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ABSTRACT

This thesis has three parts. The first part concentrates on the matrix eigenvalue pertur-

bation theory. It discusses the non-generic eigenvalue behavior under a perturbation on

a matrix in its Jordan form. Comparing to the widely known generic behavior, where

all eigenvalues form a ring, the non-generic behavior gives several sets of eigenvalues

that form different rings. The second part discusses the stability of the Jordan form of

matrices and the Kronecker form of pencils. It analyzes the widely used algorithm of

determining the Canonical form, the staircase algorithm, and explains the reason that

causes the failure of the algorithm. The methods used in the two parts are mainly based

on the geometrical view point of looking at an n x n matrix as a point in an n2 dimensional

space, and the set of similar matrices as an orbit in the space. The third part focuses on

robust statistics. A new robust estimator on covariance is given and later it is generalized

to autocovariance estimator and dispersion matrix estimator. The statistical properties

of the estimator are studied and simulations are also given to test the estimator. The

estimator is mainly based on the fact that 4cov(X, Y) = var(X + Y) - var(X - Y).

Thesis Supervisor: Alan Edelman

Title: Associate Professor
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1 Introduction

1.1 The Eigenvalue Perturbation Problem

Perturb an n x n Jordan block by order c mathematically or through rounding errors on

a computer, and typically the eigenvalues split up into a ring of radius O(E1/n). In this

thesis, we study the non-typical behavior. We stifle the matrix's ability to form large

eigenvalue rings by only allowing perturbations that are upper k-Hessenberg, meaning a

matrix containing exactly k subdiagonals below and including the diagonal. The obvious

question to ask is what is the typical behavior under this assumption. The result we will

show is that the eigenvalue perturbations will then follow the greediest possible pattern

consistent with forming no rings bigger than k. We then generalize and examine some

multiple Jordan block cases.

Our interest in this problem came from a perturbation study of Ruhe's matrix [35]
using the qualitative approach proposed by Chatelin and Frayss6 [13]. We found that

non-generic behaviors occurred some small percentage of the time. Chatelin and Frayss6

themselves point out in one example [13, page 192] that only 97% of their examples

follow the expected behavior. We also became interested in this problem because we

wanted to understand how eigenvalues perturb if we move in some, but not all normal

directions to the orbit of a matrix with a particular Jordan form such as in Arnold's

versal deformation [1, 33]. Such information may be of value in identifying the nearest

matrix with a given Jordan structure. Finally, we point out, that the E-pseudo-spectra of

a matrix can depend very much on the sparsity structure of the allowed perturbations.

Following an example from Trefethen [84], if we take a Jordan block J and then compute

in the presence of roundoff error, A = QTJQ, where Q is a banded orthogonal matrix,

then the behavior of ||Ak|j, is quite different from what would happen if Q were dense.

It is generally known [2, page 109],[66, page 65] that if a matrix A is perturbed by any

matrix EB, then any multiple eigenvalue splits into rings, and their expansion in E is a

Puiseux series since it is a branch of the solution of a polynomial with analytic coefficients.

10



Unfortunately, the classical references give little information as to how the eigenvalues

split as a function of the sparsity structure of the perturbation matrix. Without loss of

generality, we will focus on one multiple eigenvalue. Associated with any perturbation

B, we may define a partition 7r(B) which contains the sizes (number of eigenvalues) of

the rings.1

We can quickly summarize most of what is known about the Puiseux series. If A is a

single Jordan block of size n, then r(B) is almost always { }. This happens if and only

if the lower left element is non-zero. For more complicated Jordan structures, say A is

a nilpotent matrix, 7r(B) is almost always the Segr6 characteristics of A, i.e, the sizes of

the Jordan block structure of A. Lidskii explicitly determined the coefficients of the first

order term, and Newton diagram approaches may also be used (See [81] for a discussion).

We used the words "almost always" in the above paragraph. There is an algebraic

variety on which different behavior occurs. An ideal mathematical treatment would

conveniently categorize all possible behaviors as a function of the perturbation B. This is

a very difficult open problem. The only result of which we are aware is given by Burke and

Overton [10] and Moro, Burke and Overton [81] . The former studied when perturbations

only yield periods of size 1 and 2 as part of a study of when the perturbations fall to one

side, and the latter studied the first order perturbations under generic conditions and

addressed some nongeneric situations.

Our approach is to try to identify classes of non-generic situations where we can

explain the typical behavior. We set up hypotheses on the structure of the perturbation,

thereby creating non-generic perturbations. We then ask what is the generic behavior

of the eigenvalues given these hypotheses. (To be more precise, unless the perturbation

satisfies certain algebraic conditions, the behavior occurs.)

'The size of a ring is denoted its "period" in [66, 2]. The eigenvalue functions of E in the same ring
constitute a "cycle" in the terminology of these references.
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1.2 The Staircase Algorithm Problem

The problem of accurately computing Jordan and Kronecker canonical structures of ma-

trices and pencils has captured the attention of many specialists in numerical linear

algebra. Standard algorithms for this process are denoted "staircase algorithms" because

of the shape of the resulting matrices [47, Page 370], but understanding of how and why

they fail is incomplete. In this paper, we study the geometry of matrices in n 2 dimen-

sional space and pencils in 2mn dimensional space to explain these failures. This follows a

geometrical program to complement and perhaps replace traditional numerical concepts

associated with matrix subspaces that are usually viewed in n dimensional space.

This section targets expert readers who are already familiar with the staircase algo-

rithm. We refer readers to [47, Page 370] and [21] for excellent background material and

we also list other literature for the reader wishing a comprehensive understanding of the

algorithm. On the mathematical side, it is also helpful if the reader has some knowledge

of Arnold's theory of versal forms, though a dedicated reader should be able to read this

paper without such knowledge, perhaps skipping Section 3.3.2.

The first staircase algorithm was given by Kublanovskaya for Jordan structure in 1966
[68], where a normalized QR factorization is used for rank determination and nullspace

separation. Ruhe [91] first introduced the use of the SVD into the algorithm in 1970.
The SVD idea is further developed by Golub and Wilkinson [48, Section 10]. Ka'gstr6m

and Ruhe [62, 63] wrote the first library quality software for the complete JNF reduction,
with the capability of returning after different steps in the reduction. Recently, Chatitin-

Chatelin and Frayss6 [14] developed a non-staircase "qualitative" approach.

The staircase algorithm for the Kronecker structure of pencils is given by Van Dooren

[28, 29, 30] and Kigstr6m and Ruhe [64]. Kublanovskaya [69] fully analyzed the AB
algorithm, however, earlier work on the AB algorithm goes back to the 1970s. Kigstr6m

[60, 61] gave a RGDSVD/RGQZD algorithm and this provided a base for later work on
software. Error bounds for this algorithm are given by Demmel and Ka'gstr6m [19, 20].
Beelen and Van Dooren [3] gave an improved algorithm which requires O(m 2n) operations

12



for m x n pencils. Boley [5] studied the sensitivity of the algebraic structure. Error bounds

are given by Demmel and Kigstr6m [21, 22].

Staircase algorithms are used both theoretically and practically. Elmroth and Kigstr6m

[36] use the staircase algorithm to test the set of 2-by-3 pencils hence to analyze the al-

gorithm, Demmel and Edelman [18] use the algorithm to calculate the dimension of

matrices and pencils with a given form. Van Dooren [29, 37, 67, 7], Emami-Naeini [37],

Kautsky and Nichols [67], Boley [7], Wicks and DeCarlo [94] consider systems and control

applications. Software for control theory is provided by Demmel and Kigstr6m [23].

A number of papers use geometry to understand Jordan and Kronecker structure

problems. Fairgrieve [38] regularizes by taking the most degenerate matrix in a neigh-

borhood, Edelman, Elmroth and Ka'gstr6m [34, 35] study versality and stratifications,

and Boley [6] concentrates on stratifications.

1.3 The Dispersion Estimation Problem

Dispersion matrices, i.e. covariance and correlation matrices, play an important role

in many methods of multivariate statistics. For instance, they are the cornerstones of

principal component analysis, discriminant analysis, factor analysis, canonical correlation

analysis, and many others [76]. Moreover, dispersion matrices are themselves quantities of

interest since they represent a measure of association or interdependence between several

characteristics. They provide information about the shape of the ellipsoid of the data

cloud in a multidimensional space. Therefore, reliable estimators of dispersion matrices

are of prime importance.

Unfortunately, classical sample dispersion matrices are known to be very sensitive to

outlying values in the data, which can typically be hidden in the high dimensionality of

the space of variables. As a consequence, eigenvalues and eigenvectors of the dispersion

matrix inherit this sensitivity. A principal component analysis could thus reveal an

artificial structure in the data, that does not really exist but is merely created by a few

outliers.
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We describe some commonly used estimators for the dispersion matrix, as well as

some recent robust proposals. We focus on the estimation of covariance matrices, since

estimation of correlation matrices can be derived in the same way.

Suppose that the sample x 1 ,... , xa, with xi E RP, i = 1,... , n, is independently

and identically distributed according to a multivariate distribution with mean vector yt

and covariance matrix E. Note that estimation of the correlation matrix R can always

be derived from the relation R = DED, where D = diag(1/ E11,... ,1/ Zn,). The

maximum likelihood estimator (MLE) of the covariance matrix E is:

In
n Zi

where ,i = - e x..i.X~

The breakdown point is an important feature of reliability of an estimator. It indi-

cates, roughly speaking, the largest proportion of data that can be replaced by arbitrary

values to bring the estimator to the boundaries of the parameter space. More details can

be found in [27, 58, 59, 53]. The breakdown point of the maximum likelihood estimator

(1) is zero, indicating its very poor resistance.

Affine equivariant M-estimators for dispersion matrices were first suggested [501, and

studied by [77, 57, 58]. Unfortunately, their breakdown point is at most 1/(p + 1). This

is not satisfactory, because it means that the breakdown point becomes smaller with

increasing dimension, where there are more opportunities for outliers to occur. The

performance of some M-estimators were studied by mean of a Monte Carlo study by

[25, 26].

[92] and [27] were first to independently propose robust affine equivariant estimators

of multivariate location and dispersion having a high breakdown point (asymptotically

1/2) for any dimension. They are defined as weighted mean and weighted dispersion,

where the weights are functions of a measure of "outlyingness" obtained by considering all

univariate projections of the data. Subsequently, other high breakdown point equivariant

14



multivariate estimators have been introduced. The most well known is probably the

Minimum Volume Ellipsoid (MVE) estimator, introduced by [85], and discussed in [88,
90]. The method seeks an ellipsoid of minimum volume, containing m = [(n + p + 1)/2]

points, where [J denotes the integer part. More precisely, it consists in finding AMVE

and EMVE such that the determinant of E is minimized subject to

# -(Xi -l(Xi _- ) < a2} > m (2)

where a2 is a fixed constant, for example X in the case of Gaussian data. The MVE has a

finite sample breakdown point of m, i.e. 50% asymptotically. Two algorithm (resampling

and projection) to compute an approximate solution of MVE can be found in [90].
The MVE estimator has been generalized to multivariate S-estimators [17, 74, 75].

[72] proposed a dispersion matrix estimator based on robustifying principal components

via projection pursuit techniques. A class of projection estimators for dispersion matrices

were studied by [78]. [93] discusses finite sample breakdown point of projection based

estimators, in particular the Stahel-Donoho estimator. Recently, [79] studied asymptotic

and finite-sample behaviors of the Stahel-Donoho robust multivariate estimators. From

a simulation study, they concluded that they compare favorably with other proposals like

multivariate M- or S-estimators, and Rousseeuw's MVE. However, the main drawback

remains the lack of feasible methods to compute the estimators for dimensions larger

than p = 2.

In the three last decades, many attempts to overcome the poor resistance properties

of the classical sample dispersion matrix have been made. The robust proposals can

be classified in two main categories: robust componentwise estimation and robust global

estimation of the dispersion matrix. The first one can be approached via location estima-

tion, or scale estimation. It has the advantage of being able to deal with missing values

in the data, but is not affine invariant and does not provide a positive definite matrix

directly. The second category usually insures affine invariance and positive definiteness,

but is less appropriate to deal with missing data.
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We propose the use of a highly robust estimator of scale, denoted by Qn, in the

componentwise approach. In fact, we show that it is the best robust choice available at

the present time in the componentwise approach. The highly robust estimator of scale

Qn has already been successfully used in the context of regression [55, 16], as well as for

variogram estimation [41] in spatial statistics.

We proceed to form a highly robust autocovariance estimator in time series based on

the dispersion extimator. Autocovariance is often used to study the underlying depen-

dence structure of the process [8, 9], it serves as an important step towards constructing

an appropriate mathematical model for the data. To have a sample autocovariance

function which remains close to the true underlying autocovariance function, even when

outliers, i.e. faulty observations, are present in the data is of crucial meaning. Otherwise,
important goals of the time series analysis such as inference or forecasting can be non-

informative. In fact, experience from a broad spectrum of applied sciences shows that

measured data may contain between 10-15% of outlying values [50] due to gross errors,
round-off errors, measurement mistakes, faulty recording, etc, and this proportion can

even go up to 30% [57]. The estimator we introduce has a temporal breakdown point of

15% at the worst case.
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2 Non-generic Eigenvalue Perturbations of Jordan

Blocks

2.1 Introduction

We know that diagonalizable matrices form a dense set in the matrix space, and for

diagonalizable matrices, an order E perturbation on the matrix will lead to an order E

perturbation on the eigenvalues. For non-diagonalizable matrices, the eigenvalue behavior

will depend on the Jordan form of the matrix. More precisely, if the Jordan form of a

matrix A contains an n x n Jordan block with eigenvalue A, then an order 6 dense

perturbation cB on A will produce n eigenvalues A1,. . ., An, which spread out on a circle

centered at A with radius O(El/"). This classical result [2, page 109], [66, page 65] is

known for a random dense B generically. For the non-generic case, when we impose

special forms on B, the situation is very complicated. We proceed to study the various

non-generic situations.

In Section 2.2 we explore the case when A is a single Jordan block and B is upper

k-Hessenberg. For example, suppose that we perturb an n x n Jordan block J with a

matrix EB, where B has the form:

n
k

B n

Figure 1: B = upper k-Hessenberg matrix

We assume that k denotes the number of subdiagonals (including the main diagonal

itself) that is not set to zero. If B were dense (B71 , 0), the eigenvalues of J + EB would

split uniformly onto a ring of size n = 7 and radius O(ei). However, if k = 4, we obtain

one ring of size 4 with radius O(EI) and one ring of size 3 with radius O(i) as illustrated

17



x k-nng and r-nng for n=7, k=4

4-

2 /
k=4-ring

o - - -- -- ng

-2-

-4

-6
-6 -4 -2 0 2 4 6

x 10-

Figure 2: Example rings for n = 7 and k = 4. We collected eigenvalues of 50 different
random J + EB, C = 10-12. The figure represents 50 different copies of one 4-ring (thin
dots) and 50 copies of one 3-ring (thick dots). The two circles have radii O(10-) and
O(10-). If B were a random dense matrix, there would be only one 7-ring with radius
O(10- ).

in Figure 2. Table 1 contains a table of possible ring sizes when n = 7 for k = 1, ... , 7.

Our main result is that if a Jordan block of size n is perturbed by an upper k-

Hessenberg matrix, then the eigenvalues typically split into E[1] rings, where p =[J

of them are k-rings with radius O(e-), and if k does not divide n, there is typically

one remaining r-ring with radius O(E&), where r = n mod k. Moreover, the first order

perturbation of the pk eigenvalues in the k-rings only depends on the kth diagonal of B.

In Section 2.4, we extend these results to the case of t equally sized Jordan blocks.

We only concentrate on the case where all the t blocks have the same eigenvalue A, since

it is well known (see [81]) that the behavior of the perturbation on different eigenvalues

splits.

Let J = Diag[J1, J2, ...Jt], where the Ji's are n x n Jordan blocks, and we conformally

18
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k

ring size
1 2 3 4 5 6 7

1 7
2 1 3
3 1 2
4 ii
5 1 1
6 11
7

Table 1: Table for one Jordan block of size 7. The entries in each row are the number of
rings of a given size when the perturbation is upper k-Hessenberg.

partition

Bi1

B =B 2 1

-Bti

B 12

B 22

Suppose every Bij is an upper k-Hessenberg matrix. We will show in Theorem 2.2

that generically, the -eigenvalues break into t F1 rings, tp of them are k-rings and the

remaining t are r-rings if k does not divide n. Here, p and r has the same meaning as

before. Again, the first order perturbation of the first tpk eigenvalues only depends on

the kth diagonal of every Bij.

For example, if

J = J7 (A) e J7 (A),

19
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k

ring size
1 2 3 4 5 6 7

1 14
2 2 6
3 2 4
4 2 2
5 2 2
6 2 2
7 2

Table 2: Table for two blocks, column index represents size of rings and row index value
of k. Entries are numbers of rings.

so that n = 7 and t = 2, our block upper k-Hessenberg matrices have the form
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0 0 0 0***

i.e. k 3, hence r = 1
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In this case, the eigenvalues of J + eB will split into four 3-rings centered at A with

radii O(Ed), two 1-rings centered at A with radius 0(e), See Table 2 for a list of possible

rings when k = 1,... ,7 and n = 7.

2.2 One Block Case

Suppose that the Jordan form of J is simply one Jordan block. We assume that J = Jn(0),

which we will perturb with eB, where B has the sparsity structure given in Figure 1.

Definition 2.1 Suppose a matrix has k subdiagonals that are closest to the main diagonal

(including the main diagonal), not zero, then we call the matrix an upper k-Hessenberg

matrix.

Definition 2.2 Suppose for E sufficiently small,

Ai = A + cEkw + 0(6--),

for j = 0, 1,... , k - 1 and c # 0. We then refer to the set {Ai(c), ... , Ak(e)} as a k-ring.
2-7ri

Here w = e k and we refer to c as the ring constant.

Lemma 2.1 [66, page 65] Let A be a multiple eigenvalue of J with multiplicity s, then

there will be s eigenvalues of J+eB grouped in the manner { A,(e), ... , A, (e)}, { A21 (c),

... , A232 (E)}, ... , and in each group i, the eigenvalues admit the Puiseux series

Aih(e) = A + ai ±f Cs - ai2W 2 -R +

27ri

for h =1,...,si. Here wi = et.

Our Theorem 2.1 shows how the eigenvalues split into rings, and in Corollary 2.1

and 2.2 we analyze the ring constant c. The main idea of the proofs is that only certain

terms in the characteristic polynomial of J + eB influence the ring constants. For the

21



(b)

1 C 1

2C / 3 2

3C 33

5

6 C

7'

/
/

I/
5

36

37

* I/o
o 7.
0/.

0/ 0

/ 0

:1.

n=7

Figure 3: (a) Bipartite graph of AI - (J, + EB) (where J = Jn(0)). (b) Perfect matching
defining eB,,1 term. (c) Perfect matching defining A" term.

k-rings, we are interested in the terms from det(AI - J - EB) of the form E ajEiAn-ki

and no higher order terms in E. For the r-ring, we are interested in the O(EP+l) term

in det(A + EB) and the O(eP) term multiplying A' in the characteristic polynomial of

A + AB. All of these may be viewed as determinants with entries removed or as bipartite

matchings.

The bipartite-graph associated with an n x n sparse matrix A is a graph on n left

vertices and n right vertices such that non-zero elements ai, are associated with an edge

between left node i and right node j. We find it convenient to associate terms in the

determinental expansion of det(AI - A) with subgraphs of the bipartite graph that are

perfect matchings.

22

C

C

C

C

C

C

C

3

3

3

3

3

(a) (C)

4



(b)

C

e

e a

e a

e

n=11 k=5

(c)

C 3

C 3

e 3

C3

C

Figure 4: (a) Bipartite Graph of AI - J - eB. (b) Perfect Matching with two laced
sections. (c) Perfect Matching with one laced section.

A simple example where J = J,(0) and B is non-zero only in the (n, 1) entry is

plotted in Figure 3. We denote the set in the second column a laced section.

Theorem 2.1 Let J, B, n and k be given as above. Let r be the remainder of n divided

by k, i.e. n = pk + r, 0 < r < k. The eigenvalues of J + cB will then generically split

into a) p k-rings and b) one r-ring if r = 0.

