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Chapter 1

Introduction

1.1 Motivation

Streaming data of a large volume with high content similarity is increasingly common

nowadays. For example, Twitter users produce a large volume of tweets every day and many

of those tweets are very similar in content. Since the volume of the data set is too large, a

sample of a smaller size is desired. Random sampling will resemble the overall distribution

of tweets and is likely to contain some redundancy. For a user, a more diverse set of tweets

might be more informative about an event or a topic of interest. In such a case, one might

wish to select a small but diverse sample from the data set. Diversity is of interest in any

system where items that are too similar to each other make the quality of the answer set

worse. This thesis formulates diverse sampling as a dispersion problem, studies the existing

solutions and offers new solutions that are optimized for streaming data model.

The initial motivation for this thesis came from a class project for Database Systems

course where my project partner and I implemented diverse selection operators for TweeQL

[15, 16]. TweeQL is a stream query processing language that allows users to use SQL-style

queries over Twitter API. It provides select, filter, group by and aggregate operators

as well as user-defined functions. We added a new operator diverse, which given a number

13



Figure 1-1: The system overview of the TweeQL extension project.

Twitter API 

TweeQL 

Diversification  
Lib in C++ 

User 

k, limits the answer to the most diverse subset of size k it can find. Figure 1-1 shows the

overview of the class project. Users send SQL-style queries to TweeQL, which processes

the queries and pulls tweets using Twitter API. In case of a diverse operator, it uses the

diversification module written in C++ that solves the most diverse subset problem. While

my project partner worked on extending the TweeQL with the new operator, I worked on the

diversification module that models diversification as a dispersion problem and offers multiple

algorithmic solutions. This thesis builds on the work I did on the project and does more

in-depth analysis of different algorithms and presents new solutions.

1.2 Thesis Outline

The next chapter gives the formal definition of the problem. Chapter 3 discusses the related

work. Chapter 4 presents the algorithms and provides a theoretical comparison of them.

Chapter 5 presents an experimental comparison of the algorithms and Chapter 6 concludes.
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Chapter 2

Formal Definition

Suppose we are given a data set D of n items, with items arriving one at a time, in a

“stream”. We do not know in advance the value of n. For a given k ∈ N, we would like to

select a subset S ⊂ D of size k, such that S is as diverse as possible. In order to do that, we

must have a well defined definition of diversity. Section 2.1 presents distance functions for

measuring diversity. Given such distance functions, Section 2.2 defines what it means for a

subset to be the most diverse.

2.1 Measure of Diversity

To evaluate diversity, we need to have a well defined distance function

d : D ×D → R

that measures the diversity between any two pairs of items. An edge is defined as a pair of

items with a corresponding distance between them. The greater the value of the distance,

the greater the diversity between the items. Ideally, the distance function should be a metric

distance. A metric distance must satisfy the following conditions for all x, y, z ∈ D:

1. non-negativity: d(x, y) ≥ 0

15



2. identity of indiscernibles: d(x, y) = 0 if and only if x = y

3. symmetry: d(x, y) = d(y, x)

4. triangle inequality: d(x, y) ≤ d(x, z) + d(z, y)

A distance function that violates the triangle inequality might still be of a practical

interest as the most diverse subset will be well defined. However, for such an arbitrary

function, an efficient (polynomial) algorithm with an approximation guarantee might not

exist unless P = NP [18].

Given a distance function, we can define the diversity of a set S in two ways:

1. minEdge(S) which equals to the minimum distance over all pairs in S, i.e.

minEdge(S) = min
x6=y∈S

d(x, y)

Intuitively, the set is as diverse as the least diverse pair it contains.

2. avg(S) which equals to the average distance over all pairs in S, i.e.

avg(S) =
1

|S|(|S| − 1)

∑
x,y∈S

d(x, y)

Intuitively, the set is as diverse as the average diversity of all pairs it contains.

