INSTITUT FUR GESELLSCHAFTS- UND WIRTSCHAFTSWISSENSCHAFTEN DER UNIVERSITAT BONN BETRIEBSWIRTSCHAFTLICHE ABTEILUNG INSTITUTSDIREKTOR PROFESSOR DR. DRES H. C. HORST ALbACH
c/81-5c \#

THE RATE OF RETURN

IN GERMAN MANUFACTURING INDUSTRV

```
                    Paper
                            Presented to the
International Rate of Return Project
    Conference in Cambridge, Mass.
    June 9 - 11, 1981
                by
            Horst Albach
Frofessor of Business Economics
    Bonn University
```


Contents

THE RATE OF RETURN IN GERMAN MANUFACTURING INDUSTRY
A. The Problem
B. The Methodology
I. The Data Banks
II. The Data
III. The Methods of Analysis
C. The Results
I. The Time Series

1. The Return on Capital
1.1. The Nominal Rate of Return on Capital
1.2. The Real Rate of Return
1.3. Market Valuation of the Profitability of Capital Invested
2. The Return on Equity
2.1. The Nominal Rate of Return
2.2. The Real Rate of Return on Equity
2.3. The Market Valuation of the Return on Equity
2.4. Leverage and the Rate of Return on Equity
3. The Determinants of the Rate of Return 3.1. Rate of Return and Business Risk
3.2. Rate of Return and financial Risk
3.3. Rates of Return and Wage Share
II. The Regression Analyses
4. Single Equation Models
1.1. The Rate of Return of All Manufacturing Firms
1.2. The Rate of Return in the Chemical Industry
5. A Multi-Equation Model of German Manufacturing Companies
2.1. The Model
1.1. The Results
2.2.1. The Development of the Rate of Return 1970 to 1979
2.2.2. Sensitivity Analyses of the Rate of Return
2.2.3. Forecasts of the Rate of Return for 1981 and 1982

Foot Notes
Appendix 1: Definitions of Capital, Profits and Nominal Profitability Rates

Appendix 2: The Computation of Real Rate of Return
Appendix 3: The Nominal Rate of Return on Equity
Appendix 4: Distribution of Addes Value
Appendix 5: Determinants of the Real Rate of Return

- Regression Analysis -

Appendix 6: Time Series of Exogenous Variables

Horst Albach

A. The Problem

Economic development in the industrialized countries is in a vicious circle. In order to master the problems of economic change, of unemployment, and of declining productivity, the economies need risk capital. However, the returns on risk capital seem to decline steadily. Thus it becomes less and less attractive for private and institutional investors to hold equity. The firms resort to credit financing of investments in fixed assets, and the banking institutions develop new forms of industrial credit and of leasing of equipment to meet the rising demand for long-term credit financing of manufacturing industry. This,of course,increases financial risk of equity holders. The risk-premium on equity capital rises. The declining returns on equity prove less and less adequate to cover the risk premia. Share prices decline consequently.

Economic policy has in the past tried to break this vicious circle by shifting part of the business risk to the government. Investment incentives, fast tax right-offs, loss carry backs as well as government subsidies for $R \& D-o u t l a y ~ a r e$ all intended to share the business risk incurred by the firms' investment in plant and equipment. The governments' share in business risk is, of course, the higher, the higher the tax-rate is. High tax-rates on the other hand reduce the returns from successful business ventures. If government participation in the losses is not adequate to offset the losses in returns from government participation in the profits,
then clearly the firms will terd to reduce business risk. There are two ways for companies to reduce business risk: by diversification and by shifting investment to less risky assets. Diversification is achieved by growing inside and in market-share, changing the structure of the business portfolio leads to a decreasing ratio of fixed assets to capital invested and to a higher proportion of liquid assets.

In this paper we will show that

1. the rate of return on total capital has declined. This is explained by increased competition and decreasing business risk,
2. the rate of return on equity has declined. The reduction in business risk could account for this development if financial risk had remained constant. However,
3. financial risk has increased. Rising interest rates on debt-capital and increasing debt-equityratios are evidence of this fact.

The resulting paradox of equity finance may be explained by hidden returns on equity. There are various forms of such returns. Agency cost is one, government subsidies for the acquisition of equity by private investors is another and convertible bonds which tie high interest rates on the bonds to ownership of equity is still another.

B. The Methodology

The following empirical analyses of the hypotheses advanced will be based on data of German manufacturing firms from various sources. The sources will be explained in the first paragraph of this section. In the second paragraph we will
shortly comment on the statistical methods used to analyze the data.

I. The Data Banks

There are many sources of information on the profitability of German manufacturing corporations. However, there are no national accounts available for Germany that cover the entire manufacturing sector and provide data on the profitability of manufacturing industry in the detailed form that was felt necessary in order to make international comparisons possible.

All the data available are derived from company financial reports. There are basically five major sources of information:

- the Federal Statistical Office (Statistisches Bundesamt)
- the Central Bank (Deutsche Bundesbank)
- the Association of Savings Banks (Sparkassen- und Giroverband)
- the Industrial Credit Bank (Industriekreditbank AG Deutsche Industriebank)
- the Bonn Sample (Bonner Stichprobe).

The Association of Savings-Banks and the Industrial Credit Bank do not collect the material in a form that lends itself easily to statistical analyses. The firms covered vary from year to year and the composition of the sample depends on whether there are client relationships with these institutions or not. The Central Bank uses the financial reports of all the firms that have to file reports with it because directly or indirectly they do business with the Central Bank. These firms vary annually. The financial reports are either tax-returns or financial reports published by corporations. The valuation and reporting stanciards of these tivo sources of information differ widely. For reasons of confidentiality the Central Bank publishes aggregate data onl. ${ }^{\text {!) }}$.

Thus there remain just two sources of data for the analysis of trend in the profitability of German manufacturing firms. The data banks of the Federal Statistical Office and of the Business Economics Institute of Bonn University contain the data of the annual financial reports of German corporations. There are 373 (1977) German corporations in manufacturing industry. They represent about 30% of total employment and about 45% of total sales in manufacturing. Small and medium sized companies do not have to publish financial reports. Their tax returns are not available for analysis. We have to assume that the financial reports of German manufacturing corporations reflect adequately trends in the development of all the manufacturing firms. However, caution is required in the interpretation of the level of profits.

The data of the Federal Statistical Office are published annually in the Statistical Yearbook ${ }^{2)}$. We have also used the cost of living-index and data from the national accounts published by the Federal Statistical Office.

The capital market statistics used in the analysis were taken from sources published by the Central Bank. In particular we used the index of share prices as computed by the Central Bank ${ }^{3)}$.

The Bonn Sample is a collection of financial reports at the Business Economics Institute of Bonn University. At present 222 industrial corporations are covered by the Bonn Sample. Individual data are available for the years from 1961 through 1979. Information not available from the financial reports is taken from newspapers and other sources. In particular, stock prices of the companies in the Bonn Sample are taken from stock exchange publications.

II. The Data

The Data of the Federal Statistical Office as well as those of the Bonn Sample are from financial reports which are published annually according to German corporation law. Two major revisions of publication requirements were put into effect in the Corporation Act of 1959 and the Corporation Act of 1965. Until 1959 corporations were not required to publish sales. They reported sales net of purchases of raw materials. This is the reason why we limit the present analysis to years beginning in 1961, the first year for which the new publication requirements became effective.

The Corporation Act of 1965 brought significant changes in the standards of valuation. Strict rules for evaluation of depreciation allowances and of inventories were passed. They stressed the principle of consistency as well as the principle of cautiously reporting equity in profits. Thus: BASF corporation states in its 1979 annual report that equity would be higher by 40% if SEC-rules had been applied instead of German valuation standards. Historical cost reporting prevails throughout. The valuation of inventories is based on moving averages. Lifo and Fifo are not illegal under the corporation Act, it is true, but cannot be used for taxation purposes. Therefore, on the whole corporations use the same valuation method for inventories in published financial reports as in their tax returns.

The definitions of capital and profits are based on the format of the balance sheet as prescribed by German law. The appendix gives details. They follow as closely as accounting laws that differ from country to country permit the conventions that were agreed upon by the group. The definition of risk will be given in the relevant section of this paper.

The Federal Statistical Office publishes aggregate data. The individual entries in the financial reports are sumned to give the total entry. Ratios are derived from aggregate data. They are therefore weighted averages. The Bonn Sample contains data of the individual firms. We prefer to compute ratios for the sample as a whole as averages of firm ratios. We thus have unweighted averages. However, weighted averages are given also to make comparison with the data of the Federal Statistical Office possible.

Real data were computed from the nominal data. Inflation accounting has a long history in German accounting theory dating back to the early twenties. The method used here applies replacement cost indices to individual items in the balance sheet and takes estimates of useful livetimes of equipment into account in arriving at current cost valuation. Details of the method used are given in a paper submitted to the group by Koll ${ }^{4}$. The same method is used for nominal data of the Federal Statistical Office as well as for the data in the Bonn Sample.
III. The Methods of Analysis

We are interested in the development of the rate of return of German manufacturing industry. The development is best described by the time series of annual data. We consider these time series to be the raw material from which further hypotheses about trends can be derived. The time series based on the data of the Federal Statistical Office cover all
corporations (without financial institutions such as banks and insurance companies). They cover the period from 1961 to 1977.

The time series of the Bonn Sample cover the period from 1961 to 1979. For a small subsample of corporation data of the nominal rate of return on equity are available from 1952 to 1960 as well ${ }^{5)}$. The data of the 222 industrial corporations in the Bonn Sample are broken up as follows

Table 1 : Firms in the Bonn Sample

Branches of Industry	Number of Firms in Sample
Automobile Industry	6
Electrotechnical	11
Industry	9
Iron and Steel	21
Industry	28
Chemical Industry	147
Machinery Industry	222
Rest	
Total	

While the aggregate time series of the Federal Statistical Office permit ordinary regression analyses only, pooled regression methods are used in the analysis of the firm data in the Bonn Sample. Ordinary least squares estimates with dummy variables for the individual firms have proved to be very efficient in studying the financial data. This method will therefore be used throughout. We use this method for single equation multiple regressions as well as for the estimates of a multi-equation model of the development of the "representative manufacturing firm". This model will then be used for simulation runs which permit a better insight in the determinanes of the profitability of German manufacturing
corporations and its development.over time.

C. The Results

I. The Time Series

1. The Return on Capital

1.1. The Nominal Rate of Return on Capital

The nominal rate of return in the German manufacturing sector shows a marked decline over the years from 1961 to 1979 (Table 2). Profitability of total capital invested in all manufacturing corporations dropped by roughly 20% during the two decades.

Three points merit additional emphasis. The weighted time series show a less marked decline of profitability than the unweighted figures. The bigger corporations have obviously been in a better position to defend their profitability than the smaller corporations. While the weighted data convey the impression of a rather gradual erosion of profitability the unweighted figures show more clearly that the environment, the corporations find themselves in in the seventies is rather different from the environment of the sixties. It will be shown that the oil-price hikes, the currency system of floating exchange rates and a more aggressive wages policy on the side of the trade unions are the main features that account for this difference. Finally, the overall averages hide significant industry differences. The chemical industries suffered severely from intensified international competition after the period of fixed exchange rates ended. The steel industry is hard hit by cyclical fluctuations as well as by growing structural problems. The corporations in the machinery industry which is basically an industry with medium sized firms that do not

Table 2: Nominal Rate of Return on Capital before Taxes

Year	All Corporations	Sample						
		All Cor weighted	porations unweighted	Automobile	$\left\|\begin{array}{c} \text { Electro } \\ \text { technical } \end{array}\right\|$	Steel	Chemical	Machinery
1961	9.39	11.88	12.48	12.68	10.08	10.49	13.88	9.31
1962	8.94	11.88	12.11	16.14	9.28	7.62	13.54	10.42
1963	8.91	12.03	12.20	15.28	9.69	8.26	14.59	10.86
1964	9.38	12.75	12.37	14.84	10.85	8.93	14.38	9.90
1965	9.12	11.36	11.40	13.67	10.93	6.62	14.08	8.44
1966	8.32	10.52	10.64	12.31	9.96	7.91	12.94	6.63
1967	7.94	9.60	10.08	10.28	10.36	4.77	11.94	7.64
1968	8.87	11.23	10.22	12.97	9.44	6.42	13.63	6.79
1969	8.78	11.11	9.89	12.73	9.68	8.85	11.89	6.89
1970	8.48	9.35	9.54	9.06	10.01	11.01	8.97	5.75
1971	6.97	7.64	9.09	7.64	8.11	4.54	9.40	7.26
1972	7.41	8.73	9.02	12.39	8.89	4.14	9.90	6.77
1973	7.99	9.39	8.67	11.53	8.68	5.44	9.88	6.40
1974	7.33	7.74	8.18	3.59	6.24	8.86	9.45	6.51
1975	6.41	7.53	7.67	9.78	6.55	7.72	7.06	5.86
1976	7.90	9.97	8.49	15.42	6.65	6.33	7.22	6.15
1977	7.15	9.47	7.71	16.55	6.19	6.38	7.79	5.96
1978	-	9.19	7.55	16.53	5.02	5.75	8.45	5.78
1979	-	10.31	7.49	16.12	5.23	5.46	8.24	4.92

publish financial accounts seem to have lost ground gradually against the more flexible smaller-sized firms. The automobile industry shows a remarkable come-back in the late seventies after the bad years that followed the oil-nrice-increase in 1973 and the revaluation of the deutschmark in the early seventies.

We now look at the return on capital invested after taxes. The effective tax rate has varied considerably over time. This is partly due to changing tax laws, partly, however, to the fact that only part of the taxes varies with business income, while the other is levied on business property and fixed assets but has to be payed from firm income.

Table 3 gives the effective tax rates and the total return after taxes for the non-financial corporations and the manufacturing companies. We note that the manufacturing corporations show a higher return than the non-financial corporations despite a higher effective tax rate. We also note that the larger companies are more profitable than the smaller ones. Taxation does not change the overall picture of the rate of return before taxes.

Table 3: Nominal Rate of Return on Total Capital after Taxes

Year	Non-Financial Corporations		Manufacturing Companies		
	Effective Tax-Rate	Rate of Return	Effective Tax -Rate	Rate of Return	
				weichted	unweighted
1961	. 42	4.39	. 48	5.68	5.51
1962	. 43	4.29	. 48	5.72	5.42
1963	. 40	4.46	. 46	6.04	5.48
1964	. 40	4.64	. 50	6.18	5.38
1965	. 36	5.03	. 46	6.06	5.75
1966	. 34	4.85	. 43	5.96	5.78
1967	. 31	4.78	. 35	5.96	5.27
1968	. 35	4.94	. 36	6.19	5.29
1969	. 37	4.92	. 43	6.24	5.23
1970	. 33	5.42	. 46	6.26	5.18
1971	. 37	4.36	. 48	4.91	4.88
1972	. 39	4.35	. 51	5.02	4.54
1973	. 36	4.89	. 55	5.45	4.74
1974	. 39	4.42	. 56	4.06	4.51
1975	. 43	3.74	. 52	4.20	3.92
1976	. 38	4.75	. 54	5.71	4.81
1977	. 50	3.49	. 57	4.33	3.47
1978	---	----	. 53	4.01	3.18
1979	---	----	. 64	4.47	3.43
1980	---	----	---	----	----

1.2. The Real Rate of Return

Germany has a remarkable record in fighting inflation. Therefore, the effects of inflation are not predominant in the analysis of the erosion of profitability of manufacturing companies. However, there should be no question but that inflation has a negative influence on the rate of return. In particular, the level of profitability is certainly affected by inflation. While in the sixties the difference between the real rate and the nominal rate of return was about 1.5 percent on the basis of the overall figures after taxes, the difference rose to two percent in the seventies. The respective differences for the firms in the Bonn Sample are 2.5 percent and 3 percent.

This means that the purchasing prices of the assets held by the firms rose faster than the real profits of the corporations. If the labor unions anticipate the effects of their wage demands on the cost of living and push for wage increases that cover not only the rise in productivity but also the anticipated inflation rate, then clearly the entrepreneurs will try to pass the wage burden on to their customers, and prices will rise. However, when at the same time a revaluation of the currency brings about intensified competition, then it becomes increasingly difficult to recover all the increase in the wage bill. Real profits get into a squeeze, while the current cost of the assets owned by the firms still goes up.