Remark 2.1 Here, generic means that ap from Equation (13) and y from Equation (14)
are both not zero. If only a, # 0, we have p k-rings, but the r-ring is not guaranteed.

Some pathological examples that violate the two generic conditions are given in Section

3.
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Proof:

If B only has elements on the kth subdiagonal, it is easy to study the p k-rings. The

situation is illustrated in Figure 4. Every term in the characteristic polynomial must

correspond to a union of laced sections of size k and horizontal lines.

We therefore have that

det(AI - (J + EB)) = An + aiEAn~k + a22 An-2k + - + aEA, -pApk

where

i= ( 1 )i 3 B11 + k-1,11B12 +k -1, 2 ... B3+k)-1,1i

for i = 1,... ,p, and Bk,,.. ., Bn,n-k+1 denote the elements on the kth diagonal of B.

Therefore J + EB has r eigenvalues equal to 0 up to O(El/k) and p k-rings with radii the

kth powers of the zeros of

q(z) = zP + aizP-1 + --- + ap.

Now if B is upper k-Hessenberg and we wish to study the O(E1/k) eigenvalues, only

the lowest subdiagonal elements matter to first order. To see this, it is clear that det(AI-

(J + EB)) has no laced sections of size > k and any of size < k has too many A's for

dominant balance. Therefore, only the laced sections of size k remain.

Alternatively this result may be obtained following the Lidskii approach of letting

A = pEl/k, z = El/k , L, = diag[z, z-2,... , z--"), R1 = diag[1, z,. .. , z"--1] and studying

the limit of L,(pzI - J - zkB)R 1 as z - 0. We write the proof based on this technique

in part (a) of the following alternative proof.

We now turn to the r-ring. Readers familiar with the Newton diagram [2, 81] can

easily see that one r-ring remains, because the Newton diagram consists of one line

segment from (0, 0) to (pk, p) and a second from (pk, p) to (n, p + 1) when r f 0 (See

24



Corollary 3 in [81]). Using the bipartite graph approach, it is easy to see that the typical

term consists of p + 1 laced sections each of size at most k. This may also be obtained

from a Lidskii style argument as the determinant in Figure 5 and is written out in detail

in part (b) of the following alternative proof. El

k-r r k-r r

r

k-r

r

k-r

r

k-r

r

'0p

w pi-

WI

- - -- -Ix x

I X 10 . 1.
- p .-

-

k-r r

10-

Figure 5: The picture of the effective matrix in Lidskii approach, the picture of N(0) in
the alternative proof of Theorem 2.1. The blocks with p's on the diagonals have sizes
r x r. The blocks with O's on the diagonals have sizes (k - r) x (k - r). x's and w's

represent the original entries of the matrix B at the same position. ... 's represent a
repetition of the format.

Alternative Proof:

In part (a) of our proof, we show that the eigenvalues split into p k-rings. In part (b),
we prove the statement about the possible existence of one r-ring.
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Part (a):

First, we study the p k-rings. In this case, we proceed to show by a change of variables

that in fact, only the lowest subdiagonal plays a role in the first order perturbation theory.

k

k

k

r

k r

Figure 6: M(O) after it is divided

Let A = Pck and z = Ek. Let

L, = diag[z 1 , z-2 Z-"]

and

(4)

(5)R, = diag[1, z 1 , .... , zn-1

26



be scaling matrices. Consider M(z) L 1(AI - J - cB)R 1 = (L 1 (pzl - J - zkB)R 1 ). At

z = 0, it has the form

M(O) =

AI -1

AI -1

*

*

* P -1

* A

(6)

M(O) has only three diagonals, and the kth subdiagonal has the negative of the original

entries of B on it.

We claim that f(p) - det(M(O)) has the form prq(uk), where q(-) is a polynomial of

order p and its constant term does not vanish generically. Let

W -- e~i/ (7)

Let L' be L, with z replaced by w, i.e.

L' = diag[w-1 )W~ 2 -n] ,

and let R' be R1 with z replaced by w, i.e.

R' = diag [1, W1, . n ,-1],

then

W-n f (W1) = -1-2-----n f +1+---+(n-1)

27



wp -1 y-1

=det L' * R' =det * .=f(u).

* p -1* p -1

Therefore f((p) = w-f(Wp) = w-rf(Wp), from which we can see f(P) must be of the

form prq(pk).

We now check that the extreme terms of f(.), of degree n and r, do not vanish. The

product of the diagonal entries gives the highest order term /t in f((p). Now consider

the p, term. Divide the matrix M(O) into p k x k diagonal blocks and one r x r block

as in Figure 6. We show that the Mr term generically does not vanish by considering the

coefficient of _' term of f(p) as a polynomial in the *'s entries. In the first p blocks,
we take all the -l's and the one element BJk(j-1)k+1 at the left bottom corner of the

j-th block; in the last block, we take all the p's. Thus, generically, i.e. unless one of the

Bjk(j-1)k+1 is zero, the constant term of the polynomial q does not vanish. This proves

the claim.

Since the polynomial q(-) has p nonzero roots, which we denote c1 , c2 , . .. , c,, then

the polynomial f(y) = ,rq(,k) has pk non-zero roots distributed evenly on p circles.

From the implicit function theorem, there are pk roots of the determinant of the original

matrix near z = 0 that have the form {/ l+ o(z), for i = 1, 2... ,p. Note that V/-i yields

k different values w0, .... , Wk-1 for every i. This shows the pk eigenvalues form p k-rings,
this completes the first half of the proof.

Part (b):
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Let

L2= diag[DL, Z-'Ik_,, z-'DL, Z-2rIk, ... , Z~PrDL],

where

Let

R 2 = diag[DR, ZrIk-r, z'DR, Z2rIk_,, ... , zPrDR],

where

DR = diag[zO, ... , zr-I].

Also as with our original proof, we make a change of variables by setting A = pz and

Z = Er. Let

N(z) = L 2(AI - J - EB)R 2 = L 2 (pzI - J - z'B)R2.

Figure 5 illustrates N(O).

Again we claim that

g(p) = det(N(O)) (10)

is a polynomial of pr. iLet

27ri

w=e ()

29
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(9)

DL = diag[z~1, ... , Z-1].

(11)



and let L 2'=L 2 with z replaced by w and R2'=R2 with z replaced by w. Replace p in

g(p) by w[, then we get

g(wp) = wr(P+lg(wp) = det(L 2'No,(0)R 2') = 9(P)

Here N,, (O) represents the matrix N(O) with wp instead of [ on the main diagonal.

Therefore, g is a polynomial of pUr, say g(p) = h(pr). By taking the left bottom element

of each of the k x k diagonal blocks, the left bottom element of the r x r diagonal block

and all the -I's in the remaining rows and columns, we can see that the constant term

is generically not zero. By taking the same entries of the first k x k blocks and all the

p's of the last r x r block, we generically obtain a nonzero p1 r term. Hence there are

at least r roots of h(pltr), and they are the rth root of some constant c. By the implicit

function theorem there are at least r eigenvalues having the expression -'c wke + OW),
with j = 0, . . . , r - 1. They form an r-ring. This is as many as we can get since we

already have pk of the eigenvalues from Part (a). El

Corollary 2.1 The kth power of the ring constants for the k-rings are the roots of q(z),

where

q(z) = zP + a z"- + + aizP-' + - + ap, (12)

and

ai = (-1) B11+ k-1,11Bl 2 +k- 1, 2 . . . ,-1, (13)
l1 -l j>k

for i = 1,...,p, where Bk,1,... , Bn,n-k+1 denote the elements on the kth diagonal of B.

So long as a, : 0, we obtain the generic behavior described in Theorem 2.1.

A careful looking at the bipartite graph or Figure 5 also yields the following Corollary.
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Corollary 2.2 The rth power of the ring constant for the r-ring is the root of

acz + (-)P*l7 = 0

Here, ap is defined in equation (13), and

-y = EB1,jO+1Bi2,1+1 ... Bi+,3,+1. (14)

Bei,io+ 1, B2, 1+ 1,. . ., Bip,i,+l are the entries of B in the x position of figure 5, io = 0,
ip41= n and they satisfy

r < im+1 - im < k (15)

for

m = 0,1,2, ... ,p

2.3 Pathological Exceptions

When k > 1, p = 1, the q(z) in Corollary 2.1 is q(z) = z+a 1 , where a= - E B11+k- 1 ,11.

Therefore a, 5 0 is the generic case. In such cases, J. Burke and M. Overton([10, Theo-

rem 4]) gave a general result on the characteristic polynomial of A + EB: the coefficient of

every term cAV is the sum of the elements on the (n-i)th subdiagonal for i = 0, 1, . . . , n-1.

From this theorem, if we assume that the last subdiagonal that does not sum up to zero

is the kth subdiagonal, for k > 1, using a Newton diagram [81, 2] (see Figure 7 for an

example of a Newton diagram), it can be easily seen that the eigenvalues split into one

k-ring and one (n - k)-ring.

We can argue similarly for k < i. When a= 0, we generically lose one k-ring and

the r-ring. Consider the Newton diagram: the (pk, p) point moves up and the whole
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Newton Diagram in the case n=10, k=4

2.5-

2

1.5

1-

0.5 -

0 1 2 3 4 5 6 7 8 9 10
pk n

Figure 7: Newton diagram

diagram generically breaks into three segments, one with slope , of length (p - 1)k and

one with slope 6,of length k -1 and one with slope -, of length r + 1. This means it

has (p - 1)k eigenvalues forming p - 1 k-rings and k - 1 eigenvalues forming one (k - 1)-

ring and r + 1 eigenvalues forming an (r + 1)-ring. There are two special cases when this

does not happen. One is when k - 1 = r + 1, then the last two segments combine into

one segment. The other is when k - 1 < r + 1 which can happen when k = r + 1, and

the whole diagram breaks into only two segments, the first one remains untouched, and

the second one has slope 2, length k + r. When y in Equation (14) is zero, the r-ring

will be lost.

The following are three examples that violate the two generic conditions.
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Figure 8: Example 2.1:

0

5

0

x 10-1 An (k-1)-ring

* *

*

5

0

-51 J

-5 0 5

x10'

-51*

-5 0 5

x 106

aO = 0, we lose one k-ring and the r-ring. The last k-ring
becomes an (k - 1)-ring and the remaining r + 1 eigenvalues form an (r + 1)-ring.

Example 2.1 n= 9, k =4, p=2, r =1,

-11 1 -1 -14 22 2 -6 -13 -9

-8 -2 2 -4 3 10 -15 7 -10

4 -3 -1 -5 9 12 -1 -14 -1

1 -7 17 18 7 -5 6 -13 -24

B 0 -1 16 8 6 9 1 -6 -7.

0 0 6 1 10 -2 16 -15 -14

0 0 0 -3 13 -3 -3 6 3

0 0 0 0 0 5 8 -3 6

0 0 0 0 0 9 -8 -13 1

33
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*

* ~*

X 10-6 An (r+1)-ring
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-5 0 5
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Example 2.2 n=5, k=2, p=2, r= 1,

16

4

0

0

0

2

-7

8

0

0

5X to-' The remaining k-ring

x0~*

-5 0 5

X 0o-

x -, A 'nng" with k+r points

x10

-505
00 5

Figure 9: Example 2.2: ap = 0, we lose one k-ring and the r-ring. The remaining k + r
eigenvalues still spread evenly on a circle, but they do not form a ring.

Examples 2.1 and 2.2 violate the generic condition of the k-rings, while Example 2.3

violates the generic condition of the r-ring.

Example 2.3 n=5, k =3, p= 1, r =2,
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5

0

-5 0 5
X 1o'

Figure 10: Example 2.3: -y = 0, the r eigenvalues still spread evenly
do not form a ring.

on a circle, but they

2.4 t Block Case (All Bij's are upper k-Hessenberg matrices)

We now study the case when the Jordan form of J has t blocks all with the same size n.

We found the case when J has a Jordan structure of different size blocks too complicated

for general analysis, though individual cases are easily examined. In this section, we

only consider the admittedly special case where the perturbation matrix B has the block

upper k-Hessenberg form obtained by dividing B into n x n blocks and every Bij is an

upper k-Hessenberg matrix. In this special case, we have

Theorem 2.2 Let J, B, n and k be given as above and let r be the remainder of n

divided by k, i.e. n = pk + r, 0 < r < k. The eigenvalues of J + EB will then split into

tp k-rings and t r-rings if r # 0.

Proof: The proof follows closely that of the proof of Theorem 2.1, but we now imagine

that B has only elements on the kth subdiagonal of each block. Every term in the

35
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characteristic polynomial must correspond to a union of possibly deformed laced sections

of size k (see Figure 11) and horizontal lines.

(a) (b) (C)

1 C

2 C

3 3 3

4 3

53

6 C

7 C

8 C 3

9 3

10 3

1 C 3

2 / 0

3 e

4 e
5*7

6 C3

7 e /8 C /a

9 e

10 0

n=5 k=4 t=2

C 3

C

e a
e

e

ee /

Figure 11: (a) Bipartite graph of AI - (J + EB) (b) Perfect matching with two laced
sections of size 4 contributing to E2A2 term. (c) Perfect matching with two deformed
laced sections of size 4 contributing to E2A2 term.

We therefore have that

det(AI - (J + EB)) = A" + aEA"I-k + a 2 
2 nt-2 k + - + aPtEptAnt-Pkt

where instead of Equation (13) in Section 2.2, we have

ai = (- 1 )i E det(B1 ,12 ,. .,)
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Here, B11 2,...,Ii represents the matrix formed by extracting the entries at rows 11 +k -

1,1 2 + k - 1, ... , li + k - 1 and columns 1, 12,..., li, with 13+1 - l ;> k.

Therefore J + EB has rt eigenvalues equal to 0 up to O(cl/k) and pt k-rings with radii

the kth powers of the zeros of

q(z) = zP' + aizP-l +- + ap.

Now if B has the block upper k-Hessenberg form and we wish to study the O(6 1/k)

eigenvalues, only the lowest subdiagonal elements matter to first order for the same reason

as in the proof of Theorem 2.1.

Alternatively, this result may be obtained following the Lidskii approach of letting

A = pEl/k, Z - E /1,

L, = diag[diag[z- 1, z- 2 ... , z-"],... , diag[z, z- 2,. .. ,z]],

R1 = diag[diag[1, z,. . . , z"'], ... , diag[1, z, ... , n-1]]

and studying the limit of L1 (pzI - J - zkB)R 1 as z -+ 0. We write the proof based on

this technique in part (a) of the following alternative proof.

We now turn to the r-rings. Although the Newton diagram approach can not be

applied in an obvious way here, with the bipartite graph approach or the Lidskii approach,

it can be seen that the typical terms consist of tp + i possibly deformed laced sections

each of size between r and k, with i = 0, 1,.. . , t. We write out the Lidskii approach

proof in part (b) of the following alternative proof. l

Alternative Proof:

The proof follows closely the alternative proof of Theorem 2.1.

Part a:

Let L1 be a block diagonal matrix with t blocks and every block has the form as in
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Equation (4). Let R1 be a block diagonal matrix with t blocks and every block has the

form in Equation (5). Let

M(z) = L1(AI - J - cB)R1 .

Then M(0) breaks into t2 n x n blocks. All of the diagonal blocks have the same form

as in Equation (6) and the form of the off diagonal blocks results from replacing the p's

and -l's with O's in the diagonal blocks. Call the resulting matrix M(0). We can reach

the same claim that

f(p) = det(M(0)) = proq(k), (16)

where ro - nt mod k. By considering the diagonal blocks we can see that generically

the terms p't and p't appear. This can be shown simply by using the same w as in

Equation (7) and constructing L' and R' by replacing the z's in L, and R1 with W's,
and going through exactly the same procedure. Thus, we will have at least nt - rt = tpk

eigenvalues yielding the form /-ck + o(Ec), i = 1,...tp. Note that every /cj gives k

values. They form pt k-rings.

Part b:

Let L 2 be a block diagonal matrix with t blocks and every block has the form as in

Equation (8). Let R 2 be a block diagonal matrix with t blocks and every block has the

form as in Equation (9). Let

N(z) = L 2(AI - J - EB)R 2.

Then N(0) breaks into t2 n x n blocks. All of the diagonal blocks have the same form as

N(0) in Figure 5 and the form of the off diagonal blocks results from replacing the p's
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and -I's with O's in the diagonal blocks. We can reach the same claim that

g(M) = det(N(0)) = h(pr) (17)

and by considering the diagonal blocks we can see that generically the term PO and yrl

appear. This can be shown simply by using the same w as in Equation (11) and construct

L' and R' by replacing the z's in L 2 and R 2 with w's, and going through exactly the same

procedure. Thus, we will have at least rt eigenvalues yielding the form {/C_E + O(E)

here l = 1, ...t. Note that every C', gives r values. They form t r-rings.

Since the matrix J + EB has only nt eigenvalues, it must have exactly tpk and tr of

each. This completes the proof of the theorem. R

Corollary 2.3 The kth power of the ring constants for the k-rings are the roots of q(z),

where

q(z) = z' + acz'-' + a 2zpt-2 + + aiz"-i +-+apt

and

ai = (--~1) : det (BI, 12,..-.,li)

where Bl1,12 ,...,t represents the matrix formed by extracting the entries at rows 11 + k -

1, 12+ k - 1,. .. , li + k - 1 and columns 11, 12,... ,li, with lj+1 - lj > k. So long as apt # 0,
we obtain the generic behavior described in Theorem 2.2.

Corollary 2.4 The rth power of the ring constants for the r-rings are the roots of g(z),
where

g(z) = 7e zt + 71lzt-1 + 72Zt-~2 + --- + 7izt- i + --- + 7t
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and

)P = (--)Pt+i det (B, 402,...,te)

with

r < im+1 - im K k

for i = 0, 1, ... , t. Here, B 10,11,12 ,.,pt+i represents a matrix obtained by extracting the

entries on rows 11, 12, -... , lpt+j and columns 10 + 1,11 + 1, ... , lpt+i-1 + 1 from the matrix

formed by repeating Figure 5 t times on the diagonal and Figure 5 with p's and -1's

replaced by O's on the off diagonals, and we have 10 = 0, lpt+t = nt.

2.5 t Block Case (Every Bij is an upper Kij-Hessenberg matrix)

When the number of subdiagonals in each Bij differs, the situation becomes much more

complicated, the general problem remains open. We have some observations in two

special cases. Let Kij = the number of subdiagonals of Bij, for 1 < i, j < n, i.e., Bij is

an upper Kij-Hessenberg matrix.

Theorem 2.3

Case 1:

Let Kmax = max(Kij), i = 1, ... n, j = 1, ... , n. If K11 = K22 = Ktt = Kmax then

Theorem 2.2 holds upon taking k = Kmax.

Case 2:

Let Kmax = max(Kij). If we can find t K 's equal to Kmax s.t. no two of them are in

the same row or column, then the result from Theorem 2.2 holds upon taking k = Kmax.

Case 3:
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When Kii > Kzj, Kii > Kjj for all i and j, and Kii > !, then the resulting eigenvalue
-2'

behavior looks like putting the t diagonal blocks together, i. e, J + B has Kii eigenvalues

that form one Kii-ring for i = 1,... ,t It also has n - Kii eigenvalues that form one

(n - Kii) -ring for i = 1,... ,t.

Case 4:
If we can find t numbers Kill, K K all > g, such that K,j, > Ki1 and

Kij, Kmj, for any 1 and m, s 1,..., t, anid i # is,, J # js,, when s 4 s', then

J + eB has K,., eigenvalues that form one Ki.,, -ring for s = 1,... ,t . The remaining

n - Kiy, eigenvalues form an (n - Ki,, ) -ring for s = 1,.. . , t.

Proof of Case 1:

This can be checked simply by replacing all the Kjj's with Kmax and noticing that the

proof of Theorem 2.2 is still valid with k replaced by Kmax, in that the genericity condition

is the same even if some of the off diagonal entries are zero. l

Proof of Case 2:

We also replace all the KI('s with Kmax. The proof of Theorem 2.2 with k replaced by

Kmax remains valid with a minor modification. While some terms in f((p) and g(p) in

equations (16) and (17) as defined in the proof of Theorem 2.2 may be 0 in one block,

one can always obtain non-zero terms in each block row and column in the block with

Kij = Kmax. This will guarantee the same nonzero terms generically. l
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The following is an example where t = 2:

p -1

pi -- 1

4 p -1

4 [A

4

4

-1

jp1

4

-1

AI -1

P

4

-1

A

eQ

P

4

--1

pY --1

AI

4

-1

P

4

4

-1

p

4

-1

AI -1

IL

4

-1

p1

This is an example with t = 2 and Kmax = K 12 = K21, in which instead of taking 4's

which may be all zeros, we take e's which are nonzero generically.

