
Affordance-Based Control of a

Variable-Autonomy Telerobot
by Michael Fleder

Submitted to the Department of Electrical Engineering and Computer Science in Partial

Fulfillment of the Requirements for the Degree of Master of Engineering in Electrical

Engineering and Computer Science at the Massachusetts Institute of Technology

September 2012

The author hereby grants to M.I.T. permission to reproduce and

to distribute publicly paper and electronic copies of this thesis document in whole and in

part in any medium now known or hereafter created.

Author: __

 Department of Electrical Engineering and Computer Science

 September 4, 2012

Certified by: __

Professor Seth Teller

Professor of Computer Science and Engineering

Thesis Supervisor

 September 4, 2012

Accepted by: ___

Professor Dennis M. Freeman

Chairman

Masters of Engineering Thesis Committee

2

Affordance-Based Control of a Variable-

Autonomy Telerobot
by Michael Fleder

Submitted to the Department of Electrical Engineering and Computer Science on

September 4, 2012 in partial fulfillment of the requirements for the degree of Master of

Engineering in Electrical Engineering and Computer Science

Abstract

Most robot platforms operate in one of two modes: full autonomy, usually in the lab; or low-

level teleoperation, usually in the field. Full autonomy is currently realizable only in narrow

domains of robotics—like mapping an environment. Tedious teleoperation/joystick control is

typical in military applications, like complex manipulation and navigation with bomb-disposal

robots.

This thesis describes a robot “surrogate” with an intermediate and variable level of autonomy.

The robot surrogate accomplishes manipulation tasks by taking guidance and planning

suggestions from a human “supervisor.” The surrogate does not engage in high-level reasoning,

but only in intermediate-level planning and low-level control. The human supervisor supplies the

high-level reasoning and some intermediate control—leaving execution details for the surrogate.

The supervisor supplies world knowledge and planning suggestions by “drawing” on a 3D view

of the world constructed from sensor data. The surrogate conveys its own model of the world to

the supervisor, to enable mental-model sharing between supervisor and surrogate.

The contributions of this thesis include: (1) A novel partitioning of the manipulation task load

between supervisor and surrogate, which side-steps problems in autonomous robotics by

replacing them with problems in interfaces, perception, planning, control, and human-robot trust;

and (2) The algorithms and software designed and built for mental model-sharing and

supervisor-assisted manipulation. Using this system, we are able to command the PR2 to

manipulate simple objects incorporating either a single revolute or prismatic joint.

Thesis Supervisor: Professor Seth Teller

Title: Professor of Computer Science and Engineering

3

Acknowledgements

Seth Teller for his help, advice, and support

I was supported by the Department of Defense (DoD) through the National

Defense Science & Engineering Graduate Fellowship (NDSEG) program.

Sudeep Pillai and Jeremy Scott for their help in the non-algorithmic, version one

segmentation tool.

Ron Wiken (MIT CSAIL) kindly built the “busy box” for the PR2.

4

Contents

1 Introduction

2 Background

 2.1 Variable Autonomy and Human Interaction with Automation

 2.2 Commanding a Robot through Gestures

 2.3 Object Detection

3 Approach

 3.1 System Overview

 3.2 System Use Case

3.3 Segmentation

 3.4 Model Fitting

 3.5 Model Adjustment

 3.6 Tracking

 3.7 Grasp Selection

 3.8 Planning and Execution

4 Results

5 Contributions

6 References

5

1 Introduction and Vision

Many applications of robotics do not require full autonomy. The Mars rovers, for example,

operate under significant human supervision, even though that supervision is complicated by the

round-trip signal time to Mars (up to 30 minutes). The most advanced, perhaps, autonomous

behavior ever deployed on Mars still involved high-level goal-selection by a human operator and

help from the operator in case of failure [1]. The military-deployed iRobot packbot (Figure 1.1)

[2], built for explosive ordnance disposal (EOD), provides almost no autonomous capabilities;

the packbot requires the human operator to command the robot joint-by-joint, or to select from a

limited menu of articulated poses (Figure 1.2).

Figure 1.2 iRobot Packbot Pose-Selection Menu

Figure 1.1 iRobot Packbot

6

Full autonomy is rarely used in applications where either mission failure or damage to the robot

cannot be tolerated. In practice, the alternative to full autonomy is typically low-level

teleoperation or extremely limited autonomy. This is unsatisfactory in applications like EOD,

where bomb-disposal can be time-critical. We visited the Naval EOD Technology Division

(NAVEODTECHDIV) in Charles County, Maryland on April 5
th

, 2012. At

NAVEODTECHDIV, we saw a live demonstration of a highly-skilled EOD operator

teleoperating a QinetiQ Talon EOD Robot [3] to open a cardboard box and remove a cylinder

(Figure 1.3). This task, which would take an adult human a matter of seconds with his or her

hands, took 14 minutes with the Talon under teleoperation. Were the cylinder in this example a

bomb with a timer, 14 minutes could be unacceptable. We thus see an opportunity to speed up

similar manipulation tasks by an order of magnitude or more.

