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Abstract
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Chapter 1

Introduction

As device size scales down, computing and communication systems require faster link

I/Os in order to supporthigher data and computation throughput requirements. This

poses great challenge for signal integrity between a transmitter (TX) and a receiver

(RX). Equalizers and clock and data recovery loops (CDR) are developed to reduce

bit error rate (BER) in received data. As an evaluation tool, eye diagrams give a

comprehensive picture of signal conditions before and after receivers; they are also

used to analyze jitter, estimate BER, characterize channels, etc. High quality eye

diagrams are typically generated with synchronous sampling and such analyzers are

often expensive.

In this chapter, motivations and past works on eye diagrams reconstruction tech-

niques are discussed, which serve as the foundation for the proposed system.

Chapter two describes the architecture of the proposed system, the major blocks’

principles of working and the motivations for the design decisions made.

Chapter three describes the design of specific blocks on circuit level, as well as

theoretical analysis that leads to system level design choices and optimizations. The

analog and digital blocks will be discussed separately as well.

Chapter four describes the simulation strategy due to the size and complexity of

the system. Test cases are used to verify the functionality of major blocks and system

level simulations are also run to ensure correctness. Some more simulation results are

presented in this chapter as well.
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Chapter five concludes by showing comparisons in several aspects of the system

with past works. Possible future expansions to the project are also discussed.

1.1 Motivations

An eye diagram proves to be very valuable in quick assessment of the behavior of

high speed link or receiver. However, it is very difficult to probe any trace on an

evaluation board. One example would be in a high speed switch box, in which a

signal travels through many nodes. It is very difficult to physically put a probe from

an analyzer onto any trace of interest inside the switch box. Another example would

be for debugging a packaged chip for signal quality on any metal trace on the die.

Either case would require a careful characterization plan to make signals of accessible

when testing the product.

If there is an on-chip system that would allow any incoming signal to be monitored

and generates a corresponding eye diagram, this would provide much flexibility and

better evaluations. Such a system should be compact enough and have easy interface

with external signals and terminal computers. Thus, in addition to generating mod-

erate quality eye diagram, this on-chip system should also have well defined power

and area constraints in its specifications. The project in this thesis aims to provide

a solution for simpler signal monitoring capabilities by designing, analyzing and im-

plementing an on chip eye diagram reconstruction system in standard TSMC 65nm

CMOS process.

1.2 Past Works

There are several different approaches to eye diagram reconstruction. Both sy-

chronous and asynchronous techniques have been developed and studied. Most of

the these approaches are circuit board level designs due to complexity and no further

work is observed for improvements and optimizations.

The synchronous technique involves CDR loop to explicitly extract the data fre-
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quency and phase shift the recovered clock to find out information about the eye di-

agram. The asynchronous technique relies heavily on digital signal processing (DSP)

and requires an understanding of undersampling and its effect on the original signal.

This directly factors into the reconstruction method most people use when doing

undersampling.

1.2.1 Synchronous Reconstruction

Synchronous reconstruction means finding explicitly what the incoming data rate is

using a CDR loop, and interpolate the clock phase to calculate signal distribution for

a given phase location. With a data clock, one can either use a multi-bit analog to

digital converter to directly sample points , or a comparator (with 1 bit information)

to obtain the density of signal traces. Figure 1-1 shows how such technique works.

Figure 1-1: One version of synchronous reconstruction using comparator and distri-
bution statistics

The vertical bar in the left subplot designates a specific phase location from the

phase interpolated clock, i.e. every clock cycle the edge falls right at where the

vertical bar is. The horizontal bar designates the voltage reference level into the

comparator. By sweeping the reference voltage from bottom to top, we obtain a

cumulative distribution of percentage of 0’s shown as the blue curve in the right

subplot. Taking the derivative of this curve gives the density curve at which the

signal traces are concentrated. This information then can be stored, which reflects

the signal distribution at that particular phase location. Subsequently we move clock

phase to next location and repeat what we did. Eventually a 2 dimensional grid will
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be formed (size is number of phase locations by number of reference voltage levels)

and an eye diagram is formed by plotting the corresponding density into each grid.

One major advantage of this approach is the simplicity of using a single comparator

with very descent reconstruction quality. On the other hand, high performance CDR

loops are harder to design in a high speed condition and with a scaled down process.

The comparator performance also becomes critical; it should have low offset, high

bandwidth and very high gain. Moreover, the memory size is unnecessarily big since

it contains many grids that have zero density. The disadvantages relate heavily to

cost issues and researchers proposed asynchronous techniques to get around some of

these issues.

1.2.2 Asynchronous Reconstruction

Signal reconstruction using undersampling (also known as sub-sampling) techniques

has been studied by multiple groups, particularly in the optical communication area

due to high data rate. [1] describes the theoretical foundation for a verified asyn-

chronous undersampling technique for eye diagram reconstruction. This work fo-

cused on digital signal processing approach, in which a non-linear transformation of

the input signal will make the data frequency manifest itself as a distinct spike in the

frequency spectrum. After undersampling, this frequency spike will be aliased to a

digital frequency given by

Ωaliased =
mod(fdata, fsample)

fsample
× 2π (1.1)

where fdata is the data frequency and fsample is the undersampling frequency, which is

smaller than the nyquist frequency of the data. The factor in front of 2π (let’s call it

λb) is essentially the decimal part of fdata/fsample, and it tells how many samples will

be within a period. For example, a λb of 1/3 means there will be 3 samples within a

period before the 4th sample wraps around to the beginning of the period again.

The reconstruction method, as described in [1], involves a pseudo Fourier Trans-

form using 2πλb as the synchronous frequency. Then the time location of a specific
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sample is the phase of this transform given a window of samples around it and a

window sequence Wk. Equations 1.2 and 1.3 show the reconstruction algorithm.

τn =
angle(Yn(ω))

2π
(1.2)

Yn(ω) =
K∑

k=−K

yn+kWke
−2πλbnj (1.3)

Periodogram is used to find the power spectrum of the signal, and thus λb. Due to

resolution error for λb, we can not simply increment the time location by adding λb to

the previous time step, and that’s why the above reconstruction method is proposed.

Both [2, 3] have experimentally verified this reconstruction method by assembling

a test board, which includes large DSP units. The result is satisfactory since it

provides good approximation to the bit error rate, but some important features in

the eye diagram, such as data dependent jitter, might be lost due to estimation errors.

Besides, due to the computationally heavy nature of this method, large processing

engines as FFT engines and complex math modules are used. Synthesizing such

blocks into a system on chip would pose large constraints on power and area. Figure

1-2 shows a Matlab simulation, which compares an ideally simulated channel eye and

reconstructed eye with this method.

Figure 1-2: Comparison between ideal (left) and reconstructed eye (right) with
method in [1] with 512 point FFT. The plot in the middle is the periodogram of
the transformed signal, with distinct frequency spikes at 2πλb

Such undersampling technique is not limited to eye diagram reconstruction but

signal reconstruction in general. A recent paper [4] has used similar idea for periodic
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signal acquisition. The same λb is used, but the reconstruction method is simply

to increment the previous time location by λb, and wraps around by an modulus

operation, given by equation 1.4.

τn = mod(τn−1 + λb, 1) (1.4)

The precision of λb is achieved by more points in FFT and pre and post conditioning

of the signals, such as reducing spectral leakage and interpolation. Sampling and

data jitter are compensated by updating λb constantly and using the new estimate

for reconstruction. Due to the simplicity of the reconstruction method, when λb is

very close to the true value, the reconstructed signal quality is really high, so there

will be no error induced by calculations as in [1]. However, more computation power

is put into the better estimation of λb, which means the bottleneck for area and power

still exists.

An important point to note is that λb has to be an irrational number in order

to have ”random” phase locations within a period, i.e. if λb were a rational num-

ber like 1/3, then only 3 phase locations are sampled (which means it is more or

less synchronous sampling), thus no complete eye diagram can be generated. This

idea will be important throughout the project and it has implications to what the

undersampling frequency can be.
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Chapter 2

Proposed System

This chapter proposes an architecture for a new system that avoids the disadvantages

of the works discussed previously. The system is divided into several blocks for ease

of analysis, design and implementation. The specifications and theory behind each

block will be discussed in more details in the following sections. Optimizations and

design choices are also explained. The differentiating factors of this proposed system

lie of simple aliased frequency estimation at the cost of estimation time and reduced

computing power from self correcting reconstruction algorithm.

2.1 System Architecture

Based on these previous works, an asynchronous undersampling technique seems more

advantageous, since no prior knowledge of the bit period is required. However, this

brings constraints on power and area for the system due to heavy digital signal pro-

cessing. The most important parameter here is λb: a good estimate would allow a

simple reconstruction method as described in [4], while a crude approximation re-

quires a more sophisticated reconstruction method using complex math.

The proposed system gets around some of these issues by explicitly finding a

subrate of the data frequency using time division modules and a simple method for

estimating lambda. One assumption has to be made; the input data sequence has to

be random or close to random in the transition density sense, i.e. the 0 to 1 transition
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has to be near 25%. It is an acceptable assumption since the same needs to be true

for a periodogram based lambda estimation, and most testing data sequences, such

as pseudorandom binary sequence, are designed to approximate random data input.

This idea will be discussed more in the following sections. With a reasonable estimate

of λb, the reconstruction method emulates the one used in [4], but iteratively corrects

for the error of lambda by looking at the eye diagram drift over groups of samples.

Figure 2-1 shows the block diagram of the proposed system.

Figure 2-1: System block diagram

1. Subrate Extractor Takes both the input data and sampling clock and outputs

two divided clocks at the subrates of data and sampling clock frequencies.

2. Lambda Estimator Takes both the input data and sampling clock subrate and

outputs an estimated lambda by counting according to input clock frequencies.

3. Undersampling ADC Undersamples the input data analog waveform and

stores 3K bytes of information on RAM (3072 data points).

4. Reconstruction Digital block of the system that takes the estimated lambda

and calculates a time location for each point in the memory. Implemented in

Verilog and will be synthesized.The embedded RAM will be 6K bytes, 2 bytes

for each (τ , y) pair.

For monitoring purpose, heavy spectrum analysis is avoided by extracting the

subrate of data clock directly, which can be easily achieved by a chain of dividers.

24



Then the lambda estimator block, which consists of two simple counters, will take

the two subrate clocks and generate an estimate of λb with reasonable precision.

Meanwhile, the 8-bit undersampling ADC will record 3072 points (3K bytes of data)

and store in the on chip RAM. The reconstruction block, which will be implemented

and synthesized in Verilog code, will take the estimated lambda and calculate a time

location for each sample and iteratively correct for the estimation error in lambda.

This system gets rid of complicated DSP module completely and only simple addition

is required for reconstruction. Later sections will explain each sub block in more

details.

2.2 Sample and Hold

The sample and hold circuit along with the ADC serves as the equivalent as the

signal probe in an oscilloscope. The bandwidth of a signal probe is the determining

factor for the largest data rate we can probe. The targeted maximum data rate in

this application is 10Gbps. The analog ”fundamental frequency” of a 10Gbps data

stream is 5GHz. As we will see later, the actual data sequence contains all other

frequency content other than multiples of 5GHz, but the signal processing thinking of

Nyquist frequency still applies. In order to preserve enough high frequency content,

a specification of at least 10GHz (twice the fundamental frequency) is decided. The

sample and hold circuit would also require a high linearity for minimal distortion in

the eye shape. Power isn’t a major concern since monitoring happens for a short

period of time. The sample and hold should also be able to drive ADC’s that are

sampling at about 200MHz.