Proof of Case 3:

For any Kii, let L 1, be a diagonal matrix formed by t blocks of size n x n. For block j,
if K,, < Kii, then the block will be

diag[z ', z--2, ... z-"],
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if Kjj > Kii, then the block will be

diag[D1 , z-n+Ki IK 1 -n+Kjj, z n+Kii Di, 1~

where

D1, = diag[z- 1 ,... ,z-n+K

(18)

(19)

and

D,4 = diag[z-1, ... , z-n+Ki]-

Let R 1, be a diagonal matrix formed by t blocks of size n x n. For block j, if Kjj < Ki,

then the block will be

diag[z , z" t -1t

if Kjj ;> Kii, then the block will be

diag[D, zKii IKii+K3 -n, zKjiD ],

Dr. = diag[z 0, .... , z Ki -1],

Dr. = diag[z0 , ... , z2n-Kii-Kjj -1.

Let A = pz, z =
1

CKi and Mi (z) = L 1 (AI -J - oB) Rj. Then Mi (0) is a t x t block matrix

where the jth diagonal block looks like either the M(0) in Equation (6) for k = K or
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the block has the form

p -1

f -1

* 0 -1

* 0 -1

* 0 1

* p -i

* ft

Here, the *'s on the first column appear from the Kjith row to Kjjth row. The off

diagonal block M(0) m looks the same as in Equation (6) with k = max(l, m). Replacing

z in L1 and R1 with w, which is e Ku, to get L'. and R' , we get the same conclusion

that det(Mi(0)) is of the form pn-Kip(yKii) and by extracting the constant terms from

the diagonal blocks with the new form above and the pn-Kii terms and the nf terms from

all the other diagonal blocks, we get the result that there are at least tiKii eigenvalues

forming tj Kii-rings. Here, t is the number of times Kii appears on the diagonal.

For any Kii, let L 2, be a diagonal matrix formed by t blocks of size n x n. For block j,
if Kj3 < Kii, then the block will be

diag [D, z-n+Kjj '2Kj -n, zn+Kii D ] ,
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where D1, is given by Equation (19), if Kjj ;> Kii, then the block will be the same as in

Equation (18). Let R 2 be a diagonal matrix formed by t blocks of size n x n. Let

D_ - diag[z 0, .... , Zn-Kii - (22)

For block j, if K,, < Kii, then the block will be

diag[Dni, zn-Kii I 2Kii-n, ZnKiiDni ]

if K,, > Kii, then the block will be

diag[Dni, Zn-Kjj IKjj+Kii-n) Zn KiiDn],

where Da, and Dni follows the definition in Equation (22). Let A = puz and z = n-Ki.

It can be checked that L 2j(AI - J - EB)R 2, at z = 0 is a t x t block matrix N(0)i while

the jth diagonal block looks like

bI

*

*

-1

-1

0 -1

*

*

0 -1

p -1

* 1p
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For Kjj <; Kii, the * in the first column goes from the (n - Kij)'th row to the K2ith

row, while for Kj ;> Kii, the * in first column goes from the (n - K)th row to the

Kjjth row. For the off diagonal blocks, if 1 < m, then N(0)1m has exactly the same form

as N(0)11 with y and -1 replaced by 0. If 1 > m, then it has the form M(O)mm with

only the *'s on the first column remaining. Taking L'. and R' as L 2, and R21 with z
27ri

replaced by w = enu , we find that det(Ni(0)) is f(M -Kii) and the constant term and

p(n-Kjj)tj term appear generically by inspecting the diagonal blocks only. So J + 6B has

at least (n - Kjj)tj eigenvalues forming tj (n - Kii)-rings. Comparing the total number

of eigenvalues of J + cB, we reach the conclusion. El

Proof of Case 4:

This can be proved by treating the Kimj1 , Ki2j 2 , ... Kitj as Kil, K 22 , ...Ktt's as in Case 3

and going through the same proof, applying the same permutation as in Case 2. El

Proof of Case 3 and 4:

A proof on a higher level can be given for both Case 3 and Case 4 at the same time.

Imagine all KI1j 1, Ki2 2 , ... Kt, Ki are obtained from the matrices on the main block di-

agonal and the matrices on the off diagonals are all zero matrices, then the results hold

obviously. Now assume the off diagonal matrices are the ones satisfying the conditions in

case 2. The way to change the Newton diagram is through getting a new nonzero term

from the off-diagonal elements, which is not possible in this case. The result still holds

without the assumption that Kij, Ki2 2, . . . .Ki are obtained from the main block di-

agonal matrices as long as we notice that we still get the same nonzero terms generically

from those off diagonal matrices where the Kill, Ki2 j 2, . . . Kitit instead come from di-

agonal matrices. l
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3 Staircase Failures Explained by Orthogonal Versal

Forms

3.1 Introduction

Accurately computing Jordan and Kronecker canonical structures of matrices and pencils

is an inportant problem in numerical linear algebra. Staircase algorithms regularize the

ill-posed problem of computing the Jordan structure of a matrix by attempting to find a

nearby matrix with an "interesting" Jordan structure. It does this by making a sequence

of rank decisions. The algorithm may also be directed towards a particular structure.

We study the failure of the staircase algorithms. we take the geometry approach to

view matrices in n2 dimensional space and pencils in 2mn dimensional space to explain

these failures. This follows a geometrical program to complement and perhaps replace

traditional numerical concepts associated with matrix subspaces.

The most important contributions of this section may be summarized:

" A geometrical explanation of staircase algorithm failures

" Identification of three significant subspaces that decompose matrix or pencil space:

T,R, S. The most important of these spaces is S, which we choose to call the

"staircase invariant space".

" The idea that the staircase algorithm computes an Arnold normal form that is

numerically more appropriate than Arnold's "matrices depending on parameters".

" A first order perturbation theory for the staircase algorithm

" Illustration of the theory using an example by Boley [5]

The section is organized as follows: In Section 3.1.1 we introduce concepts that we

call pure, greedy and directed staircase to emphasize subtle distinctions on how the
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algorithm might be used. Section 3.1.2 contains some important messages that result

from the theory to follow.

Section 3.2 presents two similar looking matrices with very different staircase be-

havior. Section 3.3 studies the relevant n2 dimensional geometry of matrix space while

Section 3.4 applies this theory to the staircase algorithm. The main result may be found

in Theorem 3.6.

Sections 3.5, 3.6 and 3.7 mimic Sections 3.2, 3.3 and 3.4 for matrix pencils. Section

3.8 applies the theory towards special cases introduced by Boley [5] and Demmel and B.

Kigstr6m [23].

3.1.1 The Staircase Algorithms

Staircase algorithms for the Jordan and Kronecker form work by making sequences of

rank decisions in combination with eigenvalue computations. We wish to emphasize a

few variations on how the algorithm might be used by coining the terms pure staircase,

greedy staircase, and directed staircase. Pseudocode for the Jordan versions appear

near the end of this subsection. In combination with these three choices, one can choose

an option of zeroing or not. These choices are explained below.

The three variations for purposes of discussion are considered in exact arithmetic.

The pure version is the pure mathematician's algorithm: it gives precisely the Jordan

structure of a given matrix. The greedy version (also useful for a pure mathematician!)

attempts to find the most "interesting" Jordan structure near the given matrix. The

directed staircase attempts to find a nearby matrix with a preconceived Jordan struc-

ture. Roughly speaking, the difference between pure, greedy, and directed is whether

the Jordan structure is determined by the matrix, a user controlled neighborhood of the

matrix, or directly by the user respectively.

In the pure staircase algorithm, rank decisions are made using the singular value

decomposition. An explicit distinction is made between zero singular values and nonzero

singular values. This determines the exact Jordan form of the input matrix.
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The greedy staircase algorithm attempts to find the most interesting Jordan struc-

ture nearby the given matrix. Here the word "interesting" (or degenerate) is used in the

sense of precious gems, the rarer, the more interesting. Algorithmically, as many singu-

lar values as possible are thresholded to zero with a user defined threshold. The more

singular values that are set to 0, the rarer in the sense of codimension (see [18, 34, 35]).

The directed staircase algorithm allows the user to decide in advance what Jordan

structure is desired. The Jordan structure dictates which singular values are set to 0.

Directed staircase is used in a few special circumstances. For example, it is used when

separating the zero Jordan structure from the right singular structure (used in GUPTRI

[21, 22]). Moreover, Elmroth and Kigstr6m imposed structures by the staircase algorithm

in their investigation of the set of 2 x 3 pencils [36]. Recently, Lippert and Edelman [73]

use directed staircase to compute an initial guess for a Newton minimization approach

to computing the nearest matrix with a given form in the Frobenius norm.

In the greedy and directed modes if we explicitly zero the singular values, we end

up computing a new matrix in staircase form that has the same Jordan structure as a

matrix near the original one. If we do not explicitly zero the singular values, we end up

computing a matrix that is orthogonally similar to the original one (in the absence of

roundoff errors), that is nearly in staircase form. For example, in GUPTRI [22], the choice

of whether to zero the singular values is made by the user with an input parameter named

zero which may be true or false.

To summarize the many choices associated with a staircase algorithm, there are really

five distinct algorithms worth considering: the pure algorithm stands on its own, oth-

erwise the two choices of combinatorial structure (greedy and directed) may be paired

with the choice to zero or not. Thereby we have the five algorithms:

1. pure staircase

2. greedy staircase with zeroing

3. greedy staircase without zeroing

4. directed staircase with zeroing
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5. directed staircase without zeroing

Notice that in the pure staircase, we do not specify zeroing or not, since both will

give the same result vacuously.

Of course algorithms run in finite precision. One further detail is that there is some

freedom in the singular value calculations which lead to an ambiguity in the staircase

form: in the case of unequal singular values, an order must be specified, and when singular

values are equal, there is a choice of basis to be made. We will not specify any order for

the SVD, except that all singular values considered to be zero appear first.

In the ith loop iteration, we use wi to denote the number of singular values that are

considered to be 0. For the directed algorithm, wi are input, otherwise, wi are computed.

In pseudocode, we have the following staircase algorithms for computing the Jordan form

corresponding to eigenvalue A.

INPUT:

1) matrix A

2) specify pure, greedy, or direct mode

3) specify zeroing or not zeroing

OUTPUT:

1) matrix A that may or may not be in staircase form

2) Q (optional)

i=0, Q=I

Atmp = A - AI

while Atmp not full rank

Let n' =z- w, and nitmp = n - n' = dim(Atmp)

Use the SVD to compute an ntmp by nitmp unitary matrix V whose leading wi columns

span the nullspace or an approximation

Choice I: Pure: Use the SVD algorithm to compute wi and the exact nullspace
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Choice II: Greedy: Use the SVD algorithm and threshold the small singular values with

a user specified tolerance, thereby defining wi. The corresponding singular vectors

become the first wi vectors of V.

Choice III: Directed: Use the SVD algorithm, the wi are defined from the input Jordan

structure. The wi singular vectors are the first wi columns of V.

A = diag(In,, V*) - A -diag(I,, V), Q = Q -diag(In,, V)

Let Atmp be the lower right ntmp - wi by nitmp - wi corner of A

Atmp = Atmp - Al

endwhile

If zeroing, return A in the form AI + a block strictly upper triangular matrix.

While the staircase algorithm often works very well, it has been known to fail. We can

say that the greedy algorithm fails if it does not detect a matrix with the least generic

form [18] possible within a given tolerance. We say that the directed algorithm fails if

the staircase form it produces is very far (orders of magnitude, in terms of the usual

Frobenious norm of matrix space) from the staircase form of the nearest matrix with

the intended structure. In this paper, we mainly concentrate on the greedy staircase

algorithm and its failure, but the theory is applicable to both approaches. We emphasize

that we are intentionally vague about how "far" is "far" as this may be application

dependent, but we will consider several orders of magnitude to constitute the notion of

"far".

3.1.2 Geometry of Staircase and Arnold Forms

Our geometrical approach is inspired by Arnold's theory of versality [1]. For readers

already familiar with Arnold's theory, we point out that we have a new normal form

that enjoys the same properties as Arnold's original form, but is more useful numerically.

For numerical analysts, we point out that these ideas are important for understanding

the staircase algorithm. Perhaps it is safe to say that numerical analysts have had an

"Arnold Normal Form" for years, but we did not recognize as such - the computer was
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doing it for us automatically.

The power of the normal form that we introduce in Section 3.3 is that it provides

a first order rounding theory of the staircase algorithm. We will show that instead of

decomposing the perturbation space into the normal space and a tangent space at a

matrix A, the algorithm chooses a so called staircase invariant space to take the place of

the normal space. When some directions in the staircase invariant space are very close

to the tangent space, the algorithm can fail.

From the theory, we decompose the matrix space into three subspaces that we call 7b,

R and S, the precise definitions of the three spaces are given in Definitions 3.1 and 3.3.

Here, 7b and R are two subspaces of the tangent space, and S is a certain complimentary

space of the tangent space in the matrix space. For the impatient reader, we point out

that angles between these spaces are related to the behavior of the staircase algorithm;

note that R is always orthogonal to S. (We use < - > to represent the angle between

two spaces.)

angles components

A Staircase fails < S, Tb3 R > < ,7 R > < S,7 R > S 7

no weak stair no large large 7r/2 small small

weak stair no large small 7r/2 small large

weak stair yes small small 7r/2 large large

Here, by a weak stair [31], we mean the near rank deficiency of any superdiagonal block

of the strictly block upper triangular matrix A.
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3.2 A Staircase Algorithm Failure to Motivate the Theory

Consider the two matrices

0 1 0 0 6 0

A,1 0 0 6 and A 2 =( 00 1)

0 0 0 000

where 6 =1. 5e-9 is approximately on the order of the square root of the double precision

machine c = 2-52, roughly 2.2e-16. Both of these matrices clearly have the Jordan

structure J3 (0), but the staircase algorithm on A1 and A2 can behave very differently.

To test this, we used the GUPTRI [22] algorithm. GUPTRI 2 requires an input matrix

A and two tolerance parameters EPSU and GAP. We ran GUPTRI on A, A1 + EE and

A2 =- A 2 + EE, where

.3 .4 .2

E= .8 .3 .6

.4 .9 .6

and E = 2.2e-14 is roughly 100 times the double precision machine E. The singular

values of each of the two matrices A1 and A 2 are a1 = 1. QOQOeQO, U2 = 1. 490le-09 and

3= 8.8816e-15. We set GAP to be always > 1, and let EPSU = a/(|Ail| * GAP), where

we vary the value of a (The tolerance is effectively a). Our observations are tabulated

below.

2GUPTRI [21, 22] is a "greedy" algorithm with a sophisticated thresholding procedure based on two
input parameters EPSU and GAP > 1. We threshold o-1 if ,k-1 < GAP x max(O-k,EPSU x IIAfl)
(Defining a,+, = 0). The first argument of the maximum Ok ensures a large gap between thresholded
and non-thresholded singular values. The second argument ensures that _k-1 is small. Readers who look
at the GUPTRI software should note that singular values are ordered from smallest to largest, contrary
to modern convention.
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a computed Jordan Structure for A1  computed Jordan Structure for A 2

a > -2 J2 (0) E J1 (0) + 0(10-9) J2(0) e J(0) + 0(10-9)
-y _ a< U2  j 3(0) + 0(10- 6) ® J3(0) + (10-1 4 )
a < 7 J1 (0) e Ji(aZ) e J1 (3) + 0(10-14) J1 (0) E J1(a) D Ji(') + 0(10-14)

Here, we use Jk(A) to represent a k x k Jordan block with eigenvalue A. In the table,
typically a , / # 0. Setting a small (smaller than 7 = 1.9985e-14 here, which is the

smaller singular value in the second stage), the software returns two nonzero singular

values in the first and second stages of the algorithm and one nonzero singular value in

the third stage. Setting EPSU x GAP large (larger than U2 here), we zero two singular values

in the first stage and one in the second stage giving the structure J2 (0) e J1 (0) for both

A1 and A 2 (There is a matrix within 0(10 9 ) of A 1 and A 2 of the form J2 (0) E J1 (0)).

The most interesting case is in between. For appropriate EPSU x GAP ~ a (between -y and

0-2 here), we zero one singular value in each of the three stages, getting a J3 (0) which is

0(10-") away for A 2 , while we can only get a J3 (0) which is 0(10-6) away for A 1 . In

other words, the staircase algorithm fails for A 1 but not for A 2 . As pictured in Figure 12,

the A 1 example indicates that a matrix of the correct Jordan structure may be within

the specified tolerance, but the staircase algorithm may fail to find it.

Consider the situation when A 1 and A 2 are transformed using a random orthogonal

matrix Q. As a second experiment, we pick

-. 39878 .20047 -. 89487

Q -. 84538 -. 45853 .27400

-. 35540 .86577 .35233

and take A1 = Q(A 1 + cE)QT, A 2 = Q(A 2 + EE)QT. This will impose a perturbation of

order c. We ran GUPTRI on these two matrices; the following is the result:
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a computed Jordan Structure for A1  computed Jordan Structure for A 2

a> O-2 J2(0) E J(O) + 0(10-5) J2 (0) DJi(0) + 0(10-6)

-y < a< -2  Ji(0) E J1(a) ( J() g J3(0) + 0(10-6)

a < y J1 (0) e J1(a) E J1(3) + 0(10 -14) J1 (0) E Ji(a) E J1(3) + 0(10-14)

In the table, y = 2.6980e-14, all other values are the same as in the previous table.

In this case, GUPTRI is still able to detect a J3 structure for A 2, although the one it

finds is 0(10-6) away. But it fails to find any J3 structure at all for A1 . The comparison

of A1 and A2 in the two experiments indicates that the explanation is more subtle than

the notion of a weak stair (a superdiagonal block that is almost column rank deficient)

[31].

A1

-6 -9
10 10

-14

10

Figure 12: The staircase algorithm fails to find A1 at distance 2.2e-14 from A1 but does
find a J3 (0) or a J2(0) @ J1 (0) if given a much larger tolerance. (The latter is J away
from A1.)

In this paper we present a geometrical theory that clearly predicts the difference
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between A1 and A2 . The theory is based on how close certain directions that we will

denote staircase invariant directions are to the tangent space of the manifold of

matrices similar to the matrix with specified canonical form. It turns out that for A1,

these directions are nearly in the tangent space, but not for A2 . This is the crucial

difference!

The tangent directions and the staircase invariant directions combine to form a "versal

deformation" in the sense of Arnold [1], but one with more useful properties for our

purposes.

3.3 Staircase Invariant Space and Versal Deformations

3.3.1 The Staircase Invariant Space and Related Subspaces

We consider block matrices as in Figure 13. Dividing a matrix A into blocks of row

and column sizes ni, . . . , nk, we obtain a general block matrix. A block matrix is

conforming to A if it is also partitioned into blocks of size n, ... , nk in the same

manner as A. If a general block matrix has non-zero entries only in the upper triangular

blocks excluding the diagonal blocks, we call it a block strictly upper triangular

matrix. If a general block matrix has non-zero entries only in the lower triangular

blocks including the diagonal blocks, we call it a block lower triangular matrix. A

matrix A is in staircase form if we can divide A into blocks of sizes ni > n 2 > ... > nk

s.t. A is a strictly block upper triangular matrix and every superdiagonal block has

full column rank. If a general block matrix only has nonzero entries on its diagonal

blocks, and each diagonal block is an orthogonal matrix, we call it a block diagonal

orthogonal matrix. We call the matrix eB a block orthogonal matrix (conforming

to A) if B is a block anti-symmetric matrix (conforming to A) (i.e. B is anti-symmetric

with zero diagonal blocks. Here, we abuse the word "conforming" since eB does not have

a block structure.)
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key:

HE U
arbitrary block full column rank block orthogonal block special block zero block

Figure 13: A schematic of the block matrices defined in the text.

