

exposed to carbon monoxide at high pressure and moderately elevated temperature. The

gas reacts with the iron according to the reaction

Fe + 5CO -> Fe(CO)5  (1.2)

to produce gaseous iron pentacarbonyl. This gas is later condensed to a liquid and

reduced under pressure in such a way that it vaporizes again and passes through a

decomposer where it is mixed with a small amount of ammonia (NiH3). The decomposer

13



is externally heated, causing the iron pentacarbonyl to decompose back into iron and CO

gas.

Various grades of powder can be manufactured for applications as varied as radar

absorbing materials, electronic cores, dietary supplements, and powder metal parts. For

some special applications, the resulting powders are reduced by heat treatment in a

hydrogen-containing atmosphere to remove carbon and nitrogen, achieving one of the

purest forms of iron available.

1.2.4 Electrolytic Iron Powder

Electrolytic iron powder has the highest purity among all types of commercially available

iron powders. The process consists of either depositing a loosely adhering, powdery

deposit directly onto a permanent cathode or depositing a smooth, dense layer of refined

metal on a cathode and subsequently milling to obtain powder. In either case, the

resulting particles present irregular shapes. Due to the high cost of manufacture, its usage

is limited to specific chemical, catalyst and food-additive applications.

1.3 Motivation and Goals of Research

Although there are many manufacturing processes available today to produce metallic

powders, only a few of these processes can be used to produce iron powder. As new

applications for iron powder emerge, more stringent requirements have to be met

regarding powder properties; such requirements imply both chemical and physical

properties including particle shape and size.

To satisfy the industry requirements, new processes are needed to overcome these

constantly increasing limitations as alternate processes to the carbonyl process and those

atomization processes that yield spherical particle shape at high costs compared to those

that yield irregular particles.
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A simple technique consisting of melting irregularly shaped particles inside a vertical

tube furnace is explored in this thesis. Although this technique has been used in the past

to produce single particles, it has not been used to mass-produce spherical iron powder.

The purpose of this work is to extend this technique to mass-production of spherical iron

powder from atomized powders. The powders to be processed range in size from 15 to

100 pm in diameter, although larger particle sizes can also be processed. A variation of

this process has also been used to produce W-Co agglomerates [9] at higher temperatures

than that needed to melt iron with acceptable results.

The basic sketch of the apparatus built in the course of this work is presented in Figure

1.1.

The goal of this research is to develop a better understanding of this technique and its

application to process iron or other iron alloy powders. Also, an important part of this

research is to understand the physics of the process, mainly the heat transfer mechanisms

and the particles' behavior within the furnace, and to characterize the physical parameters

that define the system.

1.4 Outline of the Study

While this chapter has provided an introduction to the project and its primary objectives

and a brief discussion of available powder manufacturing technologies and their

characteristics, the next chapter presents the basic physical models that describe the

process along with some predicted results. Chapter Two presents the physical models of

particle motion and dispersion as well as the heat transfer mechanisms involved during

heating and cooling of the particles. Chapter Three describes the experimental method

employed to produce spherical particles including experimental results. Finally, a

summary of this thesis and recommendations for future work are given in Chapter Four.
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Chapter 2 Process Description

The proposed process consists of a drop tube heated by electric resistors in which small

irregularly shaped iron particles rapidly melt by thermal radiation and form spherical

particles by means of surface tension.

The raw material used in the process is water-atomized iron powder. The final particle

size is dependent primarily on the initial particle size of the starting material, although it

also depends upon processing parameters and equipment dimensions.

Carrying out the process in a vacuum modifies the process and simplifies the analysis

from an analytical point of view by eliminating the convective heat transfer effect. When

the process is carried out at atmospheric pressure, the critical effect of natural convection

must be taken into account. The problem of including convective heat transfer is that at

atmospheric pressure and high temperatures, enhanced convective flows should appear

inside the tube, invalidating the model of a freely falling Sphere. Also, since the small

molten particles will not fall through the tube but instead follow these convective flows,

they will increase the probability to collide with each other and with the tube walls and

the tube may be clogged by the accumulated metal powder.

2.1 Particle Trajectory

2.1.1 Terminal Velocity

Consider the falling particles as spherical flowing through stagnant air at low pressure.

When a gas is in the continuum flow regime and at low pressures -- less than 10

atmospheres --, the pressure has no effect on the viscosity of the gas and the viscosity is

greatly affected by the gas temperature [10].

The Knudsen Number is used to determine the type of flow regime. This number can be

written as the ratio of the mean free path of the molecules, that is, the average distance
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the gas molecules have to travel before colliding with another molecule, and the

characteristic length of the system. In the case of the system being described here, the

characteristic length of the system is the tube diameter. The mean free path can be

expressed as a function of the gas pressure, temperature and the molecules' characteristic

diameter, o- [11, 12, 13]:

AKBT
Piro-2

Kn =
D

(2.1)

(2.2)

In these two expressions, A represents the mean free path, T is the absolute temperature, P

is the pressure, KB is the Boltzmann constant and o- is the characteristic diameter of the

molecule. Kn is the Knudsen Number and D is the tube diameter. The flow regimes are

characterized by the magnitude of the Knudsen number [12]. Table 2-1 summarizes these

classifications.

Table 2-1 : Flow Regimes

For air at 1800 K, and 0.1 Atm, the mean free path is of the order of I0U meters and the

Knudsen number for this system is of the order of 10-6, hence the system consists of

continuum flow regime. The required pressure for the system to change to slip flow has

to be less than 10 Torr and less than I0 4 Torr to be in free molecular flow.

18
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The forces acting on the falling particle are the weight of the particle forcing it to fall, the

buoyant force exerted by the gas and the drag force acting in the opposite direction of the

motion. The effect of these forces appear graphically in Figure 2.1.

Fd Fb

Figure 2.1: Forces acting on a particle

The drag force Fd is related to the particle motion and it is quantified by the drag

coefficient, the particle size and the gas properties. The drag coefficient is a function of

the shape of the particle and the particle's Reynolds number. Similarly, the buoyant force

Fb is the force exerted by the fluid on the particle even when the gas is stationary [10].

These forces can be expressed as:

F, = pVg

CdAPpfUbFd= 2

Fb =Vpfg

(2.3)

(2.4)

(2.5)

19
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In the above expressions, Cd is the drag coefficient, pf is the gas density, A. is the

projected area of the particle, Ub is the bulk velocity relative to the particle, V is the

particle volume and g is the gravitational acceleration constant.

Assuming spherical particle shape, these formulas can be simplified for this specific

geometry. The drag coefficient Cd is the ratio of the gravitational force to the inertial

force. For spherical particles it can be written as equation (2.6) for creeping flow

conditions and as equation (2.7) in the intermediate region before Newton's Law region.

Newton's Law of viscosity states that the shear stress between adjacent fluid layers is

proportional to the negative value of the velocity gradient. This last regime is

characterized by Reynolds numbers greater than approximately 500, and the drag

coefficient for spheres has a constant value of 0.44 in this region.

Cd = 24 Rep <2 (2.6.)
Rep

Cd = 18.5 2 Re 500 (2.7)
p

The particle's Reynolds number is a function of the particle diameter, dp, the gas velocity

relative to that of the particle, Ub, the fluid density, pf, and the gas viscosity p:

Re =dpUbpf (2.8)

For low pressures under continuum flow, the viscosity of a gas is independent of the

pressure and depends only on temperature. Using the Lennard-Jones potential, Chapman

and Enskog [10] developed the following equation for the viscosity of a non-polar gas at

low pressures (<10 atm):
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pu=2.67 x 10- 5  (2.9)

where p is the dynamic viscosity in poises; M is the gram-molecular weight of the gas; o-

is the characteristic diameter of the molecule in Angstroms; T is the absolute temperature

of the gas and fln is the collision integral of the Chapman-Enskog theory. Values for the

collision integral fln are extensively tabulated; its value is independent of pressure and

depends only on the dimensionless temperature parameter KBT/E, where E is the

characteristic energy parameter and KB is the Boltzmann constant. For air at 0.1

atmosphere and an absolute temperature of 1800 K, the calculated values for fln and o-

are 0.73 and 3.711 A respectively [10].