Germany witnessed the first significant revaluation in 1969 and introduced floating exchange rates in 1973. Between 1969 and 1975 the trade unions pushed for a significant change in the distribution of income with the backing of the newly established social democratic government. These factors account for the significant drop in the real rate of profit on capital invested in the seventies.

Table 4 shows the development of the real rate of return on capital before taxes for German manufacturing incustry. Profitability was somewhat higher in manufacturing than in all non-financial corporations in the sixties while the seventies witness a definitely smaller gap. The larger companies have recovered from the set-back caused by the revaluation of the deutschmark somewhat better than the smaller companies.

The recovery of real profitability in the automobile industry is most remarkable. On the other hand, the dramatic decline of real profitability in the chemical industry from 12 percent in the early sixties to 4 percent in the late seventies is rather appalling. The chemical industry has felt as much as the steel industry the decline of Germany as an industrial base for rather unsophisticated products like mass steel and basic chemical fibres.

The real rate of return on capital after taxes is defined as the rate of real profits assuming taxation permitted deduction of current cost devided by real assets at current cost. Of course, such a figure is purely hypothetical because it assumes "real" taxation throughout (neither current taxes on nominal profits nor deferred'taxes on profits of "sale" of assets at current cost), but may be used as an indicator for the real interest rate after taxes. Table 5 presents the raw data for the period from 1961 to 1979.

Table 4: Real Rate of Return on Capital before Taxes

Year	Non-Financial Corporations	Manufacturing Corporations		Branches of Industry				
		weighted	unweighted	Automobile	Electrotechnical	Steel	Chemical	Machinery
1961	7.98	9.79	10.40	10.27	8.53	8.82	11.85	7.44
1962	7.08	9.39	9.67	12.56	7.29	5.86	11.10	8.42
1963	7.13	9.71	9.93	12.25	7.77	6.45	11.92	8.98
1964	7.57	10.71	9.47	11.53	8.54	6.58	11.99	7.49
1965	7.26	8.81	8.57	10.54	8.55	5.14	11.64	6.17
1966	6.60	8.12	7.83	9.68	7.90	5.71	10.50	4.56
1967	6.51	8.25	9.93	9.08	9.54	3.93	10.78	6.83
1968	7.26	10.09	9.71	11.65	9.04	5.34	15.44	6.21
1969	6.95	8.78	7.30	10.34	8.02	6.28	9.20	5.13
1970	6.15	6.09	6.14	5.38	7.16	7.08	5.45	3.21
1971	4.59	4.26	5.40	3.65	5.14	1.40	4.95	4.43
1972	5.06	5.50	5.65	8.00	6.21	1.65	5.15	3.92
1973	5.63	5.15	4.01	6.38	5.02	. 27	4.82	2.56
1974	4.93	1.73	1.34	- 4.22	. 65	2.33	- . 39	. 51
1975	4.07	4.15	4.19	5.61	3.75	4.57	2.30	2.71
1976	5.50	6.18	4.29	10.25	3.63	2.78	2.96	2.97
1977	4.94	6.42	4.52	12.13	3.82	3.57	4.35	3.40
1978	----	6.62	4.71	12.73	3.21	3.30	4.96	3.83
1979	----	6.37	3.45	11.04	. 79	2.51	3.52	1.26
1980								

Table 5: Real Rate of Return on Capital after Taxes

Year	Non-Financial Corporations	Manufacturing Corporations		Branches of Industry				
		weighted	unweighted	Automobile	$\begin{array}{\|l\|} \hline \text { Electro- } \\ \text { technical } \end{array}$	Steel	Chemical	Machinery
1961	3.28	3.88	3.82	3.41	3.48	3.58	4.68	2.55
1962	2.83	3.66	3.48	3.85	3.15	2.17	4.36	3.06
1963	3.07	4.15	3.75	4.65	3.47	2.36	4.70	3.50
1964	3.24	4.04	3.17	3.61	3.27	1.66	4.79	2.27
1965	3.55	3.88	3.46	4.16	3.62	1.50	4.68	2.02
1966	3.43	3.87	3.43	3.86	3.91	3.06	5.06	1.49
1967	3.58	4.82	4.94	4.93	6.04	2.06	5.43	3.74
1968	3.66	5.36	5.01	5.22	5.09	3.07	9.26	3.45
1969	3.46	4.22	- 3.06	4.37	3.96	3.34	3.79	2.87
1970	3.44	3.25	2.15	1.62	3.73	3.56	1.83	1.13
1971	2.30	1.79	1.67	. 52	2.42	. 21	1.11	2.42
1972	2.39	2.15	1.70	2.53	2.64	. 57	1.39	1.65
1973	2.89	1.57	0.43	1.47	1.77	-1.43	. 79	. 41
1974	2.37	- 1.59	- 2.23	- 7.00	- 1.92	-. 67	- 4.17	- 1.23
1975	1.73	1.15	. 69	1.01	1.37	1.79	- . 87	. 74
1976	2.73	2.33	. 90	3.77	1.04	. 77	- .44	. 33
1977	1.73	1.77	. 76	2.94	1.27	1.33	. 83	. 42
1978	----	1.90	. 87	3.47	1.29	1.20	1.95	1.16
1979	----	1.09	- . 11	1.79	- 1.11	. 85	. 09	- 1.19
1980								

In order to understand the development shown in the first three columns one has to keep in mind that

- the non-manufacturing companies, particularly trade and transportation and services, in the the group of non-financial corporations of column 1 had significantly higher profits in 1974 than the manufacturing companies.
- obviously the oil-price increase and the end of the system of Bretton Woods affected the manufacturing companies earlier and more severely than the nonproducing corporations.
- the smaller companies in the sample of manufacturing companies have a lower real profitability than the larger ones. They were affected by the change in the économic climate after 1973 more severely than the bigger companies.

The most noteworthy developments in the different branches of industry are

- the chemical industry suffered a severe drop in real profitability after the revaluation of the deutschmark in 1969 . It has not recovered from the set-back caused by the revaluation of the deutschmark yet.
- the automobile industry had a very bad start into the seventies, but had a remarkable recovery in the late seventies.
- the figures for the machinery industry may not be very representative. Particularly in the period from 1969 on the coefficients of variation consistently exceed 100 percent and in years of recession they have gone up to almost 600 percent thus indicating a wide range of profitability of different firms in this industry.
1.3. Market Valuation of the Profitability of Capital Invested

When purchasing prices for the real assets of a company rise faster than profits, then clearly we have a growing divergence between total current cost of the company and its net present value derived from the stream of future earnings. If we assume that the market values companies according to their net present value, then clearly we would expect the ratio of its market value to its current cost value to be below 1 and to decline. This ratio is called Tobin's Q.

Table 6 shows that Tobin's Q has been way below 1 for all non-financial corporations in Germany ever since 1961. For the manufacturing companies, however, Tobin's Q was above 1 in the first half of the sixties, around 1 in the late sixties and early seventies and definitely below 1 since 1974. Since the nominal rate of return of the companies in the sample was higher than the rate of return of all non-financial corporations until about 1969, it should not be surprising that Tobin's Q is higher for that period. However, since the rate of return was about the same from 1970 onward, a lower Q can only be attributed to a relatively higher market valuation of the manufacturing companies per unit of current cost than for all the non-financial corporations. This would mean that the cost of capital after taxes should be higher for the non-financial corporations than for the group of manufacturing firms.

The cost of capital after taxes is defined as profits after tax plus interest payments devided by the market value of total capital invested. Table 6 gives the annual figures. In fact, the cost of capital has been consistently lower for the manufacturing firms in the sample than for all non-financial corporations.

Table 6: The Market Valuation of the Rate of Return

Year	Non-Financial Corporations				Manufacturing Corporations in the Bonn Sample				
	Cost of Capital after Taxes	$\begin{aligned} & \text { Return } \\ & \text { to } \\ & \text { Investors } \end{aligned}$	$\begin{gathered} \text { Tobin's } \\ Q \end{gathered}$	Interest Rate Paid	Cost of Capital after Taxes	```Return to Investors```	$\begin{gathered} \text { Tobin's } \\ Q \end{gathered}$	Dividend Rate	Interest Rate Paià
1961	4.60	3.94	. 64	2.40	3.32	2.78	1.39	8	
1962	4.84	4.22	. 57	2.48	3.91	3.25	. 09	80	. 3
1963	5.04	4.33	. 57	2.63	3.80	3.04	1.10	78	2.33
1964	5.09	4.27	. 58	2.62	3.58	2.93	1.09	. 78	2.23
1965	5.69	4.28	. 57	2.73	4.39	3.23	. 97	. 75	2.47
1966	5.73	4.49	. 55	3.00	4.80	3.75	. 86	. 74	2.95
1967	5.63	4.63	. 55	3.16	4.13	3.36	. 95	. 77	2.79
1968	5.43	4.30	. 59	2.90	3.88	3.08	. 99	. 77	2.44
1969	5.26	4.47	. 62	2.93	3.49	2.85	1.14	. 78	2.57
1970	5.95	4.72	. 61	3.47	3.82	3.49	1.01	. 79	3.39
1971	4.75	4.34	. 60	3.46	3.62	3.25	. 99	. 80	3.23
1972	4.61	3.87	. 61	3.12	3.01	2.66	1.11	. 78	2.77
1973	5.25	4.54	. 61	3.67	3.44	3.29	1.05	. 82	3.69
1974	4.93	4.65	. 59	3.93	3.70	3.79	. 92	. 84	4.21
1975	4.05	3.90	. 61	3.45	2.77	3.08	. 94	. 80	3.53
1976	5.04	4.08	. 63	2.89	3.93	2.95	. 92	. 75	2.76
1977	3.72	3.37	. 63	2.89	2.88	2.69	. 91	. 79	2.73
1978		----	---	--	5.14	4.70	. 49	. 77	2.50
1979	----	----	--	----	2.86	2.63	. 91	. 76	2.57
1980									

The manufacturing firms' cost of capital has decreased relative to the non-financial corporations. At the same time, the return to investors paid by the manufacturing firms increased relative to the non-financial corporations. The manufacturing firms have obviously stemmed a decline in the market valuation of their shares by increasing their dividend rate more than all the non-financial corporations. Since interest rates actually payed by the manufacturing firms were, with three exceptions, lower than those of all the firms, using leverage in order to reduce the costs of capital may have seemed a promising way to keep the cost of capital down - if, of course, the equity owners did not account adequately for the risk involved in such a policy.

2. The Return on Equity

2.1. The Nominal Rate of Return

The rate of return on equity is first computed as the ratio of profits after taxes divided by the book-value of equity including reserves. From table 7 we note that the manufacturing corporations have had a higher rate of return on equity than the non-financial corporations throughout the period. This is not in contrast to the picture gained from the data on the profitability of total capital invested.

However, while the weighted average of the total return is smaller, the return on equity is higher in the case of the weighted averages than in the case of the unweighted averages with the exception of the early seventies. The larger companies have used leverage to bring about this result.

Table 7: Nominal Rate of Return on Equity

Year	All Non-Financial Corporations	All Manufacturing Corporations		Branches of Industry				
		weighted	unweighted	Automobile	Electrotechnical	Steel	Chemical	Machinery
1961	7.96	11.08	11.08	16.62	10.17	9.69	10.75	10.27
1962	7.63	10.97	10.84	21.10	10.10	6.10	10.64	11.89
1963	7.87	11.76	10.58	21.20	10.07	6.11	11.60	12.36
1964	8.45	12.18	10.25	13.33	10.51	5.17	12.10	10.34
1965	9.32	11.44	10.89	13.19	11.78	3.23	12.89	8.99
1966	8.15	10.32	10.15	10.83	11.33	6.17	12.34	7.03
1967	7.59	10.23	9.20	9.41	15.33	. 01	9.85	10.52
1968	8.50	11.08	9.74	11.06	11.09	5.57	12.91	9.05
1969	8.76	11.49	9.76	13.94	11.82	10.17	10.90	10.72
1970	9.35	10.82	8.29	9.31	13.34	13.84	6.27	6.89
1971	6.23	6.84	8.34	7.44	9.78	1.03	7.24	9.67
1972	6.97	8.26	9.07	13.03	11.30	. 90	8.34	7.45
1973	7.60	8.80	7.17	12.95	10.74	3.91	8.46	5.14
1974	5.57	4.55	5.90	-4.95	9.90	4.96	8.25	5.20
1975	4.41	5.73	7.55	7.40	4.52	5.98	4.31	3.69
1976	9.16	11.48	10.81	22.25	10.10	4.48	7.94	6.42
1977	4.93	7.53	4.89	16.65	3.88	2.66	5.71	5.39
1978	----	6.84	5.36	17.25	1.92	. 02	7.61	4.59
1979	--	8.75	6.16	16.63	8.10	1.39	6.92	3.56
1980								

Figure
Whe Nominal Rate of Return on Equity

Year	Non-Financial Corporations	Manufacturing Corporations		Gearing ${ }^{1)}$	
		weighted	urweighted	Non-Financial Corporations	Manufacturing Companies
1961	17.09	21.50	24.25	2.14	2.20
1962	14.53	19.85	22.17	2.05	2.11
1963	14.59	20.37	21.58	2.05	2.10
1964	15.67	22.04	20.88	2.07	2.17
1965	14.55	18.33	19.59	2.00	2.08
1966	12.29	15.97	16.89	1.86	1.97
1967	11.75	14.90	16.71	1.80	1.81
1968	13.68	18.85	18.57	1.88	1.87
1969	13.43	17.88	16.00	1.93	2.04
1970	10.81	12.15	12.48	1.76	2.00
1971	7.12	7.47	11.26	1.55	1.75
1972	8.80	10.92	14.67	1.74	1.99
1973	9.56	11.59	10.49	1.70	2.25
1974	7.45	7.28	6.54	1.51	4.21
1975	5.88	7.90	10.24	1.44	1.90
1976	10.46	14.26	11.59	1.90	2.31
1977	8.84	13.56	8.95	1.79	2.11
1978	-----	13.66	8.88	---	2.06
1979	-	15.74	9.49	--	2.47
1980					

1) Gearing - real rate of return on equity to real rate of return on total capital

The 30 largest corporations in the sample increased their debtratio from 1.78 to 2.45 while the 30 smallest corporations in the sample increased it from 1.27 to 1.94 . In the early seventies the larger firms have obviously had more difficulty to adjust to a changed and more hostile environment than the smaller companies. They had a higher share of exports in their total sales and were thus exposed to the disadvantageous effects of the revaluation of the deutschmark to a greater extent than the smaller companies.

Figure 1 adds to the data of table 7 figures on the rate of return on equity among the 30 smallest and the 30 largest corporations in the sample. It seems interesting to note that the medium-sized corporations have obviously been quicker to adjust to the new economic situation than either the largest or the smallest corporations.

2.2. The Real Rate of Return on Equity

The real rate of return on equity is defined as the ratio of real profits before taxes divided by the real value of equity. Table 8 provides the data for the non-financial and for the manufacturing corporations. It seems that while the smaller companies have done better in periods of low inflation rates the larger companies have been in a better position to keep up with inflation. Of course, they are in a better position to pass on cost increases to their customers than the smaller companies.

Gearing is defined as the real rate of return on equity divided by the real rate of return on total capital. Table 8 shows that while for all non-financial corporations there was a marked drop from the early sixties to the early seventies with a minor recovery only in the late seventies, the manufacturing corporations seem on the whole to have been able to keep gearing
virtually at the same level throughout the period.
The problems of defining a real rate of return on equity after taxes are well-known to financial analysts. We define the real rate of return on equity as real profits before taxes minus actual taxes divided by the real value of equity. For detail the reader is referred to appendix 2. Table 9 presents the data for the non-financial corporations as well as for the manufacturing companies in the Bonn Sample.

It should be interesting to note that since 1971 the real rate of return on equity after taxes has been lower than the real rate of return on total capital after taxes for the non-financial corporations, and that this relation holds true for several years in the seventies for manufacturing companies as well. Obviously investment in shares has become a proposition with returns that are no longer in keeping with the risks involved.

2.3. The Market Valuation of the Return on Equity

While the nominal and the real rates of return reflect current profits on the current valuation of the firms' assets, the stock-exchange, of course, reflects the investors' valuation of the company's future earnings power. It seems interesting to compare the nominal and the real rates of return with the market valuation of the return on equity. This ratio is defined as profits after taxes divided by the market valuation of the total shares outstanding (excluding preferred stock which is not treated as credits).