Definition 3.1 Suppose A is a matrix in staircase form. We call S a staircase in-

variant matrix of A if STA = 0 and S is block lower triangular. We call the space of

matrices consisting of all such S the staircase invariant space of A, and denote it

by S.

We remark that the columns of S will not be independent except possibly when A = 0;
S can be the zero matrix as an extreme case. However the generic sparsity structure of
S may be determined by the sizes of the blocks. For example, let A have the staircase
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form

000 xx x x x xx x
000 x x x x x x xx
000 x x x x x xx x

00 XX X xxx 0 0
A 00 XX X ,then S= XXX 00

00 x xxx xx xx
00 x xxx xx xx

0 / xxx xx xx x /
is a staircase invariant matrix of A if every column of S is a left eigenvector of A. Here,
the o notation indicates 0 entries in the block lower triangular part of S that are a

consequence of the requirement that every column be a left eigenvector. This may be

formulated as a general rule: if we find more than one block of size ni x ni then only

those blocks on the lowest block row appear in the sparsity structure of S. For example,
the o do not appear because they are above another block of size 2. As a special case,
if A is strictly upper triangular, then S is 0 above the bottom row as is shown below.

Readers familiar with Arnold's normal form will notice that if A is a given single Jordan

block in normal form, then S contains the versal directions.

/= x xE xxx) \ xx xx x
A= x n x , S=

x x
x

Definition 3.2 Suppose A is a matrix. We call O( A) =- { X AX - : X is a non-singular
matrix} the orbit of a matrix A. We call T {AX - X A : X is any matrix} the

tangent space of O(A) at A.

T heorem 3.1 Let A be an n x n matrix in staircase form, then the staircase invariant

space S of A and the tangent space T form an oblique decomposition of n x n matrix

space, i.e. R2 SDT.
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Proof:

Assume that Ai,, the (i, j) block of A, is ni x nj for i, j = 1, ... , k and of course Aij = 0

for all i < j.

There are n' degrees of freedom in the first block column of S because there are ni

columns and each column may be chosen from the ni dimensional space of left eigenvec-

tors of A. Indeed there are n? degrees of freedom in the ith block, because each of the ni

columns may be chosen from the ni dimensional space of left eigenvectors of the matrix

obtained from A by deleting the first i - 1 block rows and columns. The total number of

degrees of freedom is kI n', which combined with dim(T) = - E n2 [ 18], gives

the dimension of the whole space n

If S E S is also in T then S has the form AX - XA for some matrix X. Our

first step will be to show that X must have block upper triangular form after which we

will conclude that AX - XA is strictly block upper triangular. Since S is block lower

triangular, it will then follow that if it is also in T, it must be 0.

Let i be the first block column of X which does not have block upper triangular

structure. Clearly the ith block column of XA is 0 below the diagonal block, so that the

ith block column of S = AX - XA contains vectors in the column space of A. However

every column of S is a left eigenvector of A from the definition (notice that we do not

require these column vectors of S to be independent), and therefore orthogonal to the

column space of A. Thus the ith block column of S is 0, and from the full column rank

conditions on the superdiagonal blocks of A, we conclude that X is 0 below the block

diagonal. l

Definition 3.3 Suppose A is a matrix. We call (9b(A) ={QTAQ : Q = eB, B is a block

anti-symmetric matrix conforming to A} the block orthogonal-orbit of a matrix A.

We call 7 - { AX - XA : X is a block anti-symmetric matrix conforming to A} the

block tangent space of the block orthogonal orbit Ob(A) at A. We call R { block

strictly upper triangular matrix conforming to A} the strictly upper block space of

A.

59



Note that because of the complementary structure of the two matrices R and S, we

can see that S is always orthogonal to R.

Theorem 3.2 Let A be an n x n matrix in staircase form, then the tangent space T of

the orbit O(A) can be split into the block tangent space Tb of the orbit (9b(A) and the

strictly upper block space R, i.e. T = Tb E R.

Proof:

We know that the tangent space T of the orbit at A has dimension n 2 -- EZ , n2. If we

decompose X into a block upper triangular matrix and a block anti-symmetric matrix,

we can decompose every AX - XA into a block strictly upper triangular matrix and a

matrix in Tb. Since T = Tb + R, each of Tb and R has dimension < 1/2(n 2  =1 n)

they must both be exactly of dimension 1/2(n2 - EL ny). Thus we know that they

actually form a decomposition of T, and the strictly upper block space R can also be

represented as R? {AX - XA : X is block upper triangular matrix conforming to A}.

D

Corollary 3.1 R"2 = (D 7 e S. See Figure 14.

In Definition 3.3, we really do not need the whole set {eB : B is block antisymmetric

} {eB}, we merely need a small neighborhood around B = 0. Readers may well wish

to skip ahead to Section 3.4, but for those interested in mathematical technicalities we

review a few simple concepts. Suppose that we have partitioned n = ni + ... + nk. An

orthogonal decomposition of n-dimensional space into k mutually orthogonal subspaces

of dimensions ni, n 2, - - - , nk is a point on the flag manifold. (When k = 2 this is the

Grassmann manifold). Equivalently, a point on the flag manifold is specified by a

filtration, i.e., a nested sequence of subspaces V of dimension n1 +.. + ni = 1,.. . k):

0 C V1 C .-- C Vk = Cn.
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S

T (

Figure 14: A diagram of the orbits and related spaces. The similarity orbit at A is

indicated by a surface O(A), the block orthogonal orbit is indicated by a curve Ob(A)

on the surface, the tangent space of Ob(A), Tb is indicated by a line, R which lies on

O(A) is pictured as a line too, and the staircase invariant space S is represented by a

line pointing away from the plane.

The corresponding decomposition can be written as

C n=Vk =V1 @V 2 \V1 ... Vk\Vk-l-

This may be expressed concretely. If from a unitary matrix U, we only define V for

i = 1, ... , k as the span of the first nr1+n 2 +.. .+ni columns, then we have V1 C C Vk,

i.e., a point on the flag manifold. Of course many unitary matrices U will correspond

to the same flag manifold point. In an open neighborhood of {eB}, near the point

eo = I, the map between {eB} and an open subset of the flag manifold is a one to one

homeomorphism. The former set is referred to as a local cross section [54, Lemma 4.1,

page 123] in Lie algebra. No two unitary matrices in a local cross section would have the
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same sequence of subspaces Vi, i = 1, .. . , k.

3.3.2 Staircase as a Versal Deformation

Next, we are going to build up the theory of our versal form. Following Arnold [1], a

deformation of a matrix A, is a matrix A(A) with entries that are power series in the

complex variables A2, where A = (A,,..., Ak) E Ck, convergent in a neighborhood of

A = 0, with A(0) = A.

A good introduction to versal deformations may be found in [1, Section 2.4] or [34].
The key property of a versal deformation is that it has enough parameters so that no

matter how the matrix is perturbed, it may be made equivalent by analytic transforma-

tions to the versal deformation with some choice of parameters. The advantage of this

concept for a numerical analyst is that we might make a rounding error in any direction

and yet still think of this as a perturbation to a standard canonical form.

Let N C M be a smooth submanifold of a manifold M. We consider a smooth

mapping A: A -+ M of another manifold A into M, and let A be a point in A such that

A(A) E N. The mapping A is called transversal to N at A if the tangent space to M

at A(A) is the direct sum

TMA(A\) = A.TAA E TNA(A).

Here, TMA(A) is the tangent space of M at A(A), TNA(A) is the tangent space of N
at A(A), TAA is the tangent space of A at A and A. is the mapping from TA to TMA(A)

induced by A (It is the Jacobian).

Theorem 3.3 Suppose A is in staircase form. Fix Si E S, i = 1,... , k s.t. span{Si} =

S and k > dim(S). It follows that

A(A) = A + ASi (23)
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is a versal deformation of every particular A(A) for A small enough. A(A) is miniversal

at A = 0 if {Sj} is a basis of S.

Proof:

Theorem 3.1 tells us the mapping A(A) is transversal to the orbit at A. From the

equivalence of transversality and versality [1], we know that A(A) is a versal deformation

of A. Since the dimension of the staircase invariant space S is the codimension of the

orbit, A(A) given by Equation (23) is a miniversal deformation if the Si are a basis for

S (i.e. k = dim(S)). More is true, A(A) is a versal deformation of every matrix in a

neighborhood of A, in other words, the space S is transversal to the orbit of every A(A).

Take a set of matrices Xi s.t. the XjA - AXj form a basis of the tangent space T of

the orbit at A. We know T G S = R"2, here E implies T n S = 0 so there is a fixed

minimum angle 0 between T and S. For small enough A, we can guarantee that the

XjA(A) - A(A)Xi are still linearly independent of each other and they span a subspace

of the tangent space at A(A) that is at least, say, 0/2 away from S. This means that the

tangent space at A(A) is transversal to S. l

Arnold's theory concentrates on general similarity transformations. As we have seen

above, the staircase invariant directions are a perfect versal deformation. This idea can

be refined to consider similarity transformations that are block orthogonal. Everything

is the same as above, except that we add the block strictly upper triangular matrices R

to compensate for the restriction to block orthogonal matrices. We now spell this out in

detail:

Definition 3.4 If the matrix C(A) is block orthogonal for every A, then we refer to the

deformation as a block orthogonal deformation.

We say that two deformations A(A) and B(A) are block orthogonally-equivalent if

there exists a block orthogonal deformation C(A) of the identity matrix such that A(A) =

C(A)B(A)C(A)- 1.

We say that a deformation A(A) is block orthogonally-versal if any other defor-
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mation B(p) is block orthogonally-equivalent to the deformation A(q(,p)). Here, @ is a

mapping analytic at 0 with 0(0) = 0.

Theorem 3.4 A deformation A(A) of A is block orthogonally-versal iff the mapping A(A)

is transversal to the block orthogonal-orbit of A at A = 0.

Proof:

The proof follows Arnold [1, Sections 2.3 and 2.4] except that we use the block orthog-

onal version of the relevant notions, and we remember that the tangents to the block

orthogonal group are the commutators of A with the block anti-symmetric matrices. El

Since we know that T can be decomposed into Tb E R, we get:

Theorem 3.5 Suppose a matrix A is in staircase form. Fix Si C S, i = 1, ... , k s.t.

span{Sj} = S and k > dim(S). Fix Rj C Rj 1,... ,l s.t. span{Rj} = R and

1 > dim(7R). It follows that

A(A) = A+Z AiSi + AjR

is a block orthogonally-versal deformation of every particular A(A) for A small enough.

A(A) is block orthogonally-miniversal at A if {Si}, {Rj} are bases of S and R.

It is not hard to see that the theory we set up for matrices with all eigenvalues 0 can be

generalized to a matrix A with different eigenvalues. The staircase form is a block upper

triangular matrix, each of its diagonal blocks of the form AiI+Ai, with Ai in staircase form

defined at the beginning of this chapter, and superdiagonal blocks arbitrary matrices. Its

staircase invariant space is spanned by the block diagonal matrices, each diagonal block

being in the staircase invariant space of the corresponding diagonal block Aj. R space

is spanned by the block strictly upper triangular matrices s.t. every diagonal block is

in the R space of the corresponding Aj. Tb is defined exactly the same as in the one
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eigenvalue case. All our theorems are still valid. When we give the definitions or apply

the theorems, we do not really use the values of the eigenvalues, all that is important

is how many different eigenvalues A has. In other words, we are working with bundle

instead of orbit.

These forms are normal forms that have the same property as the Arnold's normal

form: they are continuous under perturbation. The reason that we introduce block

orthogonal notation is that the staircase algorithm is a realization to first order of the

block orthogonally-versal deformation, as we will see in the next section.

3.4 Application to Matrix Staircase Forms

We are ready to understand the staircase algorithm described in Section 3.1.1. We

concentrate on matrices with all eigenvalues 0, since otherwise, the staircase algorithm

will separate other structures and continue recursively.

We use the notation stair(A) to denote the output A of the staircase algorithm as

described in Section 3.1.1. Now suppose that we have a matrix A which is in staircase

form. To zeroth order, any instance of the staircase algorithm replaces A with A =

Q'AQO, where Qo is block diagonal orthogonal. Of course this does not change the

staircase structure of A; the Qo represents the arbitrary rotations within the subspaces,

and can depend on how the software is written, and the subtlety of roundoff errors when

many singular values are 0. Next, suppose that we perturb A by EE. According to

Corollary 3.1, we can decompose the perturbation matrix uniquely as E = S + R + Tb,

with S E S, R E 'R. and Tb E Tb. Theorem 3.6 states that in addition to some block

diagonal matrix Qo, the staircase algorithm will apply a block orthogonal similarity

transformation Q, = I + EX + o(E) to A + EE to kill the perturbation in Tb.

Theorem 3.6 Suppose that A is a matrix in staircase form and E is any perturbation

matrix. The staircase algorithm (without zeroing) on A + EE will produce an orthogonal

matrix Q (depending on e) and the output matrix stair(A + EE) = QT(A + EE)Q =
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A + E(S + R) + o(E), where A has the same staircase structure as A, S is a staircase

invariant matrix of Aand f is a block strictly upper triangular matrix. If singular values

are zeroed out, then the algorithm further kills S and outputs A + ER + o(E).

Proof:

After the first stage of the staircase algorithm, the first block column is orthogonal to the

other columns, and this property is preserved through the completion of the algorithm.

Generally, after the ith iteration, the ith block column below (including) the diagonal

block is orthogonal to all other columns to its right, and this property is preserved all

through. So when the algorithm terminates, we will have a matrix whose columns below

(including) the diagonal block are orthogonal to all the columns to the right, in other

words, it is a matrix in staircase form plus a staircase invariant matrix.

We can always write the similarity transformation matrix as Q = Qo(I + EX + o(c)),

where Qo is a block diagonal orthogonal matrix and X is a block anti-symmetric matrix

that does not depend on E because of the local cross section property that we mentioned

at the beginning of Section 3.3. Notice that Qo is not a constant matrix decided by A,

it depends on EE to its first order, we should have written (Qo)o + E(Qo)1 + o(E) instead

of Qo . However, we do not expand Qo since as long as it is a block diagonal orthogonal

transformation, it does not change the staircase structure of the matrix. Hence, we get

stair(A + EE) =stair(A + ES + ER + ETb)

=(I + EXT + o(E))QT (A + ES + ER + ETb)Qo(I + EX + o(c))

=(I + EXT + o(E))(A + ES + ER + ETb)(I + EX + o(E)) (24)

=A +e(S+ R+T+ AX - XA)+o(E)

=A + 6(S + A) + o(E).

Here, A, 5, R and Tb are respectively QgAQO, QT'SQO, QTRQo and QgT 6 QO. It is

easy to check that 5, N, Tb is still in the S, R, T space of A. X is a block anti-symmetric

matrix satisfying Tb = XA - AX. We know that X is uniquely determined because the
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dimensions of Tb and the block anti-symmetric matrix space are the same. The reason

that Tb = XA - AX hence the last equality in (24) holds is because the algorithm forces

the output form as described in the first paragraph of this proof: A + ER is in staircase

form and cS is a staircase invariant matrix. Since (S e R) n Tb is the zero matrix, the T

term must vanish. El

To understand more clearly what this observation tells us, let us check some simple

situations. If the matrix A is only perturbed in the direction S or R, then the similarity

transformation will be simply a block diagonal orthogonal matrix Qo. If we ignore this

transformation which does not change any structure, we can think of the output to be

unchanged from the input, this is the reason we call S the staircase invariant space. The

reason we did not include R into the staircase invariant space is that A + ER is still

within Ob(A). If the matrix A is only perturbed along the block tangent direction T6,

then the staircase algorithm will kill the perturbation and do a block diagonal orthogonal

similarity transformation.

Although the staircase algorithm decides this Qo step by step all through the algo-

rithm (due to SVD rank decisions), we can actually think of the Qo as decided at the

first step. We can even ignore this Qo because the only reason it comes up is that the

svd we use follows a specific way to sort singular values when they are different, and to

choose the basis of the singular vector space when the same singular values appear.

We know that every matrix A can be reduced to a staircase form under an orthog-

onal transformation, in other words, we can always think of any general matrix M as

PTAP, where A is in staircase form. Thus in general, the staircase algorithm always in-

troduces an orthogonal transformation and returns a matrix in staircase form and a first

order perturbation in its staircase invariant direction, i.e. stair(M + EE)=stair(PT AP +

eE)=stair(A + EPEPT).

It is now obvious that if a staircase form matrix A has its S and T almost normal to

each other, then the staircase algorithm will behave very well. On the other hand, if S

is very close to T then it will fail. To emphasize this, we write it as a conclusion.
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Conclusion 1 The angle between the staircase invariant space S and the tangent space

T decides the behavior of the staircase algorithm. The smaller the angle, the worse the

algorithm behaves.

In the one Jordan block case, we have an if-and-only-if condition for S to be near T.

Theorem 3.7 Let A be an n x n matrix in staircase form and suppose that all of its

block sizes are 1 x 1, then S(A) is close to T(A) iff the following two conditions hold:

(1)(row condition) there exists a non-zero row in A s.t. every entry on this row is o(1);

(2)(chain condition) there exists a chain of length n - k with the chain value 0(1), where

k is the lowest row satisfying (1).

Here, we call Aii2 i, Ai,i, . . , Ai,, a chain of length t and the product Aili2 Ai,i - Ai*.,i1
is the chain value.

Proof Sketch:

Notice that S being close to T is equivalent to S being almost perpendicular to K, the

normal space of A. In this case, M is spanned by {I, AT, AT 2 ,..., AT("1}, S consists

of matrices with nonzero entries only in the last row. Considering the angle between

any two matrices from the two spaces, it is straightforward to show that S is almost

perpendicular to M is equivalent to

(1) there exists a k s.t. the (n, k) entry of each of the matrices I, AT, ... , AT(n-1) is o(1)
or 0;

(2) if the entry is o(1), then it must have some other 0(1) entry in the same matrix.

Assume k is the largest choice if there are different k's. By a combinatorial argument,
we can show that these two conditions are equivalent to the row and chain conditions

respectively in our theorem. E

Remark 3.1 Note that there exists an 0(1) entry in a matrix is equivalent to say that

there exists a singular value of the matrix of 0(1). So, the chain condition is the same

as saying that the singular values of An-k are not all O(E) or smaller.
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Generally, we do not have an if-and-only-if condition for S to be close to T, we only

have a necessary condition, that is, only if at least one of the superdiagonal blocks of the

original unperturbed matrix has a singular value almost 0, i.e. it has a weak stair, will

S be close to T. Actually, it is not hard to show that the angle between Tb and R is at

most in the same order as the smallest singular value of the weak stair. So, when the

perturbation matrix E is decomposed into R + S + T, R and T are typically very large,
but whether S is large or not depends on whether S is close to T or not.

Notice that equation (24) is valid for sufficiently small E. What range of c is "suf-

ficiently small"? Clearly, e has to be smaller than the smallest singular value 6 of the

weak stairs. Moreover, the algorithm requires the perturbation along T and S to be

both smaller than 6. Assume the angle between T and S is 0, then generally, when 0

is large, we would expect an e smaller than 6 to be sufficiently small. However, when

O is close to 0, for a random perturbation, we would expect an 6 in the order of 6/0 to

be sufficiently small. Here, again, we can see that the angle between S and T decides

the range of effective 6. For small 0, when c is not sufficiently small, we observed some

discontinuity in the 0th order term in Equation (24) caused by the ordering of singular

values during certain stages of the algorithm. Thus, instead of the identity matrix, we

get a permutation matrix in the 0th order term.

The theory explains why the staircase algorithm behaves so differently on the two

matrices A1 and A2 in Section 2. Using Theorem 3.7, we can see that A1 is a staircase

failure (k = 2), while A2 is not (k = 1). By a direct calculation, we find that the tangent

space and the staircase invariant space of A1 is very close (sin(< S, T >) = 6/v/1 + 62),
while this is not the situation for A2 (sin(< S, T >) = 1/v/). When transforming to get

A1 and A 2 with Q, which is an approximate orthogonal matrix up to the order of square

root of machine precision c, another error in the order of / (10-7) is introduced, it

is comparable with 6 in our experiment, so the staircase algorithm actually runs on a

shifted version A1 + SE 1 and A2 + 6E 1 . That is why we see R as large as an 0(10-6)

added to J3 in the second table for A 2. We might as well call A 2 a staircase failure in
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this situation, but A1 suffers a much worse failure under the same situation, in that the

staircase algorithm fails to detect a J3 structure at all. This is because the tangent space

and the staircase invariant space are so close that the S and T component are very large

hence Equation (24) does not apply any more.