In general, any distance function that can capture the desired diversity can be used. In

the context of Twitter data, we can specify the following distance functions for measuring

diversity.

2.1.1 Geographic Diversity

Given latitudes and longitudes of geocoded items such as tweets, we can use the geo-

graphic distance between locations as a measure of diversity. For geographic distances,

16



minEdge(S) is commonly used to evaluate the diversity of a set. This kind of diversity is

useful when one wants to see samples from all over the world, not just the US and Europe

that produce majority of the tweets.

2.1.2 Text Content Diversity

Given a set of documents, like tweets, we can use angular distance, or arccos-distance,

between high dimensional word vectors as a measure of text content diversity. One can also

use Jaccard distance, or 1 - Jaccard index of word sets, but it will not satisfy the triangle

inequality. Text diversity is useful when one wants to see the variety of topics, opinions and

messages, not just the most popular ones.

2.1.3 User Diversity

To have a good user diversity distance, one has to be able to measure how similar two

users are. For example, the similarity can be based on the followers graph in a system like

Twitter. Since we do not have information about the twitter users, as an experiment, we

decided to use a simple binary similarity. If two users are the same, then the distance is 0;

if two users are different the distance is 1.

2.2 k-Diverse Subsets

Given diversity measures of the previous section 2.1 and a positive integer k, one can

define the dispersion problem as to find subset S ⊂ D of size k, such that the diversity,

minEdge(S) or avg(S), is maximized. I call such problems k-diverse subset problems as

follows:

Definition 1. Given a data set D and diversity distance function d, a k-diverse maxmin

subset is S ⊂ D of size k, such that minEdge(S) is maximized over all possible subsets.

Definition 2. Given a data set D and diversity distance function d, a k-diverse maxavg

subset is S ⊂ D of size k, such that avg(S) is maximized over all possible subsets.

17



Both of these problems are known to be NP-hard, and finding an absolute, or constant

additive error, approximation is also NP-hard [18]. Hence, this thesis explores relative, or

constant factor, approximation algorithms. The next chapter 3 describes the related work

and known results about these problems.

18



Chapter 3

Related Work

3.1 Diversity

Diverse answers are useful for recommendation systems, search engines, and other systems

that have to select a small set of items from a large corpus of data. The proposed formulation

of diversity is similar to some recommendation systems [1, 23]. A survey on search result

diversification mentions dispersion as one of the approaches to diversity [8]. Similar to related

works in [1, 7, 9, 20], this thesis formulates diversity as a dispersion problem and adapts

static algorithms proposed in [18].

Diversifying answers has been studied in the context of search engines. The main goal of

a search engines is to get the most relevant and high quality items at the top of the results.

Search engines use probabilistic models for defining the problem and evaluating results. Such

models can be extended to take diversity into account [3, 21]. Since the main goal is different

from ours, such search diversity models are unsuitable for the purposes of this thesis.

In the context of databases, diverse sampling might be desired to achieve an approximate

answer to a query. [13] provides a survey of different sampling techniques and algorithms

in streaming data environments. Among the surveyed techniques, congressional sampling

can be used to obtain diverse samples. It is useful for approximating group by queries

19



[2]. Such sampling can be useful for achieving a username diversity, but not suitable for a

multi-dimensional diversity. For example, uniqueness of latitudes and longitudes does not

guarantee that the points are well dispersed on the map. This is the main difference with

other related work on diverse query results in [19, 2].

3.2 Dispersion Problem

The dispersion problem is an old problem originally formulated in the context of locating

facilities on a network, such that either the minimum distance or the average distance be-

tween facilities is maximized [10, 18, 5]. In operations research, it is often called p-dispersion

problem [10]. In theory of graphs, maximizing the average distance is called heaviest k-

subgraph problem [4]. It can also be formulated as an Integer Linear Program [14]. There

are also different varieties of dispersion problems. [5] provides a good survey of dispersion

problems with different objective functions.

