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Abstract

This project has addressed the development of a versatile hydrogel for in vivo or
in vitro medical applications such as a scaffold for cells in tissue engineering. In this
pursuit I have developed a hydrogel composed of functionalized poly(ethylene glycol)
(PEG) that could be injected into the body and induced to gel in situ by the addition of a
natural crosslinking enzyme, transglutaminase. Enzymatic crosslinking affords the
advantages of kinetic control inherent in enzymatically-limited processes as well as
specificity, a necessity for engineering controlled chemistry in vivo.

This work focused on engineering the gelation process. Through an understanding
of transglutaminase specificity a number of substrates, primarily peptides, were designed
and implemented as PEG-linked substrates. Models for gelation times were developed
and tested based on transglutaminase reaction models as a function of key parameters
including substrate kinetics, polymer number functionality and reaction environment.

Enzymatically crosslinked gels were characterized in terms of diffusion and
swelling properties as well as cellular compatibility. These tests gave insight into the
properties of enzymatically crosslinked PEG gels and most importantly gave every
indication that they were suitable for cell encapsulation.

In certain tissue engineering applications it may be important to employ a
temporary cell scaffold that will degrade as the cells synthesize and organize molecules
specific to their native environment. Enzymatically crosslinked PEG gels were made to
be degradable in vivo by incorporation of a cleavable peptide sequence into the gel
structure. This peptide sequence can be recognized by a native enzyme called
collagenase, an enzyme that cells naturally secret to remodel their own environment. By
incorporation of collagenase-sensitive linkages gel degradation is controlled by the cells
themselves.

Thesis Supervisor: Linda G. Griffith
Title: Associate Professor of Chemical Engineering and Bioengineering
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1 INTRODUCTION

1.1 Tissue Engineering

Recent decades have witnessed the emergence of therapies designed to replace lost

cell and/or tissue function with cell based therapies. This approach has been applied to

metabolic and cell-function dependent tissues for treatment of liver1 , 2, diabetes 3,

amyotrophic lateral sclerosis (ALS)4, chronic pain5 and nerve damage 6 as well as tissues

and organs with more structural roles such as skin7, bone8, cartilage 9, cardiovasculature 10,

and kidney11 . The field of tissue engineering is still in its infancy, with only a limited

number of applications progressing into clinical trials and fewer still are FDA-approved.

Successful products have been concentrated in connective tissues such as skin1 2 and

cartilage 13 where the material properties of the construct might be considered more

important to the success of the therapy than the cellular component.

A central paradigm in tissue engineering is 'building' tissues de novo from cells and

polymers. The cells may be human, non-human or isolated directly from the patient to be

treated. The latter case may be ideal when sufficient cell numbers are available to

eliminate the possibility of immunogenicity and disease transmission associated with

transplantation. Whatever the source, it essential to provide the cells with an

environment suitable for cell survival. The premise of the work described in this thesis is

that the environment should replicate key aspects of the milieu found in vivo. Cells in

native tissues typically exist in a highly hydrated environment, surrounded by and
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adhered to a proteinacious matrix of natural polymers, including proteins and charged

polysaccharides. The properties of these polymers can affect the behavior of cells

through specific molecular interactions with cell-surface receptors as well as influences at

the length scale of the cell by the polymer chain long-range organization and crosslinking.

1.2 Cell Scaffolds

Construction of a cell scaffold for use in tissue engineering, the polymers to be

used may be either natural or synthetic. Natural polymers have the advantage that they

are composed of many of the very components that the particular cell type may

encounter in vivo. Unfortunately, processing steps required to use natural polymers,

including solubilizing and re-crosslinked the polymers, can materially alter their

properties as perceived by cells. Further, processing can remove a variety of secondary

molecules specifically and nonspecifically bound to native extracellular matrix such as cell

signaling molecules, enzymes, inhibitors, etc. These missing components can't simply be

replaced: the complexity of natural systems precludes complete characterization of the

components that comprise native extracellular matrix. Other components in natural

polymers may survive the processing steps, but may ultimately prove harmful to an

engineered tissue by inciting an immune response. For these reasons a greater degree of

control can be exerted over the system by employing chemically defined synthetic

polymers.

Yet despite these drawbacks, natural polymers have been successfully used in the

a number of the replacement tissues developed to date, most notably skin replacements.
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Collagen is one of the most widely used polymers as a natural tissue scaffold. As a

natural component of most tissues, collagen scaffolds present encapsulated cells with

protein interactions much like the natural cellular environment7 . Alginate is another

widely used natural polymer because of the mild conditions required for gelation 14.

The large diversity of synthetic materials used as cell scaffolds has been

summarized in numerous recent reviews 15 17 . Materials include polylactides/glycolides,

polyurethanes, polyacrolates, polypeptides, poly(ethylene glycol) and others. The

suitability of a biomaterial for a particular application is often a trade-off between

material/structural properties and aspects at the molecular level such as cellular

interactions. Material-cell interactions are critical from the standpoint of preventing or

minimizing adverse cellular responses of the immune system as well as promoting desired

interactions such as cell adhesion and inciting cell growth that may be necessary for the

survival and function of the tissue engineered construct. Most biomaterials suffer from

some degree of bio-incompatibility in that they elicit some degree of immune response18,

19. A notable exception to this is poly(ethylene glycol) 20.

In this work we have sought to design a cell scaffold engendered with only those

specific cellular interactions specified by the user. This confines our universe to

synthetic materials, as natural materials are inherently undefined. Therefore the design

goal of this work is a cell scaffold built up from a backbone of non-cell interacting

polymers, decorated with chemical moieties that interact with cells in a defined and

controllable manner.
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1.3 In Situ Gel Formation

One point of distinction between various potential cell scaffolds is the manner in

which cells are introduced into the construct. Scaffolds in which cells are seeded into a

pre-formed structure such as polylactide-co-glycolide formulations 21 are seeded ex vivo

and then implanted into the target site. A somewhat less invasive procedure might be

achieved whereby the cells are injected into the target site along with a scaffold precursor

that is designed to form in situ.

A number of methods have been proposed as to how to achieve this. Strategies

are somewhat restricted by the limitation of cytotoxicity. Any structure formed in

contact with living tissues or formed around cells must be relatively mild.

Photopolymerization 22 at visible wavelengths of acrylate-functionalized multimeric

poly(ethylene glycol) has been used successfully on the surface of tissues and may find

use as tissue scaffolds23. Injectable hydrogels designed for drug delivery 24 formed by

spontaneous chemical crosslinking may also find use as cell scaffolds. Here we propose

inducing gelation by the action of an enzyme which would obviate the need for excessive

manipulation required to photopolymerize in situ and would eliminate the evolution of

chemical leaving groups.

Injectability and specificity are two key advantages to enzyme-mediated gel

formation. Injectability is conferred by the kinetic control inherent in an enzymatic

system: varying the amount of enzyme added to the pre-gel solution modulates the rate

of gel formation (Figure 1-1). Thus the gelation rate can be tuned to the time required to
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prepare the pre-gel solution and deliver it to the target site prior to gel formation.

Specificity is also achieved by the nature of enzymatic reactions. This could be

exceedingly important for directing the specific chemical reactions necessary for

crosslinking and gel formation in the undefined chemical environment of the human body.

Additionally, chemical moieties incorporated into the polymer backbone to influence cell

behavior and function need to remain uncrosslinked to remain active (Figure 1-2).

There are currently two known enzymes found in the human body that are

capable of carrying out crosslinking reactions, lysyl oxidase25 which primarily

responsible for the stabilization of articular cartilage and other matrix molecules, and

transglutaminase, a family of crosslinking enzymes with diverse activities. Because

transglutaminase is the most well characterized and readily available, a member of this

family of enzymes was chosen for development of enzymatically crosslinked hydrogels.

1.4 Poly(Ethylene Glycol)

Poly(ethylene glycol) (PEG) owes much of its favorable cell interactions from its

ability to be almost completely non-adsorbing to proteins. Many of the interactions cells

have with their environment are protein- and/or charge-mediated, leaving PEG almost

invisible to cells. One of the major contributors to the solution properties of PEG is its

high degree of hydrophilicity. This may be explained by comparing the PEG repeat C-0-

C with the H-O-H geometry of water 26, as well as the hydrogen-bonding available with

oxygen. Another significant contributor to PEG's protein repulsive properties is its high
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chain mobility 27 . This results in an entropic expense for any macromolecule to bind to

PEG27 .

Poly(ethylene glycol) has been used with some success as a surface passivant.

Failings in PEG-grafted surfaces to resist protein adsorption can often be attributed to

incomplete surface coverage. The same properties that make PEG attractive as a surface

passivant make it difficult to pack at high densities on surfaces. When surface coverage is

complete, only a small amount of PEG is needed to confer a surface with PEG-like

nonbinding properties. When short ethylene oxide oligomers are grafted to a surface as a

self-assembled monolayer, it was found that as few as two ethylene oxide units were

sufficient to make the surfaces nonadsorbing to proteins28 when the ethylene oxide units

were packed to a sufficient density.

Where the goal is to engineer specific cellular interactions into a cell scaffold,

poly(ethylene glycol) provides an excellent background of low non-specific cellular

interactions while allowing for the introduction of chemical moieties that might mediate

desired interactions such as RGD 29-type peptides for cell adhesion or covalently linked

growth factors 30 to accelerated the population of the neo-tissue.

1.5 Transglutaminase

1.5.1 Overview

Transglutaminase (EC 2.3.2.13) is a family of calcium-dependent enzymes which

catalyze an amine-y-glutaminyl acyl-transfer reaction shown in Figure 1-3. The active site
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in all transglutaminases is a cysteine sulfhydryl. The reaction occurs in two steps. First,

the active site sulfhydryl displaces the y-carboxamide to form a thioester with release of

ammonia. This is presumably base-assisted in the active site, as has been shown to be the

case for plasma transglutaminase 3 1. The protonation of ammonia at physiological pH

provides the driving force and virtual irreversibility of this reaction. In the second step, a

primary amine displaces the sulfur, regenerating the free enzyme with the formation of an

amide bond. In a side reaction, it has been shown that the enzyme-glutamine complex can

also be hydrolyzed to glutamic acid and free enzyme 32. Once formed, the y-glutaminyl

amide bond is thought to be resistant to proteolysis 33.

Transglutaminase activity is found throughout the body, forming crosslinks that

stabilize skin, hair and fibrin clots in wound healing. It also is involved in covalently

stabilizing structures in the extracellular matrix of variety of tissues. Similar functions

have been found in invertebrates, plants, unicellular eukaryotes as well as prokaryotes 33.

Aside from the obvious utility of forming crosslinks to stabilize structure, the

physiological function of transglutaminases are just beginning to be elucidated.

Transglutaminase activity or overexpression has been implicated in programmed cell

death 34, cell differentiation 35, cell adhesion 36, 37, initiation and propagation of

inflammatory disease 38, neurological diseases involving protein aggregation 39 and

cancer40, 41.

A number of different molecules have been found to have an effect on

transglutaminase expression in vitro. The most well-studied of these is retinoic acid. A
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variety of cell types42-45 upregulate expression of tissue transglutaminase (TG11) upon

exposure to retinoic acid. However, in cultured keratinocytes, retinoic acid can suppress

levels of keratinocyte transglutaminase (TGK) 43 Other inducers include cAMP analogs in

mouse macrophages 42, TGF- in normal human epidermal cell 46 and sodium butyrate in

transformed human lung fibroblasts47.

1.5.2 Enzyme Variants

At least six transglutaminase variants have been characterized. Historically, they

have been identified by a number of different designations. These are tabulated as

adapted from a review 33 of the transglutaminase family in Table 1-1. Plasma and Tissue

transglutaminase were the first to be identified and are by far the best characterized to

date. These two enzymes will be discussed briefly below. Further information on other

transglutaminases can be found in excellent reviews33, 48.

Tissue transglutaminase (TG11) was the first of the family to be discovered 49.

TG11 is monomeric48 and is not glycosylated50 and does not contain disulfide bonds

despite the presence of multiple cysteine residues51 . Studies on TG11 almost exclusively

use TG isolated from guinea pig liver, as this is a particularly rich source. In fact, TG11 is

found in a variety of tissues at different levels: liver ~ spleen > heart, kidney and lung33.

Recently, TG11 has been implicated in an array of signaling processes including covalent

stabilization of dimers in some cytokines such as IL-2 52, crosslinking TGF to extracellular

matrix 53 as well as a possibility of participation in calcium-mediated signal transduction

in the perinuclear space 54.
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Factor XIII of the blood coagulation cascade is the best physiologically-

characterized transglutaminase. It circulates in blood plasma as an inactive a2b2 tetramer.

The zymogen is activated by thrombin-mediated cleavage of the a-subunit to form Factor

XIIIa. Found in monocytes, macrophages, megakaryocytes, platelets, uterus and

placenta4 8 , the enzyme exists intracellularly as an a2 dimer of approximately 83kD55 . It

is free of glycosylation and disulfide bonds55 and does not exhibit a typical secretion

sequence 56, 57, all consistent with an intracellular protein. It is unknown how the a-

subunit is excreted to form the extracellular a2b2 tetramer 33 with the 8OkD, glycosylated

b-subunit5 8.

1.5.3 Kinetics

A number of methods have been devised to measure the activity of

transglutaminase-mediated reactions. Most assays involve the incorporation of a labeled

amine substrate into a particular glutamine substrate. The label maybe radioactive, as in

the case of [14 C]-methylamine incorporation into the B chain of oxidized insulin5 9, [1,4-

14C2]putrescine into N,N'-dimethyl casein 60 , [14C]-monodansyl cadaverine 61 and others.

Because of its excellent substrate properties 60 unlabelled monodansyl cadaverine is also

useful as a flourophore and a chromophore. These methods can be modified for activity

measurements of new substrates by substituting for one of the pair of amine donors and

acceptors.

The most versatile method for measurement of the concentration of active enzyme

is hydroxylamine incorporation into benzyloxycarboyl-glutaminyl-glycine (ZQG). This
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method (Appendix A4) can be scaled to multiple samples in 96-well plates and can be

completed in as little as twenty minutes, depending on the number of samples. It should

be noted that while ZQG is an excellent substrate for TG11, it is a relatively poor

substrate for other transglutaminases including plasma TG 62.

For measuring the activity of substrates attached to poly(ethylene glycol) (PEG)

it has been found useful to take advantage of the size differential between substrate

probes and the PEG-bound substrate of interest. For measuring reaction curves on PEG-

bound amine acceptor substrates, TG-mediated coupling to monodansyl cadaverine is

monitored by size exclusion chromatography (SEC), as described in Appendix A5. For

activity measurements on PEG-bound amine donor substrates, coupling to ZQG is

measured in a similar manner, as described in Appendix A6.

The kinetics of transglutaminase reactions have been shown to follow a modified

double-displacement mechanism5 9, 63, 64, similar to mechanisms of other enzymes such as

glucose-6-phosphatase, sucrose phosphorylase, and glutaminyl transpeptidase as noted

in a review of transglutaminase activity65. This is different from a standard double-

displacement mechanism in that hydrolysis of acyl-enzyme intermediate is possible 32.

This mechanism accounts for the amine-y-glutaminyl acyl-transfer function of

transglutaminase as well as the observed limited esterase activity63, a representative of

the reverse reaction of that shown in Figure 1-3. While the transglutaminase reactions are

reversible 66, under physiological conditions the reaction is driven to completion by the

liberation of ammonia. In the presence of amine substrates, a hydrolysis reaction can also
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be neglected 64 wherein the species 'A' in Figure 1-3 would be water, yielding a carboxylic

acid as the product. Under the conditions of saturating amine substrate concentrations,

the kinetics obey a Michaelis-Menton model:

d[P] _ kcat[E]t[S] (1-1)
dt Km + [S]

where [P], [E] and [S] are concentrations of the y-glutaminyl amide product, enzyme and

amine acceptor, respectively. A number of different studies have been published on the

substrate kinetics of amine acceptor substrates. Table 1-2 shows a compilation of

synthetic glutamine substrates for which values of Km and kcat values have been

published. Details of these substrates are discussed below.

1.5.4 Substrates

Transglutaminases require two substrates and exhibit very different levels of

specificity for each. The amine acceptor, sometimes referred to as the acyl donor, is the

first substrate to be covalently to the enzyme, and has relatively high specificity

requirements. Reactivity of amine acceptors can be a function of primary as well as

higher order structures50 , 67, 68. In contrast, the amine donor which nucleophilically

displaces the enzyme from the amine acceptor does so with relatively lax specificity

requirements 60 , 69, 70. The E-amino group of lysine as well as other polyfunctional

amines found in vivo are excellent amine donors. A number of studies have been
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published that give insight into the activity requirements for these two very different

substrates. The details of these requirements, described below, refer to data collected

with tissue transglutaminase (TG 1 from guinea pig liver) except where noted, but are

often generalizable to all transglutaminases.

Early studies on glutamine (amine acceptor) substrates focused on common

proteins such as fibrinogen, casein and insulin 7 1-73. It was these early studies that

suggested that peptide-bound glutamines were reactive whereas asparagines were not, in

spite of the small single-methylene difference in structure. It was subsequently

discovered that synthetic glutamine-containing peptides, namely benzyloxycarbonyl(Z)-

L-glutaminyl-L-valine ethyl ester, were substrates for transglutaminase 74. Further, D-

glutamine was dramatically less reactive than the L-form, and substitutions at the valyl

site gave variations in activity7 4. Folk and Cole performed what may be called the first

quantitative work on defining the attributes of the amine acceptor substrate. They found

that for L-glutamine-containing peptides, Z-L-glutaminyl-glycine (ZQG), ZQ and GGQG

were substrates for TG but Q, QG and GQG were not 75, 76. This established the

importance of distancing the amine terminus from the glutamine residue. The proximity

of the glutamine to the carboxylate terminus was also found to be consistent with

decreased activity, but to a smaller degree 75, 76. Curiously, replacing the Z-group in ZQG

with other protecting groups such as methyloxycarbonyl, formyl, acetyl, propionyl,

benzoyl and p-toluenesulfonyl reduced the reactivity by 2 to 20 times, underscoring the

specificity of TG 65.
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Detailed aspects of the glutamine binding pocket are described in detailed

review7 7 . Experimental evidence points to a model of the glutamine binding site as a

hydrophobic pocket of limited dimensions. Branching at either the P- or the y-position

relative to the carboxamide function precludes enzyme activity77, 78. Further, it seems

that the 7-position extends beyond the pocket, as hydrophobic substitutions at this site

can actually enhance activity7 8. Indeed this is the structure of glutamine where the so-

called u-carbon of glutamine corresponds to the y-position relative the carboxamide end-

group. Observations of reactivities of a variety of model carboxamide compounds suggest

a pocket dimension of approximately 2.5^ deep by 4.5-5.5A in width77, however these

dimensions do not seem to define a fixed cylinder since both u-methylpropionamide and

P-methylbutyramide act as competitive inhibitors78. A flexible-pocket model is also

consistent with the ultimate release of the acyl-transfer reaction product.

Interactions outside the binding pocket are important, but have proven difficult to

precisely characterize. It is thought that both amide bonds on either side of glutamine

residue contribute to productive binding and thereby higher kinetics, but are not

essential7 7. Structures even further removed from the active glutamine can strongly

influence the reaction kinetics 61, 67, 79. One of the first systematic attempts to

characterize the kinetic effects of the local peptide sequence on glutamine activity focused

on substitutions of a single L-leucine (L) for the various glycines in N-formyl-gly 3-L-gln-

gly 3 (fGGGQGGG) 79. It was found that methylamine and hydroxylamine incorporation

was enhanced for fGGGQLGG and decreased for fGGLQGGG relative to fGGGQGGG.
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All other substitution sites were found to be equivalent to fGGGQGGG. Another, more

recent approach has been to examine variations of sequences from known protein

substrates of high activity such as j-casein. Peptide variants of 1567 and 1068 amino

acids in length on the local sequence of the TG-substrate glutamine in f-casein showed

order of magnitude differences in the measured catalytic rate constant (kcat) and substrate

binding (Kin). Although there is only a tenuous link between the 3D conformation of P-

casein and these short peptides the large differences in reactivity underscores the

importance of 30 structure in determining glutamine activity. Larger variability was

measured for Factor XIII than for TG11, but relative activities failed to correlate between

Factor XIII and TG11 illustrating the differences in substrate specificity.

The amine substrate has a less restrictive specificity profile. In contrast to the

strong specificity observed for glutamine substrates in particular peptides, a variety of

amines can act as substrates. A number of small poly-functional amines are known

substrates of TG in vivo with the notable exception of free peptides 72 .

Unfortunately much of what is known about the amine substrate specificity is

based on extrapolations from inhibitor studies 77 . These data indicate that the amine

substrate binds in a somewhat geometrically restricted pocket akin to the glutamine

binding pocket. In inhibitor studies with straight-chain and isobranched amines suggest

that inhibitor potency drops off with the branch unit proximity to the primary amine 70.

This trend continues until the E-carbon where branching is inconsequential, similar to the
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structure of lysine 70 . Some advantage is also conferred by the L-configuration, again

confirming the substrate specificity of peptide-bound L-lysine 70.

It has been suggested that two of the most important requirements for amine

substrates are the amine pKa and a hydrophobic region somewhat removed from the

primary amine. Evidence for these effects is given by an elegant study by Lorand et al. 60

where a variety of straight chain substrates were assayed for activity by competition with

monodansyl cadaverine (mdc). For example, dansyl-CH 2CH 2 CH 2-S-CH 2NH2 was found

to be 7.7 times more active than mdc (dansyl-CH 2CH 2CH 2CH 2CH 2NH 2). This excess

activity can be explained by the higher pKa of mdc, with a slight (20%) correction for the

girth of the sulfur. The importance of the hydrophobic pocket is exemplified in the

effects of subtle modifications on the dansyl group of mdc (R-C10 H 6-SO 2NHC 5HIO1NH 2,

R=-NMe 2). Changing the R-group to R=H or R=-CH 2NMe 2 causes a 63% and 59%

reduction in activity, respectively.

In an attempt to characterize an extended binding site, a series of pentapeptides

were synthesized similar to the set discussed above for the amine acceptor site 70 . A

single leucine was substituted for one of each glycine in N-acetyl-gly 3-L-Lys-gly 3

(aGGGKGGG). The opposite positional relationship was found for lysyl-inhibition as

was found for the amine acceptor binding site. The peptide aGGLKGGG was found to

be a more potent inhibitor, and aGGGKLGG a less potent inhibitor than aGGGKGGG.

This was found for both TG11 and Factor XIII.

Certain amides and esters can act as substrates for the reverse reaction. The

reverse reaction, via acyl transfer as well as hydrolysis of transglutaminase has been
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studied primarily with amides of ZQG 66 and esters of p-nitrophenyl 64, 80, 81,

respectively. Both of these reactions tend to be one or two orders of magnitude smaller

than the corresponding forward reaction for amide formation. Interestingly, the rate of

TG-mediated amide hydrolysis is similar to the rate of ester hydrolysis, implicating the

binding specificity as a more important factor than the hydrolytic stability of the bond

itself.

1.5.5 Cofactors

Calcium is required for activity in all transglutaminases. By equilibrium dialysis,

TG11 binds four calcium ions per molecule 81 . A calcium-induced conformational change is

suggested by multiple lines of evidence. In the total absence of calcium, the active site

sulfhydryl of TG11 is protected from inactivation by iodoacetamide 3 2 and p-

mercuribenzoate 82 . Exposure to calcium also alters the UV absorbance of TG11 at similar

calcium concentrations 83. There is also suggestive evidence that calcium binding makes

TG11 susceptible to calpain-mediated proteolysis 5 4 .

Calcium binds to TG11 with two KD values. The apparent TG11 calcium KD as

determined by spectral change and inactivation studies cited above is approximately

8mM. The KD determined by spectral change 81 gave constant values over the pH range

of 5.6 to 9.0. However when measured by equilibrium dialysis 81 the KD was found to be

1mM, although the concentrations used were likely insensitive to higher KD values as

pointed out in a review by J. E. Folk and S. I. Chung 65. When measured by TG11

reactivity, two KD values are apparent, consistent with the above results. The KD as
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measured by hydrolysis and esterase activity was measured to be 1-2mM 32, 81. For acyl

transfer reactions, the calcium KD was found to be 7mM 83.
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Table 1-1: Trans glutaminase Family

Adapted from reference 33

Designation
Plasma
Transglutaminase

Tissue
Transglutaminase

Keratinocyte
Transglutaminase

Epidermal
Transglutaminase

Prostate
Transglutaminase

Hemocyte
Transglutaminase

Alternate Name
Factor XIIa, fibrin stabilizing
factor, fibrinoligase, Laki-Lorand
factor
TG11, TGc, type II-, cytosolic-,
endothelial-, erythrocyte-, liver
transglutaminase
TGK, type I-, particulate
transglutaminase

TGE, type III-, bovine snout-,
callus-, hair follicle
transglutaminase
TGF, dorsal prostate protein I,
major androgen-regulated prostate
secretory protein, vesiculase

TGH, Limulus transglutaminase

MW(kD) Zymogen
a2b2

83 tetramer
b=8OkD

77 no

90-membrane
bound

80-soluble

77

no

yes

150-dimer

86

no

no
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Table 1-2: Amine Acceptor Substrates

Substratea

P-casein

Ser-Val-Leu-Ser-Leu-Ser-Gln-Ser-
Lys-Val-Leu-Pro-Val-Pro-Glu

i

Ser-Gly-Leu-Ser-Leu-Ser-Gln-Ser-
Lys-Val-Leu-Pro-Val-Pro-Glu

"

Ser-Val-Gly-Ser-Leu-Ser-Gln-Ser-
Lys-Val-Leu-Pro-Val-Pro-Glu

"

Ser-Val-Leu-Ser-Gly-Ser-Gln-Ser-
Lys-Val-Leu-Pro-Val-Pro-Glu

"

Ser-Val-Leu-Ser-Leu-Ser-Gln-Ser-
Gly-Val-Leu-Pro-Val-Pro-Glu

"t

Ser-Val-Leu-Ser-Leu-Ser-Gln-Ser-
Lys-Gly-Leu-Pro-Val-Pro-Glu

"

Ser-Val-Leu-Ser-Leu-Ser-Gln-Ser-
Lys-Val-Gly-Pro-Val-Pro-Glu

Ser-Val-Leu-Ser-Leu-Ser-Gln-Ser-
Lys-Val-Leu-Pro-Gly-Pro-Glu

Enzyme kcat(min-)

TG 1

Factor XIII

TG 1

Factor XIII

TG 1

Factor XIII

TG 1

Factor XIII

TG 1

Factor XIII

TG1

Factor XIII

TG 1

Factor XIII

Factor XIII

TG 1

Factor XIII

3.4

98

87

475

158

428

152

654

210

605

168

47.6

125

124

141

91

401

Km(mM)b

0.04

0.03

0.4

1.8

1.4

2.4

0.9

12.9

1.8

1.7

1.6

23.8

0.44

1.4

2.5

0.4

1.8

Conditions
and Ref.

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
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Table 1-2 Continued: Amine Acceptor Substrates

Substratea Enzyme kcat(min') Km(mM)b Conditions
and Ref.