2.2.1 Possible Implementations

For high speed sample and hold circuit, there are mainly three popular topologies:

differential switched source follower, bootstrapped switches, and simple passgates.

Switched source followers are often used in bipolar transistor (BJT) circuits in which

devices are be turned off sharply, with high intrinsic gain, and a lot of headroom
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is available with higher power supply. Figure 2-2 shows a schematic of a switched

emitter follower track and hold in with BJTs. In this 65nm CMOS process due

to limited power supply and headroom, stacking up transistors should be avoided.

Leakage in small length devices would also be an issue in this topology.

Figure 2-2: Example switched emitter follower track and hold circuit before ADC

Bootstrapped switches proved to have the best linearity and bandwidth.Figure 2-3

shows one example of a fast bootstrap switch implementation [5]. However, playing

with high voltage (i.e. doubling supply voltage for bootstrapping) is ”dangerous” in

this process (the gate breakdown voltage is quoted to be around 1.7V) when nominal

power supply is 1.2V.

Figure 2-3: Example fast bootstrapped switch implementation

Simple passgates might provide the needed performance with moderate linearity

and speed property, but its implementation simplicity, which is just PMOS and NMOS
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back to back is extremely attractive. Several issues need to be addressed using pass

gates, for example the directly coupling parasitic capacitance from drain to source in

short channel devices. Detailed implementation of the sample and hold circuit will

be presented in later chapter.

2.2.2 Sampling Clock and Analog to Digital Converter

For the scope of the project, no dedicated sampling clock or ADC will be designed

from scratch. I will assume that such blocks will be provided given the required

specification. As a result, part of the system level analysis will involve sampling clock

jitter’s effect on reconstructed eye quality. The undersampling clock is supposedly

much slower than the data frequency, however still will be around 200MHz. In this

application, the ADC needed would be relatively low resolution (8 bits) but high

speed ( 200MHz) with the designed sample and hold as the front end. Topologies

that can meet the specification could either be an 8 bit flash ADC with a sacrifice

on area or a simple pipeline ADC with a bit more complexity. The reason that a

successive approximation register (SAR) ADC comes in as last choice is due to more

difficult clock management since the generated clock will have to faster than the

actual undersampling frequency to run the ADC and area constraints coming from

the capacitor array. After determining the required specifications, these two blocks

will be simulated using behavioral models other than the full transistor level.

2.3 Lambda Estimation

Lambda estimation block eliminates the need for an FFT module to find a peri-

odogram of the input signal. It uses a chain of frequency dividers to create near-

perfect square waves with low enough frequencies so that simple counters can be used

to estimate λb. This section will discuss the theory behind how subrate extractor,

lambda estimation by counting and an analysis of Pseudorandom Binary Sequence

(PRBS) without implementation details.
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2.3.1 Subrate Extractor

A random input sequence is not only DC-balanced, but it also contains equal prob-

abilities of transitions on average. Table 2.1 compares the transition densities of a

perfect clock and a random sequence, both of which on average have the same number

of 0’s and 1’s. This fact could be exploited to extract a subrate (or sub-harmonic)

of the data rate [6]. With a chain of N divide by 2 blocks, the output waveform will

converge to a clock output at the frequency of 0.25 · fdata/2N .

Transition Type 0→ 0 0→ 1 1→ 0 1→ 1
Perfect Clock 0 0.5 0.5 0

Random Sequence 0.25 0.25 0.25 0.25

Table 2.1: Transition Probabilities between Perfect Clock and Random Sequence

For a non-return-zero (NRZ) data sequence, the power spectrum has frequency

nulls at multiples of data clock frequency. Figure 2-4a shows the power spectrum

of a random sequence of NRZ data of frequency 2GHz. After dividing the data

frequency by 1024, we obtain a signal that’s close to perfect clock at the frequency of

2GHz/4096 = 488.3kHz, and Figure 2-4b shows the power spectrum of the divided

output, which represents a near perfect square wave with small jitter noise.

(a) Power spectrum of random NRZ data (b) Power spectrum of subrate derived from di-
viding data by 1024

Figure 2-4: Power spectrum of original data and its subrate
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A divide by two stage is simple to implement, conceptually a flip flop with inverted

output fed back to its input. The front stages for data division need to be CML logic

since it works with high speed, followed with CMOS stages after a level conversion.

The clock division can be directly be CMOS type due to its much lower speed. There

needs to be two more stages in the clock division chain due to the extra 0.25 factor

in data transition density.

2.3.2 Aliased Frequency by Counting

After the subrate extractor, the two derived low frequency clock signals will be passed

through the lambda estimator. The scaling property arithmetic guarantees that the

two derived clocks will give the same λb as the original ones, namely

λb =
mod(fdata, fsample)

fsample
(2.1)

=
mod(fdata/2

D, fsample/2
D)

fsample/2D
(2.2)

=
mod(f ′data, f

′
sample)

f ′sample
(2.3)

where D is the number of division stages and f ′ denotes the subrate of the original

data or sampling frequency. We then use the approximation, N = floor(f × T ), for

which T is an arbitrary time period and N is the number of clock edges for a given

clock frequency within that period. When T gets large enough, we can use N/T to

approximate frequency to a very high precision. Then

λb =
mod(f ′data, f

′
sample)

f ′sample
(2.4)

≈
mod(N ′data/T,N

′
sample/T )

N ′sample/T
(2.5)

=
mod(N ′data, N

′
sample)

N ′sample
(2.6)

This allows us to use simple counters to estimate λb. For a given count of N ′sample,

by looking at a separate counter counting the data subrate clock, we can obtain a
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good estimate of lambda. For example, for a 10 bit counter, because the data rate is

higher than the sampling rate, by the time the sampling clock counter reaches the full

count (1024), the data clock counter would have wrapped around multiple times and

the number remaining in the counter is conveniently mod(N ′data, N
′
sample), and even

better is the fact that now this 10 bit number could be reinterpreted as a fixed point

number with 10 bit precision after decimal point, so also performing the dividing by

N ′sample part.

One realization is that both subrate extractor and counters could be a chain of

dividers, which means they both provide some averaging function but for different

purposes. This view gives rise to an optimal problem on whether there is an sweet

spot in number of division stages and counter resolution. The following sections

analyzes the characteristics of PRBS and then moves onto the final design choices.

2.3.3 Pseudorandom Binary Sequence

Pseudorandom Binary Sequence (PRBS) is a deterministic bit sequence that has

characteristic similar to a true random bit sequence. A typical way of generating a

PRBS is linear feedback shift register, in which there is N bit shift register and several

taps are used to generate the next LSB in the register by a simple xor and the MSB

of the register becomes the current output. Maximum length PRBS generation is

achieved by selecting the corresponding taps such that the register cycles through all

possible states except the all zero state. As a result, there number of bits in a PRBS

is 2N−1. Figure 2-5 shows the block diagram of how a PRBS4 is generated. PRBS is

very useful in testing channel signal integrity since it provides almost all possible data

pattern scenarios for inter-symbol interference (ISI) due to its pseudorandomness, thus

very relevant in this context.

Figure 2-5: Block diagram for PRBS4 generation
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2.3.4 Transition Density in PRBS

PRBS asymptotically has characteristics of a true random sequence, one of which is

transition density. In a truly random binary sequence, the transition density for any

of the four types, 0 to 0, 0 to 1, 1 to 0 and 1 to 1, approaches 25% on average. For a

PRBS, an explicit form of transition density can be found and indeed it approaches

25% as shifter register size gets larger and larger. The PRBS generation method

discussed above runs through all possible states in shift register other than all 0

states. The MSB is always used as the output.

Figure 2-6: Shift register state for a 0 to 1 transition

As a result, the 0 to 1 transition happens when the two MSBs are 0 and 1. Figure

2-6 shows the possible states the shift register has for a 0 to 1 transition to occur.

In this case, there are totally 2n−2 possible states since the other n − 2 bits can be

anything. As a result, the 0 to 1 transition density is given by

Pr(0→ 1) =
2n−2

2n − 1
(2.7)

The same argument applies for 1 to 1 and 1 to 0 transitions. The missing transition is

for 0 to 0 since all zero state is invalid. The following plot shows the 0 to 1 transition

density in ppm error with respect to 25% against n. The PPM error becomes neglible

as n increases. When n is around 16, the error is already small enough, 15ppm. It

is also important to note that these transition density applies for a complete cycle

through the bit sequence. It also means that the the error gets smaller for a longer

time due to more bits averaging effect.
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Figure 2-7: PPM error w/ respect to 25% against N bit shift register

2.3.5 Local Fluctuation of Transition Density

The closed form transition density from the previous section is for a full cycle of

PRBS run. However, becasuse this application is asynchronous, it is not guaranteed

to always have that density. Therefore, we need to look at the local transition den-

sity fluctuation. Figure 2-8 shows the instantaneous positive transition density of a

PRBS13 from 2nd to 5th run. The shape within each run is fixed and the envelope of

the fluctuation decreases with increasing number of runs. We can exploit this nature

of a given PRBS, and find out how the range of fluctuation varies as a function of N ,

N being the number of runs.

For a given PRBS, there exists a point when the instantaneous 0 to1 transition

density is minimum; let’s call that point α1, denoting the number of bits passed within

a PRBS run, and the number of transition β1. There is also another bit location such

that the density is maximum, α2, and number of transitions up to that point β2. To

make the definition clear, α1, β1, α2, and β2 are numbers such that

N2n−2 + β1
N(2n − 1) + α1

= minimum within the last PRBS run (2.8)

N2n−2 + β2
N(2n − 1) + α2

= maximum within the last PRBS run (2.9)
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At the end of each complete run, the transition density is always equal to the char-

acteristic density derived in the previous section. The fluctuation, δ(N) for the last

run after N previous runs is then

δ(N) =
N2n−2 + β2

N(2n − 1) + α2

− N2n−2 + β1
N(2n − 1) + α1

(2.10)

The interesting approximation happens when N →∞, and assuming 2n >> 1, which

reduces the above equation to

δ(N) ≈ (N2n−2 + β2)(N2n + α1)− (N2n−2 + β1)(N2n + α2)

(N2n + α1)(N2n + α2)

≈ (β2 − β1)N2n + (α1 − α2)N2n−2 + β2α1 − β1α2

(N2n)2

≈ (β2 − β1)N2n + (α1 − α2)/4×N2n

(N2n)2

=
β2 − β1 + (α1 − α2)/4

N2n

=
(β2 − α2/4)− (β1 − α1/4)

2n
1

N

=
γ

N
(2.11)

Equation 2.11 shows that the local fluctuation asymptotically becomes inversely pro-

portional to the number of runs N with some proportionality constant γ. It makes

intuitive sense that eventually the average fluctuation will reduce to 0 and the tran-

sition density will converge to the characteristic density given by the closed form.

The proportionality constant γ is essentially the bit number fluctuation resulting

in density fluctuation divided by the total number of bits, (or interpreted as the

fluctuation of a single PRBS run) which also makes sense. γ can either be found

by looking at the maximum and minimum density bit location or empirically for a

given PRBS by running a regression given this fluctuation model. Figure 2-9 shows a

linear relation between number of runs and fluctuation range on a log-log plot. After

running a regression, the slope of the line is very close to 1 (1.016) and the offset is
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Figure 2-8: Local 0 to 1 transition density fluctuation for run 2 to 5

Figure 2-9: PRBS13 fluctuation v.s. Number of runs on Log-Log Plot

-7.97 (log based 2), which makes γ equal to 2−7.97 ≈ 0.004. To validate the model

given in 2.11, α’s and β’s are explicitly found. α2 = 5915, β2 = 1490, α1 = 1919,

β1 = 461, plugging into the closed form for γ with n = 13, the value comes out to

be 0.0037, very close to the regression value.The implication of this finding becomes

useful when we determine the amount of resource we need for lambda estimation,

which will be discussed in the next section.
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2.3.6 Counter Resolution and Divider Length

When doing lambda estimation using PRBS’s, the estimation error is two-fold: the

deterministic ppm error from transition density and estimation quantization error.