This thesis demonstrates a robot mobile manipulator capable of intermediate, variable autonomy.

The mobile manipulator (surrogate) takes guidance from a human supervisor and varies its level

of autonomy accordingly.

Figure 1.3 Teleoperated Talon robot extracting a cylinder from a box at NAVEODTECHDIV

7

This thesis makes two contributions: (1) A novel partitioning of the manipulation task load

between supervisor and surrogate. Using this partitioning, we side-step long-standing problems

in AI and replace them with more tractable problems in interfaces, perception, planning, control,

and human-robot trust. We focus our algorithmic development on the sharing of mental models

between human operator and robot surrogate. (2) This thesis develops HRI and perception

algorithms to allow (i) sharing of mental models between operator and surrogate and (ii) efficient

execution of manipulation tasks. Using this system, we successfully command the PR2 robot to

pull/push levers, lift a knob, and open boxes. These manipulation tasks are currently restricted to

simple mechanisms incorporating a revolute or prismatic joint (Figure 1.4).

Figure 1.4 PR2 Preparing to grasp a lever

8

2 Background

2.1 Variable Autonomy and Human Interaction with Automation

Parasuraman et al. (2000) propose guidelines for automation design. They propose that

automation can vary continuously from low to high (see Figure 2.1). However, even level 2 in

their proposal can be difficult to implement in practice: “the computer offers a complete set of

decision/action alternatives.” A machine with the ability to suggest real, alternative action plans

needs the ability to ground those plans in the real world – as in [4]. Grounding actions in the

world is in itself a difficult, open research area and is discussed further in section 2.2. Thus,

introducing even small amounts of autonomy into a system can be challenging.

Figure 2.1 Variations on automation [5]

Parasuraman also suggests the following classes of automatable system functions: (1)

Information acquisition; (2) Information analysis; (3) Decision and action selection; and (4)

Action implementation. These four classes are comparable to the categories in the human-

information processing model in Figure 2.2. Parasuraman et al. discuss several issues with

partial automation. For instance: “If the human operator is ever expected under abnormal

circumstances to take over control, then … high levels of decision automation may not be

Levels of Automation of Decision and Action Selection

High 10. The computer decides everything, acts autonomously, ignoring the human.

 9. informs the human only if it, the computer, decides to

 8. informs the human only if asked, or

 7. executes automatically, then necessarily informs the human and

 6. executes automatically, then necessarily informs the human, and

 5. executes that suggestion if the human approves, or

 4. suggests one alternative

 3. narrows the selection down to a few, or

 2. The computer offers a complete set of decision/action alternatives, or

Low 1. The computer offers no assistance: human must take all decisions and actions

9

suitable,” because the human will not be accustomed to manual control of an almost-always

automated process. They describe another downside to automation: humans are “less aware of

changes in environmental states when those changes are under the control of another agent” - an

effect they call “over-trust” or “complacency.”

Figure 2.2 Simple Four-Stage Model of Human Information processing [5].

Work in “adjustable autonomy” systems tends to involve structured handoffs from the human

user to the robot [6]. In contrast, the method described in this thesis leaves it to the human

supervisor to decide when and how the system will operate autonomously; the supervisor is free

to pause/cancel/modify autonomous operation at any time.

2.2 Commanding a Robot through Language and Gestures

Commanding a Robot with Natural Language:

There has been recent progress in commanding a robot with natural language [7] [8]. Tellex et

al. (2011) demonstrate commanding a robotic forklift through natural language. The key

challenge is grounding: how to map phrases like “Pick up the tire pallet off the truck and set it

down” to objects and trajectories in the environment [8]. Tellex builds on Jackendoff [9] in

categorizing spatial descriptions as one of four types: (i) Event/action sequence - like “move the

tire pallet”; (ii) Objects - “the truck”; (iii) Places - “on the truck”; and (iv) Paths - “past the

truck.”

Sensory

Processing

Perception /

Working Memory

Decision

Making

Response

Selection

10

Tellex’s system learns the meanings of verbs like “put” from training data that maps natural

language commands to correct robot actions. The system does not incorporate other input

channels, such as hand gestures, written gestures, or eye gaze.

Commanding a Robot with Gestures:

Teller et al. (2010) incorporate Tellex’s work into a robotic forklift that can accept spoken

commands and written gestures. For example, the supervisor holds a tablet that displays robot-

point-of-view images. The supervisor can command the forklift to pick up certain objects by

circling them (Figure 2.3). The supervisor is effectively “drawing on the world” to convey a

desired action to the robot [10].

2.3 Object Detection

Object detection using 2D data has been studied extensively. Torralba provides a nice survey of

various object detection techniques in his MIT course 6.870, available online [11]. He describes

Figure 2.3 Human supervisor commands the robotic forklift to pick up

the circled pallet [7].