Ser-Val-Leu-Ser-Leu-Ser-Gln-Ser- TG 1  159 5.2 1
Lys-Gly-Gly-Pro-Gly-Pro-Glu

" Factor XIII 2.8 10.1 1

Ser-Val-Leu-Ser-Leu-Ser-Gln-Ser- TG 1  167 1.9 1
Lys-Gly-Gly-Gly-Val-Pro-Glu

" Factor XIII 3.4 3.1 1

Ser-Val-Leu-Ser-Leu-Ser-Gln-Ser- TG 1  23.4 3.5 1
Lys-Val-Leu

" Factor XIII 25.4 0.64 1

Ser-Leu-Ser-Gln-Ser-Lys-Val- TG 1  162 1.5 1
Leu-Gly-Val-Pro-Glu

" Factor XIII 156 3.5 1

Gly-Gly-Gly-Gln-Gly- TG 1  197 2.4 1
Lys(TFA)'-Val-Leu-Gly

" Factor XIII 93.7 6.1 1

Gly-Gly-Gly-Gln-Gly- TG 1  210 3.1 1
Lys(TFA)'-Val-Leu-Gly-Gly

" Factor XIII 121 11.9 1

Leu-Gly-Leu-Gly-Gln-Gly-Lys- TG 1  108 0.6 2
Val-Leu-Gly-NH 2

" Factor XIII 377 1.0 2

Leu-Ser-Leu-Ser-Gln-Ser-Lys- TG 1  181 1.2 2
Val-Leu-Gly-NH 2

" Factor XIII 427 4.2 2

(Suc)Leud-Gly-Leu-Gly-Gln-Gly- TG 1  88 0.9 2
Lys-Val-Leu-Gly-NH2

" Factor XIII 433 3.5 2

(SUC)dLeu-Gly-Leu-Gly-Gln-Gly- TG 1  257 1.5 2

Lys(Suc)'-Va-Leu-G1y-NH 2
" Factor XIII 516 9.1 2
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Table 1-2 Continued: Amine Acceptor Substrates

Substratea Enzyme kcat(min-') Km(mM)b Conditions
and Ref.

(SUC)dLeu-Gly-Gly-Gly-Gln-Gly- TG 1  145 1.5 2
Lys(Suc)-Val-Leu-Gly-NH 2

Factor XIII 734 5.3 2

Leu-Gly-Leu-Gly-Gln-Gly-Gly- TG 1  302 3.7 2
Val-Leu-Gly-NH 2

" Factor XIII 23.4 22.7 2

Leu-Gly-Leu-Gly-Gln-Gly-Ala- TG 1  186 2.0 2
Val-Leu-Gly-NH 2

" Factor XIII 173 4.8 2

(SUC)dLeu-Gly-Leu-Gly-Gln-Gly- TG1  351 1.7 2
Ala-Val-Leu-Gly-NH 2

" Factor XIII 182 5.6 2

Leu-Gly-Leu-Gly-Gln-Gly-Arg- TG 1  333 2.7 2
Val-Leu-Gly-NH 2

" Factor XIII 278 3.7 2

(SUC)dLeu-Gly-Leu-Gly-Gln-Gly- TG1  104 1.7 2
Arg-Val-Leu-Gly-NH 2

" Factor XIII 253 4.3 2

Leu-Gly-Leu-Gly-Gln-Gly-His- TG 1  350 1.6 2
Val-Leu-Gly-NH 2

" Factor XIII 263 4.2 2

Leu-Gly-Leu-Gly-Gln-Gly-Leu- TG 1  115 0.9 2
Val-Leu-Gly-NH 2

" Factor XIII 213 1.6 2

Leu-Gly-Leu-Gly-Gln-Gly-Lys- TG 1  115 3.1 2
Ala-Leu-Gly-NH 2

" Factor XIII 43.8 4.6 2

Leu-Gly-Leu-Gly-Gln-Gly-Lys- TG 1  95 2.2 2
Val-Ala-Gly-NH 2

" Factor XIII 21.3 5.5 2
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Table 1-2 Continued: Amine Acceptor Substrates

Substratea Enzyme kcat(min-') Km(mM)b Conditions
and Ref.

Leu-Gly-Leu-Gly-Gln-Gly-Lys- TG 1  57.3 4.4 2
Ala-Ala-Gly-NH 2

Leu-Gly-Leu-Gly-Gln-Gly-Lys- TG 1  273 1.8 2
Leu-Val-Gly-NH 2

" Factor XIII 104 3.3 2

Benzyloxycarbonyl-Gln-Gly TG 1  200 7 3
Benzyloxycarbonyl-D-Gln-Gly TG 1  0.21 36 3

Benzyloxycarbonyl-DL-p- TG 1  --f -- f 3

methylGIn-Gly
Benzyloxycarbonyl-DL-y- TG 1  -- f -- f 3

methylGIn-Gly
Formamide TG 1  -- f --f 3
Acetamide TG 1  0.5 1.7*103 3

Propionamide TG 1  1.9 0.9*103 3

o-Methylpropionamide TG 1  --f --f 3

n-Butyramide TG 1  3.3 2.8*103 3

$-Metylbutyramide TG 1  --f --f 3

n-Valeramide TG 1  1.9 0.6*103 3

7-Methylvaleramide TG 1  13.4 1.5*103 3

n-caproamide TG 1  0.6 130 3

a All peptide substrates are of the L configuration unless otherwise noted.
b refers to apparent Km
' trifluoroaceyl-lysine
d N-c-succinyl-leucine
e N-E-succinyl-lysine

f No activity was detected after 24 hours.

Conditions and References:
1 - pH 7.45, 25 0C, 0.1M Tris-Cl, 30mM NaCl, 1mM EDTA, 50mM CaCl2, 1.5mM
monodansyl cadaverine 67

2 - pH 7.45, 250C, 0.1M Tris-Cl, 30mM NaCl, 1mM EDTA, 50mM CaCl2, 1.5mM
monodansyl cadaverine 68

3 - pH 7, 30C, 0.1M Tris-Cl, 1mM EDTA, 50mM CaCl2, 1mM methylamine65
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Figure 1-1. With enzymatic crosslinking gelation time can be controlled by modulating

the enzyme concentration.
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Figure 1-2. A crosslinking reaction that is specific for a particular substrate (circles) will

leave other moieties free to interact with cells.
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Figure 1-3. Kinetic mechanism for transglutaminase (E) crosslinking of an amine

acceptor (S) to an amine donor (A).
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2 TRESYL-MEDIATED SYNTHESIS

2.1 Background

Covalent linkage of peptides and small molecules to poly(ethylene glycol) end

groups is a core synthetic method used in this work. To avoid the introduction of

superfluous chemical moieties, zero-length crosslinking agents were desired. From the

family of potential chemistries, tresyl chloride (2,2,2-trifluoroethanesulfonyl chloride)

was chosen on the basis of reported high conversions in aqueous media as well as ideal

reactivity, reported as moderate coupling rates with only slow hydrolysis of the tresyl

group under the appropriate conditions1 . During the course of this work the definition of

'appropriate conditions' had become less certain, as it has become apparent that a second

side reaction can reduce yields via an addition/elimination at the carbon P to the trifluoro

group2-4 . In light of this new information a comprehensive study of tresyl-mediated

synthesis was undertaken.

Nearly two decades ago, 2,2,2-trifluoroethanesulfonyl chloride (tresyl chloride)

was introduced as a more reactive alternative to p-toluenesulfonyl chloride (tosyl

chloride) in activating hydroxyl groups to covalent modification for the preparation of

affinity chromatography supports 1. Tresyl chloride is widely used in solid support

activation as well as in poly(ethylene glycol) (PEG) activation for PEG-modification of

small drugs and proteins for biological stabilization and immuno-modulation 5 .

42



It had long been assumed that the reaction mechanism for tresyl-mediated

coupling was identical to that of tosyl chloride and other sulfonyl chlorides where the

substituted sulfonyl acts as a leaving group. Recently it has been suggested that

alternative mechanisms may prevail. Demiroglou et al. 6 proposed a mechanism in which

the sulfonyl sulfur is retained throughout the entire coupling reaction. On the basis of

experimental evidence, Gais and Ruppert 2 as well as King and Gill 3, 4 corrected this

postulated mechanism to include nucleophile addition by an P-elimination/Michael-type

addition reaction. The present understanding of tresyl reactions in aqueous media include

three pathways (Figure 2-1): hydrolysis, nucleophilic displacement, and -elimination /

addition.

The studies described here were carried out with the objective of developing

predictive kinetic models to optimize coupling reaction yield as a function of substrate

properties and reaction conditions.

2.2 Experimental Design

Experimental work regarding tresyl chloride-mediated coupling has been focused

on determining the molecular structure of reaction products, yet for practical application

of tresyl-mediated coupling it is necessary to know how reaction conditions may affect

the coupling yield. To optimize the amount of secondary amine linkages, it is necessary

to formulate a model that is at least empirically valid, that accurately predicts yields in a

useful rate of reaction conditions. In elucidating the effects of pH, temperature and steric
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effects, Figure 2-1 has been taken as a starting point in defining effective rate constants

that govern the reaction network for tresylate reactions. These rates may not represent

elementary rate constants in all cases, but if tempered across an experimental space of

temperature, reaction pH, nucleophile steric factors and nucleophile pKa, should provide

the necessary information to reliably predict ideal synthesis conditions.

A number of reaction pathways for tresylated species have recently been

elucidated, yet kinetic data which could be used to maximize desired products is

somewhat limited. The goal of this work is to measure apparent rate constants for a

reaction network that describes the set of possible reactions for the displacement of tresyl

groups by primary amines in an aqueous environment as a function of pH temperature

and steric factors. This has been undertaken in two steps. First, in the absence of an

amine nucleophile, rate constants for hydrolysis and hydroxyl-mediated tresylate

conversion were measured. Second, with knowledge of the solvent-mediated reactions,

rate constants for coupling of various primary amine species were measured by fitting to

a kinetic model consistent with known reaction mechanisms.

Tresylated poly(ethylene glycol) (PEG-Tr) has been used as a model in these

studies. This offers the advantage of being identical or a close approximation of the

synthesis product of interest. There is an analytical advantage in coupling small

molecules to a larger polymer such as PEG in that the reaction progress can be readily

monitored by size-based separation methods such as size exclusion chromatography.

However analysis of the end products becomes that much more difficult as the presence

of the PEG chain dilutes any measurement of end groups. Since work to date found in
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the literature has focus almost entirely on end group structure, as noted above, the use of

PEG-Tr as a model seemed an obvious choice.

2.3 Experimental Methods

Synthesis of tresylated PEG. Tresylation was performed by a method similar to

that of Nilsson and Mosbach 7, as detailed in Appendix Al. In the present study,

dihydroxyl PEG (6000MW) (Fluka) was used as the starting material. As trace amounts

of residual base may have a significant effect on the outcome of tresyl-mediated

reactions, the amount of residual base following purification was assayed by 'H-NMR.

Residual triethylamine was found to be 0.02wt%. Based on sulfur elemental analysis,

tresylation was approximately 100%, with 3.08 g/mmolTr [52.2%C, 8.54%H, 1.04%S].

Each tresyl group (= [1], see Figure 2-1) of PEG-Tr2 is assumed to react independently,

therefore designations 'PEG-Tr' and 'PEG-Tr 2' are used interchangeably.

Measurement ofIsolated Hydrolysis Reaction. Progress of the hydrolysis reaction

was monitored by continuous titration. A weighed amount of PEG-Tr 2 (about 50mg) was

added to a measured volume (about 1 OOmL) of Milli-Q water. The solution was stirred

continuously. Dilute potassium hydroxide (20mM) was added as needed to maintain the

pH within 0.05 units of desired pH as measured by a standard calomel electrode. The

amount and time of addition of each acid aliquot was recorded. Continuous titration

experiments were run at 22 ± 1 0C with pH 6.0, 7.0, 7.5, 8.0, 8.5, 9.0, and at 4 ± 0.2 0C

with pH 8.0, 8.5, 9.0. Each continuous titration reaction was monitored for 80 minutes.
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For slower reactions at 4 ± 0.2 0C with pH 5.0, 6.0 and 7.0, base was required much less

often to maintain the desired pH. In these three conditions, the rate of acid evolution was

measured by the rate of pH change, where the pH was always maintained within ± 0.1 pH

units of the desired level. These three slower reactions were run at higher PEG-Tr 2

concentrations (about 2mg/mL) and were maintained over a number of days, with

frequent recalibration of the pH meter.

The measurement of moles of base added to maintain constant pH was used to

calculate moles of tresyl groups consumed. By reaction stoichiometry four moles of base

are required to neutralize the acid evolved by the conversion of R-Tr to R-

OSO 2CH 2COO~, and one mole of base is required to neutralize the hydrolysis of R-Tr to

R-OH and OSO 2CH 2CF3 . The fractional conversion of tresyl groups (XTr) was

calculated on the basis of the weight of PEG-Tr 2 used in each experiment (measured to

0.1%), using the value of 3.08 gPEG/mmolTr noted above, confirmed by total hydrolysis

of PEG-Tr2-

Measurement of Simultaneous Coupling/Hydrolysis Reaction. A measured

amount of PEG-Tr to make a final concentration of 40mM in tresyl was added to a

solution 100mM in primary amine and 400mM in potassium phosphate at the desired pH.

The extent of the coupling reaction was measured as a function of time by periodic

sampling of the reaction solution by a HPLC Hitachi L-7200 autosampler. The aliquot

was immediately injected onto one TSK G4000PW and one TSK G2000PW column in

series. The mobile phase was 0.50M sodium chloride with 10mM potassium phosphate
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and 4% acetonitrile at pH 4 delivered by a Hitachi L-7100 pump. Detection was by a

Hitachi L-7420 UV-vis detector at 260nm where PEG-Tr has an insignificant absorbance.

For each measurement the fraction of amine bound to PEG was calculated as the integral

of absorbance at 260nm for the PEG peak (first to elute) divided by the total integral

(PEG peak + free amine peak). Amines examined (Figure 2-2) include glycyl-DL-

phenylalanine (Gly-Phe from Sigma), L-phenylalanine (Phe from Aldrich), and N2_

(Carbobenzyloxy)-L-lysine (aCBZ-Lys from Aldrich). All amines were examined at 40C

and 22 0C.

Algorithm for Rate Constant Fitting. Whereas analytical solutions to rate

equations were unavailable, rate constants were fit using standard Fortran models

extracted from Numerical Recipes 8 as given in Appendix C.

The data was separated for rate constant analysis by nucleophile (n=3) and by

temperature (n=2). For each of these six data groups rate constants were optimized by

the LM method for all pH's simultaneously.

2.4 Results and Discussion

2.4.1 Rate Constants for Hydrolytic Processes

Hydrolysis is an unavoidable side effect of aqueous tresyl-mediated synthesis.

Attempts have been made to utilized the tresyl leaving group in non-aqueous conditions

to side step this issue. Unfortunately, even at 70 0C in one of the most polar solvents,

dimethylformamide, typical rates were on the order of ~I% per day, or a half-life of
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about 70 days, an unacceptable rate for our purposes. Therefore tresyl-mediated

syntheses are most appropriately conducted in aqueous conditions, optimally where

hydrolysis is minimized.

King and Gill have shown that the ethyl trifluoroethanesulfonate in the absence of

a nucleophile will hydrolyze to different species depending on the solution pH 4 as can be

inferred from Figure 2-3. They reported data at 25 0C supporting a traditional sulfonate

ester hydrolysis pathway (first order rate constant = kw) at low pH and reversible El cB

reaction at high pH (pseudo-first order rate constant = kOH[OH-]) in which the first step is

rate limiting. Given the set of reactions in Figure 2-3, the disappearance of PEG-Tr (1),

can be written as:

d[PEG - Tr] = (kw + koH[OH]). [PEG - Tr]
dt

fwd
kEl kEl,2

where, kOH -

kEI[H20] +kEI,2

The integrated form of this equation in terms of conversion (=XT,) is

-ln(1 - XT)= (kw + kO[OH-]) t kh app

where, XTr =- [PEG - Tr]
[PEG - Tr] 0
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This equation implies that a plot of -ln(1-XT,) versus time would be linear, with

the slope equal to (k, + koH[OH~]). By varying the pH, unique values for k, and kOH can

be computed. Data for hydrolysis reactions is plotted in Figure 2-4 at 40C for pH 8-9 and

22 0C for pH 6-9.

Our data for the hydrolysis of tresylated PEG at 40C and 220C supports the model

given in Figure 2-3. Linearity of the ln( 1- XTr) plot (Figure 2-4) confirms that the first

hydrolysis step is rate limiting under almost all conditions studied. The pH9.0 22 0C

reaction deviates somewhat from linearity, indicating that one or more of the multiple

steps between (3) and (4) of Figure 2-1 may be limiting in the high pH regime.

To derive rate constants, kw and kOH, the apparent hydrolysis rate, kh,app, was fit by

a least-squares method to kh,app k, + kOH [OH-] separately for 40C and 22 0C as shown in

Figure 2-5. Table 2-1 shows the rate constants fit to the data in Figure 2-5.

The hydrolysis rate constant, kw, was found to be a stronger function of

temperature than kOH, the apparent rate constant for the addition-elimination pathway.

The low temperature dependence of kOH may point to a significant influence of kE rev

consistent with a reversible ElcB mechanism. Because kw is of a similar order of

magnitude as kOH [OH-] around room temperature and slightly basic pH's, this difference

in temperature dependence might allow for the control of the distribution of products by

manipulating pH and temperature. This will depend on the kinetics of SN 2 nucleophilic

displacement discussed below.
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2.4.2 Development of a Tresyl-Mediated Coupling Model

It has been suggested that there are at least two pathways by which nucleophilic

amines can couple to tresylated species (Figure 2-1)2-4. The first pathway involves a SN2

nucleophilic displacement, similar to that which is observed for other sulfonate leaving

groups. This SN 2 pathway is thought to be minor or undetectable at very high pH4 . At

high pH, the second pathway has been observed that is thought to go through an addition-

elimination intermediate (3)3. This intermediate can undergo further modifications to an

inactive product (4), or it can react with an amine to give a coupled product (6).

The apparent first order rate dependence of the addition-elimination pathway for

hydrolysis suggests that k'>koH[OH-]. This implies that as (3) is formed it is rapidly

converted to a mixture of (4) and (6), such that [3]<<[1]. We can describe the fraction of

(3) that becomes (6) as x, given by the following approximation:

~[6]- .(k, [OH- ][1])
dt

where, U = 2 ; [N:] = unprotonated amine
k2 [N :] + k'

As suggested by the hydrolysis experiments, the above assumption should hold at least

for pH ; -9.0. Because reactions governed by k2 and k' are downstream of the rate

limiting step, (1 -+3), the absolute magnitudes of k2 and k' cannot be measured

independently. Only the ratio k2/k' can be calculated.
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The rate constants k, and koH are known from the previous section (Table 2-1).

Here we will fit k, and k2/k' for each amine species at each temperature, based on

measured coupling data for a set of model amines. Based on Figure 2-1 and the above

approximation, we can write the following differential equations that describe the

concentrations of the reaction components as a function of time:

d[2]=k[1

=[I -(kw + kOH[OH] ]+ k,[N :] 1
dt

d[2]
dt

d[4]= (1 - u)koH[OH ][1]
dt

d[5] = k1 [N :][1]
dt

d[6] =6 koH [OH ][1]
dt

d[Ntotal- _(k, [N :]+ ckOH[OH-) [I]
dt

The [OH-] concentration was calculated using the measured pH and the ion

product of water, Kw, at the appropriate temperature (see Table 2-2):

[OH ]= Kw(T) -OpH
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The concentration of unprotonated amine was calculated from an algebraic variant

of the Henderson-Hasselbach equation as:

{I pH-pK a(T)}

[N :]= [N]totai ' 0 PH~()

I +1 IOpH-pK a(T)i

Both K, and the pKa for each amine species vary with temperature (Table 2-2).

The pKa's for the various amine species were adjusted for temperature based on the van't

Hoff equation by:

pKa (T2 )= pKa (T1) - log exp AH ( - T2 )j

The temperature adjustments to the pKa is significant, yet small enough to allow

for use of approximate values for AH0 . For example, variations in AH 0 on the order of

1 OkJ/mol imply differences in pKa of only 0.1 pH unit at 4'C. The heat of ionization for

the u-amine of phenylalanine was taken as 44 kJ/mol 9. The heat of ionization for the U-

amine of glycyl-phenylalanine was also approximated as 44 kJ/mol based on the

observation that chemical substituents removed from the u-amine have little effect on the

AH. For example, enthalpy literature values for similar molecules such as glycine10 ,

glycylglyine1 I and phenylalanine (above) were all given as 44 kJ/mol. The heat of
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ionization for the a-amine of u-CBZ-lysine was assumed to be similar to u-dimethyl-

lysine 12 at 52 kJ/mol. Heat capacities, defined as the change in AH' with temperature,

were assumed to be insignificant based on typical literature values. For example, the heat

capacity for a prototypical a-amine of glycine 10, predicts only a 0.2kJ/mol difference in

AH 0 between 4"C and 220C.

To test the robustness of this tresyl reaction network model, we chose to

experimentally study three model amine compounds (Figure 2-2) -- a high pKa species,

uCBZ-lysine; a low pKa species, glycyl-phenylalanine; and a more sterically hindered

amine of intermediate pKa, phenylalanine -- to probe for possible steric inhibition. Based

on the results from the hydrolysis experiments, a pH range of 7.5-8.5 was chosen for

study so that koH[OH-] is of the same order as kw for maximum resolution of the various

pathways. Experiments at room temperature (22 0C) and in a 40C cold room were

conducted to measure the effects of temperature.

Figure 2-6 shows measured reaction time courses and curves predicted by the

model for the three model amines at three pH's and two temperatures. The best-fit rate

constants from the chi-squared minimization fitting routine are given in Table 2-3. The

model reaction network (Figure 2-1) was able to fit the observed data quite well

considering that a single set of rate constants were fit to all pH values simultaneously. In

all cases, the model was able to capture the long time behavior trend as a function of

reaction pH, as well as the final conversion. The transient behavior was also fit

acceptably well in all cases, with the exception of phenylalanine at 22 0C (Figure 2-6c).
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The transient portion of Figure 2-6c suggest a weaker dependence on pH than predicted

with [N:] as the driving force, possibly due to an effect of the proximity of the

carboxylate group to the nucleophilic amine.

2.4.3 Temperature Effects

The reaction temperature can have a profound influence on the kinetics and

product distribution in tresyl-mediated reactions as illustrated in Figure 2-6. In general it

can be said that room temperature reactions lead to higher total coupling yields. Yet, our

data suggest that the distribution of the coupled products, (5) and (6), can also be affected

by temperature.

Our data suggest that lower temperatures, a higher proportion of (5) is formed

relative to (6). This is evident from the temperature influence on the initial step of the

reaction. Whereas k, and kOH appear to have significant temperature dependencies, k I

appears to be only slightly affected by temperature. This suggests that lowering the

temperature serves to increase the relative yield of (5). The ratio of k2/k' is also a

function of temperature. The apparent activation energy of k2 is higher than that of the

hydrolysis rate constant, k', as suggested by our data (Table 2-3). Thus, our data indicate

that higher temperatures yield more (6) relative to (4). It should be noted that higher

temperatures also contributes to increased hydrolysis through the (1 - 2) pathway.

Temperature also has a small, but significant effect on pK, and the pKa's of the

amines as shown in Table 2-2.
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2.4.4 pH Effects

Increasing the pH of the reaction solution increases the rate of conversion of

tresyl species, through the addition-elimination pathway as well as the amine-

nucleophilic displacement pathway shown in Figure 2-1. Increasing the hydroxyl

concentration increases the flux through the addition-elimination pathway (1 -- 3).

Increasing the pH also has the effect of creating a larger concentration of unprotonated

amines, increasing the amine-nucleophilic displacement as well as the conversion of (3)

to (6).

The reaction pH has an especially strong influence on the initial fate of (1). A

detailed analysis and discussion of similarly competing pH-dependent reactions can be

found in the literature 13, 14. In the present case, the relative values of k,, kOH[OH] and

k I[N:] must be considered to optimize the amount of (5) formed relative to (2) and (3).

This can be quantified as,

rate 1->5  kl[N :] = ki[N]total qD
ratel->2 + rate,-> 3  kw + koH[OH ]

[N :]

where, (D = / [N]totai
kw + kOH[OH]

The parameter (D then expresses the relative rates as a function of pH, regardless of the

absolute concentration of amine and the particular value of k, and [N]total. In Figure 2-7
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we show a plot of log(k1 P) versus pH for the three model amines at 40C and 22 0C. By

solving for aD/dYpH=O, the pH that maximizes (D is found to be:

pKw + pKa + 10 g(k kOH
pHax 2

This defines the optimal pH for (1->5)-type coupling. It can be seen from Figure 2-7 that

(D(pH I max) increases with decreasing pKa, predicting a lower required amine

concentration, but longer reaction times. Decreasing temperature has the effect of

somewhat increasing 1(pH Imaxo) as well as pH I maxs

Based on Figure 2-1, the interplay of the pH effect on hydroxyl and unprotonated

amine concentration can be separated into three regimes: [OH-] << k,/kOH, [OH] ~

kw/kOH, [OH] >> kw/kOH. At low pH's, only hydrolysis (1 ->2) and nucleophilic

substitution (1 ->5) are significant, yet a large concentration of the amine species will be

needed to favor addition over hydrolysis due to the low fraction of unprotonated amines

at low pH. In the intermediate regime, all three pathways can be significant, however,

the (1 ->5) pathway can be made dominant with a lower amine concentration than is

needed for the later low pH regime. In the high pH regime, hydrolysis is insignificant

relative to the first step in the addition-elimination pathway (1 ->3). This regime can

prove to be impractical because [OH-] increases faster than [N:] with increasing pH,

requiring a large excess of amines.
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In our model, we have attempted to represent all reactions in terms of possible

elementary reactions. However, in the case of k, in particular, our data suggests that

there might be a dependence on the amine pKa that would not be consistent with the

assertion that k, is an elementary reaction. It can be seen from Table 2-3 that k, increases

with pKa. This trend acts in the opposite direction but with a smaller magnitude than the

pKa dependence imposed by using [N:] as the effective amine dependence. Attempts to

fit the data with ki [N]total as the driving force failed to yield a fit comparable to that of ki

[N:] as the driving force.

In an attempt to fit all the data for k, to a single rate relation, an empirical model

was developed for the SN2 reaction as shown in Figure 2-8. This empirical rate equation

fits the data of all temperatures, reaction pH's, and amines except for the phenylalanine

40 C reaction, possibly for steric reasons. The correlation of the empirical rate equation

with the measured values for k, is illustrated in Figure 2-9. It is interesting to note that

the k, dependence on Ka-0.63 is invariant with temperature, although only limited data is

available at 40C. The consistency of this empirical relation across the variety of amines

may indicate a slightly different dependence than the concentration of unprotonated

amine, [N:].

2.4.5 Steric Effects

Phenylalanine was expected to be the most sterically inhibited. The effect was

most noticeable at 4'C (Figure 2-6d). This is best illustrated in Figure 2-9, where the

phenylalanine 4'C reaction is well removed from the trends established by all other rate
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constants. It is also possible that steric factors rather than the pKa dependence supported

above may account for the higher values of ki for uCBZ-Lys as compared to glycyl-

phenylalanine 4C.

2.4.6 Control of Product Distribution

It could be argued that the relative amount of (5)-type, 20 amine linkages and (6)-

type, sulfonyl linkages may be more important than total yields, especially since (6)-type

linkages may be subject to slow hydrolytic cleavage. In general, it would be desirable to

maximize the number of (5)-type, secondary amine linkages. Our model predicts that

reactions run at 40C would have more secondary amine bonds than at 220C for a given

amine concentration. In general the fraction of secondary amine linkages increases with

increasing amine concentration by increasing the rate of (1)->(5) relative to (1)->(2)+(3).

The distribution of (4) and (6) from (3) is best described by a. At any given time,

a is the instantaneous fraction of (3) that will become (6):

k2[N:] d[6t

k[N:]+ k' d[4J + d[6]/
dt 7dt

Because a is a function of [N:] its value changes as the reaction progresses. To compare

values of k2 for the three model amines at both temperatures it is instructive to compare

the initial value of x. Alpha will tend to decrease somewhat from its initial value as free
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amines are consumed. Figure 2-10 shows u(t=0) for the 18 curves examined. The value

of a was found to be consistently larger at 22C than at 40C. For any given amine, the

initial value of a is a increasing function of reaction pH through the dependence of [N:]

on the solution pH. Alpha was found to be a decreasing function of pKa, with a value

approaching unity for 100mM glycyl-phenylalanine at 22 0C, suggesting that the driving

force for this coupling pathway has a stronger dependence on solution pH than is exerted

through [N:].