However, the transition density is not really fixed due to local fluctuation, but is

inversely proportional to number of runs. There is a subtle optimization that we are

able to achieve: we have fixed number of bits in counters and can only achieve a

certain resolution, then intuitively after a certain point in time the decreasing local

fluctuation in transition density can not be resolved by our counters anymore. In

other words any extra counting time would be a waste. This relates to the number

of division stages needed for counting and the question remains whether there exists

a point when any extra stage will not provide any more benefits.

Let’s define fd as the true data frequency, fs as the sampling frequency. For the

purpose of this analysis, let’s ignore the deterministic ppm error given by equation

2.7, and we will only look at the local fluctuation error. For an m bit counter, the

resolution it can achieve is then 1/2m. This quantization error can be translated to

an effective ppm error,ε given by

1

2m
=
εfd
fs

ε =
fs
fd2m

(2.12)

ε is the minimum error an m bit counter can ever achieve due to its limited resolution.

Also, given that there are D division stages, the total counting time is

Tcount =
2m

fs/2D
(2.13)

Then the number of runs, N, the l-bit PRBS has gone through is given by

N = Tcount ×
fd

2l − 1

≈ 2m+D−l fd
fs

(2.14)
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From the previous section, we found out the local fluctuation of transition density is

bounded by γ/N . Now we want to find the D such that after certain N, the error

is not dominated by local fluctuation but the counter resolution. So we set the two

bounds equal, and obtain

γ

N
= 2× 0.25× ε

γfs
2m+D−lfd

=
fs

2m+1fd

2D = γ2l+1

D = log2 γ2l+1 (2.15)

We also know what γ is from the previous derivations, namely (β2−α2/4)−(β1−α1/4)
2l

.

Plugging in this into 2.15 we have

D = log2 2
(

(β2 −
α2

4
)− (β1 −

α1

4
)
)

(2.16)

This is a very interesting result since there is no explicit dependency on m orl. How-

ever, α and β do have some dependency on l, but they have small effect on D due

to the log function. Therefore D stays relatively constant and this is the maximum

D we need for fluctuation to disappear for any given m bit counter. Plugging in the

number for PRBS13, we approximate D to be about 6. This means that for any

number of division stages larger than 6, we should expect a flat line for estimation

error, which is solely given by quantization error. Figure 2-10 shows a 2-D plot of

lambda estimation error (with deterministic error excluded) when PRBS13 is used.

For increasing number of bit in counters, we see a monotonically decrease in error.

In the number of division stages direction, we see large fluctuations for low division

numbers and it starts to become flat at around D=6, which agrees with what we find

analytically. Therefore, we choose the number of bits in counter based on the error

we can tolerate, and we choose number of division stages based on local fluctuation

attenuation. Leaving some margins, 10 bit counters and 7 division stages are used

for lambda estimator. This guarantees < 10−3 error in quantization error.
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Figure 2-10: 2D lambda estimation error plot for PRBS13

This analysis results in a reasonable precision in estimation using the minimum

amount of resources. Empirically, D increases a bit with respect to increasing l, but

this effect is masked by the deterministic ppm error. Moderate fluctuation near a

number that’s closer to 25% should yield the same or even better final result than

small fluctuation near a number away from 25%. The conclusion is that this fixed

number design should suffice for any PRBS test sequences.

2.4 Reconstruction Method

As shown above, the lambda estimator can provide a good estimation of λb, however

the error could still be on the order of 10−3, which may be larger than needed. When

the error is large, we will have no eye opening when we calculate the phase location

of each point with the simple reconstruction method

τn = mod(τn−1 + λb, 1) = mod(n× λb, 1) (2.17)
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Therefore, the first phase of the reconstruction algorithm would be to do a crude

search within the error range until we have a reasonable eye opening at the output.

1. For trial n, find time location for each sample for first 1024 sample group

2. Discretize these time locations into M bins, where M can be adjusted for preci-

sion (for first iteration, M=32 is chosen).

3. For each bin, find the minimum value above 0 and maximum value below 0,

which then tells the opening of that bin

4. Pass the opening values through a circular running average filter.

5. Find the maximum value of the filter, that would be the eye opening.

6. If eye opening is larger than threshold, move onto second phase. If not, add

or subtract ceiling(n/2)/1024 to the estimated lambda depending on the trial

number. Then iterate to 1.

When finished, the error would be small enough for us to move onto the next phase

of the reconstruction.The eye opening threshold level for the first phase estimation

would be an adjustable number to achieve the desired result. Let’s call the coarsely

estimated lambda from the first phase λ̂b, and the true lambda λb, then they can be

related as

λb = λ̂b + eb (2.18)

where eb is the error between the two. When we use the simple reconstruction method,

we see that the error term would also accumulate inside as mod(n× eb, 1). The pre-

cision we obtained from the lambda estimator would guarantee that for 1024 points,

the accumulated error would be less than a whole period, ie. 1024×eb < 1. However,

the next 1024 points would start with the accumulated error, which means the eye

diagram with respect to the first group of samples is shifted according to eb. With this

insight, we can analyze how much each small eye diagram has shifted with respect to

the previous one and use that as a correction term for the estimated lambda. Let’s
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have cl be the center of the eye opening for the lth data sample group, then ideally

we will have

n× êb = cl+1 − cl (2.19)

eb =
cl+1 − cl

n
(2.20)

However, finding the exact center of the eye with only 1024 points is challenging, thus

another estimation for the center of the eye is used as well. To formulate this, we

have the following algorithm for correction:

1. Find time location for each sample for first 1024 sample group

2. Discretize these time locations into M bins, where M can be adjusted for preci-

sion (for first iteration, M=32 is chosen).

3. For each bin, find the minimum value above 0 and maximum value below 0,

which then tells the opening of that bin

4. Pass the opening values through a circular running average filter.

5. Repeat step 1 to 4 for the second sample group.

6. The eye opening center could wrap around to other side of the period. Correct

lambda in one direction first by subtracting two eye centers and divide by 1024.

7. If correction direction is wrong, it will cause the eye to close again. If so, try

other direction.

8. Iterate back to one with the new lambda and higher precision M.

Figure 2-11 shows the iterative correction algorithm at work. Figure 2-11a is the

resulting eye diagram with uncorrected λ̂b, in which case we can see a great deal of

dispersion and the eye opening is nowhere close to the simulated eye. After the eye

opening shift analysis in Figure 2-11c, we see the sub-eyes are moving constantly to

the right, which is the result of the error in the lambda estimate. The blue crosses
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are the eye opening for each discrete bin, and the red curves are the output after the

circular running average filter.

(a) eye diagram with uncorrected λ̂b (b) eye diagram with corrected λb

(c) eye opening plot for three consecutive sample groups

Figure 2-11: Iteratively corrected lambda algorithm at work

Using this information, we regenerate the eye diagram with the corrected lambda,

which is shown in Figure 2-11b. We see that the result resembles what the ideal

simulated eye diagram almost perfectly. After the corrections for lambda, the newest

time locations for each point are calculated and finally stored in the next 3K locations.

The precision is going to be downscaled to only 8 bit decimal numbers (represented

by the memory byte), which means the final output to the computer is discretized to

256 by 256 grids both for horizontal and vertical axis.
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Chapter 3

Circuit Implementation

This chapter reviews implementation details of several important building blocks in

the system, including high speed sample and hold, analysis on bounded time sampling

clock jitter, lambda estimator and the digital reconstruction block. On the analog

side, the sample and hold circuit is designed and simulated on transistor level across

process, voltage and temperature (PVT) corners with layout parasitics. Mathematical

model is studied and presented on sampling clock jitter and a specification on the

required RMS jitter is determined. A novel CML latch circuit is designed particularly

for this application to be used in subrate extractor. On the digital side, the lambda

estimator and digital reconstruction blocks are implemented in Verilog RTL code and

synthesized to obtain area estimates.

3.1 Sample and Hold

As mentioned in the previous chapter, the sample and hold circuit is one of the hardest

building blocks in this system. The system is built upon undersampling techniques;

even though precision and linearity might not be a top priority, high bandwidth spec

is the most difficult. The targeted specification for bandwidth is 10GHz, the Nyquist

frequency of the maximum data rate. For reasons already explained, the proposed

circuit is pass gate switch based. In order to make the S&H circuit as general as

possible, no prior source impedance or output ADC capacitor load is assumed. As a
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result, there needs to be input and output buffer amplifiers to fix the source impedance

and output loads seen by the switches. The issue of direct Cds is solved by cross

coupling in differential configuration. Following subsections will discuss the design in

more details.

3.1.1 Pass Gate Self Bandwidth

In order to see whether the 10GHz input bandwidth spec is feasible, the pass gate’s in-

trinsic bandwidth, given by its on resistance and parasitic drain capacitance (RONCd),

must be sufficiently larger. Even though charge injection is less of an issue in differ-

ential configuration, by appropriately sizing the NMOS and PMOS, one can reduce

the clock feedthrough while improving linearity. In a case when the input DC level

is close to power supply, PMOS will turn on strongly and doing most of the work.

The test circuit contains a passgate with NMOS and PMOS width ratio to be 2:3.

Unit width is swept from 0.1um to 2.1um. Figure 3-1 shows the intrinsic bandwidth

of passgate with respect to width.

Figure 3-1: Passgate self bandwidth

Even though there exists an optimum bandwidth point at around 0.4um unit

width, the final circuit’s optimum point might move due to parasitic capacitance

from the next stage and/or source resistance from the previous stage. However, the

main takeaway is that the self bandwidth of simple passgate shows to be > 40GHz,

which is way above the required spec. This means that the limiting factor in the
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input signal bandwidth will come from the RC time constants in amplifiers.

3.1.2 S&H Implementation

Figure 3-2 shows the top level sample and hold circuit schematic. The signal path

consists of a linear input amplifier that has equalization to push out input bandwidth

and sets a low source impedance seen by the pass gates, the main pass gate switches,

and a linear output amp that will drive the sampling ADC.

Figure 3-2: Schematic of sample and hold

Figure 3-3 and 3-4 show the schematics of the input and output amplifiers. The

input amplifier is a source degenerated amplifier with high tail current to use smaller

load resistor, thus higher speed. The capacitor across the degeneration resistor is to

provide peaking in frequency response at high frequency. The small signal model of

this amplifier is shown in figure 3-5, where re is half of the degeneration resistor, ce

is twice the degeneration capacitor, and Rl is the effective load resistance.
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Figure 3-3: Schematic of input amplifier

Figure 3-4: Schematic of output amplifier

If we make the approximation that Cgs and Cgd are much smaller than ce, then
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the gain transfer function can be approximated by

vout
vin
≈ −gmRl

1 + gmre

1 + srece
1 + srece/(1 + gmre)

(3.1)

The degeneration give a zero at 1/(rece) and a pole at (1+gmre)/(rece), which provides

a bump in the gain curve with the zero occurring before the pole. The effect of Cgs

and Cgd will be adding high frequency parasitic poles to eventually load down the gain

and move the zero location a bit. By adjusting the degeneration capacitor, desired

gain peaking to push out bandwidth and compensate for later stage poles can be

achieved. The amplifier has a load resistance of 400Ω. Foot switches are added for

enable function in this amplifier. The output amplifier is a simple source degenerated

amplifier with lower current for much lower speed (driving ADC at 200MHz). Figure

3-6 shows the sizing the passgates used in this design. Parametric sweep on width

shows the optimum bandwidth happens at these sizes.