Figure 2 shows the development of the three time-series. The decline in the nominal and the real rates of return on equity is not reflected in the market valuation. During the sixties the market held expectations of growth in earnings. The shareprices reflected these expectations, and the price-earnings-ratios

Table 9: Real Rate of Return on Equity after Taxes

		Manufacturing Companies						
Year	Non-Financial	All Companies		Branches of Industry				
	Corporations	weighted	unweighted	Automobile	Electrotechnical	Steel	Chemical	Machinery
1961	5.19	7.45	7.40	10.78	7.10	6.69	7.59	6.01
1962	4.13	6.66	6.44	11.32	6.05	3.15	6.96	7.42
1963	4.47	7.38	6.53	12.06	6.09	3.05	7.67	7.97
1964	4.92	7.84	5.80	7.68	6.29	2.25	8.14	5.87
1965	5.47	7.18	6.38	8.35	7.03	1.81	8.50	4.69
1966	4.66	6.41	5.76	6.87	7.19	3.44	8.09	3.23
1967	4.65	7.09	6.21	6.79	12.09	- . 79	7.55	7.55
1968	5.09	8.23	8.04	7.98	8.67	3.14	16.85	5.93
1969	4.76	7.23	5.37	9.44	8.02	5.33	6.12	6.38
1970	4.13	5.23	3.36	3.84	7.53	6.49	1.89	1.32
1971	1.51	1.52	2.39	1.78	3.92	-1.89	1.42	4.03
1972	2.19	2.87	4.70	5.99	5.66	-1.13	1.97	2.42
1973	2.59	2.84	1.56	5.91	5.10	. 97	1.71	. 61
1974	. 83	-1.24	- . 71	-5.93	3.16	. 22	-1.50	-. 41
1975	- . 10	. 36	2.34	1.11	-. 34	1.36	-2.28	-. 87
1976	3.17	4.55	3.01	10.35	1.47	- . 28	. 94	. 24
1977	. 49	1.75	- .25	6.29	-. 41	-1.29	. 74	-. .02
1978	----	1.59	. 11	7.11	-2.11	-2.67	2.36	. 06
1979	-----	2.45	. 42	6.84	. 27	-1.31	. 83	-. 91
1980								

were high. The market rate of return on equity was below the real rate of return on equity.

Since
(1) $\quad \mathrm{RR}=\frac{\mathrm{RP}}{\mathrm{RE}}$,
and
(2) $\quad M R=\frac{N P}{M E}$,

RR > MR implies
(3) $Q>\frac{N P}{R P}$ with Tobin's Q defined by
(4) $Q=\frac{M E}{R E}$

The symbols are

```
RR - real rate of return
RP - real profit
RE - real equity
MR - market rate of profit
NP - nominal profit
ME - market valuation of equity.
```

Of course, $N P / R P>1$ in times of inflation so that (3) certainly implies $Q>1$. When $M R>R R$, then, of course,
(5) $Q<\frac{N P}{R P}$
which does not necessarily imply in all instances that Tobin's Q is smaller than 1 . Figure 2 corroborates our previous findings that relatively speaking Tobin's Q was larger than 1 during the sixties and smaller than 1 during the seventies. Furthermore, the gap between the market rate of return and the nominal rate of return seems to get narrower. This would imply that not only does the market no longer see a profit potential beyond that implied by the historical cost of the assets of the companies but also do investors no longer identify hidden valuation reserves in the book-values of equity capital.

Figure 2
Rate of Return on Equtity
8

2.4. Leverage and the Rate of Return on Equity

It is asserted in the literature on business finance that as long as the rate of return on total capital is higher than the interest rate on debt capital, a decrease in the rate of return on capital invested can be offset by increasing leverage. Table 10 shows that the difference between the rate of return on capital invested and effective interest rate remains positive throughout and that the debt-equity-ratio increased over the period. Thus the gradual decrease in the rate of return on total capital was partly offset.

However, the difference between the rate of return and the effective interest rate, the so-called leverage factor, became smaller and smaller. In order to keep the difference between the rate of return on equity and the rate of return on total capital constant, the debt-equity-ratio would have had to be 7.1 instead of 2.2 in 1979. This, of course, was certainly not feasible. The risks of using leverage to increase the rate of return on equity become the greater, the more the leverage factor decreases. This is easily seen when we use the well-known leverage equation
(6) $\quad N R E=N R T+(N R T-E \ddot{I} R) D E R$ to derive the first differences
(7) $\quad \triangle \mathrm{NRE}=\triangle \mathrm{NRT}+(\mathrm{NRT}-\mathrm{EIR}) \triangle \mathrm{DER}+$ ($\triangle N R T$ - $\triangle E I R) D E R$

```
INRE - nominal rate of return on equity
NRT - nominal rate of return on total capital
EIR - effective interest rate
DER - debt-equity-ratio
    \Delta - indicator of annual change
```

If the leverage factor in the second summand is small, additional debt financing does not help to stem the tide of decreasing profitability of total capital. On the other hand, if interest rates rise due to rising inflation and the profitability of capital decreases, then the change in leverage reduces the rate of return on equity much more severely. The higher the prevailing debt-equity-ratio, the more important is this negative leverage effect.

Table 10 shows actual changes in the rate of return on equity and the changes computed from equation (7) using the data in table 10. The two columns cannot be identical of course because they are computed from data of the individual companies. The direction of change is, however, computed wrongly twice only if we take the changes in the unweighted and the weighted averages jointly as a basis for comparison (1972 and 1979). The years of 1966 and 1973 are particularly interesting. While total return on capital invested rises slightly, the rate of return on equity declines sharply because the change in the interest rate far exceeds the change in the rate of return of total capital invested.

Table 10: Leverage and the Rate of Return

Year	Change in the Rate of Return on Equity	Change in the Rate of Return on Total Capital	Difference between Rate of Return and Effective Interest Rate (Leverage Factor)	Change in the Debt-EquityRatio	Difference between Change of Rate of Re turn and Change of Effective Interest Rate	Debt Equity Ratio	Computed Change in the Rate of Return on Equity (Unweighted Data)	Change in the Rate of Return on Equity (Weighted Data)
1961	----	--	3.35	----	-----	1.52	-----	-----
1962	-0. 24	-0.09	3.10	0.03	-0. 25	1.55	-0.20	-0.11
1963	-0. 26	+o. 06	3.15	0.00	+o.05	1.55	+o. 14	+0. 79
1964	-0. 33	-0.10	3.15	0.04	0.00	1.59	+o.03	+o. 42
1065	+o. 64	+o. 37	3.28	0.04	0.12	1.63	+o. 70	-0. 72
1966	-0.74	+o.03	2.80	-0.03	-0.48	1.60	-0.77	-0.12
1967	-0.95	-0. 51	2.48	-0.04	-0. 32	1.56	-1.16	-0.09
1968	+o. 54	+o. 02	2.85	0.02	+0. 37	1.58	+o. 66	+o. 85
1969	+o. 02	-0.06	2.66	0.12	-0. 19	1.70	-0.06	+o. 41
1970	-1.47	-0.05	1.79	0.16	-0.87	1.86	-1.38	-0.67
1971	to. 05	-0.30	1.65	0.06	-0.14	1.92	-0.47	-3.98
1972	+0.73	-0.34	1.77	0.04	+o. 12	1.96	-0.03	+1.42
1973	-1.90	+o. 20	1.05	0.07	-0.72	2.03	-1.22	+o. 54
1974	-1.27	-0. 23	0.30	0.04	-0.75	2.07	-1.77	-4.25
1975	+1.65	-0. 59	0.39	-0.01	+o.09	2.06	-0.41	+1.18
1976	$+3.26$	+o. 89	2.05	0.04	+1.66	2.10	+4.46	+5.75
1977	-5.92	-1.34	0.74	-0.02	-1.31	2.08	-4.08	-3.95
1978	+0.47	-0. 29	0.68	0.00	-0.06	2.08	-0.41	-0.69
1979	+0.80	+o. 25	0.86	0.10	+o. 18	2.18	+0. 73	+1.91
1980								

3. The Determinants of the Rate of Return

Three factors seem to dominate the explanation of the development of the rate of return of German manufacturing companies:

- the increased intensity of competition due to the revaluation of the deutschmark and the price increase for imported raw materials like oil and mineral ores,
- the tougher bargaining processes resulting in an effectively higher wage share of firm income,
- the successful attempts on the side of creditors to shelter credit from erosion by inflation through higher nominal interest rates (as well as through shorter amortization periods).
In this section we will take these three determinants up and look a little closer at their impact on the profitability of the firms.

3.1. Rates of Return and Business Risk

On an imperfect market intensified competition will result in a wider-spread of rates of return because while some firms gain a competitive edge on their competitiors, other hold back temporarily and have to intensify their efforts to catch up with the market leaders. The coefficient of variation of the rates of return among the 222 firms in the sample may therefore be used as an indicator of the risk of the market place. We will call this risk the busimess risk. It has to be borne in mind, however, that the actual data derived from the financial reports represent the net effect of the market risk on the one hand and of the effects of measures taken by the companies to reduce this risk by e.g. diversification and shifting the asset structure of the portfolio to less risky assets on the other.

From Figure 3 we infer that while the average rate of return among the manufacturing companies in Germany declined over time, business risk has increased somewhat if we look at the rates of return before taxes. Taxation has had a double effect. On the one hand it has cushioned the decline in the rate of return. On average, the government shouldered the burden of the loss and profitability with the firms. On the other hand, however, taxation increased business risk. The coefficient of variation increased significantly between 1961 and 1979 . There are cyclical influences that account for the deviations from the general trend. But the structural changes that have brought about lower profitability and higher risk are nontheless evident.

Figure 4 presents the data on the real rate of return and on the coefficient of variation. Again the cyclical pattern is evident and in fact much more pronounced than in the case of the nominal data. On the other hand figure 4 conveys the impression of a structural break between the early sixties until 1966 and the latter part of the period under investigation. The central of gravity of the return-risk-profile has certainly shifted downward to the right.

The data we have presented so far indicate that the drop in the rate of return of German manufacturing companies reflects a significant structural change in economic climate. Adaptation to the new environment is a slow process, and obviously some companies, particularly, the larger ones, though more seriously affected in the first place, have been able to adapt faster than others. We will now try to point out some irdicators of changes in corporate policy that have taken place in order to meet the greater risks of the market place in the seventies.

- 33 -

Figure 3: Nominal Rate of Return on Total Capital and Business Risk

$$
-34-\stackrel{\rightharpoonup}{\circ}
$$

Ficure 4: Real Rate of Return on Total Capital and Business Risk


```
:a. 55 cas 9 c45.1,c
```

First, investment in plant and equipment was reduced significantly after 1970. This led to a marked decline of the ratio of fixed assets to total assets. This shift in the composition of the business portfolio may not only be interpreted as a reaction towards less favorable business conditicns profitwise but also as an attempt to reduce business risk.

Secondly, there is a marked increase in the proportion of financial and liquid assets in the investment portfolio of the largest manufacturing corporations since 1970. The smaller companies, on the other hand, could not shift their assets to holding liquid assets because, obviously they were under heavier financial constraints. Part of the success of adaptation of the larger companies to the changed economic environment may be attributed to their effective policy of investment in financial assets rather than in plant and equipment located in Germany. I would interpret these figures to mean that German corporations have not responded to increased risk in the environment by an increased risk preference but rather by intensified attempts at diversification abroad and at holding a larger share of risk-free assets.

Figure 5 gives an indication of the portfolio decisions of German manufacturing corporations which were taken in order to cope with the increased business risk of the seventies.

3.2. Rate of Return and Financial Risk

Attempts to limit business risk may not have been completely voluntary acts of management. They may have been imposed on the companies by their investors.

We first look at the stock-holders. No empirical study of risk preference among German stock-holders has been carried out so far. We use a very crude approach here. We make the heroic

Pigure 6: Risk Profiles of Stocks and Bonds 1968-1979

assumption that an investor could have forecast the returns from a market portfolio of stocks correctly for the years from 1968 to 1977 and that he was faced with the alternative to invest in government-bonds with a known distribution of yields. He could therefore have invested in an (almost) safe asset (bonds) with an expected return of 8 percent or a risky asset (stocks) with an expected return of nearly 16 percent. The standard deviation was 1.3 on the bonds and 14.4 on the stocks. The statistical test shows that the returns from the stocks were normally distributed. The risk profiles the investor was faced with are shown in figure 6 . The risk-premium on risky assets was about 8 percent. This was the price for a 30 percent chance of doing worse than by investing in bonds and for a 14 percent chance to lose money. Taking into consideration also that there was a 6 percent chance of making more than 10 percent on bonds and a 5 percent chance of making more than 36 percent on stocks, one might well agree with observers of the German stock-exchange that there is a high risk aversion among share-holders. Declining profits on capital invested made it increasingly difficult for the firms to meet the expectations of investors for risk-premia. Therefore the firms may have been forced to stabilize returns and to invest in less risky and at the same time less profitable investments.

Financial risk is not limited to share-holders. Creditors also bear financial risk. Let us measure financial risk by the probability that the cash flow in any period t does not cover interest on and amortization of the loan, ($1-\pi$). Thus
(8) $\operatorname{Pr}\left\{C_{t} \leq i_{t}+\frac{L}{D}\right\}=1-\pi$

```
with }\mp@subsup{c}{t}{}\mathrm{ - cash flow from investment in period }t\mathrm{ ,
                        a stochastic variable,
    it - interest payment
    L - nominal value of loan
    D - Duration of credit contract
    \pi - (cumulative) probability
```

The certainty equivalent for (8) is
(9) $\bar{C}_{t}-\lambda(\pi) \sigma_{t}=i_{t}+\frac{L}{D}$
with a bar denoting expected values and λ the normal deviate of the standard normal distribution. In (9) σ_{t} measures business risk. We assume σ_{t} to be an exogenous variable attached to the type of equipment purchased.

We now relate financial risk, $1-\pi$, to financial structure. Let α denote the debt ratio. The equilibrium of demand and supply for funds is given by
(10) $I=E+L=E+\alpha I$
with

$$
\begin{aligned}
& \text { I - investment outlay } \\
& \text { E - equity capital. }
\end{aligned}
$$

Now setting

$$
\begin{equation*}
\overline{\mathrm{C}}_{\mathrm{t}}=\frac{\mathrm{N}+1-\mathrm{t}}{\mathrm{~N}} \overline{\mathrm{c}}_{1} \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
\overline{\mathrm{C}}_{1}=\gamma \cdot I \tag{12}
\end{equation*}
$$

and
(13) $i_{t}=r \cdot \alpha I\left(\frac{D+1-t}{D}\right)$
with

```
        r - interest rate
        N - economic life time of investment,
```

we have from (9) and (10) after rearranging

$$
\begin{equation*}
\frac{\sigma_{t}}{I}=\frac{N-t+1}{N} \cdot \frac{\gamma}{\lambda}-\frac{\alpha}{\lambda} \cdot \frac{1}{D}[1+r(D-t+1)] \tag{14}
\end{equation*}
$$

or simplifying
(14') $\frac{\sigma_{t}}{I}=\frac{1}{\lambda}[A \cdot \gamma-\alpha B]$

For given business risk the debt ratio is a linear function of financial risk. The debt ratio is therefore a measure of financial risk. For given business risk (14) specifies the maximum credit limit. Or conversely, for given credit limits (14) shows the maximum business risk the corporation can incur on the investment.

Table 10 contains figures on the development of the debt-equityratio. Figure 7 presents the equivalent figures for the static debt-ratio and adds information on the development of the dynamic debt-ratios which indicate the number of years it would take to pay back net-debt (debt-capital minus cash on hand) from the annual cash flows.

