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Abstract

Establishing the link between macroscopic electromechanical properties, bio-
chemical composition and ultrastructural organization in cartilage will elucidate the
role of mechanical forces in regulating the biosynthetic activity of chondrocytes to
maintain a functional extracellular matrix (ECM), and how this process is compro-
mised as osteoarthritis (OA) progresses. Assessment of physical properties of articular
cartilage may lead to a better understanding of why certain joints are more prone
to OA. Symptomatic OA develops rarely in the ankle (<1%), and the prevalence is
independent of age, while in the knee the prevalence increases to 10% in those over
65 years of age. In this study, a protocol was developed to assess the biomechanical
properties and biochemical composition of human knee and ankle cartilage. It was
found that the ECM of the talar (ankle) cartilage is denser with higher charged gly-
cosaminoglycan content and lower water content, consistent with a higher equilibrium
modulus and dynamic stiffness, and lower hydraulic permeability. This denser ECM
may be chondroprotective. Its biomechanical properties may endow it with an in-
creased stability to loading, protecting the chondrocyte and making the cartilage less
susceptible to OA. These findings demonstrate the utility of diagnostic tools which
assess the physical properties of cartilage.

It had been previously shown that damage due to trypsin, which predomi-
nately degrades proteoglycan, can be sensitively detected by surface electromechan-
ical spectroscopy measurements. We, therefore, tested the hypothesis that surface
electromechanical spectroscopy measurements could sensitively detect degradative
changes in cartilage matrix caused by collagenases MMP-1 and MMP-13. We found
that MMP-1 induced damage to the collagen-aggrecan network was detected by
changes in the current-generated stress response. In addition, the measurement of
total tissue impedance using interdigitated electrodes placed on the cartilage surface
was capable of detecting superficial (MMP-13) and deeper (MMP-1) lesions caused
by collagenase in vitro. The ability of surface electromechanical spectroscopy to de-
tect changes in both electrokinetic and impedance properties enhances its potential
diagnostic capabilities in vivo.
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Diagnostic applications of surface electromechanical spectroscopy in vivo re-
quire the measurement of current-generated stress and impedance non-destructively
during arthroscopic or open joint procedures. Therefore, an electrokinetic surface
probe has been designed with a 4.5 mm diameter active area. Its size makes it
possible to use it within an arthroscopic canula. Its multiple wavelength capability
permits the spatial localization of surface cartilage lesions typical of early progressive
OA. This a step toward providing physicians with a diagnostic tool for determining
cartilage degeneration in the clinic.
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2.3 The electromechanical properties of the pooled cartilage samples of
the top 1 mm of talar (TA), distal femur (F), and tibial plateau (TP).
(A) The equilibrium modulus (HA) was higher for TA than F and TP,
and F was higher than TP. (B) The dynamic stiffness (shown at 0.1Hz)
exhibited the same trend as HA over the entire frequency range studied.

(C) The hydraulic permeability was lower in TA and F than that of
TP. (D) The streaming potential (shown at 0.1Hz) was lower in TP
than TA in the 0.1 to 1.0 Hz frequency range. Bars correspond to the
mean ± SE, and the differences assessed by ANOVA with Fisher's LSD
test: filled star, F or TP significantly different than TA; open star, TP

significantly different than F; filled square, TP significantly different
than F and TA; all p < 0.01. . . . . . . . . . . . . . . . . . . . . . . . 72
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2.4 sGAG/WW and HA for the 14 anatomic sites (n=6-8 per site) using
the nomenclature of Figure 2.1: talus (TA) separated into anterior
(A) and posterior (P); distal femur (F) separated into patellar surface
of the femur (FP), and the anterior (C) and posterior (P) aspects of
the femoral condyles; and tibial plateau (TP) separated into anterior
(A) and posterior (P) aspects. Each location is also separated into
medial (black bars) and lateral (white bars). There were no significant
differences within a joint surface; However, sGAG/WW of the medial
aspect of the anterior femoral condyle was significantly higher than that
of the opposing medial aspect of the anterior tibial plateau (filled star,
p<0.05), and the HA values of the corresponding opposing surfaces
approached significance (open circle, p = 0.062). Bars correspond to
the mean ± SE, and the differences assessed by ANOVA and Fisher's
LSD test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.5 Depth dependent properties of pooled cartilage samples from the distal
femur. The top 1 mm slice had significantly higher water content (A),
lower sGAG/WW (B), lower HA (C) and lower dynamic stiffness at
0.1 Hz (D) than the second slice containing the remaining cartilage
down to the subchondral bone. Bars correspond to the mean ± SE;
differences were assessed by ANOVA and Fisher's LSD test: filled star,
p < 0.01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -. 74

2.6 Scatter plots showing the variation in equilibrium modulus HA with
sGAG/WW (A) and water content (B). The data are shown for the
different joint surfaces: filled circles - talar (TA), open circles - distal

femur (F), and filled squares - tibial plateau (TP). HA increased with
increasing sGAG/WW for all joint surfaces (TA: Pearson's R = 0.617,
F: R = 0.594 and TP: R = 0.663, all p < 0.01). With increasing water
content, the HA decreased for all joint surfaces (TA: R = -0.176, F: R
= -0.617, p < 0.01 and TP: R = 0.376, p < 0.05); this decrease was

significantly faster for TA than TP (p < 0.05). . . . . . . . . . . . . . 75
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3.1 When the current is applied in a short wavelength configuration (B)
the current is more confined to the upper surface of the tissue. By
comparison, with a long wavelength excitation (A), the current can
penetrate the full depth, including regions that may not be effected
by the enzyme. The crosshatched area represents degraded cartilage
where the poroelastic properties may have been altered. By comparing
the current-generated stress in both configurations, a short over long
stress ratio (SR) can be calculated. The SR will decrease if the surface
region is more degraded, allowing spatial localization of degradation.
The overlying surface spectroscopy probe has independently address-
able piezoelectric and current application (those in contact with the
cartilage) electrodes 0.8 mm in width, with a 0.8 mm gap. The spa-
tial wavelength of the interdigitated electrode structure (A) is defined
as twice the electrode spacing. The piezo electrodes are used mea-
sure the voltage created by the normal mechanical stresses which is
proportional to the current-generated stress, whereas the the voltage
drop across the excitation electrodes can be recorded simultaneously
for electrical impedance. . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.2 Cartilage/bone cores were removed from the femoropatellar groove of
adult bovines (A) and mounted in a confining chamber containing
buffer (0.1 M NaCl and 0.05 M Trizma, pH 7.4), or buffer + 10 pg/ml
rhMMP-1 or rhMMP-13 such that the enzyme could only penetrate
into the cartilage from the intact articular surface. After digestion,
the buffer was collected and examined to assess the extent of matrix
degradation after treatment (B). An 800 pm thick disk was then re-
moved from the cartilage/bone cores (C) without disrupting the artic-
ular surface and then placed in contact with a four electrode variable
wavelength surface probe for CGS and impedance measurements (D).
After testing, the cartilage disks are subject to immunohistochemical
analysis, with sections stained by monoclonal antibody 9A4 to localize
damage to the collagen matrix (E). . . . . . . . . . . . . . . . . . . . 83

3.3 Immunohistochemical staining with 9A4 (mAb to collagen C-terminal
neoepitope) was absent in control tissue (A), and was most intense
in the superficial layer of MMP-1 and MMP-13 treated tissue (B and
C). MMP-1 cleaved to an increasing depth with time; staining was
apparent to a depth of 0.8 mm by 24 hours (below the border of B). In
contrast, staining for MMP-13 appeared confined to the surface, only
penetrating 50 pm (C). Arrows indicate the surface of the cartilage. . 86
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3.4 The release of PG and HYP constituents (as % of total) increased with
time of treatment by MMP-1 (B), and was greater than that released
by MMP-13 treatment by 24 hours (A). With MMP-1 treatment, the
release of hydroxylysyl pyridinoline cross-links were detected after 24
hours. Bars correspond to the mean ± SE, N=4 . . . . . . . . . . . . 87

3.5 The short-wavelength to long-wavelength stress response ratio (SR)
for control disks (0 hour) and disks after 24 hours MMP-1 treatment.
MMP-1-induced degradation caused a decrease in this ratio by 24
hours, significantly different at 0.025 Hz (p < 0.01). In contrast, there
were no significant differences between controls and disks treated with
MMP-13 by 24 hours (data not shown). Mean ± SE (N=4-7), and the
differences against controls assessed by students t-test: filled star, p <
0 .0 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.6 The electrical impedance of cartilage treated 24 hours with MMP-13
(filled circles) and MMP-1 (filled square), in the long wavelength config-
uration compared with controls (triangles). The impedance increased
significantly after treatment, particularly at the higher frequencies.
Mean ± SE (N=4-11), and the differences against controls assessed
by students t-test: filled star, p<0.01, and open star, p<0.05 . . . . . 89

4.1 Schematic of the current source used for impedance measurements. A
sinusoidal input voltage (V2,) to the current source resulted in a cur-
rent Ic to the cartilage. The voltage difference V 0, - Vm, between
electrodes on the cartilage, divided by the current Ic is the measured
impedance, Zmeas. This purely electrical measurement can be made
simultaneously with the current generated stress response at the pre-
scribed input frequencies or sequentially at only other frequency (i.e.,
1 kHz)[Courtesy S. Berkenblit [13]]. . . . . . . . . . . . . . . . . . . . 94

4.2 The impedance of disks treated 24 hours with MMP-13 (filled circles)
versus controls (open circles), in the short-wavelength configuration.
The impedance increased significantly after treatment, particularly at
the higher frequencies (at 0.25 Hz, open star, p < 0.05) . . . . . . . . 95

4.3 The impedance of disks treated 24 hours with MMP-13 at 1 kHz. The
impedance decreased significantly after treatment for all wavelengths
studied short, long and extra-long (at 0.25 Hz, open star, p < 0.05).
The associated wavelengths were 2.2, 4.4, and 8.8 mm, respectively.
The buffer represent the impedance of the probe electrodes in contact
with the buffer only which includes the interfacial impedance of the
electrode-electrolyte interface. . . . . . . . . . . . . . . . . . . . . . . 96
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4.4 The effect sGAG content and applied strain on impedance (resistive)
simulated using equations 4.1- 4.6 and a first order estimate of the
impedance from the electrode geometry. The simulation assumes typ-
ical values for a newborn bovine articular cartilage disk 9.5 mm in
diameter and 1 mm thick: a sGAG/WW of 4.1% and a hydration 4.4

(or 81.4% water content). In addition, the two electrodes are modeled
having an area of 4.57 mm 2 and a center-to-center distance of 1.62 mm.
sGAG loss was modeled as a uniform loss throughout the volume, by
directly reducing the amount in Equation 4.6 as indicated. . . . . . . 100

4.5 The femoropatellar groove from newborn steers were obtained and
9.5 mm diameter cartilage/bone cores were removed (A). The cores
randomized to the 4-hour trypsin treatment group were mounted in a
confining chamber containing buffer + 1 mg/ml trypsin (B). After 4
hours, the cores were removed from the chamber and a 1 mm thick
slice was removed with a sledge microtome, without disrupting the ar-
ticular surface (C), and placed in contact with a four electrode variable
wavelength surface probe (D) in a short-wavelength configuration. The
digestion buffer was collected and examined to assess the extent of ma-
trix PGs degradation. The cartilage disk was subjected to increasing
strain levels of 0-50% in an unconfined compression arrangement. A
sinusoidal current density of 1 mA/cm 2 was applied to the tissue over
the frequencies of 1-1000 Hz at each strain level. The cartilage disks
were digested and sGAG content found by DMMB dye binding assay. 101

4.6 A. Equivalent-circuit model for the impedance measured with the sur-
face probe. An equivalent shunt impedance, Zsh, is modeled in paral-
lel with the cartilage impedance impedance, ZC; in addition, a series
component, Zser, is assumed to be present at the electrode-electrolyte
interface, evenly divided between the positive and negative electrodes.
B. Similarly, once the cartilage is removed, the probe is in contact with
the buffer only. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.7 Trypsin treatment significantly reduced the amount of sGAG per WW
in the tissue (A, open star p<0.01 versus 4-hour trypsin treatment,
filled star versus control, n=4-6). The 0, 4, and 24 hour controls cor-
respond to a percent loss of sGAG from the tissue of 4, 90, and 99%,
respectively. The loss of sGAG content was concomitant with a signif-
icant increase in tissue hydration compared to controls(B). . . . . . . 107
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4.8 A summary of the impedance results of trypsin treated tissue as a func-
tion of strain and frequency (A-D). The magnitude of the impedance
decreases with increasing frequency for all treatment cases, with in-
creasing strain, there is a monotonic increase of the impedance, for all
frequencies. As frequency increases, the difference between the control
and the treatment groups decreases, and ultimately at 1000 Hz the
control (0-hour) falls between the 4 and 24-hour treatment groups for
all strain levels. Also, as the frequency increases the differences be-
tween the two treatment groups became more significant at 1 kHz (4
and 24-hour). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.9 The increased hydration while tissue sGAG content is decreasing sug-
gests damage to the collagen although little or no damage can be de-
tected in the trypsin degradation products released to the media. In
the C- and N-terminal regions, three lysines (87-17C) form crosslinks
between the teliopeptide regions and the helical domain of the type
II collagen. Opening of the collagen network structure may occur
when trypsin cleaves the arginine site (boxed R,) on the C-terminal
of teliopeptide region (15C), without releasing crosslinks to the media
for detection [Figure adapted from [59]]. . . . . . . . . . . . . . . . .111

5.1 An expanded schematic of the handheld version 5.0 electrokinetic sur-
face probe (HHV5.0). The ETS (A) is held in place within a body
by an inner core (B) pressing it against a plastic (torlon) sheath (C),
then a stainless steel tube (D) with a screwed pusher/plunger (E). A
backing plate bonded to the ETS is seated into the inner core (F). A
torlon sheath is placed over the core and ETS, while making electrical
connections from the silver side to the driving electrode wires. These
parts are assembled with a screw from stainless steel tube (D) to a
thread on the plunger (E) to create a sealed environment [Courtesy E.
Q uan [187]]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.2 Dimensions of each layer of ETS material. Sheets of the material for
the various layers are cut to the appropriate size and then laminated
together with appropriate adhesives. The 25.4 am silver sheet for the
excitation electrodes is 18 x 18 mm, the 25.4 pm thick Mylar metallized

(on one surface) is 15 x 15 mm, while the 52 ym thick Kynar film is
punched to a disk of 4.5 mm in diameter. The silver sheet is bonded
to the non-metallized side of the Mylar using a two-part Tycel epoxy,
while the Kynar is bonded to the metallized side of the Mylar with
a manually applied thin film of silver conducting epoxy[Courtesy E.
Q uan [187]]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

LIST OF FIGURES

-16-



17-

5.3 Patterns created for the excitation electrodes on the silver sheet (right),
and sensor electrodes on the Kynar sheet (left) with the Postscript
language. The patterns were converted to negative images (masks)
on two photographic transparencies for photofabrication. The rosette
pattern around the Kynar electrodes are a template for cutting during
the probe assembly stage. . . . . . . . . . . . . . . . . . . . . . . . . 124

5.4 During the probe assembly stage, a 0.33 mm thick crucifix shaped plas-
tic backing plate is attached to the piezo side of the ETS. The backing
plate aligns the ETS onto the probe within a machined recess on the
end of the inner core and, thus ensures it to be flat, while creating
the proper orientation to line up the electrical contacts[Courtesy E.
Q uan [187]]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.5 Schematic of proposed embodiment within a joint cavity left), and a
photograph of an assembled HHV5.0 probe (right). . . . . . . . . . . 129

5.6 Electrode polarity configurations short (A) and extra-long (B) wave-
lengths. The polarity of the four silver chloride electrodes could be
externally connected. When the current is applied in a short wave-
length configuration (A) the current is more confined to the upper
surface of the tissue. By comparison, with a extra-long wavelength
excitation (B), the current can penetrate the full depth, including re-
gions that may not be effected by a tissue degradation. By comparing
the current-generated stress in both configurations a short over long
stress ratio (SR) can be calculated. The SR will decrease if the surface
region is more degraded, allowing spatial localization of degradation
[Adapted from Courtesy E. Quan [187]]. . . . . . . . . . . . . . . . . 132

5.7 Piezo response for each channel at various dynamic amplitudes and
frequencies. As with previous probe designs, the calibration signals
increased linearly with increasing dynamic amplitude and decreased
with increased frequency. . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.8 Differential amplitude from channels 1-2 and channels 3-4 at various
applied current densities and frequencies (A,B). Driving current is in a
short wavelength configuration. The differential output increased with
increasing current density and decreased with increasing frequencies
as previously characterized. The calculated CGS, using calibration
results, showed similar trends to the differential piezo output (C,D).
These results suggest the importance of observing the individual re-
sponses of each electrode separately, rather than pooling electrode re-
sponses. ........ .................................. 134
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5.9 Differential amplitude and CGS response from an extra-long wave-
length configuration (electrodes 1-4) at various applied current densi-
ties and frequencies The results were consistent with previous results
with the HHV4.0 probe. The extra-long wavelength CGS results, as
expected, are larger in magnitude than the short wavelength and de-
creased with increasing frequency. . . . . . . . . . . . . . . . . . . . . 135

A. 1 Tissue growth and composition: sulfated glycosaminoglycan (sGAG)
and total collagen as % of wet weight. Data represent mean±SD (N
= 6) for the initial 3-day cell-polymer constructs, 6-week tissue con-
structs from static flasks, mixed flasks and rotating vessels, and freshly
explanted bovine calf articular cartilage. Pairwise comparison between
the rotating vessels and other experimental groups for sGAG (filled
stars, p < 0.01) and total collagen (open stars, p < 0.05). . . . . . . . 161

A.2 Tissue biomechanics in static and dynamic confined compression: equi-
librium confined-compression modulus, HA, and hydraulic permeabil-
ity, kp, at 30% strain, calculated using the equilibrium modulus and
dynamic stiffness. Data represent mean±SD (N = 3-4) 6-week con-
structs from static flasks, mixed flasks and rotating vessels and bovine
articular cartilage. Pairwise comparison probabilities between the ro-
tating vessels and other experimental groups for sGAG (filled stars, p
< 0.001) and total collagen (open stars, p < 0.05) . . . . . . . . . . . 162

A.3 Model system. Cell-polymer constructs cultured for 3-6 days in spin-
ner flasks (group 1) or for 4-5 weeks in rotating bioreactors (group 2)
were sutured into cartilage rings and cultured for 4-8 weeks in rotating
bioreactors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

A.4 Biomechanical integrity was assessed by adhesive strength of the
construct-explant interface measured as the stress required to fracture
the integration site by a plunger applied to the construct surface during
a push-through test. The sample is placed in the apparatus between an
annular support ring and the main body covered with a fine sandpaper
to ensure mechanical no-slip. The top housing is screwed on the main
body to secure the annulus surrounding the interface. The plunger is
connected to a load cell and the main body is advanced toward to the
engage the interface against the plunger under displacement control. . 166

A.5 A typical measured load-displacement curve as the plunger is forced
through the construct-explant interface in the push-through test. As
a measure of adhesion strength, the force at ultimate failure, Fj, is
normalized to the cross-sectional area of the interface. . . . . . . . . . 167
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A.6 The adhesive strength at construct-explant interface was approxi-
mately 65% higher for composites made with 6 day rather than 5 week
constructs or native cartilage controls. These data indicate that the
time of construct cultivation needs to be optimized to achieve a cer-
tain minimum compressive stiffness, which is important for construct
survival while maintaining sufficient potential for its integration with
the adjacent tissue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

B.1 A scatter plot comparing the apparent cell density (using the Kim et
al. method directly) and the corrected cell density for selected carti-
lage samples from Chapter II. The corrected cell density was calcu-
lated from the difference of separate measurements by adding buffer +
Hoechst Dye 33258 or buffer alone to the samples. The lines indicate
the expected cell density (15.0 x 106 cells/ml). Thus, the apparent cell
density is an overestimate at 33.1±9.9 x 106 cells/ml (n = 56), while
the correction method lowers the values into a more appropriate range
at 18.3±4.5 x 106 cells/ml. . . . . . . . . . . . . . . . . . . . . . . . . 172

B.2 The Hoechst Dye 33258 enhancement (no dye ratio measurement sub-
tracted from the dye measurement) of an adult human articular sam-
ple. The three dimensional plot was created by acquiring spectra at
emission wavelengths from 300-600 nm and the excitation wavelengths
from 300-500 nm. The maximal dye enhancement was approximately
at an excitation of 350 nm and emission of 530 nm as indicated. . . . 173

B.3 The data of Figure B.2 is re-plotted to separate the buffer + Hoechst
dye (filled circles) and the buffer only (open circles) to more closely
examine the spectra at an excitation of 350 nm (left) and emission
of 530 nm (right). The adjusted excitation and emission wavelength
combination (350 nm and 530 nm, respectively) show that in this case
the autofluorescence is close to zero. This contrasts to the regular
wavelength combination (excitation 358 nm and emission 458 nm, re-
spectively), where a significant autofluorescence exists. . . . . . . . . 174

C.1 The original amount of sample in the cryovial (1) is processed through
the pyrex tube (2), the Kimax tube (3), and finally the absorbance is
measured in the microplate (4). The volume are defined as that of the:
V1 original papain digest, VS amount transferred for hydrolyzation,
VT post-titration, Vj3 amount transferred to Kimax tube, VCT amount
of Chloramine-T added, VDAB amount of pDAB added, VS amount
aliqouted to the well of the microplate. . . . . . . . . . . . . . . . . 182
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C.2 The original amount of standard in the cryovial (1) is processed through
the Kimax tube (3), and the absorbance is measured in the microplate
(4). The volume are defined as that of the: stdVI original papain
digest, SdVj amount transferred to Kimax tube, sTdVjT amount of
Chloramine-T added, tdV3DAB amount of pDAB added, SdVj amount

aliqouted to the well of the microplate. . . . . . . . . . . . . . . . . 183
C.3 The standard curve is created by plotting the absorbance values at

560 nm against the known concentrations, where stdC 4 = stdci for the
volumes used: td V'3  1 ml,sIdVTz 0.5 ml, and stdV 3 DAB 0.5 ml. In
this case, the best fit relationship is: Absorbance = -0.01695 [stdC 4]2
+ 0.2626 tdC4 + 0.02153 (R=0.9970). . . . . . . . . . . . . . . . . . 185

C.4 A scatterplot of the the hydroxyproline measured by calorimetric
method correlated with the corresponding value measured by HPLC
(N=60). Samples are from various sites within the human knee and
ankle joints from Chapter II. The two methods are highly correlated
(R2=0.84), and the calorimetric method underestimates with respect
to the HPLC method in the range of 50 - 125 pg HYPRO. . . . . . . 186

C.5 Scatterplot of the HYPRO measured versus its known collagen content.
The lower bound of the sensitivity of the method was determined to
be -100pg/ml of type II collagen or -10pg/ml of HYPRO. The sam-
ples included in the boxed area were insufficiently resolved using this
method. The samples in the range of 100-1000 pg/ml collagen content
were used to establish that the ratio of collagen to HYPRO at ~7.4
for this assay (straight line). . . . . . . . . . . . . . . . . . . . . . . . 187

D.1 Dimensioned drawing of the components of the HHV5.0 probe: (A) the
ETS, (B) inner core, (C) torlon sheath, (D) stainless steel tube, (E)
screwed pusher/plunger, and (F) recess for backing plate in the inner
core [Courtesy E. Quan [187]]. . . . . . . . . . . . . . . . . . . . . . . 188

D.2 First iteration of HHV5.0 ETS electrode patterns. Left - Piezo elec-
trodes; Right - Silver electrodes. The piezo electrodes made contact
with the brass rods through four 0.03 inch diameter circular exten-
sions Figure D.2, and the total active area of each piezo electrode was
0.63 mm'. The subsequent design took advantage of the empty ar-
eas not utilized by making the contact a subportion of the electrode,
increasing the area per electrode. Compare to Figure 5.3. . . . . . . . 189

D.3 A schematic layout of the HHV5.0 and HHV4.0 for design purposes,
used in Table D.1. The areas (A1 and A2 ), and lengths (w,g,wi,l) are
adjustable parameters in electrode design. . . . . . . . . . . . . . . . 191
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E.1 Schematic of modeling and fitting performed to yield material parame-
ters using both CC and CGS data. The CC data are inputs into a 1-D
model which utilizes the uniaxial configuration used during testing.
The probe measurements give data in the form of current-generated
stress. The aspect ratio of the probe electrodes with respect to the
cartilage approximates a two-dimensional geometry where a 2-D multi-
boundary value problem is appropriate. Both techniques are used to
estimate the material properties of cartilage and can be compared. In
addition, the parameters estimated by the CC model can be used as
inputs into the 2-D MBV and the expected CGS can be computed and
compared to the measured CGS . . . . . . . . . . . . . . . . . . . . . 194

E.2 Schematic of the different layers of the ETS structure. The 4mm over-
lap of the Kynar film is used for grounding in the test chamber. . . . 194

E.3 Electrode patterns on the silver (right) and Kynar (left) sides of the
ETS. The inner electrodes on both the silver and Kynar sides are used
for applying current and measuring sensor voltage output, respectively.
The hemispherical outer electrodes on the silver side are used for mea-
suring streaming potentials during CC testing. . . . . . . . . . . . . . 195

E.4 Cross sectional view showing all relevant connections of the upper and
lower parts of the PMMA confining chamber with the ETS mounted
in between. Inset - Top view of the upper part of the PMMA confining
cham ber. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 196

E.5 Cartilage explant process; (A) Femoropatellar groove is exposed. (B)
The groove and underlying bone are removed. (B) The groove is halved
and sliced to yield 2 slices of cartilage from which 13.5 mm discs are
punched using a stainless steel punch. . . . . . . . . . . . . . . . . . . 197

E.6 Figure showing the set up for CC and CGS measurements. The car-
tilage is placed above the probe in the PMMA confining chamber.
A porous platen is placed on top of the sample and the chamber is
filled with 0.15M Trizma/NaCl buffer. The chamber is mounted in
the Dynastat, which imposes strains with a servo controlled actuator
and measures stresses via a load cell placed in contact with the porous
platen. Streaming potentials are measured from a platinum electrode
submerged in the electrolyte bath and grounded to the large Ag/AgCl
electrodes fabricated onto the probe. . . . . . . . . . . . . . . . . . . 199

E.7 Typical piezo calibration plot, showing magnitude and phase for either
electrode (left or right) for lowest and highest frequency (others in
between). Here the calibration is approximately 10 mV/kPa for each
Kynar electrode both pads at all frequencies. . . . . . . . . . . . . . . 200
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E.8 Dependency of model CGS prediction on varying Poisson's ratio from
0.01 to 0.25. The boundary conditions are identical to those from the
actual experiment (reflecting boundary at y = 4.87 mm, 1 electrode
pair, spacing and width=1 mm), the cartilage thickness was set at
2 mm, applied current density of 1 mA/cm2 ; the porosity, k22, ke, and
the aggregate modulus HA were also set at 0.71, 0.94 S/m, 9.0 mV/kPa,
3.0 pm/s)/(MPa/mm), and 0.6 MPa respectively. Varying Poisson's
ratio does not significantly change the predicted CGS with respect to
0.1......... ...................................... 204

E.9 The effect on CGS of varying the aggregate modulus HA, permeability
kp, or electromechanical coupling coefficient k, at an applied current
density frequency of 0.25 Hz (the behavior is similar for other frequen-
cies). Note that increasing HA and ke results in an increase in CGS
magnitude, while increasing kp has the inverse effect. The phase be-
comes more negative for increasing HA and kp, but does not change
significantly for variations in ke. . . . . . . . . . . . . . . . . . . . . . 205

E.10 Plot of displacement and load during a typical experiment. The time
course is as follows: step displacements up to experimental offset stress
with stress relaxation, dynamic displacements, CGS measurements,
and step displacements to complete static CC data acquisition. Values
are negative since positive displacement is defined as tension. . . . . . 205

E.11 Stress strain behavior of cartilage. In this experiment, the experimental
offset strain was 7.61%. HA is calculated by the slope of the curve
around this offset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

E.12 Plot showing the dynamic stiffness and streaming potential versus fre-
quency results for a typical experiment. The free parameters in the
model used to fit the data (dots) are kp, ke, and HA. Ks is a stiffness
assigned to the porous platen which contributes to the overall stiffness
sensed by the load cell. The modulus, HA, shown above is a free pa-
rameter in the fitting, and is different from the value obtained from the
stress strain behavior, because it is fitted allowing for the contribution
of electrokinetic effects rather than the classical equilibrium modulus.
The phase angle data for the streaming potential is not used in the
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Chapter I

Introduction

1.1 Articular Cartilage

The function of organs in the human body are a direct consequence of their inherent

structure. The function of the organ as a whole is more than the sum total of its

individual constituents. Articular cartilage (AC) is a rich and illustrative example.

An understanding of the composition and physical properties of AC are essential to

diagnose disease with any given device to aid in patient care. AC is a dynamic,

living tissue that responds to stimuli in its environment (i.e. external loading, fluid

flow, electric fields), and the cells of cartilage (chondrocytes) are able to maintain its

intricate extracellular matrix (ECM). The scientific data collected over the past 25

years for normal cartilage, supports a hypothesis that a feedback between mechanical

stimulation and chondrocytes must exist to maintain cartilage homeostasis [172].

By gross visualization, during knee arthroscopy or an open joint procedure,

normal AC appears as a homogeneous shiny white substance covering the ends of

articulating bones. It is a thin layer from 1 mm to 6 mm depending on the joint and

particular surface location. In the presence of synovial fluid, AC provides a very low

friction surface that has a coefficient of friction that is less than that of ice on ice [164].

A closer inspection at the light microscopic level reveals AC as a very complex ECM

of macromolecules with chondrocytes embedded within.

Cartilage is a unique organ as it is aneural, alymphatic and avascular. Nutrient

exchange to the chondrocytes proceeds by diffusion from synovial fluid at the articular

surface and from the subchondral bone below. The lack of a blood supply has severely

limits its ability to repair following injury. The absence of innervation means that

pain is transduced from the surrounding bone through unshielded force, or from the

joint capsule in response to an inflammatory stimuli.response.
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The complex structure of AC acts as a load-bearing, shock-absorbing, wear-

resistant material to protect joint surfaces. In addition to a low friction surface,

AC has a high compressive strength critical to pain free joint function. Compressive

loads are distributed over a larger area, while also acting as a damping element during

high impact loading (i.e. jumping). Cartilage is also strong in tensile loading when

subject to shear stresses due to the sliding nature of joint function (i.e. knee joint or

intervertebral disk). Lubrication by the synovial fluid also reduces shear stresses and

helps protect the cartilage from trauma. These macroscopic mechanical properties

are a direct consequence of the composition, as will be elucidated.

1.1.1 Structure

Articular cartilage is mostly water (60 - 80% of total weight) and ECM which com-

prises the bulk of the dry weight [88,148]. The primary structural components of

articular cartilage (AC) ECM are produced and maintained by the chondrocytes

enmeshed within it. Tissue mechanical properties depend on the organization and

structure of macromolecules present in the ECM. The ECM is made up of mainly col-

lagen type II fibrils (along with small amounts of types IX and XI collagen), charged

proteoglycans (PGs), and cells. Collagen and PGs form the framework for carti-

lage that resists applied mechanical forces (Figure 1.1). The collagen forms a dense

crosslinked network with PGs embedded within. Proteoglycans are macromolecules

that contain polyanionic sulfated glycosaminoglycan (sGAG) chains. The negative

fixed charge density of sGAGs is approximately 5.3 mEq/gm dry weight in normal

human femoral head cartilage [32]. Electroneutrality is preserved by a slight excess

of mobile positive ions within the tissue. At the macroscopic level a Donnan osmotic

swelling force develops [55,231], caused by the electrostatic charge repulsion between

the fixed anionic groups that draws water into the ECM, expanding the collagen

network.

The chondrocytes are responsible for PG turnover (synthesis and degradation).
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Figure 1.1: A schematic depicting the three main structural components of carti-

lage: chondrocytes (large round cells), proteoglycans (bottle brush structures), and

collagen fibrils. Tissue mechanical properties depend on the organization, structure

and amount of these macromolecules present in the ECM. Collagen type II fibrils

(along with small amounts of types IX and XI) form the framework for cartilage

as a dense crosslinked network with proteoglycans embedded within. Proteoglycans

contain polyanionic negative fixed charge sulfated glycosaminoglycan (sGAG) chains

that create a large osmotic swelling pressure, drawing water into the ECM, while

expanding (applying tension) the collagen network.

The most abundant PG is aggrecan (molecule - 2 MDa, aggregate ~ 200 MDa),

that has an extended protein core with up to 150 chondroitin sulfate and keratan

sulfate chains attached in a "bottle brush" structure providing a high concentration

of anions (Figure 1.2). When first synthesized, aggrecan is mobile, but quickly binds

to immobile hyaluranon, stabilized by a link protein, creating the high density of fixed

COO- and SO groups at physiologic pH [96].
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Figure 1.2: A schematic of a microscopic view of an aggrecan proteoglycan molecule
showing aggrecan with its associated sGAG chains attached to hyaluronate via a link
protein (adapted from Heinegard et al. [99]). At physiologic pH, the high density of
fixed COO- and SO groups are formed by incorporating newly synthesized aggrecan
onto immobile hyaluranon via a link protein.

Many other soluble factors play an important role in the maintenance process

by participating as mediators of turnover and production of ECM, including ions,

growth factors, hormones, cytokines, proteinases (e.g. matrix metalloproteinases)

and their inhibitors. Numerous factors are required to maintain homostasis. They

can be produced by the chondrocytes themselves or synthesized elsewhere and trans-

ported into the ECM [168]. These factors affect the chondrocytes through cell surface

receptors and their transport through the ECM can be prohibited, resulting in pathol-

ogy [79].

At the ends of articulating joints, the AC is 3 - 4 mm thick, with areas on the

patella as high as (6 - 8 mm). Microscopically mature AC has 3 zones based on the

shape of the chondrocytes and distribution of the type II collagen. The tangential

layer has flat chondrocytes, tangential collagen fibril orientation and a sparse PG

content. The intermediate layer is the thickest, with round chondrocytes. oriented in

vertical columns. Finally, the basal layer has round chondrocytes and contains the
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tidemark that separates the uncalcified (nourished by the synovial fluid) and calcified

cartilage (that gets fed by the episphyseal vessels). It has been reported that no

age changes after maturation are discernible based on histology, including no loss of

AC [206].

Collagen

Collagen makes up the majority of the dry weight (a 50%) of AC [1421, as it is also

the most common structural protein in the body. In cartilage the most abundant form

of collagen (>90%) is type II which acts as the structural meshwork of the ECM with

its associated extensive intermolecular crosslinking via trivalent hydroxylysyl pyridi-

noline residues [58]. The name "collagen" is a generic term for structural molecules

that are rich in glycine, proline and hydroxyproline. Striated fibrils, type 1, 11, and

III have three polypeptide chains wound in a triple helical configuration.

Type II collagen is composed of three left handed tightly interwoven alpha

chains (a(II)1), 300 nm long and 1.5 nm in diameter, each with a repeating amino

acid sequence of Gly-Pro-(Hydroxyproline) [236]. It is this triple helical structure

that enables collagen type II to have a high tensile strength. Hydroxylysine (some

as hydroxylysyl pyridinoline crosslinks) helps type II collagen link together the ECM

network .

Small amounts of collagen type IX help connect the various matrix elements

together [28] while type XI (~3%) regulates the caliber of the fiber [28]. In addition,

collagen types VI and X are also present (<1%). Collagen type VI has a crosslinking

behavior and an increased amount has been reported in OA models [58], while collagen

type X is associated with growth plate cartilage in the hypertrophic zone, and in the

calcified layer of mature cartilage.
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Proteoglycans

The individual aggrecan monomers are attached to a GAG core (hyaluronate), sta-

bilized by link protein (Figure 1.2), with the number depending on the functional

nature of the cartilage [78, 94]. The common PGs that can be found in cartilage

include aggrecan, decorin, fibromodulin, and biglycan and make up about 35% of

dry weight of AC. Aggrecan molecules form large aggregates (~ 200MDa) in carti-

lage [152], forming a hydrogel-like structure that is, in turn, immersed within the

collagen type II fibers.

Aggrecan is the major PG in AC (around 90%) and is composed of two types

of sulfated GAG (sGAG) [57]: chondroitin-6-sulfate, chondroitin-4-sulfate (~ 20,000

MW) and keratan sulfate (~ 5,000 MW). The amount of sGAG attached to each PG

varies depending on the functionality and integrity of the tissue [95]. Chondroitin

sulfate GAGs are chains of repeating disaccharide units that contain highly charged

carboxylate and sulfate groups [151]. The high density of negatively fixed charge

groups helps attract positive ions and create an osmotic swelling pressure to imbibe

water to help maintain a constant pH within the tissue [94, 149]. There are ap-

proximately 100-150 sGAG chains per aggrecan molecule [96], while extremely large

aggregates can bind 400-800 [100].

At the molecular level (Figure 1.2), the main unit of the aggrecan molecule is

a protein core of approximately 300,000 MW. It has 3 associated globular domains:

GI and G2 at the N-terminus, and G3 at the C-terminus. The GAGs are mostly

contained within the G2 to G3 intraglobular domain. Keratan sulfate chains bind, in

general, closer to the G1-G2 region (intraglobular domain). The PG vary in total size

of aggrecan (1-4x 106 MW) due to the varying amount of bound chondroitin sulfate.