3.5 A Staircase Algorithm Failure to Motivate the Theory for

Pencils

The pencil analog to the staircase failure in Section 3.2 is

0 0 1 0 J 0 0 0

(A1,B1)= 0 0 0 1 ,0 5 0 0 ,

0 0 0 0 JL0 0 1 0

where = 1. 5e-8. This is a pencil with the structure L1 e J2 (0). After we add a random

perturbation of size le-14 to this pencil, GUPTRI fails to return back the original pencil

no matter which EPSU we choose. Instead, it returns back a more generic L 2 eJ 1 (0)
pencil O(E) away.

On the other hand, for another pencil with the same L, ( J2 (0) structure:

0 0 1 0 1 0 0 0

(A2, B2)= 0 0 0 1 ,0 1 0 0,

i 0 0 0 0 0 J 0

GUPTRI returns an L, D J2 (0) pencil O(E) away.

At this point, readers may correctly expect that the reason behind this is again the
angle between two certain spaces as in the matrix case.
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3.6 Matrix Pencils

Parallel to the matrix case, we can set up a similar theory for the pencil case. For

simplicity, we concentrate on the case when a pencil only has L-blocks and J(O)-blocks.

Pencils containing LT-blocks and non-zero (including oo) eigenvalue blocks can always

be reduced to the previous case by transposing and exchanging the two matrices of the

pencil and/or shifting.

3.6.1 The Staircase Invariant Space and Related Subspaces for Pencils

A pencil (A, B) is in staircase form if we can divide both A and B into block rows

of sizes rl,. . . , rk and block columns of sizes s 1 ,... , sk+, s.t. A is strictly block upper

triangular with every superdiagonal block having full column rank and B is block upper

triangular with every diagonal block having full row rank and the rows orthogonal to

each other. Here we allow sk+1 to be zero. A pencil is called conforming to (A, B)

if it has the same block structure as (A, B). A square matrix is called row (column)

conforming to (A, B) if it has diagonal block sizes the same as the row (column) sizes

of (A, B).

Definition 3.5 Suppose (A, B) is a pencil in staircase form and Bd is the block diagonal

part of B. We call (SA, SB) a staircase invariant pencil of (A, B) if S A = 0, SBB'j=

0 and (SA, SB) has complimentary structure to (A, B). We call the space consisting of

all such (SA, SB) the staircase invariant space of (A, B), and denote it by S.
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For example, let

(A, B) =

(A, B) have the staircase form

xx x x x
xx x x x

00 xx x
00 xx x

00 x
00 x

0

x x xxxx x x xx

x x

x x

I o
0 0

0 0

xx xx
xx xx

xx xx x

xxx
xxx
xxx 00o

xxx 00o

xxx oo00o

is a staircase invariant pencil of (A, B) if every column of SA is in the left null space of

A and every row of SB is in the right null space of B. Notice that the sparsity structure

of SA and SB is at most complimentary to that of A and B respectively, but SA and SB

are often less sparse, because of the requirement on the nullspace. To be precise, if we

find more than one diagonal block with the same size, then among the blocks of this size,

only the blocks on the lowest block row appear in the sparsity structure of SA. If any of

the diagonal blocks of B is a square block, then SB has all zero entries throughout the

corresponding block column.

As special cases, if A is a strictly upper triangular square matrix and B is an upper

triangular square matrix with diagonal entries nonzero, then SA only has nonzero entries

in the bottom row and SB is simply a zero matrix. If A is a strictly upper triangular

n x (n + 1) matrix and B is an upper triangular n x (n + 1) matrix with diagonal entries

nonzero, then (SA, SB) is the zero pencil.
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Definition 3.6 Suppose (A, B) is a pencil. We call O(A, B) {X(A, B)Y : X, Y are

non-singular square matrices } the orbit of a pencil (A, B). We call T {X(A, B) -

(A, B)Y : X, Y are any square matrices } the tangent space of 0(A, B) at (A, B).

Theorem 3.8 Let (A, B) be an m x n pencil in staircase form, then the staircase invari-

ant space S of (A, B) and the tangent space T form an oblique decomposition of m x n

pencil space, i.e. R 2 n = S + T.

Proof:

The proof of the theorem is similar to that of Theorem 3.1; first we prove the dimension

of S(A, B) is the same as the codimension of T(A, B), then we prove S n T = {0} by

induction. The readers may try to fill out the details. D

Definition 3.7 Suppose (A, B) is a pencil. We call 0(b(A, B) {P(A, B)Q : P = eX, X

is a block anti-symmetric matrix row conforming to (A, B), Q = e, Y is a block anti-

symmetric matrix column conforming to (A, B) the block orthogonal-orbit of a pencil

(A, B). We call T6  { X(A, B) - (A, B)Y : X is a block anti-symmetric matrix row

conforming to (A, B), Y is a block anti-symmetric matrix column conforming to (A, B)}

the block tangent space of the block orthogonal-orbit 0)b(A, B) at (A, B). We call

R _ {U(A, B) - (A, B)V : U is a block upper triangular matrix row conforming to

(A, B), V is a block upper triangular matrix column conforming to (A, B)} the block

upper pencil space of (A, B).

Theorem 3.9 Let (A, B) be an m x n pencil in staircase form, then the tangent space

T of the orbit O(A, B) can be split into the block tangent space T6 of the orbit 0(b(A, B)

and the block upper pencil space R, i.e. T = Tb EI R.

Proof:

This can be proved by a very similar argument concerning the dimensions as for matrix,
in which the dimension of R is 2 Ei j ris3 + E risi, the dimension of T6 is Ei < rirj +
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>iz< sisj, the codimension of the orbit O(A, B) (or T) is E sir--Ei sisj+2 Ej~i sir 3-
Z,> rir [18]. [l

Corollary 3.2 R 2 n E 7R E S.

3.6.2 Staircase as a Versal Deformation for pencils

The theory of versal forms for pencils [34] is similar to the one for matrices. A de-

formation of a pencil (A, B) is a pencil (A, B)(A) with entries power series in the

real variables A2 . We say that two deformations (A, B)(A) and (C, D)(A) are equiv-

alent if there exist two deformations P(A) and Q(A) of identity matrices such that

(A, B)(A) = P(A)(C, D)(A)Q(A).

Theorem 3.10 Suppose (A, B) is in staircase form. Fix Si E S, i = 1,...,k s.t.

span{Si} = S and k > dim(S). It follows that

(A, B)(A) = (A, B) + A2S (25)

is a versal deformation of every particular (A, B) (A) for A small enough. (A, B) (A) is

miniversal at A = 0 if {Si} is a basis of S.

Definition 3.8 We say two deformations (A, B)(A) and (C, D)(A) are block orthogonally-

equivalent if there exist two block orthogonal deformations P(A) and Q(A) of the identity

matrix such that (A, B)(A) = P(A)(C, D)(A)Q(A). Here, P(A) and Q(A) are exponentials

of matrices which are conforming to (A, B) in row and column respectively.

We say that a deformation (A, B)(A) is block orthogonally-versal if any other

deformation (C, D)(p) is block orthogonally-equivalent to the deformation (A, B)(q('P)).

Here, 4 is a mapping holomorphic at 0 with 0(0) = 0.

Theorem 3.11 A deformation (A, B)(A) of (A, B) is block orthogonally-versal iff the

mapping (A, B) (A) is transversal to the block orthogonal-orbit of (A, B) at A = 0.
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This is the corresponding result to Theorem 3.4.

Since we know that T can be decomposed into Tb E1 R, we get:

Theorem 3.12 Suppose a pencil (A, B) is in staircase form. Fix Si G S, i = 1,..., k

s.t. span{Si = S and k > dim(S). Fix RI E R, j = 1,...,l s.t. span{Rj} = R and

I > dim(R). It follows that

(A, B)(A) = (A, B) + Z A2Sj + A3]R,

is a block orthogonally-versal deformation of every particular (A, B)(A) for A small enough.

(A, B)(A) is block orthogonally-miniversal at (A, B) if {S }, { Rj} are bases of S and R.

Notice that as in the matrix case, we can also extend our definitions and theorems to

the general form containing LT-blocks and non-zero eigenvalue blocks, and again, we will

not specify what eigenvalues they are and hence get into the bundle case. We only want

to point out one particular example here. If (A, B) is in the staircase form of L, + J1 (.),

then, A will be a strictly upper triangular matrix with nonzero entries on the super

diagonal and B will be a triangular matrix with nonzero entries on the diagonal except

the (n + 1, n + 1) entry. SA will be the zero matrix and SB will be a matrix with the

only nonzero entry on its (n + 1, n + 1) entry.

3.7 Application to Pencil Staircase Forms

We concentrate on L e J(O) structures only, since otherwise, the staircase algorithm will

separate all other structures and continue similarly after a shift and/or transpose on

that part only. As in the matrix case, the staircase algorithm basically decomposes the

perturbation pencil into three spaces T6 , R, and S and kills the perturbation in T.

Theorem 3.13 Suppose that (A, B) is a pencil in staircase form and E is any pertur-

bation pencil. The staircase algorithm (without zeroing) on (A, B) + EE will produce two
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orthogonal matrices P and Q (depending on E) and the output pencil stair((A, B) +,E) =

PT((A, B) + EE)Q = (A, B) + e(S + f) + o(E), where (A, ) has the sane staircase struc-

ture as (A, B), S is a staircase invariant pencil of (A, B) and R is in the block upper

pencil space 'T.. If singular values are zeroed out, then the algorithm further kills S and

output (, B) + ER + o(E).

We use a formula to explain the statement more clearly:

(I +eX + o(E))P1((A, B) + ES + ER + ETb)Q1(I - cY + o(E))

=(I + eX + o(E))((A, B) + ES + ER + ETb)(I - cY + o(E)) (26)

=(AB) +E(S-+R+Tb +X(AB) - (A,B)Y) +o(E)

=(A, B) + E(S + R) + o(E).

Similarly, we can see that when a pencil has its T and S almost normal to each other,

the staircase algorithm will behave well. On the other hand, if S is very close to T, then

it will behave badly. This is exactly the situation in the two pencil examples in Section

5. Although the two pencils are both ill conditioned, a direct calculation shows that the

first pencil has its staircase invariant space very close to the tangent space (the angle

< S, T >= 6/v/62 -+ 2) while the second one does not (the angle < S, T >= 1/v/2 + 62).

The if-and-only-if condition for S to be close to T is more difficult than in the matrix

case. One necessary condition is that one super diagonal block of A is almost of not

full column rank or one diagonal block of B is almost not full row rank. This is usually

referred to as weak coupling.

3.8 Examples: The geometry of the Boley pencil and others

Boley [5, Example 2, Page 639] presents an example of a 7 x 8 pencil (A, B) that is

controllable (has generic Kronecker structure) yet it is known that an uncontrollable

system (non-generic Kronecker structure) is nearby at a distance 6e-4. What makes the

example interesting is that the staircase algorithm fails to find this nearby uncontrollable
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system while other methods succeed. Our theory provides a geometrical understanding

of why this famous example leads to staircase failure: the staircase invariant space is

very close to the tangent space.

The pencil that we refer to is (A, B(E)), where

1-1-1-1--1 -1 7

. . -- -1-1-1-1-1 6

A= * . . 1 . . . and B(E)= . 1-1 -1-1 4

.......... 1. - - - - - 1-1-1 3

. .... . ... 1.....- 1-1 2

(The dots refer to zeros, and in the original Boley example E 1.)

When e = 1, the staircase algorithm predicts a distance of 1, and is therefore off by

nearly four orders of magnitude. To understand the failure, our theory works best for

smaller values of E, but it is still clear that even for c = 1, there will continue to be

difficulties.

It is useful to express the pencil (A, B(E)) as Po + EE, where Po = (A, B(O)) and S

is zero except for a "one" in the (7,7) entry of its B part. P is in the bundle of pencils

whose Kronecker form is L6 + Ji(.) and the perturbation E is exactly in the unique

staircase invariant direction (hence the notation "S") as we pointed out at the end of

Section 3.6.

The relevant quantity is then the angle between the staircase invariant space and the

pencil space. An easy calculation reveals that the angle is very small: 0 s = 0.0028 radians.

In order to get a feeling for what range of E first order theory applies, we calculated the

exact distance d(E) = d(P(e), bundle) using the nonlinear eigenvalue template software

[73]. To first order, d(c) = Os -E. Figure 15 plots the distances first for c E [0, 2] and then

a closeup for E = [0, 0.02].
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Figure 15: The picture to explain the change of the distance of the pencils Po + CE to
the bundle of L6 + J(.)as c changes. The second subplot is part of the first one at the
points near E = 0.

Our observation based on this data suggests that first order theory is good to two

decimal places for E < 104 and one place for E < 10-2. To understand the geometry of

staircase algorithmic failure, one decimal place or even merely an order of magnitude is

quite sufficient.

In summary, we see clearly that the staircase invariant direction is at a small angle to

the tangent space, and therefore the staircase algorithm will have difficulty finding the

nearest pencil on the bundle or predicting the distance. This difficulty is quantified by

the angle 0s.

Since the Boley example is for E = 1, we computed the distance well past E = 1. The

breakdown of first order theory is attributed to the curving of the bundle towards S. A

three dimensional schematic is portrayed in Figure 16.

The relevant picture for control theory is a planar inlersection of the above picture.

In control theory, we set the special requirement that the "A" matrix has the form [0 I].

Pencils on the intersection of this hyperplane and the bundle are termed "uncontrollable."
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Figure 16: The staircase algorithm on the Boley example. The surface represents the
orbit O(Po). Its tangent space at the pencil PO, T(PO), is represented by the plane on
the bottom. P lies on the staircase invariant space S inside the "bowl". The hyperplane
of uncontrollable pencils is represented by the plane cutting through the surface along
the curve C. It intersects T(Po) along L. The angle between L and S is 0c. The angle
between S and T(Po), Os, is represented by the angle ZHPP1 .

We analytically calculated the angle 0, between S and the tangent space for the

"uncontrollable surfaces." We found that 0, = 0.0040. Using the nonlinear eigenvalue

template software [73], we numerically computed the true distance from P + cE to the

"uncontrollable surfaces" and calculated the ratio of this distance to e, we found that for

f < 8e - 4, the ratio agrees with 0, = 0.0040 very well.

We did a similar analysis on the three pencils C1, C2 C3 given by J. Demmel and

B. Kigstr6m [23]. We found that the sin values of the angles between S and T are

respectively 2.4325e-02, 3.4198e-02 and 8.8139e-03, and the sin values between Tb

and R are respectively 1. 7957e-02 7. 3751e-03 and 3.3320e-06. This explains why we

saw the staircase algorithm behave progressively worse on them. Especially, it explains
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why when a perturbation about 10-3 is added to these pencils, C3 behaves dramatically

worse then C1 and C2. The component in S is almost of the same order as the entries of

the original pencil.

So we conclude that the reason the staircase algorithm does not work well on this

example is because Po = (A, B(O)) is actually a staircase failure, in that its tangent space

is very close to its staircase invariant space and also the perturbation is so large that

even if we know the angle in advance we can not estimate the distance well.

3.9 Valid Region of First Order Theory and Discussion on Dis-

continuity

3.9.1 An Interesting Phenomenon

Concerning the staircase algorithm, we mentioned the discontinuity in the 0th order term

Qof of Qo(I + EX + o(E)) in the equation:

stair(A + EE) =stair(A + ES + ER + ETb)

=(I + EX' + o(e))Q'(A + ES + ER + ETb)Qo(I + EX + o(E))

We noticed that instead of QoI, the 0th order becomes the product of Qo and a permu-

tation matrix. This is caused by the ordering of singular values during certain stages of

the algorithm. To explain this phenomenon more clearly, we take a simplest example:

Let

0 1 0

A= 0 0 j (28)

0 0 0

where J = le - 6. Let E be a random dense matrix with Frobenious norm 1. We show

the distance between Q and the identity matrix up to an equivalent class (See Section

3.3) in the first plot of Figure 17.
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Figure 17: The plot of the distance between the orthogonal matrix Qo(I + EX + o(6)) in
Equation 27 and Qo. The perturbation matrix E is a same fixed random dense matrix
for both subplots. We vary the norm of the perturbation by multiplying to it an C which
changes from J2/100 to 6/100. The third subplot is a closer look near the jumping point
in the second subplot with adjusted difference between every two neighboring E's. The
unperturbed matrix A is as in Equation 28 in the second and third subplot, by exchanging
the position of 1 and 6 we get the unperturbed matrix in the first subplot.

When we apply staircase algorithm on A + EE, we first do an SVD on A +,EE and get

A + 6E = UEVT, where the singular values are in decreasing order along the diagonal

of E. Then we let B be the right lower 2 x 2 block of VT(A + 6E)V = VTUE and do

another SVD on B, i.e. B = U1ElV1 and continue with the operation V"TBV 1 = V1TU1E,.

Typically, for sufficiently small 6, we would see both V and V close to identity. However,

as we increase E from 0 to a certain value, the singular values of B become equal and if

we continue to increase 6, the two singular values will switch their positions and hence

the V1, which contains the two right singular vectors will change positions too. This is

exactly how the identity matrix in the 0th order changes to the permutation matrix in
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our example.

The switching of singular vectors at a certain stage of SVD during the staircase

algorithm explains the similar discontinuity phenomenon for other matrices.

However, remember that as we increase E, there is something else going on. That

is, c may go out of the valid region of our first order theory. When X is large enough,

sometimes the discontinuous phenomenon is not visible because X itself is large enough

to overwhelm the 0th order totally.

Numerical experiments seem to agree that most time, when we have small angle

between S and T spaces of A, we will be able to observe the discontinuity, i.e. the dis-

continuity point is reached within the valid region of the first order theory. Very often,

when S and T are not close, we can not observe this discontinuity (second subplot of

Figure 17). We are hoping that we can find an if-and-only-if condition for the disconti-

nuity to happen within the valid region of the first order theory in terms of the S and T

spaces. It is not achieved.

3.9.2 Discussion

For possible future work, we write a summary of what we conclude and what the major

difficulty is:

Consider the R, Tb and S spaces of a given matrix A, we further let T = Tb + R.

When R and Tb are close, it means large R components and Tb components when we

decompose eE, although the component in R+ Tbmay be small. So, when E grows larger,

the resulting A + R changes quickly.

When not only R and 7b are close, but also T and S are close, sometimes, a discon-

tinuity can be observed. That is, when c small, Equation (27) is still valid. But when

E reaches a particular value, the 0th order in Equation (27) no longer consists of the

identity matrix. It becomes a certain permutation matrix.

We could have hoped that this kind of discontinuity applies to all matrices with small

angle between T and S. However, remember that if T and S are close to each other, it
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must imply that Tb and R are close too. So, sometimes this discontinuity is not observable

because before the discontinuity is reached, R component is already big enough to make

first order theory meaningless at all.

The key problem is then the comparison between the speed on reaching the discon-

tinuity point and reaching the boundary of the valid region of first order theory. It is

actually the question of comparing the two angles Z7-b,R and ZT,s, which remains to be

answered.

One thing we ought to clarify is on "discontinuity". We did a careful investigation on

several examples and believe that instead of discontinuity mathematically, it is rather an

extremely "sharp change". Figure 17 demonstrates why it is more likely not discontinuity.