Creditors have successfully tried to get adequate compensation for the increased financial risk: Not only in higher interest rates but also in the form of better control over business investment policy. Control is exerted via seats on the boards of directors. Despite the Corporation Act of 1965 which limited the number of directorates that an individual can hold, and despite the Co-Determination Act of 1976 that reduced the
number of seats available to share-holders (and thus for banks owning stock or representing stock) in favor of labor representatives on the boards, the banks could in fact intensify their control over industry. This is highlighted by table 11. Control may be measured by Freeman's Measure of Centrality. The three major German banks suffered a significant loss in centrality due to the legislation mentioned. However, the loss in centrality suffered by all individual top-managers of the three banks was kept minimal. This was brought about by increasing the average number of directorship per person and by placing these persons in highly central directorates. This led to an increase in the concentration of seats by persons, measured by the Gini-Coefficient, while, of course, the concentration of seats for the three banks at the whole decreased.

Table 11: Concentration, Information Control and Financial Risk

Average Number of Seats:	1964	1978	Change (in percent)
- All Bankers	1.7886	2.2347	+24.94
- Bankers of			
Deutsche Bank	3.1613	3.6111	+15.32
Commerzbank	2.6875	3.5625	+32.56
Dresdner Bank	3.4444	2.8333	-17.73
Three Banks Total:	3.1231	3.2690	+4.67
Concentration of Seats:			
- All Banks	.3334	.3570	+7.08
- Three Banks Total:	.7230	.7074	-2.16
Centrality of Information:			
- All Bankers	.7600	.7370	-3.03
- Banks:			
Deutsche Bank	.1480	.0700	-52.70
Commerzbank	.0790	.0990	+25.32
Dresdner Bank	.0700	.0820	+17.14
Three Banks Total:	.3070	.2510	-18.24

We conclude that the banks have been able to limit the adverse effect of the changes in the relevant laws and that they have retained and in some cases even improved their means of information at control on the board of German manufacturing firms.

The banks have an influence on practically all the branches of industry. Table 12 gives figures that substantiate that statement.

Table 12: Banking Influence on the Board of Directors, by Branches, Percentage of Total Directors Positions

Branch	Distribution of Directorships held by the three major Banks	Percentage of Companies in Branch having at least one Banker on the Board	
	1978	1964	1978
Energy	5	5	40
Mining	4	7	18
Chemical Industry	11	14	55
Steel Industry	14	23	48
Metal Industry	12	9	58
Electrotechnical	14	10	53
Industry	17	15	48
Construction	17	58	
Industry	23	17	
	100	100	58

The figures of table 12 underestimate the influence of the German banks on business investment decisions of manufacturing companies because directorships held by other banks are not included and furthermore directorships held by general managers of banks or any other manager of a bank below executive ranks are not included either.

3.3. Rates of Return and Wage Share

Business risk is the joint effect of uncertainty of sales and the uncertainty of expenses. There is no doubt but that increases in the cost of raw materials have been a major source of risk particularly since 1974. However, wage increases have posed more serious problems particularly in times when wage demands lossed touch with developments on the international markets of German manufacturing firms.

We will first look at the result of the bargaining process on the manufacturing firms' distribution of nominal value added. For the computational details of value added see the appendix. Table 13 indicated that the share of value added that workers receive rose from 70 percent in 1961 to 81 percent in 1979. The share that the owners of the companies receive was reduced to a little over a half of the 1961 share. In the early seventies, labor increased its share significantly. At the same time creditors almost doubled their share over their 1961 share. In the late sixties high investment and an increasing leverage led to an improvement of the net capital share at the cost of business taxes. When in the early seventies growth rates declined and wage demands lost touch with the international economic environment which had changed so drastically for German corporations, the stock-holders seem to have taken refuge in transferring`residual income (profits) into contractual income (interest) in order to limit the risk of their total income stream. The improvement in the share of business taxes in the late seventies is due to a shift from taxes on earnings to taxes on property and assets.

The improvement in the real wage share is not quite as significant as the improvement in nominal terms. The wage share rose from 76 percent to 84 percent. During the same period, the real net capital share decreased from 11.5 percent to 6 percent. Taxes suffered a minor reduction in their share of real value added only. This is of course due to the fact that

Table 13: Distribution of Value Added, Nominal, in percent

Year	Gross Wage Share	Creditors' Share	Share-Holders' Share	Net-Capital Share	Business Taxes on Profits and Assets	Adjusted Wage Share of National Accounts ${ }^{1)}$
1961	70.34	3.79	8.99	12.78	16.88	62.1
1962	71.71	4.08	8.74	12.82	15.47	62.8
1963	72.21	4.07	8.61	12.68	15.11	63.2
1964	72.12	3.94	8.70	12.64	15.24	62.3
1965	73.12	4.17	9.12	13.29	13.59	62.6
1966	73.53	4.90	8.87	13.77	12.70	63.3
1967	74.28	5.03	8.68	13.71	12.01	63.2
1968	73.36	4.65	9.13	13.78	12.86	61.3
1969	73.73	4.81	8.56	13.37	12.90	61.8
1970	75.17	6.16	7.60	13.76	11.07	62.7
1971	77.13	5.95	6.76	12.71	10.16	63.6
1972	77.86	5.23	6.45	11.68	10.46	63.8
1973	78.32	6.57	5.79	12.36	9.32	64.6
1974	78.81	7.34	5.36	12.70	8.49	66.3
1975	80.52	5.91	4.80	10.71	8.77	66.1
1976	79.13	5.12	6.19	11.31	9.56	64.9
1977	81.40	4.76	4.15	8.91	9.69	64.8
1978	81.09	4.57	4.64	9.21	9.70	63.8
1979	81.14	4.41	4.84	9.25	9.61	63.1
1980						63.2

1) See f. Board of Economic Experts, Annual Report 1980/81, Stuttgart and Mainz 1980 , p. 79
inflation increases nominal taxes by a rate that is higher than the increase in the cost of living.

Finally, the improvement of labor's position in the distribution of income is demonstrated by the "Real Wage Position". This indicator was developed by the Board of Economic Experts. The basic idea behind this indicator is that productivity gains and improvements in the terms of trade can be distributed to labor without changing the real cost per unit of output. A rise in the index of the real wage position indicates that the increase in wages exceeds the amount available and vice versa. Table 14 shows the development of the real wage position. It is evident from table 14 and figure 8 that manufacturing suffered more severely from excessive wage demands than the economy as a whole (without government).

Summarizing the analyses so far it seems obvious that two major factors account for the loss in profitability of German manufacturing corporations:

1. In the light of business risk that has increased significantly from the sixties to the seventies risk averse investors (share-holders and banks) have effectively changed the investment behavior of manufacturing firms towards less risky assets.
2. The trade unions have not been willing to shoulder part of the increased business risk. On the contrary, they have increased their share of value added significantly in the seventies thus reducing the margin available to pay risk premia for riskbearing capital.

Figure 8: Distributions of Value added, real
in percent

Table 14: Real Wage Position 1), $1962=100$

Year	National Accounts	
	with Capital User Cost in the Margin for Distribution	without Capital User Cost in the Margin for Distribution
1962	100.0	100.0
1963	100.2	99.4
1964	99.0	98.4
1965	99.4	98.6
1966	100.2	99.2
1967	98.0	97.9
1968	97.3	95.9
1969	98.1	99.2
1970	103.9	101.7
1971	105.8	103.0
1972	105.6	102.8
1973	107.3	103.4
1974	110.5	105.1
1975	109.0	102.8
1976	106.6	101.2
1977	106.5	101.1
1978	106.3	100.5
1979	105.2	99.7
1980	105.9	99.7

1) Board of Economic Experts, Annual Report 1980/81, loc.cit. p. 217

II. The Regression Analyses

We now turn to a statistical analysis of the time series presented in the previous section. First we present results of single equation regressions. Secondly, we explain the development of the rate of return on the basis of an econometric model of the representative German manufacturing firm using multiequation regressions.

1. Single Equation Models

1.1. The Rate of Return of All Manufacturing Firms

The simple question of a trend in the time series for nominal and real rates of return could be answered in the affirmative. There is a statistically significant trend in the time series of the rates of return on capital invested as well as on equity for the manufacturing sector.

The nominal rates of return show a statistically significant downward trend also in the electrotechnical industry, the chemical industry, and the machinery industry. The real rates of return decrease significantly in the chemical industry, and a statistically significant decrease can also be proved in the time series of the real rate of return on equity of the automobile industry, the electrotechnical industry and the iron and steel industry. I do not present the regression coefficients here because I do not feel that fitting the time series to a linear trend-equation is very illuminating.

Multiple linear regressions may provide a better insight in the determinants of the rate of return. It was decided to use a time factor, real growth of national product, and the inflation rate as explanatory variables. I have first treated the period from 1961 to 1979 as one period and fitted the regression equations to the data of the total period. Then I have assumed that there is a structural break in the period,
so that the years from 1961 to 1968 show an economic behavior which is different from that of the period from 1969 to 1979.

Table 15 shows the results for the development of the rate of return on capital invested, while table 16 gives results for the nominal rate of return on equity. The following conclusions may be drawn from the tables:

- The rate of return on total capital increased between 1961 and 1968 and has decreased ever since.
- The growth rate of gross national product has a positive impact on the profitability of manufacturing companies.
- The inflation rate has a positive influence on the nominal rate of return on capital. The impact seems to be stronger than that of the growth rate.
- The rate of return on equity declined over the total period and certainly over the period from 1969 to 1979. In manufacturing this decline was certainly more marked than that of the rate of return on total capital.
- Growth of gross nationad product has a significant and rather strong influence on the rate of return on equity.
- The inflation rate has on the whole an influence on the nominal rate of return on equity which is not significant. This is a rather interesting result. Of course share-holders have experienced that they do not gain nominally from inflation. Beliefs that losses in nominal terms do not matter because stock-holders hold real assets were not well-founded, however, as will be shown immediately.

Table 15: Regression Coefficients, Nominal Rate of Return on Total Capital after Taxes

Firms	Constants			Trend	Growth Rate of GNP	Inflation Rate	R^{2}
	1961-1979	1961-1968	1969-1979				
Non-Financial Corporations							
Equation 1	4.30	----	----	$\begin{gathered} -.016 \\ (.58) \end{gathered}$	$\begin{aligned} & .097 \\ & (.14) \end{aligned}$	$\begin{aligned} & .116 \\ & (.14) \end{aligned}$.3393
Equation 2	----	$\begin{aligned} & 4.223 \\ & (8.01) \end{aligned}$	$\begin{aligned} & 4.1 \circ 4 \\ & (4.38) \end{aligned}$	$\begin{gathered} -.007 \\ (.15) \end{gathered}$	$\begin{gathered} .102 \\ (1.91) \end{gathered}$	$\begin{aligned} & .022 \\ & (.22) \end{aligned}$. 3423
Equation 3	--	$\begin{aligned} & 3.757 \\ & (13.26) \end{aligned}$	-----	$\begin{gathered} .111 \\ (4.76) \end{gathered}$	$\left(\begin{array}{c} .026 \\ (1.12) \end{array}\right.$	$\begin{gathered} .118 \\ (1.58) \end{gathered}$. 8503
Equation 4	-	----	$\begin{aligned} & 4.317 \\ & (3.68) \end{aligned}$	$\begin{aligned} & -.087 \\ & (1.39) \end{aligned}$	$\begin{gathered} .159 \\ (2.22) \end{gathered}$	$\begin{gathered} .146 \\ (1.31) \end{gathered}$. 7273
Manufacturing Corporations							
Equation 1	5.68	---	---	$\begin{aligned} & -.149 \\ & (6.98) \end{aligned}$	$\begin{gathered} .050 \\ (1.07) \end{gathered}$	$\begin{gathered} .107 \\ (1.42) \end{gathered}$. 7967
Equation 2	-	$\begin{aligned} & 5.519 \\ & (12.64) \end{aligned}$	$\begin{aligned} & 5.4 \circ 3 \\ & (7.03) \end{aligned}$	$-.126$	$\begin{gathered} .064 \\ (1.41) \end{gathered}$	$\begin{gathered} .103 \\ (1.31) \end{gathered}$. 8225
Equation 3	---	$\begin{aligned} & 4.783 \\ & (20.66) \end{aligned}$	----	$\begin{gathered} .015 \\ \left(\begin{array}{c} .78) \end{array}\right) \end{gathered}$	$\begin{aligned} & .003 \\ & (.15) \end{aligned}$.241 (3.94)	. 8004
Equation 4	----	----	$\begin{aligned} & 5.547 \\ & (6.96) \end{aligned}$	$\begin{gathered} -.164 \\ (5.01) \end{gathered}$	$\begin{gathered} .109 \\ (2.11) \end{gathered}$	$\left(\begin{array}{c} .152 \\ (2.01) \end{array}\right.$. 8776

t - values are given in brackets

Table 16: Regression Coefficients, Nominal Rate of Return on Equity
after Taxes

Firms	Constants			Trend	Growth Rate of GNP	Inflation Rate	R^{2}
	1961-1979	1961-1968	1969-1979				
Non-Financial Corporations							
Equation 1	7.17	-----	-----	$\begin{aligned} & -.065 \\ & (1.04) \end{aligned}$	$\begin{aligned} & .367 \\ & (3.58) \end{aligned}$	$\begin{gathered} -.113 \\ (.60) \end{gathered}$. 6704
Equation 2	---	$\begin{aligned} & 6.609 \\ & (5.72) \end{aligned}$	$\begin{aligned} & 5.78 \\ & (2.82) \end{aligned}$	$\underline{-.003)}$	(307 (3.47)	(.60) -.041 $(.19)$. 6849
Equation 3	----	$\begin{aligned} & 5.867 \\ & (7.55) \end{aligned}$	----	$\begin{gathered} .134 \\ (2.09) \end{gathered}$	$\begin{aligned} & 176 \\ & (2.74) \end{aligned}$	$\begin{aligned} & .378 \\ & (1.85) \end{aligned}$. 7447
Equation 4	----	(7.55)	$\begin{aligned} & 4.283 \\ & (1.36) \end{aligned}$	$\begin{gathered} -.018 \\ (.11) \end{gathered}$	$\begin{aligned} & .607 \\ & (3.16) \end{aligned}$	$\begin{aligned} & .159 \\ & (.53) \end{aligned}$. 7928
Equation 5	6.86	-----	: ------	$\begin{aligned} & -.088 \\ & (1.82) \end{aligned}$	$\begin{aligned} & .387 \\ & (4.09) \end{aligned}$	53)	. 6612
Manufacturing Corporations							
Equation 1	10.88	-----		$\begin{aligned} & -.309 \\ & (5.00) \end{aligned}$	$\begin{aligned} & .156 \\ & (1.15) \end{aligned}$	$\begin{gathered} .074 \\ (.34) \end{gathered}$. 7078
Equation 2	---	$\begin{aligned} & 10.371 \\ & (7.23) \end{aligned}$	$\begin{aligned} & 9.827 \\ & (3.89) \end{aligned}$	$\begin{aligned} & -.245 \\ & (2.22) \end{aligned}$	$\begin{aligned} & 196 \\ & (1.32) \end{aligned}$	$\begin{aligned} & .099 \\ & (.39) \end{aligned}$. 7015
Equation 3	----	$\begin{gathered} 9.789 \\ (22.18) \end{gathered}$	((2.163 (4.49)	$\begin{aligned} & .095 \\ & (2.59) \end{aligned}$	$\begin{aligned} & .345 \\ & (2.96) \end{aligned}$. 9347
Equation 4	---	------	$\begin{aligned} & 9.352 \\ & (2.08) \end{aligned}$	$\begin{aligned} & -.249 \\ & (1.35) \end{aligned}$.274 $(.94)$	$\begin{aligned} & .154 \\ & (.36) \end{aligned}$. 4165
Equation 5	11.12	-------	-----	$\begin{aligned} & -.300 \\ & (5.60) \end{aligned}$	$\begin{aligned} & 140 \\ & (1.13) \end{aligned}$. 7056

t - values are given in brackets

Results of the regression equations run for the real rate of return are given in tables 17 and 18 . The results are not as convincing statistically as one might hope. However, the following conclusions may be drawn from tables 17 and 18:

- The decline in real rates of return was a common feature for the whole period.
- The decline in the real rate of return on equity was more marked than that of the real rate of return on capital.
- The decline in the real rate of return on equity was greater than that in the nominal rate.
- The decline was greater in the period from 1969 to 1979 than in the period from 1961 to 1968 .
- The structural break between the sixties and the seventies is rather significant. It amounts to . 5 percent in the rate of return on total capital and to over 1 percent in the rate of return on equity.
- The rate of growth in real GNP has, wherever significant, a positive effect on the rate of return.
- The inflation rate has a negative impact on the real rate of return regardless of which measure of the real rate of return is taken and regardless also of which explanatory equation is used.