Figure 3-5: Small signal model of equalizing input amplifier

Figure 3-6: Schematic of pass gate
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In order to obtain the maximum bandwidth possible, no explicit hold capacitors

are used. The parasitic drain capacitance of the switches are used as the hold capac-

itors, and consequently the effect of Cds coupling is not negligible. The cross coupled

dummy switches serve to cancel the direct Cds coupling while holding the sampled

value. The trade off is a small bandwidth decrease due to Miller Effect. Figure 3-7

show simple models of the cross coupled switch network during off and on modes.

While off, the fully differential configuration enforces that V +
o becomes incremental

(a) Off (b) On

Figure 3-7: Simple model of S&H

ground because equal amount of charge injected on one input side will be sinked by

the other side. In this case, each Vi terminal will see twice Cds since each will drive two

off switches. While on, we can approximate V +
o to be V +

i , which makes the Cds seen

by V −i double due to Miller Effect. Equivalently, in track mode each input terminal

will also see 2Cds. Using a replica input amplifier to drive the dummy switches will

not eliminate this Miller multiplication, but only reduces the source parasitic loading

on the main input amp. As a result, considering power and area trade-off, a replica

input amp is not used. The finished sample and hold circuit consumes 1.5mW at

1.2 nominal power supply. Figure 3-8 shows the layout of the circuit, which is about

15µm by 30µm.
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Figure 3-8: Layout of sample and hold

3.1.3 Results

Figures 3-9, 3-10 and 3-11 show Monte Carlo simulation results for varying temper-

ature, voltage supply and process corners. Bandwidth, peaking and output gain are

plotted. The worst case scenario is for low power supply, high temperature and slow

corner, but bandwidth still maintains greater than 10GHz. Peaking is controlled un-

der .12db across all conditions, which is still considered flat in gain transfer function.
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Output gain is very strong function of temperature and process corner. From the

simulation, it is really a gain bandwidth trade-off, i.e. in slow corner the output gain

is closer to unity but bandwidth is smaller, and in fast corner bandwidth is higher for

a lower output gain. Output gain also decreases almost linearly with temperature.

However, gain error could be compensated for anywhere later in the system, either by

the voltage reference on ADC or even in the digital domain. For purpose of the rest

of the thesis, we will assume that the gain error is calibrated and the final sampled

point is on the full scale of our interest, i.e. 0-255 in digital values.

The hold mode cross coupled gain is around -53db on average across all PVT con-

ditions. Mismatch in layout is most likely the issue for the non complete cancellation.

More investigation could be put in to optimize layout in that respect; however -53db

gain during hold mode is enough to achieve 8 bit resolution with some margin for

noise.

A post layout transient simulation is also run, and a reconstruction is performed in

Matlab. Figure 3-12 shows the transient plot of the input, voltage after switches and

final sample and hold output respectively. The sampling clock has relatively sharp

edges to model finite switch turn on and turn off time. Hold values are sampled and

Matlab reconstruction code are run to obtain a reconstructed eye. Figure 3-13 shows

the real channel eye on the left and reconstructed eye from sample and hold circuit

on the right. The limited bandwidth of the S&H circuit causes reconstructed eye to

close a bit compared to the actual channel eye. This is to be expected since we argue

that this circuit behaves as a limited bandwidth signal probe. The reconstructed eye

does show acceptable result qualitatively in terms of showing estimates of eye opening

and jitter performance.
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Figure 3-9: Monte Carlo plots of sample and hold in slow corner

Figure 3-10: Monte Carlo plots of sample and hold in nominal corner
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Figure 3-11: Monte Carlo plots of sample and hold in fast corner

Figure 3-12: Transient waveforms of internal nodes in sample and hold

Figure 3-13: Actual channel eye v.s. reconstructed eye from S&H samples
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3.2 Sampling Clock Jitter

Sample and hold circuit determines the vertical resolution one has when reconstruct-

ing the eye diagram, the other aspect we have to consider then is the time domain

resolution. Sampling clock jitter determines the effective number of time steps we can

have within a bit period. The worst case is again when the bit period is the shortest

(highest data rate), in which clock jitter would become a larger percentage of a bit

period. It is difficult to evaluate the effect of clock jitter on the reconstructed eye

diagram unless a measure of reconstruction quality is created.

3.2.1 Eye Match Rate

Treating the eye diagrams as images with limited amount of pixels help one create

a measure for reconstruction quality. If the eye diagrams are seen as 64 by 64 2-D

images, then each grid will either have or not have points in it. Instead looking at

the specific number of points within each grid, we should lump it into a binary bit,

i.e. we should only care about whether there are points inside a particular grid. This

allows us to create a ”simplified” eye diagram that still contains enough information

in it for comparison. Figure 3-14a shows the lumped eye diagram for a bit period in

a 64 by 64 mesh when there is no sampling clock jitter. Figure 3-14b on the other

hand shows a lumped eye diagram when clock’s rms jitter is 10ps. We easily see the

10ps jitter eye diagram becomes very smudged, and points fall in places that are far

from where they should be.

By finding the absolute euclidean distance of the two images, we obtain the number

of mismatched grids between the two images. Dividing by the total number of grids

we then have a metric that can be interpreted as the mismatch rate of the two images.

In this case a mismatch of 100% means an image that’s inverted from the original.

Assuming about half of the image is occupied on average, a random image (with

points scattered around randomly) will yield a mismatch rate of close to 50%.
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(a) No jitter (b) 10ps RMS jitter

Figure 3-14: Comparison of reconstructed eye w/ and w/o jitter

3.2.2 Sample Clock Jitter Effect on Reconstruction

Using the metric developed in the previous subsection, transient simulations with

clock jitter varying from 0 to 15ps are run and eye diagrams are reconstructed with

the sampled points. In this simulation since we want to look at effects of clock jitter

alone, the reconstruction algorithm is NOT run, but the accurate lambda is explicitly

given and points are repositioned accordingly. In some of the cases (very large jitter),

the reconstruction method failed to reconstruct since the eye is essentially closed by

several points.

Figure 3-15 shows the evolution of eye diagram with increasing RMS jitter. The

reconstructed eye still has reasonable quality up to 5ps jitter. When jitter goes up

to 10ps, which is about 10th of the highest data rate bit period, the eye started to

get smudged. In figure 3-16, the match rate (1-mismatch rate) is plotted against

RMS jitter used in sampling. The numbers are normalized with respect to the no

jitter eye diagram, i.e. consequent eyes are compared to the no jitter eye diagram

as reference. The match rate almost decreases linearly with increasing jitter. Match

rate gets to as low as 70% when 15ps jitter is used. As a conclusion, I use this result

to define the jitter specification for sampling clock. From this plot as well as the

visual eye diagram outputs, a minimum of 85% match rate is desired, so the RMS

jitter performance should be no larger than 4ps in clock performance.
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Figure 3-15: Eye diagram evolution with respect to increasing jitter

Figure 3-16: Match rate v.s. RMS jitter

3.2.3 Oscillator Jitter Analysis

The nature of the application only requires bounded time sampling, i.e. the sampling

clock is only used for finite amount of time. This means phase noise from low fre-

quency components won’t manifest themselves as strongly, resulting in better RMS

jitter performance. The implication is then simple oscillator such as ring oscillator

might be able to meet the specification of < 4ps RMS jitter in this scenario, which

would be a big area and power saving. In this subsections the jitter model will be

studied and applied to conclude despite bounded time sampling, simple oscillators

jitter isn’t small enough to be used as sampling clock in this case.

Jitter is the deviation of the zero crossing point away from its desired location for

a given period. Jitter arises from noise sources affecting the voltage waveforms par-
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ticularly around the zero crossing points in an oscillator, thus advancing or delaying

the transition time. In the frequency domain jitter translates to a power leakage to

the side bands of the oscillation frequency. The resultant phase noise can be plotted

with respect to frequency offset from the center frequency. For a free running oscilla-

tor, the jitter is theoretically unbounded as time approaches infinity given a starting

point. Figure 3-17 [7] shows the increasing jitter with time due to accumulation of

jitter from period to period.

Figure 3-17: Unbounded jitter free running oscillator with respect to time

Since we only use the oscillator for a very short amount of time for sampling, so

the jitter is actually bounded. However, its time increasing nature does not change.

As a result, an analytical way of finding time domain RMS jitter from phase noise

must be derived in order to determine whether a free running oscillator will meet the

specification.

Let’s define the oscillator’s voltage output as a function of time, such that

Vout(t) = A(t) · f(ω0t+ φ(t)) (3.2)

where A(t) is the amplitude fluctuation due to noise and φ(t) is the phase fluctuation.

We are interested in the phase term and how to convert its fluctuation to time for a

given period. Assuming φ(t) is a stationary random process (caused mostly by white

noise sources), which means the mean and standard deviation stays the same at any
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given point in time, then the analysis becomes quite straight forward. The RMS jitter

after N periods is derived in the following way:

Let t1 be our origin of time, and it is the first zero crossing of Vout such that

Vout(t1) = 0

ω0t1 + φ(t1) = 0 (3.3)

Let t2 be the Nth zero crossing (so Nth period) and t2 must satisfy

ω0t2 + φ(t2) = 2πN (3.4)

The accumulated jitter after N periods (deviation of Nth zero crossing away from ideal

crossing location) is then

∆t = t2 − t1 −NT0 (3.5)

where T0 is the ideal period, same as 1/f0 or 2π/ω0. From 3.3 and 3.4, we obtain

ω0(t2 − t1) + φ(t2)− φ(t1) = 2πN

ω0(∆t+NT0) = 2πN + (φ(t1)− φ(t2))

∆t =
2πN

ω0

+
φ(t1)− φ(t2)

ω0

−NT0

∆t =
φ(t1)− φ(t2)

ω0

(3.6)

∆t is now expressed as a function of stationary random process φ(t), and its mean

and variance will be expressed as following

E[∆t] =
1

ω0

(E[φ(t1)]− E[φ(t2)]) = 0 (3.7)

V ar[∆t] =
1

ω2
0

(E[φ2(t1)] + E[φ2(t2)]− 2E[φ(t1)φ(t2)]) (3.8)

Our interest here is the variance of ∆t, which we express as ∆t2rms, and since φ(t) is

55



stationary, we simplify 3.8 as

∆t2rms =
2

ω2
0

(E[φ2(t)]− E[φ(t1)φ(t2)]) (3.9)

The term E[φ2(t)] is simply the variance of phase noise given that the mean is 0. The

later term E[φ(t1)φ(t2)] is then the covariance of the two random processes given a

time offset. Since φ(t1) is stationary, this term is the same as E[φ(0)φ(t2 − t1)] ≈

E[φ(0)φ(NT0)]. Both of these terms can be expressed with φ(t)’s auto-covariance

function R(τ), where τ is the time offset. Therefore

∆t2rms =
2

ω2
0

(R(0)−R(NT0)) (3.10)

Next, we explore the relationship between the auto-covariance function and the phase

noise spectrum. The phase noise spectrum (more precisely it’s the phase noise power

spectral density) is namely the Fourier Transform of the random process’s auto-

covariance function. The relationship is then given by the following

Sφ(f) =

∫ ∞
−∞

R(τ)e−j2πfτdτ (3.11)

R(τ) =

∫ ∞
−∞

Sφ(ω)ej2πfτdf (3.12)

Since both R(τ) and Sφ(ω) are even functions, these terms can be reduced further

R(τ) =

∫ ∞
−∞

Sφ(f)ej2πfτdf

=

∫ ∞
−∞

Sφ(f)(cos(2πfτ) + j sin(2πfτ))df

=

∫ ∞
−∞

Sφ(f) cos(ωτ)df + j

∫ ∞
−∞

Sφ(f) sin(2πfτ)df (3.13)

The second integral will become zero since it’s an even function multiplying an odd
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function. The transform then is reduced to Cosine Transform

R(τ) =

∫ ∞
−∞

Sφ(f) cos(2πfτ)df

= 2

∫ ∞
0

Sφ(f) cos(2πfτ)df (3.14)

We recognize that R(0) is then just the area under Sφ,

R(0) = 2

∫ ∞
0

Sφ(f)df (3.15)

Now equation 3.10 can be expressed in terms of phase noise PSD,

∆t2rms =
2

ω2
0

(2

∫ ∞
0

Sφ(f)df − 2

∫ ∞
0

Sφ(f)cos(2πfNT0)df)

=
4

ω2
0

∫ ∞
0

Sφ(f)(1− cos(2πfNT0)df (3.16)

=
4

ω2
0

∫ ∞
0

Sφ(f)× 2 sin2(
2πf

2
NT0)df

∆t2rms =
8

ω2
0

∫ ∞
0

Sφ(f) sin2(πNT0f)df (3.17)

This expression is very interesting and might not seem intuitive first with the sin2

term. This function acts as a weighting function depending on the observation period.