However we need to emphasize that whenever we saw a "sharp change", there is

actually a swap of singular values, and that is why the "discontinuity" or "sharp change"

phenomenon is interesting.
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4 A Highly Robust Dispersion Estimator

4.1 Introduction

Many dispersion matrix estimators exist in the literature. We propose a new componen-

twise estimator, based on a highly robust estimator of scale Q,, and the simple fact that

4cov(X, Y) = var(X + Y) - var(X - Y). We study its robustness properties by means of

the influence function and the breakdown point. Further characteristics like asymptotic

variance and efficiency were also analyzed. A major advantage of the novel estimator

is that its behavior is close to the maximum likelihood estimator in noncontaminated

situations, whereas it is highly robust in contaminated situations. We show that in the

componentwise approach, for multivariate Gaussian distributions, covariance matrix es-

timation is more difficult than correlation matrix estimation, because the asymptotic

variance of the covariance estimator increases with increasing dependence, whereas it

decreases with increasing dependence for correlation estimators. We also proved that the

asymptotic variance of covariance estimators for multivariate Gaussian distributions is

proportional to the asymptotic variance of the underlying scale estimator. The propor-

tionality value depends only on the underlying dependence. Therefore, our highly robust

dispersion estimator is the best robust choice at the present time in the component-

wise approach, because it combines small variability and robustness properties like high

breakdown point and bounded influence function. A simulation study was carried out

in order to assess the behavior of the new estimator. First, a comparison with another

robust componentwise estimator based on the median absolute deviation (MAD) scale

estimator was performed. The highly robust properties of the new estimator were con-

firmed. Moreover, it is shown that the behavior of the new estimator is better than the

one based on the MAD, although the latter is the most B-robust componentwise disper-

sion estimator. A second comparison with global estimaters like the maximum likelihood

estimator or the minimum volume ellipsoid estimator has also been performed, with two

types of outliers. In this case, the highly robust dispersion matrix estimator turns out
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to be a compromise between the high efficiency of the maximum likelihood estimator

in noncontaminated situations and the highly robust properties of the minimum volume

ellipsoid estimator in contaminated situations, with exploding type of outliers.

Furthermore, we apply the method to estimate autocovariance. Consider a time series

{Xt : t E Z} and assume that it satisfies the hypothesis of second-order stationarity:

(i) E (XI ) < oo, Vt E Z,

(ii) E(Xt) = p= constant, Vt E Z,

(iii) Cov(Xt+h, Xt) = -y(h), Vt, h E Z,

where -y(h) is the autocovariance function of Xt at lag h. The classical estimator

for the autocovariance function, based on the method of moments, on a sample x =

(X 1 , ... , Xn)T, is

n-h

yM(h, x) = h Z(Xi+h - 9)(Xi - X), 0 h < n - 1, (29)

where X = j_1 Xi. Note that n9h'M(h, x) is often used in order to ensure positive

definiteness of the estimated covariance matrix.

Applying the dispersion estimator in a time series, we can get a new robust autoco-

variance estimator. Section 4.5.1 introduces a concept of temporal breakdown point of

an autocovariance estimator and discusses its link with the classical breakdown point.

The influence function for autocovariance estimators is computed in Section 4.5.2, and

the formulas for their asymptotic variance is given in Section 4.5.3. These results are

completed with a simulation study in Section 4.5.4, on AR(1) and MA(1) models. The

behavior of the classical and highly robust autocovariance estimator in presence of out-

liers is also studied. In Section 4.5.5, a time series of monthly interest rates of an Austrian

bank is analyzed.
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4.2 The Highly Robust Dispersion Estimator

4.2.1 Dispersion between two random variables

Traditionally, covariance estimation between two random variables X and Y is based

on a location approach, since Cov(X, Y) = E[(X - E(X))(Y - E(Y))], yielding for

example the maximum likelihood estimator YMLE = -nL 1 i - gX - PY). However,

covariance estimation can also be based on a scale approach, by means of the following

identity ([45, 58]):

Cov(X, Y) = _ [Var(X/a + Y/3) - Var(X/a - Y/13) Va, lER. (30)

In general, X and Y may be measured in different units, and the choice a = -x

Var(X), 3 = -y - /Var(Y) is recommended by Rousseeuw and Croux [46]. The

choice of a robust estimator of the variance in Equation (30) produces a robust estimator

of the covariance between X and Y.

In the context of scale estimation, Rousseeuw and Croux [86, 87] proposed a simple,

explicit and highly robust scale estimator Qn:

Qn(z) = d iz - zjj;i < jiii, = 1, 2, ... , n} (k)1)

where z = (zi,... , zn)T is a sample of a random variable Z, k = [(() +2)/4]+1 and -J

denotes the integer part. The factor d is for consistency: for the Gaussian distribution,

d = 2.2191. This means that we sort the set of all absolute differences Izi-zj I in increasing

order for i < j, i, j = 1, 2,.. . ,n and then compute its k-th order statistic (approximately

the 1/4 quantile for large n). This value is multiplied by d, thus yielding Q". Note that

this estimator computes the k-th order statistic of the (") interpoint distances. It is

of interest to remark that Q, does not rely on any location knowledge and is therefore

said to be location-free. This is in contrast to the classical sample covariance matrix

estimation, which can be obtained by inserting the classical sample variance estimator
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in Equation (30). At first sight, the estimator Q, appears to need 0(n2 ) computation

time, which would be a disadvantage. However, it can be computed using no more than

0(n log n) time and O(n) storage, by means of the fast algorithm described by Croux

and Rousseeuw [15].
Using the identity (30) and the definition (31) of the scale estimator Q,, we propose

the following highly robust estimator to compute the covariance between two random

variables X and Y. First, use Q, to estimate the standard deviations ax and ay of X and

Y. Then, use Q, again to estimate the standard deviations a+ and a_ of X/cx + Y/ay

and X/ox - Y/ay. The covariance 0 between X and Y is UXUY - o)/4. Therefore,

the highly robust estimator -Q of the covariance is:

S((x, y) = [Q2(x/a + y//0) - Q2 x/a - y/,)], (32)

where a = Qn(x), 0 = Qn(y). Note that the highly robust covariance estimator '/ can

also be carried out with O(n log n) time and 0(n) storage.

In order to obtain the estimator pQ for the correlation between two random variables

X and Y, we divide the estimator 'Q(x, y) in Equation (32) by Qn(x) and Qn(y):

1
pQ(X, y) = [Q (x/a + y/0) - Q2(x/a - y/0)], (33)

4 nn

where a = Qn(x), 3 = Q,(y).

4.2.2 Dispersion between p random variables

In the case of n observations of a p-dimensional random vector X, we use the estimator

o to estimate every covariance between Xi and X, (i, j = 1,. .. , p, i # j) to get the (i, j)

entry of the covariance matrix E. The diagonal entries are estimated using Q2 directly

on the X's (i = 1,.. , p). This provides a highly robust componentwise estimator ZQ of

the covariance matrix E.

Using pg, we can estimate the entries of the correlation matrix R similarly as in the
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covariance matrix case, thus yielding a highly robust componentwise estimator RQ. We

set all the diagonal entries of RQ to l's.

Note that since the method we propose is componentwise instead of global, there is no

guarantee that we get a positive definite matrix at the end of the estimation. Rousseeuw

and Molenberghs [89] proposed three kinds of methods to transform the estimated matrix

to a positive definite matrix. They are respectively the shrinking method, the eigenvalue

method, and the scaling method. When the dispersion matrix itself is the quantity of

interest, one should transform it to a positive definite matrix using one of these methods,
while if some particular entries in the matrix are the values of interest, then the estimated

values should provide a good estimation of the real values.

4.3 Properties of the Estimator

4.3.1 Breakdown point

In the context of robust statistics, the breakdown point of an estimator is an important

feature of reliability. It indicates how many data points need to be replaced by arbitrary

values to destroy the estimator. The classical notion of breakdown point of a scale

estimator is given in the following definition.

Definition 4.1 Let z = (z 1,. .. , z"') T be a sample of size n and i is obtained by replacing

any m observations of z by arbitrary values. The sample breakdown point of a scale

estimator Sn(z) is:

E* (S (z)) = max{-- sup Sn(z) < oc and inf Sn(z) > 0}.n {n i !

Roughly speaking, the classical breakdown point gives the maximum fraction of outliers

that the scale estimator can cope with. It indicates how many data points can be replaced

by arbitrary values before the scale estimator explodes (tends to infinity) or implodes

(tends to zero). Further discussions of this concept can be found in [49, 51, 52, 58, 59,
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27, 42]. The sample breakdown point E* of most scale estimators is known, or can be

computed. However, by using a scale estimator to compute the covariance, it is on the

level of sums x + y and differences x - y that the estimator is applied. Similarly, we can

define the sample breakdown point of a scale based covariance estimator, using Equation

(30).

Definition 4.2 Let x = (X1 , ... , X) T and y = (y,.... , yn)T be two samples of size n.

Let z = (x, y) and Z is obtained by replacing any m pairs of z by arbitrary values. The

sample breakdown point of a covariance estimator 3s,(h, z) = 1 [Sn(ax+3y) - S (ax-

/y)] based on a scale estimator Sn is:

En (Isn(h, z)) = max { : Sup $Sn(h, Z) < oo and inf Sn(h,,Z) > 0
n

It is known that the breakdown point of Q. is 50% ([87]). Inspecting X/a + Y/1 (or

X/a - Y/1 ), we can see that as long as xi (or yi) is contaminated, then xi/a + yi/ 3 (or

xi/a - yj/3) is contaminated. So in the pairs (xi, y1),... , (Xn, y, we can at most have

half of the pairs containing contaminated data. If we look at one pair as one observation,

then the estimators Q and pg are robust against at most half of the contaminated

observations. So, they have breakdown point of 50%. In estimating the covariance

matrix E and the correlation matrix R, we form pairs of all the observations of Xi and Xj

(i, j = 1,... ,p), and the estimator allows at most half of the pairs to be contaminated.

Therefore, among the n observation vectors x 1 , x 2 , ... , x, at most half of them can

contain contaminated data. In other words, the breakdown point of the highly robust

componentwise estimators $Q and RQ is 50%.

4.3.2 Influence function

We denote by -yQ, pQ, and Q the statistical functional ([53, 58]) corresponding to the esti-

mators yQ, P, and Qn respectively. Consider a sample Z 1 ,... , Z, and a scale estimator

Sn(Z1, ... , Zn), i.e. it satisfies S,(aZ + b,... , aZn + b) = JaISn(Z1,... , Zn), Va, b E R.
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We write S,(Z1,... , ,) = S,(F), where Fn(z) = U Az, (z) is the empirical distri-

bution, and Az, is the Dirac function with jump at Zi. Let S(F) be the corresponding

statistical functional of scale such that S(F.) = Sn(Fn). The influence function ([51]) of

S at a distribution F is defined by:

IF(u; S, F) =lim S((1 - e)F + eAt) - S(F) (34)
-+0+

in those u where this limit exists. The importance of the influence function lies in its

heuristic interpretation: it describes the effect of an infinitesimal contamination at the

point u on the estimate, standardized by the mass of the contamination, i.e. it measures

the asymptotic bias caused by the contamination in the observations. The gross-error

sensitivity ([53]) defined by *(S, F) = supu IIF(u; S, F) , measures the worst asymptotic

bias due to the contamination. If -y*(S, F) < oo, the estimator is said to be B-robust,

i.e. robust with respect to the bias.

Let 8 be a statistical functional of covariance corresponding to a covariance estimator

C based on Equation (30):

E(F) = - [s 2 (F+) - S2 (F_)] , (35)

where F is a bivariate distribution with marginal distributions Fx and Fy, and F+ and

F_ denote the distributions of X/a + Y/ and X/a - Y/3 respectively. For simplicity,

we assume that Fx and Fy both have mean zero. A natural way to define the influence

function of E is through the influence function of S. Note that the influence function

describes the first order sensitivity of the estimator to contamination, and thus has similar

properties as the usual first derivative.

Proposition 4.1 Suppose F is a distribution with variance u, F is the standardized
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distribution of F, i.e. F(x) = F(o-x), and h is a real differentiable function. Then

IF(x, S, F) =-uIF( , S, F)
or

IF(x, S2 , F) =o.2IF( S 2, F) (36)

IF(x, h(S), F) =h'(S(F))IF(x, S, F)

Moreover, the following equalities on the asymptotic variance hold for independent ob-

servations:

Var(S, F) =a.2 Var(S, 3)
Var(S2, F) =4 Var(S2, F)

Proof:

We prove the first equation in detail and briefly explain the latter ones.

IF(x, S, F) = aS((1 - E)F(u) + EAx(u))|e=o

S(( - E)F(-) + AK ()

We use P(!) to denote the function (1 - )F(z) + &(), and by the property of

equivariance of the scale estimator, we know that S(P(!)) = uS(P(u)). So, we get

IF(x, S, F) =o -(S((1 - E)F(u) + EAz\(u)))K,=o

=o-IF(x, S, F)

The second equality in Equation (36) can be proved similarly as the first one. The

third equality is obvious. To prove the equalities in Equation (37), we use the formula

Var(S, F) = f IIF(x, S, F)12 dF(x) and Var(S 2 , F) = f JIF(x, S2, F)12 dF(x) and the

equalities in Equation (36). Note that this result is valid only when the estimator is

carried on independent observations. 1
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From Equation (35), we define the following influence function for 0:

Definition 4.3

IF((u, v); 0, F) = a 3 [IF(- + V; S 2, F+) - IF(-u ; S 2, F_)]4 a 3 a #

= [S(F+)IF(u + ; S, F+) - S(F_ )IF(u - v; S, F)]. (38)2 a /3 a #

Defining the influence function of a bivariate estimator through the influence function

of a univariate estimator, as in Equation (38), provides a way to generalize the unidimen-

sional Dirac function Au to a bidimensional Dirac function. Note that in this definition,
the perturbations we consider depend on the choice of the covariance estimator: they

are respectively perturbations along u/a + v//3 and u/a - v//3 directions. In fact, this

is a typical method to reduce a higher dimensional problem to a lower dimensional one

already known. Using a = ax, = -y and Proposition 4.1, Equation (38) becomes:

IF((u, v); 0, F)

'- -y 2 U V 2 ( 39 )= ' [IF ((- + -) /+; S, '+ or - IF ( ()- - )/o-; S,, 9-)

where o-+ = S(F+) and o-_ = S(F_).

Let R be a statistical functional of correlation corresponding to a correlation estimator

p based on Equation (33):

a/3R(F) = ([S2(F) - S 2(F_)] . (40)
4S(Fx )S(Fy )

Similar to the covariance case, the influence function of R is:

1
IF((u, v); R, F) =IF((u, v); 0, F) F

O()S(Fx )S( Fy (41
0(F) S+ S (

S 2 ( Fx )S 2 ( Fy ) (IJF(u; S, Fx )S( Fy ) + I F(v ; S, Fy )S( Fx )).
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Using Equations (35), (38), as well as a = Cx and #3 = -y, Equation (41) becomes:

1
IF((u, v); R, F) = IF((u, v); E, F) - p(IF(u/-x; S, Fx) + IF(v/-y; S, Fy)). (42)

oXo-y

The links between the gross-error sensitivities for scale and for dispersion estimators are

given in the next two propositions. Let us define 7*(S, F) = sup. IF(u; S, F), y* (S, F) =

- infu IF(u; S, F), -*(E, F) = sup,,, |IF((u, v); E, F)J, ^*(R, F) = sup,, IF((u, v); R, F)

Proposition 4.2 Let 0 be the covariance between two random variables X and Y, and

E be a statistical functional of covariance based on a statistical functional S of scale. The

gross-error sensitivity of E is:

(E), F) = 2 max (K 7*(S, F+) + 7*(, _), *(S, F+) + a-Y*(S, F_)).

In particular, when -y*(S,P±) = y* (S, P±) = (S,.P±):

7*(0, F) = (xoy + 0)7*(S, F+) + (Jxoy - 0 )?*(, F)

Proof:

From Equation (39), the influence function IF((u, v); 8, F) must be bounded between

-X"2 (oy7* (S, F+)+ o-y*(S, F_)) and 'x2' (, (,+)+ U2y (S, F_)). Because the

supremum and infimum of the influence function of S can be reached simultaneously,

i.e. at the same (u, v), the two bounds are tight. In particular, when -y*(S, F±) =

-y*(S, F±) = S*(, F±), the two bounds have the same absolute value x2 (y7*(S F+)+

ory*(S, F_)) = (o-xo-y + 0)*(S, F+) + (oxuy - 0)>*(S, F_).

Proposition 4.3 Let p be the correlation between two random variables X and Y, and

R be a statistical functional of correlation based on a statistical functional S of scale.
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The gross-error sensitivity of R is:

1 2 1-y*(R, F) = max -a Y* (S, + + -9 o_*(S, P-) + p (-* (S, Px) + *.(3, py ))

ouy* (S, F+) + 30-17*(S, k) ± p (4*(S, Fx) ± 4*(S, Fr))), for p 0;

y*(R(F) = max (o2(SF+) + !- *(s) -p(*(S,Px) + *(SFy)),

12 1
o +*.(S, F+) + -a-y* (S, 1K) - p('y*(S, Fx) + y*(S, Fy))), forp < 0.

In particular, when y*(S, +() = <*.(S, F() = +*(S, S7):

.2 1 .2

-y,1) = 2+) + - *(S, F-) + (S, Fx) + /*(S, Fy)).

Proof: Similar to Proposition 4.2. El

Propositions 4.2 and 4.3 tell us that the dispersion estimators are B-robust if the under-

lying scale estimators are B-robust. The most interesting M-estimators of scale satisfy

y*(S, F±) > y* (S, F±), with equality when they have 50% breakdown point ([44, 58]).

The opposite situation leads to implosion of the scale estimator as well as lower efficiency.

Observe that often P+ = P- = x =Py in Propositions 4.2 and 4.3, yielding further

simplifications. For instance, this is the case for multivariate Gaussian distributions,

and even for some specific members of the more general class of elliptically contoured

distributions ([39]) like multivariate t or multivariate Cauchy distributions. Conditions

for this property to hold is given by Fang and Zhang [65]. Note that in order to compare

the gross-error sensitivities of two dispersion estimators, one should standardize them

[53, page 228-229], for example with respect to their variances (self-standardized), or to

the Fisher information (information-standardized).

It can be checked that the influence functions of both the covariance estimator and

the correlation estimator satisfy f IFdF = 0.
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4.3.3 Asymptotic variance

Under regularity conditions, both oQ and pQ are consistent estimators, since Q, is con-

sistent ([87]). Moreover, they are asymptotically normal with asymptotic variance given

by:

V(yQ, F) = IF((u, v); -yQ, F) 2 dF(u, v),

V(pQ, F) = IF((u, v); pQ, F) 2dF(u, v),

V(Q, F) = IF(u; Q, F)2dF(u).

(43)

Subsequently, we assume a bivariate Gaussian distribution F = 1 for (X, Y)T, i.e.:

(x
Y

0 cxx

0

9
29 Y

TXY)

where 9 is the covariance and r is the correlation between X and Y. We have:

Proposition 4.4 The asymptotic variance of the estimator yQ is

V(yQ, 4) = 2V(Q, Y)(uic4 + 92) = 1.215(44Y + 02). (44)

Here, 4 represents the

variance one.

Remark 4.1 A much

a statistical functional

asymptotic variance of

standard Gaussian distribution function, i.e. with mean zero and

more general result can be parallelly proven to be true: Let E be

of covariance based on a statistical functional S of scale. The

E at the bivariate Gaussian distribution 4), is:

V(0, (D,) = 2(,Oc + 02 )V(S, 4)),

95

=N 0 Or

((0 TCax1Y



where V(S, 4) is the asymptotic variance of S at (b.

Proof:

The asymptotic variance of 'o at 4D is

iI
0- 2c f o-+IF(-

o-x
+ ; Q, x +)y

U
- uJF

V 2d(u, v).

The change of variables

yields

dsdt = 2 dudv,
o+-UX Y

and corresponds to the random variables X + ' and Xa+a~x a'+ay ax - n, each of whichaa(y 1

follows the standard normal distribution 4 and is independent of each other. Therefore

V(-yQ, b) = [4 J IF2 (s; Q, 4))dD(s)d4)(t) + 0 + U4 JJ IF2 (t; Q, 4)d4)(s)d4b(t)].
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Note that we use the linear property of the influence function given in Proposition 4.1:

IF(ax; Q, 4ax) = aIF(x; Q, x), Va E z-R. Thus:

V(YQ, 4) = X ' [o4 + 0 + U4] V(Q, 4)

(2 + 2 )2 + (2 -2 0-)2] V(Q7 4)-JU[( 2 + 2  - ~ _

4 uxcXy ) 2 xUy

= 2V(Q, D)(0, , + 02)

= 1.215(oX0 + 02)

Note that due to the form of Equation (41), a closed form of the asymptotic variance

of the correlation estimator pQ is not available. However, following the formulas in

Equation (43), we calculate numerically (i.e. by numerical integration) the variance of

the covariance estimator and the correlation estimator for various underlying variances

and covariances. The results are presented in the fourth and fifth columns of Table 4.3.3.