Table 17: Regression Coefficients, Real Rate of Return on Total Capital after Taxes

Firms	Constants			Trend	Growth Rate of GNP	Inflation Rate	R^{2}				
	1961-1979	1961-1968	1969-1979								
Non-Financial Corporations											
Equation 1	3.49	----	-----	-. 045	. 072	-. 115	. 6346				
Equation 2	---	3.226	2.830	(1.64) -.015	(1.60)	(1.37)					
Equation		(6.32)	(3.12)	(.33)	(1.77)	-. $\mathrm{-} .881$. 6535				
Equation 3	----	2.950		. 091	. 011	-. 030	. 6631				
		(6.66)		(2.51)	(.31)	(. 26)					
Equation 4			$\begin{aligned} & 2.851 \\ & (2.84) \end{aligned}$	-.087	-159 (2.59)	. 057	. 8223				
Equation 5	3.18	-----	(2.84)	-. 069	(2.59)	(. 59)	. 5815				
		t		(3.04)	(2.09)						
Equation 6	3.95	-----	-----	$\begin{aligned} & -.047 \\ & (1.60) \end{aligned}$	-----	$\begin{aligned} & -.159 \\ & (1.90) \end{aligned}$. 5628				
Manufacturing Corporations											
Equation 1	7.22	-----	-----	-. 050	-. 009	-.508	. 8450				
				(2.15)	(.18)	(6.14)					
Equation 2	----	$\begin{aligned} & 6.051 \\ & 6 \quad 22) \end{aligned}$	$\begin{aligned} & 5.523 \\ & (3.23) \end{aligned}$	-. 135	-. 019	-. 573	. 8396				
		(6.22) 5.284	(3.23)	(1.81)	(.18)	(3.29)					
Equation 3	----	$\begin{aligned} & 5.284 \\ & (6.01) \end{aligned}$		(1.38)	-. 070	-.603	. 7859				
Equation 4	----		6.057	-. 216	(96 .029	(2.60) -.482					
			(2.59)	(2.25)	(.19)	(2.16)					
Equation 5	5.52			-. 115	. 101		. 4556				
Equation 6	7.16			(3.06)	(1.16)						
				-.050	-----	-.503 (6.69)	. 8446				

Table 18: Regression Coefficients, Real Rate of Return on Equity after Taxes

Firms	Constants			Trend	Growth Rate of GNP	Inflation Rate	R^{2}
	1961-1979	1961-1968	1969-1979				
Non-Financial Corporations							
Equation 1	5.43	-----	-----	$\begin{aligned} & -.176 \\ & (3.44) \end{aligned}$	$.226$	-. 339	. 8516
Equation 2	-----	$\begin{aligned} & 4.663 \\ & (5.15) \end{aligned}$	$\begin{aligned} & 3.370 \\ & (2.12) \end{aligned}$	$\begin{gathered} -.083 \\ (1.01) \end{gathered}$	$.286$	(2.19) -.231	. 8735
Equation 3	----	$\begin{aligned} & 4.128 \\ & (4.29) \end{aligned}$	-----	.054 $(.68)$	(100 (1.26)	.013 $(.05)$. 3134
Equation 4	-----	-----	$\begin{aligned} & 2.383 \\ & (1.25) \end{aligned}$	$(.131$ (1.30)	(1).450 (3.87)	(.05) (.023	. 9057
Equation 5	4.52	-----	(1.25)	$\begin{gathered} -.245 \\ (5.36) \end{gathered}$	$\begin{gathered} (3.87) \\ (386 \\ (3.19) \end{gathered}$	(.13)	. 7969
Equation 6	6.82	_-		$\begin{array}{r} -.181 \\ (2.93) \\ \hline \end{array}$	(3.19)	$\begin{aligned} & -.474 \\ & (2.69) \\ & \hline \end{aligned}$. 7685
Manufacturing Coporations							
Equation 1	11.48	-----	---	$\begin{aligned} & -.326 \\ & (6.83) \end{aligned}$	-. C (.008 ${ }^{.08)}$	-. 296	. 8492
Equation 2	-------	$\begin{aligned} & 8.112 \\ & (5.41) \end{aligned}$	$\begin{aligned} & 6.962 \\ & (2.64) \end{aligned}$	$\begin{aligned} & -.289 \\ & (2.51) \end{aligned}$	$.08)$ $(.119$.77$)$	(1.75) -.285 (1.06)	. 8281
Equation 3	---	$\begin{aligned} & 7.483 \\ & (4.57) \end{aligned}$	-----	$(2.518$ -.018 $(.14)$	$\begin{array}{r} .17) \\ .135 \\ (.99) \end{array}$	$\begin{aligned} & (1.06) \\ & -.538 \end{aligned}$ (1.25)	. 4004
Equation 4	--	($\begin{aligned} & 8.181 \\ & (2.07) \end{aligned}$	(-.403 (2.48)	.118 $(.86)$	$\begin{aligned} & (1.25) \\ & -.203 \end{aligned}$. 6036
Equation 5	10.49	-----		$\begin{aligned} & -.364 \\ & (8.06) \end{aligned}$	$\begin{gathered} .056 \\ (. .54) \end{gathered}$	(.-54)	. 8185
Equation 6	11.43	----	---	$\begin{aligned} & -.326 \\ & (7.06) \end{aligned}$		$\begin{aligned} & -.292 \\ & (1.90) \end{aligned}$. 8492

t-values are given in brackets
1.2. The Rate of Return in the Chemical Industry

As stated earlier, the development of the rate of return in the different branches of industry does not parallel that of all manufacturing companies in Germany taken together. We present the results for the chemical industry in this section and refer the reader to the appendix for the results of the regressions on the data of other branches of industry.

Table 19 and 20 give results for the nominal rates of return on total capital and equity after taxes respectively. I venture to draw the following conclusions:

- The rates of return on total capital and on equity declined significantly during the period 1961 to 1979.
- The structural break in the time series is pronounced. The levels of the rates of return differ significantly between the sixties and the seventies. The difference is particularly pronounced in the case of the rate of return on equity.
- In the sixties, the ratas of return showed a positive or at least not negative trend. The negative trend in the seventies is significant.
- The growth rate of real GNP had a significant effect on the rate of return. The effect on the rate of return on equity was more pronounced than that on the rate of return on total capital.
- Inflation rates did not have a significant effect on the nominal rates of return.

Table 19: Regression Coefficients, Nominal Rate of Return on Total Capital after Taxes - Chemical Industry -

Equation	Constants			Trend	Growth Rate of GNP	Inflation Rate	R^{2}
	1961-1979	1961-1968	1969-1979				
Equation 1	7.24	-----	-----	-. 177	. 043	-. 054	. 7637
				(5.54)	(.61)	(.47)	
Equation 2	----	$\begin{aligned} & 6.429 \\ & (9.00) \end{aligned}$	$\begin{aligned} & 5.241 \\ & (4.17) \end{aligned}$	-. 090	. 102	. 057	. 7926
				(1.63)	(1.34)	(.45)	
Equation 3	----	$\begin{aligned} & 5.357 \\ & (10.52) \end{aligned}$! ------	. 113	. 065	. 179	. 6813
				(2.69)	(1.54)	(1.33)	
Equation 4	----	-----	$\begin{aligned} & 5.931 \\ & (3.53) \end{aligned}$	-. 159	. 124	. 097	. 6169
				(2.29)	(1.14)	(.60)	
Equation 5	7.06	-----	-----	-. 184	. 055	----	. 7602
				(6.62)	(.85)		
Equation 6	7.51	-----	---	-. 178	-----	-. 078	. 7578
				(5.69)		(. 75)	

t-values are given in brackets

Table 20: Regression Coefficients, Nominal Rate of Return on Equity after Taxes - Chemical Industry -

Equation	Constants			Trend	Growth Rate of GNP	Inflation Rate	R^{2}
	1961-19.79	1961-1968	1969-1979				
Equation 1	12.07	-----	-----	$\begin{aligned} & -.306 \\ & (3.96) \end{aligned}$. 242	-. 201	. 6906
					(1.42)	(.73)	
Equation 2	-----	9.034	4.458	. 013	. 458	. 245	. 8288
		(6.55)	(1.84)	(. 13)	(3.22)	(.99)	
Equation 3	-----	6.416	-----	. 325	. 370	. 857	. 9284
		(7.89)	[(4.85)	(5.48)	(3.99)	
Equation 4	-----	-----	5.604	-. 076	. 489	. 243	. 5130
			(1.51)	(. 50)	(2.03)	(. 69)	
Equation 5	11.40	-	-----	-. 332	. 285	-----	. 6796
				(4.89)	(1.82)		
Equation 6	13.57	---	-----	-. 312	-----	-. 388	. 6489
				(3.91)		(1.27)	

t-values are given in brackets

In order to exploit the data bank fully, we have run single equation estimations for the real rates of return not only with the aggregate data of the 21 firms in the chemical industry, but also with the pooled data, using the ordinary least squares method with dummy variables for the individual firms. The constant shown in tables 21 and 22 is the mean value of the 21 firm constants. The results achieved with the pooled regression method are, however, not more convincing than the results with the ordinary least squares method for the aggregate data.

From table 21 and 22 we can corroberate what has been said earlier about the cherical industry:

- The decline in the real rate of profit is significant.
- During the sixties, the chemical industry in fact improved its profitability somewhat total capital and significantly (using the leverage effect to the fullest extent) on equity capital.
- During the seventies the chemical industry suffered significant annual losses in profitability.
- The structural break in the time series between the sixties and the seventies is marked, in fact more marked than in the case of the nominal data.
- Inflation has a very negative impact on real profitability. In practically every equation run the impact of inflation on the rate of return on equity exceeds that on the rate of return on total capital. This is evidence again that creditors could shelter their amountsagainst inflation better than the stock-holders of the companies in the chemical industry.

Table 21: Regression Coefficients, Real Rate of Return on Total Capital after Taxes - Chemical'ridustry -

Equation	Constants			Trend	Growth Rate of GNP	Inflation Rate	R^{2}
	1961-1979	1961-1968	1968-1979				
Equation 1							
OLS	8.34	--	-	-. 125	.070	-. 519	. 6714
				(2.31)	(. 59)	(2.70)	
OLSDV	7.84	----	----	-. 177	. 033	-. 887	. 2939
				(3.60)	(. 31)	(5.08)	
Equation 2	----	$\begin{aligned} & 6.207 \\ & (3.97) \end{aligned}$	$\begin{aligned} & 2.940 \\ & (1.07) \end{aligned}$. 011	. 243	-. 733	. 8410
				(.09)	(1.50)	(2.61)	
Equation 3	----	$\begin{aligned} & 4.455 \\ & (2.21) \end{aligned}$	----	. 413	. 282	-. 819	. 7823
				(2.48)	(1.69)	(1.54)	
Equation 4	----	----	$\begin{aligned} & 5.230 \\ & (1.50) \end{aligned}$	-. 156	. 201	-. 689	. 6926
				(1.031)	(.89)	(1.50)	
Equation 5							
OLS	6.61	----	----	-. 191	. 183	-----	. 5113
				(3.37)	(1.39)		
OLS DV	4.89	----	----	-. 290	. 225	-----	. 2453
				(6.43)	(2.16)	:	
Equation 6 OLS							
	8.78	----	----	-. 126	----	-. 558	. 6638
				(2.39)		(3.17)	
OLS DV	8.05	----	----	-. 177	----	-. 905	. 2937
				(3.62)		(5.55)	

OLS - Ordinary least squares estimation
OLSDV - Ordinary least squares estimation method with dummy variables for the individual firm t-values are given in brackets

Table 22: Regression Coefficients, Real Rates of Return on Equity after Taxes

- Chemical Industry -

Equation	Constants			Trend	Growth Rate of GNP	Inflation Rate	R^{2}
	1961-1979	1961-1968	1969-1979				
Equation 1 OLS	12.68	----	----	$\begin{aligned} & -.293 \\ & (2.79) \end{aligned}$. 205	-. 713	. 6547
					(. 89)	(1.91)	
OLSDV	14.19	----	----	$\begin{aligned} & -.493 \\ & (2.64) \end{aligned}$	$\begin{array}{r} -.052 \\ \quad(.13) \end{array}$	-1.36	. 1190
						(2.04)	
Equation 2	----	$\begin{aligned} & 6.878 \\ & (3.01) \end{aligned}$	-. 921	. 164	. 632	-. 513	. 8561
			(. 23)	(. 93)	(2.68)	(1.25)	
Equation 3	----	$\begin{aligned} & 4.754 \\ & (1.16) \end{aligned}$	----	. 833		$\begin{gathered} -1.154 \\ (1.07) \end{gathered}$. 7819
			$\begin{aligned} & 3.703 \\ & : \quad(1.52) \end{aligned}$	(2.48)	(2.41)		
Equation 4	----	----		-. 151	. 485	-. 444	. 8689
				(1.51)	(3.06)	(1.91)	
Equation 5							
OLS	10.30	----	----	$-.384$. 359	-----	. 5704
				(3.81)	(1.54)		
OLSDV	9.67	----	----	$\begin{aligned} & -.667 \\ & (3.98) \end{aligned}$	$\begin{aligned} & .242 \\ & (.63) \end{aligned}$	-----	.1092
Equation 6	13.95	----	----	$\begin{aligned} & -.298 \\ & (2.86) \end{aligned}$. 6366
OLS					-----	-. 829	
						(2.39)	
OLSDV	13.87	----	----	$\begin{aligned} & -.492 \\ & (2.64) \end{aligned}$	-----	-1.326	. 1189
						(2.13)	

OLS - Ordinary least squares estimation
OLSDV - Ordinary least squares method with dummy variables for the individual firm
t-values are given in brackets

- Growth of real GNP has a very significant effect on profitability.

The single equation models clearly show that the combination of

- rising inflation rates
- decreasing growth rates in the economy
may be considered as the two major determinants of the declining rates of return in German manufacturing.

The oil-shock and the shock of floating exchange rates have hit German manufacturing companies very hard. They are operating now under a different economic climate. They are now working under fundamentally altered chances of making a reasonable profit. The chemical industry, the major of German gross industry of the sixties; was particularly affected by these shocks and it has not yet recovered from them as far as profits are concerned.
2. A Multi-Equation Model of German Manufacturing Companies -
2.1. The Model

The rate of return on capital that a company earns is the final result of the interaction of management decisions with the environment of the company. Management decisions relate to many functional areas of the company's activities and to many product divisions and markets on which the company sells its products. Therefore, it seems a gross simplification of the highly complex reality if one tries to explain the development of the rate of return by the impact of three determinant factors: time, real growth rate, and inflation rate.

We will therefore try to explain the development of the rates of return of German manufacturing industry by the use of a more complex model. The model is a multi-equation econometric model of the firm based on the assumption of optimizing behavior of the managers and charge of the different functional areas of the company. The equations are estimated from the financial data of the firms in the Bonn Data Bank.

The equations of the model were fitted to the data for the period from 1969 to 1976 in order to allow for ex ante-forecasts of the behavior of the model which could be confronted with actual behavior in the years from 1977 to 1979. The model has 24 equations. 15 equations describe the behavior of the firm.