Under creeping flow conditions, equations ( 2.4 ) and ( 2.5 ) can be rearranged for a

spherical particle as

Fd= 3dPUp (2.10)

F=--dpg (2.11)

Under creeping flow conditions, Stokes' Law -- equation ( 2.10 ) -- is used to calculate

the particles' terminal velocity by setting the relative velocity Ub to the final velocity Vf

and solving for the final velocity, thus providing the system of forces acting on the

particle. The resulting equation for the final velocity is

V d = p -pf (2.12)
18 p

This equation holds for Reynolds Numbers less than approximately one. The above

equation states that the final velocity a particle can reach, depends on particle size as well
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as the fluid density and viscosity, which are functions of pressure and temperature

respectively. Also, for small feed rates, the spacing between particles is larger than 2

particle diameters, therefore, no interactions between particles can be assumed and no

adjustment of the drag coefficient is necessary. This effect is verified experimentally later

in Chapter Three.

2.1.2 Initial Velocity and Residence Time

Since the viscosity increases with temperature, the drag force also increases with

increasing temperatures. We can also anticipate increases in drag as the particle size

decreases, therefore the terminal velocity will increase as the particle size increases.

Furthermore, for very small particles, the drag force is notably large and the

corresponding terminal velocity will be very small due to the large specific area of the

small particles. The effect of particle diameter and temperature on the terminal velocity

can be seen graphically in Figure 2.2.

.40
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Figure 2.2: Particle terminal velocity as a function of particle size at 0.1 Atm
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As the particles begin to fall, they accelerate gradually until they reach the terminal

velocity. For small particles, the time necessary to reach the terminal velocity is very

small. Following the same approach used to calculate the terminal velocity we can

calculate the effective acceleration of the particle, a:

d g(p, - p,) - l8UbJ[Ip (2.13)
dpf

Solving the above equation iteratively with the free fall velocity and travel distance

equations, we obtain different curves for the particles' velocity as a function of time for

various particle sizes. These curves are displayed in Figure 2.3 and Figure 2.4. Note that

for smaller particles, the particles attain their final velocity almost instantly and

consequently they will travel at their final velocity throughout the process.

Since the velocity is constant for small particles, the residence time will also behave

linearly with the flight distance. Figure 2.5 shows the estimated residence time for

different particle sizes as a function of flight distance, assuming the particles reach their

terminal velocity instantaneously.
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Figure 2.3: Initial velocity for small particles as a function
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Figure 2.5: Particle flight time vs. tube length in air at 0.1
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2.2 Particle Heat Transfer Model

For small spherical particles, we can assume Newtonian heating and cooling when the

Biot number is less than 0.1, that is, no internal gradients of temperature exist within the

particle. For small iron particles, the Biot number is in the order of 10-3 . These values

were calculated using the characteristic length of the particle, and the total heat transfer

coefficient, ht. For spherical particles, the characteristic length is the particles' diameter.

The total heat transfer coefficient is the sum of both the convective and radiative heat

transfer coefficients.

Since the system is operating in vacuum, the convective heat transfer coefficient ke is

negligible compared to the radiative heat transfer coefficient hx, therefore the total heat

transfer coefficient can be assumed to indicate only radiative heat transfer (see Table

2-2). This radiative coefficient is derived from the total heat transfer to the particle and

can be written as equation (2.15) [10]:
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h, = hc + hr

hr =To- P
T, - T.

(2.15)

Where T is the view factor between the particle and the surrounding areas. The view

factor encompasses the geometric configuration factor and the emissivity. In the case

when the particle is completely surrounded by a large surface with constant temperature

T, the view factor T reduces to c, the emissivity of the particle. A comparison of the

radiative and convective heat transfer coefficients is shown in Table 2-2.

Table 2-2: Comparison of heat transfer coefficients at 1800 K

The particles' Biot number depends also on the thermal conductivity, k, and is given by

hd
Bi= r ( 2.16 )

k

When the interaction between particles is important, the effective emissivity of the

particles has to be corrected for the emissivity of a cloud of particles, which absorbs part

of the radiation and hinders the total radiative heat transfer to the particles. The

emissivity for a cloud of particles, Ec, is shown in equation (2.17).
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Pressure 0.1 Atm 0.4 Atm 0.7 Atm 1.0 Atm
hc

(W/m2-k) 2.14 3.03 3.64 4.14

hr
(W/m2-k) 896 896 896 896

( 2.14 )



EC =I - eXp( - FNLA,) ( 2.17 )

where sp is the particles' emissivity, Np is the concentration of particles per unit volume,

L is the length of the cloud of particles and Ap is the average cross-sectional area of the

particles [14]. We may assume that the particles do not spread in their trajectory as the

limiting case and that they remain uniformly distributed throughout their whole flight

time with a distribution equal to the initial spreading across the inlet area.

Setting the length of the cloud as the distance L, we can rewrite the above equation as a

function of physical parameters of the system such as feed rate, inlet diameter and

particle diameter. In SI units:

6 exp -108& ,p fFeedRateL (.8
d gp 2d|,,,6> = 1-exl{ inlet (.8

For small particles and low feed rates, the sc is of the order of 10-4, hence the cloud of

particles has no effect on the particle emissivity and no correction is needed.

Having calculated the Biot number and determined the Newtonian conditions, the

controlling differential equation for heating and cooling is based on a heat transfer

balance to or from the particle:

dT
q =rhCp = hA(T-T=oA(T - (2.19)

dt

dT 16e(
-=(T ))( 2.20 )

In the above equations, o- is the Stefan-Boltzmann constant, A is the surface area of the

particle and Cp is the specific heat of the material at constant pressure.
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Integrating equation ( 2.20 ) using partial fractions and solving for the limits of

integration yields equation ( 2.21 ), that holds for both heating and cooling. This equation

can also be used to calculate the superheating in the particle once the particle melts, using

the specific heat of the liquid phase instead of that of the solid phase.

6 o-(t - to) 1 T a n -' T T a n -' T
= Tan- -Tan-pC~d, 2TJ YTc (T*- (2.21)

+ I Ln(T. + T) - Ln(T. + To)]- [Ln(T - T,) - Ln(T - T.)]}
4T0

A simple heat balance calculation yields the time needed to melt the particles once they

reach their melting point. Using the effective specific heat of the material in the above

equation and the appropriate temperature range, one can obtain the melting time. The

effective specific heat adds to the specific heat of the solid phase the latent heat of fusion

divided by the temperature range in which the material completes the phase change from

solid to liquid or vice versa. The results of the heat transfer modeling can be summarized

in Figures 2.6 to 2.8. Figure 2.6 shows the required travel distance to melt the particles at

0.1 Atm and various drop tube temperatures. This plot shows values for iron particles

with melting point of 1535 C.
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Figure 2.6: Required Distance to Melt Iron Powder

The results from Figure 2.6 are in agreement with the experimental results. These results

will be discussed later in Chapter Three.

A model of how the particle heats up, melts and solidifies as it passes through each of the

cold and hot zones of the furnace can be constructed by solving equation ( 2.21 ) for each

zone in the furnace. Results of this model are shown in Figure 2.7 and Figure 2.8.
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Figure 2.7: Particle Temperature vs. Drop Distance

Operating Pressure: 0.1 Atm; Particle Diameter: 50pm
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Figure 2.8: Particle Temperature vs. Drop Distance

Operating Pressure: 0.1 Atm; Particle Diameter: 50pm
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These two figures are delimited by two vertical lines that indicate the change of zone

within the furnace. In the first zone, the pre-heating zone, the particles heat up to the tube

wall temperature, which rises at a nearly linear rate to the melting zone temperature. This

pre-heating zone can be as short as needed, since the heating time needed to raise the

particles' temperature to the melting point is negligible compared to the time required for

melting the particle. The complete mathematical model used to obtain these plots is

shown in Appendix A. This model uses experimental values of the tube temperature

profile to calculate the particles' temperature at a given distance.

Figure 2.8 focuses on the particles' temperature in the middle zone or melting zone. In

the first part of this plot, the particle remains at the melting temperature while melting

takes place. After melting is completed, the molten particle suddenly raises its

temperature to approximately that of the tube wall temperature until it reaches its peak

value. From that point forward, the particle starts to cool down following the tube

temperature profile until it reaches the melting temperature, where it starts to solidify.