Therefore, proteoglycan as the name implies, is a combination of 5% protein and 95%

carbohydrate [26].

Variation in the concentration of PGs has been observed with depth from

the articular surface in immature and mature tissue [15, 226], as well as location
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within a joint. Areas bearing higher stresses have also shown to have a higher PG

content [124]. The charge groups on the GAG chains are ionized at physiologic pH

providing a large osmotic swelling pressure that largely determines the equilibrium

compressive modulus [29].

Chondrocytes

The main function of chondrocytes involves replenishment of macromolecular ECM

constituents for its preservation in its harsh mechanical environment [99]. With re-

spect to the volume of the cartilage, the chondrocytes account for less than 5% and

have a density of -20x 103 cells/mm3 [26,219]. In fully developed tissue the size,

shape and density of the chondrocytes vary with depth proceeding down from the ar-

ticular surface. In general, the size increases, the shape moves from flat and elongated

to spherical with increasing depth, and the density of cells decreases with increasing

depth toward the underlying subchondral bone [219] .

In order to perform their biosynthetic functions, chondrocytes are well

equipped with an extensive endoplasmic reticulum and Golgi apparatus as well as

mitochondria and secretory vacuoles [219]. Chondrocytes are also involved in regu-

lation of ECM assembly and repair by secreting and mediating their assembly [188].

Because of its ability to produce degradating enzymes as well as their inhibitors, the

chondrocytes are believed to participate in the physiologic as well as in the pathologic

degradation of ECM [174].

Chondrocytes have also been shown to be able to adapt to the changes by

biosynthetically responding to chemical, physical, mechanical and electrical stimuli

through their cell receptors [126]. These adaptations, through balancing the home-

ostasis of the ECM, alter integrity to conform with the stimuli. Biomechanical stimuli

of cartilage explants (static or small amplitude dynamic compression) have been found

to influence the rate of aggrecan synthesis and catabolism. This behavior may be due

to changes in cell shape, specific cell-matrix interactions or change the availability
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of growth factors [185]. Investigators are also now beginning to look past the cell

membrane to examine the intracellular changes due to mechanical compression on

mRNA levels [190] and also how cell deformation affects intracellular organelles like

Golgi apparatus or endoplasmic reticulum to fulfill their functions [89].

Water

Water is the most abundant component in AC, and it appears to be compartmental-

ized. Water that exists in the interstices of collagen molecules and fibrils is intrafibril-

lar water with the balance in the extrafibrillar space. The distribution between these

two compartments has been reported to be a function of the fixed charge density and

loading configuration of the tissue [150,154].

The total amount of water present is dependent on the interaction between

the collagen and sGAG components, as the collagen fibril reinforcements in the tissue

prevent full expansion by the sGAGs (due to their fixed charge density) and thus

constrain water intake. This balance is perturbed in OA cartilage. An increase in

water content is observed compared to healthy cartilage, despite an observable reduc-

tion in GAG content. The explanation of this contradiction lies in the assumption

that damage to the collagen network severely impairs its ability to restrain the sGAG

swelling pressure (despite its lower concentration in the tissue), thus the amount of

water increases [153]. One of the hallmarks of pathologic cartilage is its increased

water content.

Matrix Metalloproteinases

Matrix metalloproteinases (MMP) are an important group of zinc-containing enzymes

responsible for the breakdown of ECM components such as collagen and PGs in

normal embryogenesis and remodeling as well as in many disease processes like cancer,

osteoporosis and arthritis [205,245]. These enzymes are almost universally distributed

among mesenchymal cells of all types, and in some epithelial and endothelial cells as
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well. The collagenase-1 or MMP-1 was discovered in 1962 by Gross and Lapiere [911,
in the tail of a metamorphosing tadpole and played an integral role in the normal

resorption of the surrounding connective tissue. The family of MMPs can be divided

into 3 subclasses: collagenases (MMP-1, MMP-8, and MMP-13), gelatinases (MMP-2

and MMP-9), and stromelysins [246].

They range in size from 28 kDa to 92 kDa, while their cDNA sequences show

considerable homology with each other, i.e. MMP-3 has a 56% homology with MMP-

1 [128]. They are secreted as zymogens that lose pro-peptides of about 10 kDa upon

activation. Latency is due to the presence of a conserved cysteine that binds to zinc

at the active center. Activation results from treatment with trypsin (or other pro-

teinases) or organomercurials (i.e. aminophenylmercuric acetate, APMA) which react

with the cysteine. Expression is upregulated through the AP-1 regulatory elements

of the gene. Structural integrity is maintained by octahedral binding of calcium ions

and zinc is required for catalysis [205]. Each MMP has the ability to cleave one or

more components of the ECM and can be inhibited by the family of tissue inhibitor

of metalloproteinases (TIMP1-4). TIMP-1 is a 28 kDa protein with a varied extent

of glycosylation. It has two distinct domains, that can be dissociated by EDTA at

acid pH or by SDS-PAGE and has been implicated in the activation of a number of

the members of the MMP family [212].

The collagenase molecule can divided into several distinct structural domains:

a signal peptide, a pro-peptide domain that is lost at activation and contains a cysteine

residue that is involved in activation, a catalytic domain that separated from the

putative zinc binding domain by a fibronectin-like domain, a type V collagen domain

of unknown origin, and a C-terminal hemopexin-like domain. The hemopexin-like

domain determines substrate binding. In MMP-1, it can be removed by autolysis,

leaving a 19 kDa catalytically active domain that can digest proteins, but is inefficient

in attacking collagen [43]. In contrast, in MMP-13 this domain is stability bound to

the catalytic domain.
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MMP-1 cleaves the three helical chains of homotrimeric collagen molecules at

specific sites. A helical trimeric fragment of 3/4 (from the N-terminus) and 1/4 sizes

are found after digestion of type II collagen.

The MMPs are regulated at the level of gene transcription, i.e. there is no

intracellular storage, thus they are synthesized and immediately released into the ma-

trix. It is known that factors affecting cell shape and the actin cytoskeleton induce

MMP gene expression [75]. Evidence now exists that factors like IL-10 or TNF-a

stimulate MMP activity in cartilage and may play a role in the pathological destruc-

tion of cartilage in disease such as RA. These factors further predispose the cartilage

to damage by decreasing synthesis of the ECM components [128].

Extensive in vivo studies on the activities of MMPs have not been undertaken

since they are only present in tissue that are undergoing remodeling or breakdown and

in very small amounts (1-10 pg/(g wet tissue)), and are difficult to extract. In vitro

information is abundant, but whether these results hold true in living tissue has yet to

be shown. The method of activation in vivo is also not well defined, but could involve

other proteinases like plasmin, while stromelysin is required for complete activation

of MMPs [85].

MMPs have been shown to be present when cartilage undergoes degenera-

tion [212], thus the pathogenesis of osteoarthritis (OA) and the destruction of AC

could be due to the imbalance of MMP and TIMP [49]. The amount of TIMP can

be less than 50% that of normal cartilage when OA is present [49].

In a study of the Hartley guinea pig model of spontaneous arthritis, it was

found that the presence of active MMP-1 and MMP-13 at the lesion site is consistent

with an important role for these enzymes in cartilage degradation of OA in this

species [107]. The patterns of MMP-1 and MMP-13 expression varied with the age

of the animal (at 2 months, no OA, and at 12 months, OA was diagnosed) and the

compartment of the knee (lateral greater than medial), but were localized to the ECM

around the lesion sites, coincident with generation of the 1/4 and 3/4 collagen cleavage
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products. This study was unable to distinguish whether MMP expression at 2 months

was due to normal cartilage remodeling with growth or an early manifestation of OA.

The mainly type II collagen of cartilage is remodeled by three members of

the MMP family, collagenase-1 (MMP-1), collagenase-2 (MMP-8), and collagenase-3

(MMP-13). MMP-1 and MMP-13 may contribute to the OA or RA disease progres-

sion since they are found to be induced in these tissues at higher levels in disease

than normal humans [17, 213, 235]. It was found that the time course of MMP-13

induction in rabbit (this species has a distinct genetic homologue to the human) was

more rapid and transient than that of MMP-1 [235], while MMP-13 was found to

turn over type II collagen 10 times faster than MMP-1 in humans [167]. In addition,

in human tissue, TNF-a stimulated all three interstitial collagenases, while retinoic

acid only increased the expression MMP-8 [213]. Equine chondrocytes have also been

shown to to respond to IL-1 by increasing MMP-13, which showed 92% homology with

the human cDNA sequences [34]. MMP-1 activity has also been found, along with

MMP-3, in the granulation tissue associated with inflammation in lumber disk herni-

ation [155]. MMP-13 has been showed that it can cleave aggrecan at the interglobular

domain at the same site as other MMPs and also a novel site (..VKP 384-VFE..) [66].

It has also been shown that the initial clip of type II collagen by MMP-13

is followed by a second cleavage, three amino acid carboxy-terminal to the primary

cleavage site [17,167]. The second clip is caused by MMP-3 [233], and a third cleavage

site was also identified by N-terminal sequencing, three residues carboxy-terminal

to the second cleavage site. Vankemmelbeke et al. [233] also clearly demonstrated

through staining of cartilage from patients with OA with neoepitope antibodies, that

the type II cartilage degradation started at the articular surface and extended into

the middle or deep zones with increasing depth into the cartilage. In addition to this

depth dependence, recently it has been shown that at the immunohistological level, a

direct correlation between the grade of cartilage degradation and the intensity of the

immunoreaction can be found [241].
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Greenwald et al. [86] recently suggested in studies of bone that tetracycline

analogs could be used against pathologically excessive MMP-8 and/or MMP-13 ac-

tivity, without affecting the levels of MMP-1 that are needed for tissue remodeling.

This may be a sign that a similar approach can be applied to control cartilage damage

with age, like with OA.

1.1.2 Function

As a consequence of the composition of cartilage, measurable electromechanical prop-

erties are exhibited (an area of research referred to as cartilage electromechanics). To

consider modeling and analysis of AC behavior, it can be conceptualized as a compos-

ite material of a fibrous mesh (collagen) embedded in a highly hydrated charged gel

of PGs. Resistance to tension and shear loading is provided by the collagen, whereas

the high swelling pressure of the PGs enables cartilage to resist compressive loading.

The engineering properties of cartilage, i.e. compressive and tensile strength, have

been assessed in many different system. Extraction of PGs has produced a marked

decrease in the tissue's equilibrium compressive modulus without effects the tensile

stiffness, while selective degradation of the collagen network predominantly affect

tensile properties of the tissue [121].

The dynamic behavior of cartilage is the result of interactions between the

solid ECM components and the interstitial fluid. Cartilage is most successfully mod-

eled as a poroelastic medium. Such a medium is a fluid-saturated porous material in

which viscous effects are predominantly due to frictional interactions between the fluid

and solid phases. The literature documents a rich history of mathematical models

to describe this physical behavior of cartilage. Early work was begun by Biot almost

fifty years ago [18,19] in the context of geophysics. Using an mixture-theory, where

material properties and constitutive relations are derived separately for the fluid and

solid phases, a biphasic theory describing the behavior of cartilage was developed by

Mow and co-workers [140,171]. These models fluid flow can be related to mechanical
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properties like stiffness [170,171]. Interest today remains high, with continued efforts

to produce more complex non-linear models for use with today's powerful compu-

tational capacity to more realistically model high strain behavior and the effects of

non-homogeneous material properties on experimental measurements [134].

Besides having mechanical properties, cartilage exhibits electrical properties

that are coupled with mechanical stresses [90]. It has been previously shown that

these electrical interactions play a significant role in cartilage physiology [9,88,90].

This electromechanical transduction effect is a property of the cartilage composi-

tion, specifically the PGs [67,133] and two dual phenomena are observed: streaming

potential (SP) and current generated stress (CGS) [67,68].

Streaming Potential

As the hydrated ECM of cartilage is mechanically deformed, a flow of interstitial fluid

relative to the fixed charge groups of the solid matrix is created. Entrained positive

ions are separated from the negatively charged matrix macromolecules, giving rise to

a voltage gradient or streaming potential in the direction of fluid flow [69,90,133]. It

has been observed that this electromechanical transduction property changes in a very

sensitive manner to matrix alterations [67-69,103]. Frank et al. [68] used cylindrical

disks of adult bovine femoropatellar groove cartilage that were uniaxially compressed

between two silver chloride electrodes (Figure 1.3) where small-amplitude sinusoidal

compression (-1% strain) superimposed on a 10-20% static offset compression pro-

duced a sinusoidal potential at the same frequency (in the 0.001-20 Hz range). The

amplitude and phase varied with frequency in a manner consistent with an electroki-

netic mechanism [69,133]. These studies demonstrated that these electromechanical

parameters sensitively changed following the loss of PGs from the cartilage, while

mechanical properties alone (i.e. stiffness) were less sensitive to matrix changes.
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Figure 1.3: Mechanical deformations applied through the porous electrode to the
ECM at the cartilage surface results in fluid flow and movement of entrained (+)
counterions relative to the fixed charged groups found on PGs. This charge separation
produces an electric field antiparallel to fluid flow and the resulting open circuit
voltage is called the streaming potential.

Current-Generated Stress (CGS)

The converse electrokinetic effect, known as current-generated stress [69], results when

application of current causes an electrophoretic motion of the negatively charged fixed

ECM molecules (PGs) towards the positive electrode and an electroosmotic motion of

the mobile ions of the fluid phase towards the negative electrode (Figure 1.4). These

combined effects produce a measurable bulk mechanical stress at the tissue surface

that can be detected by an overlying stress sensor. The altered state of the cartilage

ECM caused by loss of PG (fixed charge) will change the CGS response, thus the

difference between normal and degraded tissue can thus be detected [15].

1.2 Cartilage Diagnostics

Osteoarthritis (OA) is now generally regarded as a group of overlapping "OA dis-

eases" at a joint surface with a possible imbalance between reparative and degrada-
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Figure 1.4: Applied current density produces coupled fluid and solid mechanical ef-
fects. (1) Electrophoretic force on matrix fixed charged groups (toward + electrode)
and (2) Electroosmotic flow of interstitial fluid (toward - electrode).

tive features of cartilage homeostasis [51]. Each disease may have a different etiology,

but they all have a similar biologic, morphologic and clinical outcomes. OA has

become the most prevalent disease of the joint, with 70% of the population above

the age 65 having radiographic evidence. It is a disease that effects the entire joint,

not just the cartilage. The end stage is cartilage degeneration with fibrillation, fis-

sures, ulceration, and full thickness loss of the joint surface. Establishing the link

between macroscopic electromechanical properties, biochemical composition and ul-

trastructural organization in cartilage will help elucidate the relationship between
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joint loading and progression of OA. This is particularly important in early stages

when intervention may be still possible [129]. Having diagnostic tools to assess the

physical properties of cartilage during the degenerative process would facilitate lon-

gitudinal studies evaluating therapeutic interventions. It might help clinicians better

classify OA. Once baseline bulk material properties are characterized with age, the

effects of mechanical stimuli on the cellular response can be assessed. These forces

significantly influence the biosynthetic activity of chondrocytes as they maintain an

ECM to withstand daily activities.

One of the early events in OA at a molecular level, is alteration of the carti-

lage ECM, and the loss of the highly charged macromolecules (PGs) from the matrix.

These changes often occur in localized regions of cartilage along the joint surface and

to nonuniform depth. Investigators have hypothesized that such molecular changes

should change the tissue's material properties. However, there are few direct quanti-

tative studies of the material properties of human cartilage in vivo.

Traumatic injuries can cause focal defects in cartilage adjacent to otherwise

normal cartilage. Clinical repair approaches include debridement, microfracture, os-

teochondral plug resurfacing, and chondrocyte transplantation. During surgical pro-

cedures, and the subsequent follow-up, surgeons need to assess the state and func-

tionality of the repair tissue. Often remodeling leads to a fibrocartilage repair tissue

which appears cartilage-like but has poor physical properties that ultimately lead to

its failure.

In addition, there is a great need for methods to assess the efficacy of ther-

apeutic interventions developed to prevent cartilage destruction [35] or the patency

of cartilage repair tissue. Presently, the assessment of cartilage repair is based on

gross and microscopic morphological features. Detailed studies have established that

the repair tissue is generally of good quality in the short term, but fails with time.

At present, this behavior is difficult to explain. The literature shows only a minimal

molecular characterization of the types of the cartilage repair tissue. The more that
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is understand of the repair process, the higher the chance to produce the optimal

outcome; a repair tissue integrated in the native cartilage and biomechanically func-

tional for many years. To assess the quality of the repair tissue, researchers must

attempt to compare as many properties as completely as possible to native tissue

such as biochemical (PG content, molecular size, and sulfation; collagen content and

typing), morphologic (histologic, histochemical, immunohistochemical, and in situ

hybridization), and biomechanical.

In particular, a comparison of the repair tissue's electromechanical properties

to that of native tissue would be helpful. This is probably due to the absence of a

non-destructive means of assessing cartilage electromechanical properties in the clinic.

Such technology could be used not only to compare repair tissue properties to those

of native cartilage, but to determine how the properties change over time as repair

succeeds or fails.

Since the destruction of cartilage during progressive OA, and the failure of

cartilage repair tissue is ultimately linked to an inability to achieve (or maintain)

functional biomechanical properties, it becomes critically important to have assess-

ment tools for physical properties before, during, and after surgery.

Current diagnostic criteria and methods for monitoring OA are based on exter-

nal physical examination and x-rays: However, only x-rays examine cartilage status

and can reveal bone and then joint involvement only in the later stages of disease [169].

There is a major need for early quantitative assessment of degenerative changes in

cartilage. Effort to assess OA progress by magnetic resonance imaging (MRI) [93],

and improved methods for arthroscopic evaluation of cartilage [52] are ongoing. But

yet, clinical MRI approaches do not have the resolution to show such early cartilage

changes [165] and do not measure physical properties. Arthroscopy is performed vi-

sually without quantitative biophysical methods. Ultimately, arthroscopic methods,

give a visual picture of the cartilage that may or may not correlate with its physical

properties.
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Measurement of biophysical properties of cartilage provide a functional mea-

sure of cartilage degradation. It might help to determine whether treatment or altered

activity could reverse the early pathological changes of OA [198].

Cartilage exhibits electromechanical transduction properties. We have ob-

served that they change in a very sensitive manner to matrix alterations [22, 67-69,

103]. These studies show that alterations and/or loss of tissue PGs cause changes

in tissue electromechanical properties. While PG loss also affected cartilage biome-

chanical properties, the changes in electromechanical behavior were often far more

dramatic and were detected with greater sensitivity. These results provided the basis

for an in vivo surface electromechanical spectroscopic approach to detect cartilage

degeneration.

1.3 Osteoarthritis

Osteoarthritis (OA) is the most common disease that directly affects the everyday

mobility and quality of life. It mainly strikes in the last quarter of life. It attacks

the tissue of the synovial joints (e.g., knees, hips, and hands) and is characterized

by pain and accompanied by limitations in joint motion. It can progress to end-

stage, when patients can no longer walk pain-free. Although the disease itself is not

a significant source of mortality, it is a great cause of physical suffering. In the US

alone, estimates that the number of people suffering from OA will reach 68 million

by the year 2010 [130].

Osteoarthritis describes a group of joint disorders that lead to the destabiliza-

tion of normal AC function. Degradation and synthesis by chondrocytes of ECM are

uncoupled [96]. The initiation of OA may be a result of a variety of factors, including

genetic, metabolic, developmental, and traumatic. OA is diagnosed clinically with

sharp stabbing joint pain, tenderness, and inflammation leading to limitations of joint

movement [169]. At the onset of OA there is loss of PG from the ECM [5,94]. As a

result, knowledge of the electromechanical properties of cartilage may be a good way
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of diagnosing the state of diseased tissue.

1.3.1 Epidemiology

Evidence of OA has been found even before humans existed, with a natural history

that dates back to fossils of ancient mammalian species [63]. In the early 1700s,

when English physician William Herberden began carefully documenting lesions he

observed in his patient's joints, OA was still not understood. During the mid-20th

century, scientists began to classify the different causes of joint pain: hypertrophic

(degenerative joint disease), atrophic (rheumatoid arthritis), and OA [63]. It is impor-

tant to separate rheumatoid arthritis (RA) from OA, since the pathology is different,

RA is caused by inflammation in the joint cavity as a result of immunological activity.

However, the initial symptoms of RA are hard to distinguish from OA [158].

Epidemiological studies have determined that OA does not discriminate by

race, gender or geography. OA is most prevalent in age groups above 65 with a

higher incidence among women than men over 50 [62]. It increases with age in both

sexes. Degeneration of the joint tissue can be seen in individuals as young as 20 [169].

In addition, individuals having undergone major joint surgeries or experiencing in-

flammatory joint diseases are more likely to experience OA*. Other risk factors for OA

include obesity, joint injury, or a genetic predisposition for OA [131]. Interestingly,

OA occurs in certain joints at a much higher rate than others; OA is often seen in

knees and hips, but rarely in ankles or elbows [106].

1.3.2 Pathogenesis

Two major pathways of OA progression can be observed through examination of dis-

eased tissue. The first is erosion of the cartilage surface [160]. The initial phases may

be confined focally but eventually diffuse to other areas on the surface. Mechanical

*This has a major impact on the validity of proceeding with tramautic surgeries to repair focal
defects in young patients.
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stresses may induce additional pitting and fissures creating a roughened surface con-

taining ulcerations. Eventually deterioration takes place down to the bone [169]. The

subchondral bone loses its convex shape, increasing its thickness to a maximal joint

where the most cartilage has been lost. The proliferation of cartilage and bony ma-

terial called osteophytes occurs at the joint periphery [3]. This overgrowth of tissue

may provide some increased joint stability.

There has been much speculation that there is a mechanical and biochem-

ical interaction that initiates the disease. Some possibilities include the release of

proteolytic and collagenolytic enzymes from cartilage cells in response to mechani-

cal stimuli which degraded the matrix [169]. Others believe there is a biochemical

or immunological abnormality that elicits degradation [37]. Another speculation is

that the balance between tissue repair and degeneration is disrupted by mechanical

or biornechanical abnormalities. By studying the physiology of the tissue from the

molecular level to the organ level, OA progression can be monitored in order to gain

understanding the disease process.

1.3.3 Mechanical Changes

The degeneration of cartilage during OA leads to surface fibrillation, deep zone fissur-

ing, tissue erosion and concomitant changes in the material properties of the tissue:

decreased tensile strength, compressive equilibrium modulus [211] and increased hy-

draulic permeability [172]. Increased swelling is also an early event that is normally

prevented type IX collagen linking of fibrils [131]. Interestingly, it has been shown that

tissue directly adjacent to a visibly degraded area of cartilage also had a decreased

tensile stiffness and failure stress that was similar to the degenerated tissue [2,121].

This suggests that morphology and histological methods of assessing cartilage may

not be sufficient.
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1.3.4 Biochemical Composition Changes

During OA progression, distinct biochemical changes occur in the cartilage, as first

described by Hirsch over 50 years ago [102]. These changes occur throughout the

affected joint and have been detected in tissue that may still appeared grossly nor-

mal [234].

The PG content of OA cartilage is substantially lower than normal [115,143]

and the degree of loss has been shown to correlate with the severity of the dis-

ease [143]. Histologic staining of OA tissue has demonstrated that the PG loss is

nonuniform, with depth into the tissue, beginning at the articular surface and pro-

ceeding progressively inward [116,161]. The PGs which remain in the OA cartilage

may have a number of qualitative abnormalities, including decreased aggregate for-

mation, decreased size of both PG aggregates and aggrecan subunits, and increased

extractability from the tissue. Despite the decreased PG content, OA tissue has a

higher water content than normal [145,211]. This could result from damage to the

collagen network, which normally opposes the high swelling forces developed by the

PGs [147].

1.3.5 Diagnosis

Efforts are being made to diagnose the disease progression at its earliest stages in order

to apply treatment before further damage can occur. Initial diagnosis of OA begins

with patients complaining of pain and stiffness in their joints. Further diagnosis can

be made using the current gold standard of x-ray radiography. A grading scheme to

characterize the damage is utilized, the most commonly used scale of radiographic

evidence is the Kellgran and Lawrence method [120]. The scale is numbered from 0

to 4 with 0 being no visible defects and 4 showing visible OA.

Radiographic diagnostic criteria has three main shortcomings: the lack sen-

sitivity, the emphasis is on changes to the bone, and reading the films is subjective

with poor reproducibility [25, 51]. Studies have shown that after 2 years of treat-
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ment with NSAIDS, the radiographs showed no significant changes [53]. It is possible

that the sensitivity is simply too low to detect small treatment effects. The limita-

tions of radiographs include: non-standard and shifting of joint positions, the x-ray

beam alignment, radiographic magnification not taken into account and landmarks

for measurement can be subject to individual interpretation. These defects have been

corrected in current clinical trials. However, x-rays can not visualize cartilage. They

measure the space between boney surfaces that could be filled with cartilage and

thus, are an indirect measure of the absence of cartilage or a failure of compressive

resistance of existing cartilage.

Laboratory methods such as a synovial fluid extraction or a histological ex-

amination (Mankin scale) can be used to further investigate the progression of dis-

ease [143]. Unfortunately, synovial fluid extraction can only rule out other possible

causes for the pain, such as RA. The Mankin scale categorizes the extent of disease

progression in tissue via histology but requires a destructive biopsy. Furthermore,

histological examination occurs only where tissue was removed.

Other possible methods include MRI, sonography, scintography, and biochem-

ical markers, but they too have limitations in detecting changes in cartilage. New

techniques that nondestructively test for OA and its precursors are the driving inter-

ests for this study. MRI concentrates on biochemical composition studies that could

yield measures of the sGAG and collagen concentrations [92], but at this stage the

cost is very high and the fixed charge density too low for adequate resolution.

1.3.6 Arthroscopy

Arthroscopy has become an important technique in the diagnosis and therapy of knee

OA [4]. A 4 mm diameter arthroscope and/or surgical instruments along with a light

source is inserted into the joint capsule, allowing direct visualization of the cartilage

surfaces, ligaments, and menisci. The complication rate and morbidity associated

with the procedure are so low, that arthroscopy is increasingly being performed on
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joints that are only minimally symptomatic as an exploratory procedure [117]. It can

detect before degenerative changes are evident by radiography [64]. The recent advent

of a 1.8 mm diameter needle arthroscope is transforming arthroscopic examination

from a hospital-based procedure to a routine office procedure [114]. During a typical

diagnostic arthroscopic examination of the knee, the orthopedic surgeon can inspect

the AC surface for gross changes. There is currently a commercial arthroscopy blunt

probe to subjectively assess the degree of softening (known as "grade I chondromala-

cia") that can result prior to x-ray changes [220].

1.3.7 Treatment

Currently there are no treatments that have shown to cure, prevent or even slow the

progression of human OA. Anti-inflammatory or analgesic medications give temporary

relief from pain. In addition, a regimen of rest and a change in one's pattern of physical

activity can sometimes lessen pain. The methods currently available for therapy of

OA (physical therapy, medication, and surgery) are palliative, serving to alleviate

symptoms and improve patients' mobility without actually affecting the progression

of the disease process.

Considerable research is being done to develop medical techniques and drugs

that could improve patient outcome. Assessment of the treatment effects must be

made in order to evaluate its efficacy. Hence, innovative diagnostic tools, must be

delivered to give a more accurate assessment of tissue integrity. In addition, early

detection of OA is critical if drugs are developed to halt progression of OA.

1.4 Repair of Focal Defects

The repair of cartilage focal defects has received a huge amount of attention since

the publication of the 1994 by Brittberg et al. [24] in the New England Journal of
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Medicinet. The enormous amount of research into cartilage repair is demonstrated by

the extensive literature developed over the past decade. This interest is well warranted

since repair of defects should reduce the future need for surgical procedures such as

total knee arthroplasty. For the patient, repair means significantly improving their

quality of life by increasing mobility and reducing pain. Ultimately, in today's world

of cost conscience managed care through health maintenance organizations, healing

cartilage damage could lower the $55 billion that the United States spends yearly on

arthritis.

Brittberg et al.'s work centered on the transplantation of cartilage cells (chon-

drocytes) to a site of focal damage after these cells were expanded in culture. Their

report of positive results has re-energized the public interest into the repair of focal

lesions in cartilage and possibly preventing OA, topics that have been studied for

centuries.

As far back as 1743, Hunter [108] boldly stated "from Hippocrates to the

present age it is universally allowed that ulcerated cartilage ... once destroyed, it

is not repaired". This is especially a troublesome thought for a young person with

a painful focal cartilage lesion resulting from a traumatic injury. This patient may

have to endure the pain of this focal lesion progressing to OA for the better part of

their live. Luckily, Hunter's observation is not accepted as dogma. The debate as

to whether cartilage can be repaired still rages today, but with increasingly better

prospects for a solution.

The assessment of the quality of repair tissue has been based on gross and

microscopic morphological features, establishing that it is generally good in the short

term, but fails with time. The comparison of the repair tissue's electromechanical

properties to native tissue could provide a non-destructive means of assessing the

functionality of repair tissue with respect to adjacent, unaffected, cartilage.

tFor a more complete discussion see Appendix A.
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1.5 In Vivo Human Cartilage Probes

Early degradative changes in human OA cartilage include increased fibrillation of col-

lagen with an accompanying increase in tissue water content (swelling) [147], as well

as loss of aggrecan. These matrix changes occur initially in the superficial zone and

nonuniformly with depth from the articular surface [148]. The resulting changes in

cartilage material properties in animal models of OA have been well documented in

studies in vitro (e.g., see [172] for review). However, there are fewer studies of physi-

cal changes in human OA cartilage. Knowledge of such changes at the molecular and

tissue level could help provide a differential diagnostic measurement. The tracking

of in vivo cartilage physical properties would also aid in longitudinal studies of OA

progression, allowing pharmaceutical companies to evaluate the efficacy of a phar-

macological intervention. In addition, in situ physical diagnostics could provide an

objective measurement of the quality of repair cartilage, as tissue engineered cartilage

develops toward a clinical reality.

To date, there have been few direct quantitative studies of these material

properties of human cartilage in vivo using hand-held arthroscopic-like probes. In

one study, the structural properties of cartilage were measured in 25 autopsy spec-

imens and during 35 open procedures using load deformation curves in a study by

Tkaczuk [224]. The cartilage was classified as healthy or diseased based on x-ray

examination and the specimens were on the lateral femoral condyle surface. The

measurements were taken with a blunt probe connected firmly to the joint with a

custom fixing device, and the thickness assessed as distance between the surface and

the point where probe pierced the subchondral bone in a test to failure. He found

that there was an age dependence on the stiffness of the cartilage in both sources,

but that there were no significant differences found in the stiffness between healthy

and diseased cartilage. Any differences that existed may have been masked by the

cartilage thickness evaluation in this study.

After many years of experience with a blunt arthroscopic probe to subjectively
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assess the integrity of cartilage from the medial facet of the patella, Dashefsky [48]

decided to design a more objective measurement apparatus. He used an instrumented

indenter attached to a force transducer to qualitatively assess the mechanical prop-

erties of chondromalacia of patellar cartilage during arthroscopy. In a group of 107

knees with "patellofemoral symptoms and signs", 90% were evaluated as "soft;" but

over half of these "soft" cartilages showed no detectable visual changes of the articular

surface of the patella. Interestingly, of 58 patients with no signs or symptoms of the

patella, 50% showed softening of the cartilage. These results suggest that physical

property changes may not correlate with the patients symptoms until an irreversible

threshold of damage occurs with the chronic wear and tear of cartilage.

More recently, Lyyra et al. [136], developed an arthroscopic indenter instru-

mented with strain gauges for measurement of tissue stiffness in vivo (Artscan 1000,

Artscan Medical Innovations, Helsinki, Finland). A constant deformation is imposed

on the cartilage by the indenter, and the "instantaneous" load response during a 1-

second measurement interval is used to evaluate the tissue stiffness before appreciable

stress relaxation has occurred. In order to compute an effective dynamic modulus,

an independent measurement of tissue thickness is necessary, as with any indentation

technique. The device was able to detect differences in the stiffness of cartilage in

different regions of normal knees. Interestingly, however, the indenter detected only

30-40% decreases in cartilage stiffness in the most severely affected regions of the

patellar cartilage of patients with known chondromalacia [125].

From the above studies, it is important to note that early OA cartilage may

appear normal by visual inspection. Given that arthroscopy is one of the most com-

mon orthopedic procedures [38], visual inspection alone during arthroscopy may not

be sufficient for diagnostic purposes, suggesting the need for quantitative approaches.

In addition, these studies suggest that purely mechanical tests alone (e.g., indentation

tests) may not provide a sufficiently sensitive index of early degenerative changes in

cartilage. This, in part, has motivated the incorporation of cartilage's electromechan-
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ical transduction properties into a surface diagnostic probe [16].

1.6 Electromechanical Surface Spectroscopy

This thesis focuses on a new technology for nondestructive measurement of electri-

cal and mechanical properties of AC via electrodes placed on the tissue surface. The

long term goal of this research is to enable detection of early stages of cartilage degra-

dation based on the sensitivity of cartilage electromechanical properties to damage

of the aggrecan-collagen network and loss of the highly charged aggrecan molecules.

Ultimately, this technique may find application in early in vivo detection of cartilage

degradation via arthroscopy.

Surface spectroscopy describes a technique in which a sinusoidal current den-

sity is applied to the surface of a medium, and the resultant response is measured to

yield information about the properties of the medium. Frank et al. [68], utilized a uni-

axial configuration in which the current was applied via electrodes on opposite ends

of a excised cartilage plug. Sachs et al. [199] later completed a mathematical model

showing that two silver electrodes placed on the same surface side of cartilage could

induce a measurable mechanical response when current is applied in this potentially

non-destructive arrangement [199, 200] (Figure 1.5). In parallel, Salant et al. [202]

and later Berkenblit et al. [13] improved on this design by designing a configuration

in which current could be applied to a single surface of cartilage and the resultant

induced mechanical stress could be measured [202].

This work was motivated by advances in dielectric spectroscopy, where surface

excitations applied via an interdigitated array of many electrodes yield information

about the bulk material properties of dielectric homogeneous materials [251]. By

applying a spatially and temporally periodic sinusoidal signal, a simultaneous electri-

cal or mechanical response can be measured at the same surface. This technique is

also denoted "spectroscopy," since measurements are taken over a range of imposed

frequencies.
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Figure 1.5: Surface probe consisting of excitation electrode array and mechanical

surface stress sensor mounted on cartilage. Theoretical analysis has shown that cur-

rent-generated stress can be measured by applying a standing wave of current to the

cartilage surface of an intact joint, allowing for a non-destructive measurement. The

current-generated stress in the bulk tissue is complex but related to the intra-tissue

current density profile shown by the arrows [199]. This field can have an independently

imposed temporal frequency and spatial wavelength (A). The penetration depth of

the measurement is proportional to the spatial wavelength (A) and also increases with

decreasing frequency [199](Courtesy S. Berkenblit [13]).

The general technique has also been termed "imposed w-k sensing" [162,251]

because the medium is excited at a specified temporal (angular) frequency, w, by an

electrode structure having a spatial period A = 27r/k determined by the electrode

geometry and hence a dominant wavenumber k. Its advantages are that it can be

made nondestructively (an important requirement for in vivo measurement of carti-

lage properties) and the electric fields generated decay exponentially into the material,

with a penetration depth on the order of A/5 to A/3 [237,251]. Thus, different depths

of the material may be tested by varying the imposed spatial wavelength, and spatial

inhomogeneities in material properties can be detected by making surface measure-

ments using a series of imposed spatial wavelengths (spatial localization). The depth

to which the current penetrates into the medium is proportional to the effective spatial

wavelength, which is equal to twice the center-to-center distance between adjacent

electrodes. By changing the imposed spatial wavelength (by having independently
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addressable electrodes), various depths of the medium can be preferentially assessed.

The spectrometer response depends in a sensitive manner on molecular level

changes in the cartilage matrix similar to changes that occur during the earliest phases

of OA degeneration [16, 69, 142, 148]. These results provide the fundamental basis

for the in vivo surface electromechanical spectroscopic approach to detect cartilage

degeneration.

1.7 Previous Work on the Electrokinetic Surface Probe

1.7.1 Probe Sensitivity to Cartilage Fixed Charge Density

The high negative fixed charge density of cartilage is associated with the aggrecan

molecules of the ECM. The GAG chains attached to aggrecan core protein contain

many sulfate and carboxyl groups that are ionized at physiologic pH [881. These

charge groups give rise to the associated electromechanical and physiochemical prop-

erties of the tissue under physiological loading conditions [88, 148]. The loss of ag-

grecan is one of the hallmarks of early cartilage degeneration. Thus, the ability to

sensitively measure changes in matrix aggrecan and corresponding changes in physi-

cal properties is an important feature for a useful diagnostic probe. The sensitivity

of the electromechanical surface probe to changes in cartilage fixed charge density by

pH-induced alteration of the ionization state of sGAG charge groups has previously

been shown.

These tests were motivated by previous studies of streaming potential and

current-generated stress measured on individual disks of cartilage in uniaxial con-

fined compression in vitro. In those studies, a decrease in bath pH, which neutralized

the sGAG negative charge groups in situ, caused a concomitant decrease in the elec-

trokinetic responses [69,87]. The effects of bath pH on adult bovine cartilage fixed

charge density is shown in Figure 1.6(C) [70]. As with human cartilage [148], lowering

bath pH below 7 leads to a decrease in fixed charge density as sGAG (and protein)
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carboxyl groups become increasingly neutralized. At the isoelectic pH of cartilage,

typically in the range pH 2.4-2.8 [88], there is zero net charge; below the isoelectric

pH, there is increasing net positive charge associated predominantly with the ionized

amino groups of collagens, as sulfate and carboxyl groups are further neutralized.