The equations are given below
(15) Cash Flow

$$
\begin{aligned}
C F & =\left(p U-w L-m M-r_{T} F K_{-1}-0.15(h \quad V F+m V M)-M A-S A l v\right)(1-s) \\
& +s d S_{-1}
\end{aligned}
$$

Sales *.

$$
\begin{equation*}
U=a_{0} N\left(\frac{M A}{M A B}\right)^{0.156}\left(\frac{I}{I B}\right)^{0.062}\left(\frac{U-1}{U B-1}\right)^{0.63} \tag{16}
\end{equation*}
$$

(17) Finished Goods

$$
\mathrm{VF}=0.217 \mathrm{U}^{0.579}\left[\frac{\mathrm{w}}{\mathrm{~h}(\mathrm{r}+.15-\dot{h} / \mathrm{h})}\right]^{0.294} \mathrm{~A}^{-0.300_{V_{-1}}^{0.374}}
$$

(18) Output

$$
X=U+V F-V F-1
$$

(19) Investment in Fixed Assets

$$
\begin{aligned}
I & =0.036+0.352 \cdot \sum_{i=0}^{1}\left(\frac{(C F+M A)}{q \cdot K}\right)-i \\
& \left.+\sum_{i=0}^{3}\left(\frac{U B-i^{-U B}-i-1}{U B}\right)+0.582 \cdot \sum_{i=0}^{3} \sum_{-i-1}^{k_{-i-1}}\right) \\
& +0.220 \cdot\left(\frac{k_{-1}}{K_{-2}}\right) K_{-1}
\end{aligned}
$$

(20) User-Cost of Capital

$$
c=q\left[\left(\frac{F K}{G K}\right) r+\left(\frac{E K}{G K}\right) \cdot\left(\frac{\rho}{1-s}\right)-\frac{\dot{q}}{q}+0.12\right]
$$

(21) Relative Input-Prices for the Investment Function

$$
\mathrm{k}=\frac{\mathrm{w}^{0.587} \mathrm{~m}^{0.413}}{\mathrm{c}}
$$

(22) Depreciation Rate
$\delta=0.06+0.06 A^{4}$
(23) Fixed Assets
$K=K_{-1}(1-\delta)+I_{-1}$
(24) Desired Labor Input
$L^{*}=1.28 \times\left(\frac{\delta^{\prime} \mathrm{q}}{\mathrm{w}}\right)^{0.254}\left(\frac{\mathrm{~m}}{\mathrm{w}}\right) 0.308 \mathrm{e}^{-0.017 t}$
(25) Desired Raw Material Input
$M^{*}=0.90 \times\left(\frac{\delta^{\prime} q}{m}\right)^{0.254}\left(\frac{\mathrm{w}}{\mathrm{m}}\right)^{0.438} \mathrm{e}^{-0.017 t}$
(26) Desired Capacity Utilization
$A^{*}=1.03(X / K)^{0.309}\left(\frac{w}{q}\right)^{0.135}\left(\frac{m}{q}\right) .0 .095 e^{-0.0053 t}$
(27) Actual Labor Input
$L=\left(L^{*}\right) 0.554\left(M^{*}\right) 0.097\left(L_{-1}\right) 0.446\left(M_{-1}\right)-0.097$
(28) Actual Raw Material Input
$M=\left(L^{*}\right)^{0.098\left(M^{*}\right)} 0.927\left(L_{-1}\right)-0.098\left(M_{-1}\right) 0.073$
(29) Capacity Utilization

$$
A=A^{*}\left(L^{*} / L_{-1}\right) 0.360 \mathrm{w}
$$

(30) Inventories
$V M=0.218 M^{0.483}\left[\frac{\mathrm{w}}{\mathrm{m}(\mathrm{r}+.15-\dot{m} / \mathrm{m})}\right] 0.331 \mathrm{~A}^{-0.222 \mathrm{VM}_{-1}} 0.443$
(31) Production Cost per Unit of Output
$h=\frac{w L+m M+d S A V_{-1}}{L+M+d S A V_{-1} / q}$
(32) Plant and Equipment
$\operatorname{SAV}=\operatorname{SAV}_{-1}(1-d)+q \cdot I$
(33) Total Capital Invested
$\mathrm{GK}=\mathrm{SAV}+\mathrm{hVF}+\mathrm{mVM}+0.45 \mathrm{p} \cdot \mathrm{U}$
(34) Equity
$\mathrm{EK}=10.697\left(\frac{\mathrm{CF}}{\mathrm{GK}}\right)(9.245+0.068 \mathrm{GK}-81.7 \rho+37.6 \cdot \mathrm{r}$
$\left.-0.212 E K_{-1}-0.012 \mathrm{FK}_{-1}\right)+E K_{-1}$
(35) Debt Capital

FK = GK - EK
(36) Interest Rate
$r=2.237 r_{M}\left(\frac{F K}{G K}\right)^{2}$
(37) Industry Sales
$\mathrm{UB}=\Sigma \mathrm{U}$
(33) Total Business Investment Outlay in Industry
$I B=\sum I$

The Endogenous Variables are:

A	$:=$ Capacity Utilization
A^{*}	$:=$ Desired Capacity Utilization
C	$:=$ User Cost of Capital
CF	$:=$ Cash Flow after Taxes
δ	$:=$ Depreciation Rate
EK	$:=$ Equity
FK	$:=$ Debt Capital
GK	$:=$ Total Capital
h	$:=$ Production Cost per Unit of Output
I	$:=$ Investment in Fixed Assets
IB	$:=$ Total Investment of Industry
K	$:=$ Total Capital Invested
k	$:=$ Relative Input-Prices for the Investment Function
L	$:=$ Labor Input
L*	$:=$ Desired Labor Input
M	$:=$ Raw Material Input
M	$:=$ Desired Raw Material Input
r	$:=$ Interest Rate dependent on Debt-Equity-Ratio
SAV	$:=$ Plant and Equipment
U	$:=$ Sales
UB	$:=$ Total Sales in Industry
VF	$:=$ Stock of Finished Goods
VM	$:=$ Inventories
X	$:=$ Output

The Exogenous Variables are:

d	$:=$ Depreciation Rate for Taxation Purposes
m	$:=$ Raw Materials Price
MA	$:=$ Marketing Expenditures of the Firm
MAB	$:=$ Marketing Expenses in Industry
N	$:=$ Total Demand
p	$:=$ Product Price
q	$:=$ Price Index of Investment Goods
r_{M}	$:=$ Market Rate of Interest
r_{T}	$:=$ Actual Interest Rate payed by the Firm
p	$:=$ Cost of Equity
s	$:=$ Corporation Income Tax Rate
SAN	$:=$ Other Expenditures
t	$:=$ Period
w	$:=$ Wage Rate

2.2. The Results

2.2.1. The Development of the Rate of Return 1970 to 1979

Table 23 and figures 9 to 11 show actual and model rates of return for the period from 1970 to 1979 . The model underestimates total rates of return before tax but seems to have a explanatory power for the development of the rate of return after tax, and it describes the development of the rate of return on equity rather well taking into account the wide fluctuations in the rate of return on equity that German manufacturing firms experienced in the period from 1970 to 1979.

2.2.2. Sensitivity Analyses of the Rate of Return

If we accept the multi-equation model as a description of rational behavior of the German manufacturing firms in a complex economic environment, then clearly we can study the impact of certain exogenous variable on the rate of return.

The influences that may be considered important are

- the rate of growth of total demand
- the rate of increase in wages and salaries
- the rate of raw materials price increases
- the rate of technological progress
- the corporation income tax rate

Table 23: Nominal Rate of Return
on Total Capital before Taxes

Year	Actual	Model
1970	9.24	8.392
1971	7.72	7.772
1972	8.76	7.843
1973	9.67	7.440
1974	7.01	4.549
1975	8.21	5.869
1976	10.39	7.649
1977	9.59	6.711
1978	9.20	6.744
1979	9.43	6.688

on Total Capital after Taxes

Year	Actual	Model
1970	6.11	
1971	5.04	5.904
1972	5.06	5.608
1973	5.63	5.539
1974	3.81	5.393
1975	4.43	3.749
1976	5.91	4.490
1977	4.50	
1978	4.27	.
1979	4.44	4.741
		4.760
		4.676

on Equity after Taxes

Year	Actual	Model
1970	10.81	9.330
1971	7.23	8.328
1972	7.71	8.878
1973	8.48	8.066
1974	4.38	3.481
1975	5.11	6.258
1976	12.37	9.763
1977	8.15	8.317
1978	6.71	8.523
1979	8.63	9.040

Figure 9: Nominal Rate of Return on Total Capital before Taxes

Figure 10: Nominal Rate of Return on Total Capital after Taxes

Table 24: Sensitivity Analysis
Growth Rate of Demand

Year	Constant Growth Rate of Demand	Model Estimates of Rates of Return 		
	Total Capital before Taxes	Total Capital after Taxes	Equity	
1970	1.9	8.392	5.904	9.330
1971	1.9	7.600	5.502	8.035
1972	1.9	7.607	5.391	8.440
1973	1.9	7.252	5.270	7.673
1974	1.9	4.948	3.984	4.161
1975	1.9	6.781	4.987	7.739
1976	1.9	7.557	5.303	9.752
1977	1.9	6.399	4.560	7.881
1978	1.9	6.371	4.538	7.908
1979	1.9	6.228	4.397	8.135

Year	Actual Growth Rate of Demand	Model Estimates of Rates of Return		
		Total Capital before Taxes	Total Capital after Taxes	Equity
1970	-	8.392	5.904	9.330
1971	2.86	7.772	5.608	8.328
1972	3.19	7.843	5.539	8.878
1973	3.01	7.440	5.393	8.066
1974	- 0.30	4.549	3.749	3.481
1975	- 2.57	5.969	4.490	6.258
1976	2.64	7.649	5.350	9.763
1977	2.80	6.711	4.741	8.317
1978	3.50	6.744	4.760	8.523
1979	4.50	6.688	4.676	9.040

Figure 12: Sensitivity Analysis: Growth of Demand Rate of Return on Total Capital before Taxes

Figure 13: Sensitivity Analysis: Growth of Demand Rate of Return on Total Capital after Taxes

Figure 14: Sensitivity Analysis: Growth of Demand Rate of Return on Equity after Taxes

The impact of the rate of growth of demand on profitability does not seem to be very significant. In fact, the average growth rate during the period is 10 percent below the actual growth rate, but the average rate of return on capital after taxes is only 1 percent below the rate of return on the basis of the actual growth of demand. Table 24 and figures 12 to 14 show the results of the sensitivity analyses. It is plausible that rates of return on the basis of a constant rate of growth of demand should be higher in periods when actual growth rates were lower and vice versa.

We now look at the influence that wage increases have on the rate of return in our representative manufacturing firm. Table 25 and figures 15 to 17 demonstrate the devastating effects that the exorbitant wage demands of the early seventies had on the rates of return of German manufacturing companies. In fact, the constant growth rate is higher by roughly 3 percent than the average rate of increase of wages and salaries during the period. The influence on the total rate of return is less important than that on the rate of return on equity. Of course the oil-price-hike of 1973/74 could have been absorbed even if the wage increases had been, constant over the period. But the combination of excessive wage demands and increases in the price of oil had a remarkable effect on the rate of return on equity after taxes: it dropped from over 9 percent to 3.5 percent within 4 years. Since during 1978 and 1979 wage increases were well below the assumed constant rate of growth, the sensitivity analysis shows that the rate of return on the basis of the actual data is above the rate of return in the constant rate of increase case.

Table 25: Sensitivity Analysis, Increase in Wages and Salaries

Year	Constant Annual Increase in Wages	Model Estimates of Rates of Return		
		Total Capital before Taxes	Total Capital after Taxes	Equity after Taxes
1970	8.33	8.392	5.904	9.330
1971	8.33	9.154	6.434	10.420
1972	8.33	9.351	6.438	11.116
1973	8.33	9.925	6.873	11.810
1974	8.33	7.709	5.628	8.775
1975	8.33	8.556	6.027	10.383
1976	8.33	8.997	6.149	11.809
1977	8.33	7.445	5.175	9.429
1978	8.33	6.011	4.317	7.222
1979	8.33	4.976	3.649	5.965

Year	Actual Increases in Wages	Model Estimates of Rates of Return 		
1970		Total Capital before Taxes	Total Capital after Taxes	Equity after Taxes
1971	11.30	8.392	5.904	9.330
1972	8.92	7.772	5.608	8.328
1973	10.42	7.843	5.539	8.878
1974	10.19	7.440	5.393	8.066
1975	7.89	4.549	3.749	3.481
1976	6.36	5.969	4.490	6.258
1977	.7 .11	7.649	5.350	9.763
1978	5.31	6.711	4.741	8.317
1979	5.78	6.744	4.760	8.523
		6.688	4.676	9.040

The influence of the price for raw materials is very important indeed. In the model simulation we have assumed that the average growth rate of the price index was about the same in the two simulations. However, the price was kept at a constant 6.1 percent over the period in one simulation run, while the actual price increases were used as exogenous variables in the other simulations Table 26 and figures 18 to 20 show the results. In interpreting these results we have to keep in mind that the model does not assume that cost-plus-pricing is possible. It is on the other hand certainly not very realistic to assume that pricing behavior is unaffected by the short-term development of raw materials prices. The model assumes prices as given, however, and allows for adjustments only in the labor input, in investment activity, and in the desired raw materials input. The most interesting result is that the fluctuations in the rate of return on equity would have been even greater than in the case of the actual price increases if raw material prices had increased at a constant rate over the period. Obviously these fluctuations are due to the actual pricing policy which we have assumed constant. Since prices do follow the development of the cost of raw materials to some extent, the simulation with a constant rate of increase in the raw materials price overestimates the fluctuations in the rate of return on equity.

Table 26: Sensitivity Analysis: Price Increase for Raw Materials

Year	Constant Rate of Price Increase for Raw Materials	Model Estimates of Rates of Return Total Capital before Taxes		
1970		Total Capital after Taxes	Equity after Taxes	
1971	6.1	8.392	5.904	9.330
1972	6.1	6.232	4.687	5.977
1973	6.1	4.572	3.586	3.869
1974	6.1	4.420	3.594	3.331
1975	6.1	9.402	6.644	11.636
1976	6.1	9.656	6.691	12.261
1977	6.1	10.629	7.128	14.515
1978	6.1	7.821	5.401	10.063
1979	6.1	6.053	4.343	7.301

Year	Actual Price for Raw Materials	Model Estimates of Rates of Return		
	Total Capital before Taxes	Total Capital after Taxes	Equity after Taxes	
1970	-	8.392	5.904	9.330
1971	2.00	7.772	5.608	8.328
1972	1.96	7.843	5.539	8.878
1973	7.79	7.440	5.393	8.066
1974	30.24	4.549	3.749	3.481
1975	1.37	5.969	4.490	6.258
1976	4.05	7.649	5.350	9.763
1977	1.65	6.711	4.741	8.317
1978	1.90	6.744	4.760	8.523
1979	6.23	6.688	4.675	9.040

Figure 18: Sensitivity Analysis: Price Increase for Raw Materials

Rate of Return on Total Capital before Taxes

Over the past twenty years manufacturing industry has realized a rate of technological progress of 1.7 percent. In order to analyze the importance of the rate of technological progress in the production function we assume that the rate of technological progress was 1.45 percent and 1.95 percent respectively. Table 27 and figures 21 to 23 show the results of the simulation runs. They are as expected. Other factors remaining equal technological progress results in higher profitability of capital and particularly of equity. Technological progress of 1.95 percent could have brought back the rate of return of total capital to the 1970 rate by 1979 if prices and wages had remained unaffected. The"rate of return on equity could have been increased to 12 percent. However, the actual rate of technological progress of 1.7 percent was not adequate to stem the decrease in the total rate of return and was just sufficient to bring the rate of return on equity back to 1970 levels. We have shown in an earlier paper that over the past twenty years productivity gains have in the medium-term resulted in higher wages. In fact, capital gained only shortly and only to the extent that a firm gained a technological advantage over its competitors. Once the majority of the firms had improved production the wage earners effectively internalized the technological progress in their wage increases ${ }^{7}$). The model used in the simulation runs uses the wage rate as an exogenous variable so that technological progress benifits the stock-holders only.