Once solidification is completed, the particle cools down in the last zone, the cooling

zone, following once again the tube temperature profile. The required distance to melt for

a 50 pm particle in Figure 2.6 corresponds to what is shown in Figure 2.8.
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Chapter 3 Experimental Apparatus and Procedure

3.1 Equipment Description

Figure 1.1 shows a schematic of the apparatus utilized to spheroidize the powder. The

equipment consists of a tube furnace lined up with a dense alumina cylinder eight inches

inside diameter and one inch thick as a first insulating layer backed up with a layer of

porous alumina firebrick (2800 F) two inches thick. This same configuration was used on

top and bottom of the furnace during construction.

The furnace has four 0.5" openings to accommodate four silicon carbide heating elements

rated at 2f2 of electrical resistance each. They are symmetrically arranged at a radius of

3" from the furnace center. The center opening accommodates an alumina tube of 3"

diameter and 3 foot long. The heating elements can raise the temperature of the furnace to

1650 C, although normal operating temperature is 1600C. This temperature is measured

outside the process tube in the hot chamber of the furnace and is controlled by a closed-

loop control system. The furnace operates at 220 VAC, W<D, 20A.

Since the system operates in vacuum, a feeder system was designed and built to allow

constant and steady feed rates to the furnace. The feeder operation consists of a hopper

feeding powder by gravity to a rotating disc; the disc is rotating at a fixed speed of 1

r.p.m. The powder travels on the disc to the opposite side of the feeder where it is pushed

off of the disc and into a funnel by a sweeping blade. The discharge of the funnel

connects directly to the process tube inlet. A section view of the feeder system can be

seen in Figure 3.1.
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Figure 3.1: Cross section view of feeder system

The processed particles are collected at the bottom of the drop tube in a stainless steel bin

that is emptied after a complete batch of material has been processed. This collecting bin

is attached to a brass structure that connects to the bottom of the process tube. The

vacuum pump connects to this unit.

The vacuum system is comprised of a positive-displacement rotary piston mechanical

pump, an air filter and a heat exchanger to cool the air going into the pump. This heat

exchanger is necessary to operate the pump for long periods of time, and avoid possible

overheating of the pump.
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3.2 Challenges in Spheroidization

Initial attempts to spheroidize iron powder were made in a process tube of 2" diameter at

atmospheric pressures by manually feeding the material into the furnace. Because of the

high temperatures within the alumina tube, convective flows are induced and carry the

particles away from their free fall trajectory impacting them with the tube wall.

Complete spheroidization was achieved under these conditions, for small batches of 20 to

40 grams of material, although approximately half of the material was lost to the tube

walls. Similarly, when attempting to process larger batches of material with an automatic

feeding system, the convective flows within the process tube impacted the particles with

the walls, resulting in complete clogging of the process tube with metal powder after a

few grams of material had been processed.

This behavior is mitigated as the particle size increases since the particle weight is large

relative to the convective flow force and thus the particle is large enough for it to

continue on its free fall trajectory. The obvious solution to the problem of convective

flows with small particles was to eliminate the convective flows by adapting the

equipment to process the material in a vacuum.

New limitations arise by processing the material in a vacuum. The convective heat

transfer component decreases substantially and the heat transfer will then be radiation

controlled. Considering the strong dependence of these new process conditions on

particle size and the materials radiative properties shown in Chapter Two, there is a

tradeoff between the operating pressure and the maximum particle size that can be

processed when reducing the pressure.
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3.3 Experimental Procedure

3.3.1 Material Preparation

Powder samples were obtained from three different suppliers. Before proceeding to

process the received powder, a smaller sample was separated and sieved to test for

particle size distribution. This procedure was done in accordance with both ASTM

Standard B214 [15 ] and MPIF Standard 05 [16 ]. If the sample had a large amount of

coarse particles, all the material to be processed was sieved and only those particles with

particle size smaller than standard mesh size 325 (45 im) were actually processed. On

the other hand, if the material had a small amount of coarse particles, the material was

processed directly with no further separation.

3.3.2 Equipment Setup

Before each experiment, the collecting bin and the feeder system were secured in place

and the vacuum system tested for leaks. A vacuum reading of 0.15 atm or lower was an

acceptable reading to begin processing material. The furnace was turned on until an

acceptable vacuum level was achieved.

After processing the material and shutting down the equipment, the collecting bin was

left in the equipment to cool down. Once the material cooled down to room temperature,

the powder was collected and analyzed in the same manner as the starting material to

characterize particle size distribution. Following the particle size analysis, a sample of the

processed material was analyzed for particle shape using a Scanning Electron Microscope

(SEM).
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3.4 Experimental Results

The results presented herein will emphasize the outcome of the experiments with two

different iron powder products. Both samples are water atomized powder, and both were

fully sieved for particle size smaller than standard mesh size 325 prior to processing. The

first sample is the Atomete HP-1001 Iron Powder from Quebec Metal Powders. The

second sample is the ATW-230* Iron Powder from Hdeganas Corporation. The results

from the experiments are reported in the following subsections.

3.4.1 Particle Shape Analysis

The following SEM pictures present a comparison of particle shape before and after

processing for each of the two powders mentioned above. These pictures clearly present

the capability of this process to completely spheroidize the water-atomized powders. The

ovaling effect seen in the set of pictures for the Atomet* powder is due to the method

used to take the SEM pictures. A different method that corrected for this photographic

effect was used for the ATW-230* SEM pictures.

Figure 3.2 and Figure 3.4 show the shape of a typical water atomized powder. Note that

the particle size in the first sample is rather large and therefore was not processed but is

shown here to illustrate the typical shape of the starting material. Contrasting with the

former two pictures, Figure 3.3 and Figure 3.5 show the perfectly spherical shape of the

resulting powder after processing.
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Figure 3.2: Atomete Iron powder before processing

Figure 3.3: Atomet® Iron powder after processing at 80 gr/hr Feed Rate
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Figure 3.4: ATW-2309 Iron Powder Before Processing

Figure 3.5: ATW-230® Iron Powder After Processing at 100 gr/hr Feed Rate

38



3.4.2 Particle Size Distribution

Similarly as with the previous comparison for particle shape, the size distribution was

obtained from different samples before and after processing. The size distribution was

obtained from the SEM pictures using Martin's diameter [1], that is, the length of a line

that bisects the area of the particle image.

Figure 3.6 (b) and (c) compares the size distribution for Atomet* Iron Powder. These

charts show that for lower feed rates the distribution remains unchanged from the starting

size distribution, validating the assumption of no interaction between particles. Although

for (c) there is a small change in size distribution, it is still negligible and not sufficient to

invalidate the model assumptions.

Analogously, Figure 3.7 (a) and (b) compare the size distribution for ATW-23(f Iron

powder. The size distribution is almost identical from (a) to (b), however, for feed rates

starting at 150 gr/hr a more prominent change in diameter was observed.
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Figure 3.6: Particle size distribution for Atomet* Iron Powder

40



35%
30%
25%

c 20%
15%

( 10%
5%
0%

40%
35%
30%

CU 25%
(D 20%
2 15%
d)

CL 10%
5%
0%

Particle Size (pm)

(a) Before Processing

Particle Size (pm)

(b) After Processing at 100 gr/hr Feed Rate

Figure 3.7: Particle size Distribution for ATW-230* Iron Powder

3.5 Experimental Validation of the model

Equation (2.21) shows a strong dependency on thermal properties of the material such as

specific heat and emissivity. Materials with high emissivity are easier to melt than

materials with lower emissivity values. This is the case of stainless steel, which has a low

emissivity and was difficult to melt. Also, the effective specific heat of stainless steel is

higher than that of pure iron, hence longer residence times are needed to melt stainless

steel particles compared to similar sized iron particles.