The effect of bath pH on the current-generated stress induced by the sur-

face probe configuration of Figure 1.5 is shown in Figure 1.6(A,B) [16]. As bath pH

is lowered below pH 7, the stress amplitude decreased substantially to a minimum

value in range pH 2.4-2.8 (Figure 1.6(A)). This minimum decreased monotonically

with decreasing frequency (increasing penetration depth of the poroelastic deforma-

tion profile [199]). The amplitude of the stress closely tracked the measured changes

in charge density. When the pH was lowered below the isoelectric pH, the stress

amplitude began to increase again, and the phase angle changed abruptly by 1800

(Figure 1.6(C)), indicating that the direction of the current-generated stress has been

reversed. At and below the isoelectric pH, the 1800 phase shift and the increase

in stress amplitude indicate that the positively charged amino groups on the colla-

gen molecules were beginning to dominate the electrokinetic transduction. Taken

together, these data show the sensitivity of probe measurements to molecular level

changes associated with aggrecan charge.

1.7.2 Variable Wavelength Imaging of Current-Generated Stress Follow-

ing Loss of Aggrecan

Both the frequency and wavelength of the applied current density affect the depth

of penetration of the current induced poroelastic deformation within the tissue. The

characteristic depth of penetration of the current density, itself, is approximately 1/3

the spatial wavelength of the current [16]. This wavelength, A, is determined by

the electrode excitation pattern at the cartilage surface. Therefore, a probe with

four independently addressable electrodes was constructed (Figure 1.7) such that

connection to each electrode could be varied externally, thereby enabling multiple
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Figure 1.6: Current-generated stress amplitude (A) normalized to its response at pH
7, and phase (B) versus bath pH for adult bovine cartilage, tested with an applied
current density of 1 mA/cm2 at 0.025 (filled circles), 0.1 (filled triangles), and 1.0 Hz
(filled squares). Magnitude of the fixed charge density (C) in adult bovine cartilage
by chemical titration. The net charge changes sign as it passes through the isoelectric
point (IEP) in the range pH 2.4-2.8. The minimum stress amplitude (a) and a 1800
phase shift (b) occur close to the IEP (Courtesy of S. Berkenblit [13]).

wavelengths to be applied using a single device. Applied current densities having

short wavelength (Figure 1.7, bottom) compared to cartilage thickness are confined

to the superficial region of the tissue; the associated current-generated stress will

therefore reflect the properties of the superficial zone. In contrast, long wavelength

excitations (Figure 1.7, top) penetrate the full depth of the tissue and thereby reflect

the average properties of full thickness cartilage. Thus, combinations of short and long

wavelength excitations enable the probe to "image" depth dependent focal lesions.
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Figure 1.7: Schematic of a probe with four independently addressable electrodes. By

varying the external connections to each electrode, multiple wavelengths A can be

applied using a single device. Depicted is a "long" (A) and "short" (B) wavelength

pattern (related to the electrode spacing, A), where the relative depth of penetration

of the current is represented by the arrows. If the shaded region represents degraded

cartilage, examination of short and long wavelength responses enable spatial imaging

of the pattern degradation.

To test the ability of the probe to spatially localize matrix damage, calf carti-

lage/bone plugs were subjected to trypsin digestion in a specialized diffusion chamber

which allowed the enzyme to contact the tissue only at the articular surface. Hence,

enzymatic digestion resulted in increased loss of tissue aggrecan starting at the sur-

face and penetrating deeper into the tissue with increasing duration of treatment.

The multiple wavelength probe was used to measure the long and short-wavelength

stress response of cartilage disks before and after trypsin digestion, as model of aggre-

can degradation. In normal tissue, the short-wavelength response was approximately

one-half the long-wavelength response (Figure 1.8 [15]), consistent with the spec-

troscopic nature of the poroelastic response. After a 2-hour trypsin treatment, the

short-wavelength response decreased significantly compared to the long-wavelength
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response, shown in Figure 1.8 as the ratio of short to long-wavelength signals [15].

This in vitro model system provided controlled PG loss from the tissue, and

resulted in a significant decrease in the stress compared to controls. Biochemical

and histological analyses showed a progressive loss of aggrecan constituents from the

ECM, and correlated well with the time dependence of changes in the short to long

wavelength response. These results further confirmed the sensitivity of the current-

generated stress to molecular level degradation of cartilage, and showed the ability

for spatial imaging using this diagnostic approach.
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Figure 1.8: Ratio of short-wavelength to long-wavelength stress response measured
in full-thickness calf cartilage-bone plugs, both before (filled squares) and after (open
squares) 2 hours of surface trypsin digestion to remove proteoglycans from the extra-
cellular matrix (N=4, mean ±SEM). Current-generated stress was measured with a
multiple-wavlength probe. Up to frequencies of 0.25 Hz, post-digestion values were
significantly different from controls ( filled star for p < 0.01, open star p < 0.05 by
ANOVA ) (Courtesy of S. Berkenblit [13]).
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1.7.3 In Vivo Arthrosopic Handheld Electrokinetic Probes

To be usable arthroscopically, the previously characterized surface sensor/transducer

was incorporated into a hand-held probe that can be used in conjunction with a

canula into the knee joint. The probe must fulfill certain design criteria: (1) the outer

body dimension and shape should fit down an arthroscopic canula; (2) the functional

circuitry of the probe must be appropriately sealed to perform in aqueous media;

and (3) the PVDF piezo-film output electrodes must be shielded from the excitation

electrodes and other sources of electromagnetic fields, to maximize signal to noise on

the stress signal. Bombard [20] designed and constructed a prototypical handheld

measuring device to measure for current generated stress [20]. A two electrode probe

of 1.0 cm outer body diameter was manufactured. On the end, the probe had an

electrode transducer system (ETS) which could drive current into the tissue while

simultaneously measuring the mechanical response of the tissue. Initial validation

was done by mounting the probe in a DynaStat chamber and performing tests on

excised bovine cartilage disks. Initial results of current-generated stress from these

experiment corresponded with those predicted by the poroelastic theory.

The ease of use of the hand-held probe has allowed testing of cartilage during

open joint surgery in a mature canine model. After the femeropatellar groove was

uncovered by displacing the patella, the hand-held probe was applied to the distal

trochlear notch, and the current-generated stress was measured. The results from 3

normal joint surfaces are compared in Figure 1.9 with data from normal adult bovine

cartilage in vitro; the frequency response trends are in close agreement.

1.8 Cartilage Diagnostics: A Paradigm

In the context of this thesis a paradigm of cartilage diagnostics that is depicted in

Figure 1.10, will be elucidated. Confined compression tests and electrokinetic surface

probe measurements are both experimental techniques performed on cartilage that
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Figure 1.9: The handheld probe has been used to make in vivo measurements with
a canine model during an open joint procedure (open circles). The data is in close
agreement with output acquired from adult bovine cartilage (closed circles) with the
same device.

give data which reveals information about the state of cartilage. Confined compres-

sion produces streaming potential and mechanical parameters, while the electroki-

netic surface probe results in current-generated stress and impedance measurements.

These two phenomena are coupled through the physical mechanism from which they

are generated, as discussed. Using an appropriate model of cartilage for each exper-

imental configuration and geometry, along with measured biochemical composition,

fundamental material properties can be found. Validation of the material properties

between confined compression tests and electrokinetic surface probe should be possi-

ble. In addition, we can perturb AC by enzyme treatment or by using OA tissue, and

then go through the experiments and modeling to see how each technique is sensitive

to biochemical and/or structural changes in AC.
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Figure 1.10: Schematic representation of our approach to cartilage diagnostics. Con-
fined compression tests and electrokinetic surface probe measurements are both ex-
perimental techniques that give data which reveals information about the state of
cartilage. These data can be inputs into models which have been developed to es-
timate the material properties of AC. In addition we can perturb AC by enzyme
treatment or by using osteoarthritic tissue, and then go through the experiments
and modeling to see how each technique is sensitive to biochemical and/or structural
changes in AC.

1.9 Outline of Results

The thesis reports several methods for cartilage diagnostics, with a focus on the design

and use of a surface electromechanical spectroscopy probe for in vivo, non-destructive

assessment.

In tandem with this introduction, Appendix A outlines in more detail the past,

present and future of cartilage repair. It stresses the benefits of using electromechani-

cal methods to assess cartilage repair, and presents the results of preliminary studies,

done in collaboration with R. Langer's lab at MIT.

Chapter II presents a comparison of biomechanical and biochemical properties
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of cartilage from human knee and ankle pairs. Two appendices presenting details as-

sociated with the biochemical composition assessment in human AC will accompany

this chapter (Appendix B and C). The ECM of human adult knee and ankle cartilage

was found to have a large autofluorescence that can overestimate the cellular contents

of cartilage if the Hoechst dye 33258 technique is used. Appendix B will characterize

this effect and the proposed methodologies to make more accurate estimations. The

most complete biochemical composition assessment for the human cartilage samples

necessitated the introduction of a method to measure collagen content into our lab-

oratory. Appendix C outlines the methodology, along with the improvements and

optimizations made to the protocol and the validation of the technique.

The effects of collagenases MMP-1, MMP-13, and trypsin induced matrix

degradation on the electrokinetic and dielectric properties of AC using surface spec-

troscopy are outlined in Chapter III and IV. Chapter III focuses on the changes in

electrokinetic and dielectric (impedance) properties induced by MMPs, while Chap-

ter IV deals exclusively with the changes in impedance induced by trypsin digestion.

Chapter V reports on the design, construction, and preliminary results of an

arthroscopic in vivo electrokinetic surface probe with a 4.5 mm diameter active area.

In Appendix D, design details are presented.

The thesis will be summarized in Chapter VI.

Appendix E and F outline a study where intrinsic parameter estimation based

on electromechanical surface spectroscopy measurements is performed. The objectives

were to use current-generated stress from electrokinetic surface probe measurement to

infer the intrinsic material properties of AC and to validate the results by comparing

them to properties measured on excised tissue via uniaxial confined compression.
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Chapter II

Comparison of Biomechanical and Biochemical

Properties of Cartilage from Human Knee and

Ankle

2.1 Abstract

Cartilage was obtained from eight matched knee (tibiofemoral) and ankle (talocru-

ral) joints of five different donors (14, 22 and 38 years of age, both left and right; 31

and 45, left only) within 24 hours of death. All cartilages were graded as normal.

Cylindrical disks of cartilage were harvested from 10 sites within the tibiofemoral

joint and 4 sites within the talocrural joint, and uniaxial confined compression mea-

surements were performed to quantify a spectrum of physical properties including the

equilibrium modulus (HA), hydraulic permeability (kp), dynamic stiffness, streaming

potential and electrokinetic coupling coefficient. Matched specimens from these same

14 sites were used for complementary measurements of biochemical composition and

molecular interaction, including water content, hypotonic swelling behavior, sulfated

glycosaminoglycan content (sGAG), and collagen content. Comparing the top 1 mm

slices of talar cartilage to the top 1 mm of tibiofemoral cartilages, the talar cartilage

appeared denser with a higher sGAG content, lower water content, higher HA and

dynamic stiffness and lower kp. HA increased with increasing sGAG per wet weight,

and decreased with increasing water content for all joint surfaces. Non-homogeneous

depth-dependent changes in the physical properties and biochemical composition of

full thickness distal femoral cartilage were consistent with previous reports. Since

cartilage compressive deformation during cyclic loading is confined to the more su-

perficial regions, the differences in properties of the upper regions of the talar versus

tibiofemoral cartilages may be important in the etiology of osteoarthritis (OA). We
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hypothesize that the denser, stiffer matrix of talar cartilage may reduce the exposure

of talar chondrocytes to exogenous catabolic stimulation by impeding transport or

endowing it with an increased inherent stability to loading.

2.2 Introduction

Epidemiological studies have shown that approximately 6% of the adult population is

affected by symptomatic knee osteoarthritis (OA); this percentage increases to almost

10% in individuals over 65 years of age [62]. Symptomatic OA does develop in the

ankle, although rarely (<1%), and the prevalence does not increase with age [173,184].

In addition, structural changes consistent with OA may develop in a joint long before

it is diagnosed radiographically (the gold standard) or clinically, therefore results

from radiological studies probably represent an underestimate of the prevalence of

this disease [31,194]. In fact, it has been suggested that joint space narrowing should

be considered as a late sign of OA [249]. Risk factors in the knee include occupations

with high knee stress [46]; in the ankle abnormal mechanics or trauma is the major

risk factor [242]. While the two joints carry similar load levels [230], degeneration

of tibiofemoral cartilage leads to OA with clinical symptoms, while talar cartilage

develops degenerative changes that are non-progressive and that do not appear to

progress to OA [106].

The ankle joint is mainly a rolling joint with congruent surfaces at high load,

whereas the non-congruent knee joint is characterized by a mixture of sliding, rotation

and rolling, possibly predisposing the tibiofemoral joints to a higher incidence of OA.

Increased loading of relatively underdesigned joints due to rapid evolutionary changes

in human posture may have predisposed specific locations to OA [113]. In a recent

study of 470 bilateral ankle donors in the age range of 21-94, with matched knees

available from 50 donors, Koepp et al. [127] reported that 62% of ankles and only

35% of knees had no visible degeneration. Further, degeneration of the knee cartilage

was always of an equal or higher grade than that of the matched ankle cartilages,
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demonstrating that factors affecting the ankle joint (i.e., altered mechanics) could

affect the knee as well. They also found that degeneration of the ankle was not

necessarily age related [127].

Differences in the biomechanical properties of human ankle versus knee and hip

cartilages have been studied. Kempson [122] showed that the tensile fracture stress

of ankle cartilage did not change significantly with age, while that of femoral head

cartilage decreased significantly with age. Swann and Seedhom [222] measured the

indentation stiffness of normal articular cartilage over the surfaces of knee and ankle

joints using a constant load 2-second indentation technique, and found that ankle

cartilages were stiffer. They reported a relationship between indentation stiffness

and the estimated level of stress to which the cartilage was subjected, suggesting an

adaptation mechanism as cartilage matures; Yao and Seedhom [250] also reported a

possible correlation between cartilage indentation modulus with joint stresses. Thus,

the pattern of mechanical stress during joint loading could be an important factor

in the etiology of osteoarthritis, since in the ankle, the stresses are higher but more

uniform over the surface compared to the knee.

Joint biomechanics, in turn, are affected by articular surface topography [156],

cartilage thickness, and joint congruency, which may evolve with age [27]. Ankle car-

tilage is significantly thinner (1 to 1.45 mm) than knee cartilage (1 to 6 mm) [7].

Joints with higher congruency appear to have thinner cartilage (e.g., talocrural) and

have a lower incidence of OA than non-congruent joints like the knee [214]. Us-

ing a stereophotogrammetric method, Xu et al. [249] found that opposing surfaces

of severely degenerated joints in the human thumb carpometacarpal joint are more

congruent than those that are less degenerated.

While biomechanical structure/function relationships may suggest differences

in the prevalence of OA between joints, investigators have also found significant dif-

ferences in the cellular and biochemical properties of knee and ankle cartilages. Ankle

chondrocytes are less responsive than those of knee cartilages to catabolic mediators
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such as interleukin-1 or fibronectin fragments, and have lower gene expression of cer-

tain matrix metalloproteinases (e.g., MMP-8) [41,42,97,119]. Since talar cartilage is

thinner, the superficial zone comprises a higher proportion of the full thickness and

thus may provide a protective layer more resistant to damage. In addition, the under-

lying sub-chondral bone in the ankle appears to be less responsive to load alterations,

since there is no increase in bone density with severely damaged cartilage as has been

reported for the knee [221].

Adult human articular cartilage is expected to exhibit inhomogeneous tissue

composition, physicochemical, and electromechanical properties [39,83, 98,148,179,

207]. This is manifested in site dependence [135] along a joint surface and dependence

with respect to depth from the articular surface. The natural variation of physical

properties in mature human cartilage is of interest as cartilage repair strategies con-

tinue to evolve. Especially those that require transplantation of cartilage native to

the knee to the ankle like in MosaicPlasty procedures currently being performed. The

matching of physical properties and biochemical composition of the cartilages will be

a parameter to optimize in order to make this and other graft procedures successful

as they are performed by orthopedic surgeons [7,76].

We hypothesized that such molecular and cellular differences between carti-

lages from joints with a high incidence (tibiofemoral) versus a low incidence (talocru-

ral) of OA from the same donor could lead to associated differences in the biomechani-

cal and biochemical properties of human knee and ankle cartilages. An understanding

of these differences may give insight into the pathogenesis of OA, and may help in

the design of therapeutic strategies for detection and treatment [106]. Therefore,

the objectives of this study were to quantify physical parameters including the equi-

librium modulus, hydraulic permeability, dynamic stiffness, streaming potential and

electrokinetic coefficient from normal ankle and knee cartilages from the same donor,

and then to compare these physical parameters with measures of biochemical compo-

sition and molecular interaction including water content, hypotonic swelling behavior,
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sulfated glycosaminoglycan content (sGAG), and collagen content.

2.3 Materials and Methods

2.3.1 Cartilage Explant

This study was approved by the MIT Committee on the use of Humans as Experimen-

tal Subjects. Cartilage was obtained from a total of eight matched knee (tibiofemoral)

and ankle (talocrural) joints of five different donors (14, 22 and 38 years of age, both

left and right; 31 and 45, left only) within 24 hours of death through collaboration

with the Regional Organ Bank of Illinois. Joints were obtained intact, opened and

tested within 24 hours without freezing at any time. The cartilages from all donors

were graded as normal with no visible signs of damage using the Collin's grading

system [44], as previously described [173]. Collin's normal grade 0 corresponds to

grades 0 - 5 scored on the Mankin Scale [143,173].

Cartilage/bone cores 9.5 mm in diameter were harvested from 10 sites within

the knee joint (both tibiofemoral and femoropatellar compartments) and 4 sites within

the talocrural joint (talar cartilage only) (Figure 2.1). The sites on the distal femur in-

cluded the patellar surface (FP), and anterior (C) and posterior (P) femoral condyles.

Cores were always taken from the medial (M) and lateral (L) aspects at every site. On

the tibial plateau, cores were taken after removal of the menisci from the anterior (A)

and posterior (P) aspects. Similarly, 4 cores were taken from the talar surface, an-

terior and posterior. A full thickness cartilage plug (approximately 1 mm thick) was

microtomed from each talar cartilage/bone core keeping the articular surface intact

and producing parallel planed samples using a sledge microtome (Model 860, Amer-

ican Optical, Optical, NY). From each plug, four 3 mm diameter cylindrical disks

were punched (Figure 2.1) using a dermal punch (Miltex Instruments, Lake Success,

NY), to be used for electromechanical testing and biochemical composition analysis.

The full thickness tibiofemoral cartilage was removed as two separate slices. The first
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1 mm slice contained the superficial, middle and the upper part of the deep zone [109].

The second slice contained the remainder of the deep zone down to the subchondral

bone. This second slice was obtained from selected distal femurs to compare physical

properties and biochemical composition with that of the first slice.

Knee Ankle

Figure 2.1: Top left, the distal femur taken inferiorly depicting the locations of the 6
harvest sites: The patellar surface of the distal femur (FP) and anterior (C) and pos-
terior (P) of the femoral condyles always taken from both the medial (M) and lateral
(L) aspects. Bottom left, the proximal tibial surface with the menisci removed. Cores
were removed from the anterior (A) and posterior (P) aspects. Top right, the talar
surface of the talocrural joint with 9.5 mm diameter cores removed for the anterior
(A) and posterior (P) aspects. The schematic on the bottom right shows the top 1
mm slice of cartilage being removed from the knee (tibiofemoral) and ankle (talar)
cores with the additional cartilage down to the tidemark also removed from the knee

cores. From each cartilage plug, four 3 mm disks were punched for electromechanical
testing and/or biochemical composition analysis.
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2.3.2 Physical Properties

One 3 mm disk from each plug was tested in uniaxial confined compression in an

electrically insulating poly(methylmethacrylate) chamber mounted in a Dynastat me-

chanical spectrometer (IMASS, Hingham, MA) interfaced to computer as previously

described [23,69]. Samples were pre-equilibrated in 0.1M NaCl and 0.05M Trizma

buffer, pH 7.4, at ~25'. The articular surface was in contact with a porous platen

of ultra high molecular weight polyethylene with a 20pm pore size (Porex, Fairburn,

GA).

Static compressive strains were applied in sequential increments of 5-10% up to

a maximum of 25%, and the equilibrium stress recorded after each stress relaxation.

The equilibrium modulus (HA) was computed as the best fit to the linear region of

the resultant equilibrium stress-strain curve. A 0.5% amplitude sinusoidal strain was

superimposed on the 15% static offset strain in the frequency range 0.01 to 1.0 Hz.

The oscillatory load response was normalized to the disk area and the amplitude of

the applied strain to obtain the dynamic stiffness. The streaming potential, mea-

sured as the voltage between a 6.35 mm Ag/AgCl electrode (Annex Research, Costa

Mesa, CA) at the base of the testing chamber and one suspended in the buffer, was

normalized to the applied strain [67,68]. The equilibrium modulus, dynamic stiffness

and streaming potential were used to estimate the hydraulic permeability, and elec-

trokinetic coupling coefficient, using established methods [67,68]. These parameters

help define the ability of the extracellular matrix to withstand compressive loads.

2.3.3 Biochemical Composition and Swelling

The remaining 3 mm disks from each plug were removed from the isotonic buffer, the

excess water padded away, and a wet weight (WW) taken (AE163 Balance, Mettler

Instrument Corp, Hightstown, NJ). To assess swelling [21,147], disks were then twice

re-equilibrated in a hypotonic solution of 0.01 M NaCl at pH 7.0 for 2 hours at room

temperature and re-weighed. The disks were then lyophilized, and dry weights taken.
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The samples were digested in 1 ml of 125 pg/ml papain solution [2011 and aliquots

taken to measure sulfated glycosaminoglycan content (sGAG, by dimethylethylene

blue dye binding assay [60]) and hydroxyproline content (HYPRO, [244]). The

biochemical composition values corresponding to each site were computed as the

average over the disks from each plug.

2.3.4 Statistical Analysis

All statistical analysis was performed with the SAS Statistical Software System 6.12

(Cary, NC, USA). Multifactorial analysis of variance (ANOVA), with and without

interactions, were performed to examine the effects of categorical data on variables

of interest. Significant differences between group means were assessed by Fisher's

least significant difference (LSD) test when the F-test of the ANOVA was significant.

Linear (Pearson's) correlation coefficients were performed between relevant variables

and significance between groups was assessed by Fisher's z-transform method [186].

Sample quantities are expressed as mean + SE, and significance was taken as p<0.05

or as indicated.

2.4 Results

With three donors, both left and right matched knee and ankles were available, while

only left limbs from the two other donors were obtained. To control for this possible

bias in the data, the statistical analysis was first performed with the left knee/ankles

only. As the contralateral joints were successively added, the results were not signif-

icantly changed. In addition, the observed trends were present with each matched

ankle-knee pair (data not shown). Thus, the data from all limbs were used for the

subsequent analysis.

Initially, multifactor ANOVAs were performed to determine the effect of

joint surface, age and left/right location on physical and biochemical properties

(male/female differences were not relevant since there was only one female donor
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in this study). The ANOVAs revealed that for all variables presented joint surface

was a significant determinant, but not location within a joint surface; therefore, data

from cores within each joint surface were pooled. Age was also a significant factor

(i.e., means from individual pairs of age groups showed significant differences), but

only produced the following highly significant correlations: age versus HA for the

talar (TA) and distal femur (F) surfaces (R=0.582 and R=0.562, respectively, both

p<0.01), age versus sGAG normalized to wet weight for F (R=0.679, p<0.01), and

age versus water content for the F surface (R=-0.469, p<0.01). Finally, left/right

differences were not significant for any variable of interest, even when accounting for

possible interactions with joint surface.

2.4.1 Biochemical Composition and Swelling

Comparing the results from the top 1 mm slices pooled from all locations within each

joint surface, the water content of talar (TA) cartilage was lower than that of F and

TP, while F was lower than TP (Figure 2.2A). The swelling ratio (SR), defined as the

wet weight of the sample measured at 0.15 M (isotonic) normalized to that measured

after re-equilibration in the hypotonic solution of 0.01 M, was higher in TP than

TA or F (Figure 2.2B). sGAG content normalized to wet weight (sGAG/WW) was

significantly higher in TA than F or TP (Figure 2.2C). HYPRO/WW was significantly

lower in TP than TA (Figure 2.2D).

2.4.2 Physical Properties

Data from pooled samples of the top 1 mm slices of cartilage surfaces showed that the

equilibrium modulus (HA) of TA cartilage was significantly higher than that from both

F and TP, and F was higher than TP (Figure 2.3A). This same trend was observed for

the dynamic stiffness over the entire frequency range tested (Figure 2.3B shows data

at 0.1 Hz). The computed hydraulic permeability was lowest in TA and, along with

that of F, was significantly different from that of the tibial plateau (Figure 2.3C).
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Figure 2.2: The biochemical composition of the pooled cartilage samples of the top
1 mm of talar (TA), distal femur (F), and tibial plateau (TP). (A) The water content
of TA was lower than that of the F and the TP, while F was lower than TP. (B)
The swelling ratio (SR)(defined in text) was higher in TP than TA or F. (C) The
sGAG/WW was higher in the TA than either the F or TP. (D) HYPRO/WW was
significantly lower in the TP than the TA. Bars correspond to the mean ± SE, and
the differences assessed by ANOVA with Fisher's LSD test: filled star, F or TP
significantly different than TA; open star, TP significantly different than F; filled
square, TP significantly different than F and TA; all p < 0.01.

The streaming potential (shown at 0.1 Hz in Figure 2.3D) was lower in TP than

TA in the 0.1-1.0 Hz frequency range. Interestingly, the calculated electrokinetic

coupling coefficient (ke, [68]) did not vary with joint or location in these normal

cartilage samples (data not shown). In addition, the electrical conductivity (k2 2 )

of the tested samples (computed from the Donnan equilibrium and electroneutrality

conditions, and the fixed charge density estimated from the sGAG concentration [30])

was significantly higher in the TA than either the F or TP joint surfaces.
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Figure 2.3: The electromechanical properties of the pooled cartilage samples of the
top 1 mm of talar (TA), distal femur (F), and tibial plateau (TP). (A) The equilibrium
modulus (HA) was higher for TA than F and TP, and F was higher than TP. (B)
The dynamic stiffness (shown at 0.1Hz) exhibited the same trend as HA over the
entire frequency range studied. (C) The hydraulic permeability was lower in TA and
F than that of TP. (D) The streaming potential (shown at 0.1Hz) was lower in TP
than TA in the 0.1 to 1.0 Hz frequency range. Bars correspond to the mean ± SE,
and the differences assessed by ANOVA with Fisher's LSD test: filled star, F or TP
significantly different than TA; open star, TP significantly different than F; filled
square, TP significantly different than F and TA; all p < 0.01.

2.4.3 Site Dependent Inhomogeneities Within a Joint Surface

As examples of the site-to-site variations of the measured variables, sGAG/WW and

HA data are shown in Figure 2.4. The pooled data of Figure 2.2 and 2.3, respectively,

are subdivided into the 14 anatomic sites tested (n=6-8 per site) using the nomen-

clature of Figure 2.1. As mentioned, no significant differences within a joint surface

were found (either medial/lateral or between the individual sites within a joint sur-

face). However, differences in sGAG/WW and HA between cartilages from certain

opposing joint surfaces in the knee were noted. For example, the sGAG/WW of the

medial aspect of the anterior femoral condyle was significantly higher than the medial
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aspect of the anterior tibial plateau (p<0.05), while the corresponding HA differences

approached significance (p=0.062).

A5 -TA F TP

1.5-

0M 1 -
r _ _0~ Q

0. o

0
A P P FP C A P

Figure 2.4: sGAG/WW and HA for the 14 anatomic sites (n=6-8 per site) using the
nomenclature of Figure 2.1: talus (TA) separated into anterior (A) and posterior (P);
distal femur (F) separated into patellar surface of the femur (FP), and the anterior (C)
and posterior (P) aspects of the femoral condyles; and tibial plateau (TP) separated
into anterior (A) and posterior (P) aspects. Each location is also separated into
medial (black bars) and lateral (white bars). There were no significant differences
within a joint surface; However, sGAG/WW of the medial aspect of the anterior
femoral condyle was significantly higher than that of the opposing medial aspect of
the anterior tibial plateau (filled star, p<0.05), and the HA values of the corresponding
opposing surfaces approached significance (open circle, p = 0.062). Bars correspond
to the mean ± SE, and the differences assessed by ANOVA and Fisher's LSD test.

2.4.4 Depth Dependent Inhomogeneities in Physical Properties and Bio-

chemical Composition

To investigate inhomogeneities in physical properties and biochemical composition of

distal femoral cartilages with depth from the articular surface, the properties of the

top 1 mm slices of distal femoral cartilage were compared to those of the remaining

cartilage down to the tidemark (Figure 2.5). The top 1 mm slices had significantly
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higher water content, lower sGAG/WW, lower equilibrium modulus and lower dy-

namic stiffness at 0.1 Hz.
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Figure 2.5: Depth dependent properties of pooled cartilage samples from the dis-
tal femur. The top 1 mm slice had significantly higher water content (A), lower
sGAG/WW (B), lower HA (C) and lower dynamic stiffness at 0.1 Hz (D) than the
second slice containing the remaining cartilage down to the subchondral bone. Bars
correspond to the mean ± SE; differences were assessed by ANOVA and Fisher's LSD
test: filled star, p < 0.01.

2.4.5 Relationships Between Physical and Compositional Properties

Correlative analyses showed, most strikingly, that HA increased with increasing

sGAG/WW for all joint surfaces (Figure 2.6; TA: Pearson's R = 0.617; F: R =

0.594; TP: R = 0.663, all p<0.01). With increasing water content, HA decreased for

all joint surfaces (Figure 2.6; TA: R = -0.176; F: R = -0.617, p<0.01 and TP: R =

-0.376, p<0.05). This decrease was significantly steeper in TA than TP (p<0.05).

These results are consistent with those reported by other investigators [76].
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Figure 2.6: Scatter plots showing the variation in equilibrium modulus HA with
sGAG/WW (A) and water content (B). The data are shown for the different joint
surfaces: filled circles - talar (TA), open circles - distal femur (F), and filled squares
- tibial plateau (TP). HA increased with increasing sGAG/WW for all joint surfaces
(TA: Pearson's R = 0.617, F: R = 0.594 and TP: R = 0.663, all p < 0.01). With
increasing water content, the HA decreased for all joint surfaces (TA: R = -0.176, F:
R = -0.617, p < 0.01 and TP: R = 0.376, p < 0.05); this decrease was significantly
faster for TA than TP (p < 0.05).

2.5 Discussion

A self-consistent picture emerges from the complementary biomechanical and bio-

chemical composition data comparing the top 1 mm slices of human knee and ankle

cartilages. The talar cartilage extracellular matrix appears denser with a higher

sGAG content and lower water content (Figure 2.2). Together, these properties are

consistent with the higher equilibrium modulus and dynamic stiffness found in talar

cartilage (Figure 2.3). The lower hydraulic permeability of the TA cartilage (Fig-

ure 2.3) would also be expected from the higher dynamic stiffness, decreased water

content and higher sGAG content [68]. It is not surprising that the streaming poten-

tial coefficient (ke) of normal knee and ankle cartilages are similar, since the streaming
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potential coefficient is proportional to the product of fixed charge (sGAG) density and

hydraulic permeability [68], and the higher sGAG of the TA is apparently balanced by

its lower permeability. The relationship between water content and the modulus and

permeability of cartilage is also consistent with previous studies of human patellar

cartilage [6]. What is most striking here, is the finding of such consistent differences

between the properties of ankle and knee cartilages. These trends were observed not

only in the averaged values for all 8 ankle-knee pairs as shown, but in each individual

ankle-knee pair.

Differences in the values of equilibrium modulus of cartilages from the oppos-

ing surfaces of a joint (e.g., F and TP in Fig. 2.4) have been reported by previous

investigators [7]. Such differences in biomechanical properties of cartilages from op-

posing joint surfaces are particularly of interest, since the mismatch of mechanical

properties will cause different strain profiles, potentially altering congruency and ul-

timately a redistribution of stress across the joint surface [7]. This may cause natural

remodeling of the cartilage to withstand altered stresses during normal physiologic

loading, as suggested by Yao and Seedhom [250], or increased wear-and-tear due to

the property mismatch as suggested by Meachim [159]. Based on the multifactorial

ANOVAs performed, there were no significant differences within the joint surfaces.

Qualitatively, however, the variations in HA and sGAG/WW between the tested sites

in TA cartilage were of the same level as that for F and TP (Figure 2.4), in contrast

to data from other investigators [7, 222]. More samples will be needed to establish

significance.

Tissue biochemical composition and the ultrastructure of the extracellular ma-

trix together determine the resulting biomechanical properties of cartilage. The exact

relationships are not well understood and appear to be highly non-linear [144]. An

example of such interrelationships is the observed inverse correlation between HA and

water content for distal femur cartilages (R = -0.617, p < 0.01, Figure 2.6), which

is consistent with the previous report of Froimson et al. [76]. In addition, Rivers
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et al. [193] reported a positive effect of sGAG/WW on HA in non OA thumb car-

pometacarpal joints, although weaker (R = 0.221) than the correlation observed here

(R = 0.594, Figure 2.6). In contrast, Froimson et al. [76] found no correlation between

HA and sGAG/WW in cartilage from the proximal and distal trochlea. In the present

study, multiple linear regression was also performed to assess whether the intrinsic

biochemical composition parameters (water content, sGAG/WW and HYPRO/WW)

were predictive of the physical properties of the cartilages. For example, 90% of the

total variance in HA at each joint surface (TA, F and TP) was associated with varia-

tions in these biochemical parameters (R2 = 0.88 for TA, 0.90 for T, and 0.83 for 0.86;

all p<0.001). On all three joint surfaces sGAG/WW was the most significant factor

(all p<0.001), with HYPRO/WW only significant for F (p=0.010). While most of the

variance in HA can thus be accounted for by multiple linear regression, a physically

based non-linear model would ultimately be more illuminating.

Investigators have described the unique cellular, morphological, biochemical,

and biomechanical features of the more superficial regions of adult articular carti-

lage, and the contrasting features of the middle and deep regions [98, 148, 207, 247].

Since cyclic compression of cartilage by several percent during joint loading is con-

fined primarily to the upper regions of the cartilage [68, 208], correlative studies of

biomechanical and biochemical properties of these upper regions may be important

in understanding the etiology of OA. In this context, the contrasting properties of

the upper regions of knee and ankle (TA, F and TP) cartilages described here (Fig-

ure 2.2, 2.3) may give additional insight into the intrinsic differences in progression

to OA in these joint surfaces.

Thus, the denser extracellular matrix of the talar surface compared to TP and

F may retard the movement of molecules through the cartilage (impeding transport),

possibly reducing the exposure of ankle chondrocytes to exogenous catabolic stimu-

lation. The biomechanical properties and biochemical composition of talar cartilage

may additionally endow it with an increased inherent stability to loading, making
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it less sensitive to damage and ultimately, the progression of osteoarthritis. In this

regard, additional studies are needed to characterize potential differences between

chondrocytes in knee and ankle cartilages in their gene expression and matrix biosyn-

thetic response to normal and abnormal mechanical loads.

The depth-dependent inhomogeneities in biochemical composition and phys-

ical properties of human adult articular cartilage have been reported by several in-

vestigators [98,148, 207], along with the depth dependent biosynthetic response to

static compression [247]. The 2-fold difference in HA between the top 1 mm slice

and the deeper slice of distal femur cartilage (Figure 2.5) is consistent with the pre-

vious studies of Schinagl et al. [207] and Wong et al. [247]. Together, these results

demonstrate that superficial adult articular cartilage is significantly softer than that

of deeper layers, further suggesting the importance of deformation of superficial carti-

lage during joint loading, and the corresponding response to compression of superficial

chondrocytes.
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Chapter III

Effects of MMP-1 and MMP-13 Induced Matrix

Degradation on Electrokinetic and Dielectric

Properties of Adult Articular Cartilage by Surface

Spectroscopy

3.1 Introduction

A variety of physical and biochemical techniques are currently being investigated to

enable early detection of cartilage degeneration or the staging of cartilage repair tissue

following surgery. A probe that measures the mechanical properties of cartilage in

situ in which indentation is used to assess cartilage stiffness has been developed by

Lyrra et al. (Artscan 1000, Artscan Medical Innovations, Helsinki, Finland) [136].

Our approach exploits the electrical and electromechanical transduction properties of

cartilage as a sensitive indicator of cartilage degeneration or repair.