Both versions of the dispersion problem, maximizing the minimum distance and the av-

erage distance, are known to be NP-hard [18]. In general, if the distance function does not

satisfy the triangle inequality, an approximation can also be NP-hard [18]. If the distance

function satisfies the triangle inequality, reasonable approximation algorithms can be found.

[10] gives a good overview of different heuristics for finding an approximation to k-diverse

maxmin subset problem.

As a baseline comparison, I use static greedy algorithms that have been proposed in

[18]. MaxMinStatic guarantees a factor of 2-approximation to the k-diverse maxmin subset

problem, and MaxAvgStatic guarantees a factor of 4-approximation to the k-diverse maxavg

subset problem. Unlike such existing solutions, in this thesis, I propose to use simple greedy

algorithms that are optimized for the streaming data. My algorithms, MaxMinGreedy and

MaxAvgGreedy, do not give any theoretical guarantees, but in practice get results that are

similar to the proposed baseline algorithms.

20



The authors of [17] independently developed similar streaming algorithms. Their results

are similar to mine in showing that greedy streaming approach does well in practice. I extend

this work with a more efficient streaming greedy maxmin algorithm, which has O(k log k)

insertion time unlike O(k2) proposed in [17].

In addition, in this thesis I propose Doubling algorithm as an approximation to a k-

diverse maxmin subset problem. The algorithm was originally used for approximating a

k-center problem in a streaming environment [6]. k-center is a clustering problem of

selecting k cluster centers from the given set of n items. Its objective is to minimize the

maximum radius, when each point is assigned to the closest center. It is also known to be

an NP-hard problem [6]. [12] gives a good overview on the theory and practice of clustering

data streams. Note that the MaxMinStatic algorithm proposed in [18] is similar to the 2-

approximation algorithm for the k-center problem in [11]. Despite the connection between

k-center and k-diverse maxmin subset problems, it is possible to construct examples where

an optimal solution to the k-center problem is arbitrarily bad at approximating k-diverse

subset. Therefore, adopting algorithms for k-center to solve k-diverse subset problem is not

trivial.
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Chapter 4

Algorithms

This chapter describes in detail all the algorithms that have been implemented for the

experimentation purposes. The algorithms are separated into two types: static and stream-

ing. I refer to solutions as static if they do not take into account the streaming nature of

data and store all data points in order to calculate the final answer at the end. Thus, they

require O(n) space. Streaming solutions, on the other hand, process each item as it arrives

and maintain the best solution. They require much less space, namely O(k) or O(k2).

4.1 Static Solutions

4.1.1 MaxMinStatic

MaxMinStatic starts with selecting a maximum edge from all edges in the data set D,

and then keeps adding a new item to the result set S until k items have been selected.

When choosing an item to add, it maximizes minEdge(S). As a result, it guarantees a

2-approximation to the k-diverse maxmin subset problem [18]. The pseudo code is shown

as Algorithm 1.

MaxMinStatic takes O(n2) time to find the maximum edge and takes O(kn) time to find

S. In the streaming model, it might be best to keep track of the maximum edge as the

23



Algorithm 1 MaxMinStatic

Find xi, xj ∈ D, such that d(xi, xj) is maximized
S ← {xi, xj}
while |S| < k do

Find x ∈ D\S such that minEdge(S ∪ x) is maximum
S ← S ∪ {x}

end while
Output S

points arrive, resulting in O(n) per item processing time and O(kn) final answer calculation

time.

4.1.2 MaxAvgStatic

MaxAvgStatic is very similar to MaxMinStatic. It also starts with selecting a maximum

edge and then keeps updating the result set S until k items have been selected. However,

unlike MaxMinStatic, it chooses an item to maximize avg(S). Therefore, it results in a 4-

approximation solution to the k-diverse maxavg subset problem. The pseudo code is shown

as Algorithm 2. It takes O(n2) time to find the maximum edge and O(kn) time to find

S. One can implement it to have O(n) per item processing time and O(kn) final answer

calculation time.