Analogous to Figure 2.6, Figure 3.8 shows the required distance to melt stainless steel

powder. Note that because of the lower emissivity of the stainless steel compared to that

of the iron powder, there is a lower limit on the particle size that can be melted with the

same configuration as before.
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This predicted result was in accordance with the experimental observations, where only

partial spheroidization could be achieved when processing stainless steel with the same

operating conditions and equipment configuration as used when processing iron powder.
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Figure 3.8: Required Distance to Melt Stainless Steel
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Chapter 4 Summary

The drop tower process proposed in this study proved to be a viable option to

manufacture spherical iron powder. Laboratory tests proved this process successful to

spheroidize irregularly shaped particles at low feed rates. However, given the

characteristics of the process and the heat requirements of the spheroidization

phenomenon, this process can be easily adapted to produce larger quantities of material

without a significant change in the equipment configuration. Furthermore, since the

melting zone does not need to be long, smaller furnaces can achieve the desired

spheroidization. The current configuration of the equipment allowed production of

powders with particle size of up to 100 pm, although larger particle sizes can be melted

using this process.

Since this process is carried out under a low vacuum, the heat transfer to the particles is

radiation controlled and the process is described by the model proposed in Chapter Two.

On the other hand, when the process is carried out in a medium to high vacuum, at

pressure levels of 10- Torr or less, the particle motion will no longer be in the continuum

regime: the model proposed in Chapter Two will no longer be valid and new assumptions

have to made since the particle motion will be in transitional flow or free molecular flow

[12] and corrections to the drag coefficient and the fluid properties are needed. Under

free molecular flow, the particle velocity will approach that of ideal free fall velocity and

the residence time will be very small, imposing a lower limit on the operating pressure of

the system.

Melting of the particles has a strong dependency on radiative properties of the material.

To successfully process materials with low emissivity, higher residence times are needed

to melt the particles and achieve complete spheroidization. The obvious solution is to

increase the melting zone length. A plausible second option to overcome the residence

time limitation without increasing the melting zone length is to use higher temperature

differences between process temperature and the materials' melting point, resulting in
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shorter melting times. The furnace under use in this work is limited to operating

temperatures of 1625C, therefore high temperature differences between the furnace wall

and the melting point of the iron cannot be achieved.

The current equipment configuration allows feed rates of up to 120 grams per hour before

significant agglomeration of the particles occur. higher feed rates can be achieved with

better spreading of the powder to be processed across the inlet area. This spreading has to

take into account spacing between the particles and the tube walls to avoid any particles

hitting the walls. These values can be determined experimentally. Currently, the inlet area

is 5% of the tube cross sectional area.

In conclusion, this process proved successful for producing spherical iron powder, and

changes in the equipment setup, such as operating temperature, could improve the

capacity to spheroidize powders that cannot be processed under the present configuration.
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AppendixA

Particle Spheroidization Model

Mathematica® V.3.0

(* Graphics Modules to be used *)

<< Graphics'MultipleListPlot'

<< Graphics'Graphics'

<< Graphics'Legend'

pagewidth= 400; (* points; 72 points = 1 in. *)

m Particle Trajectory Model

General Materials and Input Data

tAir=Range[300, 1800, 300]; (* K *)

pAir= Range[.1, 1, .3]; (* Atm *)

gravAccel = 9.81; (* m/s2 )

mwAir = 28.97; (* gr-mol *)

rAir= 287; (* m2/ (s2 K) *)
pFe = 7800; (* kg/m3 *)

rUniv= 8.31451; (* J/grmol-K *)

furHotLength= 12*0.0254; (* m; Length of Hot Zone *)

furColdLength= 12*0.0254; (* m; Length of Cold Zone *)

toper = 1800; (* K *)

pOper = 0.1; (* Atm *)

posT = First [Flatten [Position [tAir, toper] ] ] ;

posP = First [Flatten [Position [pAir, pOper] ] ] ;
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Air Properties Calculation (Density and Viscosity)

Dynamic Viscosity (M) Calculation

aAir= 3.711; (* Characteristic molecular diameter in Armstrongs *)

eps= 78.6; (* K; e/kB Characteristic Energy Parameter *)

tAdim = tAir / eps; (* Adimensional Temperature T*kB/e *)

On : =Last [Last [Flatten (Solve [Log [y] ==

-0.0129760904925*Log[x] A3 + 0.1165241107936*Log[x]^2 -

0.4828286265717*Log[x] + 0.4543932648609, y] /.

x -> tAdim] ] ]

(* Collision Integral of the Enskog-Chapman Theory *)

ppoise := 2.67 * 10-5 * Sqrt [mwAir * tAir] / (aAir 2 *Q2n); (* poise *)

pAir=ppoise/10; (* kg/m-s *)

Calculation Dynamic Viscosity p
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Calculation of Terminal Velocity

As a function of Pressure and Temperature
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pAir = {);

velcharts = {};

reycharts =

estilos = {;

estilosT= {};

nombresP= {};
nombresT= {};
Do[ tOp[j] =tAir[[j]];

pOp[j] =ILAir[[j]];

Clear [
pAirfunP, velchartsfunP, reychartsfunP, estilosfunP, nombresfunP];

pAirfunP= {};

velchartsfunP=

reychartsfunP=

estilosfunP= (};
nombresfunP= (};
Do [pAi [i] := (Part [pAir, i] * 1.01 * 105 ) / (rAir*tOp [j]);

(* kg/m; P in atm converted to Pa *)

pAirfunP = Append [pAirfunP, pAi [i ] ] ;

velTerm[i] := ((partDiam* 10-6 ) A2)*

gravAccel* (pFe - pAi [i]) / (18 *MpOp[j]) *100; (* cm/s *)

velchartsfunP = Append [velchartsfunP, velTerm[i] ];

reynolds[i] :=(partDiam* 10-6 ) * (velTerm[i] /100) *pAi[i] /pOp[j];

reychartsfunP = Append [reychartsfunP, reynolds [i]];

estilo[i] :=AbsoluteDashing[{i)];

estilosfunP = Append [estilosfunP, estilo [i];

nombrefunP [i] := "P=" <>ToString [Part [pAir, i] ];

nombresfunP =

Append [nombresfunP, nombrefunP [i ]];, {i, 1, Length [pAir] } ];
nombrefunT[j] := ToString [Part [tAir, j] <> "K";
nombresT = Append [nombresT, nombrefunT [j j ]
estilofunT[j] := AbsoluteDashing[{j}];

estilosT = Append [estilosT, estilofunT [j ];

pAir = Append [pAir, pAirfunP];

velcharts = Append [velcharts, velchartsfunP] ;

reycharts = Append [reycharts, reychartsfunP] ;

estilos = Append[estilos, estilosfunP];

nombresP = Append [nombresP, nombresfunP];,

{j , 1, Length [tAi r]}I] ;
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Tabulation of Air Properties

precision = 4;

pairtable = SetAccuracy[pAir, precision];

pairtable = SetAccuracy[yAir* 1000, precision];

Print [
"Density and Viscosity of Air vs. Pressure and Temperature"]

TableForm [Transpose [Insert [Transpose [pairtable] , pairtable, -1]],

TableDirections -> {Column, Row), TableHeadings ->

(nombresT, Flatten[ {First [nombresP], " p\n (centi\npoise) "]},
TableAlignments -> Center, ColumnSpacings -> 1]

Density and Viscosity of Air vs. Pressure and Temperature

P=0.1 P=0.4 P=0.7 P=1. P

(centi

poise)

300K 0.117 0.469 0.821 1.173 0.018

600K 0.059 0.235 0.411 0.587 0.030

900K 0.039 0.156 0.274 0.391 0.039

1200K 0.029 0.117 0.205 0.293 0.047

1500K 0.023 0.094 0.164 0.235 0.054

1800K 0.020 0.078 0.137 0.196 0.061
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Effect of Pressure on Terminal Velocity at Constant Temperature

(* Plot of Terminal

Velocity vs. Pressure at different Temperatures *)

(* To obtain the individual plots, *)

remove the DisplayFunction -> Identity option *)

(* from the Plot instruction *)

allT = {};

Do[dummy= (};

Do [
plot [i ]= Plot [Evaluate [Part [velcharts, i + 2 * (j - 1)]],

{partDiam, 5, 75), Frame -> True, AxesOrigin -> {O, 0),

ImageSize -> 216, FrameLabel -> {"Particle Diameter (Am)",

cm
"Vel ", StringJoin["Terminal Velocity at ",

5

ToString [Part [tAir, i + 2* (j - 1) ]" K"], None},

Ticks -> Automatic, PlotStyle -> Part [estilos, i],

PlotLegend -> Part [nombresP, i], LegendPosition -> {.65, -.4),

LegendTextSpace -> 3, LegendShadow -> {0, 0),

LegendLabel -> " Pressure", DisplayFunction -> Identity];

dummy = Append[dummy, plot [i]];, {i, 1, 2) ;

allT = Append[allT, dummy];, {j, 1, Length[tAir] / 2);

(* Plot

of terminal velocity at tOper and pOper without any titles *)

Print["Terminal Velocity at "<>

ToString[tOper] <>" K and " <>ToString[pOper] <>1" Atm."]