2.5 Conclusions

With the judicious choice of reaction temperature and pH, tresyl-mediated

couplings can be achieved with high yields. To maximize the total yield and the fraction

of secondary amine linkages, our model predicts that it is desirable to run tresyl coupling

reactions at lower temperatures around pH8, depending on the amine pKa as specified by

the above equation for pH Imam) and illustrated in Figure 2-7. Although total yields

([5]+[6]) may be higher at elevated pH levels (Figure 2-6), (6)-type amide linkages may

be unstable over prolonged periods in aqueous environments. Where reactions must be

run at higher temperatures due to solubility limitations, maximal secondary amine

linkages are predicted at slightly higher pH levels to overcome the higher rate of

hydrolysis (k,.).

Where the choice of nucleophilic amine is possible, it is advantageous to use an

amine of low pKa to maximize the concentration of the unprotonated species. This points
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to an advantage of coupling peptides via an N-terminal glycine rather than through an £-

amine group of a lysine residue.

When coupling to tresylated species via a lysyl s-amine is necessary, as may be

the case with certain proteins, low temperature at pH~8.8 is indicated (Figure 2-7). In

this case high concentrations of amine are necessary, even beyond the 100mM amine

used here, to achieve high yields of secondary amine linkages. Beyond pH~8.8,

additional tresyl conversion (Figure 2-6) is predicted to be largely through (6)-type amide

linkages.

In some applications, it may be the nucleophilic amine that is limiting, rather than

the tresyl-activated species. Such a case is encountered in attaching pendant PEG chains

to proteins or small molecules. When the tresylated species is used in large excess, it can

be seen from Scheme I that the (1)->(3) pathway (-[Tr]) can quickly become dominant

over the (1)-+(5) pathway (-[N:][Tr]). This raises the concern that the limited number of

amines might be consumed in a (3)->(6) reaction, disfavoring (1)->(5). To maximize

secondary amine linkages in this case it is advantageous to run under conditions where 0

is small (Figure 2-10), i.e. at a somewhat lower pH than prescribed by Figure 2-7.
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TABLE 2-1

HYDROLYSIS RATE CONSTANTS

Temperature k, (10-6 sec 1) koH (103 sec-' M-)

40C 0.22 68

220C 17.0 78.3
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TABLE 2-2

IONIZATION CONSTANTS

Temperature pK, 15  pKa Gly-Phe pKa Phe pKa uCBZ-Lys

40C 14.78 8.6 9.6 11.3

22 0C 14.08 8.1 9.1 10.7

The amine PKa's at 40C and 22 0C were calculated as explained in the text from literature

values at 25C for glycylphenylalanine16 and phenylalanine 17. The pKa of the GCCBZ-Lys

was assumed to be similar to lysine 18 and 6-aminohexanoic acid1 1 , which have similar

pKa's.
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TABLE 2-3

TRESYL-MEDIATED COUPLING EFFECTIVE RATE CONSTANTS

Rate Constant Gly-Phe Phe ocCBZ-Lys

40C 220C 40C 220 C 40C 220C

k, (10-2 sec-' M-') 0.48(0.02) 0.69(0.05) 0.16(0.01) 3.1(0.2) 25(2) 29(2)

k2/k' (102 M-1) 13(6) -- 2 __1 0.63(0.16) 12(6) 5.4(1.3)

Rate constants are given as value(standard deviation). The large standard deviation in the

case of k2/k' for oCBZ-Lys at 40C reflects a relative insensitivity of the fit to this

parameter.

k2was found to be negligible as compared to k' under the conditions examined.

2k' was found to be negligible as compared to k2 under the conditions examined.
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Figure 2-1. Reaction scheme for aqueous PEG-tresylate.
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Figure 2-2. Model primary amines used in coupling studies. Compounds were chosen to

span a range of pKa's (see Table 2-2). Glycine-phenylalanine, phenylalanine and uCBZ-

lysine were chosen as models for peptidyl N-termini, branched amines, and protein

surface-presented lysines, respectively.
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66



(a)
3

2.5

2

1.5

1

0.5

0

(b)
0.5

0.4

0.3

0.2

0.1

0

-. 1

0 20 40 60 80 100

Time (min)

0 20 40 60 80 100

Time (min)

Figure 2-4. Hydrolysis reaction at 22'C (la) at pH6.0 (x), pH7.0 (+), pH7.5 (E), pH8.0

(0), pH8.5 (A), pH9.0 (o), and 40C (Ib) at pH8.0 (0), pH8.5 (A) and pH9.0 (o). All

reactions were followed by titration as detailed in Section 2.3. Conversion of tresyl

groups (XTr - 1 - [L]/[1] 0) was calculated on the basis of the initial concentration of tresyl

groups for each experiment.
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Figure 2-5. Least-squares fit for hydrolysis reaction (khapp k, + kOH [OH]) for 22 0C (.)

and 40 C (o). Values of khapp are taken from the slopes of curves in Figure 2-4 for faster

reactions (points where log khapp > -5) and from the rate of pH change (see Section 2.3)

for slower reactions (points where log kh.app < -5).
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Figure 2-6. PEG(-Tr -> -X-R) conversion data and model fit for the reaction PEG-Tr +

H2N-R -> PEG-X -R where X=(NH) or (OSO 2CH2C(O)NH). Each panel (a-f) is fit by a

single set of rate constants to the mechanism prescribed in Figure 2-1. Data (symbols:

(x) pH7.5, (+) pH8.0, (A) pH8.5) and model predictions (lines: pH7.5 (----), pH8.0(--),

pH8.5 ( - )) are given for Gly-Phe at 22C (la), Gly-Phe at 4'C (lb), Phe at 22 0C (1c),

Phe at 40C (id), uCBZ-Lys at 22 0C (le) and uCBZ-Lys at 40C (If). Conversion data (=

([5]+[6]) / [1]0) was measured as the fraction of tresyl groups converted to PEG-N-R.
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Figure 2-7. Plot of relative rates of reactions with PEG-Tr in terms of ki1D (see text).

Curves at given at 40C (open symbols) and 4'C (filled symbols) for Gly-Phe (o/e), Phe

(A/A) and cxCBZ-Lys (Ei/U) The pH where kj'D is a maximum is indicated (numeral) for

each curve. Maximal kjcD predicts an optimal pH for (1 ->5)-type coupling.
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Figure 2-8. Empirical rate equation for amine/tresyl coupling.
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Figure 2-9. Empirical correlation (see Figure 2-8) for rate constant k, at 22'C (.) and

40C (o) with the amine pKa (see Table 2-2) fit to k, = kxKa- where k,(22 0C) = 6.4x10-8 M-

sec- 1, k,(40C)= 1.6x10-8 M-'sec~', y(22 0C)= 0.62 and y(40C) 0.63. Fit at 40C (----) is

included to illustrate the similarity in y to the fit at 220C ( ) even though the data point

at pKa=9 .6 is omitted due to suspicion of steric influences.
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rate3 _,4+6), based on Scheme I and measured rate constants, k2/k'. Because a is a function

of the concentration of the nucleophilic species [N:], a is expected to be a function [N:],

and will decrease with time proportional to the depletion of [N:]. Error bars are 95%

confidence intervals.
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3 KINETICS OF TRANSGLUTAMINASE-CATALYZED

REACTIONS FOR FREE & PEG-BOUND SUBSTRATES

3.1 Introduction

Use of the crosslinking enzyme transglutaminase for gel formation requires

detailed knowledge of parameters that may affect gel formation. Although one of

transglutaminase's primary function in nature is the building up of structure1 from

soluble units such as collagen 2 and fibronectin 3, activity toward synthetic substrates and

synthetic substrates bound to poly(ethylene glycol) (PEG) is by no means guaranteed.

We therefore characterized the kinetics of transglutaminase-mediated reactions using

both model substrates and substrates suitable for gel formation. We examined both side

reactions that may inactivate transglutaminase as well as reaction kinetics involving

PEG-bound substrates. We also characterized reactions leading to transglutaminase

deactivation under the condition of gel formation.

3.2 Tissue Transglutaminase Self-Crosslinking

Tissue transglutaminase (TG 1) kinetics follow a modified double displacement

mechanism, as discussed in Section 1.4.3. Because enzyme acylation is the rate-limiting

step in crosslink formation under the conditions of saturating amine concentrations, TG11

kinetics can be adequately described by standard Michaelis-Menton kinetics. However in

conditions where the enzyme concentration is relatively large (jiM), TG11 is known to act

as a substrate in its own reaction. Because the use of micromolar concentrations of TG11
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are required for most gel-forming applications, the kinetics of TG1 self-reaction must be

considered to make predictions of the overall kinetics of gel formation (see Section 5.2).

Literature reports suggest that pure tissue transglutaminase isolated from guinea

pig liver can act as a substrate in its own reaction 3 and thereby crosslink itself to amines 4,

5 and other TG1 molecules4 in the absence of another amine acceptor. This phenomena

has not been reported for other forms of transglutaminases, and therefore could be unique

to TG1 . Self-crosslinking has also been demonstrated in the presence of other TG1

substrates in vitro at 40C with fibrinogen and fibronectin 3, and at 37 0C with laminin and

nidogen 6. It has further been observed that self-crosslinking may affect TGII activity as

the resultant high molecular weight TG-conjugates exhibit reduced activity 4 .

Many enzymes, including TG1, exhibit pH-dependent activity 7. A pH

dependence for inactivation of TG1 has been suggested as well based on a calcium-

dependent susceptibility to oxidative inactivation in the presence of Cu(II) 8, but it is

unclear to what degree TG 1 might be oxidized under physiologic conditions.

The possibility of multiple, pH-dependent routes to TG1 inactivation as well as

activity dependence on calcium and GTP 9 point to a complex control mechanism that

would be expected for an enzyme with such diverse biological roles. Here we have

undertaken a kinetic study of TG1 mediated self-crosslinking to quantify these processes.

3.2.1 Experimental Methods

Enzyme Storage. A discussion of transglutaminase storage conditions can be

found in Appendix A3. Tissue transglutaminase (TG) was purchased from Sigma. TG
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was dissolved in 0.5x Dulbecco's phosphate buffered saline (Life Technologies) (9mM

phosphate) with 160mM potassium chloride and 1mM ethylenediaminetetraacetic acid in

a 4C cold room. Aliquots of IOpL and 20pL at a concentration of 10IpM were stored at

-70 0C and thawed immediately prior to use.

Peptide Synthesis. The glutamine substrate (Gly-Pro-Leu-Gly-Ile-Ala-Gly-Gln-

Ser-His-Gly) was synthesized on a Rainin PS2000 Peptide Synthesizer by standard Fmoc

methods in dimethylformamide (DMF) as described in Appendix A2.

Enzyme Activity Assay. A protocol for measurement of amine acceptor substrate

activity is given in Appendix A5. For each assay, 80pL of a solution of glutamine

substrate with 10mM calcium chloride and 10mM monodansyl cadaverine (mdc)

(Aldrich) in 100mM Tris was brought to the appropriate temperature in a constant

temperature water bath. Dithiothreitol (Life Technologies) and glutathione (Sigma) were

included in some experiments as reducing agents to inhibit enzyme oxidation.

Experiments at pH 6.0 and below were also buffered with 100mM MES (2-[N-

morpholino]-ethanesulfonic acid) (Sigma).

Kinetic Rate Constant Fitting Algorithm. Where analytical solutions to rate

equations were unavailable, rate constants were fit using standard FORTRAN models

extracted from Numerical Recipes 10, as explained in Section 2.2.3. The FORTRAN code

is included in Appendix C.

Transglutaminase Seif-Crosslinking. The effects of temperature and calcium

concentration were examined by incubating aliquots of transglutaminase (5pM) in 50mM
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Tris at pH7.4 for 1 hour followed by characterization of protein products by gel

electrophoresis. Incubations were performed at 40C with (8mM) and without calcium.

Incubations at 37 0C were carried out with calcium (8mM), without calcium, and with

calcium (8mM) in the presence of 5mM monodansyl cadaverine. Two additional

conditions included one week at 4 0C with no calcium and a zero time case with analysis

immediately following thawing from -70 0C. Reactions were terminated by the addition

of buffer consisting of 0.5mg/mL bromophenol blue, 31 mg/mL dithiothreitol, 0.1 Og/mL

glycerol and 2.0% sodium dodecylsulfate (SDS) in 62.5mM Tris pH6.8.

Samples were run along with a fresh aliquot and molecular weight markers on a

7% SDS-poly(acrylamide) electrophoresis gel topped by a 3.5% stacking gel. Molecular

weight markers (Biorad) consisted of a mixture of labeled proteins: myosin (208kD), -

galactosidase (127kD), bovine serum albumin (85kD), carbonic anhydrase (45kD),

soybean trypsin inhibitor (32.8kD), lysozyme (I8kD) and aprotinin (7.4kD). All

molecular weights are 'apparent' as labeled.

Cytotoxicity of dithiothreitol. Balb/c 3T3 fibroblasts were cultured in a culture

media of high glucose Dulbecco's Modified Eagle Medium (Gibco) supplemented with

200mM L-glutamine, 10% calf serum and 1% penicillin/streptomycin to inhibit bacterial

growth (all products from Gibco). Various amounts of DTT was added 4 hours after cell

plating. Cell numbers were counted after 24 hours in the presence of DTT. Experiments

were run at 0mM, 0.30mM, 1.0mM and 3.0mM DTT.
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3.2.2 Results

3.2.2.1 TG Self-Crosslinking Processes

Data which supports a transglutaminase self-crosslinking reaction are shown in

Figure 3-1. Transglutaminase solutions were incubated at 40C or 37 0C for 1 hour (and 1

week for a calcium-free 40C condition) with (8mM) and without calcium to examine the

effects of these conditions on possible self-crosslinking processes. Monodansyl

cadaverine, a potent amine donor substrate, was added to a calcium-containing aliquot at

37 0C to assess crosslinking kinetics under conditions of amine competition for TG-

expressed amine donor substrates. All samples were run on an SDS-PAGE gel to

quantify crosslinking, using a sample added directly from -70 0C storage as a control.

Results are shown in Figure 3-1.

Calcium was found to be required for the formation of high molecular weight

aggregates. Aggregate formation was observed at 4'C but at a much lower level than at

37 C. Addition of 5mM monodansyl cadaverine effectively inhibited the crosslinking

reaction. This is the first reported demonstration of self-crosslinking inhibition.

The degree of transglutaminase inactivation during the self-crosslinking

experiments was characterized by monitoring the crosslinking of monodansyl cadaverine

to a peptidyl amine acceptor substrate. This peptide was modeled on the structure of a

known substrate for TG 1, N,N-dimethylcasein, as well other synthetic oligopeptide

analogs of the active glutamine of N,N-dimethylcasein 1 .

The kinetics of transglutaminase reactions have been shown to follow a modified

double-displacement mechanism12-14, as discussed in Section 1.5.3. Under the conditions
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of saturating amine substrate concentrations used in this study, the first catalytic step is

limiting (see Figure 1-1). If the concentration of the active enzyme were invariant with

time, a pseudo Michaelis-Menton15 -type treatment would be appropriate:

d[crosslink] kcat[TG]t[S]

dt Km,app +I[S]

where [S] is the concentration of the amine acceptor substrate and [TG]t is the total

enzyme concentration. However, because the apparent enzyme concentration can in fact

be a decreasing function of time due to inactivation, the kinetic mechanism describing the

TG-mediated transamidation reaction must be represented as in Figure 3-2.

To verify that the reaction conditions were enzyme-limited and not substrate-

limited, an activity assay was run (described above) with the enzyme being added in two

separate aliquots as shown in Figure 3-3. After the addition of the first aliquot the

reaction appeared virtually complete after 90 minutes (Figure 3-3). If one of the

substrates was limiting, no further reaction would be observed upon addition of another

aliquot of enzyme. Instead, with the addition of another aliquot of enzyme, the reaction

re-initiated and followed the characteristic time-dependent activity exhibited upon

addition of the first aliquot. This behavior is consistent with the hypothesis that the

enzyme undergoes deactivation during the 90 minute reaction time.

Transglutaminase could become inactive by a number of possible mechanisms, as

summarized in Figure 3-4. First, transglutaminase could participate in a reaction
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unrelated to its activity such as spontaneous oxidation, hydrolysis or denaturation (Figure

3-4, Scheme A). Second, there is evidence that TG1 can become covalently linked to

itself by disulfide bonds through known surface-accessible cysteines 8 (Figure 3-4,

Scheme B). Third, the enzyme could undergo some chemical reaction related to its

crosslinking activity. Such self-crosslinking, with TG acting as a substrate in its own

reaction, has been suggested in the literature 3, 4. In this type of reaction, TG1 may act as

the amine donor (Figure 3-4, Scheme C), amine acceptor (Figure 3-4, Scheme D), or

both.

Each of these mechanisms predict a unique type of kinetic dependence on the

enzyme and substrate concentrations. By fitting the equations to measured data, it can be

determined if the deactivation mechanism is consistent with any given deactivation

mechanism. The reactions will be divided into four possible routes. The simplest

mechanism is a first order (~[TG]') inactivation as shown in Figure 3-4, Scheme A.

Contribution from this mechanism might be measured by experiments with antioxidants.

More complex mechanisms that must be considered include second order (~[TG] 2)

degradation where two TG1 molecules must come together to produce an inactive

enzyme. This may be described by a second order rate constant if the enzyme acts

independently of the two substrates as in Figure 3-4, Scheme B, or more complex

behavior might result from TG crosslinking one of the substrates to itself to form the

inactive enzyme as in Figure 3-4, Schemes C and D. These kinetic dependencies will

provide strong evidence for a significant contribution to enzyme inactivation by Figure 3-
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4, Scheme D in which TG 1 expresses a glutaminyl TG1 substrate, when covalently linked

to an amine donor serves to inactivate the enzyme.

Further evidence for the mechanism of inactivation might be gained from

structural studies by circular dichroism. However alterations in structure could occur

independently of self-crosslinking, through simple aggregation. Conversely, self-

crosslinking resulting in inactivation would not necessarily produce an observable change

in conformation. Steric inhibition could be solely responsible for inactivation.

Therefore, while conformational changes associated with inactivation may be interesting

form a structure/function point of view, measurement of this phenomena would not

provide direct evidence of the role of self-crosslinking on transglutaminase inactivation.

3.2.2.2 Kinetic Model

A set of kinetic equations can be written to describe the formation of the

crosslinked product as a function of time. The mechanism given in Figure 3-2 implies:

d[S'-=A ki [E -S] 
(3-2)

dt

d[E S] = k, [E][S]- kj [E -S]- k, [E -S] (3-3)
dt

Two familiar Michaelis-Menton-type simplifications can be made to express these

equations in terms of just [E] and [S]. By assuming the intermediate [E-S] is at pseudo-
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steady state, [E-S] can be expressed in terms of [E] and [S]. In (3-2), an assumption that -

d[S] ~ d[S'-A] can be made based on the fact that the total enzyme concentration, [E]t, is

typically at least three orders of magnitude smaller than [S] 0. This gives:

d [S] kj,
d - [ El[S] (3-4)
dt Km

where, Km i= - "" (3-5)
ki

Equation (3-4) will apply for any [E]=f(time) and thereby for any inactivation

mechanism.

As a first step in determining the mechanism or mechanisms of TG11 inactivation,

it is useful to consider the reaction behavior at early times such that the amount of

inactivated enzyme is approximately zero, [E], ~ 0. In this regime the mass balance for

the total enzyme concentration, [E]t for Figure 3-4, Scheme A, B and C can be written as,

[ E][S][E=[ E]+ (3-6)
K,,]]

where the pseudo-steady state condition for [E-S] has been applied. The concentrations

of [E-S'] and [E-S'.A] are insignificant in (3-6) under conditions of saturating amine

substrate. For Figure 3-4, Scheme D the concentration of [E-E] must be included.

Assuming pseudo-steady state for [E-E] as was done for [E-S] gives,

84



[E][S] [E] 2

[E], =[E]+ +2 (3-7)
Km1  Kmia.L

where, K miIad. - kl +ad. (3-8)
kia

Comparison of (3-6) and (3-7) shows that the relationship between [E] and [E]t

are clearly different for the different kinetic schemes, implying a different dependence on

[E]t of the initial rate of glutaminyl substrate conversion by (3-4). By (3-6), the initial

rate will depend on the first power of [E]t, whereas by (3-7) the initial rate will be

dependent on [E] tO, where $= 0.5-1 as a function of [S]/Kmi and K ml,a.d.. Thus, a

dependence on [E]t of order between 0.5 and unity will imply a contribution by Figure 3-

4, Scheme D.

Initial rates were measured as a function of [E]t to determine the value of $. Data

for initial rates at 37 0C, pH 7.5 were taken as the conversion (Xs= 1-[S]/[S]O) at 30

seconds. By (3-4), it can be seen that plotting the natural logarithm of the conversion at

30 seconds versus the natural logarithm of [E]t will give a line with the slope equal to $.

As shown in Figure 3-5, $= 0.67, implying that Figure 3-4, Scheme D is a significant

contributor to TG11 inactivation, although not necessarily the sole contributor.

With the reaction of Scheme D describing the process by which TG11 become

inactive, the following set of equations would be sufficient to describe the crosslinking

reaction and simultaneous degradation of TG11:
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d[S] - [E][S] 
(3-4)

dt KmI

d[E]- kia.d [E] 2  

(3-9)
dt Km, a. d.

K [S] 9  8 [S]
[E] mi,a. ( (1_+ )2 + ([E]t - [E]j) -(1 + )) (3-10)

4 KMI Kmi,a.d. KM 1

Equation (3-10) is simply an algebraic variant of (3-7). The complex structure of (3-10)

makes (3-4) and (3-9) inseparable, except in limiting cases. If 8-[E]t /Kmi,a.d. << 1, the

free enzyme concentration [E] would be linear with [E]t ($=1) yielding algebraic

solutions to (3-4) and (3-9). Since $=0.67 the full expression must be considered.

Solutions for [S] and [E] as a function of time can be found given a set of rate constants

by the numerical methods discussed above.

From (3-10) and a particular value of $ an upper limit can be found for Kmi,a.d. by

the constraint that both [S] and Km1 must be positive. For the conditions used for the

experiments represented in Figure 3-5 and $=0.67, it can be shown that Kmia.d. 1 .0pM.

Data obtained from measuring the conversion of the glutaminyl substrate over 90

minutes were used to find values for the rate constants for the TG-glutaminyl substrate

model (Scheme D, Equations (3-4), (3-9) and (3-10)). A set of optimal rate constants was

defined as the set that gave the smallest squared deviation from the data set. This was
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done by standard differential equation integration techniques discussed above. Best fits

were obtained for the TG-substrate model with Km1>> [S] for the substrate

concentrations used here ( 4mM). With Km>> [S] and the constraint of $=0.67, (3-10)

requires Kmia.d. 1 .OpM. This leaves only ki,a.d. and the ratio kci/Kmi as unknowns.

Separate rate constants were fit to data for cases of 0.50tM, 1.00gM and 2.00gM

transglutaminase concentrations. These rate constants were then compared for similarity

as an assessment of the validity of using the TG-glutaminyl substrate model (Scheme D)

as the exclusive pathway for inactivation. Results are shown in Figure 3-6.

The values of kci were found to be consistent over the range of concentrations

tested, yet the value of ki,a.d. varied inversely with the enzyme concentration. This

indicates that the TG-substrate model under-predicts the rate of TG inactivation at low

enzyme concentrations. It is possible that a contribution from another enzyme

inactivating mechanism may account for this discrepancy. Inactivation by oxidation or

disulfide bond formation as Figure 3-4, Scheme A would be an example a process that

would be become evident relative to Figure 3-4, Scheme D at lower enzyme

concentrations. To explore this possibility, a coupling experiment was conducted in the

presence of an antioxidant (50mM DTT) at the same enzyme concentration (2.00pM) as

a previous experiment. It was found that the presence of 50mM DTT significantly

improved the apparent activity of TG11 at longer reaction times (Figure 3-7), consistent

with a contribution by Figure 3-4, Scheme A.

Under conditions where oxidation may be important, (3-9) must be rewritten as,
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__=__ 'd [E]2 +kio([E] -[Eki) (3-11)
dt Kmi, a.d[.

where k, is a first-order rate constant describing the oxidative process inhibited by

DTT.

Equations (3-4), (3-10) and (3-11) can be used to find values for all pertinent rate

constants. Assuming kiam ~ 0 in the 50mM DTT case, it was found that describing the

temporal loss of TG1 activity by (3-11), allowed all four data sets to be described by a

single set of rate constants as shown in Figure 3-7. The consistency of the model

supports the hypothesis that TG 1 inactivation can be described as a combination of

oxidation and TG-glutaminyl substrate crosslinking.

To further test the robustness of the model described by (3-4), (3-10) and (3-11)

inclusive of the rate constants collected here (Figure 3-7), we attempted to predict

previously published observations and data of another laboratory 5 using only their

experimental conditions as an input to our model. Aeschlimann and Paulsson measured

the incorporation of a radiolabeled primary amine, 3H-putrescine, into TG1 in the absence

of another glutaminyl substrate ([S]= OmM) at two concentrations of TG 1 : 125nM and

750nM. Our model correctly predicts the rates of enzyme labeling as well as the relative

final labeling levels measured at 125nM and 750nM TG1 (Figure 3-8).
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3.2.2.3 Temperature, pH and Antioxidant Dependence

Experiments at a variety of temperatures and pH levels, with and without

antioxidants were performed to elucidate the effects of these parameters on TG11 activity

and rate of inactivation. To evaluate each time course individually, it is useful to invoke

a simple empirical mechanism that may not rigorously reconcile with the mechanisms

supported above, yet captures the essence of the kinetic behavior. If we chose to describe

the inactivation mechanism by Figure 3-4, Scheme A, and further collapse the

crosslinking into a pseudo-first order reaction (equivalent to Kmi >> [S]O), the

concentration of uncoupled glutaminyl substrate can be described by,

-ki[ E
[S]-- [Sloexp[ -kC ' E] (I exp(-k,,appt))] (3-12)

ki,appKmapp

The apparent inactivation rate, kiapp, will be affected by the true constants (kia.d., Kmi,a.d.,

and ki ex), while the apparent crosslinking rate kci/Km 1,app will be a function of [E]t and

[S]. Table 3-1 shows apparent rate constants found for a variety of temperatures and pH

values as well as conditions with antioxidants. Experiments shown in Figure 3-7 are

included as experiments 1-4 for comparison.

To test the temperature dependence of these reactions, experiments were

performed at 21 C with and without DTT. Additionally, a small amount of a less potent

anti-oxidant, glutathione (GSH) was tested and was found to reduce ki0 x slightly (expt.

9). Again, it was found that TG11 activity was extended in the presence of DTT.
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Comparing experiments 2 and 8 in Table 3-1, lowering the temperature had the effect of

reducing both the apparent crosslinking and inactivation rate constants by similar

amounts, giving apparent activation energies of 3.7 kcal/mol and 2.4 kcal/mol,

respectively. Addition of 50mM DTT as an anti-oxidant had a similar relative effect at

21 0 C (expt. 8 vs. 10) and at 37 0 C (expt. 3 vs. 4).

In the presence of cells there is expected to be a limit to the amount of antioxidant

that can be used without eliciting adverse cytotoxic effects. To test this hypothesis, cells

were cultured in the presence of varying amounts of DTT as described in Section 3.2.1.

As shown in Figure 3-8 concentrations in the millimolar range can be harmful to cells.

Therefore, only a limited advantage can be gained by adding DTT to the pre-gel solution

if cytotoxic effects are to be minimized. In practice losses in transglutaminase activity by

inactivation can be overcome simple by adding excess enzyme, As will be shown in

Section 5.4.5, addition of transglutaminase has no observable negative effect on cell

growth ( 3gM TG).

TG11 kinetics were strongly influenced by pH. For example, varying the pH from

7.5 (expt. 2) to 7.1 (expt. 5) at 37 0C resulted in a 50% increase in the apparent

crosslinking rate and a slight reduction in the apparent inactivation rate. At pH 6.0 (expt.