Algorithm 2 MaxAvgStatic

Find xi, xj ∈ D, such that d(xi, xj) is maximized
S ← {xi, xj}
while |S| < k do

Find x ∈ D\S such that avg(S ∪ x) is maximum
S ← S ∪ {x}

end while
Output S
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4.2 Streaming Solutions

4.2.1 Random

The Random algorithm selects a subset S of size k uniformly at random from the data set

D. It does not have any objectives such as to maximize minEdge(S) or avg(S). It serves as

a baseline solution that is the most efficient. Reservoir sampling can be used to efficiently

choose a random subset from the streaming data [22]. It takes constant time to process each

item and constant time to “calculate” the final answer.

4.2.2 MaxMinGreedy

MaxMinGreedy is a greedy streaming algorithm that keeps track of the current “best”

solution S to k-diverse maxmin subset. When a new item x arrives, it examines whether

swapping some item y ∈ S with x increases the objective value minEdge(S). Let the

objective value after swapping y ∈ S with x be

swap(x, y) = minEdge({x} ∪ S\{y})

If swapping increases the objective value, then x is swapped with an item y that maximizes

swap(x, y). Otherwise, point x is discarded. The pseudo code for processing and item is

shown as algorithm 3

Algorithm 3 MaxMinGreedy::insert(x)

if |S| < k then
Add x to S

else
if max

y∈S
(swap(x, y)) > minEdge(S) then

S ← {x} ∪ S\{y}
where y is such that maximizes swap(x, y)

end if
end if

25



It is possible to implement MaxMinGreedy with O(k) space and O(k2) running time as in

[17], or with O(k2) space and O(k log k) running time. To achieve O(k log k) running time,

one should keep a balanced binary search tree of incident edges for each point in S.

4.2.3 MaxAvgGreedy

MaxAvgGreedy is a greedy streaming algorithm that keeps track of the current “best”

solution S to k-diverse maxavg subset. Similar to MaxMinGreedy, it greedily swaps y ∈ S

with x, as to maximize the objective value. In this case, the objective value after swapping

y ∈ S with x is

avg({x} ∪ S\{y})

Item x is discarded if swapping cannot increase the objective value. The pseudo code for

MaxAvgGreedy item processing is shown as algorithm 4

Algorithm 4 MaxAvgGreedy::insert(x)

if |S| < k then
Add x to S

else
find y ∈ S that maximizes avg({x} ∪ S\{y})
if avg({x} ∪ S\{y}) > avg(S) then

S ← {x} ∪ S\{y}
end if

end if

It is possible to implement MaxAvgGreedy with O(k) space and O(k) running time [17].

4.2.4 Doubling Algorithm

The Doubling algorithm is a streaming algorithm that guarantees 8-approximation to k-

diverse maxmin subset. The original idea was used to solve k-center clustering problem [6].

I have adopted it with a minor modification. It is shown as Algorithm 5 and Theorem 1

shows the proof the approximation bound.

26



Algorithm 5 Doubling::insert(x)

if |S| < k and |S∗| = 0 then
add x to S
r ← minEdge(S)

else if ∃y ∈ S, such that d(x, y) ≤ 2r then
ignore x

else if |S| < k then
add x to S

else
S∗ ← S
add x to S
r ← max(2r,minEdge(S))
while ∃y, z ∈ S such that d(y, z) ≤ r do

remove y from S
end while

end if

Algorithm 6 Doubling::answer()

if |S| < k and |S∗| = k then
output S∗

else
output S

end if

The algorithm maintains set S of center points and value r ∈ R such that

Invariant 1. r is lower bound on the minimum edge between items in S, i.e.

minEdge(S) ≥ r

Invariant 2. For any point x that the algorithm has processed, ∃y ∈ S, such that

d(x, y) ≤ 2r

i.e. x is within 2r of some center y ∈ S.