Plot [Evaluate [velcharts [ [posT, posP] ]

{partDiam, 0, 50), Frame -> True,

ImageSize -> pagewidth, FrameLabel -> {"Particle Diameter (pm) U,
cm

"Vel ", (*StringJoin["Terminal Velocity at ",
s

ToString [Part [tAir,4] J" K"] *)None, None},

Ticks -> Automatic, AxesOrigin -> {0, 0)]

Show[GraphicsArray[allT, PlotRegion -> {{0, 1), {0, 1)),

GraphicsSpacing -> .05, ImageSize -> pagewidth]

Terminal Velocity at 1800 K and 0.1 Atm.

52



17.5

15

12.5

1U 10

7.5

5

2.5-

0 10 20 30 40 50
Particle Diameter (pm)

Graphics

53



Terminal Velocity at 300 K
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Effect of Temperature on Terminal Velocity at Constant Pressure

(* Plot of Terminal Velocity

vs. Operating Temperature at 0.1 atm < P < 1 Atm *)

Plot [Evaluate [Flatten [Transpose [{First [Transpose [velcharts] ] }]]],

{partDiam, 0, 50),

Frame -> True, ImageSize -> pagewidth, FrameLabel ->

{"Particle Diameter (pm)", "Vel
cm

", "Terminal Velocity", None},
5

Ticks -> Automatic, PlotStyle -> estilosT, PlotLegend

LegendPosition -> {.95, -. 35), LegendTextSpace -> 3,

LegendShadow -> {0, 0), LegendLabel -> "Temp (K) "
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Effect of Pressure on Particle Reynolds Number at Constant Temperature

reyT = {};

Do[dunnny = {};

Do[plot[i] = Plot [Evaluate[Part[reycharts, i2* (j -1)]],

{partDiam, 5, 50), Frame -> True,

ImageSize -> pagewidth, FrameLabel -> ("Particle Diameter (pm)",

"Reynolds", StringJoin["Particle Reynolds\nNumber at ",

ToString [Part [tAir, i + 2 * (j - 1) ] ] , "K" ] , None),

Ticks -> Automatic, PlotStyle -> Part [estilos, i],

PlotLegend -> Part [nombresP, i], LegendPosition -> {.6, - .45),

LegendShadow -> {0, 0}, LegendLabel -> " Pressure",

LegendTextSpace -> 2.75, DisplayFunction -> Identity];

dummy = Append [dummy, plot [i ] ] ; , {i, 1, 2) ] ;

reyT = Append [reyT, dummy] ;, {j, 1, Length [tAir] /2)];

Show[GraphicsArray[reyT, PlotRegion-> {{0, 1), {O, 1)),

GraphicsSpacing -> .05, ImageSize -> pagewidth] ]
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Effect of Temperature on Particle Reynolds Number at Constant Pressure

(* Plot of Reynold vs. Part. Diameter *)

(* To obtain the individual plots,

remove the DisplayFunction -> *)
(* Identity option from the Plot instruction *)

reyP = };
reycharts2= Transpose [reycharts];
Do[dummy= {);
Do [plot [i] = Plot [Evaluate [Part [reycharts2, i + 2 (j -1)]],

{partDiam, 5, 50}, Frame -> True, ImageSize -> pagewidth,
FrameLabel -> {"Particle Diameter (pm) ",

"Reynolds", StringJoin["Particle Reynolds\nNumber at ",

ToString [Part [pAir, i + 2 * (j - 1) ] ] , " Atm" ] , None},

Ticks -> Automatic, PlotStyle -> Part [estilosT, i],

PlotLegend -> nombresT, LegendPosition -> {.65, -.4},

LegendShadow -> {0, 0}, LegendLabel -> "Temp",
LegendTextSpace -> 3.5, DisplayFunction -> Identity];

dummy = Append[dumy, plot [i] ];, {i, 1, 2} ];

reyP = Append [reyP, dummy] ;, {j, 1, Length [pAir] / 2}];

Show[GraphicsArray[reyP, PlotRegion -> {{0, 11, {0, 1}},
GraphicsSpacing -> .05, ImageSize -> pagewidth] ]
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Particle Reynolds
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Residence Time vs. Flight Distance Assuming Constant Particle Velocity

dipar=Range[10, 50, 10]; (* .m *)
estilaisho =

Map [AbsoluteDashing, Partition [dipar / Length [dipar], 1]];

restimedist =

lengthf d / velcharts [ [posT, posP ] ]. partDiam -> dipar;

(* length in cm *)

Plot [Evaluate [restimedist], {lengthfd, 0, 100), Frame -> True,
AxesOrigin -> Automatic, FrameLabel -> {"Fligth Distance (cm)",

"Time (s) ", (*StringJoin["Residence Time at ",

ToString [Part [tAir, 4]], " K"]*)" ", None),

Ticks -> Automatic, PlotStyle -> estilaisho, PlotLegend -> dipar,

LegendPosition -> {.95, -. 35), LegendShadow -> {0, 0),

LegendLabel -> "Dp (Mm) ", LegendTextSpace -> 2.5,

ImageSize -> pagewidth]
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Graphics
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Residence Time vs. Particle Diameter Assuming Particle Falls at Terminal Velocity (Validated in next
Subsection)

resTime = furHotLength* 100 /velcharts [[posT, posPJ]; (* s *)
dpmin = 5;
dpmax = 50;

dpminzooml = 10;

dpmaxzooml = 50;

dpminzoom2 = 50;

dpmaxzoom2 = 125;

Plot [resTime, {partDiam, dpmin, dpmax}, Frame -> True,
AxesOrigin -> (0, 0}, FrameLabel -> {"Particle Diameter (Mm)",

"Time (s)", StringJoin["Residence Time at ",

ToString[tOper], " K and ", ToString[pOper], " Atm"], None),
ImageSize -> pagewidth]

Plot [resTime, {partDiam, dpminzooml, dpmaxzooml),
Frame -> True, AxesOrigin -> {dpminzooml, 0),

FrameLabel -> {"Particle Diameter (Mm) ", "Time (s)",
StringJoin["Residence Time at ", ToString[tOper],

" K and ", ToString[pOper], " Atm"] (*" "*), None),

ImageSize -> pagewidth]

Plot [resTime, {partDiam, dpminzoom2, dpmaxzoom2),
Frame -> True, AxesOrigin -> {dpminzoom2, 0),
FrameLabel -> ("Particle Diameter (mm) ",

"Time (s) ", StringJoin["Residence Time at ",

ToString[tOper], " K and ", ToString[pOper], " Atm"], None),

ImageSize -> pagewidth]
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Residence Time at 1800 K and 0.1 Atm
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Residence Time at 1800 K and 0.1 Atm
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Residence Time at 1800 K and 0.1 Atm
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Time to Reach Terminal Velocity

pIOper = pAir [ [posT] ] ;
pOper = pAir[ [posT, posP ];

Do

estilacho= {};

ploti = {};

dp = Range [2 *5, 51, 51 *10-6 ;

nombress = Flatten [Map [List, dp * 106 ];
Do

estilach[i] = Dashing[{i/100}];

estilacho = Append [estilacho, estilach[i] ];

Clear[vp, a, n, t, len, lenvelplot];

a[D] = 0;

vp[0] = 0;

t[O] = 0;

len[0] = 0;

n = 11000 - j6 *1000J *dp[[i]];

len[t] := len[t] = len[t - 1] +vp[t] /n+ 0.5*a[t] *(1/n) 2;

vp [t_] :=vp [t] = vp [t - 1] + a[t - 1] n;

1
a[t_] :=a[t] = dp [ [i] ]3 * pFe (-18 *dp [ [i] ]*vp [t] *pOper +

dp[[i] ] 3 * gravAccel * (pFe - pOper) );
lenvelplot = Table [{len [k], vp [k] }, {k, 0, 100*j}] * 100;
ploti = Append[plotl, lenvelplot];, {i, 1, Length[dp]}];