6) the apparent inactivation rate is reduced 3-fold from the rate at pH 7.5 (expt. 3) with

similar apparent crosslinking rates. A large reduction in pH to 4.0 resulted in total loss of

measurable activity (expt. 7). At 210C, changing the pH from 7.5 (expt. 8) to 6.0 (expt.
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11) resulted in a similar apparent crosslinking rate yet reduced the apparent inactivation

rate by approximately 3-fold, similar to the effect measured at 37'C.

3.2.3 Discussion

Our finding that the initial rate of self-crosslinking is dependent on [E]t .67 for the

range of TG 1 concentrations examined indicates that only a fraction of the total enzyme

concentration is initially available for catalysis of the peptide substrate. The amount of

enzyme available for catalysis is consistent with a model in which the enzyme binds to

itself (Figure 3-5, Equation (3-7)). Evidence that this binding is followed by TG1 -

catalyzed crosslinking that negatively affects the enzyme is provided by the

proportionality of the time-dependent activity (Figure 3-7) as described by (3-11).

Reports of TG11-containing high molecular weight species formed by TG 1 activity3,4

might suggest a mechanism whereby successive crosslinks on a single TG1 molecule

would additively attenuate activity either by inducing conformational changes or by

sterically inhibiting access to the active site. Either of these effects could certainly

depend on the particular molecule crosslinked to the enzyme.

The presence of PEG-bound substrates may effect self-crosslinking in two ways.

The PEG chain alone might enhance the probability of TG-self-association through

excluded volume effects. Also, if a PEG-bound substrate becomes covalently attached to

a TG molecule thereby linking a PEG chain to the enzyme, subsequent TG / TG-PEG

interactions may be disfavored, reducing the likelihood of self-association.
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In vivo, self-crosslinking may play a regulatory role in two ways: localization and

attenuation. Self-crosslinking would limit the distance TG11 could diffuse from the point

of secretion, facilitating the role TG11 has been shown to play at and near the cell

surface 16. By this mechanism one might assume that TG11 must retain full activity after

being crosslinked the cell surface or surrounding extracellular matrix, however an

identical activity gradient could be maintained with total inactivation following self-

crosslinking only requiring a proportionally higher rate of synthesis and secretion. It is

yet uncertain what role proteolytic degradation17 might play in activity attenuation

relative to covalent binding investigated here, non-covalent binding as has been seen with

fibrinogen in the case of erythryocyte TG but not TG11 8, or by oxidation of the active site

or surface moieties 8.

Evidence of an oxidative inactivation mechanism separate from the crosslinking

function under physiologic conditions is provided by the finding that significant

uncrosslinked substrate remains at the observed completion of the reaction in the absence

of an antioxidant, whereas in the presence of 50 mM DTT reactions eventually proceed to

completion. The reaction time course in the presence of DTT are consistent with pseudo-

second order inactivation mechanism implied by TG11 acting as an amine acceptor

substrate (Figure 3-4, Scheme D, Equations (3-9) and (3-10)), If self-crosslinking were

the sole mechanism for inactivation, conversion (c.f. Figure 3-7) would in all cases

asymptotically approach unity. This finding is supported by reports of TG11 susceptibility

to Cu 2 catalyzed oxidation 8. Interestingly, it was found that the oxidation of free surface

cysteines to cystine may be a route to inactivation, as oxidation of approximately 4
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cysteine residues correlated to 100% loss of activity, reversible by addition of excess

DTT 8.

Support for inactivation by both self-crosslinking and oxidation can be found in

the excellent fit of the data from Aeschlimann and Paulsson5 shown in Figure 3-9 where

the final amount of self-labeling of TG 1 by 3H-putrescine measured at 750nM TG1 was

significantly greater than 6 times the amount measured at 125nM, as would be expected

from stoichiometric radiolabeling. Although their data were taken at a slightly higher pH

(8.3), the agreement with the rate constants measured here (Figure 3-7, caption) is quite

good both in the effective time constant for reaction and the final relative level of

radiolabeling.

The pH-dependence of TG1 self-crosslinking points to the possibility of an

interesting control mechanism for the expression of TG 1. A relatively high self-reactivity

at pH~7.5, would result in a negative control mechanism attenuating activity over time.

This attenuation may also serve to insure that TG1 activity does not persist as it diffuses

from the point of expression. A relatively low self-activity at slightly lower pH levels

would allow the activity to persist. This may have implications for the role of

transglutaminase in wound-healing processes. At the point of severe injury poor

perfusion can lead to a drop in tissue pH to as low as pH 5.0 or less 19 . At pH levels

below 6.7, irreversible cell damage can occur 19 which could then lead to release of

intracellular TG 1 . Under these conditions, the blood clotting cascade would likely

become mobilized, resulting in fibrin crosslinking by another transglutaminase, Factor

XIII. The presence of elevated and sustained levels of TG 1 activity may aid in tissue
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stabilization. During the process of repair granulation tissue forms, characterized by

rapid synthesis of connective tissue and angiogenesis. The pH of this environment is

closer to 7.020, where we measured (pH7. 1) an apparent activity 50% higher than at pH

7.5, yet with a similar inactivation rate necessary for spatial regulation.

3.3 Transglutaminase Activity With PEG-Bound Substrates

Modification of enzymes and other therapeutic proteins with PEG chains is a

common approach to enhancing the half life of these molecules in the bloodstream 21.

Such modifications typically do not substantially alter protein activity, presumably

because small substrates can readily diffuse to the active sites without hindrance from the

PEG chains. The situation here is the inverse of the therapeutic one -- here, a small

substrate is being modified with a large PEG chain -- and we were concerned that the

swollen, randomly-coiled PEG chain might impair the substrate's ability to reach the

enzyme's active site. We thus compared the enzyme activity of PEG-bound substrates to

free substrate by measuring the coupling of a standard, easily-detected donor amine,

monodansyl cadaverine (mdc), to PEG-glycine-glutamine-glycinamide (PEG-GQGa).

PEG-GQGa was synthesized from the same nominally tetrafunctional PEG molecule

described in Section 4.3. Kinetic experiments were performed by the method described

in Appendix A5.

Based on the initial rate and the maximal mdc coupling achieved, an apparent rate

constant of 1.2 ± 0.4 mM-'min-1 (mean ± S.E. for a reaction profile) was calculated from

the initial rate when enzyme inactivation (Section 3.2) was insignificant. This compares
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well with a literature value for benzyloxycarbonyl-glycine-glycine-glutamine-glycine of

1.3 mM-1 min-' for mdc incorporation under the same buffer conditions 22. It is not

entirely surprising that the activity of the enzyme is unaffected by the presence of the

large PEG chain. PEG is highly mobile in aqueous solution and recent measurements

using the surface force apparatus have demonstrated that PEG-tethered ligands can bind

to receptors under conditions where the PEG chain is stretches to its fully-extended

length to bind23.
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TABLE 3-1

APPARENT RATE CONSTANTS FOR TGII-MEDIATED INACTIVATION

Expt.# T

1

2

3

4

5

6

7

8

9

10

11

emp.

37

37

37

37

37

37

37

21

21

21

21

(Ut) pH
(7C) pH

7.5

7.5

7.5

7.5

7.1

6.0

4.0

7.5

7.5

7.5

6.0

pM TG11

0.5

1.0

2.0

2.0

1.0

2.0

1.0

1.0

1.0

1.0

1.0

Antioxidant

50mM DTT

l0IaM GSH

50mM DTT

aApparent first order rates (ki,app) were derived from a model where Figure 3-4, Scheme A

solely describes the mechanism for TG11 inactivation. These values are useful for

comparisons only and are not expected to represent rate constants for elementary

reactions.
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) aki,app(min'

0.057

0.047

0.051

0.021

0.043

0.017

no rxn.

0.038

0.034

0.019

0.012



(a) (b) (c) (d) (e) (f) (g) (h)

Figure 3-1. SDS-PAGE gel demonstrating tissue transglutaminase self-crosslinking at

pH7.4. Lanes contain: weight markers (see Section 3.2.1) (a); aliquot directly from -

70'C storage (b); OmM calcium, 4 C (c); 8mM calcium, 4 C (d); OmM calcium, 37 0C

(e); 8mM calcium, 37 0C (f); 8mM calcium, 37 C, 5mM monodansyl cadaverine (g); 1

week, OmM calcium, 4 0C (h).
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k1S k+1
E + S :k, E-S kc S-A + E

1-S (excess A)

E -E

Figure 3-2. Transglutaminase (E) mediated crosslinking between a amine acceptor

substrate (S) and amine donor substrate (A), including a transformation from the active

(E) enzyme to an inactive state (Ei) through an apparent first-order process.
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Figure 3-3. Demonstration of gradual loss of enzyme activity. Aliquots of enzyme were

added at 0 minutes and 90 minutes. Conditions were as specified in Section 3-2.
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Scheme A

'i ox
E -' E

Scheme B

E + E -',2nd E

1,a. d.
E + S ]

K1,a.d.

Scheme D

k1 ,a.a.
E + E --

Ki,a.a.

'S,a.d.
E-S E + E

+ E

k, a. a.
E-E Ei + E

+ A

Figure 3-4. Possible TG1 inactivation processes. Scheme A describes a first-order

process that may be driven by oxidation. Scheme B is a simple second-order process.

Schemes C and D are more complex reactions where TG1 acts as an amine donor or an

amine acceptor, respectively.
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3.5

3
6 6.5 7 7.5 8

-ln(mM TG)

Figure 3-5. Initial rate as a function of initial enzyme concentration. A log-log plot

gives the slope (p=0.67) as the reaction order with respect to [E],.
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Figure 3-6. Comparison of data and model predictions where inactivation is presumed to

be solely through seif-crosslinking with TG acting as an amine acceptor (Figure 3-4,

Scheme D). Best fit, as defined in Materials and Methods, gives kiad. = 0.61 min-', 0.46

min-1 and 0.42 min~' for [E]t = 0.50pM (o), 1.00pM (0) and 2.0OpM (o), respectively.
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Figure 3-7. Comparison of data and model predictions where inactivation is presumed to

occur by self-crosslinking with TG acting as an amine acceptor (Figure 3-4, Scheme D)

as well as oxidation (Figure 3-4, Scheme A). All model curves were generated from the

individual initial conditions (0.5pM TG / OmM DTT (o), 1 .0pM TG / OmM DTT (0),

2.00pM TG / OmM DTT (o) and 2.O0pM TG / 50mM DTT (m)) with (3-4), (3-10) and

(3-1 1), using best fit (Materials and Methods) constants of kia.d = 0.16 min-', Kmia.d

0.42 pM, ke1 = 5.5 x 102 min~', Km1 = 7 mM. For the case of 50mM DTT, ki 0 x was

assumed to be negligible, and set to zero, while for the three cases without DTT, the best

fit was found to be ki.0, = 0.040 min-.
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Figure 3-8. Effect of dithiothreitol (DTT) on cell number after 24 hours. Cell numbers

are normalized to the 0 mM DTT control.
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Figure 3-9. Previously published self-crosslinking data 5 (points), compared with model

predictions (lines) inclusive of measured rate constants (c.f. Figure 3-7 caption). Model

prediction was based solely on initial conditions of 125 nM (o) and 750 nM (e) TGIj and

0 mM exogenous substrate. The ordinate was normalized to match that of Aeschlimann

and Paulsson, therefore only relative values (125 nM vs. 750 nM) and time scales should

be considered relevant.
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4 ENZYMATICALLY CROSSLINKED POLY(ETHYLENE

GLYCOL)/POLYLYSINE GELS

4.1 Introduction

This preliminary study of enzymatically crosslinked poly(ethylene glycol) (PEG)

hydrogels was designed as a survey of parameters that effect gel formation and properties

of the resulting gels. Experiments on equilibrium gel swelling, protein partitioning,

diffusion and cell compatibility were designed as assessments of how enzymatically

crosslinked PEG gels might perform as cell encapsulants.

A relatively simple model system was devised to carry out this study, comprised

of a synthetic PEG-bound amine acceptor substrate and a commercially available amine

donor substrate as described below. More complex systems including amine acceptor

substrates of higher activity (Section 5.3.1), PEG-linked amine donor substrates (Section

5.3.2), and substrates with collagenase-degradable linkages (Chapter 6) are explored in

subsequent chapters.

4.2 Gel Precusor Design

The design of gel precursors was driven by the substrate specificity requirements

of the crosslinking enzyme transglutaminase as discussed in Section 1.5.4. For this

feasibility study, the simplest transglutaminase substrates were used. For the amine-

acceptor substrate, absence of charge near the glutamine residue is necessary presumably

due to a hydrophobic pocket at the active site1 . For this reason glutaminamide was used

rather than glutamine. For the amine donor substrate, the requirements are less stringent.
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Many primary amines are known to be substrates for transglutaminase at various levels

of activity. The highest reaction rates are obtained for lysine when a hydrophobic amino

acid immediately follows the lysine residue, reading N to C2. This structure is

reproduced in a well-known amine donor, monodansyl cadaverine 3 (Appendix A5). To

incorporate hydrophobic character into the amine donor substrate, a random copolymer

of lysine and phenylalanine (poly(KF)) was used to insure a population of the preferred

substrate. Poly(lysine) was also attempted in the hope that lysine lacking an adjacent

hydrophobic residue would be sufficiently active, yet these failed to gel. We therefore

compared gels made from various amounts of PEG-Qa and poly(KF).

4.3 Materials and Methods

Materials. A polyfunctional precursor, nominally "Tetrahydroxy PEG" ("PEG-

(OH)4") was purchased from Polysciences. Poly(ethylene glycol) (PEG) standards were

from Scientific Polymer Products (90.4k M, 1.03 M,/M,; 35.2k M., 1.04 M,/Mn;

10.9k Mw, 1.18 Mw/M,; 3.07k M, 1.06 Mw/M,). Glutaminamide (Qa) was purchased

from Bachem. Tresyl-chloride was obtained from Aldrich. Triethylamine from Fisher

was purified prior to use by distillation. Poly(lysine:phenylalanine).HBr (Dpis= 185; 54

mol% lysine;MWi,=3 3.2kD), poly(lysine).HBr(25.7kD,MW(LALLS)=25.OkD;

Dp(vis)=123,Dp(LALLS)=120; Mw/Mn=1.20 by SEC-LALLS) and

poly(lysine).HBr(1kD, Dp(vis)=6) were purchased from Sigma. Phosphate buffered

saline (PBS) (0.20g/L KCl, 0.20g/L KH 2PO 4, 8.00g/L NaCl, 1.15g/L Na2HPO 4, 2.16g/L

Na 2HPO 4-7H 20, pH=7. 1) was from Gibco. Monodansyl cadaverine was purchased from
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Aldrich. Transglutaminase and the diffusion test proteins -- hen egg lysozyme, bovine

erythrocyte carbonic anhydrase and bovine serum albumin -- were purchased from Sigma.

Transglutaminase Storage and Activity Assay. Enzyme aliquotting was performed

in a 4"C cold room. Lyophilized transglutaminase was dissolved in a transglutaminase

Storage Buffer4 of 10mM Tris-Acetate at pH=6.0 with 160mM KCl, 1mM EDTA and

2mM DTT. The aliquotted enzyme solution was stored at -70 0C until use.

Transglutaminase activity was determined by the method of Folk and Chung4.

Briefly, the incorporation of hydroxylamine into carbobenzyloxy-glutaminylglycine is

measured by a colorimetric assay of the complex formed between the reaction product

and acidic ferric chloride. The activity of the aliquotted enzyme was found to be 0.0 10

U/mL where one transglutaminase unit is defined by the amount necessary to form 1

mmol of hydroxamate per minute from N-a-benzyloxycarbonyl-glutamine-glycine and

hydroxylamine at pH 6.0 at 37 0C.

Transglutaminase Activity With PEG-bound Glutamine. To compare

transglutaminase's activity towards peptidyl and PEG-bound glutamine residues, a

standard transglutaminase activity assay based on the incorporation of monodansyl

cadaverine (mdc) was carried out on PEG-glycine-glutamine-glycinamide (PEG-GQGa).

PEG-GQGa was synthesized by tresyl-mediated coupling (described below) in a solvent

of dimethylformamide with methylene chloride. The assay reaction was carried out at

room temperature with 9.56mg/mL PEG-GQGa and 1.64mg/mL mdc in 100mM

Tris/chloride buffer containing 30mM NaCl, 1mM EDTA and 50mM CaCl 2. At various

times during the reaction, aliquots were separated by gel permeation chromatography (c.f.

next section) to quantify the amount of PEG-linked mdc versus unlinked mdc.
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Gel Permeation Chromatography. Aqueous gel permeation chromatography

(GPC) for analysis of PEG-OH and PEG-Qa compounds was performed using two

columns in series (TSK G4000PW and TSK G6000PW) with water/0.05% sodium azide

as the mobile phase. Detection was by refractive index and light scattering. To calculate

absolute molecular weights from light scattering data, the dn/dc of pure poly(ethylene

oxide) was used.

Aqueous GPC for the transglutaminase activity assay was performed on a TSK

G2000PW column with aqueous 0.05% sodium azide at 1.0OmL/min using UV

photodiode array (200nm - 350nm range) detection.

Aqueous GPC for analysis of gel leachates was performed on three GPC columns

in series (2xTSKG4000PW and 1xTSKG3000PW). The mobile phase was 50mM

Tris-HCl with 50mM Tris base at 1.50mL/min. Detection was at 266nm.

Organic GPC for PEG-OH and PEG-Qa characterization was run on two columns

in series (Phenomenex linear and 1 000A styrene-divinylbenzene) with chloroform at 1.00

mL/min at room temperature. Detection was by refractive index. For molecular weight

determination, a calibration curve was generated using monodisperse linear PEG's.

PEG-OH and PEG-Qa Characterization. The PEG precursor is described by the

manufacturer as a predominately tetrafunctional reaction product of 10k PEG with

bisphenol A diglycidyl ether (structure I of Figure 4-2,"PEG-OH"). The product

contains a mixture of single 10k chains, double PEG chains (structure I of Figure 4-2) as

well as molecules containing three or more chains. Based on UV spectral analysis the

product was found to contain approximately one bisphenol unit per PEG chain. This

could be explained either by some degree of stacking of bisphenol units (structure II of
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Figure 4-2) due to aggregation during the synthesis process or by an incomplete synthesis

reaction, resulting in molecules which terminate in bisphenol units (structure III of Figure

4-2). It is presumed that the synthesis reaction is run to completion and that structure II

accounts for the concentration of bisphenol units in the product, implying that "PEG-

OH" will have 2 hydroxyl groups for each PEG chain. The presumption of structure II is

supported by evidence of branched species discussed below.

To determine the molecular weight distribution, PEG-OH was separated by both

organic and aqueous gel permeation chromatography (GPC) under the conditions

described above. Whereas PEG-Qa in chloroform formed only unfilterable aggregates,

PEG-Qa was analyzed by aqueous GPC only. Using organic GPC, PEG-OH single

chains (at 10.2K by linear PEG stds.) were baseline separated from double chains (at

22.3K by linear PEG stds.) and higher multiples, confirming the molecular weight of a

single chain. It is possible that the presence of relatively stiff bisphenol A in the double

PEG chain enlarges the PEG random coil somewhat, causing it to elute at a slightly higher

molecular weight than twice the single chain molecular weight. Peak integration gives

68wt% single chains, 7.3wt% double chains and 25wt% of triplets or higher. Species

beyond 50K were beyond the linear range of the organic column.

Aqueous GPC with light scattering and refractive index detection was used to

better resolve the higher molecular weight species. The highest molecular weight species

was found to be 7.6.106 g/mol by LS, equivalent to approximately 700 chains. By

comparison with the molecular weight of this species based the elution volume of high

molecular weight linear poly(ethylene oxide) standards (1.0.106 g/mol), it was concluded
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that high molecular weight PEG-OH has some degree of branching, possibly by bisphenol

self-reaction shown in structure III.

Pre-gel Macromer Synthesis. A multifunctional glutaminyl-PEG adduct, PEG-Qa

was synthesized by tresyl-mediated coupling. PEG-OH (40g) was dried by incubation at

40C overnight in 300mL dry methylene chloride over molecular sieves. Just prior to use

the PEG/methylene chloride solution was decanted from the sieves. The sieves were

rinsed with two 25mL portions of dry methylene chloride to yield a total of 350mL of the

PEG/methylene chloride solution. To this was added 2.64mL triethylamine with stirring.

To initiate the tresylation, 2.Og tresyl chloride was added dropwise. The reaction flask

was filled with dry argon and stirred for two hours. The resulting PEG-Tr was purified

by successive reprecipitations from acidified methanol using decreasing amounts of acid

(37% aq. HCl in MeOH: lx 1.7 gL/mL, Ix 0.67 gL/mL, 2x 0.33 gL/mL, 2x pure MeOH).

Residual amounts of methanol were removed in vacuo. Dry PEG-Tr was aliquotted into

vials and stored at -70 0C until use. Based on the manufacturers stated molecular weight

of 18.5K for PEG-OH, tresylation as found to be 90% ± 2% based an sulfur elemental

analysis [53.72%C, 8.61%H, 0.54%S; average of two samples].

For the PEG/Qa coupling reaction, 2.15g of PEG-Tr was added to 19.6mL of a

solution of 100mM Qa-HCl and 200mM imidazoyl-acetate buffer at pH7.0. The

coupling proceeded overnight at 4'C. Under these conditions in a separate experiment the

apparent second order rate constant for the displacement of the tresyl group by Qa was

measured to be 0.13 M min- by monitoring the loss of primary amines of Qa by the o-

phthaldialdehyde fluorometric assay for primary amines5. The solution was frozen and
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dried by lyophilization. Purification was by successive reprecipitations from methanol.

Residual amounts of methanol were removed in vacuo. The absence of residual

uncoupled glutaminamine was verified by the o-phthaldialdehyde fluorometric assay for

primary amines. Elemental analysis showed a substitution level of 0.126 ± 0.012 mmol

Qa per gram of polymer based on nitrogen elemental analysis [55.05%C, 8.83%H,

0.53%N; average of two samples]

PEG-OH and PEG-Qa have identical molecular weight distributions (Figure 4-3),

indicating that no detectable scission or crosslinking of PEG chains occurred during the

synthesis process.

Network Formation. All gels were formed with 2.5 U/mL (2.3gM)

transglutaminase and 6mM calcium chloride in a buffer of 50% transglutaminase Storage

Buffer and 50% Reaction Buffer (100mM Tris-HCl, 1mM EDTA, pH8.3) at 37 0C. The

mixture of the enzyme plus the buffers has a pH of 7.5 at 37 0C. Gels for the diffusion

assay were made with 20wt% PEG-Qa (25mM Qa) and 5.Owt% poly(KF).HBr (149mM

Lys). For swelling measurements, gels were made with 20%/5%, 10%/5%, and 20%/2.5%

PEG-Qa/poly(KF)-HBr concentrations. Gel components were mixed at 40C, then

warmed to 37 0C for gelation.

To measure the amount of unreacted PEG-Qa and poly(KF), gels were cast in the

bottom of a 12.0mm diameter glass vial and allowed to equilibrate in a series of three PBS

wash solutions over a time span of 13 days (well beyond the observed equilibrium as well

as the theoretical equilibrium based on analysis of measured diffusion behavior of several

solutes). The wash solutions were analyzed by aqueous GPC with detection at 266nm.
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Swelling Measurements. Experiments conducted in a uniaxial swelling mode. Gels

were formed in the bottom of a 12.0mm diameter glass vial as described above and

allowed to swell to equilibrium by addition of excess PBS on top of the formed gel. The

swelling ratio, ax, defined as the ratio of the swollen gel volume to the initial volume, is the

ratio of the final (equilibrium) gel height to the initial gel height for the case of uniaxial

swelling.

Diffusion Assay. A two half-cell diffusion apparatus was used to measure the

diffusion constant of macromolecules in PEG-poly(KF) gels. The gel was formed and

swollen in a 3/4 inch inner diameter stainless steel ferrule secured to a glass slide. After

swelling, the gel was further incubated for 4 days in multiple volumes of PBS to remove

trace unreacted polymers and enzyme. To assemble the apparatus, gel and ferrule were

inverted onto 0.45gm Millipore PVDF (type HVLP04700) filter paper. The ferrule was

then loaded into the washer housing and backed by another section of filter paper.

At the start of each experiment, the donor cell was filled with 3mL of a PBS

solution of a single test protein (1-2 mg/mL), and the acceptor cell was filled with 3mL of

pure PBS. The concentration of the acceptor cell was monitored over time by absorbance

at 280nm. Experiments were conducted at 22 ± 1 'C.

For partition coefficient determination, a gel was cast in the bottom of a 12.0mm

diameter glass vial, allowed to swell to an equilibrium height (12.5mm), and cleared of

unreacted poly(KF) and PEG-Qa by multiple PBS washes over four days. A mixture of

the test proteins (2.Omg/mL BSA, 1.0 mg/mL carbonic anhydrase and 3.Omg/mL

lysozyme in PBS) was added to the top of the gel, allowing the proteins to diffuse into

the gel over 13 days. Samples of the protein solution above the gel were taken
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periodically and separated by aqueous GPC with detection at 280nm to quantify the

concentration of each protein individually. To compensate for the possibility of protein

adsorption to the glass vial and protein degradation, a control vial containing the protein

mixture but no gel was also monitored by aqueous GPC with detection at 280nm.

According to mathematical analysis of the time required to reach equilibrium, using

measured diffusion coefficients, all proteins were expected to be in equilibrium after 13

days. These predictions were supported by constancy of protein concentration in the

supernatent by 13 days and thus partition coefficients were determined at the 13 day

time point.

Cell Compatibility. All cell compatibility experiments were carried out with balb/c

3T3 cells in a culture media of high glucose Dulbecco's Modified Eagle Medium

supplemented with 200mM L-glutamine, 10% calf serum and 1% penicillin /

streptomycin to inhibit bacterial growth. All products were from Gibco.

For cell-contact experiments sub-confluent cultures were rinsed with phosphate

buffered saline (PBS) prior to addition of test solutions. Test solutions consisted of PBS

(control; n=3), gelation buffer (see Network Formation above; n=3), PEG/polyKF gel (see

Network Formation above; n=2) and transglutaminase alone at gelation concentration

(n=2). After one hour serum-containing media was added to each well. After 36 hours

each well was assessed for attached cells and viability by tripan blue dye exclusion.

For experiments designed to assess the effect of transglutaminase on cell

attachment and growth, cells were dispersed in Versine (0.2g/L EDTA in PBS, Gibco) and

plated in 96-well plates with serum-free media (32ptL) in the presence varying amounts of

transglutaminase (8 tL). After one hour, 160gL of serum-containing media was added to
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each well. Cell numbers were counted at 1, 2 and 3 day time points. All experiments

were done in triplicate.

For cell encapsulation experiments, cells were detached from culture dishes by

trypsinization. Trypsinization was stopped by the addition of an equal volume of

soybean trypsin inhibitor (0.25mg/mL, Gibco). Two microliters of cell suspension was

added to 28gL of pre-gel solution (see Network Formation above). Two microliters of

calcein AM (Molecular Probes) was added just prior to enzyme addition. Gelation was

allowed to proceed for one hour at 37 0C at which time fluorescent images were

photographed to assess cell viability by calcein AM fluorescence.

4.4 Results and Discussion

The concentrations of precursors can potentially affect gel formation in several

ways, but a key lower bound on each precursor concentration can be identified.

Poly(KF) is assumed to act as a rigid crosslink point for the mobile PEG chains; thus, its

concentration determines the average distance between crosslinks. The poly(KF)

concentration must then be at least great enough that the average distance between

crosslinks, (CpoIy(KF)*NA)-/, is less than the fully extended length of the PEG chains (60

nm) in the PEG-Qa precursor. To achieve network formation with the minimum

structural functionality (greater than two) at an average crosslink, the concentration of

PEG chains functionalized on each end with Qa must be at least 3/2 the concentration of

poly(KF). Effects of absolute and relative concentrations of each of the precursors are

discussed below in the context of gelation results.
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The concentrations of poly(KF), poly(K), and PEG-Qa used to form gels in this

study, and the resulting gel properties, are shown in Table 4-1 and gels will be referred to

by the designations listed there. The average distances between crosslinks for the

concentrations of poly(KF) shown in Table 4-1 -- 10 nm for 5wt% and 13 nm for

2.5wt% -- are comparable to the RMS end-to-end distance of the PEG chains (10 nm) or

slightly greater. The concentrations of PEG-Qa used were 6-12 fold greater than the

minimum (lower bound) concentration and are well above the minimal overlap

concentration (1.4wt%) for 10k PEG chains. All gels were formed with at least a six-fold

stoichiometric excess of lysine:Qa residues, corresponding to on average 8-17 PEG chains

crosslinked to a single poly(KF) chain, assuming all Qa residues and poly(KF) react. The

concentration of enzyme was approximately three orders of magnitude lower than the

concentration of poly(KF) in all cases.