The initial value of S are the first k points and r = minEdge(S). As we process new points,

we want these invariants to hold, so that we can make a guarantee on the approximation
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factor. We want S to be of size k. When a new point arrives and it cannot be discarded

because of the invariant 2, we add it to S. If S becomes of size k + 1, |S| is reduced by

doubling r or increasing it as much as necessary, and removing the centers in S that violate

the invariant 1. Unlike in [6] where r is doubled until the size of S can be reduced, I assign

the new radius r to max(2r,minEdge(S)). The reduction in the size of S might result in

|S| < k. Since we expect more points to arrive, we will allow the size of S to be smaller than

k. We can state this as another invariant.

Invariant 3. The size of S is less than or equal to k, i.e. |S| ≤ k.

When |S| < k and the algorithm has to return the answer, it returns the previous set of

size k saved as S∗ as shown in algorithm 6.

It is not hard to see that the invariants hold after each insertion. Given the invariants,

let’s show that the algorithm achieves an 8-approximation to k-diverse maxmin subset.

Theorem 1. Doubling algorithm achieves an 8-approximation to k-diverse maxmin subset.

Proof. Suppose Sopt is the best solution to k-diverse maxmin subset. For any subset S ⊂ D,

we have that

minEdge(SOPT ) ≥ minEdge(S)

We have to show that

minEdge(SOPT ) ≤ 8 ·minEdge(S)

Consider the three different cases in the answer that the algorithm gives:

1. The algorithm returns S of size |S| < k because fewer than k items have been inserted.

2. The algorithm returns S of size k.

3. The algorithm returns S∗ of size k because |S| < k.
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Case 1 is trivial and case 2 is easy given the invariants 1 and 2. In case 2, we have that

r ≤ minEdge(S)

Suppose ∃x, y ∈ SOPT , such that they are within 2r of some center z ∈ S, then

minEdge(SOPT ) ≤ d(x, y) ≤ d(x, z) + d(z, y) ≤ 4r ≤ 4 ·minEdge(S)

If no two points in SOPT are within 2r of some center z ∈ S, then there is one-to-one

correspondence between centers S and items in SOPT , such that the distance is less than

or equal to 2r according to the invariant 2. In this case, consider the pair x, y ∈ S that

corresponds to minEdge(S). Each of x and y have corresponding points x′, y′ ∈ SOPT , such

that

d(x, x′) ≤ 2r

d(y, y′) ≤ 2r

We get that

minEdge(SOPT ) ≤ d(x′, y′) ≤ d(x′, x) + d(x, y) + d(y, y′) ≤

≤ 4r + minEdge(S) ≤ 5 ·minEdge(S)

This shows that case 2 gives us a factor of 5 approximation.

Now, let’s prove case 3. We have that |S| < k. By the pigeonhole principle, ∃x, y ∈ SOPT

such that x and y are within 2r of some center z ∈ S, i.e.

d(x, z) ≤ 2r

d(y, z) ≤ 2r
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This gives us that

minEdge(SOPT ) ≤ d(x, y) ≤ 4r

Let r∗ be the old value of r that corresponds to the solution S∗ and let x be the point

whose insertion caused the increase in r. There are two possibilities:

(i) r = 2r∗

(ii) r = minEdge(S∗ ∪ {x})

In case (i), we get that

minEdge(SOPT ) ≤ 4r = 8r∗ ≤ 8 ·minEdge(S∗)

because S∗ with r∗ satisfied the invariant 1 before the insertion of x.

In case (ii), we have that

minEdge(SOPT ) ≤ 4r = 4 ·minEdge(S∗ ∪ {x}) ≤ 4 ·minEdge(S∗)

because adding x to S∗ cannot increase the minimum edge value between the items.

This concludes the proof that the Doubling algorithm achieves 8-approximation to the

k-diverse maxmin subset.

It is possible to implement the Doubling algorithm with O(k) space and O(k2) running

time, or with O(k2) space and amortized O(k log k) running time as shown in [6].