We conclude that technological progress is a very significant factor as far as the rate of return on equity is concerned, particularly in the short-run. Technological progress was, however, not adequate to offset the negative influences of increased international competition as well as of imnoderate wage demands on the return on capital in German manufacturing companies.

$$
\text { - } 89 \text { - }
$$

Figure 21: Sensitivity Analysis: Technological Progress Rate of Return on Total Capital before Taxes

- 90 -

Figure 22: Sensitivity Analysis: Technological Progress Rate of Return on Total Capital after Taxes

Figure 23: Sensitivity Analysis: Technological Progress Rate of Return on Equity after Taxes

Table 27: Sensitivity Analysis, Rate of Technological Progress

Year	Technological Progress	Model Estimates of the Rate of Return		
		Total Capital before Taxes	Total Capital after Taxes	Equity
1970	1.45	8.392	5.904	9.330
1971	1.45	7.579	5.402	8.033
1972	1.45	7.425	5.289	8.243
1973	1.45	6.777	4.997	7.037
1974	1.45	3.653	3.214	1.919
1975	1.45	4.848	3.822	4.378
1976	1.45	6.295	4.542	7.519
1977	1.45	5.048	3.748	5.551
1978	1.45	4.803	3.599	5.229
1979	1.45	4.503	3.370	5.166

Year	Technological Progress	Model Estimates Total Capital before Taxes	```Of the Rate of Total Capital after Taxes```	$\frac{\text { Return }}{\text { Equity }}$
1970	1.7	8.392	5.904	9.330
1971	1.7	7.772	5.608	8.328
1972	1.7	7.843	5.539	8.878
1973	1.7	7.440	5.393	8.066
1974	1.7	4.549	3.749	3.481
1975	1.7	5.969	4.490	6.258
1976	1.7	7.649	5.350	9.763
1977	1.7	6.711	4.741	8.317
1978	1.7	6.744	4.760	8.523
1979	1.7	6.688	4.676	9.040

Year	Technological Progress	Model Estimates	of the Rate of Return Total Capital before Taxes	Total Capital after Taxes
1970	1.95	8.392	5.904	Equity
1971	1.95	7.959	5.720	9.330
1972	1.95	8.243	5.781	8.614
1973	1.95	8.078	5.774	9.492
1974	1.95	5.408	4.261	9.052
1975	1.95	7.031	5.124	4.958
1976	1.95	8.921	6.110	8.015
1977	1.95	8.256	5.664	11.837
1978	1.95	8.527	5.826	10.841
1979	1.95	8.665	5.859	11.439

Finally we analyze the net effect of the rate of corporation income tax on the rate of return. The effect on the rate of return before taxes is not negligible. This is due to the fact that taxes affect investment behavior and production and thus indirectly also the rate of return before taxes: A 40 percent corporation income tax is the tax rate used in estimating the model. During the years when profitability was low a change in the tax-rate did not affect the rate of return on equity and after taxes very much. However, in the late seventies the rate of return on equity would have increased by 1 percentage point if the rate of corporation income tax had been lower by 5 percentage points. The results are given in table 28 and figures 24 to 26 .
2.2.3. Forescasts of the Rate of Return for 1981 and 1982

If we make forecasts for the exogenous variables, we can forecast the rates of return with the help of our model. We will have to keep in mind that the model was estimated from actual data for the period from 1970 to 1976. The actual exogenous variables for 1977 to 1979 were, used to compute the endogenous variables, particularly the rates of return, for these years. The actual exogenous variables for 1980 are preliminary values. The exogenous variables for 1981 and 1982 are my forecasts.

These forecasts are given in the form of two scenarios, a more pessimistic one and a more optimistic one. Table 29 shows the forecasts used in the model prognosis of the rates of return ${ }^{8)}$.

Table 28: Sensitivity Analysis: Corporation Income Tax

Year	Corporate Income Tax	Model Estimates of the Rate of Return On Total Capital before Taxes				
1970	35	7.914	5 Total Capital			
after Taxes						Equity
:---:						
after Taxe						

Year	Corporate Income Tax	Model Estimates of the Rate of Return		
		on Total Capital before Taxes	on Total Capital after Taxes	Equity after Taxt
1970	40	8.392	5.904	9.330
1971	40	7.772	5.608	8.328
1972	40	7.843	5.539	8.878
1973	40	7.440	5.393	8.066
1974	40	4.549	3.749	3.481
1975	40	5.969	4.490	6.258
1976	40	7.649	5.350	9.763
1977	40	6.711	4.741	8.317
1978	40	6.744^{-}	4.760	8.523
1979	40	6.688	4.676	9.040

Year	Corporate Income Tax	Model Estimates of the Rate of Return		
		on Total Capital before Taxes	on Total Capital after Taxes	Equity after Taxes
1970	45	8.958	5.904	9.330
1971	45	7.999	5.460	7.938
1972	45	8.129	5.405	8.509
1973	45	7.668	5.259	7.693
1974	45	4.623	3.686	3.301
1975	45	5.883	4.256	5.589
1976	45	7.484	4.972	8.694
1977	45	6.389	4.320	7.149
1978	45	6.368	4.308	7.260
1979	45	6.365	4.250	7.802

Figure 24: Sensitivity Analysis: Corporation Income Tax Rate of Return on Total Capital before Taxes

Figure 25: Sensitivity Analysis: Corporation Income Tax Rate of Return on Total Capital after Taxes

1

Figure 26: Sensitivity Analysis: Corporation Income Tax Rate of Return on Equity after Taxes

Table 29: Forecasts of Exogenous Variables Growth Rate in Percent

Variaole Scenario	$\begin{array}{r} 1980 \\ 1,2 \end{array}$	1981		1982	
		1	2	1	2
Price for Raw Materials	5.64	6.49	5.20	6.90	5.70
Wages and Salaries	7.10	5.30	4.90	5.40	4.50
Demand (real)	2.00	-1.00	-0.40	1.05	3.00
Price of Product	4.28	4.08	4.50	3.30	4.00
Price of Investment Goods	5.49	4.73	5.00	4.80	5.00
Interest Rate* on Long-Term Debt	8.90	9.60	9.60	8.50	8.00
Cost of Equity*	13.10	12.80	13.10	12.80	13.10
Other Expenditure and Marketing Expenditures	6.87				
Actual Interest* Payment on Debt	3.40				

* Absolute values

Scenario 1 is pessimistic with respect to the real growth of the German economy. Some of the Economic Research Institutes have forecast an even greater decrease in real growth, however. Scenario 2 is more optimistic for 1981. The - . 4 percent growth rate is the rate forecast for GNP-growth by the Board of Economic Experts. Significant differences exist between the two scenarios for 1982. Scenario 1 assumes that there will be imported inflation, resulting in high wage demands, whereas growth is too slow to allow for better capacity utilization and higher prices for the domestic goods. The interest rate remains fairly high. Scenario 2 , on the other hand, forecasts a sharp turn in economic activity. This is brought about by more moderate wage demands, which are followed by an increased confidence in the German economy. This results in a revaluation of the deutschmark and thus reduces the pressure on profitablity from raw materials prices and oil prices fixed in dollars. Demand rises by three percent in real terms which brings about better capacity utilization. This means a better bargaining position with customers and higher prices. This, of course, results in significant improvements in the rate of return.

Figures 27 to 29 show the results of the model forecasts. In the pessimistic scenario total profit continues to fall. The rate of return on equity decreases sharply between 1981 and picks up only slightly in 1982. In the optimistic scenario 2 profits rise to 1970 levels, while the rate of return on equity shows a pronounced rise to a level above that of the seventies.

These forecasts underscore the sensitivity of the rate of return of German manufacturing corporations to competition on the one hand and to wage increases on the other. Competition reduces the chances of increasing prices to customers, and wage increases lead to less profitable production, reduce the profit per unit of output and reduce the level of production.

- 100 -

Figure 27: Rate of Return on Total Capital before Taxes

Figure 28: Rate of Return on Total Capital after Taxes

Figure 29: Rate of Return on Equity after Taxes

I would like to conclude by'saying that the decining rates of return on capital and on equity certainly were a phenomeron of the seventies. They are, however, by no means a tendency that should be considered as a given for the future. On the contrary, they seem to me to be a combined effect of structural changes in the world economy brought about by the break-down of the system of fixed exchange rates and by OPEC on the one hand and by excessive wage demands and lenient governments on the other. The eighties might witness a change to improved profitability. Whether the favorable conditions required for such a reversion of the trend can be brought about in Germany remains doubtful, however.

Foot Notes

1) For a detailed comparison of the data bank of the Central Bank and of the Bonn Sample see Titz, P., Statistischer Ansatz zur empirischen Analyse des Unternehmenssektors Vergleich der Unternehmensbilanzstatistik der Deutschen Buncesbank mit der Bonner Stichprobe, M.A. Thesis, Bonn 1980 (unpublished).
2) Statistisches Jahrbuch für die Bundesrepublik Deutschland, Annual Additions, 7.14: Financial Peports of Corporations
3) Beihefte $z u$ den Monatsberichten der Deutschen Bundesbank, Reihe 2: Wertpapierstatistik, several volumes
4) The Real Rate of Return of German Corporations, Schriftenreihe des Instituts für Gesellschafts- und Wirtschaftswissenschaften Nr. 62, Bonn 1977; see also the extensive description of the method in Koll. W., Inflation und Rentabilität. Eine theoretische und empirische Analyse von Preisschwankungen und Unternehmenserfolg in den Jahresabschlüssen deutscher Aktiengesellschaften, Wiesbaden 1979
5) See Appendix
6) Albach, H., Geisen, B. und Th. Fues, Approaches to a Theory of Income Distribution in the Firm, in: Krelle, W., H.-J. Krupp. O. Kyn (Hrsg.), Income Distribution and Economic Inequality, Frankfurt/M., New York, Forester Chicester 1978
7) Kless, H.-P., Interlocking Directorates, M.A. Thesis, Bonn 1980 (unpublished)
8) See Appendix 6 for the time series of exogenous variables.

Appendix 1:

Definitions of Capital, Profits and Nominal Profitability Rates \quad
1.1. Balance Sheet of German Corporations
Code
Assets
Number
I. Fixed Assets
A. Tangible and Intangible
1. Real Estate and equivalent rights with office,
factory and other buildings120
2. Real Estate and equivalent rights with residential buildings 121
3. Real Estate and equivalent rights withoutbuildings122
4. Buildings on real estate not owned, not inclu- ded in No. 1 or 2 123
5. Machinery, plant and equipment 125
6. Office equipment 126
7. Plant under construction and advantages for plant 127
8. Concessions, industrial proper rights, and similar rights 128
B. Investments

1. Affiliated companies 135
2. Securities, bonds, shares, not included in No. 1 136
3. Loans for a term of at least four years 137

- secured by mortgages 138

4. Other monetary assets 139
II. Current Assets
A. Inventories145
5. Work in process 146
6. Finished products 147
B. Products on lease 150
C. Other Current assets1. Advances paid151
7. Accounts receivable for sales and services 152
8. Notes receivable 153
9. Checks 154
10. Cash on hand, balances at the Federal Bank and in postal checking accounts 155
11. Cash in banks 156
12. Securities 157
13. Accounts receivable from affiliates 160
14. Receivables resulting from loans granted under paragraph 89, Corporate Law 161
15. Other current assets 162
III. Deferred Charges and Repaid Expenses 170
IV. Loss 180
VI. Total 190
Capital and Liabilities
I. Capital Stock
16. Common shares 210
17. Preferred shares 211
II. Surplus Reserves
18. Statutory reserve 215
19. Free reserve 216
III. Special Items with Reserve Shares 220
IV. Qualifying Reserves
20. Reserve for depreciation 230
21. Inventory reserve 231
22. Other value adjustments 232
V. Accruals
23. Pension 240
24. Other 241
VI. Liabilities for a Term of at last Four Years
25. Bonds 250

- secured by mortgages 251

2. Liabilities to banks 252

- secured by mortgages 253

3. Others 254

- secured by mortgages 255
Of the amounts included in items $1-3$ is due within less than four years 259

4. Loans from pension fund 260
VII. Other Liabilities
5. Accounts payable for puchases and services 261
6. Notes payable 262
7. Liabilities to banks 263
8. Advances received 264
9. Payables to affiliates 265
10. Others 266
VIII. Deferred Credits 270
IX. Profit available for Dividend 280
1.2. Profit and Loss Statement

Sales Revenue incluäing turnover . tax 310

- Turnover tax 311
$=$ Sales Revenue 315
\pm Increase / Decrease in inventories of finished and semi-finished products
+ Other company-manufactured capitalized items
$=$ Total Gross Revenue 320
- Cost of raw materials and supplies 322
$=$ Balance 325
+ Income from profit transfer for agreement : 330
+ Income from affiliates 331
+ Income from other investments 332
+ Other interest and similar income 333
$+\quad$ Gains from sale of plant property and equipment
and valuation adjustments
+ Reduction of uncollectables revenue 335
+ Reserval of accruals 336
+ Transfers from special reserves 337
+ Other income 338
- Wages and salaries
- Compulsory welfare 351
- Pensions and assistance 352
- Depreciation on tangible and intangible assets 353
- Write downs and other valuation adjustments of investments
- Valuation adjustment on current assets other than inventories and general reserves for accounts receivable355
- Loss of retirement of fixed assets 356
- Interest and similar expenses 357
- Taxes
(a) on income and property 358
(b) other 360
- Equalization of Burdens Property Levy 361
- Transfer of losses of affiliates 362
- Transfer to special items with Reserve Shares 363
- Other expenses 364
= Net income for the year 370
\pm Profit / Loss carry forward (last year) 371
+ Drawing from reserves 373-377
- Allotment to reserves 378-380
= Profit available for dividend 390
Dividend on common shares 395
Dividend on preferred shares 396
Profit / Loss carry forward 397

```
1.3. Definitions of Capital, Profits and Nominal Profitability
    Rates
```

1.3.1. Basic Terms

- Total Capital:
190-230-231-232
- Equity Capital:
$210+211+215+216+397$
$+0.5 \cdot 220$
- Debt Capital
Total Capital
- Equity Capital
- Market Value of Capital
(= book value of debt +
market value of equity)
Book Value of Debt = Total Capital - Equity Capital
Market Value of Equity = Basic Capitalx Stock Price
 - Net Income: 370
 - Interest:
357
 - Interest on Total Capital: $370+357$
 - Taxes:
 - Dividends:
$395+396$
 - Interest on Total Capital before
Taxes:
$370+357+358$

Appendix 2:

The Computation of Real Rates of Return
1.1. Definition of inflationary gain

Let

A_{t}	: operating expenses...
WBW	$: \ldots$ at replacement cost.
HIST	: \ldots at historical cost $\quad t: \ldots$ in period t
SG	: inflationary gain $\quad t-t t: \ldots$ in period t-tt

then

$$
S G_{t}:=A_{t}^{W B W}-A_{t}^{\text {HIST }}
$$

The computation is to be made for all tangible assets involved the production process.
1.2. Fixed assets

Let

SGSAV	: inflationary gain associated with fixed assets
ABSAV	: depreciation
RBW	: fixed assets net of accumulated depreciation
ABFAK	: depreciation rate depending on the formula of depreciation
ZSAV	: additions to fixed assets
	$z S A V_{t-t t}-\sum_{i=0}^{t t-1} A B S A V_{t-t t+i}$
RBWFAK $_{t, t-t t}$	$2 S A V_{t-t t}$

$\operatorname{PSFAK}_{t, t-t t}=\frac{\text { price index at period } t}{\text { price index at period } t-t t}$
then
$\operatorname{SGSAV}_{t}: \quad=A_{t}^{\mathrm{WBW}}-A_{t}^{\mathrm{HIST}}$
$=A B S A V_{t}^{W B W}-A B S A V_{t}^{H I S T}$
$=\mathrm{AFAK}_{t}\left(\mathrm{RBW}_{t}^{\mathrm{WBW}}-\mathrm{RBW}_{t}^{\mathrm{HIST}}\right)$
$=\operatorname{AFAK}_{t} \sum_{i=0}^{N D} Z S A V_{t-i} \operatorname{RBWFAK}_{t, t-i} \operatorname{PSFAK}_{t, t-i}$
with ND : economic life time of assets

Remark:
It is assumed that the depreciation at current cost will be reinvested immediately to bear an interest. Otherwise depreciation at current cost will not cover total replacement cost of the asset at a later replacement data.

1.3. Inventories

The inflationary gain depends on the stock valuation method used. Here a formula is derived which applies to the periodic weighted average method because the latter is standard in German practice. To simplify presentation it is assumed that real quantities of stocks and flows are constant.

Let
SGVOR : inflationary gain from inventories
VOR $_{t-1}$: beginning inventory for period t
VOR_{t} : ending inventory for period t
COGS : cost of goods sold
PSVOR : rate of price change given for the periodic average method by

then

$$
\begin{aligned}
\text { SGVOR }_{t} & =A_{t}^{\text {WBW }}-A_{t}^{H I S T} \\
& =\operatorname{VOR}_{t}-\operatorname{VOR}_{t-1} \\
& =\operatorname{VOR}_{t-1}\left(1+\text { PSVOR }_{t}\right)-\operatorname{VOR}_{t-1} \\
& =\operatorname{VOR}_{t-1} \text { PSVOR }_{t}
\end{aligned}
$$

1.4. Securities of affiliates

Inflationary gains are also contained in dividends from securities of affiliates. Its is assumed that the securities represent a part of the assets of these affiliates and that these assets "produce" inflationary gains for the same reasons and in the same composition as assets in the parent company do.