Electromechanical transduction properties of cartilage have been shown to be

a sensitive indicator of early matrix degradation [16, 67]. We have developed an

electrokinetic surface probe and shown, previously, that electric current-generated

mechanical stress measurements could reveal focal, depth-dependent degradation as-

sociated with proteoglycan (PG) loss from the tissue [14]. In this approach small

sinusoidal electrical currents are imposed by an interdigitated electrode array that

rests on the cartilage articular surface [16]. The current causes an electrophoretic

motion of the negatively charged cartilage extracellular matrix (ECM) towards the

positive electrode and an electroosmotic motion of intratissue fluid towards the nega-

tive electrode [67,199]. These combined effects produce measurable normal mechan-

ical stresses at the tissue surface that can be detected by an overlying piezoelectric

stress sensor [16]. The stress produced is at the same fundamental frequency as
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the driving current, but out of phase due to the poroelastic nature of the cartilage

response. The penetration depth into the tissue is proportional to the spatial wave-

length of the interdigitated electrode structure, defined as twice the electrode spacing

(Figure 3.1). The applied current not only induces intratissue mechanical stress, but

produces an electric field within the ECM and an associated voltage drop across the

electrodes. This measured voltage drop, normalized to the driving current, is related

to the electrical impedance that represents the mostly resistive nature of the cartilage

to the flow of current through the tissue.

A + + SENSOR

0 -

0.2- - - - -

0.6-

l.8 - -- - - - - ----- - -- -- - -

0

-3 -2.5 -2 -1. -1 -0.5 0 0.5 1 1.5 2 2.5 3

Figure 3.1: When the current is applied in a short wavelength configuration (B) the

current is more confined to the upper surface of the tissue. By comparison, with a long

wavelength excitation (A), the current can penetrate the full depth, including regions

that may not be effected by the enzyme. The crosshatched area represents degraded

cartilage where the poroelastic properties may have been altered. By comparing the

current-generated stress in both configurations, a short over long stress ratio (SR) can

be calculated. The SR will decrease if the surface region is more degraded, allowing

spatial localization of degradation. The overlying surface spectroscopy probe has

independently addressable piezoelectric and current application (those in contact with

the cartilage) electrodes 0.8 mm in width, with a 0.8 mm gap. The spatial wavelength

of the interdigitated electrode structure (A) is defined as twice the electrode spacing.

The piezo electrodes are used measure the voltage created by the normal mechanical

stresses which is proportional to the current-generated stress, whereas the the voltage

drop across the excitation electrodes can be recorded simultaneously for electrical

impedance.
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Since degradation of cartilage involves alterations in the collagen network as

well as PG, it is also important to understand the extent to which surface probe

measurements may reflect the status of collagen network, which can be modified in

vitro using collagenase. The collagenases MMP-1 and MMP-13 are members of the

family of matrix metalloproteinases that play an important role in the degradation

and turnover of the ECM molecules such as type II collagen and aggrecan during

normal remodeling (e.g. embryogenesis) and disease processing [205, 245]. MMP-1

and MMP-13 have been implicated in the progression of osteoarthritis and rheumatoid

arthritis since they are found in the associated tissues at higher levels than in normal

human tissue [17,212,213,235]. The active enzyme has also been found at the lesions

sites on the tibial plateaus of Hartley guinea pig during the progression of spontaneous

osteoarthritis [107]. MMP-1 cleaves the three chains of the type II collagen molecule

at specific sites, producing helical trimeric fragments of 3/4 (from the N-terminus)

and 1/4 in length which can be detected using neoepitope antibodies. MMP-13

initially cleaves type II collagen at this same site, but can additionally cause a second

cleavage, residues carboxy terminal to the primary cleavage site [17,167], and then

a third cleavage site another three residues carboxy-terminal to the second cleavage

site [233]. The time course of damage induced by MMP-13 was more rapid and

transient than that due to MMP-1 [235]; MMP-13 was also found to turn over type

II collagen 10 times faster than MMP-1 in humans [167].

Vankemmelbeke et al. [233] recently demonstrated through immunostaining

of neoepitopes in cartilage from patients with osteoarthritis that type II collagen

degradation was initiated by MMP-1 and MMP-13 at the articular surface and then

extended into the middle and deep zones. In addition to this depth dependence,

a direct correlation between the Mankin score of OA cartilage degradation and the

intensity of the immunostaining of MMPs was recently found [241].

These spatial and temporal changes in the molecular integrity of the collagen

network should lead to important changes in the functional mechanical and electrical
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properties of the tissue. We therefore hypothesized that simultaneous measurement of

current-generated stress (CGS) and tissue electrical impedance via the surface probe's

interdigitated electrode array would reflect molecular level changes in the collagen-

proteoglycan matrix. Thus, -our objectives were to quantify simultaneous changes in

the current-generated stress response and the cartilage electrical impedance following

treatment with MMP-1 and 13, using the diagnostic surface probe. A non-destructive

means of assessing the effects of degradation of collagen and proteoglycans on the

physical properties of cartilage in situ would help to elucidate the mechanisms of

early OA, and could potentially provide a means for in vivo physical diagnostics

following treatments to initiate cartilage repair.

3.2 Methods

Distal femurs from 1.5-2 year old steers were obtained and never frozen. The

femoropatellar groove was isolated (Fig. 3.2A), and 9.5 mm diameter cartilage/bone

cores were removed from the medial and lateral facets with the articular surface al-

ways intact and as flat as possible using a specially designed coring bit. Freshly

harvested cartilage/bone cores were mounted in a cylindrical confining chamber con-

taining buffer (0.1 M NaCl and 0.05 M Trizma, pH 7.4), or buffer + 10 pg/ml rhMMP-

1 or rhMMP-13 [167], such that the enzyme could only penetrate into the cartilage

from the intact articular surface and enzymatic digestion products would be released

only to the bath [14](Fig. 3.2B). The sealed chamber was placed in an incubator at

37 0C and gently shaken to minimize formation of stagnant films at the cartilage-

buffer interface which could impede transport. The enzymes rhMMP-1,13 had been

previously activated.

After digestion times up to 24 hours, the buffer was collected and examined

to assess the extent of matrix degradation after treatment by MMP-1 or MMP-13,

and the cartilage/bone cores were briefly placed in 10 mM o-phenanthroline to stop

the activity of the MMP-1 or 13. Damage to the extracellular matrix constituents
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Figure 3.2: Cartilage/bone cores were removed from the femoropatellar groove of

adult bovines (A) and mounted in a confining chamber containing buffer (0.1 M
NaCl and 0.05 M Trizma, pH 7.4), or buffer + 10 pg/ml rhMMP-1 or rhMMP-13
such that the enzyme could only penetrate into the cartilage from the intact articular
surface. After digestion, the buffer was collected and examined to assess the extent
of matrix degradation after treatment (B). An 800 /.m thick disk was then removed

from the cartilage/bone cores (C) without disrupting the articular surface and then

placed in contact with a four electrode variable wavelength surface probe for CGS
and impedance measurements (D). After testing, the cartilage disks are subject to

immunohistochemical analysis, with sections stained by monoclonal antibody 9A4 to

localize damage to the collagen matrix (E).

lost to the bathing medium was assessed by quantitative high performance liquid

chromatography (HPLC) analysis of hydroxyproline (HYP) using the Gilson (Mid-

dlebury, WI) ASTED methods [47,182]. For loss of PG, samples were passed through

a 30 X 0.78-cm TSK-GEL 5000PWXL column and the column effluent monitored

at 540 nm for proteoglycan fragments with chondroitin sulfate (Seikagaku America,

Rockville, MD) as a standard [182,197]. Hydroxylysyl pyridinoline crosslink release

to the buffer after MMP-1 treatment was also measured. In addition, western analysis
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of the media fractions were performed using monoclonal antibody 9A4, which recog-

nizes the C-terminal neoepitope -Gly-Pro-Pro-Gly-Pro-Gln-Gly-COOH generated by

collagenase treatment of type II collagen.

An 800 prm thick disk was then removed from the cartilage/bone core by a

sledge microtome (Fig. 3.2C), without disrupting the articular surface and placed

in contact with a four electrode variable wavelength surface probe constructed as

described previously [16](Fig. 3.2D). The cartilage disk was held in unconfined com-

pression within a cylindrical poly[methyl methacrylate] testing chamber at a small

static tare stress of 50 kPa by a platen held in the jaw of a Dynastat mechanical

spectrometer (Hingham, MA) at 25'C in the same (enzyme-free) digestion buffer as

used previously.

A sinusoidal current density of 1 mA/cm2 was applied to the tissue over the

frequency range 0.025-1.0 Hz using a bipolar operational amplifier (Kepco, Flushing,

NY), such that the total current amplitude was constant at all frequencies, and driven

by a programmable frequency generator controlled through a computer. The output of

the piezoelectric sensor electrodes are passed through a high impedance electrometer,

low pass filtered to remove 60 Hz noise and differentially amplified. The signals are

recorded on a computer, and combined with a mechanical sensor calibration done

before each test to obtain the current-generated stress (details in [16]). The constant

applied current also leads to a distribution of current density and electric field within

the tissue, and an associated voltage drop across the electrodes. This voltage drop

across the electrodes is simultaneously measured and recorded with a computer. The

amplitude of the measured voltage drop between electrodes divided by the applied

current amplitude is defined as the electrical impedance. The electrical impedance of

the tissue at these frequencies is dominated by the resistance of the hydrated ECM;

the latter resistance is inversely proportional to the density of mobile ions within

the intratissue fluid. Thus, the electrical impedance of the tissue will increase with

decreasing PG fixed charge content on increased swelling at constant PG content,
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since both these conditions lead to a lower concentration of mobile ions in the ECM

by Donnan equilibrium [148]. In addition, electrode/electrolyte interfacial conditions

may affect the total impedance measured at the electrodes [80].

The current-generated stress and electrical impedance are measured for two

different electrode configurations (short and long wavelength, Fig. 3.1). Using 0.8 mm

wide electrodes spaced 0.8 mm apart and connected in the short wavelength config-

uration shown in Fig. 3.1B, the applied current density is more concentrated near

the upper surface of the tissue. By comparison, with a long wavelength excitation

(Fig. 3.1A), the current can penetrate the full depth, including regions that may not

be effected by the enzyme. Since each electrode of the interdigitated electrode array

is independently addressable, electrode configurations and thus the wavelength of the

driving current can be changed externally without disturbing the cartilage sample. By

collecting the current generated stress in both configurations, a short over long wave-

length current-generated stress ratio (SR) can be calculated. The SR will decrease if

the surface region is more degraded, allowing for spatial localization of degradation.

In the present study, the long and short wavelengths were 6.5 mm and 3.2 mm re-

spectively. The penetration depth of the current into the tissue is approximately 1/3

the spatial wavelength [16], and the induced current-generated stress was measured

at the tissue surface by the piezoelectric stress sensor of the probe. After testing, the

residual cartilage disks were saved for immunohistochemical analysis. The sections

were stained with monoclonal antibody 9A4 [107] to localize damage to the collagen

molecules of the ECM (Fig. 3.2E).

3.2.1 Statistical Analysis

Sample quantities are expressed as mean ± SE, and the difference between the mean

of samples was assessed by a two-tailed t-test.
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3.3 Results

3.3.1 Immunohistochemistry

Immunohistochemical staining with mAb 9A4 was absent in control tissue (Fig. 3.3A),

and was most intense in the superficial layer of MMP-1 and MMP-13 treated tissue

(Fig. 3.3B,C). MMP-1 cleaved to an increasing depth with time; staining was apparent

to a depth of 0.8 mm by 24 hours (below the border of Fig. 3.3B). In contrast,

staining for MMP-13 appeared confined to the surface, (Fig. 3.3C). Western analyses

of media fractions with monoclonal antibodies 9A4 showed concomitant release of 3/4

fragments (data not shown).

' A .. . ..

Figure 3.3: Immunohistochemical staining with 9A4 (mAb to collagen C-terminal

neoepitope) was absent in control tissue (A), and was most intense in the superfi-

cial layer of MMP-1 and MMP-13 treated tissue (B and C). MMP-1 cleaved to an

increasing depth with time; staining was apparent to a depth of 0.8 mm by 24 hours

(below the border of B). In contrast, staining for MMP-13 appeared confined to the

surface, only penetrating 50 pm (C). Arrows indicate the surface of the cartilage.

3.3.2 Quantitative Analysis of Matrix Damage

The release of PG and HYP constituents (as % of total) increased with time of

treatment by MMP-1 (Fig. 3.4A), and was greater than that released by MMP-13

treatment by 24 hours (Fig. 3.4B). The PG fragments released by MMP-13 treatment

were generally larger than those released by MMP-1, but also contained smaller con-
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stituents that could be consistent with decorin or biglycan. In addition, the release

of pyridinoline crosslinks were detectable at 24 hours after MMP-1 treatment.

- A

-I

0 24

* HYP
E PG
m PYD x-links

0 3
Digestion time (hr)

Figure 3.4: The release of PG and HYP constituents (as % of total) increased with

time of treatment by MMP-1 (B), and was greater than that released by MMP-13

treatment by 24 hours (A). With MMP-1 treatment, the release of hydroxylysyl

pyridinoline cross-links were detected after 24 hours. Bars correspond to the mean t

SE, N=4.

3.3.3 Current-Generated Stress

Figure 3.5 shows the short-wavelength to long-wavelength stress response ratio (SR)

for control disks (0 hour) and disks after treatment for 24 hours using MMP-1. The

SR ratio decreased significantly by 24 hours at f = 0.025 Hz (p<0.01). There were

no significant differences between 0 hour controls and disks incubated with buffer

alone for 24 hours. Treatment with MMP-13 did not significantly alter the SR ratio

compared to controls after 24 hours at all frequencies tested (data not shown).

Section 3.3

40

301

20

10

a

0
4)
cc)
cc

0

-o

B1

- 0.5

-00
7 24

.



-88-

1-

.00.8 -

.0.6 -
0,

0.4 - OOh*~O4 @0 hr

0 *024 hr
Cn0.2 -

-0 -, ,1 , , , , ,
0.01 0.1 1

FREQUENCY, Hz

Figure 3.5: The short-wavelength to long-wavelength stress response ratio (SR) for
control disks (0 hour) and disks after 24 hours MMP-1 treatment. MMP-1-induced
degradation caused a decrease in this ratio by 24 hours, significantly different at 0.025
Hz (p < 0.01). In contrast, there were no significant differences between controls and
disks treated with MMP-13 by 24 hours (data not shown). Mean ± SE (N=4-7), and
the differences against controls assessed by students t-test: filled star, p < 0.01.

3.3.4 Impedance

Treatment with MMP-1 and MMP-13 caused a significant increase in the measured to-

tal impedance over the broad frequency range used for CGS measurements (Fig. 3.6),

using the long wavelength configuration of Figure 3.1. The impedance increased most

significantly at frequencies greater than 0.05 Hz (p<0.05).

3.4 Discussion

It has been demonstrated previously that current-generated stress measured by sur-

face electromechanical spectroscopy can sensitively detect cartilage degradation using

a model in which the PG constituents had been selectively degraded with trypsin. The

Section 3.4



-89-

A CONTR
* MMP-13
* MMP-1

* *

Uz
0

C

0

I I I 11111 I I I I I ~

0.1
FREQUENCY, Hz

Figure 3.6: The electrical impedance of cartilage treated 24 hours with MMP-13 (filled
circles) and MMP-1 (filled square), in the long wavelength configuration compared
with controls (triangles). The impedance increased significantly after treatment, par-
ticularly at the higher frequencies. Mean t SE (N=4-11), and the differences against
controls assessed by students t-test: filled star, p<0.01, and open star, p<0.05.

operating principles of the surface probe would dictate that the removal of negatively

charged aggrecan by trypsin treatment and the resulting changes to the poroelas-

tic properties of the ECM should decrease the current-generated stress response of

the surface probe. Berkenblit et al. [14,16] showed that this technique was, indeed,

sufficiently sensitive to measure such changes using newborn bovine cartilage. How-

ever, the influence of collagen matrix damage on the current-generated stress had

not been quantified. Selective damage to the collagen network could increase tissue

swelling, thereby decreasing the aggrecan concentration and fixed charge density of

the ECM, and potentially causing increased loss of aggrecan from the loosened net-

work. In this study, the effects of degradation on current-generated stress and tissue

impedance were quantified using surface probe measurements using adult bovine ar-

ticular cartilage treated with MMP-1 and MMP-13. Significant, repeatable changes
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in both physical parameters were observed, consistent with degradation of the colla-

gen/proteoglycan network.

The observed changes in CGS and electrical impedance must be interpreted in

the context of the specific matrix alterations caused by MMP-1 and MMP-13. Based

on immunohistochemical staining (Fig. 3.3), MMP-13 failed to penetrate ~50pm

into the intact articular cartilage surface. Tight binding of the hemopexin domain

of MMP-13 to type II collagen may prevent the enzyme from diffusing further into

the tissue. Thus, MMP-13 remains localized at the articular surface and caused

substantial superficial damage as detected by immunostaining (Fig. 3.3C). In contrast,

the 45 kDa MMP-1 molecule is known to undergo autolysis between residues Pro269

and Ile270 resulting in the separation of the hemopexin domain from the catalytic

domain. The specificity of the smaller 19 kDa catalytic domain to type II collagen

is lower, and increased activity to aggrecan at the N342-343F site is known to occur.

This possible activity to aggrecan, along with the increased transport of the smaller

catalytic domain, together probably account for the deeper penetration of MMP-

1-induced collagen damage (Fig. 3.3B). The loss of PG constituents after MMP-13

treatment suggests that, indeed, a significant portion must be released as a direct

result of the collagen damage. The PGs released were of higher molecular weight than

those released by MMP-1 and are presumed to be more intact. In addition, lower

molecular weight PGs were released by MMP-13 treatment that could be consistent

with biglycan or decorin. However, sequencing studies would be needed to confirm

this.

Western analysis of the media detected release of 3/4 and 1/4 fragments of

type II collagen after treatment with MMP-1 and MMP-13, confirming that colla-

gen network damage occurred. In addition, PG constituents were also found in the

medium after treatment with MMP-1 and MMP-13. Their presence could again be

attributed to two mechanisms, autolysis of the MMP-1 causing non-specific activity

at the IGD site, and/or the loss of PGs caused by damage to their restraining collagen
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network. In the TSK-GEL 5000PWXL column, the PGs released formed a precise

sharp peak that was consistent with the 342/343 cleavage in the interglobular (Gi-

G2) domain of the aggrecan molecule, the site also cleaved by stromelysin and other

MMPs. The autolysis of the MMP-1 has also been detected in analysis of the ECM

fragments found in the joint of patients suffering from osteoarthritis (Therefore, this

form of the enzyme may also be more clinically relevant to OA).

As in OA, cleavage and fibrillation of superficial collagen can result in a loss

of tissue PG due to local collagen network damage. The observed loss of pyridinoline

crosslinks provided further evidence of collagen network loosening. In our cartilage

preparation, great care was taken to leave the surface layer of the cartilage undis-

turbed due to its ultrastructural importance in adult (mature) cartilage as a possible

barrier to transport. Since the collagen matrix damage proceeds from the articular

surface inward, the disruption could lead to enhanced transport of the PGs from the

bulk of the tissue.

Given these patterns of matrix damage, the observed changes in CGS and elec-

trical impedance can now be interpreted. An essential tool in resolving the extent of

collagen damage in cartilage is the ability of surface spectroscopy to spatially localize

the changes in the CGS with depth from the articular surface. Using four electrodes

0.8 mm wide and spaced 0.8 mm apart (Figure 3.1), the applied current density with

short wavelength configuration is more concentrated near the upper surface of the

tissue, while in a long wavelength excitation the current can penetrate the full tissue

depth, including regions that may not be effected by the enzyme (Fig. 3.1). Thus the

short/long SR would decrease if the upper regions of tissue were more degraded as

was observed with MMP-1 (Fig. 3.5). In the case of MMP-13 treated tissue we were

unable to discriminate between control and 24 hour treated tissue. As the MMP-13

damage extended into the surface by only -50pm, the four electrode probe design

(A = 3.23 mm) was insufficient to measure a change in the short/long SR. In con-

trast, the combined collagenase and PG degradation due to MMP-1 treatment are
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consistent with poroelastic changes that are reflected in decreased CGS SR. In fu-

ture designs, the electrode wavelengths can be made shorter to have the ability to

spatially resolve damage closer to the articular surface, thus increasing the diagnostic

sensitivity at earlier stages of controlled damage models.

In addition to CGS, the electrical impedance was measured at each frequency

tested. Cartilage impedance in this frequency range is essentially resistive in nature,

and showed increase with decreasing PG content or increased swelling at constant

PG. Thus, damage to collagen and/or PG could both increase the impedance, as was

seen with the both short and long wavelength and both MMPs in this study (Fig. 3.6).

The detection of an impedance change with MMP-13, implies this measure is sensitive

to changes even in the most extreme superficial layer.

As the impedance is a purely electrical measure of the state of the ECM

(similar to the stiffness being purely mechanical), it does not have the dynamic range

of the current-generated stress, which is dependent on electromechanical coupling.

For example, if all the PGs were removed from a cartilage sample the measured

stiffness would only decrease by 50% [55] and the impedance by only 28% [13], whereas

the CGS will fall to zero. However, the impedance measurement can be made very

accurately and simply in smaller geometries than CGS, since there are less constraints

on the size of electrodes without the piezoelectric film needed to measure the stress.

Therefore, the two simultaneously measured probe outputs, CGS and

impedance, were able to detect controlled degradation in vitro that was induced by

MMP-1, and both MMP-1 and MMP-13, respectively. We are currently developing a

electromechanical spectroscopy probe to make both measurements non-destructively

for integration as a diagnostic tool for the arthroscopic surgical suite. With an active

area of 4.5 mm, it is an appropriate size for open joint or arthroscopic procedures in

humans. An earlier prototype was successfully tested in open joint procedures on the

distal trochlear notch of a canine under control of a surgeon [225].
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Chapter IV

Effects of Trypsin Induced Matrix Degradation on

the Dielectric Properties of Newborn Articular

Cartilage by Surface Spectroscopy

4.1 Introduction

In current-generated stress measurements (CGS), small amplitude sinusoidal electrical

currents are imposed by an interdigitated electrode array that rests on the cartilage

articular surface. The current causes an electrophoretic motion of the negatively

charged fixed matrix molecules (proteoglycans) towards the positive electrode and

an electroosmotic motion of the mobile ions of the fluid phase towards the negative

electrode. These combined effects produce a measurable mechanical stress at the

tissue surface that can be detected by an overlying piezoelectric stress sensor. The

current that is associated with the CGS described above also simultaneously produces

a voltage drop across the electrodes (Figure 4.1), and after it is normalized by the

driving current, producing an impedance that represents the mostly resistive nature

of the cartilage to the flow of current through the tissue. The electrical impedance is

simultaneously measured with the CGS making it practical to apply during an in vivo

clinical application. Figure 4.1 shows a schematic of the current source that delivers

current to the electrokinetic probe at the cartilage surface, where the impedance is

defined as:

Impedance = Zmeas =

After observing the significant increases in impedance with MMP-1 or MMP-
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Figure 4.1: Schematic of the current source used for impedance measurements. A
sinusoidal input voltage (V,) to the current source resulted in a current I, to the
cartilage. The voltage difference V, - Vm, between electrodes on the cartilage,
divided by the current I, is the measured impedance, Zmeas. This purely electri-
cal measurement can be made simultaneously with the current generated stress re-
sponse at the prescribed input frequencies or sequentially at only other frequency
(i.e., 1 kHz)[Courtesy S. Berkenblit [13]].

13 treated tissue for 24 hours versus controls in Chapter III, it was of interest to

more closely characterize this behavior, and possibly extend the frequency range to

1 kHz as had been previously done by Berkenblit [13]. We hypothesized that the high

frequency measurements would provide two benefits: (1) the interfacial impedance

between the Ag/AgCl electrodes and the ionic bathing solution would be a lower

portion of the total measured impedance, and (2) clinically, this measurement could

be taken very rapidly, making it less sensitive to surgeon hand tremor and movement.

The measurement with MMP-13 treated adult bovine articular cartilage

(Chapter III) were repeated, while incorporating the high frequency impedance mea-

surements at 1 kHz. The current-generated stress of 24 hour treated tissue was not

significantly different from that of control tissue, while the impedance at 0.25 Hz was

significantly higher than the control tissue for both the short and long wavelengths

(Figure 4.2), corroborating earlier results.
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Figure 4.2: The impedance of disks treated 24 hours with MMP-13 (filled circles) ver-
sus controls (open circles), in the short-wavelength configuration. The impedance in-
creased significantly after treatment, particularly at the higher frequencies (at 0.25 Hz,
open star, p < 0.05).

When comparing the impedance at 1 kHz, there was a significant difference

between the controls and the 24 hour MMP-13 treated cartilage for the short, long,

and extra-long-wavelengths, but the control impedance was larger than the treated

tissue (Figure 4.3). The absolute magnitude of the impedance decreased, most likely

due to the electrolyte-Ag/AgCl electrode interfacial impedance decreasing with in-

creasing frequency (data not shown). The impedance of the buffer alone at 1 kHz

represents the estimated value from simply considering the conductivity of the buffer

(by ionic strength) and electrode geometry, indicating that the electrolyte-Ag/AgCl

electrode interfacial impedance at 1 kHz is diminishing in magnitude.

There is also a motivation to examine the effect of strain at the cartilage sur-

face on impedance. In the clinical application, if such an impedance measurement is
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Figure 4.3: The impedance of disks treated 24 hours with MMP-13 at 1 kHz. The

impedance decreased significantly after treatment for all wavelengths studied short,

long and extra-long (at 0.25 Hz, open star, p < 0.05). The associated wavelengths were

2.2, 4.4, and 8.8 mm, respectively. The buffer represent the impedance of the probe

electrodes in contact with the buffer only which includes the interfacial impedance of

the electrode-electrolyte interface.

to be made successfully, the surgeon would need to create a force between the probe

electrodes and the cartilage to ensure proper contact. Therefore, the sensitivity of

the impedance to the applied strain becomes important since it will not be known

when the measurement is made. Also, as cartilage degrades in from the articular

surface (as is seen in OA), a layer of mechanically softer superficial tissue will result

at the superficial layer of the tissue. As the tissue deforms under the applied strain

the probe will physically move closer to a more PG rich tissue, as this softer layer is

compacted. Given this physical situation, it is unclear what the effect on impedance

will be since the relative increase of sGAG concentration due to compression will de-
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crease impedance while, the compaction of the degraded superficial layer may increase

impedance.

Therefore, the objective was to examine the effect of strain (0-50%) on the

dielectric properties (impedance) of newborn bovine articular cartilage, over a range

of frequencies (0.025 - 1000 Hz) and with duration of controlled trypsin treatment

(0-24 hours with 1 mg/ml).

4.2 Theoretical Considerations

In this context, impedance (Z) can be expressed as a function of the strain and sGAG

content, which translates into two terms: (1) due to the conductivity of the cartilage

and the electrode geometry, and (2) due to the contribution of the electrokinetic

response of the cartilage to the applied current density.

Z = f ( strain . sGAG content) = (k22 ) (HAkpke, f, ...) (4.1)

conductivity electrokinetics

Simulations using a computational implementation of the multi-boundary

value problem for finite sized electrodes of prescribed experimental geometry* over

a wide range of parameters found the electrokinetics term to be negligible with re-

spect to the conductivity term (see Appendix F). Therefore, the impedance can be

estimated from the conductivity of the cartilage alone by the following expression:

k22 = k o 2 ( v') [ , V2](4.2)

Maxwell Mackie and Meares

where, ko2 is due to the fixed charge density and can be modified by two factors due to:

*The work of Sachs et al. [199] was extended for finite sized electrodes by E. H. Frank
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(1) cartilage being an heterogeneous media, originally derived by a Maxwell [157] when

considering conductive spheres (sGAG molecules) embedded in a medium with null

conductivity based on the volume ratio of charged to uncharged species (v'), and (2)

the increased tortuosity of flow due to the existence of solids in the media by Mackie

and Meares [138] based on volume ratio of solids in the cartilage (v). The electrical

conductivity of cartilage (k' 2) is dependent on the intratissue concentrations of sodium

and chloride ions, the predominant mobile charged species. The conductivity of a

binary electrolyte solution is given by:

k2 = F[ z+ u+c+ + z~ t-c- (4.3)

and z, u, and c are the valences, ionic mobilities, and concentrations of the cations

and anions within the tissue, and F is Faraday's constant. For this system, z+

iz- = 1 for NaCl, and the ionic mobilities of sodium and chloride are 1.8 x 10-4

cm 2 /Vs and 2.7 x 10-4 cm 2/Vs, respectively.

Applying Donnan equilibrium and electroneutrality to relate the concentra-

tions of the cations and anions (c±) to the fixed charge density (P) as follows:

PM Pm 2 (4.4)
F2 Fca = F + + C (.4

where Cb is the concentration of the electrolyte bath (0.15 M for our experiments),

and the fixed charge density of the tissue is only a function of the concentration of

PGs (Cp,):

F = _C (4.5)F

where pm is the macrocontinuum fixed charge density, and = 1 mole-charge/266g

is a constant relating the amount of charge per gram of proteoglycan [30]. Since we
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are interested in the effect of strain on the impedance, the Cpg becomes:

Amount of sGAG

CJ w w(I - strain )

The tissue water volume (Vw) is calculated using the wet and dry weights of a cartilage

sample and corrected for the strain at which the measurements were taken, and the

sGAG content can be found by assaying by the DMMB dye binding method.

The effect sGAG content and applied strain can be simulated by using Equa-

tions 4.1- 4.6 and a first order estimate of the impedance (resistive) from the electrode

geometry,

Z = B(k 22 ) = A(4.6)
k22 A

where 1 is the center-to-center distance between two identical electrodes of area A.

Using a cartilage disk 9.5 mm in diameter and 1 mm thick that has a sGAG/WW

of 4.1% and a hydration 4.4 (or 81.4% water content) as typical values [131. In

addition, the two electrodes have an area of 4.57 mm 2 and a center-to-center distance

of 1.62 mm, will produce impedance as a function of strain and sGAG loss shown

in Figure 4.4. sGAG loss was modeled as a uniform loss throughout the volume, by

directly reducing the amount in Equation 4.6.

The simulation of Figure 4.4 represents the estimates of the same order as

the impedance measurements that have been observed. The model also predicts that

as sGAG content decreases (i.e. through degradation) the impedance increases. In

addition, the behavior of the impedance with strain, depends on the percentage of

sGAG lost. At full sGAG content the impedance will increase with strain and begin

to decrease at approximately 30%, whereas when sGAG is lost there is a monotonic

increase with applied strain to 50%.
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Figure 4.4: The effect sGAG content and applied strain on impedance (resistive)
simulated using equations 4.1- 4.6 and a first order estimate of the impedance from
the electrode geometry. The simulation assumes typical values for a newborn bovine
articular cartilage disk 9.5 mm in diameter and 1 mm thick: a sGAG/WW of 4.1%
and a hydration 4.4 (or 81.4% water content). In addition, the two electrodes are
modeled having an area of 4.57 mm 2 and a center-to-center distance of 1.62 mm.
sGAG loss was modeled as a uniform loss throughout the volume, by directly reducing
the amount in Equation 4.6 as indicated.

4.3 Materials and Methods

4.3.1 Specimen Preparation and Experimental Setup

Distal femurs from 1-2 week old (newborn) steers were obtained within hours of

slaughter and never frozen. The femoropatellar groove was isolated, and 9.5 mm

diameter cartilage/bone cores were removed from the medial and lateral facets using

a specially designed coring bit (Figure 4.5A).

Freshly harvested cartilage/bone cores were prepared for exposure to buffer

(0.1 M NaCl and 0.05 M Na 2HPO4 , pH 7.2), or buffer + 1 mg/ml trypsin from
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Figure 4.5: The femoropatellar groove from newborn steers were obtained and 9.5 mm

diameter cartilage/bone cores were removed (A). The cores randomized to the 4-hour

trypsin treatment group were mounted in a confining chamber containing buffer +

1 mg/ml trypsin (B). After 4 hours, the cores were removed from the chamber and

a 1 mm thick slice was removed with a sledge microtome, without disrupting the

articular surface (C), and placed in contact with a four electrode variable wavelength

surface probe (D) in a short-wavelength configuration. The digestion buffer was

collected and examined to assess the extent of matrix PGs degradation. The cartilage

disk was subjected to increasing strain levels of 0-50% in an unconfined compression

arrangement. A sinusoidal current density of 1 mA/cm2 was applied to the tissue over

the frequencies of 1-1000 Hz at each strain level. The cartilage disks were digested

and sGAG content found by DMMB dye binding assay.

bovine pancreas. The cartilage/bone cores were first placed in a microtome to create

a flat articular surface. For plugs that were to be randomly assigned to the 0 or

24 hours treatment groups, two 1 mm thick slices were further microtomed from

the cartilage/bone cores. These cartilage disks were placed in 14 ml polypropylene

round bottom tubes (Becton Dickinson, Lincoln Park, NJ) along with either 10 ml

buffer or buffer + 1 mg/ml trypsin and placed on a laboratory shaker (Research
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Products International Corp, Prospect, IL) to ensure no stagnant diffusion layers

are established, thus reducing the efficacy of the enzyme to remove PGs from the

cartilage. The buffer only treated plugs were removed at 0, 4 and 24 hours to be

assessed as controls (~0% PGs loss). The buffer + trypsin treated plugs were left in

this arrangement for 24 hours in an effort to remove all the PGs within (-100% PGs

loss), as estimated from previous work with this enzyme on newborn bovine articular

cartilage [13].

The final group of cartilage/bone cores randomized to the 4 hour trypsin treat-

ment group were mounted in a confining chamber containing buffer + 1 mg/ml trypsin

(Figure 4.5B), such that the enzyme could only penetrate into the cartilage from the

flat articular surface and enzymatic digestion products would be released only to the

bath [13]. A stir bar was placed in the bath, the chamber was tightly wrapped in

parafilm, and placed on a magnetic stirrer for 4 hours at ~25'C, again to prevent

stagnant films from forming in the chamber. A 4-hour digestion time was chosen to

have an intermediate (-40% PGs loss) release of PGs according to previous data [13].

This method of enzymatic digestion was used for the 4 hour time point to prevent

exposure of the entire surface area of the cartilage disk to trypsin for better control

of the penetration of the enzyme and in order to more easily interpret the subsequent

impedance results. After 4 hours, the cartilage/bone was removed from the chamber

and a 1 mm thick slice was removed with a sledge microtome, without disrupting the

articular surface (Figure 4.5C).

After the prescribed treatment times in both arrangements, the digestion

buffers were collected and examined to assess the extent of matrix PGs degrada-

tion and release after treatment with trypsin by DMMB dye binding assay of sulfated

proteoglycan constituents [61].

Each 1 mm cartilage disks was then placed in contact with a four electrode vari-

able wavelength surface probe (Figure 4.5D) constructed as described previously [16].

In this case, only the internal two electrodes were used in a short-wavelength con-
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figuration (A = 3.23 mm, penetration depth is -1 mm) to minimize the shunting

of current to the bath solution, which has been previously shown to be as high as

75% in the most extreme cases [13]. The cartilage disk was subsequently subjected

to increasing strain levels of 0, 10, 20, 30, 40 and 50% in the Dynastat mechanical

spectrometer (Hingam, MA) in an unconfined compression arrangement, at 25'C in

the same buffer as above in a cylindrical poly[methyl methacrylate] testing chamber

(Figure 4.5D). A sinusoidal current density of 1 mA/cm 2 was applied to the tissue

over the frequencies of 1, 10, 100, and 1000 Hz at each strain level. It became evident

during the pilot experiments with control plugs that the resultant loads associated

with 50% strain levels (between 1-2 kg) became destructive to the probe laminations,

thus the control plugs were limited to a upper strain limit of 40%.

After the impedance measurements, the cartilage disks were removed from

the Dynastat and allowed to free swell in the experimental buffer for approximately

30 minutes. The disks were then removed from the buffer and the excess water padded

away. The disks were cut into 4 quarters (due to their large size) and a weight wet

taken of each (AE163 Balance, Mettler Instrument Corp, Hightstown, NJ). After wet

weights, the disks were lyophilized, and the dry weights taken. The samples were

digested with 2 ml of 200 pg/ml proteinase-K (Sigma, St. Louis, MO) solution at

600 C and aliqouts taken to assay for sGAG content (by dimethylethylene blue dye

binding assay) [60].

Sample quantities are expressed as mean ± SE, and the difference between the

mean of samples was assessed by a two-tailed t-test.

4.3.2 Measurement of Cartilage Impedance

The impedance, Zmeas, measured across the excitation electrodes of the probe may be

represented by an equivalent-circuit model [13] (Figure 4.6A). The impedance of all

shunt paths can be lumped into a single equivalent shunt impedance, Zsh, in parallel

with the impedance of the cartilage specimen, Zc. As mentioned, in this series of
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Figure 4.6: A. Equivalent-circuit model for the impedance measured with the surface
probe. An equivalent shunt impedance, Zsh, is modeled in parallel with the cartilage
impedance impedance, ZC; in addition, a series component, Zer, is assumed to be
present at the electrode-electrolyte interface, evenly divided between the positive and
negative electrodes. B. Similarly, once the cartilage is removed, the probe is in contact
with the buffer only.

experiments, only the internal electrodes were used, thus minimizing the shunting of

current (therefore, Zh = oc). A significant series impedance, Zser, is present at the

electrode-electrolyte interface. Although it decreases with increasing frequency [81],

it must be accounted for even at 1 kHz. For the purpose of this equivalent circuit,

this series component is assumed to be evenly distributed between the positive and

negative electrodes (Figure 4.6A). Since a current source is used to drive current to

the excitation electrodes, this series impedance would not affect the total amount

of current penetrating the tissue; however, it must be taken into consideration when

interpreting any measurements of impedance using the probe (and could theoretically
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alter the spatial distribution of current density at the electrode surface). Therefore,

the cartilage impedance can be expressed:

ZC - Zeas - Zser (4.7)

The measurement of Zc is then reduced to measuring Ze,. This can be done with

two additional equivalent circuits. The first is the removal of the electrodes from the

cartilage surface, hence the probe is in contact with the buffer only (Figure 4.6B).