11

and provides references for face detection [12], human detection [13], and machine learning

techniques in the context of object detection.

Object recognition using 3D data has also been tackled with several different methods. Besl and

Jain [14] apply differential geometry in object recognition: they compute and use surface

curvature to classify different pieces of their 3D data into one of eight surface types. RANSAC

[15] may be perhaps the most common method for object recognition from 3D data. RANSAC

proceeds by iteratively selecting random subsets of the 3D data, and then using that subset to

estimate a transform aligning the subset with the 3D model. These iterations are repeated a fixed

number of times, and the highest scoring transform is selected. Recent work from Papazov et al.

(2012) uses a RANSAC-like sampling strategy but derives the number of trials needed to

recognize a model based on a pre-defined success probability [16]. Papazov et al. use an offline,

model-preprocessing phase in addition to an online object recognition algorithm, demonstrating

recognition of several different models even with significant occlusion.

RANSAC variants have also been applied to object detection [17]. Schnabel et al. are able to

detect planes, spheres, cylinders, cones, and tori more efficiently than previous RANSAC-based

techniques. However, their approach requires the data to be amenable to computing a normal at

each point — so their technique degrades if normal estimation is difficult. Schnabel details other

prior work in detection of primitive shapes: he discusses both RANSAC and the Hough

transform and states that inefficiency and high memory consumption are the major drawbacks to

both RANSAC and Hough transforms.

12

3 Approach

We describe here the physical setup, software structure, and algorithms that comprise our

system. We also include a detailed use case example.

3.1 System Overview

We first detail the physical setup of robot, operator, and workspace before describing the

software system.

Physical Setup: We use the PR2 robot [18] with a Microsoft Kinect placed on the head. The

PR2 is stationed in front of our manipulation workspace (Figure 3.1.1). The manipulation

workspace, “the busy box,” consists of levers, wheels, a box, and a sink faucet anchored to a

wooden platform.

 The supervisor is stationed at a desktop running our GUI (Figure 3.1.2). The desktop and PR2

communicate over Ethernet using LCM [19] and ROS [20] inter-process communication. The

operator terminal consists of two screens: (i) Our custom GUI (right screen) and (ii) ROS “rviz”

visualization tool (left screen). Most of our development work is built into the right screen GUI.

Figure 3.1.1 PR2 Stationed in front of the “Busy Box” workspace

13

The left screen rviz tool is primarily used for debugging. We discuss the GUI and software

structure next.

GUI: The GUI (Figure 3.1.2 at right) we developed is the only point of interaction between the

supervisor and the surrogate. It is responsible for: (a) Rendering the 3D scene from live RGBD

data; (b) Conveying the surrogate’s world model to the supervisor; and (c) Allowing the

supervisor to adjust the surrogate’s world model and command the robot. The supervisor is able

to adjust the surrogate’s world model in either of the following ways: (a) Segment objects or

refine the surrogate’s guess at a segmentation; or (b) Adjust parameters determining revolute and

prismatic joints: rotation axes, grasp points, initial direction for applying force. The next sub-

section will describe how our software is distributed across machines.

Software Structure: Our software runs in two places: (i) The GUI on the desktop, which includes

the interactive-segmentation, model-fitting, and trajectory-adjustment tools (right screen in

Figure 3.1.2 Operator computer running our GUI (right screen) and the

ROS “rviz” visualization tool (left screen).

14

Figure 3.1.2); and (ii) The grasp and trajectory planning software, which runs on the PR2. We

use both ROS and LCM messaging and have written custom message translators for converting

between these two formats when necessary. Most of our software is platform-agnostic: only the

planning software relies on the PR2 robot model. This is a key feature, since we intend to

develop our system further on different robots for additional EOD tasks and for the DARPA

Robotics Challenge.

The remainder of this chapter is organized as follows:

Section 3.2 describes a use case with opening a box.

Section 3.3 details the user-assisted segmentation mechanism.

Section 3.4 describes our model-fitting algorithm.

Section 3.5 describes the mechanisms by which the supervisor can adjust the model fitting.

Section 3.6 details tracking using iterative closest point (ICP).

Section 3.7 describes grasp selection.

Section 3.8 talks about planning/executing a grasp and trajectory.

3.2 System Use Case

Here we describe how the supervisor uses the system. Figures 3.2.1-3.2.9 show the timeline of

events leading up to the robot grabbing and pulling open a box flap. As in the rest of the thesis,

the words surrogate and robot are used interchangeably.

15

Step 2

Human Operator Robot

Figure 3.2.2 The supervisor indicates, roughly, the graspable region (yellow rectangle). The

supervisor indicates this rough rectangle with a single mouse click-drag-release gesture. Upon

completion of this gesture, point cloud updates freeze until tracking starts in Figure 3.2.5.