Apply [MultipleListPlot,

Append [ploti, {PlotJoined -> True, Frame -> True, FrameLabel ->

cm
{"Length (cm) ", "Vel ", StringJoin["Initial Velocity at ",

S

ToString[tOper], " K and ", ToString[pOper], "Atm"], None},

Ticks -> Automatic, SymbolStyle -> None,

SymbolShape -> None, PlotStyle -> estilacho,

PlotLegend -> nombress, LegendPosition -> {1, -. 35},

LegendTextSpace -> 1.5, LegendShadow -> {0, 0),

LegendLabel -> "Dp (pm) ", ImageSize -> pagewidth],

{j, 1, 2)];
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Initial Velocity at 1800 K and 0.1Atm
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Check on Natural Convection

Operating Parameters

kAir = 6.375933728 * 10-12 * tAir3 - 32562.86150437 * 10-12 * tAir 2 +

92676008.44008020*10-12 *tAir+1290679682.61412000*10-12;

cpAir = 944.08 + 0.1908*tAir;
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Calculation of Adimensional Numbers

(* Calculation of Prandtl, Grashof and Rayleigh *)

prandt1 = cpAir * yAir / kAir;

tW = tAir + 50;

pTube = pOper * 1.01* 10 5 ; ( Pa )

pOper = pAir [ [posT, posP] ];

gras = gravAccel * furHotLength3 * (pOper 2 / pAir 2 ) * (tW - tAir) / tAir;

rayleigh = prandtl * gras;

(* Tabulation of Adimensional Numbers (at Operating Pressure) *)

Print ["Adimensional Numbers at " <>ToString [pOper] <>11 Atm"]

TableForm[{tAir, kAir, prandtl, gras, rayleigh},

TableDirections -> (Row, Column}, TableHeadings -> {{"Temp\n (K) ",
J

"k-Air\n ", "Prandtl", "Grashof", "Rayleigh"}, None),

TableAlignments -> Center]

Adimensional Numbers at 0.1 Atm

Temp k-Air Prandtl Grashof Rayleigh

(K) m-s-K

300 0.026335 0.697234 52628.4 36694.3

600 0.0465509 0.678402 9941.86 6744.58

900 0.0629712 0.689961 3890.58 2684.35

1200 0.076629 0.716758 2018.04 1446.45

1500 0.088557 0.749525 1215.95 911.386

1800 0.0997883 0.781445 804.076 628.341
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0 Particle Heat Transfer Model

Materials Thermal Properties

eFe = 0.65;

CpFe = 460; (* J/kg-K *)

hFe = 126000; (* J/kg Latent Heat of Fusion *)

DeltaT = 5;

CpEff = CpFe + hFe / DeltaT;

CpLiq= 824; (* J/Kg-K *)

a = 5.6705*10 8 ; (* W/m 2 _K' )

tWalls = 1575 + 273; (* K *)
tMelt= 1535 + 273; (* K *)

tlnitial= 25+ 273; (* K *)

kFeInitial= 80.3; (* W/m-k; at 300 K *)

chop[{}] = {}
chop[{{}, {}}] =

chop[{x_, {}}] = (x};

chop[{x, y_}]

Join[{x}, If [Last[x] == Last[First[{y}]], {},chop[{y}]]];

chopi[{{}, {}}] = {};

chopi[{x, {}}] = {x};

chopi [{x_, y_}]

Join[{x}, If [TrueQ[Head[First[{y}j] == Complex], {}, chopi[{y}]]];

{}
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Check for Lumped Parameter Approach Validation

hConv = 0;
hRad = eFe * a * (tInitial' - tWalls') / (tInitial - twalls);

hTot = hConv + hRad;

biot = (hTot / kFeInitial) * (partDiam* 10-6)

partDiam ->Range[10, 100, 10];

NumberForm[TableForm[{Range[10, 100, 10], biot),

TableDirections -> (Row, Column), TableHeadings ->

{{"Dp", "Biot"}, None), TableAlignments -> Center],
precision]

Dp Biot

10 0.00003451

20 0.00006903

30 0.0001035

40 0.0001381

50 0.0001726

60 0.0002071

70 0.0002416

80 0.0002761

90 0.0003106

100 0.0003451.
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Particle Heating -- Time To reach Melting Point
(Assuming particle falls at terminal velocity)

timeToMeltPnt =

solve Integrate [1 / (tWalls' - temp'), {temp, tInitial, tMelt}] ==

6 * a * EFe
Integrate , 6( ee I q, 0, t} f, t1;

PFe * CpFe * Dp * 10~

timetomeltpoint = Last [Last [Flatten [timeToMeltPnt]]];

Plot [timetomeltpoint, {Dp, 5, 100}, Frame -> True,

FrameLabel -> {"Particle Diameter (Mm) ", "Time (s)",

"Time to Reach Melting Point", None}]
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Particle Melting - Time To Melt

timeToMelt = Solve[

Integrate [1 / (tWalls' - temp 4 ) , {temp, tMelt, tMelt + DeltaT}] ==

Integrate [ p * **Fe , {q, 0, t}), t];
pFe * CpEf f * Dp * 106

timetomelt = Last [Last [Flatten [timeToMelt ]J];

totaltime = timetomeltpoint + timetomelt;

velpart = velcharts [[posT, posP]];

len = totaltime * velpart /. Dp -> partDiam;

dmax = Last [Last [Last [Solve [dist == len, partDiam] ] ] ];

Plot [dmax, (dist, 0, 30}, Frame -> True,

FrameLabel -> {"Flight Distance (cm) ", "Dp (M) ",

"Required Distance to Melt\nat "<>ToString[tOper]<>

" K and " <>ToString[pOper]<>" Atm." (* " "*), None},

ImageSize -> pagewidth]

(* Plot[timetomelt,{Dp,5,100},Frame->True, FrameLabel->

{"Particle Diameter (Mm)","Time (s)","Time to Melt ",None}]*)
(* Plot [totaltime, {Dp,5,100},

Frame->True, FrameLabel->{"Particle Diameter (Mm)",

"Time (s)", "Total Time to Melt",None},

ImageSize->pagewidth] *)
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Particle Temperature Calculation

Particle Heating in Pre-Heating Zone of Furnace

Clear [x, length, temper, tempi, tWallsi, deltatime]
dp = 50; (* particle Diameter in microns *)
lengthzonel= 13*2.54; (* cm)
tinil= 300; (* K *)

totaltimezonel =

lengthzonel /velcharts [ [posT, posP ] ]. partDiam -> dp;

(* seconds *)
deltatime = 1 /100; (* step of time increments in seconds *)
length = deltatime *velcharts [ [posT, posP]] /. partDiam -> dp;
(* length step in centimeters *)
tWallsl[x_] := tWallsl[x] =

If [x*length < 4*2.54, 560, 942.44 Log[x*length] - 1577.6];
(* Approximation

to experimental values of tube wall temperature *)
temper [x_ ] : =temper [x] =

tempi /. FindRoot[ (2 * ArcTan t 1 -
4 * tWall1[} tWalls1 [x]

Log [-templ + tWallsl[x] ] + Log [templ + tWallsl [x]

1 2 * ArcTan tinil -
4 * tWallsl x tWalls1 [x]

Log [-tinil + tWallsl[x] ] + Log [tinil + tWallsl[x] ==

(6 * a * eFe * x * deltatime) / (pFe * CpFe * dp * 10-6),
{templ, tWallsl[x] - 50), WorkingPrecision -> 17];

zonel = Table [ {N [k * length, 4 ], N [temper [k] , 6]},

{k, 0, totaltimezonel/deltatime, 10)];

allzonel = Table [{N [k * deltatime, 4 ],
N[k*length, 4], N[tWallsl[k], 6], N[temper[k], 6]),

{k, 0, totaltimezonel/deltatime, 10)];
TableForm[allzonel, TableDirections -> {Column, Row),
TableHeadings -> {None, ("Time\n (s) \n",

"Position\n (cm)\n", "TWall\n (K)\n", "Tpart\n (K)\n"},
TableAligrnents -> Center];