Here,

Zser = Zprobe - Zbuffer (4.8)

With the use of a special set of Ag/AgCl electrodes that are assumed to have no

interfacial impedance (Annex Research, Costa Mesa, CA), the Zbuffer can measured

directly. Therefore, combining the measurements together:

ZC = Zmeas - (Zprobe - Zbuffer ) (4.9)

The complex electrical impedances: Zmeas, Zprobe and Zbuffer across the inputs was de-

termined by applying a sinusoidal current at the prescribed frequencies, via a bipolar

operational amplifier/power supply (Kepco, Flushing, NY), configured as a current

source (Figure 4.1) and driven by a frequency synthesizer via a computer, and mea-

suring the output voltage developed by the current source in order to maintain this

current level.

For the two highest frequencies, 100 and 1000 Hz, the measured impedance

across the probe inputs, Zmeas, Zprobe or Zbuffer, was computed as the ratio of the

voltage drop across the load to the calculated load current:

Zmeas - VoutVM = v/2VRMS (4.10)
IC Ic

where VRMS is the root-mean-square value of the sinusoidal output voltage as mea-
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sured by a Fluke digital operating in AC voltmeter mode after one-stage amplification

(Gould, Valley View, OH) for increased accuracy. At the frequencies of 1 and 10 Hz,

the signals were appropriate to be analyzed by a computer as previously described [23]

recording the voltage drop and the driving current. The magnitudes of fundamental

Fourier modes at the prescribed frequencies are used to calculate the impedance.

This measurement system was validated by measuring the impedance of several

resistors (with nominal resistances in the 10Q-5kQ range) placed across the current

source outputs; the values determined in this manner agreed within 1% of the resis-

tance values independently measured with a Fluke digital ohmmeter at all frequencies

tested.

4.4 Results

Treatment with trypsin significantly reduced the amount of sGAG content in the

tissue (Figure 4.7A). Analysis of the control plugs from the 0, 4 and 24 time points,

yielded no significant differences, thus the all the control samples are taken as a

pooled group for the rest of the comparisons. There was a small (4%) loss of GAGs

from the controls, with a significant decrease to 90% from the 4-hour treated tissue

and then another significant drop to 99% for those treated for 24-hour. The 0 and 24

hour treatments produced the expected release of sGAG (-0 and -100, respectively),

while the 4-hour time point was more than the 40% that was predicted from prior

studies with trypsin on newborn bovine tissue. This loss of sGAG was concomitant

with a significant increase in tissue hydration, at the 4 and 24-hour treatment times

(Figure 4.7B), which corresponds with previous work [13].

Figure 4.8A-D displays a summary of the results from the impedance mea-

surements, as a function of strain and frequency. As the frequency increases, the

magnitude of the impedance decreases for all treatment cases. With increasing strain,

there is a monotonic increase of the impedance, for all frequencies. With increasing

frequency, the magnitude of the differences between the controls and the treatment
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Figure 4.7: Trypsin treatment significantly reduced the amount of sGAG per WW
in the tissue (A, open star p<0.01 versus 4-hour trypsin treatment, filled star versus
control, n=4-6). The 0, 4, and 24 hour controls correspond to a percent loss of
sGAG from the tissue of 4, 90, and 99%, respectively. The loss of sGAG content was
concomitant with a significant increase in tissue hydration compared to controls(B).

groups decreases, until at 1000 Hz the control (0-hour) falls between the 4 and 24-hour

treatment groups for all strain levels. Examining 1 and 1000 Hz at all strain levels,

the differences between the two treatment groups (4 and 24-hour) become larger,

and significant. At 1 Hz, the enzymatically treated tissue for 4-hours has a higher

impedance with respect to controls, while at 1000 Hz, the control tissue has a higher

impedance. Qualitatively, this behavior is consistent with previous experiments with

MMP-13 treatment of adult bovine articular cartilage.
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Figure 4.8: A summary of the impedance results of trypsin treated tissue as a function
of strain and frequency (A-D). The magnitude of the impedance decreases with in-
creasing frequency for all treatment cases, with increasing strain, there is a monotonic
increase of the impedance, for all frequencies. As frequency increases, the difference
between the control and the treatment groups decreases, and ultimately at 1000 Hz
the control (0-hour) falls between the 4 and 24-hour treatment groups for all strain
levels. Also, as the frequency increases the differences between the two treatment
groups became more significant at 1 kHz (4 and 24-hour).

4.5 Discussion

Performing impedance measurements using the electrokinetic surface probe is tech-

nically simpler and may be more efficient than using the device to measure current-

generated stress for several reasons:

1. much higher frequencies (i.e. 1 kHz) can be used, therefore the measurement is

performed almost instantaneously without the need for any signal processing,

2. impedance is only dependent on the silver electrode layer of the laminated probe
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structure, thus there is no mechanical calibration step required and the system

more robust without the difficulties of manufacturing probes with the sensitive

behavior of the piezoelectric sensor,

3. the impedance measurements are made simultaneously with the measurement

of current-generated stress (in the low frequency range, 0.025-1.0 Hz, where

CGS is detectable), simply by monitoring the voltage across the probe inputs,

and

4. electrodes can be made arbitrarily small in any arrangement (hence, wavelength)

to control the spatial sensitivity of the impedance measurements to possibly

diagnose cartilage abnormalities in small animal (i.e. rats) where the cartilage

may only be 100 pm thick.

Thus, Figure 4.8 may represent preliminary evidence that an additional method exists

to discriminate between normal and degraded cartilage. Indeed, electrical impedance

spectroscopy (tomography) has been used as a means of nondestructive materials

characterization [137] and biomedical imaging of a variety of tissue types [82,192].

Measurement of cartilage impedance over a range of frequencies (impedance spec-

troscopy) could potentially provide additional information about the tissue, such as

an estimate of cartilage thickness.

Using a computational implementation of the multi-boundary value problem

for finite sized electrodes over a physically realistic range of physical model param-

eters, it was shown that the contribution of electrokinetics to be negligible with re-

spect to the conductivity of the cartilage. Thus, detecting cartilage degradation with

impedance relies on detecting changes in tissue conductivity resulting from loss of

charged aggrecan groups. A complete loss of sGAG content from the tissue would de-

crease the electrical conductivity by only -25% (calculated from Equations 4.1- 4.6),

while the electrokinetic coupling coefficient, and thus the current-generated stress

amplitude, would decrease to zero. As with purely mechanical measurements of car-
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tilage material properties, purely electrical parameters, such as tissue impedance,

would be expected to be a less sensitive indicator of degradative changes due to their

smaller dynamic range. However, the impedance measurement may be able to be

made more precisely than CGS, thus it may have the ability to discriminate tissue

property changes. For example, in Figure 4.8D, the impedance of the cartilage that

was treated for 4-hours (-90%) was significantly lower than that treated for 24-hours

(~99%). This preliminary data must be confirmed with further studies.

The model developed of impedance as a function of the strain and sGAG con-

tent (simulated from Equations 4.1- 4.6) for the experimental geometry, predicted

values of the impedance that were of the order of the measurements recorded ex-

perimentally at 1 Hz (compare Figure 4.4 and Figure 4.8A, 0 versus 100% loss of

sGAG content). In general, with sGAG loss, the model qualitatively predicts that

the impedance will increase with increasing strain, as seen experimentally [36]. How-

ever, with control cartilage (0% loss), the impedance is initially predicted to increase,

but will decrease when the strain reaches 25%, qualitatively agreeing with micro-

continuum models developed by Eisenberg et al. and Chammas et al. [36, 56]. The

experimentally obtained data reported from adult bovine articular cartilage of k22 as

a function of strain [36,56], agrees with the early decrease in impedance also predicted

by the microcontinuum models [36,56]. The behavior at higher strains in this macro-

continuum model may not agree due to the dominance of the Meares and Mackie

tortuosity correction with increasing strain.

The impedance measurement has demonstrated the ability to detect degrada-

tion confined to the upper surface (0.05 mm) of adult bovine articular cartilage when

induced by MMP-13 treatment (Chapter III). This suggests that the impedance mea-

surement is sensitive to the condition of the contact between the probe electrodes and

the cartilage surface. The intact surface layers of undegraded (control) cartilage may

prevent interdigitation of the probe electrodes with the cartilage surface, thus provid-

ing a impedance measurement with a higher variability. This behavior may reduce
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Figure 4.9: The increased hydration while tissue sGAG content is decreasing suggests
damage to the collagen although little or no damage can be detected in the trypsin
degradation products released to the media. In the C- and N-terminal regions, three
lysines (87-17C) form crosslinks between the teliopeptide regions and the helical do-
main of the type II collagen. Opening of the collagen network structure may occur
when trypsin cleaves the arginine site (boxed R) on the C-terminal of teliopeptide
region (15C), without releasing crosslinks to the media for detection [Figure adapted
from [59]].

the sensitivity of the measurement, in particular as the frequency increases and the

difference the magnitude of the impedance between the degraded and control tissue

decreases (Figure 4.8D).

The increase in hydration of newborn bovine articular cartilage with trypsin

treatment time (Figure 4.7B) could indicate that damage to the collagen network

could be occurring. The increased hydration while tissue sGAG content is decreasing

(Figure 4.7A) suggests damage to the collagen although little or no damage can be

detected in the trypsin degradation products in the media [54,104,132]. One possi-

ble mechanism involves opening the collagen network structure without changing the
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banded pattern of the collagen, with the trypsin cleaving its known arginine site on

the C-terminal of teliopeptide region (15C in Figure 4.9). In this region, the three

lysines (17C-87) form crosslinks between the teliopeptide regions and the helical do-

main of the type II collagen. This action would clip the C-terminal crosslinks to

the triple helical domain, without releasing the hydroxylysyl pyridinoline crosslink

to the media. Another possibility is that the helical crosslink sites are the target

(both possess a KGHR secquence), however, this is unlikely, since all the crosslinks

would be released, something that has never been reported in the literature. This

mechanism also possibly explains the lack of hydroxyproline and hyaluronic acid frag-

ments in the post-enzymatic digestion media following trypsin of articular cartilage.

Measurement of the trypsin digestion products in the media of this study revealed

that at 24-hours very litle hydroxyproline fragments were detected, and less than 10%

of the hydroxylysl pyridinoline crosslinks were released compared to controls (data

not shown). This mechanism would suggest that trypsin digestion also is associated

with collagen network loosening, altering the physical properties. In addition, sup-

pliers of trypsin preparations document that they may contain other substances with

proteolytic activity, but it seems unlikely that these impurities could account for the

observed hydration behavior.

In the current construction methodology of the electrokinetic surface probes,

the interfacial impedance of the probe Ag/AgC1 electrodes with an electrolyte (Zser)

must be carefully controlled. It is quite sensitive to the chloride deposition parameters

(current density and time) and frequency of the driving current [80]. Therefore, to en-

sure the collection of consistent impedance measurements with many probes of similar

geometry, a strict chloriding protocol must be adhered to, and the resulting interfacial

impedance carefully measured. In contrast to other possible materials for electrode

construction, the benefits of Ag/AgCl electrodes far outweighs the slight performance

enhancement of that the use platinum black electrodes would provide [209].
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The use of the electrokinetic surface probe to perform impedance measure-

ments may be an effective complement to the diagnostic current generated stress

measurements in vivo. Impedance may be appropriate to detect damage to articular

cartilage that is confined to the superficial regions where OA manifests itself in its

earliest stages, where CGS may lack sufficient sensitivity.
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Chapter V

Development of a Arthroscopic In Vivo

Electrokinetic Surface Probe

5.1 Introduction: Design Paradigms

After extensive and successful use of the in vivo probe developed by Bombard [20]

(also known as the HHV4.0 for handheld version 4.0 probe), there were some natural

extensions to be made on the design while addressing some of the problems encoun-

tered. The HHV4.0 probe had been previously shown to produce reliable results

with young and adult bovine tissue and during an open joint procedure in a canine

knee [20]. In making the first open joint measurements with a dedicated probe system

in a sterile operating room environment, we were exposed to some of the limitations

of the HHV4.0 probe. The major enhancements/improvements that needed to be

addressed were the following:

1. The 1 cm outer body diameter of the HHV4.0 probe, in addition too being to

large to realistically fit into an arthroscopic canula, precluded us from making

measurements on joint surfaces that were highly curved. In the adult canine

the 6 mm diameter working area needed was too large to get an adequate

mapping of the femoropatellar groove or condyles. We were restricted to an

area in the region of the trochlear notch of the distal femur, a location that

spontaneous OA rarely occurs in the knee joint. A mapping of the joint surface

is critical in some applications since in adult (mature) cartilage the mechanical

properties and biochemical composition are dependent of the location along a

joint surface (see Chapter 2) and are critical to comparison among joints. In

future in vivo clinical applications, minimizing the surface area required will

allow for a more sensitive discrimination between areas considered "damaged"

Chapter V



-115-

and adjacent "control" cartilage.

2. The two electrode nature (number of excitation and stress sensor electrodes) of

the HHV4.0, does not allow for the spatial localization of lesions, i.e. surface

degradation seen in OA-like cartilage damage, that is accessible when inter-

digitated electrodes are used [15]. The effective wavelength, A (based on the

centroid to centroid distance between its two hemispherical electrodes), of the

HHV4.0 is 5.34 mm, meaning the penetration depth of the measurement (A/3)

is 1.78 mm, which is greater than the thickness of mature canine or bovine car-

tilage. This indicates that this probe version may be less sensitive in detecting

cartilage damage at the earliest possible stage since it is constrained to a bulk

property measurement through the thickness. The probe has been shown to

be most sensitive when comparing a short wavelength ("surface" measurement)

and long wavelength ("bulk" measurement) through the short/long stress ratio

(SR) [227]. In addition, the present modeling of the current-generated stress

phenomena seems to be unreliable when the thickness of the cartilage (from

articular surface to the tidemark in mature cartilage) becomes small relative to

the wavelength of the excitation current (E. H. Frank, personal communication).

3. During manufacturing of the HHV4.0, the method of assembly of the electrode

transducer structure (ETS) was inconsistent and troublesome. The ETS begins

as a flat laminated structure that must be "formed" to fit on a shape that can be

represented by the end of a cylinder. At times, the flat end of the ETS would be

convex, making the results unreliable and highly dependent on the offset stress

applied to the probe body when measuring the stress response. Ideally, the

ETS should lay flat against the probe head that contacts the cartilage surface

to remove inconsistencies, and their associated measurement errors.

4. In the aforementioned "forming" process, the adhesives holding the laminates

together are subject to high shear stresses and stress concentrations. Especially
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vulnerable is the conducting silver epoxy layer between the metallized side of

the mylar sheet and the Kynar sheet (piezoelectric film). The forming step is

thought to reduce the integrity of this bond, thus compromising the shielding

between excitation and sensor electrodes, decreasing signal-to-noise ratio of the

measurement. In addition, this particular sputtered metallization of the PVDF

film is susceptible to microcracking when severely flexed, in some cases rendering

the probe unusable.

These problems were addressed in the redesign of the HHV4.0 probe, with the

goal to take this version of the probe to the technological limits of the materials and

the manufacturing techniques employed. With respect to the itemized problems, the

significant enhancements/changes for the HHV5.0 are the following:

* (1) A prior lower limit on the probe body size was associated with the need to

run relatively thick connection cables to the Kynar output in the body of the

probe. For the new version, a comparable low-noise cable with four carrying

wires was investigated (Microtek, USA). The wires were insulated from each

other within an insulting sheath of 2 mm diameter, subsequently allowing the

diameters of many parts to be reduced. The resulting design called for an

outer body diameter of 6 mm, with an active area of 4.5 mm, a 64% and 41%

reduction, respectively.

* (2) The four wire bundle now allows monitoring of 4 separate electrodes, making

a multiple wavelength approach possible. The smaller active area constrains the

electrodes to be smaller and thus, the wavelengths are reduced accordingly. The

wavelengths with the HHV5.0 vary from a minimum or "short" wavelength of

2.1 mm (penetration depth of 0.7 mm) to a maximum or "long" of 6.3 mm

(penetration depth of 2.1 mm).

* (3) and (4), Reducing the size of the Kynar and method of its assembly to

the ETS solved the flatness and the shearing stress issues during the forming

Section 5.1



117-

process. The Kynar film is cut to fit the flat active area of the inner core of the

probe, therefore the Kynar does not need to be formed around the end of the

core reducing shear stresses and stress concentrations. Fortunately, the Kynar

film is the stiffest component of the laminate structure; its removal leaves the

silver and mylar sheet to be formed which are pliable and easily conform around

the chamfered end of the probe body. To address the flatness of the ETS, a

cruciform torlon backing plate is attached to the ETS on the Kynar side. It

fits into a matching machined recess in the inner core. The backing plate also

ensures positioning of the stress sensing electrodes. An additional benefit of

making the stress sensor connections on the active area, is the reduction of

unstressed Kynar metallization which increased the voltage output from the

piezo film per unit stress.

Although the reduction of the area of the Kynar electrodes will concomitantly

decrease the voltage output, the design called for signal calibration to be on the order

of 2-4 mV/kPa based on previous work in the in vitro system. These signal levels have

been shown to work well with the prior in vitro models. However, the lower signal

levels have reduced the inherent signal-to-noise characteristics of signal acquisition,

calling for peripheral circuitry to be developed accordingly.

5.2 Design and Construction of the HHV5.0 Probe

The design is a modular structure (Figure 5.1) consisting of a laminated elec-

trode/transducer structure (ETS) mounted in a cylindrical body. The body consists

of a four part design incorporating an inner core which makes electrical connections

to the electrode/transducer structure, covered with a plastic (torlon) sheath and in-

serted into a threaded stainless steel outer tube and screw. The sheath and threaded

tube, when assembled, allow the silver electrodes on the ETS to be in contact with a

cartilage surface while protecting, shielding, and sealing the various connections from
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the aqueous working environment necessary to acquire current-generated stress data.

5.2.1 Electrode/Transducer Structure Design

The electrode/transducer structure (ETS) is the working component of the "probe"

system, applying current to the cartilage surface and measuring the resultant stress

from a piezoelectric film. It is a flexible, 180 pm thick, 3 layer laminated structure.

The layers consist of:

" Silver excitation electrodes are etched from a sheet of silver foil and deposited

with a layer of silver chloride in an appropriate electrochemical cell. The silver-

silver chloride (Ag/AgCl) electrodes are used for applying a sinusoidally varying

current to the cartilage surface. These Ag/AgCl electrodes also decrease the

low frequency impedance between the electrode and cartilage while stabilizing

the electrode potential [80].

* The stress sensor is fabricated from a single sheet of 52 pm thick polyvinylidene

fluoride (PVDF) with a thin (100 A) sputtered nickel-copper alloy metallization

on both sides, known as Kynar (AMP Inc., Norristown, PA). This piezoelectric

material transduces the mechanical stress sensed to a measurable voltage signal.

The metallization on one surface of the Kynar is etched to form electrodes that

register with the silver electrodes on the opposite side of the ETS. The other

side of the PVDF is connected to the ground/isolation plane represented by the

metallized mylar sheet.

Kynar was chosen as the stress sensor in this application for several reasons:

- it has a high sensitivity to mechanical stress especially in this low frequency

(0.025 - 1.0 Hz) application, allowing the film to behave as a compact strain

gauge with no external power source,

- the generated dynamic signals are greater than those from typical strain

gauges after amplification [183], and
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Figure 5.1: An expanded schematic of the handheld version 5.0 electrokinetic surface
probe (HHV5.0). The ETS (A) is held in place within a body by an inner core (B)
pressing it against a plastic (torlon) sheath (C), then a stainless steel tube (D) with
a screwed pusher/plunger (E). A backing plate bonded to the ETS is seated into
the inner core (F). A torlon sheath is placed over the core and ETS, while making
electrical connections from the silver side to the driving electrode wires. These parts
are assembled with a screw from stainless steel tube (D) to a thread on the plunger
(E) to create a sealed environment [Courtesy E. Quan [187]].
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- the flexible sheets are relatively inexpensive and can be cut into arbitrary

patterns.

To characterize the sensor as a stress gauge, a force applied normal (forces in

the plane of the electrode are neglected) to the surface of the film develops

an electric surface charge on the metallization proportional to the mechanical

stress. The charge Q [coulombs] developed by a stress a [N/m 2 ] over an area

A [m 2 ] can be described by Q = dtuA, where dt is an empirically determined

piezoelectric strain constant. The open circuit voltage between the metallization

on either side of the sheet is this charge divided by the capacitance, CA'/6, where

E is the dielectric constant of the film and J is the film thickness. If part of the

total metallized area is not being loaded, it adds to the capacitance without

generating any charge, thus decreasing the measured voltage. Representing the

total area by A' and the active area being loaded by A, the equation for the

open circuit voltage signal becomes:

Q dturA dto A(
Ctotai -A'/6 c (.

For maximum sensitivity, it is desirable to maximize the measured voltage sig-

nal, V, for a given stress, a, thus A/A' ~ 1. The voltage output also depends on

film thickness. As electrodes are more tightly packed onto the ETS, a thinner

film might be needed to gain sufficient spatial resolution with respect to elec-

trode spacing. The AMP company reference [183] contains detailed information

on the properties of this piezoelectric film.

A metallized (with aluminum) mylar layer separates the silver electrodes and

stress sensors while also serving as a ground/isolation plane. The metallization

is a ground plane that helps shield the sensitive stress sensors from electro-

magnetic interference (principally electric fields emanating from the excitation

electrodes) when the ETS is placed in the probe body.
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5.2.2 Probe Body Design

The ETS is held in place within a body by an inner core pressing it against a plastic

(torlon) sheath, then a stainless steel tube with a screwed pusher/plunger(Figure 5.1).

A backing plate bonded to the ETS is seated into the inner core to provide a smooth,

flat mount for the active area of the ETS and to orient the electrical connections to

the stress sensor electrodes. A torlon sheath is placed over the core and ETS, while

making electrical connections from the silver side to the driving electrode wires. This

subassembly is clamped into the stainless steel tube with the screw, providing a sealed

environment as the ETS contacts the cartilage surface to make the current-generated

stress measurement. Electrical connection to the ETS on the Kynar side are made

through pressure to brass contacts on the core. Each of the four brass contacts is

connected in turn to one of a bundle of 4 insulated wires that is directly connected

to peripheral circuitry. Connections to the silver excitation electrodes are also made

through a pressure connection, by pressing the silver on the ETS onto copper contacts

to the excitation source when the torlon sleeve is placed over the inner core. The

ETS is sealed around its circumference between the torlon sheath by a bead of silicon

adhesive to prevent the bathing electrolyte from shorting the electrode connections.

Electromagnetic shielding of the piezoelectric sensor is accomplished by completely

isolating them from the driving electrodes starting with the metallization on the mylar

contacting a stainless steel (SS) rim on the inner core. The SS rim is then continuous

with a the braided grounding sheath on the wire (through a silver sheet press fit) to

the circuitry.

5.2.3 ETS Fabrication

The ETS may be considered a "disposable" item to be replaced after each diagnostic

procedure. The failure mechanism of the ETS may be that the excitation electrodes

might delaminate or the shielding can develop gaps as the ETS is repeatedly calibrated

and used experimentally. The assembly procedure of the fabricating this laminated
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structure is now well characterized in the following phases:

Phase I - ETS Construction

Sheets of the material for the various layers are cut to the appropriate size and then

laminated together with appropriate adhesives (Figure 5.2).

" the silver for the excitation electrodes are made from a 25.4 Pm thick silver foil

(Johnson Matthey, Ward Hill, MA) cut to a size of 18 x 18 mm with a sharp

straight edge.

" the shielding layer is made from 25.4 pm thick Mylar polyester film (MADICO,

Woburn MA) metallized (on one surface) with a thin layer of aluminum cut to

15 x 15 mm.

" the stress sensor is 52 pm thick PVDF piezo film, with a ~~ 100A thick nickel-

copper alloy metallization on both sides, punched to a disk of 4.5 mm in diameter

(the size of the "active" area of the probe).

The sheets are rinsed with a mild detergent and then deionized water, while

handling is done with disposable latex gloves to keep all materials clean to prevent

contamination with oils and dirt. To aid in the photofabrication, both sides of the

silver foil are gently abraded with a fine abrasive and then dipped in a 15% v/v nitric

acid solution. To form a laminated structure, the silver foil is bonded to the non-

metallized side of the Mylar using a two-part urethane epoxy in a 50:1 ratio (Tycel

7000/7200, Lord Corp., Erie, PA) thinned with methyl ethyl ketone. The silver sheet

is larger to allow press fit connections with copper tabs in the periphery of the inner

core when the torlon sheath is in place. The piezo film is bonded to the metallized

side of the Mylar with a manually applied thin film of silver conducting epoxy (TRA-

DUCT 2902, TRA-CON Inc., Medford MA), centered using a custom made jig. The

ETS is pressed together for a few minutes to assure good bonding and is allowed to

cure overnight.
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- mylar (metallized side)
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Figure 5.2: Dimensions of each layer of ETS material. Sheets of the material for the
various layers are cut to the appropriate size and then laminated together with appro-
priate adhesives. The 25.4 pm silver sheet for the excitation electrodes is 18 x 18 mm,
the 25.4 pm thick Mylar metallized (on one surface) is 15 x 15 mm, while the 52 pm
thick Kynar film is punched to a disk of 4.5 mm in diameter. The silver sheet is
bonded to the non-metallized side of the Mylar using a two-part Tycel epoxy, while
the Kynar is bonded to the metallized side of the Mylar with a manually applied thin
film of silver conducting epoxy[Courtesy E. Quan [187]].

Phase II - Photofabrication

To form the the silver excitation and the piezoelectric stress sensor electrodes, stan-

dard photofabrication techniques are used. The surfaces are coated with a light-

sensitive organic polymer, photoresist, that becomes inert to the etching chemicals

when cross-linked by ultraviolet light. A negative of the electrode pattern desired

is used to selectively cross-link the photoresist, then etching chemicals are used to

isolate the electrodes.

The ETS is dehydration-baked at 80 0C for 10 minutes in a convection oven
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to remove residual moisture, and both sides are coated with a photoresist compound

(KPR Photoresist, KTI Chemicals, Sunnyvale, CA), hung to dry for 30 minutes in

a darkroom, and then baked between paper and glass plates (to keep them flat) at

80'C for another 10 minutes. Electrode patterns created by the Postscript language

(Adobe Systems, CA) were converted to negative images (masks) on two photographic

transparencies (Fotobeam, Waltham, MA). A dry, photoresist coated ETS is placed

between the two masks, aligned so the electrodes are registered on opposite sides of

the ETS, then exposed to ultraviolet light for 15 minutes. The ETS is then bathed in a

xylene-based developer solution (KPR Developer, KTI Chemicals, Sunnyvale CA) for

30 seconds, transferred to another bath of developer for 30 seconds, and then rinsed

under warm tap water and blotted dry. The developer removes the uncrosslinked

photoresist, leaving the resist behind in the desired electrode pattern (Figure 5.3).

NW
AT~

lb

T
Figure 5.3: Patterns created for the excitation electrodes on the silver sheet (right),
and sensor electrodes on the Kynar sheet (left) with the Postscript language. The
patterns were converted to negative images (masks) on two photographic transparen-
cies for photofabrication. The rosette pattern around the Kynar electrodes are a
template for cutting during the probe assembly stage.
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Phase III - Etching

Etching of the silver metallization occurs while the ETS is mounted in a custom made

two-part poly(methyl methacrylate) (PMMA) holder with a rubber O-ring gasket to

contain the etchant. An appropriate etchant is a 55% w/v solution of ferric nitrate

heated to 45 0C, with the silver side of the ETS exposed to a fresh etchant bath every

two minutes. The thin metallization on the piezo film is etched, by carefully placing

a few drops of etchant on the surface, waiting only 5-10 seconds, and quickly rinsing

with deionized water. The photoresist is finally removed from both sides with a cotton

swab dipped in xylenes.

5.2.4 HHV5.0 Probe Body Construction

The body consists of three separate parts (Figure 5.1): (1) an inner core for making

electrical contacts, (2) sealing/non-conducting sheath, (3) an outer threaded stainless

steel tube, and a screw. Machining of the designed parts was done by David Breslau

(MIT, Center for Space Research), Laboratory of Nuclear Science (MIT), and by the

author.

Inner core

The first part of two is a stainless steel head, to accept the Kynar contacts and

must be conducting to provide part of the required shielding. The Kynar contacts

were formed by 0.03 in diameter brass rods at 900 intervals, potted into a recess in

the stainless head with a non-conducting two-part epoxy. A cruciform pattern was

machined in the hardened epoxy to accept a "backing plate" constructed to the ETS.

The backing plate allowed for easier orientation of the electrodes and provided a flat

surface for the ETS when contacting the cartilage. The contacts were electrically

isolated from each other and the ground plane (SS part). Prior to potting, each of

the 4 brass rods were carefully soldered to a wire of the Microtek cable, that would

eventually lead to the peripheral circuitry. The cable accommodates four coaxial
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cables that are especially tailored for low noise applications. The second part is a

torlon body, that provides a means of making the electrical connections to the sliver

sheet, through 4 slots on the periphery that each hold a copper tab connected to a

thin wire to carry the driving current. The pressure connections are made by the

sealing/non-conducting sheath when placed on the inner core. The ground plane, is

completed by the braided ground shield of the cable by a thin film of silver foil press

fit between the torlon and SS head.

Sealing sheath

The insulating (non-conducting) sheath is a thin cylindrical shell made of torlon. The

sheath is fitted over the ETS that is placed over the end of the inner core. The end

of the sheath is open, exposing the surface of the ETS to the cartilage during the

measurement. The sheath is long enough to cover the copper tabs on the side of the

torlon body to prevent its contact with the stainless steel outer body, thus isolating

the driving current from ground. In addition, the edge of the sheath is angled to

press fit the ETS over the rim of the SS head of the inner core. The contacts between

the silver electrode arms of the ETS and the copper tabs of the inner core are also

stabilized by the sheath. The bead of silicon adhesive to seal the probe against the

aqueous environment is placed around the periphery of the angled edge before final

assembly.

Stainless steel tube and screw

The outer body stainless steel tube is a cylindrical stainless steel tube that acts as a

stiff cover to protect the inner components of the probe. One end of the outer body is

open to expose the surface of the ETS but angled to catch the edge on the end of the

probe. The other end of the outer body is flared outward. The outer body is slid over

the sheath/inner core. A nut is then slipped over the outer body, making contact

with the threads on the inner core while pulling down upon the flared end of the
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outer body. As the nut is screwed, the outer body is tightened over the sheath/inner

core. The parts work in tandem to presses the ETS flat and make a rigid structure

to measure current-generated stress.

5.2.5 Probe Assembly

The next step in ETS fabrication involves cutting the ETS into a pattern that enables

it to be fit onto the head of the probe. During the photofabrication step, the outlines

of the border were also marked onto the ETS. Cutting is performed along the borders

with a sharp scalpel. After cutting, a 0.33 mm thick crucifix shaped plastic backing

plate is attached to the piezo side of the ETS by a two-part epoxy and dried overnight

(Figure 5.4). The backing plate helps with the alignment of the ETS onto the probe

and ensures it to be flat. The head of the probe has a machined recess in the shape

of the crucifix so that the ETS can fit with the proper orientation to line up the

electrical contacts. The brass contacts at the head of the probe receive signals from

the piezo electrodes while the copper tabs on the side of the torlon body connect with

the arms of the silver electrodes. The current is driven through wires leading up to

the copper tabs and onto the silver electrodes while the current generated stress is

transferred to the piezo electrodes and transmitted through the brass contacts to the

output wires. Once contacts have been made, the torlon sheath is fitted over the head

of the probe, making sure the ETS is lying flat on the surface of the head. Before

the torlon sheath is completely fitted over the head, the silver leads are slipped under

the copper tabs, and the electrical connections are tested to the silver electrodes.

Once all contacts are established, a thin layer of waterproof RTV108 silicon rubber

adhesive (GE, Waterford NY) is placed on the inside edge of the torlon sheath. Finally

the outer stainless steel cylindrical body is slipped over the probe. Adhesive is also

placed on the inside edge of the outer body before the probe finally assembled. Excess

adhesive is wiped off the edges. The sealed probe is allowed to dry for at least 24

hours. The active surface of the ETS extends slightly beyond the tube end and makes
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unobstructed contact with the cartilage surface.

The present design consisting of the backing plate and the smaller Kynar disk

means that the ETS does not have to formed into its final three dimensional shape

with a die as with the HHV4.0, eliminating the stresses to the adhesives holding the

laminate together. The final active area of the ETS is flat, wrinkle-free surface against

the top surface of the core, with no small fold or wrinkle introducing large local stress

concentrations that are sensed by the piezo film, significantly distorting the measured

signal.

BACKING PLATE

Figure 5.4: During the probe assembly stage, a 0.33 mm thick crucifix shaped plastic
backing plate is attached to the piezo side of the ETS. The backing plate aligns the
ETS onto the probe within a machined recess on the end of the inner core and, thus
ensures it to be flat, while creating the proper orientation to line up the electrical
contacts[Courtesy E. Quan [187]].

5.2.6 Electrode Chloridation

As a final step, a layer of silver chloride is layered onto the silver excitation electrodes.

The fully assembled probe is suspended in a bath of unbuffered 0.1M NaCl, titrated

to pH 4.0 with 1 N HCl, and the positive terminal of a variable DC power supply
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(Hewlett Packard) connected to one of the silver electrode wires, in series with an

ammeter and a 47 kQ resistor. The negative terminal is connected to a platinum

strip and suspended in the electrolyte. A current of 120 pA is run for 10 minutes,

corresponding to a total chloride deposition of 1000 (mA-seconds)/cm 2 , for each elec-

trode of 1.59 mm 2 which is acceptable for bioelectric applications [80]. This protocol

is then repeated for the other electrodes. A picture of the fully developed probe is

shown in Figure 5.5.

Cartilage

Bone

Figure 5.5: Schematic of proposed embodiment within a joint cavity left), and a
photograph of an assembled HHV5.0 probe (right).

5.3 Calibration

As mentioned, calibration of the piezo sensor is performed in order to correlate the

signal output of the piezo electrode to a known mechanical stress. Subsequently, the

output during current-generated stress experiments can be converted to a mechanical
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stress. In the assembly phase, calibration also gave reassurance that the connections

between the piezo electrodes and the brass contacts in the inner core, while being

properly sealed. An insufficiently sealed probe head would enable seepage of the

buffer fluid into the probe and risk short-circuiting the system, thus producing no

measurable output voltage.

5.3.1 Hardware setup

Outputs from the probe through two coaxial cables were attached to a two chan-

nel electrometer that allowed for the control of the signal drift associated with the

piezo electrodes*. Output from the electrometer was low-pass filtered (Model 1022F,

Rockland Systems, West Nyack NY), and displayed on a chart recorder (Brush 2200,

Gould Electronics, Cleveland OH) and processed with an analog to digital converter

(ADC) box to a computer for data acquisition/recording. The computer also con-

trolled a mechanical-servo material testing device (DynaStat, IMASS, Hingham MA),

through a digital to analog converter (DAC) producing applied loads needed for sensor

calibration.

5.3.2 Procedure

With the probe mounted in the DynaStat, a static offset stress of 50 kPa was imposed.

After the addition of a buffer (phosphate buffered saline), the system was thermally

equilibrated for 15 min. A computer controlled the DynaStat to apply dynamic

stress amplitudes of 2.5 and 10 kPa in a frequency range of 1.0 to 0.025 Hz. In this

arrangement, two electrodes were calibrated at a time, therefore all four channels

were individually calibrated. The Microtek cable from the probe went to a split box

which separated each channel to an individual coaxial cable output, and an external

gain of 20 dB was applied.

*A detailed description of the experimental hardware and protocol appear in Berkenblit [13]
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5.4 Current-Generated Stress

5.4.1 Hardware Setup

Outputs from the probe were attached to an electrometer, passed through the Rock-

land filter, and differentially amplified (Model 11-4113-01, Gould Electronics, Cleve-

land OH). The differential signal was displayed on the chart recorder, and recorded

on a computer. The computer also controlled the current input to the probe through

a DAC box, to a current source (Kepco, Flushing NY).

5.4.2 Procedure

Calf knee joints were delivered within 24 hours of slaughter (Research 87, Boston

MA). The distal femur knee joint was dissected and a 9.5 mm core was removed from

the femoropatellar groove. A 1.0 mm slice of cartilage was microtomed, placed in

a chamber, mounted in the DynaStat, and the probe was lowered onto the tissue.

Buffer (PBS) was added to the chamber and an offset stress of 50 kPa was placed on

the tissue. The current passes through a switch box that can vary the polarity pat-

tern of the silver electrodes. The polarity of the four silver chloride electrodes could

be externally connected into short, or extra-long spatial wavelengths. In the short

wavelength configuration (Figure 5.6A), for a current density of J = 0.5 mA/cm 2 , the

amplitude of the driving current amplitude was 15.9 pA (A = 1.59 mm 2 ). The elec-

trometer could only measure two electrodes at a time, therefore the test was repeated

twice: The first run acquired the differential output between channels 1 and 2, and the

second run between channels 3 and 4. For the extra-long wavelength (Figure 5.6B),

for a J = 0.5 mA/cm 2 , the driving current amplitude was 8 /A (A = 0.80 mm 2).