Step 1

Human Operator Robot

Figure 3.2.1 The surrogate sends RGBD data to the supervisor’s 3D, adjustable display.

RGB +

Depth

Imagery

Operator Indicates

Approximate Grasp

Target

16

Step 4

Human Operator Robot

Figure 3.2.4 The operator selects the particular segment of interest. As detailed in the next

section, the operator can adjust the segmentation if the algorithmically-suggested segments proved

insufficient.

Step 3

Human Operator Robot

Figure 3.2.3 The surrogate suggests a segmentation for the selected region.

Robot Suggests a

Segmentation

Operator Selects

Red Segment

(Box Flap)

17

Step 6

Human Operator Robot

Figure 3.2.6 The operator adjusts the rotation axis (selected vector), which has 5 adjustable DOFs.

Step 5

Human Operator Robot

Figure 3.2.5 The surrogate begins tracking the segment of interest in live point clouds. The surrogate

also suggests an initial direction for the application of force (highlighted vector) and rotation axis (de-

selected vector).

Tracked box flap,

suggested initial force

direction, and suggested

rotation axis

Operator adjusts

the rotation axis

18

Step 8

Human Operator Robot

Figure 3.2.8 The operator confirms the proposed action.

Step 7

Human Operator Robot

Figure 3.2.7 The surrogate sends the predicted trajectory for display. The trajectory is

determined by the rotation axis, the initial force direction, and the start point. The start point is

the base of the force direction vector.

Predicted Trajectory

Operator confirms

trajectory

19

An early video of the system is provided at: http://youtu.be/EMq9qn6_okc .

3.3 Segmentation

The segmentation module takes as input a 3D point cloud and outputs a partition of that point

cloud into disjoint subsets; we call that partition a segmentation. The goal of segmentation is to

partition the cloud according to the meaningful objects it contains. For example, if the point

cloud contains 3D points for a wheel, a box, and a lever, then a perfect segmentation would

Step 9

Robot

Figure 3.2.9 The surrogate grasps the box flap and opens the box.

.

http://youtu.be/EMq9qn6_okc

20

produce three sets: {points for the wheel}, {points for the box}, and {points for the lever}. In

this section we describe the segmentation tool developed as part of the GUI.

Figure 3.3.1 shows a GUI snapshot at startup. Using the GUI, the supervisor can pan, rotate, and

zoom the view with the mouse.

At startup, the system is in Segmentation Mode, indicating that the operator is expected to

select/segment an object for grasping and manipulation. It’s informative to describe the

segmentation tool in two parts: manual segmentation and assisted segmentation.

Figure 3.3.1 GUI Snapshot at system startup

21

Version one of the segmentation tool can be seen in Figure 3.3.2. Figure 3.3.2 shows a user

segmenting the blue wheel that was seen in Figure 3.3.1. The user can add points to a segment

by holding Shift and selecting a rectangular region (left and center images). The user can also

intersect a previous selection with a new selection (rightmost images).

Version two of the segmentation tool provides algorithmically-suggested “auto-segments.” In

Figure 3.3.3, we see:

(i) The supervisor makes a rough rectangle-selection around the wheel (as in Figure 3.3.2);

(ii) The rough selection is automatically split into 2 segment suggestions: points

corresponding to the wheel and points corresponding to the base; and

(iii) The supervisor uses the keyboard to toggle to the auto-segment for the wheel.

Version two of the segmentation tool is built on top of the manual version one. If the suggested

segments are inaccurate, the supervisor has the option of ignoring the selections and applying

additional manual select/remove/intersect gestures. The robot will still offer segmentation

Figure 3.3.2 User segments the wheel. In the left and center images, the user adds points to

the segment. In the right-most images, the user removes points from the segment by

intersecting with a new rectangular selection.

22

suggestions as the supervisor refines the selected region, but the supervisor does not have to use

the suggestions.

Segmentation Algorithm: Segmentation suggestions are generated by applying RANSAC plane-

fitting to the supervisor’s selection. After extracting the largest candidate planes, we apply a

clustering algorithm to the individual planes. This clustering step is necessary, because

RANSAC may find a good plane-fit for points that lie in two co-planar clusters, but on two far-

apart objects. In practice, these suggested segments work well for objects that have a somewhat

flat, graspable surface. For instance, wheels, levers, and box flaps typically have graspable

regions that lie within a plane. Our technique does not work well for spheres or other highly-

curved surfaces, so when grasping objects of this type, the supervisor may need to resort to

manual segmentation.

In practice, for a supervisor familiar with the GUI, it’s quite fast (requiring less than a minute) to

segment an object manually, and even faster (seconds) to use an auto-segment suggestion. Thus,

 i ii iii

Figure 3.3.3: Segmentation Version 2: Robot-Assisted: (i) Supervisor makes rough selection; (ii)

Robot makes segment suggestions; (iii) Supervisor selects desired segment.