20/5.0 mixtures formed clear colorless gels with significant viscosity increases

within 30 minutes. The gelation time is thus comparable to the estimate, obtained above,

based on negligible diffusion resistance of the enzyme during gel formation. Based on

analysis of components washed from the gel, 90% of the initial poly(KF) and 91% of the

initial PEG-Qa was covalently linked in the gel. The majority of leached PEG material

comprised single chains. Reducing either the poly(KF) or the PEG-Qa by half (20/2.5 and

10/5.0 gels) also allowed formation of clear gels, but small amounts of opacity

concentrated at the top of both types of the gel were observed. The 10/2.5 combination

formed only a viscous, opaque solution. No evidence of gelation was observed for either

poly(K) precursor, despite comparable concentrations of available lysines, confirming the

structural specificity of the enzyme.
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The presence of opacity most likely is indicative of microgels that did not become

crosslinked into the bulk of the gel. Excess fluid added to the top of the 20/2.5 and 10/5

dispersed the opaque portion, indicating incomplete gel formation in the upper opaque

region. The clear regions of all gels remained entirely intact over several weeks in water.

Several explanations are possible for the observed incomplete gel formation. A

tendency towards phase separation may play a role. PEG solutions with high

concentrations of salt are known to phase separate into PEG-rich and PEG-poor phases 6.

This phenomenon is typically observed for small (2-3k) PEG at salt concentrations an

order of magnitude higher than those found in the present study, yet at longer chain

lengths, this effect is enhanced. Another possibility is a reaction driven inhomogeneity.

During the process of gel formation, it is possible that a slight density increase in

crosslinked PEG's could cause the more fully crosslinked species to sink, increasing the

likelihood that a continuous gel layer would form below the discontinuous microgel layer.

In the case of the 20/2.5 gel, it is possible that a transglutaminase-catalyzed termination

side-reaction may play a role. It has been shown that the rate of the competing

hydrolysis reaction of PEG-glutamine -> PEG-glutamic acid is enhanced as the

concentration of the lysine substrate is reduced 7, 8. This reduction of the number of

crosslinkable moieties could lead to the observed incomplete reaction.

4.4.1 Equilibrium Swelling Behavior

Swelling behavior is an important parameter for many of the intended applications

of the gels and was used to assess features of the resulting network structure. Gels were
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swollen to equilibrium in cylindrical glass vials and exhibited swelling ratios in the range

1.5 - 2.1 (Table 4-2).

These swelling data can be used to estimate the efficiency of linking the both ends

of a PEG-Qa macromer into the gel under the different gelation conditions by modifying

Flory's equilibrium swelling theory to account for the types of crosslinks in the PEG-

Qa/poly(KF) gels. Analysis of swelling data provides the number of elastically effective

chains in the gel, and this number can be compared to the total number of macromer

chains present in the gel. Elastically effective chains may arise from both chemical

crosslinks and physical crosslinks (entanglements), and thus separate information on the

relative numbers of physical and chemical crosslinks is needed to is needed to estimate of

the fraction of free chain ends.

The important physical aspect of the gel to be captured in equilibrium swelling

analysis is the stretching of Gaussian chains. We define a crosslink as a non-Gaussian, or

stiff region that joins together two or more Gaussian chains. Due to the long persistence

length of peptides in general and the expected rod-like structure of poly(KF) in ionic

solutions9, 10, it is most appropriate to define each poly(KF) molecule as a node or

crosslink. The presumed network structure is depicted in Figure 4-1. The functionality,

f, of any particular crosslink is then number of PEG chains attached to a particular

poly(KF) molecule. The theoretical mean crosslink functionality is determined from the

stoichiometry of the reaction solution; e.g., a 20/5 gel would lead to a theoretical

crosslink functionality of 17, or 17 PEG chains attached to each poly(KF) molecule. The

crosslink functionality distribution of poly(KF) is not known a priori, however -- the

theoretical value is a maximum which may not be reached, and we presume a distribution
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of crosslink functionalities will exist in the gel. Following the original development of

Flory, we derived an expression for the number of elastically effective chains in the gel,

ve as a function of a for the case of polydisperse network functionality, and defined a

parameter (D which represents the salient features of the network structure:

D number of elastically effective chains

number of macromer chains

Details of the derivation and data analysis are provided in Appendix B. Values of (D from

equation (B 17) for various proportions of PEG to poly(KF) are given in Table 2 and can

be compared to gain insight into the process of PEG-poly(KF) gel formation. Note that

D can be greater than one, since physical entanglements lead to elastically effective chains.

In an ideal gel it would be possible to quantify the number of dangling chain ends based on

Miller-Macosko theory 11, 12, thus making cD a measure of entanglements for the case of

negligible chain loops. However in PEG-poly(KF) gels, the reactivity of each lysine is

dependent on adjacent amino acid residues to an unknown degree, precluding the use of

this type of probabilistic analysis.

Values of D(20/5) and 1(10/5) are comparable and significantly lower than

(D(20/2.5). Thus, the poly(KF) concentration appears to exert a dominant effect. It is

unlikely this effect arises from stoichiometric reaction considerations; lysine residues are

present in excess relative to Qa residues and free lysine concentrations change only

slightly throughout the gelation reaction (17% for the 20/5 gel and 8.5% for the 10/5 gel).
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Furthermore, since the extent of completion of the transglutaminase reaction is a function

of lysine concentration, in the absence of diffusion limitations on transglutaminase

(affirmed below), the proportion of dangling ends in the 20/5 should be slightly higher

than in the 10/5 gel and D(20/5) should be slightly less than (D(10/5). The opposite is

observed -- (D(20/5) is slightly greater than (D(10/5).

It is probable that the concentration of physical entanglements contributes

significantly to the differences in (D. The average molecular weight between

entanglements Men, is 2200 in bulk PEG 13, and is greater for PEG in solution. Gnanou

and coworkers 14 determined the fraction of physical entanglements in end-linked PEG

gels with tetrafunctional crosslinks as a function of polymer volume fraction in the gel and

reported a decreasing fraction of entanglements with decreasing polymer volume fraction

and chain length. At a pre-gel polymer volume fraction of 0.32, Gnanou et al. reported

that 30% of the chains were entangled for gels with 5.6k PEG chains; we expect a similar

amount of overlap for 10k PEG at a volume fraction of 0.20. In the PEG/poly(KF) gels,

it is expected that the localization of many chains at PEG-poly(KF) crosslinks (17-34)

would increase entanglements over the case of the Gnanou study -- we expect more

physical entanglements in gels with higher average PEG concentration or higher

concentration of PEG at the poly(KF) crosslink.

This interpretation is consistent with the data. With half the number of poly(KF)

molecules in the 20/2.5 gel as in the 20/5 gel, the mean crosslink functionality doubles

from 17 to 34 -- effectively doubling the concentration of PEG chains in the vicinity of

the crosslink and increasing the probability of entanglements. Likewise, (D(20/5) is
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somewhat greater than D(10/5) indicating that the bulk PEG concentration exerts a similar

effect, but less profound.

In applications of these gels as cellular scaffolds, it may be desirable to reduce the

swelling ratio as much as possible. The data in Table 2 imply a means of controlling

swelling behavior of PEG-poly(KF) gels by variations in PEG-Qa and poly(KF)

concentrations, yet the formation of a microgel layer is indicative of lower limits of both

constituents. Still, there are alternative means of achieving the effects of a higher degree of

entanglements and higher crosslink densities. Fractionation of the PEG-OH starting

material into a pool of higher molecular weight species could reduce the likelihood of

microgel formation, allowing for lower concentrations of PEG-Qa to be used. Reducing

the molecular weight of the PEG chains would also tend to reduce the degree of swelling.

Manipulation of the poly(KF) molecule could influence swelling effects as well. By

increasing the amount of lysine in poly(KF) by either increasing the proportion of lysine

or increase the molecular weight, a higher crosslink density could be achieved. Any of

these manipulations may affect other gel properties in a positive or negative way.

4.4.2 Protein Partitioning and Diffusion

Diffusion of proteins in the gels is important both for gel formation, where

restrictions on diffusion of the enzyme may impair gel formation, and for the function,

since many cellular functions are governed by macromolecular nutrients and cytokines

released by adjacent cells or transported from blood. Diffusion and partition coefficients

were determined by a combination of steady state and transient flux measurements in a

standard 2-cell diffusion chamber and by equilibrium measurements of partitioning. The
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partition coefficients for the gel is defined as K,, = cgel / cl, .k The apparent values of

Kp for lysozyme, carbonic anhydrase, and albumin are shown in Table 3 along with the

physicochemical properties of the proteins. The small proteins exhibit comparable

exclusion from the gel while albumin shows an apparent partitioning into the gel. Albumin

has an isoelectric point (IE) of 4.715 and is thus is negatively charged at pH 7.1, which

makes it attractive to the positively charged lysine residues of poly(KF) in the gel. Thus

the apparent partition coefficient for albumin is the product of the true partition

coefficient (due to excluded volume) and a binding term. Carbonic anhydrase is slightly

acidic (IE=5.9 16) yet appears to behave in a neutral fashion with respect to partitioning.

The steady-state flux across the gel, Nprotein , is written in terms of the overall

concentration difference between the bulk concentration in the donor chamber, c, and

that in the receiver chamber, c2 -,as

N protein = (c, - c 2 - ) I RTOT . (4-2)

The overall resistance to mass transfer, RTOT, is the sum of the diffusion resistance of the

gel, the diffusion resistances of each supporting membrane (presumed identical), and the

convection resistances of each stirred cell (presumed identical):

_5 25 2
RTOT- + " + -. (4-3)

Kpg D K,,, D,,, kc
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where 5, and 5,n are the thicknesses of the gel sample and the PDVF support membrane,

respectively, D, and D,, are the diffusion coefficients in the gel and membrane, and k. is

the convective mass transfer coefficient.

The convective resistances are negligible in comparison to the diffusion resistances

in this system, and we can thus write the resistance in the support membranes as a

fraction of the total resistance as:

2,, / (Kp,,D ) _ 1 (4-4)
26,M / (K,,Dl)+ 3 /(KpgDg) I+ 6g, K, D

2 8 m K D

For this experimental arrangement 3g = 3004, (i.e., gel = 3 mm and membrane = 0.01

mm), and the partition coefficients, which are governed by excluded volume effects,

should be of comparable values for the membrane and gel. We also expect that the

diffusion coefficients will be comparable in magnitude or that the gel diffusion coefficient

will be less than that in the membrane due to the large, open pores in the membrane

compared to the gel. Thus, the resistance of the support membranes is estimated to be

<10% of the gel and can be neglected for our purposes here. These assumptions are

supported by the values of the measured diffusion coefficients for small solutes in the gel,

which are equivalent to those in free solution. Steady state flux measurements, achieved

when t - 0.58 / Dg, thus allow the product K Dg to be determined17 .

125



Independent values of the diffusion coefficients may extracted from analysis of

the transient regime. In the absence of binding to the matrix, the species balance for

protein diffusion in the gel is

dcg = D g 
(4-5)

dt dx2

Under our experimental conditions, the initial concentration of protein in the gel is zero,

c1 >>c 2 - and c2-=~ 0 throughout the experiment, and thus

Q Dt 1 2 (-1)" 2
S= 2 6 2 2 exp(-Dn2 2 t (4-6)

where Q, is the total amount of material which has passed through the gel at time t. As t

-> o0, this solution approaches a line which has an intercept on the t-axis given by

8'g =2 / 6D (4-7)

The diffusion coefficients for carbonic anhydrase and lysozyme were determined

by both steady state and time lag analysis, and the two analyses led to values which were

not statistically different from each other and comparable to the values for diffusion in

free solution (Figure 4-4).

The apparent partition coefficient for albumin is greater than one and thus albumin

binds to the gel, probably to the positively-charged poly(KF). While rapid, reversible
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binding does not affect the steady-state flux, the binding sites act as a sink during

transient diffusion and this is results in a lower apparent value of the diffusion coefficient.

For rapid, reversible binding, the transient species balance becomes

dCg Dg 92c
__ Dg N'Kg 9(4-8)

dt + NKd dx21+
(Kd +c)2

where N, is the concentration of binding sites in the gel, c9 is the concentration of free

(unbound) ligand in the aqueous phase in the gel, and the dissociation constant, Kd, relates

the concentration of unoccupied binding sites, N, and the concentration of bound protein-

site complexes, N-p, to the concentration of protein in free solution within the gel:

Kd [N][Cg. (4-9)
[N-p]

At very high protein concentrations, the diffusion coefficient approaches the true value,

and at very low protein concentrations, the apparent diffusivity becomes

Dg / (1+ N, / Kd). The concentration of poly(KF) in the gel is about 1 mM and the size

of poly(KF) (~28 nm x 1-2nm, based on 1.5A rise per residue in an alpha helix) suggests

it can bind 1-2 albumin molecules (13 x 4 nm) each, along with the crosslinked PEG

chains; thus N, ~ 1-2 mM. An albumin concentration of ~0.01 mM was used in the

partitioning experiments; i.e., c9 << N, and thus N~ N, . The total concentration in the

gel, cgt,, was 3.9 times greater than that in free solution, c-. Since c9 - 0.5c- ,
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N-p~ 7cg and K ~[N,]/7 . Under the experimental conditions used, c, ~0.01 mM

<< Kd and thus it follows D,,appaent = Dg / (1 + 7).

The apparent BSA diffusivity was calculated from the time-dependent solution

and is a factor of 8 less than diffusion in free solution, which indicates that the true

diffusivity of BSA in the gel is the same as that in free solution (Figure 4-4). PEG gels

formed from 10k linear diacrylates show similar behavior with the BSA diffusion

coefficient in the gel on the order of the value in free solution as calculated from protein

release data1 8. PEG gels formed from the acrylated form of the same PEG precursor used

in this study are also highly permeable to BSA19. However, PEG gels formed by

radiation-crosslinking linear PEG to obtain a molecular weight between crosslinks (Mc)

comparable to the size of the PEG macromer chains used here (10k) significantly inhibit

diffusion of albumin compared to free solution 20. For radiation-crosslinked gels, which

have a uniform gel structure comprising tetrafunctional crosslinks, Kpg ~1 whereas for the

enzymatically crosslinked gels, Kpg ~ 0.5, suggesting that the gels possess different

structures.

From this analysis, we can infer the diffusion characteristics of the enzyme in the

gel, which we expect to be comparable to the diffusion behavior in free solution based on

the rapidity of gel formation. The diffusion coefficient of transglutaminase in free

solution is 0.68x10-6 cm 2/sec at 20OC 21, a value greater than that for BSA (0.576 cm 2/sec

at 20'C). Transglutaminase has a greater mass than BSA (77K vs. 67K) but is more

spherical, resulting in a lower Stokes-Einstein radius for transglutaminase (32A vs. BSA

of 36A). Thus, the gel should present negligible diffusional resistance to the enzyme

during or after gel formation.
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4.4.3 Cellular Interactions

The nature of cellular interactions is a key concern when designing a cell scaffold.

Unfavorable cellular interactions can lead to cell death or an adverse immune response that

may result in infiltration by cells of the immune system and/or fibrous capsule formation

around the offending material. Therefore, the success of a tissue engineered construct is

highly dependent on eliciting, at worst, only a mildly negative response.

The choice of poly(ethylene glycol) (PEG) as the polymer backbone was based in

part on a favorable lack of cellular interactions by virtue of the non-protein adsorbing

characteristics of PEG22. As other molecules have been added to this system to allow for

crosslinking, it was necessary to explore the possibility of cytotoxicity of this gel system.

This was done in two ways: culturing cells in contact with gel components and

encapsulating cells by enzymatically crosslinked gel formation.

Cells encapsulated within an enzymatically crosslinked gel would only be exposed

to certain components until they are diluted by free diffusion in vivo. Cell compatibility

of gelation components (Section 4.3) were performed over a one hour time period as a

possible relevant time scale for cell contact. Where cells were challenged with gelation

buffer, transglutaminase with buffer and a gel formed directly on top of the cells, it was

found that in all cases cells remained attached and viability was greater than 99%, identical

to a phosphate buffered saline control.

To test the influence of transglutaminase on cell attachment and subsequent

growth, cells were seeded on tissue culture polystyrene in the presence of varying

amounts of transglutaminase. The results are shown in Figure 4-5. Cell growth over three
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days was found to be similar to control for all concentrations tested, up to 3.0 iM.

Attachment appeared to be positively influenced by the presence of transglutaminase. At

0.10 M and 0.30 M transglutaminase plating efficiencies were found to be similar to

control, the 0.30j M case giving slightly higher cell numbers. When plated in the presence

of 1.0gM or 3.0gM transglutaminase cell attachment is positively influenced at similar

levels as compared to the control. This effect appears to be sigmoidal as no further

enhancement is gained from increasing the transglutaminase concentration from 1.0gM to

3.0gM.

A test for cell compatibility of encapsulation within TG-crosslinked PEG gels

was performed by suspending cells in a pre-gel solution prior to enzyme addition. After

the gel had formed (1 hour), live cells were visualized on a fluorescent microscope,

identified by a viable cell indicator, calcein AM. Many live cells could be seen throughout

the gel, indicating live cells could be delivered and encapsulated within a PEG/poly(KF)

gel.

This variety of tests indicate that the gel components and the process of gel

formation are not expected to be acutely toxic to cells. To confirm this hypothesis, more

extensive testing with a variety of cell types could be performed. As previously

mentioned, potential immunogenicity will also play a role in the survival of a tissue

engineered construct composed of a PEG/poly(KF) gel. In vitro as well as in vivo

experiments should be performed to assess the degree of expected immunogenicity for

human applications.
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TABLE 4-1

GELATION BEHAVIOR OF MACROMERS

Initial Initial Designation Gel Appearance % Precursor
[poly(x)] [PEG-Qa] Retained in Final

%PEG/%KF Gel
wt% (mM) wt% (mM)

PEG(Qa) poly(KF)

poly(KF), 33K

5 (1.4)

5 (1.4)

2.5 (0.7)

2.5 (0.7)

20 (12.5)

10 (6.3)

20 (12.5)

10 (6.3)

20/5

10/5

20/2.5

10/2.5

poly(K), 1K

5 (50) 20 (12.5)

poly(K), 25K

5 (2.0) 20 (12.5)

clear, colorless gel

clear gel with thin
opaque layer on

the top

clear gel with thin
opaque layer on

the top

no gel; viscous,
opaque solution

no gel; clear
solution

no gel; clear
viscous solution

91...........90

86...........60

84...........31
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TABLE 4-2

SWELLING AND NETWORK BEHAVIOR OF PEG-POLY(KF) GELS

Gel Composition Swelling Ratio, ca entanglement ratio, (D

20/5 2.1 1.2

20/2.5 1.5 2.5

10/5 1.8 0.93

10/2.5 - -
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TABLE 4-3

PROPERTIES OF PROTEINS USED IN DIFFUSION EXPERIMENTS

Property Lysozyme Carbonic Anhydrase BSA

M, (kilodaltons) 14.3 29 66

Dfreesolution reference (X 106 CM2/s) 1.123 1.024 0.5825

Kpgapparent ± S.E. 0.46±0.02 0.46±0.06 3.9±0.2

isoelectric point 11 5.9 4.7

Cl,, (mg/mL)±S.E. 0.850±0.004 1.808±0.009 2.06±0.02
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PEG-(glutaminamide)

TG

poly(Lys:Phe)

N

I
I

Figure 4-1. Transglutaminase (TG) crosslinking reaction with glutaminamide-

functionalized PEG and poly(Lysine:Phenylalanine) to form a network. Each poly(KF)

molecule is considered a crosslink node for the purposes of equilibrium swelling

calculations.
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Figure 4-2. Possible structured of nominally "Tetrahydroxy PEG" ("PEG-(OH) 4") from

Polysciences.
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Figure 4-3. Gel permeation chromatogram for synthesis starting material (PEG-OH)

(thick line) and pregel macromer (PEG-Qa) (thin line).

136

-----

- -- --- --------------------------------- .....

---- --------- -------- ------- -- --

I



U
i:

0

U
0

/1-I

X

CA

2

1.5

1

0.5

0 1
) 14.3 29 66 100

Molecular Weight (kD)

Figure 4-4. Diffusion coefficients for solutes of various molecular weights in 20/5 gel:

Lysozyme (14.3kD), Carbonic Anhydrase (29kD) and Bovine Serum Albumin (66kD).

Values shown include literature values for free diffusion (E) as well as measured values

from steady-state (0), time lag (o) and transient (x) analysis of equation (4-6).
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Figure 4-5. Effect of transglutaminase on cell attachment and growth. Data shown for

OpiM (o), 0.1OpiM (A), 0.30gM (o), 1.0gM (A) and 3.0gM (U) transglutaminase.
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5 KINETICS OF ENZYMATICALLY CROSSLINKED

POLY(ETHYLENE GLYCOL) GEL FORMATION

5.1 Gelation Kinetic Theory

The time required for a gelling system to undergo the transformation from a liquid

to a semi-solid state is a function of the criteria by which the gel point is defined as well

as the rate of crosslink formation and the functionality of the crosslinking moieties. A

useful convention defines the gel point as the transformation from viscous liquid to

elastic gel. This definition provides an observable measure of gelation while at the same

time implying a mathematical criteria for gel formation 1 . Figure 5-1 illustrates the

interplay of macromer functionality and crosslinking kinetics. It is readily apparent from

the representation in Figure 5-1 that not all ends must be crosslinked in order to achieve

gel formation. As the number of arms per molecule increases, the fraction of those arms

that must become crosslinked in order to produce a gel decreases. Thus macromer

structure sets the fractional conversion of end-groups that must be achieved to reach the

gel point. The kinetics of crosslink formation determine the rate at which this critical

conversion is approached.

Here the kinetics of gelation were explored by developing a predictive kinetic

model then testing this model against observed gelation times. This model (Section

5.1.1-2) predicts key parameters that will affect gelation times such as the initial

concentration of macromers, substrate kinetics and transglutaminase concentration.
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Kinetics of PEG-polylysine gels were studied in the conditions used in Chapter 4,

employing various concentrations of pre-gel macromers. Kinetics of PEG-PEG gels were

studied with two prototypical amine acceptor substrates (see Section 5.3) of differing

kinetics. PEG-PEG gelation kinetics were explored as a function of enzyme

concentration.

5.1.1 Structural Criteria

A mathematical description of the critical point of gelation is constructed around

the degree of branching found in the system at any given time. This is most naturally

formulated via probabilistic argumentsI. The formulation starts with a number of

necessary assumptions about certain aspects of the gel that would be extremely difficult

to measure. We assume no loops (i.e. polymer unit connected to itself through a small

number of chains) and no entanglements that would act as virtual crosslinks. Consider

the present system of PEG-GlnnGln and PEG-LysnLys, where n Gin and nLys are the number

average functionality of glutamines and lysines, respectively. The probability of any

particular glutamine residue being covalently linked to a PEG-LysnLys molecule is given

by the fractional conversion to -(I-glutaminyl)-lysine for glutamine, XGln, assuming

equal reactivity of all glutamine residues. To find the expected number of additional

PEG-GlnnGln molecules connected to this PEG-LysnLys molecule, the fractional

conversion of lysine, XLys must be multiplied by the number of opportunities for

branching, (nLys- 1). Therefore the expected number of PEG-GlnnGln molecules connected

to any particular glutamine residue via PEG-LySnLys is given by,
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x2In (n L s )
o = XGIfnXLys(nLys - 1) = GfLys (5-1)

rG In/ Lys

where rLys/Gn is defined as the ratio of lysine residues to glutamine residues initially

present.

As the reaction proceeds, PEG molecules are linked together to form chains with

varying amounts of branching. The value of a defined above can be found to assess the

likelihood that a repeat unit (PEG-Gln--Lys-PEG-Lys--Gln-PEG) will be completed. The

expected number ((D) of PEG-GlnnGln molecules connected via a PEG-LysnLys molecule to

another PEG-GlnnGln molecule is given by the product of a and the number of

opportunities for branching, (nLys- 1), or,

Xi (ny -1)(n 1)

(Y.(nG~n - - G In/ Lys(52

When (J exceeds unity, infinite extension of network chains become possible. Thus the

critical condition for gelation based on Dc = 1 in terms of XGn can be expressed as,

X Gln~c rG]ln/Lys (53)
X ~ l n c - ( n L .Y , - 1 ) ( n G l n -1( 3
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Of course the above treatment is equally valid if the roles of glutamine and lysine are

reversed. But this is only true of the structural requirements for gelation. When kinetics

are considered to derive the time required to reach XGln,c, differences in concentrations of

glutamines and lysines are significant.

5.1.2 Kinetic Criteria

In order to predict the time at which gelation will occur, it is necessary to define a

relationship between XGIfl,c and time through equations of the form, dXGIfl,c/dt = f([Lys],

[Gln], [TG], k1j). In this way the approach to the gel point and rate of crosslink

formation is governed by the underlying kinetics of transglutaminase activity (see

Chapter 3).

Transglutaminase-mediated amide formation between an amine donor and an

amine acceptor is known to follow a modified double-displacement mechanism2-4 as

discussed in Section 1.5.3. The reaction occurs in two steps. First, transglutaminase

reacts with the amine acceptor, forming a thioester bond at the active site with the release

of ammonia. The subsequent protonation of ammonia makes this step essentially

irreversible. In the second step, the amine donor displaces the amine acceptor from the

enzyme, forming an amide bond.

The first catalytic step is often rate limiting 4 . Therefore the kinetics of crosslink

formation can be written as (See Section 3.2.2.2),
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d[crosslink] d[Gln] kcat[TG]t[Gln] (54)
dt dt Kmapp± [G In]

where [TG]t is the total enzyme concentration. In the case where enzyme inactivation is

negligible over the time scale of gelation (see Section 3.2.2.3), this integrates to,

XGI[ Kmapp jI-ln(1 - XGn)

t = k mpp(55kcatK [T]
K m,app [TG]t

where [Gln]o is the initial concentration of amine acceptor. This equation defines the

time required to reach a particular conversion given the initial amine acceptor substrate

concentration, the amine acceptor substrate kinetic parameters and the concentration of

transglutaminase. Conditions under which enzyme inactivation can be neglected include

slightly acidic pH (~ 6.0) and large (~ 5.0gM) TG concentrations. The former was

chosen here to enable exploration of sub-5.0gM TG concentrations.

Substitution of the structural gelation criteria into the kinetic equation yields and

expression for the time to gelation (tc):

[G In] rGnLy-nM I rGln Lys

Kmapp (nLys -- 1)(n - 1) -ILyns -GlS 1)
t= k G (5-6)

Kmapp [TG]
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By inspection it can be seen that for substrates where K mapp deviates significantly

from the initial concentration of glutamine residues, [Gln]O, equation (5-6) may reduce to

a simpler form.

5.2 Materials and Methods

PEG Characterization. Branched poly(ethylene glycol) (bPEG) of the structure

shown in Figure 5-2, nominally 40kD and 8arms per molecule, was obtained from

Shearwater polymers. By size exclusion chromatography with refractive index and light

scattering detection, this bPEG was found to have a weight-average molecular weight of

38kD and a number average molecular weight of 33kD, giving a polydispersity of 1.16.

By elemental analysis of sulfur following tresylation (see Section 2.2) the molecular

weight per arm was calculated to be 4.4kD, implying a number-average of 7.76 arms per

molecule. Based on the method of synthesis (anionic, core-first), it is presumed that

much of the polydispersity is accounted for with the variation in the number of arms

rather than the length of each arm.