5.4.3 Correcting for Parasitic Capacitance

Testing of parasitic capacitance was performed to measure any artefactual response

that may have been induced by application of the current but not related to the me-
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Figure 5.6: Electrode polarity configurations short (A) and extra-long (B) wave-
lengths. The polarity of the four silver chloride electrodes could be externally con-
nected. When the current is applied in a short wavelength configuration (A) the
current is more confined to the upper surface of the tissue. By comparison, with a
extra-long wavelength excitation (B), the current can penetrate the full depth, in-
cluding regions that may not be effected by a tissue degradation. By comparing the
current-generated stress in both configurations a short over long stress ratio (SR) can
be calculated. The SR will decrease if the surface region is more degraded, allowing
spatial localization of degradation [Adapted from Courtesy E. Quan [187]].

chanical stresses within the cartilage. Testing for the parasitic response was done by

suspending the probe in buffer, not in contact with the cartilage. However, parasitic

signals either created by incomplete shielding or perhaps by some other unknown cou-

pling phenomenon have been previously observed. Measuring the parasitic response

was important to correct for CGS for this artifact. Parasitic runs were performed

using the short wavelength configuration at J = 0.5 and 1.0 mA/cm2
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5.5 Results

The calibration of the HHV5.0 probe produced output signals below 1 mV/kPa per

piezo channel expected, however it followed the trends that were previously character-

ized for the piezo response. The piezo channels whose signals had variations amongst

each other (Figure 5.7). The voltage output from channel 2 was higher than those

from channels 1, 3, and 4.
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Figure 5.7: Piezo response for each channel at various dynamic amplitudes and fre-
quencies. As with previous probe designs, the calibration signals increased linearly
with increasing dynamic amplitude and decreased with increased frequency.

When testing the excised bovine disks for current-generated stress in a short

wavelength configuration ((Figure 5.6A), the differential response from piezo channels

1-2 and 3-4 were recorded (Figure 5.8A,B). The differential output increased with

increasing current density (J) and decreased with increasing frequencies as previously

characterized by earlier probe version and theoretical predictions. The results from
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the combinations of channels showed that the differential response from channels 1-2

were different then the output from channels 3-4.

Channel 1-2 Channel 3-4

0 0.5 1 1.5 2
CURRENT

2.5 0
DENSITY

0.5 1
(mA/cm 2)

1.5 2 2.5

Figure 5.8: Differential amplitude from channels 1-2 and channels 3-4 at various ap-
plied current densities and frequencies (A,B). Driving current is in a short wavelength
configuration. The differential output increased with increasing current density and
decreased with increasing frequencies as previously characterized. The calculated
CGS, using calibration results, showed similar trends to the differential piezo output
(C,D). These results suggest the importance of observing the individual responses of
each electrode separately, rather than pooling electrode responses.

The calculated CGS, using calibration results, showed similar trends to the

differential piezo output (Figure 5.8C,D). These results show the importance of ob-

serving the individual responses of each electrode as opposed to averaging the signals,

which was the method used in past experiments involving multiple interdigitated elec-

trodes [14]. In addition, the results presented were extreme in the channel differences,

and not the norm for all the other experiments made by the HHV5.0 probe.
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Measurements were also performed while driving a current with an extra long

wavelength configuration(Figure 5.9). The differential output from channels 1-4 and

the calculated CGS along with the phase were consistent with previous results with

the v4.0 probe (Figure 5.9). The extra-long wavelength results, as expected, are larger

in magnitude than the short wavelength. Calculating the normalized stress amplitude

(CGS divided by the current density, J) and then plotting the results versus frequency,

the expected trend of a decreased amplitude with increasing frequency emerges. The

magnitude of the the CGS was of the order of the previous results with the in vitro

probe.

E 1.5 - 0 0.1 Hz A B-6
A 0.25 Hz 0
El - 0.5 Hz -4
*1.0 Hz

o 0.5- -2

0 _ _ _ _ _ _ _ _, _ _ _ _ _ _ _ _ , 0

0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5
CURRENT DENSITY, mA/cm 2

Figure 5.9: Differential amplitude and CGS response from an extra-long wavelength
configuration (electrodes 1-4) at various applied current densities and frequencies The
results were consistent with previous results with the HHV4.0 probe. The extra-long
wavelength CGS results, as expected, are larger in magnitude than the short wave-
length and decreased with increasing frequency.

The amount of parasitic signal was measured to be less than 10% of the output

from each experimental run, where in contrast, the HHV4.0 probe had parasitic signals

upwards of 50% (data not shown).

5.6 Discussion

In pushing the the present technology to its maximal capabilities to miniaturize the

probe for arthroscopic use, a significant portion of the shortcomings with previous

versions have been eliminated. To optimize probe performance and reliability, several
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issues still need to be addressed in the current electrokinetic probe system (HHV5.0).

HHV5.0 is generated less voltage per unit applied dynamic stress than was predicted

from HHV4.0 measurements and the performance of the piezoelectric film (Equa-

tion 5.1). The linear relationship between active electrode area and voltage output

may not hold when such small areas are reached. Additional hardware to amplify and

filter the signal will be required for appropriate signal analysis. The calibration differ-

ence between electrode pads (channels) suggests the use of an separate calibration for

each Kynar electrode when calculating the CGS to increase the sensitivity, especially

at low signal levels. The level of artefactual parasitic capacitance contributing to the

CGS measurement have been drastically reduced with the HHV5.0 probe. Mainly

due to better shielding through design adjustments. The parasitic capacitance, along

with sealing of the probe in this aqueous environment, are two issues that contribute

to failure of the ETS, and thus must be closely monitored for reliability.
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Chapter VI

Summary

Establishing the link between macroscopic electromechanical properties, biochemical

composition and ultrastructural organization in cartilage will elucidate the role of

mechanical forces in regulating the biosynthetic activity of chondrocytes to main-

tain a functional extracellular matrix (ECM). To this end, non-destructive cartilage

diagnostic procedures are needed by clinicians for applications including: detecting

the early stages of cartilage degeneration in diseases like osteoarthritis (OA) and

evaluating the functional properties of cartilage repair tissue.

In this thesis, a protocol was developed to assess the biomechanical properties

and biochemical composition of human knee and ankle cartilage. It was found that

the ECM of the talar (ankle) cartilage is denser with higher charged glycosaminogly-

can content and lower water content, consistent with a higher equilibrium modulus

and dynamic stiffness, and lower hydraulic permeability. This denser ECM may

be chondroprotective. Its biomechanical properties may endow it with an increased

stability to loading, protecting the chondrocyte and making the cartilage less suscep-

tible to OA. These findings demonstrate the utility of diagnostic tools which assess

the physical properties of cartilage.

The hypothesis that surface electromechanical spectroscopy measurements

could sensitively detect degradative changes in cartilage matrix caused by collage-

nases MMP-1 and MMP-13 was tested. We found that MMP-1 induced damage

to the collagen-aggrecan network was detected by changes in the current-generated

stress response. In addition, the measurement of total tissue impedance using inter-

digitated electrodes placed on the cartilage surface was capable of detecting superficial

(MMP-13) and deeper (MMP-1) lesions caused by collagenase in vitro. The ability of

surface electromechanical spectroscopy to detect changes in both electrokinetic and

impedance properties enhances its potential diagnostic capabilities in vivo.
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For diagnostic applications in vivo, an electrokinetic surface probe was de-

signed with a 4.5 mm diameter active area that is capable of measuring current-

generated stress and impedance non-destructively during arthroscopic or open joint

procedures. Its size now makes it possible to use it within an arthroscopic canula.

Its multiple wavelength capability permits the spatial localization of surface cartilage

lesions typical of early progressive OA. This a step toward providing physicians with

a diagnostic tool for determining cartilage degeneration in the clinic.
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Appendix A

Past, Present and Future of Cartilage Repair &

Electromechanical Property Assessment in

Cartilage Repair Model Systems

A.1 Introduction

The repair of cartilage focal defects is one topic that has seen a huge amount of

increased attention in recent years since the publication of a paper by Brittberg et

al. [24] in the New England Journal of Medicine in 1994. The enormous amount of

research into cartilage repair is demonstrated by the extensive body of literature over

the past two centuries. This interest is well warranted since repairing such defects

may reduce the future need for surgical procedures like total knee arthroplasty (to-

tal knee replacements) and arthroscopies. For the patient, this means significantly

augmenting their quality of life by increasing mobility and reducing day to day pain.

Ultimately, in today's world of cost conscience managed care through health main-

tenance organizations (HMO), healing cartilage damage could lower the $55 billion

that the United States spends per year on arthritis.

Brittberg et al.'s work centered on the transplantation of cartilage cells (chon-

drocytes) to a site of focal damage after these cells were expanded in culture. Their

report of positive results has re-energized the public interest into the repair of fo-

cal lesions in cartilage and possibly preventing osteoarthritis, topics that have been

studied for centuries.
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A.2 Scope

The scope of this appendix will cover the past, present and future of techniques used

to repair focal defects in cartilage. It will attempt to project what the standard of

care will be into the next century, and what challengers face researchers to provide an

optimal cartilage repair tissue. In addition, recent examples through collaboratory

work of electromechanical property assessment in cartilage repair model systems will

be provided. This represents an attempt towards making functional electromechanical

measurements of cartilage repair tissue to assess its potential success in vivo.

A.3 Past

As far back as 1743, Hunter [108] boldly stated "from Hippocrates to the present

age it is universally allowed that ulcerated cartilage ... once destroyed, it is not

repaired". This is especially a troublesome thought for a young person with a painful

focal cartilage lesion resulting from a traumatic injury. This patient may have to

endure the pain of this focal lesion progressing to osteoarthritis for the better part of

their lives. Luckily, Hunter's observation was not accepted as dogma. The debate as

to whether cartilage can be repaired still rages to this day, with increasingly better

prospects for a solution as technology continues to evolve*.

Trimbell Fisher [65] lecturing to the Physiological Society of the Middlesex

Hospital in England in 1923, urged those in attendance not to be awed by the work of

the "bone-setter" in the healing of joint pain. A bone-setter at this point in medical

history was one who would immobilize a painful joint to provide the patient pain relief

at the expense of mobility. He urged that research was needed into the pathological

principles of joint degeneration to increase the quality of life for the public suffering

*The repair of damaged articular cartilage is a unique problem within the human body with
regard to its response to injury in its soft tissues. This behavior stems from articular cartilage
lacking a blood supply, thus being unable to undergo the classical cascade of events that lead to
repair, as will be discussed.

Section A.2



-141-

from joint pain. His experiments confirmed an observation made in earlier published

works, that incisions into articular cartilage heal sluggishly without a cartilaginous

repair tissue. These observations were made through the use of histological and

microscopic methods. In fact, even presently, histology persists as the only method

used by some investigators today in an effort to compare repair tissue to native

articular cartilage.

In a separate experiment, Fisher removed the cartilage down to the subchon-

dral bone, creating a granulation tissue response that covered the denuded zone (bone

no longer covered by cartilage) due to the blood supply now provided to the defect.

He also observed that during osteoarthritis (cartilage erosion due to wear and tear),

the cartilage attempts to cover defects by extending its surface from unaffected areas

to cover those that have been compromised. At the time he noted these capabili-

ties as "one of the most striking adaptations of the human body". This contradicted

Hunter's earlier observation and showed the potential of articular cartilage to attempt

to repair damaged or degraded areas.

Bennett [11] summarized the conflicting reports in the literature of whether

cartilage could be repaired in 1932. The goal of his subsequent research was to help

resolve the issue with some novel experiments. In adult dogs he did three separate and

illustrative studies: 1) he removed a thin strip of articular cartilage from the weight

bearing surface of the medial condyle and the middle of patellar groove, 2) removed

cartilage from patellar region, cut it in half, with one half then replaced as a "joint

mouse" t, and 3) cartilage and bone was taken from the concavity of the patellar

groove, with half again used as joint mouse. These lesions were examined at 4, 12, 20

and 28 weeks with histological methods. Of 9 defects, 7 had repair tissue, with the

2 unrepaired from the patellar groove region. The defects in the subchondral bone

were covered by pannus (inflammatory tissue), and replaced in stages by a fibrous

tIn general, a "joint mouse" is any loose body in the knee joint. In this case, the loose body
is replaced into a void to act a filling material. This is analogous to replacing a divot on the golf
course.
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tissue, then an imperfect hyaline cartilage at 28 weeks. The "joint mouse" did not

have intra-articular changes and the bone underlying the defect was resorbed.

In a further study published 3 years later [12], Bennett reflected back on his

first study, concluding that the repair was better at the perichondrial margins and on

weight bearing surfaces, but in general, he felt it was incomplete. He hypothesized

the mechanism of repair to be by one of the following three methods:

1. independent proliferation of the original cartilage cells,

2. proliferation of the vascular tissue from the perichondrial margins, or

3. ingrowth of vasculature from the subchondral bone.

A second study was done with newborn dogs to see if the quality of repair was

superior to that of the adult believing younger chondrocytes have a better regenerative

capacity. He hypothesized that younger chondrocytes have a greater capacity to

regenerate damaged or removed cartilage. Incidentally, he choose to use tissue from

the center of the femoropatellar groove, which is subject to lower loads in normal

activity than cartilage from the femoral condylet. Bennett found that the repair

was not better than he observed in the adult dogs, but did note that the proliferative

activity of the cells was increased in the deep cartilage layers, where the concentration

of cells is higher in comparison to the superficial zone.

Thus, early work established that articular cartilage had some repair capacity,

but continued research was needed for further improvements and understanding.

tRecent studies have indicated that this may be true for bipeds, but in quadripeds the
femoropatellar regions can be highly loaded (A.J. Grodzinsky, personal communication).
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A.4 Present

A.4.1 Cartilage Basics

Since cartilage repair deals directly with its constituent materials, some characteristics

of cartilage should be addressed due to their impact on the repair mechanisms .

Scanning electron microscopy has shown that cartilage is not smooth, but

undulates in relation the cellular distribution close to the articular surface. This and

many other studies combine to highlight the importance of the highly organized extra-

cellular matrix around the chondrocytes to allow the cartilage to be fully mechanically

functional. The proteoglycan content gives it the ability to withstand compressive

load, and its high collagen content allows it to resist shear loads.

Cartilage is aneural, thus relying on capsular, synovial, subchondral bone, and

muscular nerve endings to feel pain and for proprioception. Thus, cartilage can not

directly report abnormal stress states resulting from blunt trauma, or mechanical

overloading. Its avascularity renders it unable to proceed with a classic inflammatory

response that is mediated through the vascular system for most other tissues.

Central to the issue of healing is the ability of the cartilage cells (chondrocytes)

to replicate. Looking at immature tissue with light microscopy, cells can be found in

various stages of mitosis in two distinct zones: those that are close to the articular

surface that provide cartilage mass and a deeper zone, where the cells resemble those

of the epiphyseal growth plate. As the animal matures, the mitotic index decreases,

and only a zone of cells just above where the vasculature invades the very deep layers

of cartilage remains active.

It seems as maturity is reached, chondrocytes seems to cease to divide. One

relevant questions is raised; Do chondrocytes "turn off" or "break" the switch for

DNA replication and thus cell division? It has been conclusively shown that the

former is true, that mature chondrocytes can display further replication under the

§Some of the material in this section was inspired by a review article by Trippel et al. [2281.
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appropriate conditions.

A.4.2 Response to Injury

In vascular mammalian tissues, the normal cascade in response to injury for most

organs and structures consists three phases: necrosis, inflammation and repair. Ar-

ticular cartilage undergoes necrosis, as cells die locally and the extracellular matrix

is disrupted. No local inflammation occurs due to the absence of the vascular system

to mediate the process. Superficial lesions are left to repaired by the cartilage itself

due to the absence of the fibrin clot that would be present in other mammalian tis-

sues. When deep defects are accompanied by damage to the bone, the normal healing

mechanism is triggered, resulting in fibrocartilage.

Blunt Impact

Whether there is a single or repetitive impact loads applied to the cartilage surface. it

has been shown that damage occurs (chondrocyte death and matrix fissuring) when

a threshold of 20% strain is exceeded. This lesion can progress to osteoarthritis, but

it has been showed by Radin et al. [189] that sometimes the damage can be reversed

especially if the damage is mild.

Superficial Injury

Following a superficial lacerative injury (does not penetrate below the tidemark to

evoke a vascular response), most investigators have been unable to show that cartilage

is making sufficient tissue to connect the edges of the damaged cartilage. The injury

evokes a short-lived metabolic and enzymatic response that is unable to repair the

most trivial lesion, like that made by a scalpel blade. This brief response consists of:

increased mitotic activity in tissue adjacent to the defect, an increase incorporation

of ["S]sulfate (an indicator of glycosaminoglycan synthesis), [jH]glycine (indicates

protein synthesis), and cell replication measured by [3H]thymidine incorporation oc-
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curs [50, 141]. Within a week all indicators revert to "sham" or control numbers.

Fuller et al. [77] made tangential partial-thickness cuts in young rabbit articular car-

tilage with no repair reaction. Ultrastructural studies showed cell death at the cut

edges, with surviving chondrocytes displaying a higher metabolism to maintain ma-

trix integrity.

Several studies following such injuries for 6 months show the healing process

has ceased, but such injuries don't proceed to osteoarthritis even after 1 year later

which is a positive for young patients with such injuries .

Full Thickness-Penetrating Injury

When the injury penetrates the subchondral bone, the repair can proceed from the

multiple cell types and blood constituents from the plasma. The defect fills with

blood, then organizes into a fibrin clot trapping red blood cells, white cells and

platelets with progenitor cells multiplying and laying down a vascular fibroblastic

tissue that undergoes progressive hyalinization to a fibrocartilaginous mass. Bone

eventually refills its original region.

As with the lacerative injury, at the margin of defects there is a burst of

synthetic activity but only enough to replace some of cells and matrix damaged by

the original wound.

The fate of the fibrocartilaginous mass becomes the focus for the repair re-

search community. In a rabbit model the mass has been shown to display mitotic

activity with the formation of aggrecan and type II collagen. After 12 months, the

appearance becomes less hyaline and the mechanical quality of the tissue is sus-

pect [40,166].

The fact that such scalpel cut injuries don't progress to osteoarthritis is great news to the
young patient undergoing arthroscopy for a torn meniscus. To repair the damaged meniscus, it
must be excised with a long scalpel-like instrument. Since the scalpel can be hard to control for the
orthopedic surgeon in tight joints, slips accompanied by slicing into the adjacent cartilage can occur
( S. Treppo, personal observation ). This is regarded as a frequent complication of arthroscopy.
As mentioned, this type of superficial lacerative injury does not heal, but it does not progress to
osteoarthritis either. Therefore, surgeons are not overly concerned when an accidental slice occurs.
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Adult dogs were used to test the biomechanical properties of full thickness

osteochondral defects by Nelson [176]. This model is very similar to the aforemen-

tioned rabbit model, and the repair tissue showed poor biomechanical quality that

contributed very little function in joint loading. Interestingly, the observation was

made that the cartilage adjacent to the defect did not degenerate due to the higher

loads it now experiences, even after 11 months.

Large defects were created in the distal femur of horses and followed for almost

a year in a study by Convery [45]. The repair was more or less as described, but had a

dependency of the original lesion size. Defects less than 3 mm in diameter completely

healed, and signs of repair were hard to find after 9 months. Defects greater than

9 mm had complete repair but with a variety of types of tissue. Fibrous tissue,

fibrocartilage and hypercelluar hyaline-like cartilage were all present in the defect.

This combines into two significant problems that are relevant to clinical joint

disease:

" the failure of cartilage injuries to heal; nonprogressive slices are of little concern,

but the focal lesion with progressive destruction leading to osteoarthritis is a

clinical concern. For better healing, the replicative and synthetic abilities of

chondrocytes must be addressed, and

" deep injury to cartilage; there is a rapid repair response, but it is the nature

of the fibrocartilage that fills the defect that is of concern. The tissue never

becomes true articular cartilage and proper repair must insure that the proper

cell types are present to induce the proper matrix.

A.4.3 Present Clinical Approaches to Healing of Articular Cartilage

Debridement

Prior to total knee arthroplasty becoming a reliable procedure, removal of irritat-

ing/painful material like abnormal synovium, osteophytes, and softened fibrillated
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cartilage was an acceptable procedure. The use of debridement again increased with

the perfection of the arthroscope as a frequently used clinical tool to access the surface

of articular cartilage. Some clinicians believe the "shaving" of the offending material

promotes healing, whereas more skeptical surgeons believe other aspects of the proce-

dure provide relief from pain for the patient. Debridement is different from abrasion

arthroplasty, where drilling into the bone is performed. As discussed, with shaving

repair is not expected, while drilling will create a repair tissue, although a suboptimal

tissue.

Stimulating Repair: Continuous Passive Motion and Electrical Fields

Salter et al. [203] drilled subchondral bone defects in distal femur of rabbits and

found that continuous passive motion enhances the healing of the cartilage compared

to immobilized controls based on histological staining.

An attempt was also made to heal deep defects in cartilage using an electrode

placed under the bone and creating a local electrical field [8]. Histology showed

hyaline cartilage filling the defect although the mechanisms are still unclear. More

recent techniques are reviewed by Aaron et al. [1].

Grafting of Defects

The inability of the endogenous chondrocytes to repair defects has created interest

in rib perichondrium as an exogenous sources of cells for repair. Such grafts have

been successful in rabbit defect models, but have had mixed results treating hand

arthritis in humans [210]. Periosteum, was also used by Rubak [196] to fill defects

successfully for up to 1 year, and has shown that the repair cells migrate into the

defect from the periosteum, not the cartilage. These grafts when combined with

continuous passive motion has significantly less degenerative changes at 1 year than

controls [180] and were biomechanically stronger [248] (although these mechanical

differences disappeared with time).
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Cell grafts

A landmark study in the repair of focal defects in cartilage, was that of Brittberg et

al. [24] in 1994. A method to repair focal lesions could lower the 150,000 procedures

now done to alleviate patients pain. The procedure in humans is an extension of

their earlier work in rabbits, that showed its efficacy over the past 10 years [84]. The

technique involves transplanting autologous cells harvested from the anterior aspect

of the distal femur during arthroscopy (300-500 mg of tissue)1. The cells were cultured

for 14 - 21 days and re-implanted into the 23 patients' (ages 14-28) for full thickness

cartilage defects (size from 1.6 to 6.5 cm 2 ) confined to the articular cartilage. The

cultured chondrocytes were injected into defects on the femoral condyle (16 patients)

and the patella (7 patients), after the defects were covered with a harvested periosteal

flap sutured around the affected area. Patients were followed for 16-66 months. The

initial pain and swelling was reduced for all patients assessed by physical exam. At

three months arthroscopy was done, showing the sites filled with a "spongy" tissue

(assessed subjectively by a blunt arthroscopic probe) with delineated borders. A

second arthroscopy was performed 12-46 months later, and revealed a "firmer" tissue.

At this time the focal repair sites were biopsied to perform histology and staining for

type II collagen.

At two years, 14 of 16 patients had good to excellent results for the femoral

condyle repairs. The 2 poor cases showed central wear of the joints. The patellar

transplants were not as successful, with good results found only in 2 of 7 defects.

Histology showed a hyaline-like material filling the original defects, that positively

stained for type II collagen (a hallmark for articular cartilage) with the periosteal

tissue still present, and incorporated into the repair tissue at the articular surface.

The authors admit that this is a procedure that may be most effective to repair a

11 The anterior part of the distal femur were the chondrocytes are harvested, is known to be exposed
to a relatively low level of mechanical loading due to the anatomy of the knee joint. Loading occurs
in this location when the knee is in full flexion, like in a deep knee bend. Some orthopedists are
hesitant to harvest such cartilage because of the concern of the defect progressing to osteoarthritis
in future years.

Section A.4



149-

focal defect, like those found accompanying traumatic injury in younger people rather

than the larger defects that are associated with wear and tear in older adults.

Although the results brought a lot of positive publicity to cartilage repair

efforts and returned an old concept back into the mainstream, skepticism in the

orthopedic community remains. Dr. Henry Mankin, in a comment to New England

Journal [146], cautions that the progression to osteoarthritis is so slow that we must

not delude ourselves into thinking this is the solution to the cartilage repair question,

but to keep trying to perfect the associated techniques.

The authors also conjectured 3 explanations for the repair tissue they observed:

1. cells repopulate the defect as the periosteal flap holds them in,

2. periosteum stimulates the transplanted chondrocytes, or

3. the transplanted chondrocytes and periosteum attract cells from the border to

grow in and repair the defect.

These conclusions, if compared to those supplied by Bennett [12] some 65

years earlier, represent little advancement in the knowledge regarding the mechanisms

driving cartilage repair. Therefore, more research needs to be done, and with the

present interest high, there are great prospects for the future.

In recent published results, repair tissue from different types of failed cell

based procedures to repair focal defects were analyzed [175]. Repair tissue from filled

defects was analyzed from 22 revision surgeries of 20 patients with a mean age of

40 years. The repair tissue was sampled from center of the failed graft for histology

and to assess "cartilage development" using collagen type II stains. The repair when

sutured perichondrium was used to hold the cells in place was the best with respect

to proteoglycan content and collagen type II staining, but the subchondral bone grew

toward the articular surface, making the "cartilage" thin. When cells were put under

the periosteal flap (the procedure originally used by Brittberg et al.), little type II

was found within a thick layer of fibrous tissue. Tissue from areas that were subjected
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to abrasion arthroplasty, had degenerating cartilaginous tissue that was not suitable

for biomechanical loading.

Although this study looked at failed grafts, this does not confirm that the

patients with successful grafts (painless knees that do not need revision) do not have

a similar suboptimal repair tissue. Unfortunately, it is presently difficult to obtain

repair tissue samples from patients with successful grafts to assess its quality.

Questions Raised by the Brittberg Procedure

" What are the phenotype of implanted cells? The authors believe that the cells

maintain a chondrocytic phenotype, but the resulting repair tissue does not

always correlate. When the cells are expanded in culture, they revert back to

the a more primitive fibroblastic phenotype for replication. Perhaps not all cells

re-differentiate into chondrocytes when re-implanted.

" What is the effect of mechanical stimulation? The patients that were allowed

to ambulate within days of the procedure had a lower success rate, especially

with patellar defects. This may be due to higher forces experienced. Earlier

studies in animals had shown no difference in the repair tissue between loaded

and unloaded areas.

" What will be the results at long time points? The animal studies generally show

some degradation at 6 months, thus it will be interesting to see the fate of the

transplant repair tissue at 5-10 years.

* What is the source of repair cells? Is it the implanted chondrocytes or those

made available to the defect from the periosteal flap that holds in the cultured

chondrocytes? Defects have successfully been treated pre-clinically with perios-

teum and/or cells [229]. To prove the source of the repair cells, the Brittberg

study needed a periosteal only control in humans, although they have previously
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reported in their rabbit model that implanted cells with the periosteal flap had

better repair than the periosteal only control [84].

A.5 Future

A.5.1 Cell Based Cartilage Resurfacing

Researchers** have come to the consensus that the common methodology needed for

any successful system of cell based cartilage resurfacing includes:

" a source of cells,

" a means of fixing the cells in place, and

" an adequate bioniechanical and biochemical signals to ensure cell survival and

matrix synthesis.

These techniques optimized with an arthroscopic method of implantation

would be the embodiment that has been visualized as the most appropriate for future

patient care in an orthopedic clinical setting.

Source of Cells

Chondrocytes There are two distinct candidate sources to use for implantation:

autogenous or allogenous cells. The use autogenous cells (the patients own cells)

will avoid the problem of an adverse immunological reaction to foreign cell-surface

antigens for the recipient. However, recent studies [101] have shown that allograft

cells used in a three-dimensional matrix to resurface cartilage do not have a detectable

immune response. This behavior may be a consequence of a newly formed pericellular

**Parts of this section were motivated by a workshop at the 43rd Orthopedic Research Soci-
ety meeting in San Francisco, California in February 1997 entitled "Cell-based Articular Cartilage
Repair: Research Considerations" led by Dr. Ernst Hunziker.
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matrix surrounding the cells, thus blocking the immune response of the host to the

delivery vehicle (i.e. fibrin, polymer, etc.) by immediately isolating the cells.

Autogenous cartilage must be harvested from the knee joint, and the search

for a non debilitating site on the distal femur is a clinical concerntt, with the possible

use of sternal cartilage chondrocytes suggested. The integration of the transplants

with the surrounding tissue is an issue which can be assessed experimentally through

histology or histochemical analysis. Repair tissue integrates with rough subchondral

bone, therefore the removal of the layer of calcified cartilage is important in cell based

grafting.

Researchers also have the choice of using immature or mature donor allo-

graft cells. Chondrocytes from immature animals are more prolific in culture, more

metabolically active, have a longer survival in liquid N2 , and better activity when

thawed than mature animals. Fetal chondrocytes are most active but, their survival

in grafts is, as yet, unknown.

Mesenchymal Stem Cells There has been much recent interest in using stem

cells since they are autogenous and synthetically active cells [33] with the following

advantages:

" readily accessible in pools of bone marrow,

* general anesthesia is not necessary for harvesting, and

" pluripotent cells can be manipulated with growth factors to a chondrogenic

pathway in culture before implantation and the local condition of vascular access

and oxygen tension will drive chondrogenesis and osteogenesis in a full thickness

defect.

And the disadvantages:

ttThe concern of site selection for cell harvesting on the distal femur is two fold; 1) not to create
damage that will progress to osteoarthritis later in life, and 2) obtaining enough cells to populate
the defect when re-implanted after expanded in culture.
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" pleomorphic cell population that subsequently have been shown to exist in

monolayer, suspension cultures or fibrin vehicles, and

" the difficulty to deal with stem cells in culture.

Vehicles

A key issue is the use of biologic or a synthetic material. Both materials provide

a three-dimensional support, fix the cells in place, and provide some biomechanical

integrity.

Biologic These include fibrin, collagens, alginates and hyaluronates. Fibrin can

be used during arthroscopy due to its injectable delivery for chondrocytes using fib-

rinogen and thrombin components. Additional anchorage for fibrin can be provided

by poly-L-lactone tacks. Collagen meshes have been shown to support chondrocyte

growth in vitro [177], but most are type I collagen, so in vivo results have been un-

satisfactory [204]. Hyaluronates support chondrocytes, but are not yet viable long

enough in vivo to support chondrocyte attachment.

Synthetics In general, three structures are considered: polymer meshes, pads, and

porous lattices, which include polyglycolic acid, polylactic acid, poly-L-lactone, and

polybutalone. These can be seeded with chondrocytes then implanted to fill cartilage

defects. The vehicles can also be laden with growth factors during polymerization for

enhance cell growth.

Growth Factors

Many growth factors have been evaluated in cartilage culture environments. Fac-

tors that positively influence cartilage behavior are TGF-3, EGF, bFGF, and IGF-

1. TGF- has been used successfully in tissue culture as a stimulus to chondro-

cytes. Intra-articular injections result in arthrofibrosis, while higher concentrations
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have been shown to be cytotoxic. IGF-1 has been shown to be well tolerated intra-

articularly and can be mixed with a fibrin vehicle to be slowly released. This will

maintain an optimal concentration to provide a mitogenic stimulus and an increased

biosynthetic rate for the chondrocytes that need to fill the defects with the extra-

cellular matrix they produce.

Age of Patient

Clinically, repair of focal defects in young children have shown a great outcome. This

motivates a cartilage repair model in young animal to elucidate the molecules and

mechanisms involved. Interestingly, in this model, integration of the defect tissue is a

success, while the cells that repopulate the defect are not from the marrow below as

usually seen with the natural repair of the adult tissue. Thus, this is a great model

for integration, but not for the repair sequence that is more apparent in more mature

cartilage.

Repair Tissue Integration

An other problem that must addressed is the integration of tissue to the native tissue.

Integration seems to be impeded by the inability of chondrocytes to adhere to the

lesion surface. Possible approaches include the use of a proteoglycan depletion and

the use of a biological glue like transglutaminase.

A.5.2 Assessing the Success of Focal Repair for the Long Term

In most of the animal repair models studied, the assessment of the repair quality has

been based on gross and microscopic morphological features. Detailed studies have

established that the repair tissue is generally good in the short term, but degenerates

with time. At present the behavior is difficult to explain as the literature shows only

a minimal attempt at the molecular characterization of the types of molecules and

their distribution as the cartilage repair process unfolds. The more that is known of
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the repair process, presumably the higher chances to produce the optimal outcome; a

repair tissue integrated in the native cartilage and biomechanically intact to prevent

degeneration.

To assess the quality of the repair tissue, researchers must attempt to compare

as many properties as completely as possible to native tissue:

" biochemical - proteoglycan content, molecular size, and sulfation; collagen con-

tent and typing,

" morphologic - histologic, histochemical, immunohistochemical, and in situ hy-

bridization, and

" biomechanical.

In particular, the comparison of the repair tissue's electromechanical properties

to native tissue have not been stressed. This is probably due to a lack of tissue, and

of a non-destructive means of assessing cartilage electromechanical properties. An

electrokinetic surface probe is in development (see Chapter V) that will allow a non-

destructive measurements of cartilage electromechanical properties during clinical

arthroscopy. This method may be used not only to compare repair tissue properties

to those native cartilage, but how the properties change over time.

A.5.3 Case Study: Growth-Factor Induced Repair of Partial Thickness

Articular Cartilage Defects

As mentioned, a defect confined to the surface articular cartilage, regardless of how

it came to be, will not heal spontaneously. A series of experiments performed in Dr.

Ernst Hunziker's Lab in Bern, Switzerland provide an illustration of the limitations

that undermine cartilage repair, and possible targets for future improvements [110-

112].

Hunziker et al.'s study followed from the initial working hypothesis that the

natural anti-adhesive properties of the proteoglycan-rich extracellular matrix was pre-
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venting the chondrocytes from being able to attach to the damaged matrix to initiate

repair. The proteoglycans were removed with an enzymatic degradation (chondroiti-

nase ABC or trypsin) to expose the underlying collagen network and matrix proteins

that allow for mesenchymal-type repair cells to adhere. This produced a transient

response of repair cell coverage that was unable to fill the entire tissue volume. Even

with the addition of mitogenic growth factors (IGF-I, bTGF, TGF-3 or EGF) com-

plete filling was still not achieved, although the cells were able to lay down a substan-

tial layer of connective tissue. This points to the inability of the mesenchymal-type

repair cells to be spatially aware and the need of a material (vehicle) to delineate the

defect boundaries. When fibrin was added, the defect was populated at only a low

density. This was then remedied by the addition of growth factors. The fibrin ma-

trix was eventually remodeled to an avascular, scar-like loose connective tissue that

persisted for up to a year with no differentiation to cartilage. This implied that the

repair cell population lacks the ability to spontaneously differentiate to the chondro-

cytic phenotype, and the need for the release the transforming factor TGF-3 at high

concentrations when the matrix begins to remodel to promote such differentiation.

The addition of TGF-3 caused a cartilage-like repair tissue [111, 112] to evolve.

The repair cartilage exhibited the characteristics of early postnatal develop-

ment without any of the changes towards the anisotropic structure of adult cartilage.

It has recently been shown that this transformation of cartilage is a result of tissue

resorption and neoformation and not internal reorganization [110]. This means that

the optimal repair tissue may never be achieved from a cell based system as has been

proposed.

A.5.4 Summary of Factors Affecting Future Development

Five key areas to be optimized for researchers to produce an optimal synthetic repair

tissue are:

1. recruitment of cells to the defect,
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2. three dimensional matrix to give cells spatial awareness,

3. integration of repair with native tissue,

4. differentiation of pleiomorphic cells to chondrocytes to produce the proper ex-

tracellular matrix with a suitable biomechanical integrity, and

5. create the anisotropy to be congruent with the structure of adult cartilage.

Although a perfect cartilage repair tissue may not be possible [110], the clin-

ical realization from the patient point of view is the relief of pain and restoration

of lost of motion. Researchers may not need to duplicate cartilage, but provide a

functional, pain free repair tissue that will be durable for many years. This seems

like an attainable goal in the near future.

A.6 Examples Electromechanical Property Assessment in

Cartilage Repair Model Systems

As mentioned, the assessment of the electromechanical properties of cartilage repair

tissue would complement the histological data, and provide a functional measure of its

performance. In addition to being able to diagnose cartilage degradation, electrome-

chanical properties can also be a hallmark of the formation (growth) of a functional

extracellular matrix [29]. In this section, two such examples are given: (1) the effect of

cultivation techniques on the composition and electromechanical properties of tissue

engineered cartilage (TEC), and (2) the integration of this TEC into native cartilage

as a preliminary step to in vivo repair applications.
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A.6.1 Bioreactor Cultivation Conditions Modulate the Composition and

Mechanical Properties of Tissue Engineered Cartilage

Introduction

The relationships between composition and electromechanical mechanical properties

of TEC constructs were studied by culturing bovine calf articular chondrocytes on

fibrous polyglycolic acid (PGA) scaffolds in three different environments: static flasks,

mixed flasks, and rotating vessels. After 6 weeks of cultivation construct composition,

and the mechanical function in radially confined static and dynamic compression were

dependent on the conditions of in vitro cultivationtt.