73



Particle Heating in Hot Zone of Furnace up to Melting Point

Clear[x, length, temper, temp2, tWalls2, deltatime];
tmmin = 1535 + 273;

tmmax = 1540 + 273;

(* dp=50; particle Diameter in microns *)

lengthzone2= 11*2.54; (* cm *)

tini2= Last[Last[zonel]]; (* K *)

totaltimezone2 =

lengthzone2 / velcharts [ [posT, posPJ] /. partDiam -> dp;
(* seconds *)

deltatime = 1 /100; (* step of time increments in seconds *)

length = deltatime *velcharts [ [posT, posP]] /. partDiam -> dp;
(* length step in centimeters *)

tWalls2[x_] :=

tWalls2[x] = -0.0014* (x*length)' + 0.0782* (x*length)3 _

1.9171* (x* length) 2 + 23.026* (x*length) + 1752.9;

(* Approximation

to experimental values of tube wall temperature *)

temper[O] = tini2;

temper [x_ = temper [x] = If [temper [x - 1] : tmmin, tmmin,

temp2 /. FindRoot 2 * ArcTan temp2
4 * tWalls2 [x]3  tWalls2 [x]

Log [-temp2 + tWalls2 [x] ] + Log [temp2 + tWalls2 [x] ]

1 . 2*ArcTan tini2 -

4*tWalls2[x] 3  tWalls2[x]

Log [-tini2 + tWalls2 [x] + Log [tini2 + tWalls2 [x]] ==

(6 * a * eFe * x * deltatime) / (pFe * CpFe * dp * 10-6),
{temp2, tWalls2 [x] - 5.0}, WorkingPrecision -> 17 ];

zone2pre = Table [{N [k * length, 4 ], N [temper [k) , 6] },
{k, 0, totaltimezone2 / (2*deltatime), 1}];

If [zone2pre [[Length [zone2pre] -1, 2]] == Last [Last [zone2pre]],

zone2 = chop [zone2pre], zone2 = zone2pre];

allzone2 = Table [({N [k * deltatime + First [Last [allzonel]], 4],

N[k*length+ allzonel [[Length[allzonel], 2]], 4],

N [tWalls2 [k] , 6 ], N [temper [k] , 6 ] }, {k, 0, First [Last [zone2]] /
(deltatime * velcharts [ [posT, posP] ] /. partDiam -> dp) , 1}];

TableForm[allzone2, TableDirections -> {Column, Row},

TableHeadings -> {None, {"Time\n (s) \n",
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"Position\n (cm) \n", "TWall\n (K) ", "Tpart\n (K) ")),

TableAlignments -> Center];

Particle Melting in Hot Zone

Clear[x, length, temper, temp3, tWalls3, deltatime];

tmmin = 1535 + 273;

timnax = 1540 + 273;
(* dp=50; particle Diameter in microns *)

lengthzone3 = 11 * 2.54 - First [Last [zone2] ]; (* cm

tini3=Last[Last[zone2]]; (* K *)

totaltimezone3 =

lengthzone3 /velcharts [ [posT, posP] /. partDiam -> dp;
(* seconds *)

deltatime = 1 /100; (* step of time increments in seconds *)

length = deltatime *velcharts [ [posT, posP] ] /. partDiam -> dp;
(* length step in centimeters *)

llen= First[Last[zone2]];
(* Length at which zone2 changes to zone3 *)

tWalls3[x := tWalls3[x] =

-0.0014* (x* length+ llen) A4 + 0.0782 * (x* length+ llen) 3 _

1.9171* (x*length+llen)A2 + 23.026* (x*length+ llen) + 1752.9;

(* Approximation

to experimental values of tube wall temperature *)

temper [0] = tini3;

temper [x_] : = temper [x] = If [temper [x - 1] 2 tmiax, tnunax,

temp3 /. FindRoot (2 * ArcTanI tep 3  -
4 * tWalls3 [] tWalls3 [x]

Log [-temp3 + tWalls3 [x] ] + Log [temp3 + tWalls3 [x] -

1 tmmin

4 * tWalls3 [x] 3  tWalls3 [x]

Log [-tmmin + tWalls3 [x] ] + Log [tmmin + tWalls3 [x] ] ==

(6 * a * eFe * x * deltatime) / (pFe * CpEf f * dp * 10-6 ),

{temp3, temper [x - 1] + 1. 0}, WorkingPrecision -> 17];

zone3pre = Table [ {N [k * length + llen, 4 ], N [temper [k] , 6]),

{k, 0, totaltimezone3 / (deltatime), 1)];
If [zone3pre [ [Length[zone3pre] - 1, 2]] == Last [Last [zone3pre]],
zone3= chop [zone3pre], zone3 = zone3pre];
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allzone3 = Table [{N [k * deltatime + First [Last [allzone2] ], 4],

N [k* length+ allzone2 [ [Length [allzone2], 2]], 4],

N[tWalls3[k], 6], N[temper[k], 6]},

{k, 0, (First[Last[zone3]] -llen) /

(deltatime*velcharts[[posT, posP] /. partDiam -> dp), 1)];

TableForm[allzone3, TableDirections -> {Column, Row},

TableHeadings -> {None, ("Time\n (s) \n",

"Position\n (cm) \n", "TWall\n (K) ", "Tpart\n (K) " }),

TableAlignments -> Center];

Superheating in Hot Zone

Clear[x, length, temper, temp4, tWalls4, deltatime, llen];
tmmin = 1535 + 273;

tmmax = 1540 + 273;

lengthzone4 = 11* 2.54 - First [Last [zone3]]; (* cm

tini4= Last[Last[zone3]]; (* K *)

totaltimezone4 =

lengthzone4 /velchart s [ [posT, posP] ] /. partDiam -> dp;

(* seconds *)

deltatime = 1 /100; (* step of time increments in seconds *)

length = deltatime * velcharts [ [posT, posP]] /. partDiam -> dp;

(* length step in centimeters *)

llen= First[Last[zone3]];

(* Length at which zone3 changes to zone4 *)

tWalls4 [x_] := tWalls4[x] =

-0.0014* (x*length+l1en)A4 + 0.0782* (x*length+ llen)3 
-

1.9171* (x*length+llen)A2 + 23.026* (x*length+ llen) + 1752.9;

(* Approximation

to experimental values of tube wall temperature *)

temper[0] = tini4;

temper[x] := temper [x] =

If [ (*temper [x]<tumax*) TrueQ [Head [temper [x -1] == Complex]],

1 (2Aca[ tenp4
tumiax, temp4 /. FindRoot 2 * ArctTan 4

4 * tWalls4 [x3tWalls4 [x]

Log [-temp4 + tWalls4 [x] ] + Log [temp4 + tWalls4 [x]

1 tnmiax1 (2 * ArcTan[ zua -

4*tWalls4 [x] 3  tWalls4[x]

Log [-tmmax + tWalls4 [x] ] + Log [tmmax + tWalls4 [x]] ==

(6 * a * eFe *x* deltatime) / (pFe * CpLiq* dp*10-6 ),

76



{temp4, tWalls4 [x] - .5}, WorkingPrecision -> 17 ];

zone4pre =

Table[N[temper[k], 6], {k, 0, totaltimezone4 / (deltatime), 1)];

zone4pre2 = chopi[zone4pre];

zone4 = Table [
{N [k * length + llen, 4 ], zone4pre2 [ [k] ] }, {k, 1, Length [zone4pre2] }];

allzone4 = Table [{N [k * deltatime + First [Last [allzone3]], 4],

N[k*length+ allzone3[[Length[allzone3], 2]], 4],

N[tWalls4[k], 6], N[temper[k], 6]), {k, 0, Length[zone4pre2] -1)];

TableForm[allzone4, TableDirections -> {Column, Row),

TableHeadings -> {None, {"Time\n (s) \n",

"Position\n (cm) \n", "TWall\n (K) "1, "Tpart \n (K)"},
TableAlignments -> Center];

Particle Solidification in Hot Zone

Clear[x, length, temper, temps, tWallsS, deltatime, llen];
tmmin = 1535 + 273;

tmmax = 1540 + 273;

lengthzone5 = 11 * 2.54 - First [Last [zone4]]; (* cm *)

tini5= Last[Last[zone4]]; (* K *)

totaltimezoneS =

lengthzone5 /velcharts [ [posT, posP]] /. partDiam -> dp;