4.3 Theoretical Comparisons

I have implemented the static and streaming algorithms described in this chapter. Table 4.1

lists all algorithms and summarizes their space and item processing time requirements.
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Table 4.1: Implemented Algorithms

Algorithm Insert Answer Space Maximizes Approximation

MaxMinStatic O(n) O(kn) O(n) min edge 2
MaxAvgStatic O(n) O(kn) O(n) avg 4
Random O(1) O(1) O(k) - -
MaxMin O(k log k) O(1) O(k2) min edge -
MaxAvg O(k) O(1) O(k) avg -
Doubling O(k log k) O(1) O(k2) min edge 8
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Chapter 5

Experiments

This chapter evaluates and compares the quality of results achieved by the implemented

algorithms. The evaluation data set contains about six million geo-tagged tweets collected

on 24-25 December of 2012. Section 5.1 evaluates the diversity achieved on the Twitter data

set, and section 5.2 evaluates the runtimes of the proposed algorithms.

5.1 Result Quality

This section evaluates the quality of diversity achieved by the proposed algorithms. Sub-

section 5.1.1 shows examples of different types of diversity on the Twitter data set in order

to demonstrate the validity of the diversification model. Given the k-diverse subset model,

subsection 5.1.2 evaluates the approximation factors achieved by different algorithms.

5.1.1 Tweet Diversity Examples

Geographic diversity

Consider the geographic diversity discussed in the subsection 2.1.1. Figures 5-1, 5-2,

and 5-3 show the results of selecting k = 20 tweets from n = 10000 tweets using Random,

MaxMinGreedy, and MaxAvgGreedy algorithms correspondingly. As we can see from the

pictures, MaxMinGreedy results in points well dispersed on the world map. The Random
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Figure 5-1: Geographic diversity: Random selected tweets.

Figure 5-2: Geographic diversity: MaxMinGreedy selected tweets.

algorithm tends to select points located in the US and Europe, where the majority of tweets

are from. MaxAvgGreedy tends to select points in two clusters, where the clusters are far

away from each other, in order to maximize the average edge.
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Figure 5-3: Geographic diversity: MaxAvgGreedy selected tweets.

Table 5.1: Example of a geographic diversity for n = 10000 and k = 20

Algorithm Maximizes Avg (miles) Min Edge (miles)

Random - 3740.626 15.597
MaxMinStatic min edge 6309.610 2034.272
MaxMinGreedy min edge 6232.295 1911.953
Doubling min edge 5948.964 819.676
MaxAvgStatic avg 6518.224 64.022
MaxAvgGreedy avg 6510.230 60.351

Table 5.1 shows the values of minimum and average edges for all algorithms. MaxMinStatic

and MaxAvgStatic achieve values similar to MaxMinGreedy and MaxAvgGreedy. The Doubling

algorithm achieves values smaller than MaxMinGreedy, but much better than the Random al-

gorithm. In general, to achieve a good geographic diversity, it is best to maximize the

minimum edge.

Text Diversity

Consider the content diversity discussed in the subsection 2.1.2. Figures 5-4 and 5-5

show the world clouds of k = 50 tweets selected from n = 5000 tweets using Random and
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Figure 5-4: Text diversity: Random selected tweets.

Figure 5-5: Text diversity: MaxMinGreedy selected tweets.

MaxMinGreedy algorithms, and Jaccard index for measuring diversity. From figure 5-4 we

can see that Random algorithm has selected many tweets related to Christmas as it was

the most popular topic during the Christmas day of 2012. In contrast, tweets selected by

MaxMinGreedy, in figure 5-5, have more uniform word distribution as it maximizes for the

content diversity.
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Table 5.2: Example of text diversity for n = 5000 and k = 50

Algorithm Maximizes Avg (miles) Min Edge (miles)

Random - 0.9897 0.3333
MaxMinStatic min edge 1.0 1.0
MaxMinGreedy min edge 1.0 1.0
Doubling min edge 0.9882 0.6250
MaxAvgStatic avg 1.0 1.0
MaxAvgGreedy avg 1.0 1.0

Table 5.3: Distribution of usernames with Random selection

Number of users Number of occurrences
953 1
20 2
1 3
1 4

Table 5.2 shows the values for minimum and average edges for all algorithms. All al-

gorithms except Random and Doubling achieve a perfect solution as 1.0 is the maximum

possible value for an edge. The Doubling algorithm achieves a better minimum edge value

compare to Random.