Articular cartilage derives its form and electromechanical function from its

matrix, which consists of tissue fluid and a framework of structural macromolecules,

Adult articular cartilage has a limited capacity to repair damage resulting from injury

or disease, and there have been many different approaches to restore tissue compo-

sition, structure and function, including the development of engineered cartilage for

potential implantation. Fibrous PGA scaffolds permitted chondrocytes to maintain

their differentiated phenotype and provided a three-dimensional framework for tissue

regeneration [74], while bioreactors provided control over the conditions of cell seeding

and tissue cultivation and affected construct structures and compositions [238]. Ex-

periments were performed to investigate if conditions of flow and mixing in tissue cul-

ture bioreactors could be utilized to modulate the mechanical function of engineered

cartilage. Functional assessment would permit evaluation whether in vitro grown

constructs might withstand physiological loading, and enable further optimization of

the cultivation of cartilage-like tissue substitutes.

ttA more detailed version of this study appears in Vunjak-Novakovic et al. [239]
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Methods

Full thickness articular cartilage was harvested from the femoropatellar grooves of 2-3

week old bovine calves and cells were isolated. Control samples of cartilage (3 mm

diameter x 2 mm thick discs) were also harvested for later comparison. PGA scaf-

folds were produced as previously described [74] at Albany International (Mansfield,

MA) by extruding PGA into 13 pm diameter fibers and processing these into fibrous

disks measuring 5 mm in diameter x 2 mm thick (void volume 97%, bulk density

62 mg/cm3). Scaffolds were seeded with freshly isolated chondrocytes in well mixed

spinner flasks. After 3 days, cell-polymer constructs were cultured for 6 weeks at

37'C, 10% CO 2 in 3 groups: static flasks, well mixed flasks, or rotating vessels. Sam-

ples for biochemical analyses (six constructs per group) were frozen, lyophilized, and

digested for 15 hours at 56 0C with 1 mg/cm 3 proteinase-K solution. The number

of chondrocytes per construct was assessed from the DNA content measured using

Hoechst 33258 dye, sGAG content was determined spectrophotometrically (DMMB

dye binding assay), and total collagen content was determined from the measured

hydroxyproline content using a ratio of hydroxyproline to collagen of 0.1 [105].

For electromechanical evaluation, 3 mm diameter by 2 mm thick disks were

harvested from central regions of explanted cartilage plugs or engineered constructs

(N = 3-4 samples per group) and subjected to static and dynamic confined compres-

sion. Disks were compressed at sequential increments of 10% strain up to a maximum

of 40% strain, i.e. in the range where equilibrium stress varied linearly with applied

strain for both the engineered constructs and cartilage explants. After stress relax-

ation, the equilibrium stress was measured and plotted against applied strain; the

equilibrium modulus was determined from the slope of the best linear regression fit.

At a static offset strain of 30%, sinusoidal strains of 0.5% amplitude were superim-

posed at frequencies in the range 0.025 to 1 Hz. The amplitude of the oscillatory

streaming potential was simultaneously measured and normalized by the amplitude

of the applied strain. Equilibrium modulus and dynamic stiffness were used in con-
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junction with the method of Frank et al. [68] to calculate the effective hydraulic

permeability of the sample.

Results

The conditions of flow and mixing during cultivation in static flasks, mixed flasks and

rotating vessels are summarized as follows: In static flasks, constructs were fixed in

place and cultured with diffusionally limited mass transfer of nutrients and gases and

without hydrodynamic shear at tissue surfaces. In mixed flasks, constructs were fixed

in place and exposed to turbulent flow of medium [238], which enhanced mass transfer

of nutrients and gases but also caused shear at construct surfaces. In rotating vessels,

constructs were dynamically suspended in a laminar, rotational flow field, with their

flat circular areas aligned perpendicular to the direction of motion [73].

After 6 weeks of cultivation, constructs from rotating vessels had significantly

higher wet weights (WW) than constructs from either static or mixed flasks or the

initial 3-day constructs, and all constructs contained significantly more water than

cartilage explants. sGAG fractions in 6-week constructs from rotating vessels were

lower, but not significantly, than those in cartilage explants, and two-fold higher than

those in constructs from either static or mixed flasks (Figure A.1). The fraction of

total collagen in 6-week constructs from rotating vessels was comparable to that in

mixed flasks, significantly higher than that in static flasks and significantly lower

than that in cartilage (Figure A.1). The amount of PGA decreased by approximately

60% [71], from 2.4 mg at 3 days ( 4% WW) to 1 mg at 6 weeks (i.e. < 0.6 % WW).

Electromechanical characteristics of constructs improved with increasing cul-

tivation time and depended on the hydrodynamic conditions of cultivation. Initial

3-day constructs were too fragile to allow the measurement of mechanical properties

(data not shown). After 6 weeks of cultivation, the equilibrium modulus, HA, was

comparable for constructs grown in static and mixed flasks and about 4-fold higher

for constructs grown in rotating vessels (Figure A.2). In all groups, 6-week constructs
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Figure A.1: Tissue growth and composition: sulfated glycosaminoglycan (sGAG) and

total collagen as % of wet weight. Data represent mean±SD (N = 6) for the initial

3-day cell-polymer constructs, 6-week tissue constructs from static flasks, mixed flasks

and rotating vessels, and freshly explanted bovine calf articular cartilage. Pairwise

comparison between the rotating vessels and other experimental groups for sGAG

(filled stars, p < 0.01) and total collagen (open stars, p < 0.05).

remained mechanically inferior to cartilage explants. Hydraulic permeability, kp, was

lower in constructs that had higher HA (Figure A.2). The permeability of statically

grown constructs was significantly higher than that for constructs from rotating ves-

sels or for cartilage, and higher but not significantly than that for constructs from

mixed flasks. The permeabilities of constructs grown in mixed flasks and rotating

vessels were not significantly different from each other or from natural cartilage.
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Figure A.2: Tissue biomechanics in static and dynamic confined compression: equi-
librium confined-compression modulus, HA, and hydraulic permeability, kP, at 30%
strain, calculated using the equilibrium modulus and dynamic stiffness. Data rep-
resent mean±SD (N = 3-4) 6-week constructs from static flasks, mixed flasks and
rotating vessels and bovine articular cartilage. Pairwise comparison probabilities be-
tween the rotating vessels and other experimental groups for sGAG (filled stars, p <
0.001) and total collagen (open stars, p < 0.05).

Discussion

Tissue engineering may offer the possibility of creating functional, cartilaginous equiv-

alents for joint repair. Other approaches have included transplanting collagen gels

containing chondrocytes or undifferentiated mesenchymal cells [240]. In this study,

the effects of cultivation conditions and time on HA, and kP were correlated with

changes in construct compositions. While 3-day constructs contained mostly cells

and were too fragile to be mechanically tested, 6-week constructs could support load,

presumably due to the accumulation of proteoglycans and collagen and their assembly

into functional cartilaginous matrix. Constructs grown in rotating vessels, which had

the highest wet weight fractions of measured tissue components, also had the highest
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HA, and the lowest kp (Figure A.2). As compared to chondrocytes cultured statically

for 5 weeks in agarose gels (6), chondrocyte-PGA constructs cultured for 6 weeks

in rotating vessels had about 3-fold higher sGAG fractions and about 2-fold higher

HA. As compared to cartilage explants, 6-week constructs from all groups were struc-

turally and functionally inferior. However, these same 6-week constructs contained

about 78% as much sGAG and 43% as much collagen as compared to fresh cartilage

explants on a wet weight basis, implying that either the accumulation of GAG and

collagen preceded their assembly into a functional ECM, or that ECM assembly in

constructs was different from that in natural cartilage.

Construct mechanical properties reflect the amounts and quality of matrix

macromolecules, their ability to assemble into a functional ECM, and collagen-

proteoglycan and fluid-matrix interactions. With additional cultivation, constructs

more closely approximated cartilage with respect to composition and function, i.e.

constructs cultured for 7 months in rotating vessels contained markedly more GAG

and had better mechanical properties than constructs cultured for 3 months [72] or

6 weeks (Figure A.2). The cell-polymer-bioreactor system for tissue engineering can

thus provide a basis for studying structural and functional properties of the carti-

laginous matrix during its development, because tissue concentrations of sGAG and

collagen can be modulated by the time and conditions of tissue cultivation.

A.6.2 Integration of Engineered Cartilage into Natural Cartilage: In Vitro

Studies

Introduction

The controlled bioreactor model system described in Section A.6.1 was used to in-

vestigate the effects of construct cultivation time on its potential to integrate with

adjacent natural cartilage, and to study the progression of the integration process at

the construct-explant interface [178]. Cultivation in rotating bioreactors has resulted

in active synthesis of ECM components and a formation of mechanically functional
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tissue. A fundamental question with regard to the in vivo application is the potential

of the TEC constructs to integrate with adjacent host tissue following implantation.

Reindal et al. [191] also used an in vitro culture system to study the adhesion strength

of the repair tissue that forms between pairs of cartilage explants maintain in oppo-

sition. Mechanical assessment was performed after 3 weeks in a tensile single lap

configuration, and increased linearly with time (per week of incubation). As the per-

centage of fetal bovine serum in the media increased up to 20%, so did the adhesive

strength, with cell division detected histologically at the free surfaces of the explants.

Materials and Methods

Chondrocytes were isolated from full thickness bovine calf articular cartilage and

seeded onto PGA scaffolds (5 million cells per each 5 mm diameter x 2 mm thick

disc, 97% void volume) in well mixed spinner flasks. Two independent studies were

carried out with two groups of constructs: (1) constructs cultured for 3-6 days in spin-

ner flasks (containing mostly cells and small amounts of ECM), and (2) constructs

cultured for an additional 4-5 weeks in rotating bioreactors, which became contin-

uously cartilaginous over their entire cross-sections. Constructs were sutured into

ring-shaped cartilage explants, and these construct-explant composites were cultured

for an additional 4-8 weeks in rotating bioreactors, with explant-explant composites

used as a control (Figure A.3). Tissue samples were evaluated biochemically (amounts

of DNA, sGAG, and collagen).

Biomechanical integrity was assessed by adhesive strength of the construct-

explant interface measured as the stress required to fracture the integration site by a

plunger applied to the construct surface. The annular nature of the native cartilage

rings and the TEC constructs cores, suggested a push-through test by the apparatus

in Figure A.4. The sample is placed in the apparatus between an annular support

ring and the main body covered with a fine sandpaper to ensure no-slip (Figure A.4).

The top housing was screwed on the main body to secure the annulus surrounding
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the interface. The plunger was connected to a load cell and advanced toward to

the interface under displacement control. A typical load-displacement curve as the

plunger was forced through the construct-explant interface is shown in Figure A.5.

As a measure of adhesion strength, the force at ultimate failure, Fat was normalized

to the cross-sectional area of the interface.

LI_
V

Construct flmf

LI
VI

fta
Cartilage Explant

Composite

Figure A.3: Model system. Cell-polymer constructs cultured for 3-6 days in spinner
flasks (group 1) or for 4-5 weeks in rotating bioreactors (group 2) were sutured into
cartilage rings and cultured for 4-8 weeks in rotating bioreactors.
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Figure A.4: Biomechanical integrity was assessed by adhesive strength of the con-
struct-explant interface measured as the stress required to fracture the integration
site by a plunger applied to the construct surface during a push-through test. The
sample is placed in the apparatus between an annular support ring and the main
body covered with a fine sandpaper to ensure mechanical no-slip. The top housing
is screwed on the main body to secure the annulus surrounding the interface. The
plunger is connected to a load cell and the main body is advanced toward to the
engage the interface against the plunger under displacement control.
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Figure A.5: A typical measured load-displacement curve as the plunger is forced
through the construct-explant interface in the push-through test. As a measure of ad-
hesion strength, the force at ultimate failure, F, is normalized to the cross-sectional
area of the interface.

Results

At early stages of cultivation (1-2 weeks), fibrous-like tissue filled the gap at the

construct-explant interface. This bond was 10-15 cell layers thick in group 1, and

only 1-2 cell layers in group 2. Over 8 weeks of cultivation, the interfacial fibrous

tissue progressively developed into cartilaginous tissue (data not shown), such that

the biochemical composition and histological appearance of the TEC constructs and

explants approached. The adhesive strength at construct-explant interface was ap-

proximately 65% higher for composites made with 6 day rather than 5 week constructs

(Figure A.6). These data indicate that the time of construct cultivation needs to be

optimized to achieve a certain minimum compressive stiffness, which is important for
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construct survival while maintaining sufficient potential for its integration with the

adjacent tissue.
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Figure A.6: The adhesive strength at construct-explant interface was approximately
65% higher for composites made with 6 day rather than 5 week constructs or native
cartilage controls. These data indicate that the time of construct cultivation needs to
be optimized to achieve a certain minimum compressive stiffness, which is important
for construct survival while maintaining sufficient potential for its integration with
the adjacent tissue.
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Appendix B

Measurement of the DNA Content in Human

Adult Articular Cartilage Using Hoechst Dye

33258

B.1 Introduction

Calculation of cell density is frequently required to normalize incorporation results

from tissue biosynthetic studies and biochemical composition measurements (i.e.

sGAG, HYPRO), giving an amount that is on a "per cell" basis. Many methods over

the past decades have been proposed and successfully used to measure the amount

of DNA in tissue like articular cartilage, whose'abundant ECM makes it difficult to

count cells. Early methods used histological sections to count the cellular density,

but the need to process many samples quickly obviated the need for more rapid as-

sessments. Fluorimetric measurements with 3,5 DABA and ethidium bromide require

extra sample processing techniques since the ECM interferes with 3,5 DABA [181]

and RNA effects measurement with ethidium bromide [195], adding to sample cycle

times. Teixeira et al. [223] recently treated chondrocytes in monolayer with triton

X-100 and the nucleic acids of the extract were measured by DNA fluorescence with

Hoechst dye 33258. However, first the DNA had to be precipitated with alcohol

and resolubilized with EDTA, since the triton X-100 was interfering with the fluo-

rescence (autofluorescing) of the DNA-Hoechst Dye 33258 complex. Other methods

are plagued by a lack of sensitivity, requiring many samples to be pool-processed to

lower variation, which can be troublesome if a limited amount of material is available

(i.e. clinically obtained human articular cartilage).

A method developed by Kim et al. [123], was developed and characterized

for the rapid assessment of DNA content of papain digested samples of newborn
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bovine (1-2 weeks old) cartilage. In processing the adult articular cartilage samples

from Chapter II, it has become evident that the Kim et al. method can severely

overestimate the cell density. The cell density of human adult articular cartilage has

been measured histologically as approximately 15 x 106 cells/ml [218]. In applying

the methodology of Kim et al. to the cartilage of Chapter II, the cell densities

were measured to be on the order of 30 - 40 x 106 cells/ml. This was believed

to be caused by components of the ECM, other than the DNA-Hoechst Dye 33258

complex, fluorescing during assay conditions [232]. This appendix will characterize

this behavior for the adult human AC from Chapter II and present a solution based

on making measurements of the background autofluorescence. In addition, other

possible more efficient solutions will be proposed, since the present solution requires

extra assay time and is not the optimal one-step procedure analogous to that of Kim

et al. [123].

B.2 Materials and Methods

The methods and solutions used are those described previously by Kim et al. [123].

Samples were prepared as described in Chapter II, and fluorescence was measured

using a spectrofluorometer (SPF 500C, SLM Instruments, Urbana, IL). Measurements

were taken with buffer + Hoechst Dye 33258 (with dye) and with buffer alone (without

dye). In addition to the excitation wavelength of 365 nm and emission wavelength

of 458 nm normally used ("regular"), measurements were also taken at an excitation

wavelength of 350 nm and an emission wavelength of 530 nm ("adjusted"). The

band pass for the excitation was 5 nm and 10 nm for the emission, in either case.

The adjusted excitation and emission wavelengths were established by examining

spectra (and will hence be discussed) that were produced by scanning the excitation

wavelengths of 300 - 500 nm and emission wavelengths of 300 - 600 nm with 10 nm

band passes with a step size of 10 nm. All measurements were taken in ratio mode,

with 100 puL of sample and 2 ml of buffer alone or buffer + Hoechst Dye 33258 after
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gentle shaking and before the signal degraded (within 30 minutes [123]). Cells were

calculated based on 7.7 pg/chondrocyte.

B.3 Results

The difference between the apparent cell density (using the Kim et al. method di-

rectly) and the corrected cell density appear in Figure B.1 for selected cartilage sam-

ples from Chapter II (n = 56). The corrected cell density was calculated from separate

measurements of the sample by adding buffer + Hoechst Dye 33258 (apparent cell

density) or buffer alone to another sample aliquot. The ratio measurement from the

fluorimeter without dye is taken to represent the autofluorescence, and thus sub-

tracted from the with dye measurement. This corrected ratio measurement is then

used in conjunction with the standard curve to solve for the amount of DNA present

in the sample. The lines on Figure B.1 that indicate the expected cell density clearly

show that the apparent cell density is an overestimate at 33.1±9.9 x 106 cells/ml.

However, the corrected method lowers the values into a more appropriate range with

a of 18.3±4.5 x 106 cells/ml.

The sample dye/no dye corrected method presented yields promising results,

but there are drawbacks. Namely, it takes double the assay time and sample amounts

to complete. Besides, the extra time, the fact that up to total 500 /A (with dupli-

cates) of a 1 ml papain digested sample is needed can be problematic if other assays

need to be completed. Therefore, it would be preferable to have a correction method

analogous to the Kim et al. method, where only one measurement per sample was

necessary. A proposed solution was to investigate other combinations of emission

and excitation wavelengths with the Hoechst Dye 33258 that still produce dye en-

hancement in the presence of DNA, but where the autofluorescence was negligible.

Figure B.2 shows a 3-D plot assembled from performing spectra of the no dye ra-

tio measurement subtracted from the dye measurement (dye enhancement) at the

emission wavelengths of 300-600 nm and the excitation wavelengths of 300-500 nm.
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Figure B.1: A scatter plot comparing the apparent cell density (using the Kim et al.
method directly) and the corrected cell density for selected cartilage samples from
Chapter II. The corrected cell density was calculated from the difference of separate
measurements by adding buffer + Hoechst Dye 33258 or buffer alone to the samples.
The lines indicate the expected cell density (15.0 x 106 cells/ml). Thus, the apparent
cell density is an overestimate at 33.1±9.9 x 106 cells/ml (n = 56), while the correction
method lowers the values into a more appropriate range at 18.3±4.5 x 106 cells/ml.

The maximal dye enhancement was approximately at an excitation of 350 nm and

emission of 530 nm. To check whether the autofluorescence was close to zero, the

data was re-plotted to show the spectra at an excitation of 350 nm and emission of

530 nm (Figure B.3 left and right).

The adjusted excitation and emission wavelength combination (350 nm and

530 nm, respectively) show that in the case of the sample of Figure B.3 the aut-

ofluorescence is close to zero. This contrasts to the regular wavelength combination

(excitation 358 and emission 458, respectively), where a significant autofluorescence

exists.
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Figure B.2: The Hoechst Dye 33258 enhancement (no dye ratio measurement sub-

tracted from the dye measurement) of an adult human articular sample. The three

dimensional plot was created by acquiring spectra at emission wavelengths from

300-600 nm and the excitation wavelengths from 300-500 nm. The maximal dye

enhancement was approximately at an excitation of 350 nm and emission of 530 nm

as indicated.

To investigate the feasibility of the adjusted wavelength, a second series of

selected cartilage samples (n = 40) from those of Chapter II were selected. The

samples spanned an age range of 14 - 45 years of age and were obtained from a

variety of sites within human knee and ankle joints. Unfortunately, for all samples,

the autofluorescence was not reduced to zero, thus the apparent overestimated the

corrected cell density at the adjusted wavelength (55.4±12.0 x 106 vs 21.5±12.3 x 106

cells/ml). At the regular wavelength, a similar situation was evident with the apparent
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Figure B.3: The data of Figure B.2 is re-plotted to separate the buffer + Hoechst dye
(filled circles) and the buffer only (open circles) to more closely examine the spec-
tra at an excitation of 350 nm (left) and emission of 530 nm (right). The adjusted
excitation and emission wavelength combination (350 nm and 530 nm, respectively)
show that in this case the autofluorescence is close to zero. This contrasts to the reg-
ular wavelength combination (excitation 358 nm and emission 458 nm, respectively),
where a significant autofluorescence exists.

cell density (34.0±10.6 x 106 cells/ml) larger than the corrected cell density (7.0±3.4

x 106 cells/ml). The cell densities at the adjusted wavelength were significantly higher

than those at the regular wavelength combination. Although, the values are much

closer to those expected, the cause of this discrepancy must be resolved.

B.4 Discussion

Adult human articular cartilage is associated with fluorescence that emanates not only

from the DNA-Hoechst dye 33258 complex, but also from ECM components that are
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not destroyed by the papain digestion process. The presented solution involves is to

performing a buffer + Hoechst dye 33258 and a buffer alone measurement, to correct

for the autofluorescence that is represented by the buffer alone measurement. When

this method was used (Figure B.1), the cell density of adult human articular cartilage

sample were corrected to be in the range previously measured histologically [218].

This technique seems to be a time and procedural improvement over the

method proposed by Urban et al. [232], where a DNAse digestion of the sample

is used to estimate the autofluorescence in place of the buffer alone measurement.

With respect to the corrected cell densities, limited data at this point shows the ad-

dition of DNAse is equivalent to performing the buffer alone measurement (data not

shown), but needs to be confirmed. However, in some extreme circumstances (inter-

vertebral disk) when the cell density is low or the autofluorescence is high, even using

the correction method can be unreliable [232].

Although the solution presented seems to be successful to date, it does not op-

timize assay time and the amount of sample consumed, therefore a one-step procedure

would be preferable. Several ideas were considered, including using another nucleic

acid stain or the addition of a chemical to neutralize the autofluorescence. Elucidat-

ing these solutions would be time consuming and possibly difficult to implement since

the nature of the autofluorescence has not been characterized. A possible solution

that was investigated involved using an adjusted excitation and emission wavelength

where enhancement of the ratio measurement existed (due to the DNA-Hoechst dye

33258 complex), while the autofluorescence was not present. If possible, this would

be analogous to the Kim et al. method for newborn bovine articular cartilage.

Potential wavelengths candidates where found by examining the spectra of the

buffer + Hoechst Dye 33258 and buffer alone, and a range of appropriate excitation

and emission wavelengths were identified (Figure B.2). When the excitation and emis-

sion wavelengths were inspected for the existence of autofluorescence, the buffer alone

ratio measurements was negligible at 350 nm and 530 nm, respectively (Figure B.3),
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lending evidence that potential candidates have been identified. Unfortunately, when

a large sample set was examined at the adjusted excitation and emission wavelength

combination, the absence of autofluorescence did not hold. This may be attributed to

basing the adjusted wavelengths on too few sample measurements. A possible correc-

tion could involve setting the excitation wavelength at a median value (say 362 nm),

and obtaining the spectra of emission wavelengths. With this procedure, an emission

wavelength may emerge that indeed has no autofluorescence consistently, establishing

it for future assays.

Using the adjusted wavelength, the correction method was successful in low-

ering the measured cell density, but was inconsistent with the results of the regular

wavelength combination (excitation 365 nm and emission 458 nm, respectively). The

discrepancies in these results need to further investigated, but could attributed to the

length of time the samples have been stored (up to 1.5 years when the second study

was performed) and the number of freeze-thaw cycles the samples were exposed to,

increasing the risks of DNAse contamination.
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Appendix C

Determination of Hydroxyproline Content of

Articular Cartilage Samples

C.1 Introduction

In comparing the biomechanical and biochemical properties of cartilage from human

knee and ankle in Chapter II, it was clear that the additional measurement of collagen

content (by hydroxyproline) was required in addition to sGAG and DNA content

assays already routinely performed. Several methods to determine the hydroxyproline

content of tissue samples have been successfully used [216,217]. The method present

here is adapted from Woessner [244]. Unlike other methods that require a vacuum

oven to capture HCl vapors when the sample is hydrolyzed, this method neutralizes

the acid by titration, making this approach much less corrosive and hazardous. In

addition, improvements to assay sensitivity are provided in the protocol, along with

additional experiments validating its results against other methods, determining the

lower bound of sensitivity of the assay, and determining the conversion factor to

collagen content*.

C.2 Materials and Methods

C.2.1 Chemicals/Supplies

Obtained from Fisher Scientific Chemicals: p-dimethylaminobenzaldehyde (pDAB,

Ehrlich's reagent) Cat# D71-100 and Methyl Red Solution (0.02%) Cat#SI16-

500. From Mallinckrodt: perchloric acid (60%) analytic reagent Cat#2765-500,

Chloramine-T Cat# 7708-500, sodium hydroxide AR pellets Cat# 7708-500, and

*The starting protocol for this assay was originally obtained from I. Martin at MIT and modified.

Appendix C



-178-

sodium acetate tri-hydrate Cat# 7364-500, citric acid monohydrate AR Cat# 0627-

500. L-4 hydroxyproline Cat# 56250 was obtained from FLUKA Chemicals. From

MIT lab supplies: isopropyl alcohol, toluene, hydrochloric acid, glacial acetic acid,

pyrex Tubes #9826 16x125mm Cat#60827-533, disposable culture tubes Cat# 60825-

618 Kimax 51 borosilicate glass 16 x 100 mm, and marbles.From Sigma: type II

collagen.

C.2.2 Protocol

1. The following solutions can be made up and stored for three months at room

temperature:

(a) "pH 6 buffer" for use in making Chloramine-T solution: Place 250 ml

dH 20 and stir bar in 500 ml beaker. While stirring add: 17 g NaOH, 25 g

citric acid monohydrate, 36.17 g sodium acetate anhydrate (or 60 g sodium

acetate trihydrate), and 6 ml glacial acetic acid. When dissolved, transfer

solution to a 500 ml volumetric flask and bring to 500 ml. Transfer solution

to an appropriate glass storage container, which will hold at least 750 ml

total volume. Then add: 150 ml isopropanol and 100 ml dH20 and mix

well. Bring to pH 6 with concentrated HCl while stirring. Add 5 drops

toluene. Wrap with parafilm to avoid evaporation.

(b) Hydroxyproline standard stock solution: Place 10 mg of hydroxyproline in

a 100 ml volumetric flask and add dH 20 to 100 ml. This gives you a stock

solution of 100 pg/ml.

2. The day before the assay the following must be prepared t.

(a) Chloramine-T solution (enough for approximately 90 samples,): In a 100

tEach sample to be assayed requires 0.5 ml of both of the following solutions so ensure enough

is made in advance, including for standards and multiple dilutions, if necessary
tYou can go through as many as 45 samples in one assay batch. If you have more samples split

them into two batches and do the assay on two consecutive days
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ml glass bottle add: 0.705 g Chloramine-T, 40ml of above "pH 6 buffer"

and 5 ml Isopropanol. Shake Well to mix, wrap with parafilm and let sit

at room temp for 24 hours.

(b) pDAB solution (enough for approximately 90 samples): In a 100 ml

brown bottle (or regular bottle wrapped with aluminum foil) add 7.5 g

p-dimethylaminobenzaldehyde, 30 ml isopropanol and stir bar. Place bot-

tle in a glass bowl containing ice and place on a stirrer in the fume hood.

While stirring, slowly add 13 ml of 60% perchloric acid. Allow to stir for

10 min in hood and then cap, wrap with parafilm and leave at room temp

for 24 hours§.

(c) Weigh appropriately labelled empty capped pyrex tubes to be used for

the assay, and record their weights. Then, 100 pl aliquots of the papain

digested cartilage into the pyrex tube and hydrolyze in 900 ml P1 of of 6 N

HCl at 1150C (110-120 0C) for 18 hours in a temperature controlled ovens.

3. On the day of the assay: Turn on microplate reader in advance and set it to

560 nm. Bring water bath up to 600C for final incubation step. Make sure you

have at least 100 ml of the following solutions: 2.5 M NaOH, 0.5M NaOH and

0.5M HCl.

4. Make the final working solution of the hydroxyproline (HYPRO) standard: di-

lute 10 ml of 100 pg/ml stock solution into 100 ml volume with deionized water.

This gives you a working solution of 10 pg/ml. Set up seven standard curve

tubes into a disposable Kimax tube appropriately labelled as follows:

5. Remove tubes containing hydrolyzed samples from the oven and allow to cool

§Perchloric acid is highly reactive with any organic substance and you should take great care

when using and handling it. Also, place a layer of bench paper on all surfaces in which you will be

using to minimize staining.
TMake sure caps are tight so sample does not evaporate and HCl does not escape and corrode

oven
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to room temperature. Vortex samples and tip tubes to collect all the condensed

liquid from sides of tube. Bring samples to fume hood for titration. Add 1-2

drops of methyl red indicator to each sample. Then add approximately 2 ml of

2.5 M NaOH to each tube while vortexing until red color just disappears. Next

add 0.5 M HCl dropwise while vortexing until pink color just reappears. Finally

add 1-2 drops of 0.5 M NaOH to bring sample back to a faint straw color to

signify pH balance.

6. Add enough dH 20 to bring the volume in each tube up to the same amount (~

15 ml) by eye to dilute salts. Replace and tighten the caps on each tube and

weigh againl. If necessary, the assay can be interrupted and the diluted samples

placed in the fridge for up to 2 days for later continuation without introducing

error.

7. Transfer 1 ml of each diluted sample into a disposable Kimax tube appropriately

numbered. Then, bring standard curve tubes and samples to a fume hood. Add

0.5 ml Chloramine-T solution to each tube and vortex. Place a marble on each

tube to prevent evaporation as they sit for 20 minutes.

8. Add 0.5 ml of pDAB to each solution while vortexing. Vortex until no milky

white "schlieren" is visible. Replace marble caps on tubes and incubate in 60 0C

'The difference in tube weights allows the estimation of the fluid in the tube for increased mea-
surement accuracy during analysis
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Tube # pl working solution pl H2 0 pg/ml HYPRO
1 0 1000 0
2 50 950 0.5
3 100 900 1.0
4 200 800 2.0
5 300 700 3.0
6 400 600 4.0
7 500 500 5.0
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water bath. After 30 minutes remove rack from the bath and place in tub of

cool water for approximately 5 minutes to cool to room temperature.

9. Prepare microplate reader and take a zero reading of the blank microplate that

will used. Aliquot 200 pl duplicates of each standard and sample into the

microplate. Read microplate. The color of the solutions is stable for about 1

hour after removal from bath.

C.3 Theoretical Considerations

In this section, relationships are derived to represent the underlying mathematics

that correlate assay conditions to the amount of HYPRO in the original sample. The

development is done generally, to provide flexibility in the amount of each solution

used during the assay. A similar treatment can be simply applied for other routinely

performed assays like sGAG or DNA content.

The general approach involves solving for the final concentrations in the sam-

ples and standards at the stage when the absorbances of the solution are recorded

and compared. Along the steps of the assay the concentration of the sample must be

followed closely. When the absorbance values of the samples are properly converted

to concentrations using the standard curve, the amount of HYPRO in the original

sample can be back-calculated.

The original amount of sample in the cryovial (Figure C.1), is processed

through several steps until absorbance is measured. Table C.1 represents the con-

centration of HYPRO as the sample is processed: from the cryovial, to pyrex tube, to

Kimax tube, and finally to the well of the microplate for the absorbance measurement

(Note: The mass of HYPRO at each stage can be directly found using m = CV).

Therefore, the relationship for each sample linking the concentration of the

original sample with that when the absorbance is derived from as Figure C.1 and
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Table C.1 as follows:

V2 - - s

C4 = Css
VS3 + VC3 + V3D AB. . .

V2

V1

Cryovial
(sample tube)

1

U

Pyrex
Tube

2

V3
pDAB

VCT

Kimax
Tube

3

(C.1)

Well of
Microplate

4

Figure C.1: The original amount of sample in the cryovial (1) is processed through
the pyrex tube (2), the Kimax tube (3), and finally the absorbance is measured in
the microplate (4). The volume are defined as that of the: V1 original papain digest,
VS amount transferred for hydrolyzation, VT post-titration, Vj amount transferred
to Kimax tube, VC3 amount of Chloramine-T added, VDAB amount of pDAB added,
VS amount aliqouted to the well of the microplate.

The analogous relationship for the standards, that are not hydrolyzed, is de-

rived from as Figure C.1 and Table C.2 as follows:

(C.2)
stdV3

std C4 = std C1 S
stdV3 +std ygT +std yV3AB

The final step in the analysis is to solve for the concentration of the samples,
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Sample Volume (ml) Concentration (Li)
sample tube VI = mi/V 1

pyrex tube 02= = 5

VJ V;
3

kimax tube VS +V CT+VDAB 3 +V3__C3_=__M' VS+VCT+'VDAI

microplate VS C4 = C3

Table C.1: Table that represents the concentration of HYPRO as the sample is pro-
cessed: from the cryovial, to pyrex tube, to Kimax tube, and finally to the well of
the microplate for the absorbance measurement.

STD

V

Cryovial

1

STD 3
pDAB

STD 3
VCT

STD

Kimax
Tube

3

Well of
Microplate

4

Figure C.2: The original amount of standard in the cryovial (1) is processed through
the Kimax tube (3), and the absorbance is measured in the microplate (4). The vol-
ume are defined as that of the: stdVl original papain digest, stdVj amount transferred
to Kimax tube, stdV~T amount of Chloramine-T added, stdVpDAB amount of pDAB
added, stdVj amount aliqouted to the well of the microplate.
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Sample Volume (ml) Concentration((pg/ml)
sample tube stdVl stdC 1 =Std m V/stdvl

stdv3

tdV3+StdV3 std /-3 tdC -stdrnstdV1
kimax tube StdV|+±td VCT + std s3 std m tdV3 +std +stV 3

DAB

microplate stdV4 stdC 4 =std C 3

Table C.2: Table that represents the concentration of HYPRO as the standards are

processed: from the cryovial, to Kimax tube, and finally to the well of the microplate

for the absorbance measurement.

using the standard curve created by plotting the absorbance values against the known

concentrations. An example of such a standard curve is shown in Figure C.3.

The sample absorbance values are, in turn, used to solve for the concentration

of the sample (C1), by rearranging Equation C.1

C, = C4 VS3 +±X2T±V3T DAB [T 300 C4  (C.3)

since V = 1 ml, V = 0.5 ml, VDAB = 0.5 ml, Vs = 100 pl, and VT ~ 15 ml

(the exact volume is determined from the volume of liquid in the tubes post-titration).

C.4 Validation

Using the outlined methodology, the assay was validated against an ultra-sensitive

quantitative HPLC analysis of hydroxyproline (kindly performed HYPRO by I. G.

Otterness, Pfizer Central Research, Groton, CT) [182]. A variety of samples from

various sites within the human knee and ankle joints (N=60) from Chapter II were

chosen for processing by HPLC and the calorimetric methods discussed. The results of

Figure C.4 show a high correlation (R2 =0.84) between the two methods. In general,

the calorimetric method underestimates with respect to the HPLC method in the

range of 50 - 125 pug HYPRO per 1 ml of the original papain digest.
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Figure C.3: The standard curve is created by plotting the absorbance values at

560 nm against the known concentrations, where sdC4  = C for the volmes

used: stdVs3 1 ml,sIdV C= 0.5 ml, and StdV 3DAB= 0.5 ml. In this case, the best fit

relationship is: Absorbance = -0.01695 [stdC 4 ]2 + 0.2626 stdC 4 + 0.02153 (R=0.9970).

C.5 Sensitivity and Conversion to Collagen Content

In a second set of experiments, the sensitivity of the measurement and the conver-

sion factor to collagen content was established by processing samples of pure type II

collagen through the given protocol. Type II collagen from Sigma (St. Louis, MO)

was dissolved in 0.5% acetic acid and prepared into solutions of 1-1000 Pg/ml. These

samples were processed and the amount of corresponding hydroxyproline was deter-

mined. Figure C.5 shows a summary of the results of the correlating the HYPRO

measured to the collagen in the original solutions. The lower bound of the sensitivity

of the method was determined to be -100pg/ml of type II collagen or -10pg/ml of

HYPRO. This value of the lower bound on HYPRO was also separately established on
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Figure C.4: A scatterplot of the the hydroxyproline measured by calorimetric method
correlated with the corresponding value measured by HPLC (N=60). Samples are
from various sites within the human knee and ankle joints from Chapter II. The two

methods are highly correlated (R2=0.84), and the calorimetric method underestimates
with respect to the HPLC method in the range of 50 - 125 pg HYPRO.

HYPRO standards similarly processed (data not shown). The samples in the range

of 100-1000 pg/ml collagen content were used to establish that the ratio of collagen

to HYPRO at ~7.4 for this assay. This value compares favorably with the values

generally used in practice, generally between 7-10 [105].
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Figure C.5: Scatterplot of the HYPRO measured versus its known collagen content.
The lower bound of the sensitivity of the method was determined to be -100pg/ml
of type II collagen or -1Opg/ml of HYPRO. The samples included in the boxed
area were insufficiently resolved using this method. The samples in the range of
100-1000 pg/ml collagen content were used to establish that the ratio of collagen to

HYPRO at -7.4 for this assay (straight line).
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Appendix D

Development of a Arthroscopic In Vivo

Electrokinetic Surface Probe - Details

D.1 Hand Held Version 5.0 Probe

Figure D.1 present a detailed dimensional drawing of the probe parts discussed and

shown in Figure 5.1.

A
0.22" dia - F

0.24 1 - 0.03" dia

0.04" 0.17" dia

0.22" dia--

0.11" dia

0.25"1

B 00.13" dia-

0.23" dia

SIDE VIEW

0.4"

0.34"
1.097"

0.25" dia

A .

1.50"

0.5" C
0.005"

0.23" dia

3.00"

0.01" -+T*--

0.252" dia

E

2.44" D

Figure D.1: Dimensioned drawing of the components of the HHV5.0 probe: (A)

the ETS, (B) inner core, (C) torlon sheath, (D) stainless steel tube, (E) screwed

pusher/plunger, and (F) recess for backing plate in the inner core [Courtesy E.
Quan [187]].