(* seconds *)

deltatime = 1 /100; (* step of time increments in seconds *)

length = deltatime *velcharts [ [posT, posP]] /. partDiam -> dp;

(* length step in centimeters *)

llen= First[Last[zone4]];

(* Length at which zone4 changes to zones *)

tWalls5 [x_] := tWallsS[x] =

-0. 0014 * (x * length + llen) A 4 + 0.0782 * (x * length + llen) _

1.9171* (x*length+llen)A2 + 23.026* (x*length+llen) + 1752.9;

(* Approximation

to experimental values of tube wall temperature *)

temper [0] = tini5;

temper [x_] := temper [x] = If [temper [x - 1] 5 tmmin, tmmin,

temps /. FindRoot (2 * ArcTan[ tems -

4 *tWall5[a tWalls5[x]

Log [-temps + tWallsS [x] ] + Log [temp5 + tWalls5 [x]

1 tmmax

4 * tWallss [x] 3 ( tWalls5 [x]
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Log [-tmmax + tWallsS [x] ] + Log [tmmax + tWalls5 [x] ==

(6 * a * eFe * x * deltatime) / (pFe * CpEf f * dp * 10-6 ),

{temp5, temper [x - 1] - .5), WorkingPrecision -> 17];

zone5pre =Table [{N[k* length+ llen, 4], N[temper[k], 6]),

{k, 0, totaltimezone5/ (deltatime), 1}];

If [zone5pre [[Length[zone5pre] -1, 2]] == Last [Last [zone5pre]],

zone5 = chop [zone5pre], zone5 = zone5pre];

allzone5 = Table [{N [k * deltatime + First [Last [allzone4]], 4],

N[k*length+ allzone4 [[Length[allzone4], 2]], 4],

N[tWalls5[k], 6], N[temper[k], 6]),

{k, 0, (First[Last[zone5]] -llen) /

(deltatime * velcharts [ [posT, posP] ] /. partDiam -> dp) , 1)];

TableForm[allzone5, TableDirections -> {Column, Row),

TableHeadings -> {None, {"Time\n (s) \n",

"Position\n (cm)\n", "TWall\n (K)", "Tpart\n (K)")),
TableAlignments -> Center];

Particle Solidification in Cooling Zone
(If Solidification Does Not End in Hot Zone)

Clear[x, length, temper, temp6, tWalls6, deltatime, llen];
tmmin = 1535 + 273;

tnunax = 1540 + 273;

lengthzone6 = 10 * 2.54; (* cm *)

tini6= Last[Last[zone5]]; (* K *)

totaltimezone6 =

lengthzone6 /velcharts [ [posT, posP ] ]. partDiam -> dp;

(* seconds *)

deltatime = 1 /100; (* step of time increments in seconds *)

length = deltatime *velcharts [ [posT, posP] ] /. partDiam -> dp;

(* length step in centimeters *)

llen = 0.0;

(* Length at which zone5 changes to zone6 *)

tWalls6 [x] := tWalls6 [x] = 0. 0936 * (x * length + llen)3 
-

2.9228* (x*length+ilen)A2 - 33.539* (x*length+ llen) + 1762;
(* Approximation

to experimental values of tube wall temperature *)

temper [0] = tini6;

temper [x_] := temper [x] = If [temper [x - 1] : tmmin, tmmin,

1t (2 * ArcTan[ temp6
tem6 .Fndoo 14 * tWalls6 [x] 3 tWalls6 [x]]
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Log [-temp6 + tWalls6 [x] + Log [temp6 + tWalls6 [x]

1 tini6
2 * Ac~an[] -4 * tWalls6 [x] 3  ta tWalls6[x]

Log [-tini6 + tWalls6 [x] ] + Log [tini6 + tWalls6 [x] ==

(6 * a * eFe * x * deltatime) / (pFe * CpEf f * dp * 10-6),

{temp6, temper [x - 1] - .5), WorkingPrecision -> 17 ];

zone6pre = Table [{N [k * length + llen, 4 ], N [temper [k] , 6]},

{k, 0, totaltimezone6 / (deltatime), 1)];

If[zone6pre[ [Length[zone6pre] -1, 2]] == Last [Last [zone6pre]],

zone6 = chop[zone6pre], zone6= zone6pre];

allzone6 = Table [{N [k * deltatime + First [Last [allzone5]], 4],

N[k* length+ allzone5 [[Length [allzone5], 2]], 4],

N[tWalls6[k], 6], N[temper[k], 6]},

{k, 0, (First [Last [zone6]] - llen) /

(deltatime * velcharts [ [posT, posP] ] /. partDiam -> dp) , 1)];

TableForm[allzone6, TableDirections -> (Column, Row),

TableHeadings -> (None, ("Time\n (s) \n",

"Position\n (cm)\n", "TWall\n (K)", "Tpart\n (K)"}),
TableAlignments -> Center];

Particle Cooling in Cooling Zone of Furnace

Clear[x, length, temper, temp7, tWalls7, deltatime, llen];
tmmin = 1535 + 273;

tnmuax = 1540 + 273;

lengthzone7 = 10*2.54 - First [Last [zone6]]; (* cm *)

tini7 = Last[Last[zone6]]; (* K *)

totaltimezone7 =

lengthzone7 /velcharts [[posT, posP]] /. partDiam -> dp;

(* seconds *)

deltatime=1/100; (* step of time increments in seconds *)

length = deltatime *velcharts [ [posT, posP]] /. partDiam -> dp;

(* length step in centimeters *)

llen= First[Last[zone6]];

(* Length at which zone6 changes to zone7 *)

tWalls7[x] : = tWalls7 [x] = 0. 0936 * (x * length + llen)3 _

2.9228* (x*length+llen)A2 - 33.539* (x*length+llen) + 1762;

(* Approximation

to experimental values of tube wall temperature *)

temper [0] = tini7;
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temper [x_] : = temper [x] = If [temper [x - 1] > tmnin, tmmin,

temp7 /.FindRoot 12 * ArcTan[ temp7
4 *tWalls 7 [x]3  tWalls7[x]

Log [-temp7 + tWalls7 [x]] + Log [temp7 + tWalls7 [x] ] -

1 [ 2*ArcTan tmmifl -
4 * tWalls7[x] t tWalls7[x]

Log [-tmmin + tWalls7 [x] + Log [tmmin + tWalls7 [x] ==

(6 * a * eFe * x * deltatime) / (pFe * CpFe * dp * 10-6),

{temp7, temper [x - 1] - .5), WorkingPrecision -> 17];

zone7pre = Table [{N [k * length + llen, 4 ], N [temper [k] , 6]),

{k, 0, totaltimezone7 / (deltatime), 1)];

If [zone7pre [ [Length[zone7pre] -1, 2]] == Last [Last [zone7pre]],

zone7= chop [zone7pre], zone7= zone7pre];

allzone7 = Table [{N [k * deltatime + First [Last [allzone6]], 4],

N[k*length+ allzone6 [[Length[allzone6], 2]], 4],

N[tWalls7[k], 6], N[temper[k], 6]),

{k, 0, (First[Last[zone7]] -llen) /

(deltatime * velchart s [[posT, posP] ] /. partDiam -> dp) , 1)];

TableForm[allzone7, TableDirections -> {Column, Row),

TableHeadings -> {None, {"Time\n (s) \n",

"Position\n (cm) \n", "TWall\n (K) ", "Tpart\n (K) ")),
TableAlignments -> Center];

Plot of Particle Temperature History

particleHistory = Join [allzonel, allzone2,

allzone3, allzone4, allzone5, allzone6, allzone7];

historyplot = Transpose [Join[ ({Part [Transpose [particleHistory], 2]),

{Part [Transpose [particleHistory], 4])]];

ListPlot [historyplot, PlotJoined -> True,

Frame -> True, FrameLabel -> {"Length (cm) ", "Temp (K) ",

StringJoin["Particle Temperature at ", ToString[pOper],

"Atm\nParticle Diameter= ", ToString[dp], " Mm "], None),
Ticks -> Automatic, ImageSize -> pagewidth]

Show[%, PlotRange -> {{30, 65), {1760, 1880))]
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