The numerical results for the covariance estimator agree with the theoretical result given

in Proposition 4.4 very well.

Following Remark 4.1, we can replace the Q., estimator in Proposition 4.4 with the

maximum likelihood estimator of scale MLE, and calculate the closed form of the variance

of the covariance estimator MLE and the correlation estimator pME:

Proposition 4.5 The influence function of the maximum likelihood estimator of covari-

ance 'MLE is IF((u, v); MmLE, 1D) - uv - 0.

The asymptotic variance of the estimator 'MLE is

V(7ME,4) = a2 2 . (45)

The influence function of the maximum likelihood estimator of correlation I3 MLE is

UV ru2 TV2
IF((u, v); pNm, 4)= 2 2.O-X oy 2c-x 2c-y
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The asymptotic variance of the estimator IMLE is

V(PMLE, ) (1 - T2 ) 2 . (46)

Proof:

The influence function of the MLE of scale, SMLE, is IF(x; SMLE, 45) -X ) So

- y [u+IF(-
2OX

oX y 1 u
2 2 a+

-uv - 0

V u V
+ -; SME, +) - -J F( ;SMEi,4)]

LJY -X UY
V 2 1 U

+ ) -1) O2 ((
cT+Uy 2 u- ux

Using Remark 4.1, the asymptotic variance of /MLE is given by

V(2E U2E J 02) 2 02 _2 +2.V (-IML, ID) -2V(SLE D) ((7xr + 02 Yk~ ±

For correlation, we use Equation (41) and get

IF((u, v); pMLE, 4)

= IF((u, v); 'YMLE, 4) /(oXoy) - 0IF(u; SMLE, X) (oY) - 0IF(v; M, 4Y)/(-Xao2)

uv - 0 0 (u/-X) 2 -1 - 0 (V/Uy) 2 _ 1

UXUY 2uXuY 2oxuy

UV TU 2 TV2

c-XUy 24- 2a 2

The asymptotic variance of this estimator is

V(pMLE ) -

Uv

Jf J(_ -X O-y
TU2  

2 2
-2 2uX Y d )D (uV)

2 4 .

E
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2 2
cx UY 9 V(-yo,4) V(pQ, i) Eff(,yQ,) Eff(pQ, 1)

1 1 0 1.215 1.215 0.823 0.823

1 1 0.2 1.264 1.132 0.701 0.783
1 1 0.5 1.519 0.725 0.296 0.621
1 1 0.8 1.993 0.183 0.040 0.431
1 2 0.5 2.735 1.044 0.498 0.652
1 3 0.5 3.950 1.133 0.589 0.685
1 10 0.5 12.458 1.215 0.745 0.763

Table 3: Asymptotic variance and efficiency (calculated by numerical integration) of the

dispersion estimators yQ and pQ, in the case of Gaussian distributions. The numerical

values of V(QQ, D) agree with the result in Proposition 4.4 and the values of Eff(yQ, <D)
agree with the result in Proposition 4.8.

We observe that the behavior of the asymptotic variance of correlation estimators at

bivariate Gaussian distributions is opposite to the one for covariance estimators. It seems

that it is maximal in the independent case, and decreases strictly with the absolute value

of the underlying correlation. However, no simple proof is available, due to the much

more complicated form of the influence function of correlation estimators.

4.3.4 Fisher information

For Gaussian distributions, a closed form of the Fisher information of both covariance

and correlation can be obtained:

Proposition 4.6 The Fisher information of the covariance 0 is

I(9, 4) = 2 2 (47)
(0-1 2 -y - 02)2

99



Proof:

We write out the probability density function of the bivariate Gaussian distribution:

1

27 ab-02

1 ( bu 2 + av2 - 20uv)

27/ ab- 02 exp -2(ab- - 2) -

Sexp
7ry'2B B'

where A = bu2 + av2 - 20uv and B = 2ab - 202. Following the definition of the Fisher

information, we have

I(9 ) =11

//1=11

( log Do(u, v))2 (u, v) dudv

2 e--B (f - -j i-)e- A 2 7r(ab -0)
2 , + __________ ) dud

27r(ab -02)* 2r(ab-O02 / e,
A

-B(ab - 2 [(ab - -) -O(bu + av + (ab+O) ]dudv.
zh

S = + V/aV,

t = viu - v/Fv.

Then, we have:

bu 2 + av2
-

s2+t2

2
S2 -t

Uv =

1
dudv = dsdt

2 Vab

100

4)0(u, v)
1

(u

-1

v) ( a

0

0
b ) (Uv))

Let

(48)



and Equation (48) becomes

1(0)= (ab -02)- 2(ab- 0
ff 27r 

(b- 

2[a

= ~e 4(ab-6 2)vr 

_ 8s2+t2+ ab+02) S2-_t2 ] 2 1

- 2 +/(ab+ /dsdt2 ~4 v/a 2 va-

[(ab - 02)0 + (V/a-
4v ab

(ab+ 0 )2 t 2

4Vb_]2 dsdt

(ab - 02)-

47r Ta4

Let p = " o)and q =- Then Equation (49) becomes

1(0) =1 e-P 2 -
2 [(ab - 02)0 + (/ab + 0)(Vab - 0) 2P2 _ (/ab -0)(Vab+0)2q 2 2

- 4 abv/ab - 2dpdq(ab 2 -
4 v'~ abr- ab

=(ab - 02)-2(ab +0 2 )

From the Fisher information for the covariance 0, it is straightforward to get the

Fisher information for the correlation, since the correlation r is simply 0 Thus, wea~x Oy

obtain:

Proposition 4.7 The Fisher information of the correlation r is

1 + T 2

(1 - 2)2

Proof:

By the definition of the Fisher information, we know

I1(T) -= )d)
dT
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where 0 = v\r/-i in this case. Using Equation (47), we get

I(T) =(ab - abTr2 -2 (ab + abTr2)(ab)

=(I - T2 )- 2 (1 + 7 2 ).

L

4.3.5 Efficiency

Efficiency is defined as the inverse of the product of the Fisher information and the

asymptotic variance of the estimator. For Gaussian distributions, we can calculate the

efficiency of 7Q.

Proposition 4.8 The efficiency of the covariance estimator yQ is

- ~(aio -1 02)2 2c 2 _ o2)2
Eff(7Q, 4) = = 0.823 (O2XUY (51)

2V(Q, <)(0.20, + 02)2 ( o2 + 02)2 -

We present the efficiency of both the covariance and the correlation estimators in the

sixth and seventh column of Table 4.3.3, calculated by numerical integration of the

asymptotic variance. The numerical results of the covariance estimator are very close

to the theoretical result given in Proposition 4.8.

In comparison with the estimator based on Q., we calculate the efficiency of covariance

and correlation estimators based on MLE. As expected, the efficiency of MLE is higher.

Proposition 4.9 The efficiency of the maximum likelihood estimator of the covariance

YMLE is

(4o -2 2)2Eff(7 , X) = Y (52)
- MLE, (a 201 + 02)2-
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The efficiency of the maximum likelihood estimator of the correlation IMLE is

1
Eff(pME,~ 2+. (53)

V((, <)

6

5

4

2

-1 -0.5

.......- MAD

MLE

Qn

-- LE
7

0.5 1

V(R,<br)
3r

2

-1 -0.5

N I--QnE

* K -MLEE

0.5 1

Figure 18: The asymptotic variance of the covariance (top) and correlation (bottom) esti-
mators based on MLE, MAD, and Q, respectively, for a standardized bivariate Gaussian
distribution with covariance r. The 'MLE estimator has the smallest asymptotic vari-
ance, the asymptotic variance of the yQ estimator is slightly larger, whereas 'MAD has an
asymptotic variance much larger than the other two. For all three covariance estimators,
the asymptotic variance increases when the covariance between the two random variables
increases. For all three correlation estimators, the asymptotic variance decreases when
the covariance between the two random variables increases.
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4.4 Comparisons

We first compare the estimator 'Q with the maximum likelihood estimator YMLE and

another componentwise robust estimator YMAD, based on the median absolute deviation

([53]). Next we compare tQ with the global estimator ZMVE and with the maximum

likelihood estimator ZMLE. We focus on covariance estimation here since as we will point

out in Section 4.4, it is more difficult than correlation estimation.

4.4.1 Comparison with MLE and MAD

As we have pointed out, Proposition 4.4 is valid for any covariance estimator based on

an M-estimator of scale ([43]). In Figure 18, we plot the asymptotic variance of the three

covariance and correlation estimators yQ, MLE and YMAD, for a standardized Gaussian

distribution with covariance r.

The three curves for the variance of the covariance estimators in Figure 18 are com-

puted with the formula in Proposition 4.4, whereas the three curves of the correlation

estimators are computed numerically with formula in Equations (41) and (43) (except

for the MLE where formula (46) is used). We can see that when the covariance between

two random variables increases, the variance of the covariance estimator increases, while

the variance of the correlation estimator decreases. As a consequence, correlation esti-

mation is easier than covariance estimation, in the sense that it has smaller variability.

In the independent standard Gaussian distribution case, the variance of the covariance

estimator and the correlation estimator have the same value.

We carry out some simulations to test the mean and variance of the dispersion estima-

tors based on the MLE, MAD and Q, estimators. The simulation is on two standardized

Gaussian random variables with covariance 0 and 0.5, and based on 1000 samples. The

sample sizes are 20, 100 and 200. The results are presented in Table 4. We can see that

the estimators are unbiased and the variance of the estimators increases as the variance

between the two random variables increases.
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sample size mean variance

^IQ MLE MAD Q MLE MAD

20 -0.007 0.005 -0.002 1.630 0.966 2.684
covariance=0 100 -0.002 -0.002 -0.002 1.257 0.988 2.865

200 -0.003 -0.003 -0.003 1.320 1.057 2.794

20 0.526 0.477 0.506 2.018 1.163 3.497
covariance=0.5 100 0.499 0.493 0.496 1.715 1.302 3.477

200 0.504 0.500 0.500 1.649 1.258 3.254

Table 4: The mean and variance of the covariance estimators 'o, M and 'MAD. The
data followed an independent standard Gaussian distribution, and a Gaussian distribu-
tion with means zero, variances one, covariance between the two random variables 0.5
respective. We calculated the mean and variance after running 1000 samples. The three
estimators are all unbiased, and the variance of the -1MAD is significantly larger than the
other two.

4.4.2 Comparison with MVE and MLE

In order to compare the highly robust componentwise estimator EQ with the minimum

volume ellipsoid estimator EMVE and the global maximum likelihood estimator ZMLE, we

carry out some simulations on three variables, i.e. E is a 3 x 3 matrix. In Table 5,

E =

1.0 0.9

0.9 2.0

-0.5 0.2

-0.5

0.2

3.0

and in Table 6,

(54)

0.050

= -0.001

0.005

-0.010 0.005

1.520 0

0 1
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We generate 1000 sets of data, each with sample size 100 and we use the three estimators

to calculate the covariance matrix E. In the first columns, the data do not contain any

outliers, in the second column, 10% of the data have a covariance matrix 9E (explode type

outliers), in the third column, 10% of the data have a covariance matrix E/9 (implode

type outliers). Based on the 1000 estimated covariance matrices, we compute the mean

and the variance of the estimations. The results are presented in Table 5 and 6. In

these examples, the matrices EQ are positive definite. In case there are not positive

definite, a transformation as described at the end of Section 4.2.2 must be applied. For

convenience, we call the sum of the absolute values of all the entries of a matrix the

1-norm of the matrix. The smallest 1-norm in each column is emphasized by boldface

font. From the tables, we can see that when there is no outliers, MLE behaves the best,
ZQ is slightly worse, while $MVE behaves the worst. When the outliers are of explode

type (the observation tends to be much larger than the true value), $MVE has the best

estimation, whereas MLE gives the worst result. For outliers that are of implode type

(the observation tends to be much smaller than the true value), tQ and MLE both give

relatively good estimation, whereas >MVE gives the worst result.

This can be understood if we notice that the estimator ZMVE only takes into account

half of the observations which are distributed nearest to an estimated center. Thus

exploding outliers will not have much effect on the estimator, whereas imploding outliers

can bring significant challenge to the estimator. In other words, $MVE is robust only

against exploding outliers, not imploding outliers. MLE gives very good results in the

imploding case because the implode values we tested are not extreme case and they only

take 10% of the data, so under the averaging procedure, the effect of imploding is very

small. iQ is not the best in any of the three simulations, but it is relatively good in all

three simulations. So, in practice when one does not really know what kind of outliers

exist and how many percentage of the data are contaminated, ZQ is a suitable estimator

to use.
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no outliers 10% explode 10% implode
-0.007 -0.012 -0.004 0.270 0.232 -0.136 -0.130 -0.119 0.068

bias of Q -0.012 -0.011 -0.003 0.232 0.515 0.052 -0.119 -0.269 -0.031
-0.004 -0.003 0.044 -0.136 0.052 0.853 0.068 -0.031 -0.403

1-norm of
bias of tQ 0.100 2.478 1.237

0.027 0.036 0.046 0.118 0.116 0.100 0.040 0.045 0.038
Variance of tQ 0.036 0.097 0.080 0.116 0.438 0.140 0.045 0.170 0.062

0.046 0.080 0.236 0.100 0.140 1.144 0.038 0.062 0.361
1-norm of -

variance of tQ 0.683 2.411 0.860
/ -0.004 -0.005 -0.007 0.806 0.722 --0.407 -0.092 -0.082 0.045

bias of -0.005 -0.013 -0.011 0.722 1.580 0.165 --0.082 -0.179 -0.020
-0.007 -0.011 0.020 -0.407 0.165 2.501 0.045 -0.020 -0.272

1-norm of
bias of : 2 MLE 0.081 7.476 0.837

0.020 0.028 0.035 0.832 0.778 0.483 0.028 0.032 0.029
Variance of E2

L 0.028 0.075 0.060 0.778 3.163 0.581 0.032 0.109 0.052
0.035 0.060 0.1 0.0.483 0.581 8.112 0.029 0.052 0.235

1-norm of
variance of EMLE 0.522 15.792 0.599

-0.162 -0.148 0.071 -0.093 -0.093 0.043 -0.272 -0.243 0.134
bias of EMVE -0.148 -0.315 -0.035 -0.093 -0.207 -0.017 -0.243 -0.550 -0.067

0.071 -0.035 -0.415 0.043 -0.017 -0.248 0.134 -0.067 -0.818
1-norm of

bias of t 2 MVE 1.399 0.853 2.527
0.053 0.059 0.054 0.038 0.050 0.058 0.099 0.093 0.059

Variance of EMVE 0.059 0.205 0.083 0.050 0.159 0.104 0.093 0.405 0.083
0.054 0.083 0.416 0.058 0.104 0.336 0.059 0.083 0.903

1-norm of
variance of tMVE 1.066 0.958 1.877

Table 5: The biases and variances of the estimators ZQ, tMLE and ZMVE, E given in
Equation (54).

4.5 The Robust Autocovariance Estimator: an Application

The autocovariance function describes the covariance between observations at different

time lag distances h. Just like in the covariance context, we define the highly robust

autocovariance function estimator as follows. Extract the first n - h observations of
x = (X 1 , . . . , X )T to produce a vector u with length n - h and the last n - h observation

of x to produce a vector v of length n - h, as shown in Figure 19. Then:

'Q(h, x) = Q2 _h(U + V) - Q2h(u - v). (56)
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bias of EQ

1-norm of

bias of tQ

Variance of EQ

1-norm of
variance of tQ

bias of EMLE

1-norm of
bias of tMjE

Variance of EMLE

1-norm of
variance of :tMLE

bias of tMVE

1-norm of

bias of EMVE

Variance of EMVE

1-norm of
variance of tMVE

0.001
-0.001
-0.000

0.000
0.001
0.001

( 0.000
-0.000
-0.000

0.000
0.001
0.001

(-0.007
0.002

-0.001

no otlies 10 exoode10% implode
-0.001 -0.000

0.011 -0.010
-0.009

0.001
0.020
0.025

-0.000
-0.007
-0.010

0.001
0.015
0.019

-0.010

0.041
0.001
0.058
0.020

0.127
-0.000
-0.000
-0.007

0.025
0.001
0.047
0.015

0.099
0.002

-0.220
-0.005

0.404

-0.001
-0.005
-0.162

0.014
-0.004

0.001

0.000
0.002
0.001

) 0.040
-0.008

0.006

0.002
0.007
0.005

) (-0.005
-0.000
-0.000

-0.004 0.001
0.396 0.007
0.007

0.703
0.002
0.258
0.035

0.452
-0.008

1.182
0.014

2.097
0.007
1.812
0.138

2.967
-0.000
-0.138

0.004

0.240

0.269

(0.001
0.035
0.119

0.006
0.014
0.817 1

0.005
0.138
0.852

-0.000
0.004

-0.089

(

-0.007
0.002

-0.001

0.000
0.001
0.001

-0.004
0.000

-0.001

0.000
0.001
0.000

) (-0.014
0.003

-0.002

0.002
-0.208
-0.001

0.354
0.001
0.092
0.018

0.171
0.000

-0.142
0.002

0.242
0.001
0.059
0.014

0.117
0.003

-0.420
-0.003

0.721

-0.001
-0.001
-0.133 )

0.001
0.018
0.039

-0.001
0.002

-0.090 )
0.000
0.014
0.027

-0.002
-0.003
-0.272

0.000 0.001 0.001 0.000 0.001 0.001 0.000 0.001 0.001
0.001 0.101 0.021 0.001 0.098 0.024 0.001 0.231 0.021
0.001 0.021 0.052 0.001 0.024 0.041 0.001 0.021 0.098

0.208 0.191

)
)

0.373

Table 6: The biases and variances of the estimators ZQ, ZMLE and ZMVE, E given in
Equation (55).

This turns out to be a highly robust estimator of autocovariance. As shown at the end

of Section 4.5.1, it has a temporal breakdown point of 25%, which is the highest possible

value in the autocovariance case. Note that the highly robust autocovariance estimator

-yQ(h, x) can also be carried out with 0(n log n) time and 0(n) storage.

Another approach to obtain a robust estimator for the autocovariance is by truncating

large terms in the sum of Equation (29). However, we prefer the scale approach suggested

by Equation (30), because it allows the use of the highly robust estimator of scale Q,,
which has a remarkably high asymptotic Gaussian efficiency of 82.27%. For instance, Qn
has already been successfully used in the context of regression ([16, 55]), as well as for

variogram estimation ([41]) in spatial statistics.
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4.5.1 Temporal Breakdown Point

Outliers in time series can seriously affect the estimation and inference of parameters ([12,
80]). The main problem is that estimators which take account of the time series structure

are not invariant under permutation of the data, as in the case of estimators for i.i.d.

observations. Consequently, distinction between outliers occuring in isolation, in patches,
or periodicly, becomes important. Three types of outliers are generally considered ([24]):
innovation outliers (TO), which affect all subsequent observations, and additive outliers

(AO) or replacement outliers (RO), which have no effect on subsequent observations.

Consider a second-order stationary ARMA(p, q) process {Xt : t E Z} such that for every

t:

Xt - piXt-1 - - ppXt_ = Z + OZt_1,+ - + OqZt-q (57)

where pi,... , pp and 01,... , 0q are real parameters, and the innovations are white noise

{Zt} ~ WN(0, a'). Subsequently, we assume that the parameters of the ARMA process

are defined such that the process is causal and invertible. More details on these notions,
as well as necessary and sufficient conditions for causality and invertibility are given by
Brockwell and Davis [9].

The ARMA(p, q) process {Xt : t E Z} is said to have innovation outliers (IO) if it

satisfies Equation (57), but the innovations {Zt} have a heavy-tailed distribution, for

instance Fe = (1 - E)F + EH, where e is small and H is an arbitrary distribution with

greater dispersion than F. The important characteristic of this kind of outliers is that

even when the Zt have outliers, Equation (57) is satisfied and therefore {Xt : t E Z}

is a perfectly observed ARMA(p, q) process. Robust estimators, like M-estimators, can
typically cope with IO ([12]).