Appendix D



189-

D.2 Design Iterations of ETS Electrode Patterns

The first design of the HHV5.0 ETS electrodes had piezo electrodes which made

contact with the brass rods through four 0.03 inch diameter circular extensions Fig-

ure D.2, and the total active area of each piezo electrode was 0.63 mm2.

The second design of the HHV5.0 ETS electrodes took advantage of the empty

areas not utilized by the smaller electrodes in the first design (Fig. 5.3). One signifi-

cant change was the expansion of the top and bottom piezo electrodes to cover over

the brass rods. This enabled both an increase in electrode area and the transfer of

response signal to the brass contact. The overall area for each piezo and silver elec-

trode was increased to 1.59 mm 2. The increased piezo area corresponded to increased

signal output. The width of the connection between the silver electrode and silver

arm was increased to prevent fracture and disconnection during the mounting phase

when the arms are folded over the head of the probe. Also patterns to assist in the

cutting of the ETS were placed on the masks (Fig. 5.3).

,.- I-

Figure D.2: First iteration of HHV5.0 ETS electrode patterns. Left - Piezo electrodes;

Right - Silver electrodes. The piezo electrodes made contact with the brass rods

through four 0.03 inch diameter circular extensions Figure D.2, and the total active

area of each piezo electrode was 0.63 mm 2 . The subsequent design took advantage

of the empty areas not utilized by making the contact a subportion of the electrode,
increasing the area per electrode. Compare to Figure 5.3.
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D.3 Wavelength Calculation For Circular Electrodes

For earlier in vitro probe designs with rectangular electrodes, the wavelength is twice

the center-to-center spacing. For the hemispherical shape of the electrodes of the

HHV4.0 and HHV5.0, the centroids of the areas are used to estimate the spatial

wavelength. The following expression is applicable for calculating the centroids of

area A1 in Figure D.3).

_ fA xdA _ 2 1 RsinO fR _ys xdxdy

IA1 dA 2 fRsinO f IR2 dxdy

2 R sin30

3 [0 - sinG cos9]

where for the limit where 0 - ! then - }-, which is consistent with the centroid2 371-

for a half circle and for 0 -4 0 then T --+ R for an infinitely small electrode at radius

R. For compound areas, i.e. A1 and A 2 in Figure D.3, the following well known

expression can be used to combine centroids:

A1 I 1 + A 2 2
A1 + A 2

(D.2)

parameter unit HHV4.0 HHV5.0
Version I Version 2

Wi mm - 0.00 0.46
1 mm 4.90 1.96 2.29
w mm - 0.32 0.70

g mm - 0.32 0.35
Atotai mm 2  14.66 2.53 6.38
Asing mm 2  7.33 0.63 1.59
A12  mm 5.34 1.35 2.10
A2 3  mm - 1.28 2.09
A14  mm - 3.98 6.30

Table D.1: A comparison of the design parameters for the various probe designs,
along with the resultant wavelengths. HHV4.o was not a multiple wavelength probe.
The design of HHV5.0 was always constrained that each of the four electrodes had
the same area.
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Figure D.3: A schematic layout of the HHV5.0 and HHV4.0 for design purposes,
used in Table D.1. The areas (A1 and A2), and lengths (w,g,wi,l) are adjustable

parameters in electrode design.
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Appendix E

Intrinsic Parameter Estimation Based on

Electromechanical Surface Spectroscopy

Measurements

E.1 Introduction

With the electrokinetic probe measurements to date, current-generated stress (CGS)

magnitude was used as an indication for changes in the ECM such as the loss of

PGs or damage to type II collagen molecules [16,227]. Ultimately, the CGS response

is controlled by the intrinsic properties of the material that can be described by a

model of cartilage as an electromechanically coupled poroelastic medium [200]. Using

a parameter estimation scheme (or solving the "inverse" problem) to get the intrinsic

physical properties of the tissue from the spectroscopic CGS measurements may yield

are more specific and sensitive diagnostic method of interpreting the state of tissue.

The system outlined in this appendix allows one to investigate the feasibility of this

approach.

The objectives was to use CGS from the electrokinetic surface probe mea-

surements to infer the intrinsic material properties of articular cartilage and to vali-

date the results by comparing to properties measured on excised tissue via confined

compression (CC). A idealized chamber system has been developed in which both

measurements can be performed simultaneously on newborn bovine articular carti-

lage samples. The duality of the physical system, due to coupling of the mechanical

and electrical domains, allows the experiments to be compared in two ways: (1) the

parameters obtained from confined compression tests can be used to estimate the

expected CGS, which is then compared to the measured CGS; or (2) the parameter

estimation algorithm can be used with the spectroscopic CGS data to solve for the
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intrinsic parameters, which are then compared to values obtained from the confined

compression study (Figure E.1).

The state of cartilage can be changed by treating it with enzymes that degrade

ECM constituents, or by using cartilage from an aged donor (Figure 1.10). The

confined compression test result in physical property measurements of static and

dynamic stiffnesses, and streaming potentials.The surface probe measurements give

current generated stress data. These data along with an appropriate continuum

model of cartilage electromechanics in each system, can be used to estimate the

material properties of the tissue. Thus study will investigate the applicability of the

current available models, by validating the physical property measurements from both

experiments *.

E.2 Material and Methods

E.2.1 Electrokinetic Probe Fabrication

The electrokinetic surface probe construction is described in detail elsewhere [13]. in

this case, only the size of the laminates, adhesives, and the electrodes patterns are dif-

ferent. The silver foil (25.4 pm thick) is cut into pieces 68 x 28 mm, metallized Mylar

(25.4 Ipm thick) into 70 x 32 mm, and the stress sensor Kynar film into 70 x 18 mm,

with a sharp blade, and straight edge. The laminated structure is formed by first

bonding the metallized surface of the mylar to the PVDF film using a thin film adhe-

sive (PM212, Norwood Industries Inc., Frazer, PA). The Kynar film overlaps one end

of the Mylar by 4 mm to allow connection to a ground plane when mounted in the

test chamber. Next the silver is bonded to the non-metallized side of the Mylar using

Tycel epoxy. The ETS is pressed together firmly and then allowed to cure overnight

to ensure proper bonding (Figure E.2).

The photofabrication process is similar to that previously described, except

*A more detailed description of these experiments appear in Batra [10]
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Confined CC material
Compression 1-D Model parameters

I~- 9
0

Current -N- - -- 'K
CGS material

Generated A 2-D MBV parameters
Stress

Parameter
Estimation
Algorithm

Figure E. 1: Schematic of modeling and fitting performed to yield material parameters
using both CC and CGS data. The CC data are inputs into a 1-D model which utilizes
the uniaxial configuration used during testing. The probe measurements give data
in the form of current-generated stress. The aspect ratio of the probe electrodes
with respect to the cartilage approximates a two-dimensional geometry where a 2-D
multi-boundary value problem is appropriate. Both techniques are used to estimate
the material properties of cartilage and can be compared. In addition, the parameters
estimated by the CC model can be used as inputs into the 2-D MBV and the expected
CGS can be computed and compared to the measured CGS.

7

4mm

Metalized
Mylar Silver

PVDF

Figure E.2: Schematic of the different layers of the ETS structure. The 4mm overlap
of the Kynar film is used for grounding in the test chamber.
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the electrode patterns are significantly different. On the silver side, the electrode

structure consists of two inner rectangular electrodes, measuring 1 x 10 mm each,

used for applying current, and two hemispherical shaped electrodes are used as the

ground electrodes for measuring streaming potentials during the confined compression

tests. Only the inner electrode pattern need be identically registered on the Kynar

side (Figure E.3).

SILVER KYNAR

Figure E.3: Electrode patterns on the silver (right) and Kynar (left) sides of the

ETS. The inner electrodes on both the silver and Kynar sides are used for applying

current and measuring sensor voltage output, respectively. The hemispherical outer

electrodes on the silver side are used for measuring streaming potentials during CC
testing.

E.2.2 Experimental Chamber

It is patterning of the ground electrodes for CC on the probe, that has allowed for

both experiments to be performed on a cartilage sample, in the custom designed

chamber of Figure E.4. The silver electrode pads are connected to the current source

via spring loaded copper pads which are in contact with copper leads that screw into

the side of the chamber. The kynar electrode pads lie on top of copper pads which

Section E.2
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are accessed from the bottom of the lower part of the chamber. The upper and lower

parts of the chamber are secured, with the ETS pressed in between. The chamber

allows 13.5 mm diameter cartilage discs to be placed on top of the Ag/AgC1 electrodes

in a confined arrangement.

TOP

SILVER ELECTRODE PA%

I
section
A--A I

ETS

KYNAR ELECTRODE PAD

CONNECTION FROM ELECTRODE
TO PERIPHERAL CIRCUITRY

BOTTOM

Figure E.4: Cross sectional view showing all relevant connections of the upper and
lower parts of the PMMA confining chamber with the ETS mounted in between. Inset
- Top view of the upper part of the PMMA confining chamber.

Section E.2
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E.2.3 Cartilage Explants

Cartilage discs were taken from the femoropatellar groove of calfs (Figure E.5A) (1-2

weeks old) on the day of slaughter (Research 87, Hopkington, MA). The femoropatel-

lar groove was exposed (Figure E.5B), and then sections were removed along with the

underlying bone from the distal femur using a fine toothed saw. The groove was then

cut in half between the superior and inferior ends (Figure E.5C). Each half was then

mounted in sledge microtome holder with the sample clamped in place by the sub-

chondral bone. A portion of the surface cartilage was sliced away by the microtome

in order to achieve a flat planar profile. Once this was achieved, a 0.5-2 mm thick

slice was removed. This process was repeated for the other half of the groove, to yield

as many as four 1 mm thick slices (two from each half of the groove). Discs of 13.5

mm in diameter were punched out of the slices using a stainless steel punch. At all

stages of the cutting, sterilized tools were used in addition to bathing the cartilage

with sterile phosphate buffered saline at pH 7.0, with a penicillin, streptomycin and

anti-fungal additive to prevent bacterial infection that may effect material properties.

13.5 mm

A B C

Figure E.5: Cartilage explant process; (A) Femoropatellar groove is exposed. (B)

The groove and underlying bone are removed. (B) The groove is halved and sliced

to yield 2 slices of cartilage from which 13.5 mm discs are punched using a stainless

steel punch.

Calf cartilage was used because of the thickness of the cartilage in the

femoropatellar groove (up to 4mm), which facilitates the excision of the larger 13.5
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mm discs, and because of its more homogeneous material properties with respect to

skeletally mature tissue [13]. The geometry and experimental set up have been de-

signed to maximize the number of known parameters in this homogeneous system to

facilitate testing the effectiveness of existing electrokinetic models which describe the

observed CC and CGS responses.

E.2.4 Confined Compression Testing

An excised 13.5 mm cartilage disc (with the thickness determined with a current sens-

ing micrometer) was placed in the custom designed PMMA chamber (Figure E.4).

The chamber was mounted in the collet of a servo controlled materials testing ma-

chine, or Dynastat mechanical spectrometer (IMASS, Hingham, MA). A porous

platen (ultra high molecular weight polyethylene with 20 prm pore size, Porex Tech-

nologies, Fairburn, GA) was placed above the sample and NaCl buffer (0.1 M NaCl,

0.05 M Trizma, pH 7.4) was added to the chamber (Figure E.6). Incremental strains

(1-3% at a time) up to 9-15% were imposed on the sample, and the resultant stress re-

laxation data was recorded by a data acquisition system. The percent strain imposed

depended on the disc used, but in general a 200-500 g static offset was desired for per-

forming dynamic displacements and probe measurements. The offset load was noted

for later calibration of the piezo film. Dynamic displacements (typical amplitude of

0.4-0.5% strain) were performed around this static offset at frequencies ranging from

0.01 - 1 Hz.

E.2.5 Current-Generated Stress

After the dynamic strains are imposed, the connections were switched to those appro-

priate for CGS measurements. For a detailed description of the peripheral electronics

see [13]. A 1 mA/cm 2 current density or 100 piA current was applied to the sample

at frequencies of 0.025, 0.05, 0.1, 0.25, 0.5, and 1 Hz, while the sample was com-

pressed at the same static offset strain as the dynamic displacements. Afterwards,

Section E.2



-199-

LOAD CELL

ELECTROLYTE PL E
RESERVOIR

POROUS
FILTER

CARTILAGE

PROBE

PMMA
CONFINING
CHAMBER

ACTUATOR

Figure E.6: Figure showing the set up for CC and CGS measurements. The cartilage

is placed above the probe in the PMMA confining chamber. A porous platen is placed

on top of the sample and the chamber is filled with 0.15M Trizma/NaCl buffer. The

chamber is mounted in the Dynastat, which imposes strains with a servo controlled

actuator and measures stresses via a load cell placed in contact with the porous

platen. Streaming potentials are measured from a platinum electrode submerged in

the electrolyte bath and grounded to the large Ag/AgCl electrodes fabricated onto

the probe.

the connections were switched back to the confined compression set-up, and incre-

mental strains up to 25-30% or 1 kg load were applied to obtain a more complete

equilibrium stress-strain profile of the tested sample.

E.2.6 Piezo Calibration

Since each ETS structure has a different stress voltage relationship and a single ETS

may change over time, it is necessary to determine this relationship between applied

stress and measured voltage for the Kynar film after each experiment. This relation-
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ship is linear, with the applied sinusoidal stress and measured voltage of the same

frequency, but out of phase. The transfer function that defines this relationship is

determined by applying stresses of known amplitude and frequency, and measuring

the piezo sensor output. The previous experimental static offset stress is applied to

the film, and then dynamic stresses of 10 and 2.5 kPa are applied around the static

offset at frequencies of 0.025, 0.05, 0.01, 0.25, 0.5, and 1.0 Hz. The magnitude and

phase of the voltage response are used to determine the transfer function (Figure E.7).

>-100 - 01 Hz
. 80 _ 00.025 Hz

60 -

C 40 -

20 -

0
5-

0 -

101-

-15 -

-20 -

0 2.5 5 7.5 10
Dynamic Stress Amplitude (kPa)

Figure E.7: Typical piezo calibration plot, showing magnitude and phase for either

electrode (left or right) for lowest and highest frequency (others in between). Here

the calibration is approximately 10 mV/kPa for each Kynar electrode both pads at

all frequencies.

E.2.7 Biochemical Compositional Analysis

After the CC and CGS measurements were complete, a wet weight of the sample was

taken by first cutting the cartilage disc into 1/8ths due to its large size, and weighing

each section on a digital balance after removing surface water. The eight sample sec-

tions were then placed in individual cryovials and freeze dried in a lyophilizer. Dry

weights of the freeze dried sections were taken after which they were digested with

1-2 ml of papain (0.125 mg/ml). The papain digests were assayed for sulfated gly-
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cosaminoglycan (sGAG) content by the DMMB dye binding assay [61], and collagen

by a calorimetric assay for hydroxyproline [244] on each of the eight disc sections. An

average of all eight sections was performed to obtain a value for the cartilage sample

tested.

E.3 Theoretical Considerations - Modeling and Parameter

Estimation

E.3.1 Relevant Parameters

The idealized chamber system allows estimation or measurement of almost all the

parameters relevant to the model independently [200]. The parameters involved in

using the existing linear model of CGS fall into the following categories:

" geometrical

-- the thickness (6) of the sample is measured directly using a current sensing

measurement device and thus a fixed parameter in the analysis.

" mechanical

- the aggregate modulus (HA) is estimated using the stress strain behavior

during confined compression (fixed in analysis).

- the hydraulic permeability (kp) can be estimated by analyzing the stiffness

vs. frequency behavior in dynamic confined.

- Poisson's ratio (v) is not directly measurable in our system since it is a

confined compression setup, but has been measured by other investiga-

tors [118], using various methods, to be approximately 0.1 for immature

bovine (calf) tissue (fixed in analysis).

" electrical
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- the electrical conductivity (k22 ) can be estimated from the sGAG content

by the following procedure:

The sGAG assay gives information about the concentration of proteogly-

cans and thus can be related to the fixed charge density of the tissue by:

PM= 3 Cpq (E.1)

where pm is the macrocontinuum fixed charge density, is F Faraday's con-

stant, / is a constant relating the amount of charge per gram of proteogly-

can, and Cpg is the concentration of proteoglycan [30]. We can calculate P-F

since we know that # = 1 mole-charge/266g, and Cp9  amount GAG (mg)
water vol (ml)

The tissue water volume is calculated using the wet and dry weights and

corrected for the strain at which CGS measurements were taken. The elec-

trical conductivity of cartilage, k22 , is dependent on the intratissue con-

centrations of sodium and chloride ions, the predominant mobile charged

species. The conductivity of a binary electrolyte solution is given by:

k22 = F [ z+ +c+ + z- u-c-] (E.2)

where z, u, and c are the valences, ionic mobilities, and concentrations of

the cations and anions within the tissue. We know that Iz+ = - = 1

for NaCl, and the ionic mobilities of sodium and chloride are 1.8 x 10-4

cm 2 /Vs and 2.7 x 10-4 cm 2 /Vs, respectively. From Donnan equilibrium

we can also relate the concentrations of the cations and anions to the fixed

charge density as follows:

Pm + + c2 (E.3)
F F

where Cb is the concentration of the electrolyte bath (0.15 M for our ex-

periments). From the amount of GAG we can determine the fixed charge
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density; from the fixed charge density we can calculate the concentrations

of sodium and chloride ions in the tissue; from these concentrations we can

then solve for the electrical conductivity, k22 (fixed in analysis).

" electromechanical

- the electrokinetic coupling coefficient (ke) can not be measured directly.

This is the key parameter in the system since it is the coupling of the

mechanical and electrical domains of the system. ke is similar to kp in that

it is a fit parameter in the model.

" biochemical

- the porosity (q) is determined by knowing the water content of the tissue

from the wet and dry weights, and adjusting for the strained conditions

when the measurements were taken (fixed in analysis).

E.3.2 Response of the CGS Model to Parameter Changes

The appropriate existing model for this physical situation is a two dimensional model

of a linear electromechanically coupled poroelastic medium, for which a numerical

solution exists. In solving the inverse problem, a parameter estimation technique [139,

163] in conjunction with the model is used to estimate model parameters.

To get a sense of the sensitivity of CGS to variations in the model parameters

in a physically relevant range, simulations were performed t.

Since Poisson's ratio is not directly measurable in this system, an approxima-

tion for the calf cartilage often used is 0.1 [118]. Figure E.8 shows that the CGS is

fairly constant over a wide range in Poisson's ratio, justifying constraining its value

in the analysis of experiments.

tA more detailed discussion can be found in Appendix F
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Figure E.8: Dependency of model CGS prediction on varying Poisson's ratio from 0.01

to 0.25. The boundary conditions are identical to those from the actual experiment

(reflecting boundary at y = 4.87 mm, 1 electrode pair, spacing and width=1 mm),
the cartilage thickness was set at 2 mm, applied current density of 1 mA/cm2 ; the

porosity, k22, ke, and the aggregate modulus HA were also set at 0.71, 0.94 S/m,
9.0 mV/kPa, 3.0 pm/s)/(MPa/mm), and 0.6 MPa respectively. Varying Poisson's

ratio does not significantly change the predicted CGS with respect to 0.1.

The effect on CGS of varying the aggregate modulus HA, permeability kp,

or electromechanical coupling coefficient ke is shown in Figure E.9 while keeping all

other parameters fixed. The magnitude of the CGS increases directly with increasing

HA, decreases with increasing kp, and increases with increasing ke. The large changes

in the phase only with HA.

E.4 Preliminary Experimental Results

E.4.1 Results From a Typical Experiment

A typical experiment consists of performing static and dynamic confined compression

tests, switching to the CGS set up and performing probe measurements, and then

completing the static confined compression data acquisition. The typical time course

of an experiment is best shown in Figure E.10.
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Reflecting boundary at y=4.87mm
Porous boundary at z=2mm
spacing=2mm & width=lmm

v=0.1 porosity=0.71 k22=0.94(S/m)
F= 0.25Hz J= 1 mA/cm2
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Figure E.9: The effect on CGS of varying the aggregate modulus HA, permeability kP,
or electromechanical coupling coefficient ke at an applied current density frequency
of 0.25 Hz (the behavior is similar for other frequencies). Note that increasing HA
and ke results in an increase in CGS magnitude, while increasing kP has the inverse
effect. The phase becomes more negative for increasing HA and kP, but does not
change significantly for variations in ke.
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Figure E.10: Plot of displacement and load during a typical experiment. The time
course is as follows: step displacements up to experimental offset stress with stress
relaxation, dynamic displacements, CGS measurements, and step displacements to
complete static CC data acquisition. Values are negative since positive displacement
is defined as tension.
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E.4.2 Confined Compression Results

From the static confined compression data we are able to estimate the aggregate mod-

ulus from the stress vs. strain curve (Figure E.11). HA is the slope of the curve around

the static offset strain used for dynamic displacements and probe measurements. The

results of the dynamic CC testing are presented in Figures E.12. The stiffness vs.

frequency data and the streaming potential vs. frequency data are shown along with

the fitting results from the 1-D Model using previously established methods [67,68].

From the fitting we are able to estimate kp and ke. The phase data for the streaming

potential is not used in the fitting, which explains the discrepancy between the data

points and the fit line in the phase plots.

80-

Cc 60 -

0.

U)

40
U)

S20- HA = 383.78 kPa at 7.61 %

09

0 5 10 15 20
STATIC STRAIN (%)

Figure E.11: Stress strain behavior of cartilage. In this experiment, the experimental

offset strain was 7.61%. HA is calculated by the slope of the curve around this offset.

E.4.3 CGS and Parameter Estimation Results

The current-generated stress data and fitting results are shown in Figures E.13

and E.14. The experimental CGS magnitude data and the magnitude predicted

by applying the parameter estimation algorithm coincide very well with each other

(Figure E.14). For the experiment shown, the MBV fitting gives a kp of 1.64
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Figure E.12: Plot showing the dynamic stiffness and streaming potential versus fre-
quency results for a typical experiment. The free parameters in the model used to
fit the data (dots) are kp, ke, and HA. Ks is a stiffness assigned to the porous platen
which contributes to the overall stiffness sensed by the load cell. The modulus, HA,
shown above is a free parameter in the fitting, and is different from the value obtained
from the stress strain behavior, because it is fitted allowing for the contribution of
electrokinetic effects rather than the classical equilibrium modulus. The phase angle
data for the streaming potential is not used in the model fitting, as a result there is
a slight discrepancy between the fit curve and data.

(pm/s)/(MPa/mm), which is very close to the value of 3.150 obtained from the fitting

of the dynamic CC data. However, the value of ke = 22.65 mV/kPa obtained from

the MBV fitting is more than two times the value of ke = 8.700 obtained from the

CC fitting. Figure E.14 also shows the CGS predicted by the MBV model when the

parameters estimated by the CC fitting are used as inputs (see Figure E.1). The

plot shows that, for this experiment, the predicted CGS, using the CC parameters

as inputs into the MBV, underestimates the observed CGS data, due to the lower

predicted ke.
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Figure E.13: Plot of current-generated stress vs. frequency for the same experiment

shown in Figure E.12. A current density of 1.00 (mA/cm2 ) was applied at frequencies

of 0.025, 0.05, 0.1, 0.25, 0.5, and 1 Hz. This data is a result of applying the calibration

as discussed.

E.4.4 Summary of Results

A summary of the results of the six experiments performed thus far is in Table E.1.

The thicknesses in these experiments ranged from 1 mm to 3 mm, while the exper-

imental strain varied from 4% to 17% compression. Values of the porosity and k22

were obtained from biochemical analysis. The values of HA shown in the table were

determined from the stress strain behavior of the AC disc. While the values predicted

by the two approaches are within an order of magnitude, there is not a good quantita-

tive agreement between the values. The ke from the CGS fitting is consistently higher

than that predicted by the CC results. This could be an explanation for the fact that

the predicted CGS, using the CC parameters as inputs, always underestimates the

observed and MBV fitted CGS, since smaller values of ke lead to a smaller CGS mag-

nitude (Figure E.9). Since the ke determined from the CC tests are always smaller

than those obtained from the CGS fitting, when these values are used as inputs in

the MBV which predicts the expected CGS, it always underestimates the observed

data. The results in Table E.1 show a consistent trend of the differences in kp and ke

Section E.4
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Figure E.14: Typical parameter estimation results and predicted CGS compared to
observed CGS. The predicted CGS (filled squares) agrees well with the observed
CGS (filled circles). In this particular experiment the kp value obtained from the fit
matches the kp obtained from the CC results well. However, the MBV ke is higher
than the CC ke. In addition, if the kP and ke obtained from CC are used in the
computational model, the expected current-generated stress (filled triangles) is less
than the observed CGS, due to the predicted ke.

obtained from the two different diagnostic approaches.

E.5 Discussion

The preliminary results indicate that the parameters obtained from the CC tests are

consistently different than those obtained from CGS measurements. First, since the

CC and CGS measurements produce very different profiles of strain, pressure, fluid

velocity, etc., it is not clear that the assumptions of infinitesimal strain and linearity

the existing model require are satisfied equivalently in both experiments as performed.

The effect of consolidation, finite deformation, and a non-linear strain profile must
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exp thickness strain porosity k2 2  HA CC CGS-PE
mm (%) (S/m) MPa kp ke k ke

1 1.64 -14.0 0.676 0.962 1.30 3.15 8.66 1.64 22.65
2 1.07 -16.9 0.686 0.871 0.40 7.96 12.40 47.81 67.65
3 2.70 -9.0 0.737 0.922 0.83 3.63 13.73 45.18 177.66
4 2.50 -11.6 0.702 0.938 0.49 20.67 9.95 49.36 47.92
5 2.31 -3.9 0.754 0.993 1.05 13.99 8.73 2.91 9.30
6 1.85 -7.6 0.721 0.966 0.38 8.21 8.68 2.86 18.56

Table E.1: The results of six experiments performed. The thicknesses in these ex-
periments ranged from 1 mm to 3 mm, while the experimental strain varied from
4% to 17% compression. Values of the porosity and k22 , the electrical conductivity,
which were obtained from biochemical analysis of the sample following the experi-
ment are also shown. The values of HA shown in the table were determined from the
stress strain behavior of the AC disc. A current density of 1.00 mA/cm 2 was applied
the cartilage in all but the first experiment in which 1.24 mA/cm2 was applied. kP
(pm/s)/(MPa/mm); ke (mV/kPa).

be considered when extending the existing models for a more realistic interpretation

of these results. For example, at higher frequencies, the majority of the strain is

occurring near the cartilage surface, thus the calculated kP is a localized permeabil-

ity, and does not reflect the "bulk" permeability of the entire tissue. Whereas, the

application of current may not induce such a non-linear strain profile, and as a result

the calculated kP may better represent the aggregate or "bulk" permeability. This

suggests that it is not clear that one should expect identical parameter values from

the both, CC and CGS measurements.

Experimentally, the discrepancies could suggest a problem with the voltage

signal coming from the piezo film. This could be due to parasitic capacitance from

incomplete shielding by the metallized Mylar layer or stresses induced on the Kynar

film by the thin silver electrodes deforming as current is driven to the cartilage (E.

H. Frank, personal communication). Other factors contributing to the discrepancies

may arise from modeling issues. In our modeling, we assume only normal stresses

are sensed by the ETS at the cartilage-probe interface. However, there may be other

stresses (shear) that are developed when current is applied which could contribute to
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the piezo signal. Another possibility is that the linear model we use for CC and CGS

analysis is inappropriate and more detailed nonlinear model may be required.

More experiments need to be done to fully characterize the parameter discrep-

ancies resulting from the two diagnostic techniques. In addition, impedance measure-

ments can also be incorporated (to determine k22) and include the phase angle data

in the modeling.

The ultimate goal is to estimate cartilage physical properties from probe mea-

surements (CGS and impedance) to be a more sensitive diagnostic tool. In the in vivo

system all the relevant parameters will not be accessible (i.e. thickness or sGAG con-

tent), thus the ability of the model to estimate parameters accurately can be assessed

in this idealized system. Extensions to a non-homogeneous or mature cartilage system

are possible to mimic a more relevant clinical application of such probe measurements

since adult bovine and human cartilage has been shown to be non-homogeneous with

depth and along a joint surface [226]. A more complex mathematical model (finite

element model) would be needed to properly capture this behavior.
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Appendix F

Development of an Analytical Approximation to

CGS Using a Dimensional Analysis Technique

F.1 Introduction

Dimensional Analysis (DA) is a technique that can be used to plan experiments,

present data compactly, and even in theoretical studies [243]. In essence, it reduces

the number and complexity of variables which are chosen to affect a particular physical

phenomena under study. At minimum, the number of variables (n) will be reduced by

the number of fundamental dimensions involved (k). In the case of electromechanical

problems, the fundamental units are mass M, length L, time T, and amperes A (or

voltage V). DA has the potential to save time and money, by reducing the amount of

experimental conditions needed to be tested when characterizing an empirical system,

or by allowing one to create a approximate function between variables in a complex

simulation (this is how it will be used in this application). It is powerful tool to

investigate how independent variables affect dependent ones; in the trends and their

strength. Whether the function dependence is linear, quadratic, etc, and it may

clearly eliminate variables to which the analysis is not sensitive. For example, in

aerodynamic applications, it also provides scaling laws where data from models can

be inferred to a full scale prototype. DA began with writings by Euler in 1765, and

culminated in the Buckingham pi theorem published in 1914. Controversy rages until

today (with tens of books published on the topic) due to the subtlety and art of DA,

while mathematicians search for more rigorous approaches [215].

The technique is based on the principle of dimensional homogeneity, where all

additive terms in a relationship will have the same dimensions if an equation is truly

proper. Each of these equations can be written in an equivalent non-dimensional

manner which will be more compact. It can't be overstated that, in general, the vari-
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ables chosen to describe a complex physical situation require considerable judgment

and experience.

In this application, DA will be used to find a functional dependence between

current-generated stress (CGS) and impedance, and the intrinsic variables of the ar-

ticular cartilage. A model to describe the phenomena of current-generated stress was

developed by Sachs et al. [199], and extended to the practical case of finite sized

electrodes by E. H. Frank [13]. The case of finite sized electrodes requires the compu-

tational solution of a complex mathematical multi-boundary value problem. The goal

here was to use the computational solution along with DA to elucidate the functional

dependence of CGS and impedance on the variables in the Sachs et al. model. This

will result in a better physical understanding of the sensitivity of electrokinetic probe

output to model parameters, and to find an approximate analytical solution to aid in

understanding typical output expected based on known tissue parameters.

F.2 Current-Generated Stress

The current-generated stress can be written as the following functional dependence

based on the variables from the model of Sachs et al.*:

or-= f (HA, k,, ke, k2 2 , f, , , J, h) (F.1)

where HA is the equilibrium modulus, kp the hydraulic permeability, ke the electrome-

chanical coupling coefficient, k22 the electrical conductivity, f the frequency, v the

Poisson's ratio, # the porosity, J the applied current density, and h the thickness.

Similar dependencies could be written for fluid velocity U, displacement u and pres-

sure P. Using the MKS units system (plus amperes, A) the variables of interest have

the following units ([] denotes dimensions of):

*For completeness, time, spatial variables, and wavelength (A) could be added.
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There are 10 variables and 4 distinct units, therefore 6 dimensionless groups

should result at the end of the analysis. Picking k22, J, h and HA as the variables,

the following can be written by equating exponents for the case of ke, and solving for

the exponents to form the dimensionless group k*:
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Therefore, the functional dependence can be written as:

-*=f(kp*,,ke, f *, V, 0) (F.-5)

or, after analyzing the full set of dimensional groups:

a =- ( k22 HA kp k22 HA ke k22 HA f q5) (F.6)
HA J2 h2 ' J h ' J2

Next, the computational solution of the mathematical multi-boundary value problem

can be used for a range of model physical parameters that cover realistic physical

values for articular cartilage during typical experimental protocols:

[HA] = 0.025 - 1.25 MPa

[k2 2] = 0.8 - 1.2 S/m

[h] 0.5 - 2.5 mm

[J] = 5 -25 A/M 2

[kp] 1.0 - 100 (pm/s)/(MPa/mm)

[ke] = 1.0 - 100 mV/MPa

[#5] = 0.7

[v] = 0.1

The geometry of the electrodes and boundary conditions are set according to that

used in Appendix E. The computation model can be used to solve for the current-

generated stress for the range of parameters and given geometry.

To utilize the DA to produce an analytical relation between dimensionless

groups, functional dependencies of the independent variables to the dependent dimen-

sionless groups must be chosen but physical intuition, experimental data or otherwise.
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The earlier parametric results in Figure E.9 from Appendix E, suggest approximate

power law relationships between the dimensionless groups. Therefore, using a simple

power law relationship the following functional dependence can be found:

= - 4 [ k22 HA kj 1.0058 [k 2 2 HA kp] -0.2667 k 22 HA f -0.7332

HA -Jh.63k J2 h 2  H2 f (F.7)
HA J h J2 I2 I

The power law fit with an R2 =0.99 (n=6561, corresponding to all combinations of

parameters used to cover the range of parameter interest, Figure F.1).

In turn, the dimensionless expression can be re-arranged to form the following

first order expression:

r[kPa] e-. ke [mV/kPa] J [A/rm2 ] [HA [MPa] 10.733 (F8)
102.884 h [rmn]14 7 2 kI EM i]026 [ f [Hz]P Ma/mm

Equation F.8 is referred to as a "peculiar" equation since it is defined only for a

specific set of units shown and a choice of functional dependence. Therefore, it should

be used carefully ensuring that the parameters used have the proper units shown. It

is appropriate over the range of parameters given, the geometry and the boundary

conditions prescribed for the simulation.

Nevertheless, the first order Equation F.8 gives some physical insight into

the model sensitivity to parameter variations when computing the current-generated

stress. To the first order, the CGS is not dependent on electrical conductivity, k2 2 ,

and is linearly dependent on electromechanical coupling coefficient, k, and current

density, J. In addition, CGS is directly proportional to the equilibrium modulus, HA,

while inversely proportional to the thickness, h, permeability, kp, and frequency, f.

Of the parameters that can be independently controlled, J, h, and f, exper-

imental data has shown qualitative agreement with the predicted trends. The CGS

has been found to be directly proportional to the current density, and in fact, CGS is
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0- HA= 0.0 2 5 - 1. 2 5 MPa
k22 =0.8 - 1.2 S/m
8 = 0.5 - 2.5 mm
J = 5 - 25 A/m2

-2.5 = 1 - 100 (jm/s)/(MPa/mm) *
ke 1 - 100 mV/MPa
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0

-5-

= 0.7
V = 0.1

-7.5

-7.5 -5 -2.5 0
log [10-0.383[ k* ]1.006[ k*, ]-0.267[ f ]-O.733]

Figure F.1: A scatter plot of the computational solution of the current-generated

stress multi-boundary value problem plotted against the dimensionless groups com-

bined by a power law. The log-log representation of the data suggests the power law

fit to the output of the computational model approximates the CGS quite well over

a 5 decade range with a R 2 of 0.99. The simulation was over the range of parameter

values given in the upper left and the subsequent permutations (n=6561). The val-
ues of v and # were not varying due to the lack of sensitivity of the model to these

parameters. The deviatory points from the upper part of the scatter plot (indicated

by the arrow) represent points simulated with kp = 100 (pm/s)/(MPa/mm) and ke =
100 mV/MPa, that are the upper limit of the physical values expected from articular
cartilage measurements.

normalized to J to formed a normalized stress amplitude in the prior work of Berken-

blit. The decrease of CGS with increasing frequency is a prediction of the poroelastic

theory on which the computational model is based and the expected trend found

experimentally. In addition, Berkenblit has shown experimentally that as the thick-

ness increases the CGS decreases, qualitatively validating Equation F.8. The other

parameters, HA, kP, and ke, are difficult to vary independently in articular cartilage,

and ke can not be directly measured. Even in an enzymatic digestion model (i.e.

trypsin) it is difficult to perturb any one of the three independently. However, it may
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be possible to construct electrolyte gels to control these properties to investigate their

functional dependence on CGS.

Therefore, Equation F.8 seems to be able to represent the CGS predicted by the

computational implementation of the multi-boundary value problem over a wide range

of parameters that are relevant to experimentation with articular cartilage relatively

accurately. The analytic first order relationship based on power law dependence

between the dependent and independent dimensionless groups also seems to make

sense qualitatively with prior experimental results. It can provide some physical

insight into the dependence of CGS on the model variables and provide a quick

estimate of the experimentally expected CGS given parameter values.

F.3 Impedance

Similarly, the following functional dependence based on dimensionless groups can be

written for the impedance (Z):

k2 2 HA kp k22 HAke k2 2 HA f
Z Z = J2 h2  ' J h ' J2 ,'

[E]1 [kg M
2

]

where the dimensions of impedance is: [Z] =A= A2

As with CGS, simulations were performed to examine the effect of model

parameters on impedance over a physically relevant range (similar to CGS, except

the frequency range was extended to 1 kHz and 10 mV/kPa was used as the upper

limit of ke). It was found that the electrokinetic effects (due to HA, kp, ke, f, ... ) were

negligible, and the impedance was solely a function of the electrical conductivity, k22 ,

in the following form: [Z] = 271 - 136 k22 . The variations in impedance due to model

parameters would be below the level of measurement sensitivity, making the cartilage

conductivity the first order effect for this homogeneous, linear poroelastic model.
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