Peptide Synthesis. Peptidyl transglutaminase substrates were synthesized on an

automated peptide synthesizer as described in Appendix A2.

PEG-Peptide Coupling. Amine acceptor substrates were covalently linked to

bPEG by tresyl chemistry, discussed in Section 2.2. Peptide G, H and I were coupled to

bPEG at pH7.5, and room temperature where coupling via the sulfhydryl group of

cysteine is favored.
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Amine donor substrates were covalently linked to bPEG via tresyl chemistry (see

Section 2.2) except for PEG-diamine (MW=3400) which was purchased from Shearwater

Polymers. bPEG-amine was synthesized in methanol at 40 0C in 2M ammonia. bPEG-

OBEA (oxy-bis(ethyl amine)) was synthesized with 0.50M OBEA at pH8.3 and 40C.

bPEG-Lys-NH2 was synthesized with 60mM Lys(E-BOC)-NH 2 at pH 8.0 and 40C. The

derivative was purified by dialysis (lOkD MWCO cassettes: Pierce) and lyophilized. The

BOC protecting group was removed with trifluoroacetic acid containing 5% water and

2% ethanedithiol as scavengers. Trifluoroacetic acid was removed by rotoevaporation.

The product was dissolved in water, purified by dialysis and lyophilized. bPEG-GCLKG

was synthesized with 60mM GCLKG at pH7.5 and at room temperature (22 0C).

Coupling via the cysteine sulfhydryl was confirmed by the retention of free primary

amines as detected by o-phthaldialdehyde (Appendix A7).

Characterization. Peptide-functionalized bPEG was characterized based on the

ratio of peptide to PEG by 'H-NMR. Calculations for number functionality were made

based on characterization of the bPEG starting material described above. Covalent

linkage via cysteine was verified by conservation of free primary amines as determined

by the o-phthaldialdehyde method (Appendix A7).

Kinetic Measurements. Kinetic measurements were made for each amine

acceptor peptide by monodansyl cadaverine coupling as described in Appendix A5.

Kinetic experiments were conducted at 5.0ptM TG, 37 0C in 8mM CaCl2, 80mM KCl

5mM Tris and 50mM 2-(N-morpholino)-ethane sulfonic acid (MES), pH6.0. Initial rate
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experiments (amine acceptor concentration: 5.0mM, 2.5mM, 1.67mM and 1.25mM) were

conducted such that no more than 10% of the substrate was depleted.

Gelation Time Measurements. In a typical experiment, 15ptL-20tL of a solution

containing 10mM of both PEG-linked substrates (acceptor and donor) in 100mM MES,

pH6.0 was mixed with an equal volume of enzyme at the desired concentration in a

microcentrifuge tube. These concentrations correspond to approximately 10 wt% PEG.

The mixture was brought to 37 0C in a constant temperature water bath. To initiate the

crosslinking reaction, calcium was added to 8mM from a 300mM stock solution.

Due to the limited amount of macromers available small gel volumes (30gL-

40[tL) were employed. With these limited volumes the most reproducible assessment of

gel formation was found to be by probing with a paper clip. Gelation was assess by a

combination of stirring and sweeping the solution up the sides of the microcentrifuge

tube. The time at which the mixture seized to the paper clip was taken as the gel point.

Gelation times were measured for transglutaminase concentrations of 2.0gM, 3.0gM and

5.0gM. All measurements were conducted in duplicate.

5.3 Transglutaminase Substrate Design

5.3.1 Amine Acceptors

Structure of the amine acceptor substrates is somewhat tightly regulated (for a

detailed discussion see Section 1.5.4). Glutamine residues are known to be the best

substrates, consistent with transglutaminase activity in vivo. In developing amine
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acceptor substrates for use as viable crosslink substrates on poly(ethylene glycol) (PEG)

macromers, small peptide substrates were designed based on known peptide substrate

activity (Table 1-2).

Table 5-1 lists the amine substrates used in this work along with the measured

kinetic constants associated with TG-mediated crosslinks of these substrates when

covalently linked to PEG. In the case of Peptide B, covalently linking substrates to PEG

was shown to have no significant effect on the kinetics of crosslinking as shown in

Section 3.3.

Peptides A and B were used in the initial feasibility studies of enzymatically

crosslinked PEG gels (see Chapter 4). Peptide A, glutaminamide, is the smallest known

substrate for which transglutaminase has significant activity. The C-terminal of

glutamine has been aminated to eliminate the negative charge of glutamine. Peptide B,

with similar activity to Peptide A, was patterned after the well-known TG11 substrate

ZQG (see Section 3.3 and Appendix A6).

Peptide C is a modification of Peptide B with the insertion of a leucine residue

adjacent to and on the carboxyl-side of the active glutamine residue. Based on literature

reports5 it was anticipated and confirmed that this configuration would give

approximately an order of magnitude higher kinetics than without the leucine residue.

Only a leucine addition was attempted, although other hydrophobic residues may have

yielded similar or faster kinetics 5.

Peptide D was an attempt to combine an amine acceptor substrate and an amine

donor substrate on the same molecule. By the known geometry of the active site 6 a
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glutamine and lysine on the same peptide would not be able to crosslink. While Peptide

D is an excellent amine acceptor substrate, it exhibited no measurable donor activity as

measured by a standard assay (Appendix A6). Non-activity of the lysine residue may be

explained by the secondary structure of Peptide D in solution. Only approximately 10%

of the lysine residues were reactive towards o-phthaldialdehyde (Appendix A7), a

fluorescent probe for primary amines. Therefore the lysyl amine may be shielded from

solution, possibly neutralized by the glycyl carboxylate, although self-crosslinking is

difficult to rule out experimentally and remains a possible explanation for non-reactivity.

The design of Peptides E-H was driven by a desire to incorporate collagenase-

sensitive peptidyl sequences into the gel backbone (see Chapter 6). The first peptide

synthesized in this sequence included a collagenase cleavage sequence, Gly-Pro-Leu-

Gly-Ile-Ala, along with the sequence of Peptide C to make Gly-Pro-Leu-Gly-Ile-Ala-

Gly-Gln-Leu-Gly. This peptide was cleavable by collagenase, but was not TG1 -active.

This was somewhat surprising given the success of Peptide C, but was not inconsistent

with the difficulties encountered with Peptide D. To overcome this difficulty it was

surmised that inclusion of a charged residue close to the glutamine residue may favorably

affect the accessibility by making the peptide more hydrophilic. With this in mind,

Peptide F was synthesized with the amine acceptor sequence (Gly-Gln-His-Ser-Gly)

inspired by published synthetic substrates7 , 8 based on the sequence surrounding an active

glutamine in N,N-dimethylcasein. Peptide F was found to posses activity both as a

collagenase substrate and as a TG 1 substrate (see Section 5.4). Peptide G is identical to

Peptide F, but with a cysteine inserted to facilitate linkage to PEG (see Section 2.2).
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Peptide H was designed as a collagenase-substrate-free control analog to Peptide G (see

Chapter 6).

5.3.2 Amine Donors

Achieving high amine donor activity is most important in maintaining maximum

substrate specificity relative to other chemical moieties that might be included for other

purposes such as cell adhesion or proliferation (see Section 1.4). High amine donor

activity is less important to gel formation than amine acceptor activity as the reaction of

transglutaminase with the acceptor is generally limiting (see Chapter 3).

Structure of the amine donor substrates is far less regulated than for the amine

acceptor substrates (for a detailed discussion see Section 1.5.4). The most significant

requirement is lack of branching for at least four carbon units, as in the structure of

lysine. In vivo lysine as well as other straight chain amines and polyamines are substrates

for transglutaminase. In Chapter 4 it was shown that poly(lysine:phenylalanine) would

act as an amine donor, while poly(lysine) was a poor substrate possibly due to excessive

charge density.

A number of different amine donor substrates were tested as potential amine

substrates. All species were measured for transglutaminase activity with the ZQG

coupling assay described in Appendix A6. Their kinetic values are listed in Table 2-2.

Although the kinetic values are useful for relative comparison of amine donor substrates,

under gelation conditions, addition of the amine acceptor substrate is generally limiting.

Therefore the relative kinetic rate constants predict how various amine donor substrates
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might compete with one another or with natural substrates found in vivo. This is an

important criteria for selection of amine acceptor substrate as gelation is to be carried out

in contact with body fluids. Clearly, the substrate GCLKG will be most selectively

incorporated into transglutaminase-mediated crosslinks.

5.4 Results and Discussion

Gelation times were measured in a variety of conditions to test the ability of

equation (5-6) to predict gelation times. Gelation times were measured for

PEG/poly(KF) gels explored in Chapter 4 by varying the relative amounts of the two

components. Concentrations were chosen to replicate those used in Chapter 4: 20/5, 10/5

and 20/2.5 wt% PEG-Qa / wt% poly(KF). Experiments with PEG/PEG gels focused on

variations in enzyme concentrations. For the PEG/PEG gels two amine acceptor

substrates with different kinetics were examined. PEG/PEG gels were formed with equal

amine acceptor and donor concentrations over a range of enzyme concentrations: 2.0 M,

3.0j tM and 5.0 iM.

5.4.1 PEG/poly(KF) Gels

For the case of PEG/poly(KF) gels explored in Chapter 4 the PEG-Qa macromers

were largely difunctional with a number average functionality of 2.06 (=nGfl). The

poly(KF) molecules had a much higher functionality (nLy,= 100). For reaction mixtures
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comprising 20/5, 10/5 and 20/2.5 wt% PEG-Qa / wt% poly(KF), XGlnc (5-3) was found to

be 0.23, 0.33 and 0.16, respectively.

Gels were formed at varying ratios of initial substrate concentrations as described

in Section 4.2 but with 8.2[tM TG. Gels of 20/2.5, 20/5 and 10/5 correspond to initial

ratios of lysine to glutamine (rLys/Gln CK,o/CQao) of 3, 6 and 12, respectively. Results are

shown in Figure 5-3. The model capture the positive correlation with increasing rLys/Giln,

however in all cases gelation times were somewhat longer than predicted by equation (5-

6). This may be due to assumptions made in formulating this model. Equation (5-6)

assumes no network imperfections such as loops that do not add to the network structure

which would tend to lengthen measured gelation times. Also implicit in this model is an

assumption of equal reactivity. However with such a large number of PEG ends per

polyKF (33, 17 and 8 for 20/2.5, 20/5 and 10/5 gels, respectively) it is likely that steric

effects will increase observed reaction times, especially for the 20/2.5 gel (rLys/Gln 3).

This may be manifested in a larger deviation from predictions for this gel.

5.4.2 PEG/PEG Gels

To test the correlation between equation (5-6) and gelation time measured by

experiment, two PEG-peptide amine acceptor substrates , bPEG-[Peptide G]nG and

bPEG-[Peptide H]fn of Table 2-1, and one bPEG-peptide amine donor substrate, bPEG-

[Peptide I]nI (Peptide I = GCLKG of Table 2-2), were selected as model gel systems. For

these particular polymers, nG and nH describe the number average functionality (nG1ln) for
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the respective derivative. Similarly, ni = nLys for bPEG-[Peptide I]"j. Values for these

parameters are summarized in Table 5-3 along with the calculated critical conversion, Xc,

for each amine acceptor substrate based on equation (5-3).

To predict gelation times from equation (5-6) it was necessary to measure the

kinetic parameters k, and Km,app for each amine acceptor substrate. Initial rates at a

constant enzyme concentration were measured at 37 0C and pH6.0 by the method detailed

in Appendix A5. Amine acceptor substrate concentrations were chosen to correspond to

concentrations used in gelation experiments below. Values for kcat and Kmapp were

regressed separately for each substrate, Peptide G and H, with equation (5-6) by

minimizing the sum of the squares of the deviation from the measured data. Double

reciprocal plots for substrate concentrations in the range to be used in gel formation are

shown in Figure 5-4 and 5-5 for bPEG-[Peptide G]nG and bPEG-[Peptide H]fnH,

respectively. Values for kcat were found to be similar, but the value of Kmapp for Peptide

G was found to be somewhat less than for Peptide H, possibly to enhanced binding to the

hydrophobic region absent in Peptide H. For peptide concentrations well below the

measured Km values, the relevant kinetic parameter becomes kcat/Kmapp, for Peptide G

and Peptide H, respectively.

For a given kcat, and Kmapp, rGln/Lys and [Gln]o equation (5-6) predicts gelation

times as a function of [TG]. For simplicity, gels were formed at stoichiometic levels of

amine acceptor and amine donor substrates, corresponding to a rGIn/Lys of unity. Gels

were formed at [Gln]o = 5mM, chosen to insure generous overlap of polymer chains and

thereby minimize the effect of self-termination.
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Figures 5-6 and 5-7 show predicted and measured gelation times for the two

macromer pairs examined. In both cases, the measured gelation rates come very close to

theory. Spreads in measured gelation rates may be attributed to imperfect initial mixing

or more likely due to difficulties in pin-pointing the gel point. As discussed in Section

4.3.2 and Appendix B, a number of counteracting deviations from the assumptions made

in Section 5.3.1 may influence the correlation of equation (5-6) and experiment.

Overlapping chains may cause virtual crosslinking, accelerating the observed gelation

time. Crosslinks that do not add to the network structure such as loops would tend to

delay the onset of gelation.

In contrast to the underprediction of this type of model for PEG/poly(KF) gels in

Section 5.4.1, equation (5-6) consistently overpredicts the time to gelation. As noted in

Section 5.4.1, steric hindrance around the poly(lysine) molecules may have violated the

equal-reactivity assumption. In the case of PEG-PEG gels studied here, the substrates are

more evenly distributed in space, perhaps validating the equal-reactivity assumption in

this case. This would explain the opposite directions of the model-deviations for

PEG/poly(lysine) and PEG/PEG gels.
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TABLE 5-1

AMINE ACCEPTOR SUBSTRATES

Peptide Composition Measured kineticsa

(mM-1 sec-1)

A Gln-NH 2  0.022

B Gly-Gln-Gly 0.020

C Gly-Gln-Leu-Gly 0.53

D Gly-Gln-Leu-Lys-Gly 0.27

E Gly-Pro-Leu-Gly-Ile-Ala-Gly-Gln-Leu-Gly not detectable

F Gly-Pro-Leu-Gly-Ile-Ala-Gly-Gln-His-Ser-Gly 0.75

G Gly-Cys-Pro-Leu-Gly-Ile-Ala-Gly-Gln-His-Ser-Gly 0.78

H Gly-Cys-Gly-Gln-His-Ser-Gly 0.59

a Kinetic measurements, given as kcat/Knapp were performed in 100mM Tris-Cl, pH7.4,

37 0C on poly(ethylene glycol)-linked peptide substrates (-1mM) by methods detailed in

Appendix A5.
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TABLE 5-2

AMINE DONOR SUBSTRATES

Species Structure Measured

kineticsa

PEG-diamine PEGb-(NH 2)2  0.090

bPEG-amine bPEG-NH 2  0.052

bPEG-OBEA bPEG-NH 2CH 2CH 20CH2CH2NH 2  0.31

bPEG-Lysinamide bPEG-NHCH(CH 2CH 2CH 2CH 2NH 2)C(O)NH 2  0.16

bPEG-[Peptide I] bPEG-Cys(Gly)-Leu-Lys-Glyc 8.6

a Kinetic measurements were performed in 100mM Tris-Cl, pH7.4, 37'C on

poly(ethylene glycol)-linked peptide substrates by methods detailed in Appendix A6.

Kinetic values in units of mM' sec-1.

b PEG-(NH 2)2 is aminated linear PEG (MW=3.4kD) from Shearwater Polymers.

C Attachment via the cysteine sulfhydryl (of GCLKG) was confirmed by conservation of

primary amine groups as compared to free peptide by o-phthaldialdehyde (see Appendix

A7).
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TABLE 5-3

SUBSTRATE-FUNCTIONALIZED PEG PROPERTIES

Species Gram Polymer Number of Functionalized Critical

Per Millimole Arms Per Moleculea Conversion

Peptide (Xc)b

bPEG-[Peptide G]nG 6.60 nG = 6.00 0.27

bPEG-[Peptide H]nH 7.64 nH = 4.71 0.31

bPEG-[Peptide I]n 9.48 nI = 3.67 --

a Number average value based on number average bPEG arm number (7.76) and coupling

efficiency expressed as gram polymer per millimole peptide (by 'H-NMR).

b Conversion based on glutamine conversion with bPEG-[Peptide I]nI at rGn/Lys = I by

equation 5-3.
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Figure 5-1. Determinants of gelation time.
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Figure 5-2. Nominal structure of branched poly(ethylene glycol) (bPEG). Polymer

properties are discussed in Section 5.1.
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Figure 5-3. Predicted (o) and experimentally measured (o) time required to reach the gel

point following enzyme addition as a function of the ratio of the initial concentration of

the glutaminyl substrate to lysyl substrate.
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Figure 5-4. Double reciprocal plot for bPEG-[Peptide G]nG. Chi-squared minimization

fit (line) to data (points) of equation 5-4 yields Km app = 7.6 mM; kcat = 0.86 sec-I mM-1.
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Figure 5-5. Double reciprocal plot for bPEG-[Peptide H]nH. Chi-squared minimization

fit (line) to data (points) of equation 5-4 yields Kmapp =11 mM; kcat = 0.95 sec-I mM-1 .
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Figure 5-6. Time to gelation for bPEG-[Peptide G]nlG / bPEG-[Peptide I],, gel. Points

(n=2) and standard deviation represent measured gelation times as compared to model

predictions (line) based on macromer structure and substrate kinetics (see text).
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Figure 5-7. Time to gelation for bPEG-[Peptide H]lH / bPEG-[Peptide I],, gel. Points

(n=2) and standard deviation represent measured gelation times as compared to model

predictions (line) based on macromer structure and substrate kinetics (see text).
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6 ENZYMATICALLY DEGRADABLE POLY(ETHYLENE

GLYCOL) GELS

6.1 Background

A degradable gel may be advantageous in applications where the cell scaffold is

to be temporary. Such a case might be found in skin1 or articular cartilage regeneration 2

where it is hoped that cells will remodel the defect by secreting and organizing new

extracellular matrix.

There are at least two methods of incorporating degradation sites into synthetic

cell scaffolds: with hydrolytically or enzymatically cleavable moieties. Poly -lactides and

-glycolides are common examples of the former, either by use of the polymer itself or by

incorporating short segments into other polymers such as PEG3 . However hydrolytically

sensitive units such as lactides cleave at a set rate based at body temperature and pH

which can be much more rapid than expected (hours versus days) due to the presence of

esterase activity in vivo. Enzymatically cleavable sites offer dual advantage of slowing

the rate of degradation and allowing cellular secretion of enzymes to control the rate of

enzymolysis.

6.2 Design

We have incorporated a collagenase-susceptible site into the transglutaminase

amine acceptor peptide between the point of PEG attachment and the active glutamine
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residue. A series of dual-activity (TG and collagenase) peptides (Peptides E, F and G of

Table 2-1) were designed based on published sequences of synthetic collagenase

substrates 4 as discussed in Section 5.3.1. By incorporation of a collagenase-susceptible

linkage into the network structure, this process of scaffold dissolution will be governed

by cellular secretion of collagenase, mimicking the natural turnover of extracellular

matrix.

In this study sequential TG-mediated crosslinking and collagenase-mediated

cleavage were studied both in the soluble form and in the gel state. It was demonstrated

in both cases that collagenase could act on the intended substrates even after they had

been covalently modified by transglutaminase-mediated crosslinking.

6.3 Materials and Methods

PEG Macromers. All PEG compounds used in this study are described in Section

5.2. bPEG refers to the 8arm, 40kD branched poly(ethylene glycol). Peptide substrate

kinetics and sequences are listed in Tables 5-1 and 5-2.

Collagenase. The collagenase used here (purified from Clostridium Histolyticum:

Worthington Biochemical Corporation) contains two collagenase fractions5 : A (1 05kD)

and B (57.4kD). Lyophilized collagenase was dissolved in phosphate buffered saline

(Gibco, Ca/Mg-free) with 1mM EDTA at pH7. 1. Aliquots of 1 00pL at 2.0 U/[L and

0.20 U/pL were stored at -70 0C until use. One unit is defined by the amount of

collagenase required to liberate one micromole of L-leucine equivalents from collagen in
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five hours at 37 0C and pH 7.56. Bacterial collagenase used here cuts between at the

leucine-glycine bond7 of Peptides E, F and G (Table 2-1), whereas human collagenase

cleaves at the glycine-isoleucine bond of these peptides.

Collagenase was used at 0.2U/gL in 50mM tricine at pH 7.1 with 10mM CaCl 2 at

37 0C for soluble peptide experiments. For gel dissolution experiments, 2.OU/pL

collagenase was added to an equal volume of gel along with 1.5 volumes of water.

Collagenase/TG Substrates. Peptides E, F and G were tested for transglutaminase

activity by the method detailed in Appendix A5 as discussed in Section 5.3.1. These

peptides were also tested for collagenase activity in 50mM tricine pH7.5, 0.2M sodium

chloride, 10mM calcium chloride and 0.20U/gL collagenase. Cleavage was monitored

by reversed phase high performance liquid chromatography on an analytical C18 column

with a mobile phase of 18% acetonitrile, 82% water and 0.1% trifluoroacetic acid at

0.8mL/min. Detection was at 215nm.

Soluble Crosslinking Followed by Collagenase Cleavage. Crosslinking of

Peptide G to monodansyl cadaverine (mdc) was monitored by methods in Appendix A5.

The resulting solution of Peptide G/mdc conjugate was exposed to collagenase as

described above. This reaction was also monitored by size exclusion chromatography

methods described in Appendix A5.

Collagenase Gel Dissolution. Gels (20pL) were formed in 1.OM Tris, pH7.1 at 20

wt% PEG with PEG-diamine (Table 2-2) for both bPEG-[Peptide G] and bPEG-[Peptide

H] as a collagenase-stable control. Collagenase (20pL of 2.OU/gL), water (30pL) and a
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solution of 1% dextran blue (5tL) was added to the top of the gel to visualize the

otherwise invisible interface. Gels were incubated for 24 hours at 37 0 C and then assessed

for collagenase stability.

Cell Attachment and Growth. Balb/c 3T3 cells were maintained in a culture

media of high glucose Dulbecco's Modified Eagle Medium supplemented with 200mM

L-glutamine, 10% calf serum and 1% penicillin / streptomycin to inhibit bacterial growth

(all products from Gibco). Gels were formed in duplicate in 96-well plates by the method

described in Section 5.2. Cells were seeded (15,000 cells/well) in serum-containing cell

culture media (above) on top of gels four hours after gelation was initiated. The same

number of cells were seeded into other wells (tissue culture plastic) for comparison.

Pictures were taken at 1 day and 3 days to assess attachment and growth.

6.4 Results

In Section 5.3.1 a number of collagenase-sensitive peptides were described.

These peptides were designed such that a collagenase-cleavable region was flanked by a

TG-substrate and a site for PEG attachment. Therefore a TG-crosslinked PEG gel

employing these peptides would be dissolved by collagenase activity. For use as

temporary crosslinks, it is crucial that collagenase be able to recognize and cleave these

peptides after the peptide has been covalently modified by transglutaminase during

crosslink formation. To demonstrate that collagenase sequence did not depend on the

presence of a free glutamine residue, collagenase-mediated cleavage was monitored after
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transglutaminase-mediated crosslinking. The crosslinking reaction was performed on

bPEG-[Peptide G] with monodansyl cadaverine as the amine donor under conditions

described in Appendix A5. This soluble crosslinking reaction was monitored to enable

quantification of the products. This demonstrated that Peptide G was transglutaminase-

active. This product was then exposed to collagenase and monitored for enzymolysis by

the same size exclusion chromatography described in Appendix A5. Transglutaminase

coupling followed by collagenase-mediated cleavage is illustrated in Figure 6-1. This

two step process models the desired crosslinking and subsequent chain cleavage desired

in temporary cell scaffolds.

Gels formed from bPEG-[Peptide G] macromers via TG-mediated crosslinking

were also susceptible to collagenase degradation. Conversely, collagenase did not

degrade a gel that lacked the collagenase cleavage sequence, formed with bPEG-[Peptide

H]. Additionally, gels containing bPEG-[Peptide G] were found to be stable to a

collagenase-free control solution. The observed selective dissolution of Peptide G-

containing gels is further evidence that the collagenase substrate remains active even

when crosslinked into a gel network.

It is anticipated that cells encapsulated within these gels will secrete collagenase

as they attempt to remodel their surroundings. Providing collagenase-susceptible

cleavage sites on the hydrogel backbone creates a somewhat biomemetic gel in that

encapsulated cells will be able to cleave the hydrogel network as they lay down native

extracellular matrix. This effect could be modulated if a particular cell type was found to

degrade the gel faster or slower than desired. Gel dissolution could easily be retarded by
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employing a kinetically slower substrate. The rate of dissolution could be enhanced by

improving the substrate kinetics or by linking multiple cleavage sites. Some advantage

might also be gained by incorporating both rapid hydrolytically cleavable sites with

collagenase-cleavable sites.

6.5 Cellular Interactions

As cells are to be encapsulated within these PEG gels, it is of interest to establish

how cells might react to contact with these materials. To investigate cellular interactions

with these gels, cells were seed on surfaced of pre-formed gels. Gels used in Section

5.4.2 (bPEG-[Peptide G]/bPEG-[Peptide I] and bPEG-[Peptide H]/bPEG-[Peptide I])

were used as a model. Peptide G has a collagenase-cleavable site located between the

point of bPEG attachment and the TG substrate. Peptides H and I are not substrates for

collagenase. This may be significant as balb/c 3T3 cells are known to synthesize and

secrete transglutaminase 8 .

Cells were seeded on gels containing Peptides G and I, gels containing Peptides H

and I, and tissue culture polystyrene as a control. Cells were examined with phase-

contrast optical microscopy after 1 day and 3 days to assess cell attachment and growth.

Results are shown in Figure 6-2. Cells were not visibly spread on either PEG gel at day

1, although the observed morphology is not inconsistent with observed behavior on other

PEG gels. At day 3 there is a clear difference between the gel containing Peptides G and

I, and the gel containing Peptides H and I. This difference may be due to a higher total

mass fraction of peptide presentation in the G/l combination based on the respective
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peptide formula weights of Peptide G (FW=1096D), Peptide H (FW=644D) and Peptide I

(FW=477D). This may allow a greater degree of serum protein adsorption, enabling

greater cell attachment. The observed difference may also be due to the function of

Peptide G as a collagenase substrate. Cells may be burrowing into the surface of the gel

to some degree, releasing PEG-peptide products that might have some effect on cell

behavior.

It is encouraging that cells are able to proliferate, at least on the G/I Peptide

combination. Incorporation of specific adhesion sites would likely enhance cell adhesion

for both peptide-substrate combinations used here. Examination of encapsulated cell

behavior may also give further insight as to how cells might perform when encapsulated

within an enzymatically crosslinked PEG gel.
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Figure 6-1. Demonstration of transglutaminase-mediated crosslinking followed by

collagenase-mediated cleavage of PEG-bound peptide. In gel formation both substrates

are attached to bPEG as shown in the inset.
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Figure 6-2. Balb/c 3T3 cells seeded on gels of bPEG-[Peptide G] / bPEG-[Peptide I]

(G/I) and bPEG-[Peptide H]/bPEG-[Peptide I] (H/I). Same number of cells seeded on

tissue culture polystyrene (PS) for reference. Images taken 1 day and 3 days after

seeding.
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7 ALTERNATIVE CROSSLINKING METHODS

7.1 Overview

There are certainly many ways to form crosslinks in an in vivo setting, some of

which have been mentioned in Section 1.4. In the developmental stage of this thesis a

number of different crosslinking chemistries were explored as viable candidates.

Ultimately, transglutaminase-mediated crosslinking was chosen to be implemented based

a combination of a number of criteria, including biocompatibility, ease of synthesis,

kinetic control and substrate specificity (see Section 1.4).

This chapter is included as a survey of alternative crosslinking procedures both as

a historical perspective on the development of enzymatically crosslinked hydrogels and

as a reference to those who may wish to pursue similar technologies.