The process {Xt : t E Z} is said to have additive outliers (AO) if it is not itself an
ARMA(p, q) process, but rather defined by Xt = V + BtW, where V is an ARMA(p, q)
process satisfying Equation (57), Bt is a Bernoulli process with P(Bt = 1) = E, P(Bt =
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0) = 1 - E, and W is an independent sequence of variables, independent of the sequences

V and Bt. Therefore, the ARMA(p, q) process V is observed with probability 1 - 5,

whereas the ARMA(p, q) process V plus an error Wt is observed with probability e. AO

are known to be much more dangerous than IO. Note also that additive outliers have the

same effect as replacement outliers (RO), where Xt = (1 - Bt)V + BtW. This means

that the ARMA(p, q) process V is observed with probability 1 - e, and replaced by an

error Wt with probability e. In the sequel, we consider RO.

In time series, one is much more interested in the breakdown point related to the initial

data, which are located in time. Therefore, the classical definition loses its meaning

because the time location of the outlier becomes important. In fact, the effect of the

perturbation of a point located close to the boundary of the time domain can be quite

different from one located in the middle of the time domain, and the effect depends

notably on the time lag distance h. Therefore, we introduce the following definition of

a temporal sample breakdown point of an autocovariance estimator based on Equation

(30).

Definition 4.4 Let x = (x 1 ,... , xn) be a sample of size n and i is obtained by re-

placing any m observations of x by arbitrary values. Denote by I, a subset of size m of

{1, ... , n}. The temporal sample breakdown point of an autocovariance estimator I(h, x)

is:

S max spsup Snh(fl + ) < oo and inf infSn--h(i + i ) > 0{n Im Im R

and supsup Sn-h(i -i) < oo and inf inf Sn-h(i - i) > 0,
I, R IM R

where ft and i' are derived from k (t is used to emphasize temporal).

Note that in opposition to Definition 4.2, the configuration (i.e. the temporal location)
of the perturbation is now taken into account, by adding the supremum and infimum

on Im. This definition is justified by the fact that an autocovariance estimator can be
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destroyed by a single configuration of perturbation, indexed in In. Therefore, it is quite

possible to find other configurations, with more than E'( (h, x)) of perturbations, which

do not demolish the estimator. Notice furthermore that this definition is local, in the

sense that it is valid for a fixed h.

Consider a fixed temporal lag distance h E R. For m = 1 perturbed data point, it

follows that, if h < , one perturbation at time i, with h < i < n - h, generates the

perturbation of two sums u + v and two differences u - v, whereas for 0 < i < h or

- h < i <r, a single sum (difference) is perturbed. Finally, if h> ! , one perturbation

at time i, with 0 < i < n - h or h < i < n, affects one sum (difference), and none

in the other cases. Therefore, to one perturbed observation corresponds at most two

perturbed sums (differences). For general m > 1, we are interested in finding the most

unfavorable configuration of perturbed data for a fixed h. Such a configuration is shown

in Figure 19 for the case h = 3, m = 7 and n = 21. White points represent unperturbed

observations, whereas black points represent perturbed observations. There are m black

points. Construction of this configuration consists in placing h unperturbed observations,

followed by h perturbed observations, followed by h unperturbed observations, and so on

until exhaustion of the m black points. This configuration ensures that the most possible

x xx xXI 2' 3 Xn

U h

h V

Figure 19: The most unfavorable configuration of perturbation for the case h = 3, m = 7
and n = 21. White points represent unperturbed observations, whereas black points
represent perturbed observations.

sums (differences) are perturbed (i.e. each black point perturbes two sums (differences)).

Moreover, perturbations do not overlap for a given lag distance h, which means that no

sum (difference) between two perturbed observations is ever taken. Let vinm,(h, m, n) be
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the maximal number of perturbed sums (differences) for given h, m and n. This function

depends on the relation between m and h. Let p and q be the two non-negative integers

such that m = ph + q and q < h. By disjunction of cases, it is then possible to compute

the function vmax(h, m, n) explicitly:

vmax(h,m,n) = I

n -h

2m

n - 2h+q

2ph + q

m+n-2h

m

if

or

or

or

if

or

or

if

if

if

if

M = n,2'

> m > h, q= 0, n - 2m < h,2

n > m > h, q > 1, h+q > n - 2ph > 0,2

m < h, m +2h > n, m > n - h,

2 > m > h, q = 0, n - 2m > h,

L > m ;> h, q > 1, n - 2ph > 2h+q,

m < h, m + 2h < n, n - 2m < h,

2 > m > h, q 1, 2h + q > n - 2ph > 2h,

2 > m > h, q > 1, 2h > n - 2ph > h + q,

m < h, m + 2h> n, m < n - h, h <

m < h, m+2h > n, m < n - h, h > .

Notice that the case m > ! makes no sense because it implies that more than half of2

the differences are perturbed. No equivariant scale estimator can be that resistant ([58]).
Proposition 4.10 examines the relation between the classical sample breakdown point

(usually known) and the temporal one.

Proposition 4.10 For each h E {0,... , n -1} and for each integer M = ne*(j(h, x)) <

gthe sample breakdown point and the temporal sample breakdown point of an autoco-

variance estimator '(h, x) satisfy the double inequality

2n2 E' ('(h, x)) E* ((h, x)) E (n(h
n - ~~ n - h 7x)

The first equality holds if and only if h = or M = n, and the second equality holds if2 2'Y
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and only if Vmax(h, M, n) = 2M.

Remark 4.2 By writing the inequality in Proposition 4.10 slightly differently, we can

bound the temporal sample breakdown point with the classical sample breakdown point:

n - h) ' ) 1
2n ( x n 2 (

Proof:

In order to prove the first inequality, consider the function

J(h, m, n) = Vmax(h, m, n) - 2 .
n-h n

We have to show that

If Vmax(h, m, n) = n -

If Voax(h, m, n) = 2m,

If Vmax(h, m, n) = n -

6(h, m, n)

the function J is non negative for all possible integers m.

h, then 6(h, m, n) = 1 - 2 > 0 (because 1 > m).

then 6(h, m, n) = 2,- 2 > 0 (because n - h < n).

2h + q, then

n-2h+q 2m n2 -(p+2)hn+m(2h-n)
n - h n n(n - h)

n2 - (p + 2)hn + h(p + 1)(2h - n)
n(n - h)

(because m < h(p + 1) and 2h - n < 0)
n -2(p1)h 0 (because n - 2ph 2h).

n

If Vmax(h, m, n) = 2ph + q, then

6(h, m, n)
2ph + q 2m _ 2mh - nq

n - h n n(n - h)
> 2mh - 2hq(p + 1) (because n-2h(p-+1)<0)

n(n - h)
2hp(h - q) (because h > q).
n(n - h) (
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If vma,(h, m, n) = m + n - 2h, then

(hmm, n) T n - 2h 2m m(2h - n) + n(n - 2h)
n - h n n(n - h)

-h(n - 2h) + n(n - 2h)
n~n -h)(because m < h)n(n - h)

n-2h ni
= n 2 0 (because h < ).n 2

If Vmax(h, m, n) = m, then

m 2m m(2h - n) n
3(h, m, n) n - - - - h 0 (because hn - h n n(n - h) 2

Finally, if h = or m = E, then 6(h, m, n) = 0 and therefore equality is reached.

The second inequality follows from the fact that a perturbation on a single observa-

tion generates the perturbation of at most two sums (differences). Thus, the perturba-

tion of m observations generates the perturbation of at most 2m sums (differences), i.e.

Vmax(h, m, n) < 2m. Consequently, we have the inequality

Vmax(h, M, n) 2M 2n M 2n
ei~, ))= -et=(, ))n-h - h n-hn n-h

with equality if and only if Vmax(h, M, n) = 2M. D

The classical sample autocovariance function is based on the classical scale estimator

(standard deviation) whose sample breakdown point is zero. Therefore, by Remark 4.2,
the temporal sample breakdown point of this estimator is also zero, for every lag h. This

means that a single outlier in the data can destroy it. Figure 19 shows the temporal

sample breakdown point E100 '( Q(h, x)) of the highly robust autocovariance estimator,
for each lag distance h, represented by the black curve. The upper and lower bounds

given in Remark 4.2 are represented by the light grey curves. As it was stated, the

temporal sample breakdown point equals its lower bound as long as Vmax(h, M, n) = 2M,

and equals its upper bound if h = L. The interpretation of Figure 20 is as follows.
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Figure 20: The temporal sample breakdown point (in black) as a function of the temporal
lag distance h, for the highly robust sample autocovariance estimator yQ (h, x). The upper
and lower bounds are drawn in light grey.

For a fixed h, if the percentage of perturbed observations is below the black curve, the

estimator is never destroyed. If the percentage is above the black curve, there exists at

least one configuration which destroys the estimator. This implies that the highly robust

autocovariance estimator is more resistant at small time lags h or around h = n/2, than

at large time lags h or before h = n/2, according to Figure 19. Note that from Remark

4.2, asymptotically, the temporal breakdown point of the autocovariance estimator is half

the classical breakdown point.

Recall that Qn has classical asymptotic breakdown point 50%, which means we can

contaminate half of the observations yet still get reasonable estimate. Therefore, the

highly robust autocovariance estimator has breakdown point 25%. This is because in

forming u and v from the observation x, most data will appear twice and hence in the

worst case, the number of pairs (ui, vi) that contain outliers will be twice the number

of original outliers in x. Note that this is the highest possible breakdown point for

an autocovariance estimator. We can give up such high breakdown point by choosing

different quantile from 1/4 in Equation (31), with the benefit of higher efficiency ([86]).

115



For example, if we choose the 0.91 quantile, we will reach the highest efficiency (~ 99%)

for Q,, estimator, hence reach the highest efficiency for our estimator too. For the 0.91

quantile, the classical breakdown point is approximately 4.6% for Q", and therefore the

temporal breakdown point of yQ is 2.3%.

4.5.2 Influence Function

We notice that in the autocovariance case, we can choose a = 3 = 1 in Equation (38).

Under a bivariate Gaussian distribution F, the influence function of the yq autocovariance

estimator is:

IF ((u, v); -yg, F) = -oIF ', Q, _ IF , Q, P, (59
2 + 0+ 01-

where the influence function of Q, at 1 ([87]) is:

_ 1/4 - 1(x + 1/c) + 4(x - 1/c)
f #(y + 1/c)#(y)dy '

with c = 2.2191. Figure 21 shows the plot of the influence function of - Q when the

covariance is zero. The cases of non-zero covariance yield similar graphs. Note that the

influence function of -yQ is bounded between ±(a - b)(a U+ ) + 2|a + bjuav]/2, where

a = max IF(x, Q, 4), b = min IF(x, Q, 4). The bounds can be computed by writing 42
as U + OV ± 2Cov(U, V) and noticing that Cov(U, V) is bounded between ±ouuy. To

the contrary, the influence function of -m is proportional to uv when the covariance is

zero, and therefore unbounded.

4.5.3 Asymptotic Variance

Under regularity conditions, q is consistent, i.e. q -- + 7Q in probability as n -+ oc,
since Q, is consistent ([87]). Moreover, V/ni(Q - -yg) is asymptotically normal with zero
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Figure 21: The influence function IF((u, v), yQ, F), where U and V are independent and
have identical standard Gaussian distribution.

expectation and variance given by Portnoy and Genton [82, 83, 40]

Var(yQ, F) = J IF((u, v), yt, F)12 dF(u, v)

00 (61)
+2 .j] .. IF((ui, vi), -yQ, F)IF((ul+k, V1+k), 7Q, F)dF((ui, v1), (U1+k, V1+k)).

k=1

Regularity conditions for consistency and asymptotic normality are given by Huber [56]

for the independent case and by Portnoy and Bustos [82, 83, 11] for the dependent

case. In the latter situation, mixing conditions like a-mixing or #-mixing are sufficient

([4, 32]). Note that Equation (61) is valid for any consistent estimator. In particular,

for the classical autocovariance estimator 7M, the equation is equivalent to Bartlett's

formula [9, page 222].
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The computation of the variance turns out to be tedious and very often impossible

to get a closed form. For the classical autocovariance estimator on MA(1) model and

AR(1) model, we have an explicit formula for the variance given in Proposition 4.11. Here,
MA(1) and AR(1) are special cases of the ARMA(p, q) model, i.e. MA(1)=ARMA(0,1)

and AR(1)=ARMA(1,0).

Proposition 4.11 For an MA(1) model with variance matrix

1+02 9

9 1+02

the asymptotic variance of the classical autocovariance estimator of the (i, i), (i, i ± 1)

and (i, i ± h) (for h > 2) entries of Eo are respectively

Var(7M(0), MA(1)) = 2(1 + 02)(1 + 292)

Var(7M(1), MA (1)) = (1 + 92)2 + 392 (62)

Var(-M(h), MA(1)) = (1 + 02)2 + 22.

For an AR(1) model with variance matrix

1 p.. p --

1
P1 - p2 -

n-1
p ... p 1

the asymptotic variance of the classical autocovariance estimator of the (i, i) and (i,i ± h)
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for (h > 1) entries of EP are respectively

Var(yM(0), AR(1)) = 2 + 2p 2

(1 - p2 )3  

(63)
Var (yM(h), AR(1)) = 1 + 2p 2 + (1 + 2h)p 2h - (2h - 1)p2h+2

(1 - p 2 ) 3

Proof:

The calculation of these asymptotic variances are of the same style. For simplicity,

we explain the first equality only. We use the fact that IF(x, S, 4) = j(x 2 - 1) and

f JIF(x, S, 4)1 2dIb(x) = 1/2, where S is the maximum likelihood estimator of scale, i.e.

the standard deviation. Using Equation (61), we get

Var(-ym (0), MA(1))

=4(1 + 02)2 + 2J 4(1 + 02)21 ( 1 2 _92) 1).1(1 +02)(( Y )2 - 1) dF(x, y)
2 2 Vr +0 2 2 VJ +0 2

=2(1 + 02)2 + 2(1 +02) (x2 - (1 + 02 ))(y 2 - (1 + 02))dF(x, y)

=2(1 + 02)2 + 2(1 + 02)((1 + 02)2 + 22 - (1 + 02)2)

=2(1 + 02)(1 + 202)

In order to calculate the efficiency, we need to calculate the Fisher information of the

estimator, and this is also computationally difficult. For the AR(1) model, we get the

Fisher information (n - 2)/(1 - p2 ) + (1 + p2 )((1 _ p2 )2 ). So in this particular case, we

can calculate the efficiency symbolically since efficiency is just the inverse of the product

of Fisher information and the variance of the estimator.
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4.5.4 Simulations

In this section, we present some simulations in order to compare the jM and 'Q autoco-

variance estimator on MA(1) and AR(1) models, with and without replacement outliers.

We start with a brief description of the experiment.

The standard Gaussian AR(1) and MA(1) models {V} are considered, with or without

replacement outliers (RO) defined by Xt = (1 - Bt)V + BtW. The Bernoulli process

satisfies P(Bt = 1) = e and P(Bt = 0) = 1 -, with e = 0 and e = 10%. The distribution

of Wt is chosen to be N(0, T 2 ), where r 2 = k2Var(Vt) with k = 3 and k = 10. We generate

1000 samples of sizes 20, 50 and 100 for each model with parameters 0 (respectively p)
equal to 0 and 0.5. The mean of /M and q are computed over the 1000 replications,
as well as the relative efficiency (REF) of Q to ?M. We built an S-Plus function to

compute 'Q, which is available on the Web. The results are presented in Table 7.

From the simulation, we can see that when there is no outliers, both estimators yield

a mean that is close to the true autocovariance, i.e. unbiased. The REF is around 80%
for large n. This is considered high for a highly robust autocovariance estimator. In

the presence of outliers, the classical autocovariance estimator shows a weak resistance

in terms of the mean value, and it also has smaller efficiency than the robust estimator.

This is particularly clear when the outliers are large (k = 10). One can also check that

the asymptotic variances of -YM given in Equations (62) and (63) agrees with the ones

find in the simulations. Moreover, for the MA(1) model with 0 = 0, i.e. the i.i.d. case,
the asymptotic variance of TQ can be computed numerically from Equation (61), which

yields 2.482 (to be compared with 2 for YM)- This yields an asymptotic relative efficiency

of 80.6%, which is close to the one find by simulation in Table 7.

Note that the classical estimator we took is not modified to ensure positive definiteness
of the covariance matrix. If we use the modified version (divided by n instead of n - h),
then we should also ensure positive definiteness for the highly robust autocovariance
estimator. This can be done by the shrinking, the eigenvalue or the scaling method
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([89]). A typical application is then to use the highly robust autocovariance estimator

in the Yule-Walker equations ([9]) in order to estimate the parameters of an AR model

robustly.

4.5.5 Example

We carry out the classical autocovariance estimator m and the highly robust autoco-

variance estimator yQ on 91 monthly interest rates of an Austrian bank (see Figure 22

for the data). This data set has already been analyzed by Kunsch [70, 71]. He pointed

..........

0 20 40 60 80

Index

Figure 22: Monthly interest rates of an Austrian bank during 91 months.

out the presence of three outliers for the months number 18, 28, 29. In Figure 23, we

run iM and PQ on the original data in (a) and (b). Then we replace the three outliers

by 9.85 as suggested by Kiinsch in (c) and (d). Looking at (c) and (d), we can see that

the new estimator Q behaves similarly to iM when no outliers are present. Comparing

the difference between (a) and (c) with the difference between (b) and (d), we can see

that /Q has better resistance to the outliers than iM. This effect is particularly visible

for small time lags.
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Figure 23: Autocovariance estimator on monthly interest rates of an Austrian bank: (a)
classical M on original data (b) highly robust 'Q on original data (c) classical YM on
corrected data (d) highly robust yQ on corrected data
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Table 7: The mean m(uM), m(Q) and the relative efficiency REF of the autocovariance
estimators at time lag h = 0, h = 1 and h = 2 on MA(1) model with 0 = 0, MA(1) model

with 6 = 0.5 and AR(1) model with 0 = 0.5 respectively, with and without RO outliers.

E= 0 E= 10%, k= 3 E= 10%, k= 10
h (h) n m(mjT) m(yQ) IEF _m___) _ REF_)_RE m(IM) m( Q) REF

MA(1),9= 0
50 0.983 1.012 0.721 1.784 1.290 4.015 10.842 1.514 262.2

0 1 100 0.983 1.000 0.762 1.766 1.268 4.035 10.612 1.467 277.0
50 -0.020 -0.027 0.712 -0.030 -0.026 1.006 -0.231 -0.048 12.9

1 0 100 -0.005 -0.010 0.728 -0.018 -0.028 1.100 -0.093 -0.044 14.9
50 -0.019 -0.019 0.680 -0.049 -0.061 1.039 -0.271 -0.100 14.6

2 0 100 -0.018 -0.020 0.741 -0.023 -0.021 1.043 -0.142 -0.034 13.3
MA(1),O 0= 0.5 __ _-_

50 1.214 1.254 0.754 2.156 1.589 3.135 13.075 1.855 225.0
0 1.25 100 1.228 1.244 0.801 2.227 1.575 3.787 13.798 1.838 226.1

50 0.464 0.481 0.704 0.338 0.515 1.025 0.106 0.882 10.2
1 0.5 100 0.481 0.487 0.800 0.380 0.535 1.061 0.300 0.888 10.8

50 -0.046 -0.049 0.711 -0.068 -0.087 0.930 -0.331 -0.115 12.9
2 0 100 -0.016 -0.018 0.809 -0.027 -0.037 1.174 -0.147 -0.041 19.1

AR(1), 0 = 0.5
50 1.252 1.293 0.772 2.292 1.647 3.5 14.433 1.933 199.0

0 1.33 100 1.291 1.313 0.803 2.378 1.669 3.3 14.803 1.940 235.1
50 0.586 0.609 0.749 0.434 0.668 1.0 0.271 1.126 7.2

1 0.67 100 0.628 0.638 0.804 0.501 0.724 1.0 0.404 1.159 7.6
50 0.246 0.254 0.763 0.180 0.258 1.0 0.082 0.497 9.6

2 0.33 100 0.291 0.296 0.778 0.227 0.334 1.0 0.093 0.543 12.0
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