23

although we will devote more effort to algorithmic segmentation in future versions of the system,

the current version is not an issue in practice.

The assisted segmentation capability highlights the kind of variable autonomy that we are

striving for: the surrogate autonomously proposes segmentation suggestions, but if the

suggestions aren’t accurate, the supervisor can resort to a less-autonomous mode, namely manual

segmentation.

3.4 Model Fitting

We use the term “model fitting” somewhat synonymously with “object detection.” We define

model fitting as taking two inputs: (i) a 3D point cloud and (ii) a particular type of object we are

looking for (e.g. a wheel, but not a particular wheel); the desired output is either (a) the location

and orientation of the object instance (e.g. a particular wheel) within the input cloud or (ii) null if

no such object is present.

Given the ease and low cost of obtaining colored point cloud data (e.g. from the Microsoft

Kinect), it seems wasteful to throw out color information and use only depth information, or to

throw out depth information and use only image data. The model-fitting algorithm described

below uses both color and depth information. To our knowledge, object detection of parametric

shapes (e.g. circles of unknown radius, position, and orientation) has not been tackled using the

techniques described in this section.

24

Figure 3.4.1 shows the result of our model-fitting method applied to three different wheels. The

goal of our model-fitting algorithm is not to obtain a perfect match for a wheel, lever, knob, etc.

But rather, we wish to obtain just a reasonable initial guess. As detailed in section 3.5, the user

can adjust parameters of the model fit: rotation axis, grasp point, initial direction of rotation. In

fact, if model fitting fails completely, the user can still use the GUI to specify the parameters for

a revolute and prismatic joint manually. Thus, the model-fitting method need only seed those

parameters with a good initial guess, and the supervisor can fine-tune if necessary.

Figures 3.4.2 shows the model-fitting pipeline for a wheel. Following Figure 3.4.2 we describe

the pipeline.

(i) Valve Wheel

(ii) Bicycle Wheel

(iii) Steering Wheel

Figure 3.4.1: Parametric Model-fitting applied to three different wheels

25

(1) 3D partial segmentation (red) of the wheel

(2) 2D RGB image

(3) 2D Canny edges [21]

(4) Canny edges with depth

(5) Candidate circles

(6) Final Selected Model

(same as yellow circle in step 5)

Figure 3.4.2: Model-fitting Pipeline.

26

In Figure 3.4.2, we see:

Step 1: The supervisor’s segment selection – the output from segmentation in section 3.3. Note

that the supervisor did not take the time to fully segment the wheel. Step 5 discusses how the

model-fitting is robust to such partial-segmentation, or even possible occlusion.

Step 2: The 2D RGB image from the Kinect.

Step 3: The result (2D image) of running Canny Edge Detection [21] on the RGB image.

Step 4: The projection of the Canny edges into R
3
 using the depth information. We do not

project pixels for which we do not have depth information.

Step 5: Circles that we fit to the 3D Canny edges using principle components analysis (PCA) and

modified least-squares circle fitting [22]. Before applying circle fitting for an edge, we

(i) Run PCA on the 3D edge

(ii) Project the 3D edge into the dominant plane determined by PCA; and

(iii) Apply a change of basis and then run modified least squares circle fitting [22].

This 3-step circle fitting process does not require that the input edges collectively or individually

cover the entire wheel. That is, we can estimate the radius and 3D center of a circle even from

just one small circle arc. In fact, in the process illustrated by Figure 3.4.2, only edges from the

portion of the wheel that were contained in the segmentation (Figure 3.4.2 image 1) are

27

considered. This is a useful feature since we may have occlusions, or as in the Figure, the user

may not take the time to segment the wheel completely.

Step 6: The subset of circles that have diameters within 50% of the selection diameter (the

maximum distance between any two points in the input segment). This filter is designed to

remove spurious circles with widely-varying diameters, which can be seen in the previous stage.

If only one circle remains after this filtering, we return that circle as the selected model. If

multiple candidate circles remain, we choose one arbitrarily. In a version of the system currently

in development, we choose among remaining candidates by taking the circle with the rotation

axis closest to the normal of the best-fit-plane for the entire segment.

The resulting model-fit may be imperfect or misaligned, as in the final image of Figure 3.4.2.

This can happen if the 3D Canny edge that generates the fit does not lie completely within the

plane normal to the wheel’s rotation axis. For example, in Figure 3.4.2, the resulting model-fit

comes from an edge that traces along the outermost surface of the wheel; this edge is circular but

with an orientation slightly different from the wheel’s orientation. Consequently, the computed

rotation axis is slightly skewed.