One intuitive way to understand this expression is by looking at several special cases.

When the observation period is very small, approaching zero, NT0− > 0 it is obvious

that there is no observed jitter, so this expression does give zero RMS jitter as an

answer. When the time runs till infinity, NT0− >∞, it’s easier to see from equation

3.17 that the cosine part the expression will approach 0 after integration. The proof
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is the following by integration by parts

∆t2rms =
4

ω2
0

∫ ∞
0

Sφ(f)(1− cos(2πfNT0)df

=
4

ω2
0

∫ ∞
0

Sφ(f)df − 4

ω2
0

∫ ∞
0

Sφ(f) cos(2πfNT0)df

∣∣∣∣
u=Sφ(f),dv=cos(2πfNT0)df

=
4

ω2
0

∫ ∞
0

Sφ(f)df −
(
Sφ(f)

sin(2πfNT0)

2πNT0

∣∣∣∣∞
0

−
∫ ∞
0

sin(2πfNT0)

2πNT0

dSφ(f)

df
df

)

Since there is a 2πNT0 on the denominator for both of the later terms and the integrals

will evaluate to a finite number, as NT0 approaches ∞, these two terms will go away

and only leaving the first term, thus

∆t2rms
∣∣
NT0−>∞

=
4

ω2
0

∫ ∞
0

Sφ(f)df (3.18)

And this expression is exactly the area under the phase noise power spectrum con-

verted to time, and it means this expression contains the noise contribution from all

frequency phase noise, which is what we expect when time goes to infinity. Another

way of looking at it is from the auto-covariance point of view. R(0) is the full variance

of the noise process, which is what we see when time runs to infinity, and R(τ) for

very large τ should approach 0, which means the two noise samples that are far apart

should not be correlated at all. This reasoning will give us the same answer if we take

τ to infinity from equation 3.10.

3.2.4 Ring Oscillator Phase Noise

Figure 3-18 shows the phase noise plot of a simple ring oscillator of 218MHz (green)

and the generated weighting function (yellow) when the observation time is only one

period. This is known as the period to period phase noise of an oscillator. The

weighting function acts as a +20dBc/Hz high pass filter with a cutoff at half the

oscillation frequency. It is intuitive that such a high pass eliminates low frequency

phase noise due to such a short observation time. Similarly, if we look at longer

observation time, i.e. 3072 sampling points, then the high pass cutoff frequency shifts
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left to include more low frequency phase noise, as shown in figure 3-19.

Figure 3-18: Phase noise plot of period to period jitter

Figure 3-19: Phase noise plot of 3072 point duration

The RMS jitter is then obtained by integrating the weighted phase noise curve

(blue). For this simple ring oscillator, the integrated RMS jitter is 60ps, which is

larger than the required specification. As a result, free running oscillators in general

can’t be used as sampling clocks in this application due to relatively long observation

period for low frequency noise to play a big role. Another possible solution could be

a LC oscillator tank (whose phase noise is much smaller) and divider combination,

which is not explored in this work. Otherwise, dedicated clock generators are required
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but will be assumed to be given with the specified RMS jitter for later parts of the

thesis.

3.3 Lambda Estimation

3.3.1 Frequency Divider for High Speed Data

The front stage of the lambda estimator is the subrate extractor, a chain of frequency

dividers to slow down the input signal to a low frequency square wave that the counters

can handle. The sampling clock ( 200MHz) is already considered low frequency for

65nm CMOS devices, so standard CMOS flip flop based frequency divider can be

directly used. Figure 3-20 shows the simplified block diagram of a standard divider.

Such CMOS D flip flops can be easily found in standard digital cells in the process

library.

Figure 3-20: CMOS frequency divider (divide by 2)

The challenge lies in the frequency divider for data input, which comes in at

10Gbps, significantly faster than what CMOS logic can handle. As a result, current

mode logic (CML) blocks are used as the first stages of data subrate extractor chain.

This application exists another particular challenge: the input data might not have

a wide open eye, which means a conventional CML frequency divider designed for a

relatively large input amplitude might not work in this case. As a result, a new CML

frequency divider with better input amplitude sensitivity is desired. The correctness

of frequency division will also contribute to the initial estimation error in λb. The

reconstruction algorithm will search for an eye opening by sweeping λb in the first
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phase, so this error can also be treated as any other initial error; however, a correct

division operation will only prove valuable for later stages.

3.3.2 CML Latch and Frequency Divider

Figure 3-21 shows a schematic of a conventional CML latch, in which the clock signal

steers the bias current through either a differential pair (in track mode) or the cross

coupled pair (in latch mode). If the clock signal is strong enough, the bias current will

only go through one branch of the latch, thus guaranteeing correctness of operation.

The major disadvantage of the conventional design is the fixed bias current, which

limits the sizes of the cross pair and diff pair devices and they are coupled in design.

Besides, clock feed-through might disturb the output during clock transitions if output

amplitude is not big enough. The hard turn on and turn off of the cross pair is also

an issue that slows down the operation.

Figure 3-21: Circuit schematic of conventional CML latch

Authors in [8] discuss the disadvantages for the conventional latch and proposed

alternative designs in which an always-on cross pair is present and clock steering

differential pair brings the current to power supply. This achieves faster switching

by a ft doubler when clock is compared to the common mode Vref , shown in figure

3-22. However, during the track mode the swing will be reduced since only the cross

coupled pair’s tail current goes through the load and in a low power supply process,

this is not desirable. However, this isolates the design of differential pair and the

latch pair and does work better.
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Figure 3-22: Circuit schematic of ft doubling latch

Figure 3-23 [9] shows another attempt at a frequency divider circuit by combining

the tail currents of the two latches and route them through either the master (diff

pair) or slave (cross coupled pair) block according to clock signal. This design allows

the sizing of the latch pair and diff pair determine the current through them when

on. This allows a similar isolated design between the two blocks, but a fluctuation in

swing and hard switching still cause problems.

Figure 3-23: Block diagram of a new frequency divider circuit

A new topology is designed for this specific application. Figure 3-24 shows the

circuit schematic of the proposed latch. Similar to conventional latch, there is a diff

pair for sampling as well as a cross coupled pair for latching. The difference is the extra

stand alone cross pair on the side. When sampling, the latch works as an amplifier

with the stand alone cross pair and resistors on top as load. When transitioning to
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latch mode, the cross pair is already able to start latching without any extra time

for turn on. The secondary cross pair then starts helping the latch action when the

bias current is steered to it. In this case, all the bias currents are saved, and the

output swing will stay constant. Besides, since there are now essentially two latch

cells doing work at the same time, only a small amount of current needs to go through

the secondary latch in order for the output to hold correctly. This means a smaller

clock amplitude is required in order for latching to happen.

Figure 3-24: Circuit schematic of proposed CML latch

This topology also gives relative isolation in designing the latch and differential

pair. There is no sacrifice for speed since the device sizes are comparable if not smaller

than the conventional latch. This latch also uses comparable power compared to a

conventional one. The resistor in the schematic connecting the two cross paired cells

serves as a bleeding resistor. It provides a smaller bleeding current through the

secondary latch while it’s off, so that it wouldn’t have a hard turn on transition and

can start latching faster. The extreme cases are when there is no bleeding resistor in

which case performance degrades due to slow turn on, and when the two are shorted

in which case during sample mode the output sees more parasitic capacitance.
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3.3.3 CML Divider Performance

A CML divider uses CML latch in the configuration shown in Figure 3-25. When the

clock amplitude is small,the two latches behave as amplifiers and inverted feedback

makes this a two-stage ring oscillator. This phenomenon is known as self oscillation

in CML dividers [10], in which the divider has a preferred oscillation frequency when

clock is differentially zero. The self oscillation frequency is approximately |gmRL −

1|/(RLCL), where RL and CL are the load resistance and capacitance and gm is the

transconductance of the cross coupled pair. Figure 3-26 shows a transient waveform

of divider output when clock amplitude is small, and it behaves as a mixer with clock

modulated with the self oscillation frequency.

Figure 3-25: CML latch based frequency divider

Figure 3-26: Clock modulation when divider oscillates

64



One can use self oscillation to divide even faster at the frequency of interest. When

self oscillation is half of the incoming data fundamental frequency, the divider tend to

operate faster. This gives rise of an input sensitivity curve for CML divider in which

a minimum input amplitude required exists at divider’s self oscillation frequency.

Figure 3-27 shows sensitivity curves of conventional divider (red) and proposed divider

(blue) when designed to have the same self oscillation frequency at same current level.

Clearly the proposed divider has better input amplitude sensitivity ( 20mV).

Figure 3-27: Sensitivity curves of conventional and new divider

Figure 3-28 and 3-29 shows the count of output waveform edges plotted against

channel length for conventional and new dividers respectively in slow process corner.

The conventional divider used is a standard cell that has a much higher self oscillation

frequency. For long channels (smaller clock amplitude), the conventional latch’s self

oscillation contributes greatly to the erroneous output count, while the new divider

starts to lose reasonable amount of count at about 17 inch hybrid transmission line

modeled channel at 10Gbps ( 80mV eye opening). In conclusion, the proposed latch

is used in the final system for its better clock sensitivity to input clock at comparable

power and area consumption. Once the first stage divides down the input clock, a

standard CML to CMOS converter is used for logic style conversion and following

CMOS dividers will be fast enough to process further.
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Figure 3-28: Count of edges of conventional divider v.s. channel length in slow corner

Figure 3-29: Count of edges of new divider v.s. channel length in slow corner
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3.3.4 Lambda Estimator Implementation

Figure 3-30 shows the block diagram of lambda estimator. The two clocks in the

schematics come from the division stages. Division chain for data clock involves a

Figure 3-30: Block diagram of lambda estimator

CML stage as front end and CMOS afterwards. The division chain for sampling clock

is purely CMOS. Due to the innate 25% transition density, the number of division

needed for data is 2 fewer than sampling clock’s.