7.2 Ionic Association: Alginate-Poly(Ethylene Glycol) Copolymers

Alginate is a natural polysaccharide isolated from brown algae. It is a linear

copolymer of f-D-mannuronic acid (M) and u-L-guluronic acid (G) with extended

repeats of each residue. Extended G regions are known to form interchain chelates with

divalent cations, especially calciuml. Interchain association of water-soluble polymer

chains causes alginate solutions to gel.

Alginate gels continue to be used for cell encapsulation 2 despite issues associated

with immunogenicity 3 that are likely due to residual impurities 4. Immunogenicity can
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result in fibrous encapsulation of the implanted gel or device that will severely limit

transport of essential biological molecules 5.

To minimize possible adverse biological effects of alginate, a gel system was

designed employing alginate only as a crosslinker and PEG as the water-soluble polymer

that would bridge the crosslinks. The goal was then to attach short alginate segments to

PEG chains to produce a more biocompatible gel. Short alginate segments from partially

digested alginate were to be used in preliminary experiments. Concurrently synthetic

poly guluronic acid, the portion of alginate responsible for gelation, was to be synthesized

from an activated guluronate (Figure 7-1) to be polymerized in a trichloroacetimidate-

mediated reaction 6. This chemistry was chosen to insure 1,2-cis linkages essential for

calcium chelation. Synthetic poly guluronic acid would maximize the strength of the

crosslink while also maximizing the ratio of PEG to poly guluronic acid. However before

this strategy could be advanced other crosslinking methods came to light that promised to

be far less synthetically intensive.

7.3 Hydrophobic Association: P-Amyloid-Terminated PEG

Hydrophobic peptides were also explored as potential moieties for crosslinking

through self-association. In particular a segment of synthetic P-amyloid

(LMVGGVVIA) 7 was available 8. By attaching this hydrophobic oligopeptide to PEG

ends it was reasoned that self-association would drive gelation.
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The f-amyloid fragment was coupled to both ends of a linear PEG (MW==3.4kD)

from the ditresylate (Shearwater Polymers) (see Section 2.2). A solution of PEG-

(LMVGGVVIA) 2 in hexafluoroisopropanol was injected into water to induce aggregation.

The resulting solution became somewhat cloudy, but gelation was not observed. It is

likely that self-association of the peptide oligomer resulted in gels of only very small

dimensions. Images taken by transmission electron microscopy were consistent with this

hypothesis (Figure 7-2). It is not unsurprising that gels were difficult to form as PEG

chains linked to other amyloid fragments have shown altered aggregation properties as

compared to their non-PEG-linked form9.

7.4 Disulfide Bond Formation: Cysteine-Terminated PEG

The use of disulfide bonds as PEG crosslinks came about serendipitously during

the development of alternative methods in ionic-bond-mediated crosslinking (see Section

6.1). A molecular configuration in which a sulfhydryl and a primary amine are separated

by two methylene units was identified as a particular strong candidate for tetradentate

(two-molecule) chelating of multivalent cations 10, 11. This sulfhydryl/amine configuration

is present in the structure of cysteine, a naturally occurring amino acid, simplifying the

synthesis and offering the possibility of acceptable biocompatibility. The envisioned

design involved functionalizing multi-arm PEG with cysteine via the carboxylic group.

Gelation could then be induced in a PEG-cysteine containing cell suspension by the

addition of cations
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A number of candidate cations were screened for cell toxicity in balb/c 3T3

cultures, maintained in a culture media of high glucose Dulbecco's Modified Eagle

Medium supplemented with 200mM L-glutamine, 10% calf serum and 1%

penicillin/streptomycin to inhibit bacterial growth (all products from Gibco). Cells were

seeded in triplicate in the presence of 1mM or 10mM candidate cation or with no

additional cations (control). Cell numbers were counted after 72 hours. These

concentrations (1.0mM- 10mM) were thought to be a useful range for gelation as 10mM

in PEG-ends, requiring 5mM ions, would correspond to a 5% PEG gel (at 5kD/arm). Cell

numbers were compared with control conditions (Figure 7-3). In all cases the presence of

these cations at 1mM or greater had a negative effect on the cell number after 3 days. The

smallest effect was observed in the case of 1.0mM Fe(III) Therefore iron(III) was chosen

as the best ion candidate.

Aminated PEG of the same 'nominally tetrafunctional' structure as was used in

Section 4.2 (Polysciences) was used here as a starting material. L-cysteine (N-BOC,S-

trityl-L-cysteine, Bachem) was attached to aminated PEG in methylene chloride with 1,3-

dicyclohexyl-carbodiimide (Aldrich) and 4-dimethylaminopyridine (Aldrich) as a catalyst.

The product was deprotected in 2.5% ethanedithiol (Aldrich) and 5% water in

trifluoroacetic acid (J.T. Baker).

Gels were formed by the addition of ferric chloride (FeCl3) to a solution of 15%

PEG-Cys4. Stoichiometric amounts (15mM) of FeCl3 were required for gel formation.

Attempts to form gels at PEG concentrations less than approximately 10% formed only

viscous solutions, suggesting insufficient overlap of PEG chains.
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The method of gel formation for PEG-Cys 4 appeared to be through disulfide bond

formation rather than simple cross-chelation of Fe(III) ions. This is based on the

observation that upon FeCl 3 the PEG-Cys 4 solution would turn blue in less than a minute

indicating chelation of the iron atom. However within one to two minutes this color

would subside, possibly reflecting the release of iron from the cysteine complex. This

release was not accompanied by dissolution of the gel. It is now hypothesized that a

transition from Fe(III) to Fe(II) induced reduction of two cysteines to a cystine,

covalently linking the PEG chains.

As the amount of iron required for gelation exceed the toxic levels approximated

by Figure 7-3, this method was set aside in favor of the enzymatic crosslinking approach.

Further work with different chelator/ion combinations may yield a more biocompatible gel

that is ionically crosslinked or similarly stabilized via disulfide bonds.
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Figure 7-2. Transmission electron micrograph of PEG-(LMVGGVVIA) 2 aggregates.
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8 CONCLUSIONS

8.1 Summary

This work has focused on engineering the gelation process in a polymer system

designed for cell encapsulation or other in vivo applications. Gelation is achieved by

crosslinking an aqueous solution of a multi-functional form of poly(ethylene glycol)

(PEG), creating a continuous network that contains greater than 90% water. PEG is in

many ways an ideal biopolymer because of its hydrophilicity, low protein-binding and

non-immunogenicity. Following an initial screening of potential crosslinking chemistries,

enzymatic crosslinking was identified as the optimal strategy for this system based on

kinetic control, crosslink substrate specificity, biocompatibility and ease of synthesis.

Enzymatic crosslinking is achieved by the action of a well-studied biological

enzyme, transglutaminase (TG). TG is a family of enzymes that catalyze the formation

of an amide linkage between the y-carboxamide group of certain peptidyl glutamine

residues and primary amines such as lysine. These calcium-dependent enzymes are

ubiquitous throughout the body, forming crosslinks in skin, liver and blood clots. This

system could be adapted to human therapeutic use by employing a human derived or

recombinant TG, however for this study a commercially available TG was used for

simplicity.

This work on enzymatically crosslinked PEG gels was constructed around a

strong core development of the requisite technologies. An extended study of tresyl-
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mediated synthesis was undertaken to insure maximal conversions for peptide-

functionalized PEG conjugates. Additionally the crosslinking enzyme, transglutaminase,

was extensively characterized to develop a fundamental understanding of the factors

affecting kinetics and stability of this biological crosslinker.

The enzymatic crosslinking process was developed systematically by identifying

the necessary design parameters to effectively control kinetics and enzyme specificity.

The kinetics of TG-mediated crosslinking are most strongly controlled by the structure of

the amine acceptor (glutamine) substrate. A number of TG-active peptidyl amine

acceptor substrates were identified that varied in size and crosslinking kinetics. Amine

donor substrates play a lesser role in crosslinking kinetics, yet still must be able to

compete effectively for other biological amines that might be present in an in vivo

application. A commercially available one-to-one copolymer of lysine and phenylalanine

was the first multifunctional amine donor substrate to be used. Other various PEG-linked

amine donor substrates were ultimately identified, with one peptidyl (5 amino acid)

substrate exhibiting significantly faster kinetics than others examined.

Gel studies fell naturally into two categories: those with gels formed from PEG-

linked amine acceptor substrates and poly(lysine:phenylalanine) (PEG/poly(KF) gels)

and gels where both substrates were PEG-linked (PEG/PEG gels). Studies on

PEG/poly(KF) gels focused on structural properties as determined by diffusional and

swelling characteristics as well as early kinetic models and cellular compatibility.

PEG/PEG gel studies focused on amine substrate development, extension of kinetic

models as well as the implementation of degradable PEG/PEG gels.
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PEG/PEG gels were engineered to be degradable in a biological milieu. This was

achieved by the incorporation of collagenase-cleavable peptide moieties between the TG-

active glutamine residue and the site of PEG attachment. This method of incorporation of

degradation sites susceptible to enzymolysis is thought to be superior to degradation by

hydrolysis because the latter strategy is complicated by the presence of esterases in vivo.

Preliminary cell culture work indicates that the gel components and gelation

process is not acutely toxic to cells. This was not unexpected based on the benign

biological interactions characteristic of PEG and ubiquitous presence of transglutaminase

in nearly all tissues in the body.

8.2 Future Work

Enzymatically crosslinked PEG gels were designed as an enabling technology for

tissue engineering. The gel developed here is a platform on which may be built any

number of cell scaffolds tailored to specific applications. The ultimate cell scaffold is

envisioned as a multi-functionalized gel, with the ability to influence cells to perform

(attach, migrate, divide and differentiate) as appropriate for a particular tissue site. To

achieve this goal the gel as it has been described here must be functionalized with

bioactive moieties that can illicit the desired function. Addition of these types of

functionalities might be incorporated through macromers containing both crosslinkable

moieties as well as the function of interest (Figure 8-1).

The ability to engineer cellular manipulation through biomaterials is predicated on

a deep understanding cell biology and cell function. The work presented here included a
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number of preliminary experiments indicating that encapsulating 3T3 fibroblasts in

enzymatically crosslinked PEG hydrogels would not be harmful to cells. This work must

be expanded to relevant cell types, possibly cartilage cells (chondrocytes) or liver cells

(hepatocytes). Extended cell culture must also be demonstrated. Ultimately, knowledge

gained from in vitro experiments must be applied to the development of in vivo methods

in the appropriate animal model.

Articular cartilage regeneration may be a useful model in which to demonstrate the

application of enzymatically crosslinked PEG hydrogels. This topic has been the focus

of much recent researchl. Articular cartilage is an attractive model by virtue of the fact

that native tissue is two-dimensional, a geometry easily serviceable for nutrient delivery

in an in vitro/ex vivo system. Additionally the metabolic requirements for chondrocytes

is relatively low, a necessity in the avascular environment of the chondrocyte.

PEG gels may find wider applicability with use in conjunction with other

biomaterials. The materials properties of PEG hydrogels might limit their use to soft

tissue application. Therefore enzymatically crosslinked PEG hydrogels might be used in

conjunction with an open-mesh structural polymer such as polylactide-co-glycolide

(PLG) formulations. In this type of biomaterial composite, the PEG hydrogel would

address the need of the cell on a molecular level (nm-gm) while the PLG polymer would

provide for structural integrity on larger length scales (gm-mm).
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APPENDIX A:

Al Poly(Ethylene Glycol) Tresylation

A1.1 Background

The following procedure is general for converting hydroxyl groups to a

trifluoroethanesulfonyl functionalityl. Further details are given in Section 2.2.

In general it is easiest to scale a tresylation to an integral number of tresyl chloride

ampules (I g or 5g), as unused amounts should not be stored for later use unless

extraordinary efforts are made to keep tresyl chloride dry and oxygen-free.

A1.2 Materials

0 Hydroxyl-terminated poly(ethylene glycol)

0 2x (relative to PEG ends) molar amount of tresyl chloride (2,2,2-

trifluoroethanesulfonyl chloride) (Aldrich).

0 10% molar excess (relative to TrCl) of freshly distilled triethylamine

* 4A molecular sieves

" Dry methylene chloride (stored over molecular sieves)

" Distillation apparatus

" Argon source
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A1.3 Procedure

Day Before

0. Calculate amount of all materials needed.

1. Distill triethylamine - discard first and last 10% of distillation.

2. Add about 1 g 4A molecular sieves per 1 OmL triethylamine.

3. Seal well and store at 40C.

4. In sealable flask (about 1 OmL flask volume per gram of PEG to be used), add 1 g

4A molecular sieves per 1 g PEG to be used.

5. Rinse with an equal volume (approx.) of methylene chloride (MeCl2) to remove

residual sieve 'dust'.

6. Add pre-calculated amount of PEG.

7. Add about 5mL dry MeCl 2 per gram of PEG.

8. Swish until dissolved.

9. Store at 40C overnight.

Day of Tresylation

1. Decant PEG solution into reaction flask that will accept rubber septum.

2. Wash sieves with small amount of dry MeCl2, adding wash to reaction flask.

3. Add stir bar and set stirring.

4. Add pre-distilled triethylamine.

5. Dropwise, slowly add TrCl.
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6. Flush with Argon and seal, or maintain slow stream of Argon through reaction

flask.

7. Leave stirring for 2 hours.

8. Reduce on a rotovap with a liquid nitrogen trap.

9. To a 500mL centrifuge bottle with 200mL anhydrous methanol (dry MeOH) with

400gL concentrated HCl (3 7%), add reaction contents.

10. Wash reaction flash with a portion of dry MeOH and add to centrifuge bottle.

11. Bring total solvent volume to about 400mL with MeOH.

12. Chill with liquid nitrogen to precipitate PEG.

13. Spin to settle PEG.

14. Pour off supernatent.

15. Redissolve in about 400ml dry MeOH.

16. Reprecipitate, spin, dispose of supernatent.

17. Redissolve in a minimum of dry MeOH.

18. Transfer to multiple 5mL vials or other appropriate small aliquots.

19. Freeze in -70 0 C freezer.

20. Lyophilize to constant weight with liquid nitrogen trap.

21. Store PEG-Tr in -70'C freezer.
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A2 Peptide Synthesis

A2.1 Background

Peptide synthesis techniques have been well documented in the literature 2.

Currently, two general step-wise synthesis strategies are widely used for multi-amino

acid (>2-3) syntheses. These two techniques are classified according to the method by

which protection of the a-amino group is held independent of the protection of side chain

moieties during the synthesis steps as shown in Figure Al. The first method, t-BOC (N-

tert-butoxycarbonyl), relies on two levels of acid lability. The t-BOC group (protecting

the a-amine) is cleavable under relatively weakly acidic conditions and the side chain

groups are designed to be less acid labile, requiring treatment with strong acids such as

hydrofluoric acid. An alternative method, Fmoc (N-9-Fluorenylmethoxylcarbonyl),

employs both protecting groups which are base labile and those which are acid labile, a

so-called orthogonal protection scheme. The Fmoc group (protecting the X-amine) is

cleavable under basic conditions, while the side chain protecting groups require exposure

to acid. Here, the Fmoc synthesis has been employed both due to the obvious safety

advantages of avoiding HF as well as the reduced side reactions that can be accumulated

with successive acid exposure in the t-BOC method.

A2.2 Procedure

All peptides used here were synthesized on a Rainin PS2000 Peptide Synthesizer

by standard Fmoc methods in dimethylformamide (DMF). Reagents for the peptide
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synthesizer were purchased from Rainin. Peptide resin (Wang) and all Fmoc-amino acids

were purchased from American Peptide (Fmoc-Glycine, Fmoc-Proline, Fmoc-Leucine,

Fmoc-Isoleucine, Fmoc-Alanine, Fmoc-Cysteine(trityl), Fmoc-Serine(t-butyl) and Fmoc-

Histidine(trityl) with the exception of Fmoc-Glutamine(4-methyltrityl) from Bachem.

Redistilled piperidine from Aldrich was used at a concentration of 20% (v/v) in DMF as

the Fmoc deprotectant.

Peptides used in this study were synthesized in a 0.5mmole batches with

Glycine-Wang resin from American Peptide. Synthesis proceeded from the carboxyl-

terminal of the peptide to the N-terminal. The synthesis started with the C-terminal N-

protected amino acid attached to the resin (Wang-glycine). In the first step of each cycle

the N-terminal Fmoc was removed with 20% (v/v) piperidine in DMF. For the addition

of each amino acid, the resin was exposed to 1.5mmole of Fmoc amino acid and 1.5mmole

HTBU (2-(1 H-Benzotriazol- 1 -yl)- 1,1,3,3-tetramethyluronium hexafluorophosphate)

(Peptide Technologies) in approximately 20mL of 0.40M N-methylmorpholine in DMF

(Peptide Technologies). This cycle of Fmoc deprotection and amino acid addition was

repeated for each residue. In the final cycle an Fmoc group was removed from the N-

terminal residue.

The peptide was cleaved from the resin and deprotected with aliquots (1 OOmL

total) of 2.5% ethanedithiol (Aldrich) and 5% water in trifluoroacetic acid (TFA) (J.T.

Baker), added over the course of one hour. Excess TFA was removed by rotary

evaporation. The peptide was precipitated by pouring into diethyl ether. The

precipitate was isolated by centrifugation, redissolved in a minimum of TFA and
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reprecipitated three times. The final product was washed with diethyl ether. Residual

amounts of ether was removed in vacuo. Purity was confirmed by reverse phase high

performance chromatography, often on a C-18 analytical column with a gradient from

0.1% trifluoroacetic acid in water to 0.1% trifluoroacetic acid in acetonitrile.
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A3 Transglutaminase Storage

Handling and process procedures using transglutaminase must be designed to

maintain maximal activity. Loss of transglutaminase activity is largely dependent on

exposure to calcium 3. Upon exposure to calcium transglutaminase partitions into high

molecular weight aggregates that cannot be dispersed even in boiling sodium

dodecylsulfate 3 (Section 3.2). Transglutaminase is protected and kept in the catalytic

'off state by storage in small amounts, typically 1mM, of ethylenediaminotertraacetic

acid (EDTA), a divalent ion chelator with a particularly strong affinity for calcium.

In the absence of calcium, the enzyme is largely stable to temperature and

moderate pH changes around neutral. To insure maximal activity, all manipulations prior

to use were performed in a 40C cold room. The pH of the storage solution (7.1-7.4)

depended on the particular application, buffered by phosphate (as calcium and

magnesium-free PBS, Ix or 0.5x) or 10mM TrisHCl with 160mM potassium chloride.

Although Tris possesses a primary amine, steric hindrance prevents involvement in

transglutaminase-mediated reactions4 . Tris is the most common buffer used in published

work on transglutaminase activity.

Transglutaminase (Guinea Pig Liver Transglutaminase) was purchased from Sigma

in lyophilized form, generally in the 2.OU size where the international unit for

transglutaminase is defined by the assay described in Appendix A4. The

transglutaminase powder is dissolved in the appropriate amount of storage buffer based
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on the assay given for each lot. Transglutaminase is stored in aliquots of 20pL usually at

a concentration of 0.2U/20ptL or 0.1U/20gL. Once aliquotted, the enzyme is stored at

-70 0C until use.
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A4 Colorimetric Transglutaminase Activity Assay

There exist a number of activity assays for transglutaminases, as detailed in

Section 2.3.2. The colorimetric assay by quantification of hydroxylamine incorporation

into an amine acceptor5 , benzyloxycarbonyl-L-glutaminyl-glyine (ZQG), remains the

easiest to implement and is readily scaleable to a large number of simultaneous

measurements with the use of microtiter plates. In fact this assay defines one 'unit' of

transglutaminase as the amount required to produce one micromole of y-glutaminyl-

hydroxylamine from ZQG per minute at 37 0C and pH6.0. The assay could certainly be

run under different conditions, keeping in mind issues of self-reactivity (see Section

3.4.1). Quantification of activity is by absorbance from a complex between the

catalytically formed hydroxylamide and iron III under acidic conditions.

A4.1 Materials

" Tris-acetic acid buffer pH6.0, IM in Tris

" ZQG (Benzyloxycarbonyl-L-glutaminyl-glyine) (Sigma)

" O.4M and 5M sodium hydroxide

" 2M Hydroxylamine hydrochloride (Aldrich)

0 O.1M Calcium chloride

0 0.02M EDTA (ethylenediaminetetraacetic acid)

* 5% (w/v) ferric chloride in 0. 1M hydrochloric acid

* 15% (w/v) trichloroacetic acid in water
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0 2.5M hydrochloric acid

A4.2 Procedure

A 0.2M ZQG (FW=337.5) reagent was made by dissolving ZQG in a minimum

amount of 0.4M sodium hydroxide, then adjusting to the final volume at pH 6.0 with

2.5M HCl and water.

A ferric chloride reagent was prepared by mixing equal parts 5% (w/v) ferric

chloride in 0.1M hydrochloric acid, 15% (w/v) trichloroacetic acid in water and 2.5M

hydrochloric acid.

Just prior to the assay, 1.OmL of Tris-acetate buffer was mixed with 0.75mL of

ZQG solution, 0.25mL calcium chloride solution, 0.25mL hydroxylamine solution and

0.25mL EDTA solution. This solution was brought to a final volume of 4.OmL and pH

6.0 with 5M NaOH and water. For each assay a portion of this mixture is warmed to

37 0C. A solution of unknown enzyme concentration is added to initiate the reaction,

typically 1:4 enzyme solution to assay solution. At 10 minutes the reaction is stopped

by the addition of an equal volume of the ferric chloride solution. Activity is measured at

525nm where the product gives E = 340 M-' cm-'.
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A5 SEC PEG/Monodansyl Cadaverine Assay

In measuring the activity of PEG-bound substrates, it is useful to exploit the size

differences of the PEG-bound and non-bound substrates. With size exclusion

chromatographic techniques, the amount of PEG-bound chromophores and non-bound

chromophores can be quantified throughout the progress of a TG-mediated reaction.

For quantification of the kinetics of PEG-bound amine acceptors, a small

chromaphore, monodansyl cadaverine (A247) is used as the amine donor. As the reaction

progresses, the monodansyl cadaverine will migrate from a peak at long elution times

(small molecules) to the PEG-peptide peak at short elution times.

A5.1 Materials

" Monodansyl cadaverine (Aldrich)

" Tris base or MES (2-[N-morpholino]-ethanesulfonic acid) (Sigma)

* Amine acceptor substrate (unknown to be measured)

* Potassium phosphate, mono- and di-basic

* Calcium chloride

* Trifluoroacetic acid

* TSK G4000PW size exclusion column

* HPLC with UV/vis detection
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A5.3 Procedure

A stock solution was made with 10mM calcium chloride, 10mM monodansyl

cadaverine and 100mM of the appropriate buffer: MES for pH6.0 and Tris for pH>7.

This solution was stored in 0. 1mL aliquots at -70 0C until use.

For each assay a known weight of the glutamine substrate ( 2mM in glutamine)

was dissolved in 80pL of the monodansyl cadaverine stock solution and brought to the

appropriate temperature in a constant temperature water bath. At time zero, a 20tL

aliquot of enzyme was added to the solution and vortexed. At each time point, an aliquot

of reaction solution was injected onto a TSK G4000PW size exclusion HPLC column

with a mobile phase of 2.0mM monobasic potassium phosphate with 5.Oppm TFA

running at 4.OmL/min. Baseline separation of the glutamine substrate, mdc and the

substrate-mdc conjugate is achieved due to minor hydrophobic interactions between mdc

and the column resin. Quantification was by integration of absorbance at 247nm.
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A6 SEC PEG/Z-Glutaminylglycine Assay

In general it is more difficult to directly measure the kinetics of amine donor

substrates because steps previous to the addition of the amine donor substrates are

generally rate limiting (see Sections 1.5.3 and 1.5.4). To measure the kinetics of amine

substrates it is necessary to employ conditions where the enzyme is saturated with the

first substrate, the amine acceptor. For this assay, benzyloxycarbonyl-glutaminyl-glycine

(ZQG, Km= 7mM 6) was used as the amine acceptor under saturating conditions.

This assay is based on the same quantitation principle as the SEC/monodansyl

cadaverine assay in Appendix A5. Here, the amine acceptor substrate is a small molecule

and the amine donor substrate is attached to PEG. The amine acceptor substrate used

here, benzyloxycarbonyl-glutaminyl-glycine (ZQG), is also used in the colorimetric

transglutaminase activity assay of Appendix A4.

A6.1 Materials

* Benzyloxycarbonyl-glutaminyl-glycine (ZQG) (Sigma)

* Tris base or MES (2-[N-morpholino]-ethanesulfonic acid) (Sigma)

* Amine donor substrate (unknown to be measured)

* Potassium phosphate, mono- and di-basic

* Calcium chloride

" TSK G4000PW size exclusion column

* HPLC with UV/vis detection
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A6.2 Procedure

A stock solution was made with 10mM calcium chloride, 50mM ZQG and

100mM of the appropriate buffer: MES for pH6.0 and Tris for pH>7. This solution

was stored in 0.1mL aliquots at -70 0C until use.

For each assay a known weight of the amine donor substrate ( 2mM in amine)

was dissolved in 80ptL of the ZQG stock solution and brought to the appropriate

temperature in a constant temperature water bath. At time zero, a 20gL aliquot of

enzyme was added to the solution and vortexed. At each time point, an aliquot of

reaction solution was injected onto a TSK G4000PW size exclusion HPLC column with a

mobile phase of 1.5mM monobasic potassium phosphate and 0.5mM dibasic potassium

phosphate running at 4.0mL/min. Baseline separation of the glutamine substrate, ZQG

and the substrate-ZQG conjugate was achieved due to minor hydrophobic interactions

between ZQG and the column resin. Quantification was by integration of absorbance at

258nm.
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A7 O-phthaldialdehyde Primary Amine Assay

The o-phthaldialdehyde fluorescent assay is a facile method of determining

concentrations of primary amines to micromolar concentrations7 . O-phthaldialdehyde

undergoes a primary reaction with a sulfhydral group (non-fluorescent) which then

undergoes a cyclization reaction with primary amines to yield a fluorescent compound. A

more sensitive alternative for primary amine detection is fluorescamine 8, a synthetic

analog of ninhydrin. This procedure tends to be more cumbersome since fluorescamine

solutions must be prepared fresh prior to use.

A7.1 Materials

" O-phthaldialdehyde reagent (Sigma)

" Primary amine sample (unknown to be measured)

A7.2 Procedure

In a typical measurement, 2.OmL of o-phthaldialdehyde reagent is placed in a

3.OmL fluorometer cell and a background fluorescence reading is recorded (typically

EX345, EM430). The fluorometer is kept in continuous measurement mode. An aliquot

of the unknown sample(~O.1-2mM in amines), typically 5-100 L, is added to the 2.0 mL

of solution and mixed by repeated pipetting. Continuous measurement is maintained until

the fluorescence goes through a maximum. The measurement is taken as the difference

between the maximum and the initial background reading. For increased accuracy,
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multiple dilutions of unknown and standard are taken and there least squared slopes are

compared.
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Figure Al. Peptide synthesis scheme for t-BOC and Fmoc procedures.
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APPENDIX B: PEG/POLYLYSINE GEL STRUCTURE

PREDICTIONS

B1 Thermodynamic Predictions

Equilibrium swelling data can be used to estimate the number of effective chains in

the PEG-poly(KF) network. The number of effective chains may differ from the actual

number of chains due to entanglements, loops and dangling ends. The actual number of

chains can be calculated from the chain molecular weight distribution and compared with

the calculated number of effective network chains to assess the degree of entanglements

versus loops and dangling ends.