The technique of transforming 2D Canny edges into space curves allows us to extract meaningful

3D geometric information in an intuitive manner. If we are looking for a wheel or torus, then we

expect to extract 3D edges with approximately the right curvature. This technique is more

computationally tractable than running a RANSAC-like fitting method. For circles oriented in

R
3
, we need to find 6 parameters: the 3D circle center, the two-angle roll/pitch of the circle, and

28

the radius. Schnabel [17] is able to achieve circle fitting in 3D using point cloud normals as an

additional input to RANSAC. Using a naïve version of RANSAC to find all 6 parameters can be

computationally prohibitive; perhaps that’s why the Point Cloud Library [23] has not provided

an implementation for RANSAC fitting with circles in 3D or tori [24].

Our model fitting for tori is accomplished by approximating a torus as a circle oriented in 3D. In

future versions of the system, we intend to apply the same 2D 3D feature mapping techniques

to generate candidate model fits for levers, knobs, and boxes. Our system already has the ability

to find 3D line segments using the same Canny-to-3D-Space Curve mapping – from which we

intend to fit lever/box models.

3.5 Model Adjustment

Whether model fitting succeeds or fails, the supervisor has the option of adjusting the rotation

axis, grasp point, and initial force vector. Figure 3.5.1 shows: (i) Adjustable 5-DOF rotation axis

(highlighted); (ii) Adjustable 5-DOF initial force direction (deselected), which starts at the grasp

point; and (iii) Trajectory determined by i and ii (light blue circle). The resulting trajectory is

circular, begins at the grasp point, and starts with an initial movement in the direction of the

force vector.

29

3.6 Tracking

After segmentation is complete and model-fitting finishes (or fails), the system begins tracking

the segmentation selection from live point cloud data. We use iterative-closest point (ICP) for

tracking [25]. Since ICP is computationally expensive, we down-sample the point clouds by a

factor of four before running ICP. ICP works well for small object displacements between point

cloud updates. In our applications, we expect the workspace for manipulation to be mostly

static, and therefore, we expect at most small displacements of the manipuland between updates.

In future versions of the system, we may also attempt tracking using the 3D Canny edges we

computed in section 3.4.

Figure 3.5.1: Model Adjustment: (i) 5-DOF rotation axis (highlighted); (ii) 5-DOF Initial force

vector (de-selected vector); (iii) Circular trajectory for the gripper determined by i and ii (light blue

circle).

30

In addition to tracking the segment selection in live point clouds; we use the object’s trajectory

(if it moves) to estimate more accurately the axis type and location of the manipuland: {revolute,

prismatic, or unknown}. Figure 3.6.1 shows the supervisor’s confirmed axis location choice for

the lever (light blue axis and circle); this is an output from the proceeding sections (before the

lever is moved). The Figure also shows the system’s inferred axis-type and location estimate

(red circle and axis) computed from motion tracking. Finally, the Figure shows the 5-DOF force

vector (red) that the supervisor can adjust. The inferred axis shows a much better fit than the

supervisor’s input. This system ability to infer the axis location (and type) means that the

Figure 3.6.1 Axis classification and fitting from motion. The input to the classification/fitting is the

3D trace of the centroid for the tracked object segment (green points). The output is a joint fit that is

one of {prismatic, revolute, unknown} and is shown as the red circle and red axis. The supervisor’s

initial confirmed trajectory is shown as the light blue circle and axis. The red vector is the adjustable

5-DOF force vector (see previous section) that the supervisor can modify to adjust the force direction.

The arm and hand of the person moving the lever can be seen on the left.

31

supervisor need only provide a decent initial estimate of the axis parameters – the supervisor

need not fine-tune parameters extensively. Note that, here, the lever was moved by a 3
rd

 party –

that is, neither the surrogate nor the supervisor moved the lever. We do not expect this scenario

to arise in practice, but we use it to test this preliminary work in updating object affordance

models from motion. Figure 3.6.2 shows the axis classification and location result for a

prismatic joint.

Figure 3.6.2 Axis classification and axis location estimation from motion. The top of the drawer is

being tracked (highlighted in yellow). The trace of the centroid for the tracked segment is shown as

green points (one for each iteration of tracking). The inferred prismatic axis is shown as the red line

segment, which starts at the drawer’s closed position and ends at the drawer’s current (open) position.

32

3.7 Grasp Selection

After the supervisor confirms or adjusts the relevant model/axis parameters, she is provided with

the option of selecting the approach-direction for grasping the manipuland. As in Figure 3.7.1,

the supervisor is greeted with a display showing the possible approach vectors for the end-

effector. Currently, this grasp-selection GUI is located in a 2
nd

 window and is built using ROS

modules; in future version of the system, we will merge this grasp display into our current

framework. In the spirit of variable autonomy, the supervisor has the option of either (a) letting

the surrogate automatically pick and use a grasp or (b) toggling through possible grasps.

We use the ROS pr2_gripper_grasp_planner_cluster package [26] which is based on work by

Kaijen Hsiao et al. [27]. This grasp planner takes as input an unstructured point cloud, which in

Figure 3.7.1: Grasp Approach Selection: Candidate approach vectors are shown in yellow. The

supervisor’s current selection is the red arrow. Here, the supervisor might want to switch to a grasp at

the top of the lever to get more torque.