User Diversity

Consider the user diversity discussed in the subsection 2.1.3. Table 5.3 shows the distri-

bution of usernames when selecting k = 1000 tweets from n = 10000 tweets using Random

algorithm. All other algorithms that maximize for some diversity, achieve a perfect solution,

i.e. all usernames are unique and edge values are all equal to 1. Of course, there are much

better ways to achieve username diversity. The purpose of this example is to demonstrate

that the proposed algorithms can achieve a diversity of users.

5.1.2 Quality of Proposed Algorithms

As we can see from the examples of the previous section, it is reasonable to model diver-

sification as a k-diverse subset problem. Given such a model, we can measure the quality of
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the result set S by the value of the objective function. In case of k-diverse maxmin subset,

the objective is to maximize minEdge(S), and for k-diverse maxavg subset, the objective is

to maximize avg(S). Note that finding the optimal solution is not practical. A brute-force

search algorithm will have to look at
(
n
k

)
possible subsets. Therefore, we evaluate the quality

by comparing the proposed algorithms to each other. Random algorithm can serve as a good

baseline because it is the most efficient one possible. MaxMinStatic and MaxAvgStatic serve

as a good baseline to the streaming algorithms, because they have a theoretical guarantee

on the approximation factor.

This section presents experiments that show that MaxMinGreedy and MaxAvgGreedy achieve

diversity results very similar to MaxMinStatic and MaxAvgStatic correspondingly. The

Doubling algorithm does worse than MaxMinGreedy in practice, but unlike MaxMinGreedy

guarantees a factor of 8-approximation in the worst case. All diversification algorithms

achieve significantly better results than Random algorithm. All examples are shown for the

geographic diversity. Similar results can be obtained for other diversity metrics.

k-Diverse Maxmin Subset Algorithms

Let us consider algorithms that maximize the minimum edge. Figure 5-6 shows the mini-

mum edge value for a geographic diversity with n = 10000 and varying values of k. We can

see that MaxMinGreedy and MaxMinStatic are very similar to each other and better than

Doubling. Varying k while keeping n constant shows that the selected tweets become less

diverse as the subset size increases. If we adopt MaxMinStatic as a baseline algorithm and

repeat the experiment multiple times, we get the results shown in the figure 5-7. It shows

the average ratio of the minimum edge to the value obtained by MaxMinStatic algorithm as

we vary k and keep n constant. If we keep k constant and vary n, we get results shown in the

figure 5-8. From the figures, we can see that the ratio of MaxMinGreedy to MaxMinStatic is

about 1, which means that these two algorithms achieve very similar objective values. We

can also see that MaxMinGreedy tends to do slightly better when k is much smaller compare

to n. However, such difference is insignificant.
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Figure 5-6: Geographic Diversity: k vs. minimum edge for n = 10000.
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Figure 5-7: k vs. minimum edge relative to MaxMinStatic for n = 10000.
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The Doubling algorithm achieves average ratios around 0.5, which means that it does two

times worse than MaxMinGreedy and MaxMinStatic. The Random algorithm does the worst

with an average ratio very close to 0.
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Figure 5-8: n vs. minimum edge relative to MaxMinStatic for k = 30
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k-Diverse Maxavg Subset Algorithms

MaxAvgGreedy and MaxAvgStatic maximize the average edge length.If we adopt

MaxAvgStatic as a baseline algorithm and plot average ratios, we get the results shown in

Figures 5-9 and 5-10. Figure 5-9 shows average ratios when keeping n constant and varying

k, and figure 5-10 shows average ratios when keeping k constant and varying n. We can

see that MaxAvgGreedy does slightly worse than MaxAvgStatic, but the ratio is very close

to 1. The Random algorithm fluctuates more and achieves ratios around 0.7 − 0.8. We can

conclude that MaxAvgGreedy and MaxAvgStatic achieve similar values and do significantly

better than a random algorithm.