This block is asynchronous, but involves some synchronization and metastability

issue. If we use the overflow signal from the sampling clock counter to latch the

count of the data clock counter directly, we might run into cases when the data count

is still transitioning and we latch a bogus value. As a result, the sampling clock

counter overflow signal is synchronized with the negative edge of data clock. The 10

bit counter should be fast enough for output to settle within half of a clock cycle

considering our counting clock is 128 times smaller than the original (10Gbps/128

80MHz). This eliminates the possibility of a complete bogus value, but might be off

by 1, which is negligible error. Both the latch signal and the latched count is then

synchronized with the system clock to be used as outputs to the master control block.

The native control block controls when to start counting (by enable signal) and when

to reset depending on asynchronous system control signals.

Figure 3-31 shows the place and route output with up to MET2 layer. The shape

of the block was chosen to be square and the pin placement was random due to lack
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of floor plan of the entire chip; however this should provide a relatively accurate

estimate. The block is about 45µm by 45µm ( 1700µm2) at a P&R utilization of

75%.Transient simulations have been done to verify the functionality of the block.

Figure 3-31: Place and route output of lambda estimator
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3.4 Digital Reconstruction

The digital reconstruction takes the 3072 samples and initial λb estimation and assigns

a phase location to each corresponding point while iteratively refining the accuracy

of λb. The digital block also enables/disables the sample and hold circuit to allow

sampling. It also sends master control signal to lambda estimator block. The re-

construction algorithm happens in three phases, coarse search, fine correct with low

resolution and fine correct with high resolution. Figure 3-32 shows a flow chart of the

reconstruction process.

Figure 3-32: Flow chart of reconstruction process

Due to large initial λb estimation error, the reconstructed eye will be closed. In

coarse search correction phase, a simple search is performed to find a λb starting at

the initial estimation that provides an acceptable eye opening, which will be used for

later fine correct stages.
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The fine correct phases look at how the eye opening drifts over 1024 sample points,

which is a result of accumulation of λb error. λb is then deterministically corrected

by subtracting the drift velocity. The difference between low resolution and high

resolution fine correct phases lies in several parameters such as the sample group size,

number of discretization bins and filter buffer size. As a result, a single module could

be designed with the ability to use external parameters given which the reconstruction

state.

Figure 3-33: Block diagram of reconstruction system

Figure 3-33 shows a block diagram of the reconstruction system. The eye opening

finder module and tau calculator module are essential blocks that are shared by either

correct modules. Consequently, a main finite state machine (FSM) is designed to

multiplex the control signals to these two modules depending on the reconstruction

phase. The memory controller module interfaces with eye opening finder and tau

calculator for unidirectional read or write operation; it also directly interfaces with

undersampling ADC to store samples once given the command from main FSM.

Details for specification, challenges in design and implementation for each module
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will be discussed in the following subsections.

3.4.1 Memory and Memory Controller

Memory is needed to store the sampled points and their corresponding phase location.

Each sampled point and phase location uses a byte, so 6KBytes of memory is needed.

For the scope of project, each memory block is modeled as register arrays in Verilog

with [7:0] memory[0:3071], and samples and tau have their individual memory array.

In an actual implementation, such register arrays will be replaced by actual SRAMs

to save area. An estimate of area will be given in 3.4.6.

The memory controller serves as the interface between memory and other modules.

In this algorithm the memory controller’s job can be reduced to three simple functions

1. WRITE 3072 ADC sample data to sample memory block. This will be one time

operation for each snapshot of eye diagram.

2. WRITE 3072 reconstructed tau data to tau memory block. Starts writing when

prompted by tau calculator block.

3. READ requested data out of both memory block to eye opening finder, marked

by a start and end address.

The memory controller will also have to rewritten when a real SRAM is used, but

these functions are simple enough to implement with this behavioral model.

3.4.2 Tau Calculator

Given a λb estimation that is passed along by main FSM from initial , coarsely cor-

rected or fine corrected estimation, the tau calculator performs a simple accumulation

operation and signals the memory controller to write each result to memory. This

module is basically where the reconstruction happens, performing the calculation

τn = mod(τn−1 + λb, 1) (3.19)
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The λb value is interpreted as a decimal number. With a fixed width accumula-

tor register (18 bits), the mod one operation is done automatically by accumulator

overflow. When storing values, only the higher 8 bits are stored, resulting in a high

resolution computation and low resolution storage scheme. The accumulator register

bit width (18) comes from the 8 bit tau value width and a 10 bit division later on in

the correction modules (divide by 1024 for drift velocity).

The module is controlled by either correct module, with a start signal and feeds a

done signal back when 3072 tau values have been calculated and stored, emulating a

function call. This is one of the simplest modules in the whole system, replacing the

complex math method in previous works.

3.4.3 Eye Opening Finder

The eye opening finder is one of the most essential blocks in the reconstruction system,

because its accuracy in calculating eye opening and location will directly affect further

corrections. Similar to tau calculator, this module is also shared by the two correct

modules, and read directly from memory controller with appropriate start and end

address. The procedure of finding opening is summarized in the following steps

1. For given data tuples (τn, yn), assigns each τn to a lumped bin (bin size depen-

dent on resolution of correct phase).

2. For each bin, keep track of the maximum value smaller than middle value (128),

and minimum value larger than 128.

3. When finished reading, take the difference of max below mid and min above

mid to get the eye opening for each bin.

4. Apply a running average filer to the difference array to smooth out sharp tran-

sitions and random jumps caused by limited samples. Keep track of maximum

and minimum values and where max occurs.

5. Returns the range of the eye opening, the deviation between filtered and unfil-

tered maximums and eye opening time location.
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Figure 3-34 shows an example of the filtered (red) and unfiltered (blue) eye opening

array mentioned in step 4. The goal is to eliminate any glitches and produce a smooth

output to increase accuracy.

Figure 3-34: Filtered and unfiltered eye opening waveforms

The running average filter is a simple window function. The window size is 8,

each with a value of 1/8. In the frequency domain it translates to a low pass filter

as shown in Figure 3-35. Ideally, only the eye opening height is needed to access

Figure 3-35: Frequency transfer function running average filter with 8 taps

whether there is an opening; however, due to some special cases, a sudden jump in

erroneous correction can result in a filtered output exceeding eye opening threshold

value. Figure 3-36 shows a comparison of filter outputs using wrong λb (left) and

correct λb (right). A sudden opening in the reconstructed eye on the left resulted in a

maximum value that is too large on the filter output, causing correction error, while

the correct opening filter output follows closely with the unfiltered waveform in shape

and amplitude.
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Figure 3-36: Filter outputs of wrong (left) and correct (right) λb estimation

If only eye height is given from this module, the correction modules will make

false decisions. To prevent such cases from happening, another parameter is gener-

ated, which takes the deviation of the filtered output maximum from the unfiltered

maximum. Intuitively, the low pass filter reduces the high frequency components of

the waveforms by a lot, resulting in a large change in sudden jump. For a correct λb

estimation, the high frequency component is minimal to start with, so applying a low

pass filter will not create large deviations in maximum values such as in the left case.

Actually implementing the running average filter requires evaluation of several

design trade-off, mainly between filter time and resource cost. One method is to use

an 8 operand adder, and moves difference values in the array in a circular fashion.

Each clock cycle will generate a output that’s the average of the next 8 elements in

the circular buffer. Using a small two operand full adder, one can sequentially add 8

values in 8 cycles and do so for all the elements in difference array, taking a lot more

time. One final approach is to pre-populate an accumulator with 8 elements, and for

each consecutive cycle, subtract the first value and add the next value to emulate the

circular shift. Table 3.1 shows a qualitative comparison between these three methods

in terms of resources and computation time for a 64 element difference array. The

push and pop method is used in this design for its small resource usage as well as

computation time.

Method Resources/Cost Time (clock cycles)
One shot add Large 8 operand adder 64
Sequential add Small full adder 8×64 = 512
Push and pop Small subtracter and adder 8+64 = 72

Table 3.1: Qualitative comparison of filter methods
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The eye opening module is also implemented as a function call in which calculation

is triggered by a start signal and flags when done.

3.4.4 Coarse Search Correct

The coarse search correct module is one phase of correction in which it searches for

a λb given the initial estimation that will produce an open eye. The goal is not to

search for the precise value, but to quickly converge to a value that shows the final

eye shape with considerable opening for later stages. As a result, the coarse search

module is very iterative, doing trial and error. This could be implemented with a

simple state machine, as shown in Figure 3-37. When an external start signal is

asserted, the FSM goes to RECONSTRUCT state, in which tau calculator assigns

phase values using initial estimation. In FIND EYE state, the eye opening finder will

return reconstructed eye opening parameters, and if the module decides it’s not open

enough, then it will update the trial λb and try a new estimate. This iterative process

continues until either an open eye is found and the corresponding λb value is latched

for next stage, or maximum number of trials have been reached and flags a failure.

Figure 3-37: Coarse search correct FSM

The state machine will have four main parameters to adjust. MIN RANGE and

MAX DEVIATION determine the criterion for an open eye, as discussed in the pre-
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vious section; empirically MIN RANGE is set to 32 and MAX DEVIATION is set

to 16. The STEP SIZE determines the λb increment/decrement every time a new

value is tried, and it is set to 1/211. MAX TRIAL is the maximum number of trials

the search will performed; this design chooses 512 trials, which translates to ±0.125

range from initial estimation. The MAX TRIAL can of course be adjusted to cover

the whole λb space, in which case no initial estimation is really needed.

Figure 3-38: Histogram of lambda estimation error

Figure 3-38 shows a histogram of λb estimation error running 5000 trials with

random variables in data rate (1-10Gbps), ppm error in data rate (0-100ppm), and

initial phase offset for counter (0 to 2π). The diagram is Gaussian with mean very

close to 0. One design choice is to decide what search mechanism to use. Let M be

number of one sided maximum trial steps, N be the actual number of steps of correct

lambda away from initial estimate, and n be the actual number of trials to find an

open eye. If we choose to search one way first and then the other way when we fail

to find a value, the expected number of trials for this method is

n̄ =
1

2
(M +N) +

1

2
N (3.20)

assuming we get equal chance of guess the right or wrong direction. If we perform a
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left-right alternating search, then

n̄ =
1

2
(2N) +

1

2
(2N + 1) = 2N +

1

2
(3.21)

The second method will have fewer trial steps than the first method on average when

2N +
1

2
<

1

2
(M +N) +

1

2
N

N <
1

2
(M − 1)

In our case, M = 256, which yields a bound of 128 steps, or absolute error of about

31m from initial estimation. Assuming that our initial estimation is relatively accu-

rate, the second method will obvious result in a fast search time. In the coarse search

module, a left-right alternating search mechanism is then used, which requires two

registers storing trial values and use appropriate value dependent on current trial.

3.4.5 Fine Correct

An overview of fine correct algorithm has already been presented in 2.4. The fine

correct module looks at eye opening locations of two consecutive groups of samples,

and by finding the drift velocity the module corrects λb by subtracting this error. This

section will discuss the design issues encountered in this module and their solutions.

Figure 3-39 shows the state transition diagram of the fine correct module. Dif-

ferent from coarse search correct module, the fine correct module is sequential in

states. Once a start signal is asserted, the module asks the eye opening finder to find

the first sample group’s eye location, then the second group’s by outputting appro-

priate start and end read addresses. Once the information is gathered, the new λb

is corrected during the state transition to RECONSTRUCT, in which new tau val-

ues are written to memory with corrected λb. The next two states, FIND EYE and

RECONSTRUCT BAR are used to deal with the ambiguity in correction direction.