33

our case is the supervisor’s segment selection. The grasp planner outputs a list of candidate

grasps, with estimated grasp “qualities” between 0 (low quality) and 1 (high quality). Figure

3.7.1 visualizes the approach vector for a few grasps.

This grasping module highlights again the variable autonomy aspect of our system. The

surrogate can autonomously pick and execute a grasp. Or, the supervisor can intervene and

decide which of several possible grasps he would like the surrogate to use.

 3.8 Planning and Execution

We use ROS’s Arm_Navigation stack for planning and executing trajectories with an RRT-based

planner [28]. We use this module off-the-shelf and have not made modifications. We use the

arm_navigation stack both for planning arm movements to a grasp pose and for subsequent arm

motions.

4 Results

Here we compare our affordance-based system to joint-by-joint teleoperation. The physical

setup for using our system is as described at the start of section 3: A supervisor is stationed at a

desktop running our GUI (Figure 3.1.2), and the PR2 is situated in front of the busy box (Figure

3.1.1). For teleoperation, a supervisor uses joint-by-joint control software based on a ROS PR2

teleoperation software package [29]. In both scenarios, the operator can see the busy box

workspace, and the PR2, only by looking at the monitor.

34

In our trials, each of 3 supervisors receives brief instruction on how to use both systems. We

time and record each supervisor as they guide the PR2 through 3 manipulation tasks: opening a

box flap, pushing a lever, and lifting (straight up) a baking soda box. The first 2 manipulands

can be seen in Figure 1.4. Each supervisor executes each task, first using the teleop controller

and then using our affordance-based system. Before each trial, the PR2’s arms are brought back

to the fixed initial state – shown in Figure 3.1.1. The results of these trials are recorded in tables

4.1 to 4.3.

Supervisor Teleoperation

(seconds)
Affordance-based system

(seconds)
1 (author) 273 55
2 212 70
3 874 65

 Table 4.3 Time to Lift Baking Soda Box

Supervisor Teleoperation

(seconds)
Affordance-based system

(seconds)
1 (author) 250 51
2 693 68
3 229 64

 Table 4.2 Time to Push Lever

Supervisor Teleoperation

seconds)
Affordance-based system

(seconds)
1 (author) 230 47
2 191 77
3 221 143

 Table 4.1 Time to Open Box Flap

35

Across all supervisors and trials, the affordance-based system is consistently faster. We see an

average speedup improvement (averaged across all supervisors) of 2.97x with the box flap, 6.22x

with the lever, and 6.14x with the soda box lift.

5 Contributions

We have developed a mobile manipulator capable of taking guidance from a human supervisor

and varying its level of autonomy accordingly. Our first application is explosive ordnance

disposal. Our system is designed so that the human supervisor can grant and retract autonomy

to/from the surrogate at any time. After the surrogate reflects to the supervisor its understanding

of the salient aspects of the workspace, including available affordances and planned actions, the

operator grants permission to the robot to execute those actions.

Our contributions include:

(1) The algorithms and software designed for mental-model sharing and supervisor-assisted

manipulation with a robot surrogate.

(2) Using this system, we successfully command the PR2 robot to pull/push levers, lift a knob,

and open boxes. Currently, the system is able to manipulate revolute and prismatic pairs. We

will be extending our techniques to more general kinematic chains in future versions of the

system.

36

(3) Our HRI software is platform agnostic, as mentioned in section 3. Only the planning

software contains a model of the PR2. A nice consequence of this platform-agnostic feature is

that we can and will further develop this system for use in both EOD, with a PackBot, and in the

DARPA robotics challenge, with a humanoid robot.

37

5 References

[1] W. Kim, I. Nesnas, M. Bajracharya, R. Madison, A. Ansar, R. Steele, J. Biesiadecki and K.

Ali, "Targeted Driving Using Visual Tracking on Mars: from Research to Flight," Journal of

Field Robotics, 2008.

[2] "iRobot 510 PackBot," [Online]. Available:

http://www.irobot.com/us/robots/defense/packbot.aspx. [Accessed 8 August 2012].

[3] "Talon," [Online]. Available: http://www.qinetiq-na.com/products/unmanned-systems/talon/.

[Accessed 22 08 2012].

[4] A. Huang, S. Tellex, A. Bachrach, T. Kollar, D. Roy and N. Roy, "Natural Language

Command of an Autonomous Micro-Air Vehicle," in Proceedings of the International

Conference on Intelligent Proxys and Systems (IROS), 2010.

[5] R. Parasuraman, T. B. Sheridan and C. D. Wickens, "A Model for Types and Levels of

Human Interaction with Automation," in IEEE Trans. on SMC, 2000.

[6] J. Crandall and M. Goodrich, "Experiments in adjustable autonomy," in IEEE International

Conference on Systems, Man, and Cybernetic, 2001.