5.2 Performance

This section shows the runtimes for the proposed algorithms on Intel(R) Pentium(R) 4, 2GB,

3.8GHz machine. The implementation has been done using C++. For streaming algorithms

we care about the insertion time of an item since they maintain current best answer at all

times. For static algorithms, the insertion time can be as fast as saving an item or can

be O(n) if doing some processing upon insertion. Since we get the final answer only after
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Figure 5-9: k vs. average edge relative to MaxAvgStatic for n = 10000.
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Figure 5-10: n vs. average edge relative to MaxAvgStatic for k = 30.
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running the algorithm on all items, I report total runtimes for the static ones.

5.2.1 Insertion

Figure 5-11 shows insertion times for the streaming algorithms when varying k and keeping

n constant. The insertion time of the Random algorithm stays constant because it is indepen-

dent of k. The insertion time of MaxAvgGreedy grows linearly with k and the insertion time
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Figure 5-11: k vs. average insertion time for n = 10000.
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of MaxMinGreedy grows as O(k log k). The Doubling algorithm also grows as O(k log k), but

for small values of k it is much faster than MaxAvgGreedy and MaxMinGreedy. This can be

explained by the fact that the Doubling algorithm is more lazy and ignores points that are

within 2r of some center point.

If we keep k constant and vary n, we get results shown in Figure 5-12. As expected,

streaming algorithms do not depend on n and the insertion times stay constant as n increases.

5.2.2 Total Runtimes

If we compare the total runtimes of the proposed algorithms, then streaming algorithms

are an order of magnitude faster than the static algorithms and scale much better for large

data sets. Since the order of execution time is very different, I plot streaming and static

algorithms separately. Figure 5-13 shows total runtimes for the streaming algorithms and

figure 5-14 shows total runtimes for the static algorithms as we vary k and keep n constant.

Total runtimes include item insertions and final answer calculation times. If we vary n

and keep k constant, we get results shown in figures 5-16 and 5-15. MaxAvgStatic and

MaxMinStatic scale quadratically with respect to n and have very similar execution times
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Figure 5-12: n vs. average insertion time for k = 30.
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Figure 5-13: Streaming algorithms: k vs. average runtime for n = 10000.
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as their complexity is similar. As expected, streaming algorithms have much better scaling

for large n. The Doubling algorithm proves to be very efficient in practice compare to other

streaming approaches.
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Figure 5-14: Static algorithms: k vs. average runtime for n = 10000.
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Figure 5-15: Streaming algorithms: n vs. average runtime for k = 30.
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Figure 5-16: Static algorithms: n vs. average runtime for k = 30.
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Chapter 6

Conclusion

In conclusion, the three major contributions of this thesis are:

1. The evaluation of proposed algorithms on the Twitter data set shows that formulating

diversification as a dispersion problem is a reasonable approach and can be used to

achieve different types of diversity.

2. Experiments show that MaxMinGreedy and MaxAvgGreedy achieve results that are very

similar to MaxMinStatic and MaxAvgStatic, while being much more efficient both in

streaming and non-streaming environment.

3. Theorem 1 proves that Doubling algorithm achieves an 8-approximation to k-diverse

maxmin subset problem. Although in practice Doubling algorithm achieves worse

result sets than MaxMinGreedy, it is more efficient and is recommended for large data

sets. To my best knowledge, it is the first streaming algorithm that gives a constant

factor guarantee on the quality of approximation.
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