Consider the situation drawing in Figure 3-40. There are two ways eye 1 can drift
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Figure 3-39: Fine correct FSM

to eye 2, following either the red or green arrows. The default way of correcting in

this module is take the obvious red path, in which center 1 is directly subtracted

from center 1. However, if λb goes in the opposite direction and with sufficiently

large error, the eye center of next group can wrap around the period (green path),

leaving the initial correction completely wrong. Therefore, another checking state

FIND EYE is added in the state machine to check whether the eye is still open after

correction. A correction in the wrong direction will cause the eye to close again,

so the same criterion used by coarse search module can be reused. If eye is closed

after correction, then wrap around must have happened and a correction in the other

direction is required, which is RECONSTRUCT BAR state.

Figure 3-40: Ambiguity in correction direction

The fine correct module will be used twice in this design, with either low or

high resolution correction. Table 3.2 shows a comparison in parameters and module

outputs when fine correct module is used in low and high resolution. The start and
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end read addresses going into eye opening finder is multiplexed by the main FSM

depending on the correction phase. The eye opening finder is also going to adjust

the filter discretization bins according the phase variable. In this fashion the state

machine can be reused again for a second round of high resolution correction without

major changes. The simple interface between modules (start, done, and return values

similar to a function call) makes this design possible.

Low resolution High resolution
Sample group size 1024 2048

Read addresses for 1st group 0 − > 1023 0 − > 2047
Read addresses for 2nd group 1024 − > 2047 1024 − > 3071

# of filter bins 32 64

Table 3.2: Parameter comparison for low and high resolution fine correct

3.4.6 RTL Synthesis and Area

Area is one of the main concerns in this system design. In order to make it fully

integrated, ideally the area should be small enough to be easily plugged into any

existing chips without an excessive area overhead. Power might be another criterion,

but since the system is not constantly computing a relatively large power consumption

for a short period time is still acceptable. In order to obtain an estimate of the area,

the computation logic is synthesized and place and route (PNR) tool is used to take

area utility factor into account. Memory will be another major contribution to area.

An estimate is obtained by adding the logic area and memory multiplied by a utility

factor of 0.75 (taking memory controller into account).

Figure 3-41 is the PNR output of only the computation logic blocks with aspect

ratio of 1:1, which includes eye opening finder, tau calculator, coarse correct, fine

correct, and main FSM modules. The area is 255 µm by 255 µm (≈65000µm2). The

utility factor is quoted to be 0.804 in this result, which shows that the design is quite

compact.

The memory area is estimated with the data book provided by the TSMC 65nm

memory compiler. The memory used is the Single Port SRAM. For a 3072×16 Single
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Figure 3-41: PNR logic only output

Port SRAM, the layout area is quoted to be 183.925µm by 231.385µm (≈ 42557µm2),

which is comparable to the computation logic blocks. The design only requires single

address access at a given time, which is managed by the memory controller block,

therefore a single port SRAM will suffice; just to get a sense of the size of a Dual

Port SRAM in 65nm, a 4096 by 16 memory (databook has no data for size of 3072

by 16) is quoted to be 307µm by 380µm (≈116660µm2), an area quite larger than a

SPSRAM. A dual port SRAM is only useful when there are other blocks trying to

access the memory at the same time the reconstruction is happening, for example

the PC interface is trying to read memory while reconstructing. It adds simplicity to
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memory controller design, however incrementally. A SPSRAM is strongly preferred

over a DPSRAM in this scenario, and the memory controller should be redesigned

to maintain the same simple functionalities and have an extra interface with PC

communication modules to read out the final results.

With a SPSRAM (3072 by 16) and redesigned memory controller, it is a safe

estimation to say that the memory and logic parts have about the same area con-

sumption. The total area for digital reconstruction block then is approximately

2 × 65000µm2 = 0.13mm2, equivalent as a square of 360µm as its side. The ad-

dition of sample and hold, lambda estimator, ADC, and clock generator will increase

the size, but not significantly.
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Chapter 4

Simulation and Results

System level testing and simulation pose challenges in this design. The system re-

quires long period transient simulation to verify the functionality of the whole re-

construction flow. This chapter presents testing strategies and results to support the

functionality of the system. Behavioral models are developed to speed up simula-

tions. Test benches are created to perform modularized tests. Entire system is tested

eventually and special test cases are used for results analysis and gain intuition in

limitations in system performance.

4.1 Behavioral Models

Chapter 3 discussed implementation details on the major blocks, however simulating

on transistor level will not be efficient. Behavioral models are developed to emu-

late the analyzed building blocks such as sample and hold and frequency dividers.

The digital building blocks, lambda estimator and digital reconstruct, are already in

written in Verilog RTL code, which can be simulated behaviorally.

The channel model that produces the eye diagram uses a hybrid transmission line

model. The parameters of this model comes from measurement data in the lab in

order to mimic real backplane channel as closely as possible. By changing the length

of the channel we change the eye shape, jitter, opening, etc.

The sample and hold is modeled by an input amplifier, perfect switches, and an
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output amplifier. The combined gain of the amplifiers is unity, assuming the gain

error has been calibrated out. The combined bandwidth of the system is 10GHz, the

worst case number from the Monte Carlo simulations. An 8-bit ADC model is used

to convert the sampled analog value into digital domain. Nonlinearity is not modeled

in this case since it doesn’t affect the correctness of reconstruction other than simply

alter the eye shape a bit. Sampling clock is modeled with a 3ps RMS jitter and a 5ps

edge time constant at 201.67MHz.

Frequency divider for data uses a front end differential to single ended comparator

with 100mV hysteresis, followed by 5 CMOS divide by 2 stages. The hysteresis models

the error from the divider when input eye is too small. The frequency divider for

clock is simply a chain of 7 CMOS divide by stages. The lambda estimator and

reconstruction system use their RTL behavioral codes directly for simulation. The

system clock is 75MHz.

4.2 Test Strategies

The analog building blocks have been characterized individually to conclude their

specifications and come up with their behavioral models. The digital blocks on the

other hand require more rigorous testing to verify functionality. There are several

issues and challenges in these tests; the memory registers have to be pre-loaded with

values in order to directly going into correction phase other than sampling new values

each time. Special cases have to be generated to detect edge cases such as the eye

wrap around mentioned in fine correction. It would be ideal to have a single test

bench setup to simulate both the coarse search module and fine correct module since

they share memory controller, eye opening finder and tau calculator.

Figure 4-1 shows an example test bench used to simulate the fine correct module.

The memory inside memory controller has been preloaded with sample values gener-

ated in previous cases when testing sample and hold, and random initial values for

tau memory block. The eye opening finder and tau calculator are wired to memory

controller with corresponding ports. The fine correct module is the one that is being
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tested, and an estimation has been preset by a logic reference block to bypass the

coarse search module. Each module in this system is designed to be like a function

call, therefore a single start signal will trigger the test. In this test bench there is no

high precision analog component, therefore it becomes very fast in simulation speed

and results can be easily probed.

Figure 4-1: Test bench example for fine correct module

4.3 System Test

When each individual block has been tested, the whole system’s behavioral model is

wired together to perform system level test. The main FSM in this system is designed

to perform the whole sequence, from sampling to reconstruction. In a final product,

a new FSM can be designed, in which a previous corrected reconstruction λb can

be remembered and directly used for reconstruction instead of going through initial

estimation again; the main FSM is open for design to add in more features to interface

with external user inputs, but in this test a simple entire sequence FSM is used.

Figure 4-2 shows the final system. Each block represents a behavioral model for

each major building block. Similarly the test is triggered by the start signal to the

digital reconstruction block as shown. Figure 4-3 shows example output waveforms

for one of the tests. With a 201.67MHz sampling clock for 10Gbps data and 75MHz

digital system clock, the whole reconstruction took about 2.3ms to complete.
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Figure 4-2: Final system test schematic

Figure 4-3: Example output waveforms

The reconstruction is marked by 5 stages, which are marked by 5 arrow brackets

in Figure 4-3.The shortest stage is the ADC sampling stage, in which 3072 ADC

values are taken and stored, spending 3072/201.67MHz ≈ 15µs. The second stage

is the initial lambda estimation phase, in which counters in lambda estimator work

the hardest, spending 210/(201.67MHz/27) ≈ 650µs. The longest time happens in

coarse search stage, which depends on the accuracy of the initial estimation. In this

particular case, it took 25 trials to reach the desired coarsely corrected lambda with

1.4ms. The fine correct spent a total of 250µs for both low and high resolution

correction marked by the last two arrows. In this case the high resolution correct

stage experience a eye wrap around, resulting in a slightly longer correction time.

The λb error started with 7m, and ended with 23µ.
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4.4 Results

When the system is verified, several different cases are tested to obtain a qualitative

sense of the performance and compare to expectations. The four cases used are the

combinations high data rate and large eye, high data rate and small eye, low data

rate and large eye, and low data rate and small eye. Figure 4-4 through 4-7 show

results for these four cases respectively.

Figure 4-4: Output of high data rate and large eye

Figure 4-5: Output of high data rate and small eye

The reconstruction outputs resembles the original eye diagram quite well. In the

high data rate cases (10Gbps), the reconstructed eyes are closed a bit due to the

limited bandwidth of sample and hold circuit. In the large eye case, not only is the

eye closed a bit, but there is some added jitter, mainly from the clock source and the

finite error in the corrected λb. Despite the small error in λb, a small drift dispersion

can still be seen in the large eye case. In the small eye case, the eye shape is relatively

conserved even with the limited bandwidth since high frequency components are not
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Figure 4-6: Output of low data rate and large eye

Figure 4-7: Output of low data rate and small eye

large to begin with. The effect of added jitter from sampling clock can still be seen

by dispersed points; the drift dispersion is negligible.

The outputs for low data rate cases (1Gbps) looks better in terms of preserving eye

shapes. The limited bandwidth effect does not show up in this scenario. However, in

the large opening case, the drift dispersion effect is dominant, while there is essentially

no jitter in the original eye diagram. The small eye case yields the best result, in

which the output almost looks identical to the original eye.

The drift dispersion effect implies that for a finite lambda error, there exists a

minimum jitter that we can obtain on the output reconstructed eye. We can obtain

more samples and iterate through more fine correct stages, with higher correction

resolution. It will be a trade off between the minimum acceptable reconstruction

jitter performance is and computation power and area.
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Chapter 5

Conclusion

5.1 Summary

This research project is motivated by the demand of on chip signal integrity monitor-

ing, specifically for eye diagram. As data rate increases on channel links, a more cost

effective method needs to be developed for quick assessment of eye quality in digital

communication. Different from synchronous technique, asynchronous reconstruction

does not require explicit knowledge of incoming data rate, and is compatible with a

wider range of input speeds.

This work proposes a new asynchronous reconstruction technique based on un-

dersampling theory. A simpler counting mechanism is used to replace the traditional

periodogram approach for finding the aliased frequency between data and sampling

clock. A new reconstruction algorithm is also developed to iteratively correct for error

in the initial aliased frequency estimation by search and deterministic correction. It

is advantageous over the DSP method because no complex math is required without

significant sacrifice in area, power and/or reconstruction time.

Using TSMC 65nm CMOS process, essential building blocks such as the 10GHz

bandwidth sample and hold and a novel CML frequency divider have been designed

on the transistor level. Detailed analysis on sampling clock jitter and lambda estima-

tion on PRBS are done to fully characterize performance and specifications. Digital

reconstruction blocks are fully implemented in Verilog RTL code and a synthesis at-
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tempt is made to estimate the finished block area to be about 0.13mm2. Behavioral

models are used to perform system level simulations and tests, which yields promising

results. The maximum data rate the system is designed for is about 10Gbps, limited

by the sample and hold circuit bandwidth.