To proceed with such calculations, the number functionality of each crosslink

must be known. In a two component gel such as PEG-poly(KF) the question arises as to

where to define the crosslink. Realizing that the important physical aspect of the gel to

be captured in our analysis is the stretching of Gaussian chains, it is necessary to define a

'crosslink' as a non-Gaussian, or stiff region that joins together two or more Gaussian

chains. As mentioned in the discussion, it is most appropriate to define each poly(KF)

molecule as a node or 'crosslink,' as in Figure 4-1. Thus the functionality of any

particular crosslink will be the number of PEG chains attached to that particular

poly(KF) molecule. The stoichiometry determines the mean crosslink functionality. For

example a gel of 20wt% PEG-Qa and 5.0wt% poly(KF)-HBr gives a mean crosslink

functionality of 17, or 17 PEG chains attached to each poly(KF) molecule if all chains are
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linked into the network. However, it is not initially obvious how the phenomenon of

equilibrium swelling will depend on the distribution of crosslink functionalities. Because

the crosslink functionality distribution of poly(KF) is not known a priori, the treatment

of equilibrium swelling must be reformulated with consideration for a distribution of

crosslink functionalities for poly(KF). To do this we can follow the method of Flory's

original derivation for equilibrium swelling of multifunctional crosslinksI. The total

entropy of the swelling process can be described in three steps:

Unswollen S, Unswollen
Unlinked Chains Linked Chains

Siv = S1 + Si - Si
Sil SIV

Swollen Sill Swollen
Unlinked Chains Linked Chains

To describe this process appropriately, it is necessary to describe each PEG-Qa as

consisting of two PEG chains attached at the ends as shown in Figure 4-1, because the

moiety joining the two chains can itself become covalently linked to poly(KF). Also note

that it is probable that a single chain will be involved in crosslinks of different

functionalities at each end. Therefore, it is best to define a variable, ePEGf, to denote the

number of effective chain ends of a given functionality,f

The first process, S1, describes the entropy of joining all chains into the network.

To form a network, all chain ends must be localized with the volume of their respective

crosslinks. Ignoring, for the moment, that PEG chains are joined into pairs, the
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probability of the first poly(KF) molecule in a crosslink of degreef being co-localized in a

volume of a crosslink, dV, withf PEG ends is given by,

EPEGJ(EPEG - 1)(PEGf-2) ... -EPEG -f-+ ,1)(3V/Y)' (B1)

The probability of the second crosslink forming is then,

(ePEG, f)(EPEG,If -)...(EPEGJ -2f + 1)(SV/Y)', (B2)

as so on. The total probability of forming all (ePEGf /) crosslinks of degreef is the

product of all these factors, or:

EPEG.

I f PEG,f 1 [15V/V O PEG .!U/VO ) (B3)

Until this point the PEG chains have been considered to be singlets. To account

for the presence of doublets and higher multiples, the probability of joining the chains

into the distribution of PEG multiplets found in PEG-Qa can similarly be constructed as

Iio n -[ ( D 1VP (f v / 4 ) ! (2 d V 4
... g(J PEG( XV
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(4dV K">PEGJ pi(- 1)~

Ijoin E )i PEG) with ic = (B4)

wheref is the weight fraction of PEG-Qa molecules with i PEG chains. The factor k can

vary from k=O for the case of solely single chains to k=1/2 at the limit of very large

multiplets.

Taking into account that the PEG-poly(KF) system has a distribution of crosslink

functionalities, the total probability of forming all network crosslinks is given by the

product of the probabilities for eachf divided by the probability of pairing chains into

PEG-Qa molecules. But we must also take into account that each poly(KF) molecules

was randomly assigned a value off by multiplying by the possible permutations. The

total probability then becomes,

D_ D EPEGJ EPEG,f

p, ;otY(KF),e*IV V

..= vpolv(KF),e iJ=2 ' f=2 y V ) - (B5)
poy KF ,, QIjoin d CPEG (B5)EVlvpoi(Fj 'Av F Hg,(fiVPEG)

f'=2

where D is the number of lysines per poly(KF) molecule and npoly(KFye is the number of

effective poly(KF) chains. Employing Stirling's approximation (for n large,

ln(n!)=n*ln(n)-n), Si is given by:
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S1 = kInQI

VSpoly(KF),e Ik po)(KF),e j VPEG I jV ln(gi

Si =k _1 _ Ee(V

+ [ E F PEG,] f5V _ Vp( sIn poly(KF),ej
SIPEGf V e pol(KF)e )

f=2 _ _ 0 _

PEG

_
(B6)

For the second mixing step, using the subscript (0) to denote the unswollen state,

the entropy can be expressed as

SH =-k nohIn nvS0 1V -~ n ~lfInlt),O + VPEG in 1
VPEG + pv(F~kVnsoll)

In po (KF) 

1pv(KF),0
(B7)

where u1, n, and n1 are volume fractions, number of polymer molecules and the number of

solvent molecules, respectively. This can be re-expressed in terms of the swelling ratio, a,

as

S,= -k n,,, In ,,' -nsoli'O In vos, - (vPEG + Vpo1Y(KF)) Ina a where a = Vo

Values for nPEG and npoly(KF) can be calculated from

vi = ^A
#AMi

(B8)

(B9)
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where w, is the weight of species i in the network, NA is Avogadro's number, and M is the

molecular weight of species i. The parameter bPEG is the number average number of PEG

chains per PEG-Qa molecule, while bpoly(KF) has a value of unity.

The third step of interlinking the diluted chains of step 2 is achieved in two steps:

stretching followed by linking in a process similar to step 1. The elastic component is

identical to Flory's except that in the PEG-poly(KF) system the gel is swollen uniaxially

as described in the Section 4.2, yielding:

S,,,=kEPEG (na 2 B10

SIIIeI ~k 2I [Ina-( 12 j (Bl10)

The stretching component development is identical to step 1 above. The result differs

only in that the volume is V instead of V0 .

S,,,tretch = k Vpo1(KF),e nypoKF),e jj PEG In Vi 9- vpEGng

+ PE Gf PEG ptK)e poy(KF),e (B11)In EPEGs Ve (polB BKF),e, BIn aedBj

Summing Equations (B 6, B 8, BlO0 and Bi 11) gives:
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SIV = -klns,), in vs.A, - nIO In VSONIO -((1 -K )VPEG + vpQIKF) In a+ -PEG (a 2 - 1)/4] (B12)

Having derived an expression for the entropy of swelling, we can now focus on

the condition where the PEG-poly(KF) gel has swollen to equilibrium. At the condition

of equilibrium swelling,

(dAF
NA ,," = (B 13)

where,

DF swel = DHmix - TDSmix - TDSeastic = XsovPEGVPEGnsOjv+ Xsolv,,poy(KF)Dpoly(KF)nsolv - TSIV

(B 14)

Using the following relations:

- VOl 0o

ov T, P

1) 1
solN S0V1

n.sohv n.soh,

- PEG,0 polv(KF),0
sol =I

(B15)

evaluation of (5) gives
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In I - VPEG,0 +poY(KFO),O

2aNA kT + I (PEG,0 + ply)( KF ),0( I solvPEGVUP EG,0 > sov,poly( KF )1 po1y(KF ),O

solv, (PEG VPEG ( - ) + VpolY(KF)

_ solv,0

or,

1E PEG 0Vpo(KF) sol,0 PEG,O polv(KF),0

NA a2 N A NA 0vsO [_,O - a

+(vPEGO + poly(KF),O + %so1lv,PEGV)PEG,o >±v,PoAy(KF) poly(KF),O (B 16)

where Csolv,PEG is taken as 0.452 and Csozvp 0Iy(KF) 0.47 (assumed to be bounded by the

value for poly(lysine), Ciraterpoly(KF 0.433 and the theoretical maximum c = 0.5).

The number of ends participating in effective crosslinks,ePEG can be used to

calculate a net entanglement ratio, F:

EPE/ 2

D = PEG12 (B17)
/PEG VPEG

Values of F can be used to assess the degree of entanglements versus loops and dangling

chain ends. Entanglements will increase F above unity while chain loops and chains
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attached at only one end will tend to decrease F below unity. Therefore F gives a measure

of the balance of the two effects.

To calculate F from Equation (B 17) it is first necessary to calculate k of Equation

(B4) and bPEG of Equation (B9) which are dependent on the molecular weight distribution

of PEG-Qa. Contributions from single chain and double chain species were taken directly

from organic GPC peak integrations (f)=0.679,fj2=0.073). The weight fractions for

species of 3 chains and higher were calculated from aqueous GPC light

scattering/refractive index data. For the distribution of PEG-Qa in Figure 4-2, k-0. 13 and

bPEG=1 .4.

In interpreting the values for F of different PEG/poly(KF) proportions, it is

instructive to examine the sensitivity of the F to perturbations in the various parameters

and variables in Equation (B 16). A straightforward means of doing this is by evaluating

I/am, for every parameter and variable, mi. This was done by varying a single mi by

0.1% while holding every other m;,y constant and performing the following calculation:

- "' where Am = 0.001 -mi (B18)
ydm,) Am.

It is also useful to define a factor, h as

71(i) = mjQA/drn) (B19)
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The factor h(i) is then a measure of the fractional change that would result in F for a given

fractional change in mi. For example, h(i)=-2 would mean that a 1% increase in mi would

cause a 2% decrease in F if (d2(D/diM) = 0. Through this sensitivity analysis, it was

found that a (h(a)20/5 gel=- 4 .8) and c (h(coV,PEG )20/5 gel=-4.0) had the largest influence on F

for all gels. The next largest influence was from r2 (h(r 2)2015 ge1=-1.7). This suggests that

the uncertainty in values for F are largely a function of the uncertainty in a and csolv,PEG-

The precision of the measurement of a predicts an uncertainty of 1.7%. A survey of

literature values for csolvPEG reveals that reported values2, 4-6 vary in a range of 0.43 to

0.45, the value of 0.45 giving the best agreement with SANS data7. This range could be

taken as twice the uncertainty in CsoIV PEG (2.2%). Using these values for the uncertainties

in a and csolv,PEG and the values for h(a) and h(coV,PEG) for the 20/5, 10/5 and 20/2.5 gels,

uncertainties in F were calculated to be 12%, 9.4% and 28% respectively.
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APPENDIX C: RATE CONSTANT FITTING ALGORITHM

C1 Background

The following FORTRAN 77 algorithm was used to iteratively fit rate constants

to a set of differential equations by coupling a X-squared minimization routine with a

step-wise differential equation solver, both extracted from Numerical Recipes1 . A forth-

order Runge-Kutta routine was used to generate data for conversion as a function of time

from a set of guessed rate constants. This generated data was then compared with

measured data to calculate a new set of more accurate rate constants, used as the 'guess' in

the next iteration. A Levenberg-Marquardt (LM) chi-squared minimization routine

generated this new guess. The same Runge-Kutta routine was used within the LM

routine as well to calculate the necessary partial derivatives (aX/aki) for each rate

constant, ki. This process was repeated iteratively until X was approximately minimized

(xn+i/Xn < 0.0001%).

The following program is configured for fitting to a tresyl chloride coupling model

(see Section 2.2.3), but could be easily reconfigured to fit any arbitrary set of differential

equations to a set of measured data by changing the differential equations near the end of

the program.
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C2 FORTRAN Code

PROGRAM MODEL
IMPLICIT REAL*8 (A-H,O-Z)
INTEGER MA,IA(3),NDATA,NX(78),NY

REAL*8 Y(78),SIG(78),A(3),ALPHA(3,3),COVAR(3 ,3)
REAL*8 CHISQ,Z(3,193)

c file name for data to be fit: DATA>DAT
c number of y variables: NY
c number of rate constants (parameters): MA

OPEN (1,FILE='DATA.DAT')
NDATA=36

NY=3
MA=3

WRITE (6,*) "READING DATA"
DO 2 I=1,NY

DO I I1=0,(NDATA/NY-1)*NY,NY
READ(1,*) NX(I+II),Y(I+II),SIG(I+II)

WRITE (6,*) 1+11
1 CONTINUE
2 CONTINUE

DO 3 I=1,NDATA
WRITE (6,*) NX(I),Y(I),SIG(I)

3 CONTINUE

ALAMDA=-1D0

CHISQ=1DO

DO 5 I=1,MA
DO 4 J=1,MA

ALPHA(I,J)=O.DO
COVAR(I,J)=O.DO

4 CONTINUE
A(I)=O.DO
IA(I)=O

5 CONTINUE

c rate constants: a(x)
c set a particular rate constant a(x) as fixed: ia(x)=O
c allow fitting of particular rate constant a(x): ia(x)=1
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OPEN(200,FILE='C:\LP77\COUPLE.OUT')
CALL SOLVE BYRK (A,Z)
DO 6 I=1,193

WRITE (200,7) (I-1),Z(1,I),Z(2,I),Z(3,I)
6 CONTINUE

CLOSE(200)

CLOSE (1)
STOP

7 FORMAT(1X,11(E20.10,','))
END

SUBROUTINE FUNCS(NX,NII,A,YCALC,DYNA,NA,NP)
IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 Y(3,193),DY(3,193),A(3),SK(3),DK(3),DYNA(3),ITOT
INTEGER NXNP
YCALC=0.D0
ITOT=192D0/960D0
INUM=0
NI=NII

DO 199 I=1,NA
SK(I)=A(I)
DK(I)=A(I)

199 CONTINUE

DO 299 I=1,NI,NP
IF(I.GT.NP)THEN

INUM=INUM+1
ENDIF

299 CONTINUE

IF(NI.GT.NP)THEN
NI=NI-INUM*NP

ENDIF

ISTEP=(NX*ITOT)+1
DO 399 I=1,NA

CALL SOLVEBYRK(SK,Y)

YCALC=Y(NIISTEP)
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DK(I)=0.99DO*SK(I)
CALL SOLVEBY RK(DKDY)

DYCALC=DY(NI,ISTEP)

DYNA(I)=(YCALC-DYCALC)/(O.O1DO*SK(I))

DK(I)=SK(I)

399 CONTINUE

RETURN
END

SUBROUTINE COVSRT(COVAR,MA,IA,MFIT)
IMPLICIT REAL*8 (A-H,O-Z)
INTEGER MA,MFITIA(3)

REAL*8 COVAR(3,3)
INTEGER I,J,K
REAL*8 SWAP
DO 12 I=MFIT+1,MA
DO 11 J=,I

COVAR(I,J)=O.DO
COVAR(J,I)=O.DO

I ICONTINUE
12 CONTINUE

K=MFIT
DO 15 J=MA,1,-1

IF(IA(J).NE.O)THEN
DO 13 I1,MA
SWAP=COVAR(I,K)
COVAR(I,K)=COVAR(I,J)
COVAR(I,J)=SWAP

13 CONTINUE
DO 14 =1,MA
SWAP=COVAR(K,I)
COVAR(K,I)=COVAR(J,I)
COVAR(J,I)=SWAP

14 CONTINUE
K=K-1

ENDIF
15 CONTINUE

RETURN
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END
C (C) COPR. 1986-92 NUMERICAL RECIPES SOFTWARE -X3#71JN>#('2150.

SUBROUTINE GAUSSJ(A,N,B,M)
IMPLICIT REAL*8 (A-H,O-Z)
INTEGER M,N,NMAX

REAL*8 A(3,3),B(3,3)
PARAMETER (NMAX=50)
INTEGER I,ICOL,IROW,J,KL,LL,INDXC(3),INDXR(3),IPIV(3)
REAL*8 BIG,DUM,PIVINV
DO 16 J=I,N
IPIV(J)=0

16 CONTINUE
DO 26 I=1,N

BIG=0.D0
DO 18 J=1,N

IF(IPIV(J).NE.1)THEN
DO 17 K=1,N

IF (IPIV(K).EQ.0) THEN
IF (ABS(A(J,K)).GE.BIG)THEN
BIG=ABS(A(J,K))
IROW=J
ICOL=K

ENDIF
ELSE IF (IPIV(K).GT.1) THEN

PAUSE 'SINGULAR MATRIX IN GAUSSJ1'
ENDIF

17 CONTINUE
ENDIF

18 CONTINUE
IPIV(ICOL)=IPIV(ICOL)+1
IF (IROW.NE.ICOL) THEN

DO 19 L=I,N
DUM=A(IROW,L)
A(IROW,L)=A(ICOL,L)
A(ICOL,L)=DUM

19 CONTINUE
DO 20 L=1,M

DUM=B(IROW,L)
B(IROW,L)=B(ICOL,L)
B(ICOL,L)=DUM

20 CONTINUE
ENDIF
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INDXR(I)=IROW
INDXC(I)=ICOL

IF (A(ICOL,ICOL).EQ.O.DO) PAUSE 'SINGULAR MATRIX IN GAUSSJ2'

PIVINV=1.DO/A(ICOL,ICOL)
A(ICOL,ICOL)=1.DO
DO 21 L=1,N
A(ICOL,L)=A(ICOL,L)*PIVINV

21 CONTINUE
DO 22 L=1,M
B(ICOL,L)=B(ICOL,L)*PIVINV

22 CONTINUE
DO 25 LL=1,N

IF(LL.NE.ICOL)THEN
DUM=A(LL,ICOL)
A(LL,ICOL)=O.DO
DO 23 L=1,N

A(LL,L)=A(LL,L)-A(ICOL,L)*DUM
23 CONTINUE

DO 24 L=1,M
B(LL,L)=B(LL,L)-B(ICOL,L)*DUM

24 CONTINUE
ENDIF

25 CONTINUE
26 CONTINUE

DO 28 L=N,1,-1
IF(INDXR(L).NE.INDXC(L))THEN
DO 27 K=1,N

DUM=A(K,INDXR(L))
A(K,INDXR(L))=A(K,INDXC(L))
A(K,INDXC(L))=DUM

27 CONTINUE
ENDIF

28 CONTINUE
RETURN
END

C (C) COPR. 1986-92 NUMERICAL RECIPES SOFTWARE -X3#71JN>#('2150.

SUBROUTINE
MRQCOF(NX,Y,SIGNDATAAIAMAALPHABETACHISQ,NP)

IMPLICIT REAL*8 (A-H,O-Z)

227



INTEGER MA,NDATA,IA(3),MMAX,NX(78),NP
REAL*8 CHISQ,A(3),ALPHA(3 ,3),BETA(3),SIG(78),

*Y(78)
PARAMETER (MMAX=3)
INTEGER MFITI,JK,L,M

REAL*8 DY,SIG2I,WT,YMODDYDA(78)
MFIT=O
DO 30 J=1,MA

IF (IA(J).NE.0) MFIT=MFIT+1
30 CONTINUE

DO 32 J=1,MFIT
DO 31 K=1,J

ALPHA(J,K)=0.D0
31 CONTINUE

BETA(J)=0.D0
32 CONTINUE

CHISQ=0.D0
DO 35 I=1,NDATA

CALL FUNCS(NX(I),I,AYMOD,DYDA,MA,NP)

SIG2I=1.DO/(SIG(I)*SIG(I))
DY=Y(I)-YMOD
J=O
DO 34 L=1,MA
IF(IA(L).NE.0) THEN

J=J+1
WT=DYDA(L)*SIG2I
K=0
DO 33 M=1,L

IF(IA(M).NE.0) THEN
K=K+1
ALPHA(J,K)=ALPHA(J,K)+WT*DYDA(M)

ENDIF
33 CONTINUE

BETA(J)=BETA(J)+DY*WT
ENDIF

34 CONTINUE

CHISQ=CHISQ+DY*DY* SIG2I
35 CONTINUE

DO 37 J=2,MFIT
DO 36 K=1,J-1
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ALPHA(K,J)=ALPHA(J,K)
36 CONTINUE
37 CONTINUE

RETURN
END

C (C) COPR. 1986-92 NUMERICAL RECIPES SOFTWARE -X3#71JN>#('2150.

SUBROUTINE MRQMIN(NX,Y,SIG,NDATA,A,IA,MA,COVARALPHA,
*CHISQ,ALAMDA,NP)
IMPLICIT REAL*8 (A-H,O-Z)
INTEGER MA,NDATA,MMAX,IA(3)

REAL*8 ALAMDACHISQ,A(3),ALPHA(3 ,3),COVAR(3,3),
*SIG(78),Y(78)

PARAMETER (MMAX=3)
CU USES COVSRTGAUSSJMRQCOF

INTEGER J,K,L,M,MFIT,NX(78),NP
REAL*8 OCHISQ,ATRY(MMAX),BETA(3),DA(3)
SAVE OCHISQ,ATRYBETADAMFIT
NEG=0

IF(ALAMDA.LT.0)THEN
MFIT=O
DO 40 J=1,MA

IF (IA(J).NE.0) MFIT=MFIT+1
40 CONTINUE

c
c step size for new guess goes as 1/alamda
c

ALAMDA=1D2
WRITE (6,*)"I'M CALLING MARQCOF - INITIALIZATION"
CALL MRQCOF(NX,YSIG,NDATA,A,IA,MA,ALPHA,BETA,CHISQ,NP)

OCHISQ=CHISQ
DO 41 J=,MA
ATRY(J)=A(J)

41 CONTINUE
ENDIF
J=0
DO 43 L=1,MA
IF(IA(L).NE.0) THEN
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J=J+1
K=O
DO 42 M=1,MA

IF(IA(M).NE.0) THEN
K=K+1
COVAR(J,K)=ALPHA(J,K)

ENDIF
42 CONTINUE

COVAR(J,J)=ALPHA(J,J)*(1.DO+ALAMDA)
DA(J)=BETA(J)

ENDIF
43 CONTINUE

CALL GAUSSJ(COVAR,MFIT,DA,1)
IF(ALAMDA.EQ.O.DO)THEN

CALL COVSRT(COVAR,MA,IA,MFIT)
RETURN

ENDIF
J=O
DO 44 L=1,MA

IF(IA(L).NE.0) THEN
J=J+1
ATRY(L)=A(L)+DA(J)

IF (ATRY(L).LT.ODO) THEN
ATRY(L)=ATRY(L)/1O.DO

ENDIF
ENDIF

44 CONTINUE
WRITE (6,*) ATRY
WRITE(6,*)"I'M CALLING MARQCOF"

CALL MRQCOF(NX,YSIGNDATAATRYIAMACOVARDACHISQ,NP)
IF(CHISQ.LT.OCHISQ)THEN

DO 555 1=1,MA
IF (ATRY(II).LT.ODO) THEN
NEG=1

WRITE (6,*) "NEG"
ENDIF

555 CONTINUE
IF (NEG.EQ.0) THEN
ALAMDA=0.25DO*ALAMDA

OCHISQ=CHISQ
J=O
DO 46 L=1,MA

IF(IA(L).NE.0) THEN
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J=J+1
K=O
DO 45 M=1,MA

IF(IA(M).NE.O) THEN
K=K+1
ALPHA(J,K)=COVAR(J,K)

ENDIF
45 CONTINUE

BETA(J)=DA(J)
A(L)=ATRY(L)

IF (ATRY(L).LT.ODO) THEN
ATRY(L)=ATRY(L)/1O.DO

ENDIF
ENDIF

46 CONTINUE
ELSE
ALAMDA=8DO*ALAMDA

CHISQ=OCHISQ
ENDIF

ELSE
ALAMDA=8.ODO*ALAMDA

CHISQ=OCHISQ
ENDIF
RETURN
END

SUBROUTINE SOLVEBYRK (SK,P)
IMPLICIT REAL*8 (A-H,O-Z)

REAL*8 YSTART(4),SK(3),Y(4,193),P(3,193),PH(3)

NUMYVAR = 4
NPOINTS 193

XSTART O.DO
XSTOP = 193.DO
YSTART(1) = 0.04D0
YSTART(2) = O.ODO
YSTART(3) = 0.1DO
YSTART(4) = O.ODO

PH(1)=7.5DO
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PH(2)=8.ODO
PH(3)=8.5D0

DO 51 J=L,3

CALL RUNGEKUTTA(SK,NUMYVAR,NPOINTS,XSTART,XSTOP,
* YSTARTY,PH(J))

DO 50 I=1,193
P(J,I) = (YSTART(3)-Y(3,I))/YSTART(l)

50 CONTINUE

C WRITE (6,*) Y(2,193)/(YSTART(3)-Y(3,1 93)),PH(J)

51 CONTINUE

RETURN
END

SUBROUTINE DERIVS(SK,X,Y,DYDX,PH)
IMPLICIT REAL*8 (A-H,O-Z)
PARAMETER (NUMYMAX=4, NPTMAX=193)
REAL*8 Y(NUMYMAX), DYDX(NUMYMAX),SK(3),PH,KOH,KW,PKA
REAL*8 AMINE, OH

C COLD: KOH=68, KW=2.2D-7, KWATER=14.78
C PKA'S: GF=8.6, F=9.6 ,K=1 1.3
C WARM: KOH=78.3, KW=1.70D-5 KWATER=14.08
C PKA'S: GF=8.I, F=9.1 ,K=10.7

KOH=68D0*60D0*5D0
KW=2.2D-7*60D0*5D0
OH=10.DO**(PH-14.78D0)
PKA=8.6D0

AMINE= 10.DO* *(PH-PKA)/(1 DO+ 10.DO**(PH-PKA))* Y(3)
C PROT=Y(3)-AMINE
C NOTE: SK(2)=K2/K'

DYDX(1) = -(KW + KOH*OH + SK(1)*AMINE)*Y(1)
DYDX(2) = SK(1)*AMINE*Y(1)
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DYDX(3) = -(SK(1)*AMINE+KOH*OH
* *(SK(2)*AMINE/(1DO+SK(2)*AMINE)))
* *Y(1)

DYDX(4) = KW*Y(2)
C Y(4) NOT BEING USED
C IF (Y(2).LT.0) THEN
C WRITE (6,*) "Y(2) NEGATIVE ",Y(1),Y(2),Y(3)
C ENDIF

RETURN
END

SUBROUTINE
RUNGEKUTTA(SK,NUMYVAR,NPOINTS,XSTART,XSTOP,

* YSTART,Y,PH)
IMPLICIT REAL*8 (A-H,O-Z)
PARAMETER (NUMYMAX=4, NPTMAX=193)
REAL*8 X(NPTMAX),Y(NUMYMAX,NPTMAX),SK(3),PH
REAL*8 YSTART(NUMYMAX), YI(NUMYMAX), YO(NUMYMAX)

X(l) = XSTART
DO 60 1I1,NUMYVAR

Y(I,1) = YSTART(I)
60 CONTINUE

STEP = (XSTOP-XSTART)/(NPOINTS-1)

DO 63 ISTEP=1,NPOINTS-1
DO 61 I=1,NUMYVAR
YI(I)= Y(I,ISTEP)

61 CONTINUE

CALL RK4(SK,NUMYVAR,STEP, X(ISTEP),YI,YO,PH)
DO 62 I=1,NUMYVAR
Y(I,ISTEP+1) = YO(I)

62 CONTINUE
X(ISTEP+1)= X(ISTEP) + STEP

63 CONTINUE

RETURN
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END

SUBROUTINE RK4(SK,NUMYVAR,STEP,X,YI,YO,PH)
IMPLICIT REAL*8 (A-H,O-Z)
PARAMETER (NUMYMAX=4, NPTMAX=193)
REAL*8 YI(NUMYMAX),YO(NUMYMAX),

YT(NUMYMAX),SK(2),PH
REAL*8

AlJ(NUM_YMAX),A2J(NUMYMAX),A3J(NUMYMAX),A4J(NUMYMAX)
CALL DERIVS(SK,X,YI,A1J,PH)
HSTEP = STEP/2.D0
DO 100 I=1,NUMYVAR

YT(I) = YI(I) + HSTEP*A1J(I)
100 CONTINUE

CALL DERIVS(SK,X+HSTEP,YT,A2J,PH)
DO 200 I=1,NUMYVAR

YT(I) = YI(I) + HSTEP*A2J(I)
200 CONTINUE

CALL DERIVS(SK,X+HSTEP,YT,A3J,PH)
DO 300 I=1,NUMYVAR

YT(I) = YI(I) + STEP*A3J(I)
300 CONTINUE

CALL DERIVS(SK,X+STEP,YT,A4J,PH)
DO 400 I=1,NUM YVAR

YO(I) = YI(I) +
* (STEP/6.DO)*(AlJ(I)+2.DO*(A2J(I)+A3J(I))+A4J(I))

400 CONTINUE
RETURN
END

C3 References

1. Press, W.H., Flannery, B.P., Teukolsky, S.A. & Vetterling, W.T.Numerical
Recipies, 1986, Cambridge University Press, Cambridge.

234