[7] S. Teller, M. Walter, M. Antone, A. Correa, R. Davis, L. Fletcher, E. Frazzoli, J. Glass, J.

How, A. Huang, J. h. Jeon, S. Karaman, B. Luders, N. Roy and T. Sainath, "A Voice-

Commandable Robotic Forklift Working Alongside Humans in Minimally-Prepared Outdoor

Environments," in IEEE International Conference on Robotics and Automation, Anchorage

AK, 2010.

[8] S. Tellex, T. Kollar, S. Dickerson, M. Walter, A. Banerjee, S. Teller and N. Roy,

"Understanding Natural Language Commands for Robotic Navigation and Mobile

Manipulation," in Conference on Artificial Intelligence (AAAI), San Francisco, CA, 2011.

[9] R. S. Jackendoff, Semantics & Cognition, MIT Press, 1983, pp. 161-187.

[10] A. Correa, M. Walter, L. Fletcher, J. Glass, S. Teller and R. Davis, "Multimodal Interaction

with an Autonomous Forklift," in International Conference on Human-Robot Interaction,

Osaka, Japan, 2010.

[11] A. Torralba, "6.870 Grounding Object Recognition : Fall 2011," 2011. [Online]. Available:

http://people.csail.mit.edu/torralba/courses/6.870_2011f/lectures/lecture4.ppt. [Accessed 30

08 2012].

[12] P. Viola and M. Jones, "Rapid Object Detection Using a Boosted Cascade of Simple

Features," in CVPR, 2001.

[13] N. Dalal and B. Triggs, "Histograms of Oriented Gradients for Human Detection," in CVPR,

2005.

[14] P. Besl and R. Jain, "Invariant Surface Characteristics for 3D Object Recognition in Range

Images," in Computer Vision, graphics, and image processing, 1986.

[15] M. Fischler and R. Bolles, "Random Sample Consensus: A Paradigm for Model Fitting with

Applications to Image Analysis and Automated Cartography," Communications of the ACM,

vol. 24, no. 6, pp. 381-395, 1981.

38

[16] C. Papazov, S. Haddadin, S. Parusel, K. Krieger and D. Burschka, "Rigid 3D geometry

matching for grasping of known objects in cluttered scenes," International Journal of

Robotics Research, vol. 31, no. 4, pp. 538-553, 2012.

[17] R. Schnabel, R. Wahl and R. Klein, "Efficient RANSAC for Point-Cloud Shape Detection,"

Computer Graphics Forum, vol. 26, no. 2, pp. 214-226, 2007.

[18] "PR2 Specs," [Online]. Available: http://www.willowgarage.com/pages/pr2/specs. [Accessed

12 08 2012].

[19] A. Huang, E. Olson and D. Moore, "LCM: Lightweight Communications and Marshalling," in

Int. Conf. on Intelligent Robots and Systems (IROS), Taipei, Taiwan, 2010.

[20] M. Quigley, B. Berkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler and A.

Ng, "ROS: an open-source Robot Operating System," in ICRA Workshop on Open Source

Software, 2009.

[21] J. Canny, "A Computational Approach To Edge Detection," IEEE Trans. Pattern Analysis

and Machine Intelligence, vol. 8, no. 6, p. 679–698, 1986.

[22] D. Umbach and K. Jones, "A Few Methods for Fitting," IEEE Transactions on

Instrumentation and Measurement, pp. 1881-1885 , 2003.

[23] "Point Cloud Library," [Online]. Available: http://pointclouds.org/. [Accessed 12 08 2012].

[24] "Point Cloud Library 1.7.0 : model_types.h," [Online]. Available:

http://docs.pointclouds.org/trunk/model__types_8h_source.html. [Accessed 12 08 2012].

[25] Z. Zhang, "Iterative Point Matching for Registration of Free-Form Curves," IRA Rapports de

Recherche, Vols. Programme 4: Robotique, Imageet Vision, no. 1658, 1992.

[26] "pr2_gripper_grasp_planner_cluster," Willow Garage, [Online]. Available:

http://www.ros.org/wiki/pr2_gripper_grasp_planner_cluster. [Accessed 12 08 2012].

[27] K. Hsiao, S. Chitta, M. Ciocarlie and E. G. Jones, "Contact-reactive grasping of objects with

partial shape information," in IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), 2010.

[28] E. G. Jones, "arm_navigation," ROS, [Online]. Available:

http://www.ros.org/wiki/arm_navigation. [Accessed 25 08 2012].

[29] G. Jones, "pr2_teleop_general," ROS.org, [Online]. Available:

http://www.ros.org/wiki/pr2_teleop_general. [Accessed 25 08 2012].

[30] T. Sheridan, Teleproxyics, automation, and human supervisory control, MIT Press, 1992.

[31] B. K. Horn, Robot Vision, The MIT Press, 1986.