Full fabrication of the chip is out of the scope of the project, which involves mainly

proving the validity of the proposed method and system. However, most important

building blocks have been implemented and detailed specifications are presented for

other necessary blocks. Floor-planing and full system tests on transistor level are as

critical in the future to reach fabrication of such monitoring chip.

5.2 System Usage and Application

The main assumption of the system is that the input sequence exhibits random nature

(e.g. PRBS), which is exploited to estimate λb. In this section, recommended usage is

presented while on the other hand the system is argued to be robust against different

input sequences if monitor time is a minor concern.

The frequency offset and error due to deviation from 25% positive transition den-

sity will thus result in a longer search time in the digital reconstruction module. When

the ppm error results in a data frequency offset greater than sampling frequency

εffdata > fsampling (5.1)

we are no longer confident that our initial λb estimation is near the true value. There-

fore, it is recommended that the preamble of input data is PRBS of high number of

bits, long enough for ADC to finish sampling 3072 points. After the first reconstruc-

tion is made, the system locks in onto a corrected λb, which shouldn’t change if the

data and sampling frequencies stay the same. The fine correct module should still be

used to correct for low frequency jitter as time goes on every time an eye diagram

is reconstructed. Bypassing the initial estimation and coarse search blocks will save

reconstruction time significantly (even without bypassing, the coarse search block will
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only iterate once if λb is locked in).

The worst case then is for the coarse search module to search through the whole

λb space, when the error condition above holds true. Figure 5-1 illustrates the upper

bound on trial steps needed with respect to different positive transition density. The

extreme cases will be very low and high transition probabilities. We define the corner

transition densities as 0.25(1± fsample
fdata

), beyond which the upper bound simply becomes

the entire search space. There is a minimum number of search steps even when

transition density is 25% due to finite estimation resolution (10 bits).

Figure 5-1: Search step upper bound v.s. transition densities

The time it takes to search through the entire λb space is dependent on the trial

step and system clock frequency. In this example, maximum trial number is 211 and

system clock frequency is 75MHz, translating to about 0.11 seconds of search time.

When the system is only used as a monitor (similar to figure 5-2, this time scale is still

small enough for the application, and the bottleneck should be the communication

speed of transferring data from the chip to PC. Once again, this is a one-time search

mechanism and once a corrected λb is found, following reconstructions can directly

use the locked value assuming no frequency changes.

Furthermore, the fine correct mechanism is fast enough for the system to also be

used in an equalization adaptation loop, shown in figure 5-3. The proposed system

naturally becomes an extension to many link equalizers that utilizes digital blocks.

With further digital processing, more detailed eye diagram information can be ex-
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Figure 5-2: Example usage of proposed system as signal quality monitor

tracted to allow better optimized equalizer settings. After the initial λb lock, each

consequent reconstruction only takes approximately 300µs at 75MHz system clock.

More sophisticated system level design can be realized to embed the eye monitor for

both open and closed loop operations.

Figure 5-3: Example usage of proposed system in equalizer adaptation loop

5.3 Future Improvements and Explorations

The eventual goal of this project is to fabricate a fully integrated on chip solution for

monitoring digital signal quality with eye diagram. This research shows good results

that a cost effective method is feasible in building such a system on chip and could

be plugged into existing link communication products. Several steps must be taken

to reach this eventual goal, and several refinements could be done along the way to

make informed trade-off choices.
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5.3.1 Fabrication

The main missing blocks in the system that hasn’t been fully implemented are ADC

after sample and hold, memory and sampling clock generator. The sample and hold

might need to be modified to interface with the ADC. One aspect that has not been

analyzed extensively is the noise performance in sample and hold and ADC. These

might have good and bad implication about the system. If reconstruction block does

not require full 8 bit resolution to work properly, then it loosens on the noise spec as

well as saves memory. If 8 bit resolution is required, then further techniques should

be explored to lower noise if it is found to be unsatisfactory.

The whole system’s floor-plan is also critical in that the final area can not be too

large. The layout of the sample and hold and place and route outputs of lambda

estimator and reconstruction block do not necessarily resemble the final product, but

simply provides an estimate of the area. The digital reconstruction block will be the

largest portion in the chip due to memory. A PC interface such as a standard I2C

block is to be added.

5.3.2 Area Saving

A small area while keeping reasonable reconstruction quality might be the most at-

tractive characteristic for a final SoC in this application. There are several ways that

can be explored to achieve area saving while making informed trade-offs.

The memory size is designed to be 8 bit for each word, both for sample and

tau data. A closer look in the reconstruction method shows that only higher 6 bits

of tau data are ever used when finding eye opening, which means 6 bits might be

good enough for reconstruction quality in terms of lumped eye diagram. The same

might apply for sample resolution, in which case is determined by noise and whether

reconstruction method has enough information to proceed. If true, then we save

3072× 4 = 1.5K bytes of memory space, going from 8 bits to 6 bits.

One other saving comes from the simplification of reconstruction algorithm to only

one fine correct stage. The purpose of multiple fine correct phases is to incrementally
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improve the lambda estimation to higher resolution. However, if the number of sam-

ples are small, a slightly larger estimation error will still be tolerable since it wouldn’t

accumulate as much. One fine correct stage only requires 2048 data samples instead

of 3072. The trade-off here becomes a slightly larger error in lambda for simpler logic

and smaller memory and area. Changing from 3072 to 2048 points results in 2K bytes

of memory saving. Experiments show 2048 points with only one fine correct stage is

still acceptable as shown in figure 5-4. The experiment data rate is at 10Gbps, and

even smaller eye can be reconstructed. Fewer samples also mean shorter sampling

duration, loosening sampling clock jitter specification.

Figure 5-4: Reconstruction results of 2048 samples

In conclusion, if only 2048 points are needed and 6 bit resolution is sufficient for

correct operation, that results in half of memory required, a significant area saving

while trading off with finished reconstruction quality.

5.3.3 Other Input Signals

The test cases in this work uses one type of channel model derived from a specific

type of backplane. Its low pass and relatively clean jitter characteristics make the eye

diagram quite regular and predictable. Different input signals are yet to be tested for

reconstruction. Other link models can be used and even equalizer outputs should be

tested.

The reconstruction algorithm relies on the eye opening and its location. There

could be eye shapes in which ringing occurs and multiple maximum opening can

happen within a single period. Current algorithm guarantees that the first maximum

location is used, and seems to work quite well.
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The effect of the low pass filter in finding eye opening might also play a role. For

simplicity, a running average filter is implemented, but a more complicated filter can

be used aiding the correctness of finding eye opening location with more computation

power. Again, there seems to be no best option, but rather always a trade-off between

different aspects in the system.

5.3.4 External Control Features

The core of the system is presented in this work, but there is room for expansion with

features that allow users to have further control externally. The software interface

that communicates with this SoC is the other part of the story – the simplest control

would be just an interface to send a start signal and when done reads back all the

data to be plotted in Matlab or other numerical software. Extra possible features

can include an initial estimation for lambda provided by user when the input data

frequency is known, separate control to different reconstruction stages for debugging

purposes, further image processing to extrapolate more eye information, etc.

There could be many more possibilities that can be appended onto the core design

in this thesis. The method proves to be cost effective in simulation and analysis, and

we look forward to further developments to fully carry this SoC into a product after

making important trade-off decisions and user specifications.

95



96



Bibliography

[1] G. Moustakides, O. A. Frederic Cerou, and L. Noirie., “eye diagram reconstruc-
tion using asynchronous imperfect sampling, application to ber estimation for
fiber-optic communication systemsl,” in European Signal Processing Conference
- EUSIPCO, 2002.

[2] E. Mobilon, M. de Barros, and A. Lopes, “Low cost eye diagram reconstruction
and morphological analysis for optical network performance monitoring using
digital signal processing techniques,” in Telecommunications Symposium, 2006
International, pp. 643 –646, sept. 2006.

[3] L. Noirie, F. Cerou, G. Moustakides, O. Audouin, and P. Peloso, “New trans-
parent optical monitoring of the eye and ber using asynchronous under-sampling
of the signal,” in Optical Communication, 2002. ECOC 2002. 28th European
Conference on, vol. 5, pp. 1 –2, sept. 2002.

[4] H. Choi, A. Gomes, and A. Chatterjee, “Signal acquisition of high-speed peri-
odic signals using incoherent sub-sampling and back-end signal reconstruction
algorithms,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on, vol. 19, pp. 1125 –1135, july 2011.

[5] G. Huang and P. Lin, “A fast bootstrapped switch for high-speed high-resolution
a/d converter,” in Circuits and Systems (APCCAS), 2010 IEEE Asia Pacific
Conference on, pp. 382 –385, dec. 2010.

[6] R. Inti, W. Yin, A. Elshazly, N. Sasidhar, and P. Hanumolu, “A 0.5-to-2.5gb/s
reference-less half-rate digital cdr with unlimited frequency acquisition range and
improved input duty-cycle error tolerance,” in Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), 2011 IEEE International, pp. 438 –450,
feb. 2011.

[7] A. Hajimiri, S. Limotyrakis, and T. Lee, “Jitter and phase noise in ring oscilla-
tors,” Solid-State Circuits, IEEE Journal of, vol. 34, pp. 790 –804, jun 1999.

[8] P. Heydari and R. Mohanavelu, “Design of ultrahigh-speed low-voltage cmos
cml buffers and latches,” Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, vol. 12, pp. 1081 –1093, oct. 2004.

97



[9] M. Usama and T. Kwasniewski, “New cml latch structure for high speed prescaler
design,” in Electrical and Computer Engineering, 2004. Canadian Conference on,
vol. 4, pp. 1915 – 1918 Vol.4, may 2004.

[10] R. Mohanavelu and P. Heydari, “A novel ultra high-speed flip-flop-based fre-
quency divider,” in Circuits and Systems, 2004. ISCAS ’04. Proceedings of the
2004 International Symposium on, vol. 4, pp. IV – 169–72 Vol.4, may 2004.

[11] J. McNeill, “Jitter in ring oscillators,” in Circuits and Systems, 1994. ISCAS
’94., 1994 IEEE International Symposium on, vol. 6, pp. 201 –204 vol.6, may-2
jun 1994.

[12] A. Demir, “Computing timing jitter from phase noise spectra for oscillators and
phase-locked loops with white and noise,” Circuits and Systems I: Regular Pa-
pers, IEEE Transactions on, vol. 53, pp. 1869 –1884, sept. 2006.

[13] F. Herzel and B. Razavi, “A study of oscillator jitter due to supply and substrate
noise,” Circuits and Systems II: Analog and Digital Signal Processing, IEEE
Transactions on, vol. 46, pp. 56 –62, jan 1999.

[14] L. Brooks and H.-S. Lee, “A 12b, 50 ms/s, fully differential zero-crossing based
pipelined adc,” Solid-State Circuits, IEEE Journal of, vol. 44, pp. 3329 –3343,
dec. 2009.

[15] Y. Borokhovych, H. Gustat, B. Tillack, B. Heinemann, Y. Lu, W.-M. Kuo, X. Li,
R. Krithivasan, and J. Cressler, “A low-power, 10gs/s track-and-hold amplifier
in sige bicmos technology,” in Solid-State Circuits Conference, 2005. ESSCIRC
2005. Proceedings of the 31st European, pp. 263 – 266, sept. 2005.

[16] L. Brooks and H.-S. Lee, “A zero-crossing-based 8-bit 200 ms/s pipelined adc,”
Solid-State Circuits, IEEE Journal of, vol. 42, pp. 2677 –2687, dec. 2007.

98