Let
SGBET : inflationary gain from affiliates

AV
UV
BET
: fixed assets
: current assets
: securities of affiliates
then

$$
\operatorname{SGBET}_{t}=\frac{\mathrm{SGSAV}_{t}+\mathrm{SGVOR}_{t}}{A V_{t}+U V_{t}} \mathrm{BET}_{t}
$$

1.5. Total inflationary gain

Let
SG : total inflationary gain
then

$$
S G_{t}=S G S A V_{t}+S G V O R_{t}+S G B E T_{t}
$$

1.6. Net concept

In accordance with the net concept the inflationary gain has to be distributed between equity and debt capital. Here the following method in applied

Let
EK : equity capital
FK : debt capital
SGEK : inflationary.gain arisen from equity-financed asset
SGFK : inflationary gain arisen from debt-financed assets

Distribution by structure of assets
Let

$$
A V_{t}<E K_{t}<A V_{t}+B E T_{t}
$$

$$
\mathrm{SGEK}_{t}=\mathrm{SGSAV}_{t}+\frac{E K_{t}-A V_{t}}{\mathrm{BET}_{t}} \mathrm{SGBET}_{t}
$$

with
$\mathrm{SGFK}_{t}=S G_{t}-S G E K_{t}$
1.7. Final remark

The so computed inflationary gain represents a self-refinancing gap which may be filled by charging this amount in addition to operating expenses computed at historical cost. An adequate operating cash flow is a necessary condition.
1.8. Definition of Real Profitability Rates

- Real Rate of Return on Capital before Taxes

Interest on Capital before Taxes - SG
Total Capital + DWSAV

DWSAV: valution difference at fixed assets
$=$ fixed assets at replacement cost minus fixed assets at historical cost

- Real Rate of Return on Capital after Taxes:
Interest on Total Capital - SG
Total Capital + DWSAV
- Real Rate of Return on Equity before Taxes:
Net Income + Taxes - SGEK

Equity Capital + DWSAV

- Real Rate of Return on Equity after Taxes:

> Net Income - SGEK

Equity Capital + DWSAV

Appendix 3: Nominal Rate of Return on Equity after Taxes 100 Manufacturing Corporations

Year	Unweighted means
1952	.73
1953	3.46
1954	3.75
1955	6.07
1956	7.34
1957	7.20
1959	7.31
1960	10.04

Appendix 4. Distribution of Value Added

The computation of value added is based on distribution. The gross wages are computed as the sum of wages and salaries, compulsory welfare and pensions and assistance, the creditors share are interest and similar payments, the shareholders income is the corporation's net income for the year, the net-capital share is the amount distributed among creditors and shareholders. Business taxes on profits and assets are all corporate taxes. All ratios are related to the total sum of the value added. They are computed on data of individual income statements and are therefore unweighted averages of the corporations of the Bonn Sample.

Appendix 5:

Determinants of the Rate of Return

- Regression Analysis -

Table 1 : Regression Coefficients, Nominal Rate of Return on Total Capital after Taxes

- Automobile Industry -

Equation	Constants			Trend	Growth Rate of GNP	Inflation Rate	R^{2}
	1961-1979	1961-1968	1969-1979				
Equation 1	6.11	-----	------	. 028	. 200	-. 382	. 3372
				(0.42)	(1.61)	(1.61)	
Equation 2	-----	5.112	3.571	.131	. 271	-. 227	. 3837
		(3.26)	(1.29)	(1.09)	(1.67)	(0.81)	
Equation 3	-----	4.847	-----	. 046	. 027	.416	. 3666
		(4.61)		(0.53)	(0.31)	(1.50)	
Equation 4	-----	-----		. 282	. 556	-. 043	. 4778
			(0.20)	(2.27)	(3.52)	(0.14)	
Equation 5	4.84	-----	-----	$-.021$. 283	-----	. 2231
				(0.34)	(1.96)		
Equation 6	7.36	------	-----	. 023	-----	-. 496	. 2552
				(0.34)		(2.17)	

t-values are given in brackets

- Automobile Industry -

t-values are given in brackets

Table 3: Regression Coefficients, Real Rate of Return on Total Capital after Taxes

- Automobile Industry -

OLS - Ordinary least squares estimation, OLSDV - Ordinary least squares method with dummy variables t-values are given in brackets
for the individual firms
\qquad : Regression Coefficients, Real Rates of Return on Equity after Taxes

- Automobile Industry -

[^0]Table 5: Regression Coefficients, Nominal Rate of Return on Total Capital after Taxes

- Electrotechnical Industry -

Equation	Constants			Trend	Growth Rate of GNP	Inflation Rate	R^{2}
	1961-1979	1961-1968	1969-1979				
Equation 1	6.06	-----	-----	-. 138	. 016	. 011	. 4890
				(3.26)	(0.17)	(0.08)	
Equation 2	-----	'6.647	7.547	$-.199$	-. 025	--. 079	. 5193
		(6.64)	(4.29)	(2.58)	(0.24)	(0.44)	
Equation 3	-----	5.414	-----	. 150	-. 152	$-.004$. .8125
		(7.61)		(2.56)	(2.58)	(0.02)	
Equation 4	-----	-----	$\begin{aligned} & 7.895 \\ & (6.36) \end{aligned}$	-. 305	. 086	. 079	. 8852
				(5.98)	(1.07)	(0.67)	
Equation 5	6.10	-----	-----	$-.137$	$\begin{gathered} .014 \\ (0.16) \end{gathered}$	------	. 4888
				(3.74)			
Equation 6	6.17	-----	---- '	-. 139	-----	.002	. 4879
				(3.38)		(0.02)	

t-values are given in brackets

```
Table 6: Regression Coefficients, Nominal Rate of Return on Equity after Taxes
```

- Electrotechnical Industry -

Equation	Constants			Trend	Growth Rate of GNP	Inflation Rate	R^{2}
	1961-1979	1961-1968	1969-1979				
Equation 1	10.90	-----	-----	-. 352	. 274	. 355	. 3722
				(2.59)	(0.92)	(0.73)	
Equation 2	-----	11.393	12.148	$-.403$. 239	. 279	. 3747
		(3.45)	(2.09)	(1.59)	(0.70)	(0.47)	
Equation 3	-----	$\begin{gathered} 13.178 \\ \quad(5.79) \end{gathered}$	--	. 313	-. 453	-. 543	. 7673
				(1.67)	(2.40)	(0.90)	
Equation 4	-----	-----	$\begin{gathered} 7.095 \\ \vdots \\ (1.48) \end{gathered}$	-. 545	. 969	1.224	. 8224
				(2.76)	(3.11)	(2.68)	
Equation 5	12.09	-----	-----	-. 307	.197	--	.3497
				(2.57)	(0.71)		
Equation 6	12.61	---	-----	$-.359$	-----	.199	. 3370
				(2.65)		(0.44)	

t-values are given in brackets

- Electrotechnical Industry -

Equation	Constants			Trend	Growth Rate	Inflation Rate	R^{2}
	1961-1979	1961-1968	1968-1979		of GNP		
Equation 1 OLS	7.73	-----	-----	,			
				$\begin{aligned} & -.027 \\ & (0.51) \end{aligned}$	-. 067	-. 353	. 2904
					(0,58)	(1.88)	
OLSDV	6.52	-----	-----	-. 173	-. 049	-. 545	. 4641
				(5.21)	(0.67)	(4.61)	
Equation 2	-----	$\begin{aligned} & 7.042 \\ & (4.77) \end{aligned}$	$\begin{aligned} & 7.959 \\ & (3.07) \end{aligned}$	-. 226	-. 087	-. 641	. 6588
				(2.00)	(0.57)	(2.42)	
Equation 3	-----	$\begin{aligned} & 5.428 \\ & (8.95) \end{aligned}$	-----	. 224	$-.180$	-. 651	. 9517
				(4.49)	(3.57)	(4.07)	
Equation 4	-----	-----	$\begin{aligned} & 9.090 \\ & (2.97) \end{aligned}$	-. 382	-. 005	-. 481	. 6999
				(3.04)	(0.03)	(1.65)	
Equation 5			i				
OLS	6.55	------	-----	. 072	. 009	-----	. 1229
				(1.43)	(0.08)		
O LSDV	4.71	-----	-----	-. 243	. 069	-----	.4058
				(7.81)	(0.97)		
Equation 6							
OLS	7.31	--	-	-. 025	----	$-.315$. 2744
				(049)		(1.83)	
OLSDV	6.22	----	-----	-. 172	-----	$-.517$. 4629
				(5.19)		(4.68)	

OLS - Ordinary least squares estimation, OLSDV - Ordinary least squares method with dummy variables
t-values are given in brackets
for the individual firms
-Electrotechnical Industry-

[^1]Table 9 : Regression Coefficients, Nominal Rate of Return on Total Capital after Taxes

- Steel Industry -

Equation	Constants			Trend	Growth Rate of GNP	Inflation Rate	R^{2}
	1961-1979	1961-1968	1969-1979				
Equation 1	3.54	-----	-----	-. 013	. 080	. 010	. 0333
				(0.23)	(0.64)	(0.50)	
Equation 2	----	5.037	7.348	-. 168	-. 026	-. 132	. 2472
		(4.16)	(3.45)	(1.80)	(0.21)	(0.61)	
Equation 3	----	3.686	------	-. 078	. 030	. 143	. 1114
		(1.80)		(0.46)	(0.18)	(0.26)	
Equation 4	------	-----	$\begin{aligned} & 8.682 \\ & (2.66) \end{aligned}$	-. 209	-. 105	-. 232	. 2871
				(1.56)	(0.49)	(0.74)	
Equation 5	3.88	-----	-----	. 00002	. 058	-----	.0174
				(0,0005)	(0.51)		
Equation 6	4.04	-----	------	-. 015	. 054	.054	. 0065
				(0.26)	(0.29)	(0.29)	

t-values are given in brackets

Table 10: Regression Coefficients, Nominal Rate of Return on Equity after Taxes

- Steel Industry -

Equation	Constants			Trend	Growth Rate of GNP	Inflation Rate	R^{2}
	1961-1979	1961-1968	1969-1979				
Equation 1	4.37	-----	-----	-. 251	. 491	. 280	. 2550
				(1.50)	(1.34)	(0.47)	
Equation 2	------	8.990	16.136	$-.729$. 164	-. 439	. 4361
		(2.55)	(2.60)	(2.69)	(0.45)	(0.69)	
Equation 3	-----	6.235	-----	-. 649	. 461	. 010	. 5514
		(1.24)		(1.57)	(1.11)	(0.008)	
Equation 4	------	-----	$\begin{array}{r} 20.26 \\ (2.04) \end{array}$	-. 817	-. 165	$\begin{aligned} & -.805 \\ & (0.85) \end{aligned}$. 4350
				(2.00)	(0.26)		
Equation 5	5.30	------	-----	-. 215	. 430	-----	. 2440
				(1.48)	(1.29)		
Equation 6	7.43	------	_-_ '	-. 262	------	. 0007	. 1657
,				(1.54)		(0.001)	

t-values are given in brackets

- Steel Industry -

Equation	Constants			Trend	Growth Rate of GNP	Inflation Rate	R^{2}
	1961-1979	1961-1968	1968-1979				
Equation 1							
OLS	7.06	-----	-----	$\begin{aligned} & -.001 \\ & (0.03) \end{aligned}$	-. 079	-. 353	. 2881
					(0.78)	(2.17)	
OLSDV	4.74	-----	-----	$\begin{gathered} -.055 \\ (1.37) \end{gathered}$	-. 065	-. 601	. 3265
					(0.74)	(4.21)	
Equation 2	-----	$\begin{aligned} & 5.616 \\ & (5.84) \end{aligned}$	$\begin{aligned} & 7.218 \\ & (4.26) \end{aligned}$	$\begin{aligned} & -.157 \\ & (2.13) \end{aligned}$	$-.124$	-. 758	. 7168
					(1.25)	(4.40)	
Equation 3	-----	$\begin{aligned} & 3.478 \\ & (1.82) \end{aligned}$	-----	$\begin{aligned} & -.059 \\ & (0.38) \end{aligned}$	$-.015$	-. 277	. 0785
					(0.09)	(0.55)	
Equation 4	-----	-----	$\begin{aligned} & 9.380 \\ & (4.54) \end{aligned}$	$\begin{aligned} & -.209 \\ & (2.47) \end{aligned}$	$\begin{aligned} & -.271 \\ & (2.02) \end{aligned}$	$\begin{aligned} & -.951 \\ & (4.84) \end{aligned}$. 8039
Equation 5							
OLS	5.88	------	-----	$\begin{aligned} & -.047 \\ & (1.03) \end{aligned}$	$\begin{aligned} & -.002 \\ & (0.02) \end{aligned}$	-----	. 0655
OISDV	2.74	-----	-----	$\begin{aligned} & -.132 \\ & (3.51) \end{aligned}$	$\begin{gathered} .065 \\ (0.75) \end{gathered}$	-----	. 2515
Equation 6							
OLS	6.57	-----	-----	$\begin{gathered} .0004 \\ (0.009) \end{gathered}$	-----		.2591
						(2.04)	
OLSDV	4.34	-----	-----	$\begin{aligned} & -.053 \\ & (1.33) \\ & \hline \end{aligned}$	-----	$\begin{aligned} & -.564 \\ & (4.22) \end{aligned}$. 3242

[^2]- Steel Industry -

Equation	Constants			Trend	Growth Rate of GNP	Inflation Rate	R^{2}
	1961-1979	1961-1968	1968-1979				
Equation 1	8.72	------	------	$\begin{aligned} & -.313 \\ & (3.97) \end{aligned}$		$\begin{gathered} .173 \\ (0.62) \end{gathered}$. 5867
OLS							
					(0.98)		
OLSDV	3.03	-----	-----	$\begin{aligned} & -.302 \\ & (3.69) \end{aligned}$	$\begin{gathered} .316 \\ (1.76) \end{gathered}$. 074	. 2375
						(0.25)	,
Equation 2	------	5.291	8.778	-. 541	. 169	-. 277	. 5928
-		(2.29)	(2.16)	(3.05)	(0.71)	(0.67)	
Equation 3	-----	3.753	-----	-. 474	. 326	-. 053	. 5054
	-	(0.95)		(1.46)	(1.00)	(0.05)	
Equation 4	-----	------	$\begin{gathered} 11.070 \\ (1.77) \end{gathered}$	$\begin{aligned} & -.598 \\ & (2.32) \end{aligned}$	$\begin{gathered} -.004 \\ (0.01) \end{gathered}$	$\begin{gathered} .464 \\ (0.78) \end{gathered}$. 5297
Equation 5		-	!				$.5762$
OLS	9.30	-----	-----	$\begin{aligned} & -.291 \\ & (4.23) \end{aligned}$	$\begin{gathered} .132 \\ (0.83) \end{gathered}$	-----	
O ISDV	3.27	-----	----	$\begin{aligned} & -.293 \\ & (4.03) \end{aligned}$	$\begin{gathered} .300 \\ (1.79) \end{gathered}$	------	. 2372
Equation 6 ol.s							
	9.77	-----	-----	$\begin{aligned} & -.317 \\ & (4.03) \end{aligned}$	-----	$\begin{gathered} .076 \\ (0.29) \end{gathered}$. 5604
ousdv	4.98	-----	-----	$\begin{aligned} & -.310 \\ & (3.76) \\ & \hline \end{aligned}$	-----	$\begin{aligned} & -.106 \\ & (0.38) \end{aligned}$. 2227

[^3]Table 13: Regression Coefficients, Nominal Rate of Return on Total Capital after Taxes

- Machinery Industry -

Equation	Constants			Trend	Growth Rate of GNP	Inflation Rate	R^{2}
	1961-1979	1961-1968	1969-1979				
Equation 1	4.44	------	------	-. 122	-. 013	. 209	. 5874
				(4.62)	(0.23)	(2.23)	
Equation 2	-----	5.16	6.282	-. 197	-. 065	. 096	. 6858
		(9.21)	(6.37)	(4.58)	(1.12)	(0.96)	
Equation 3	-----	$\begin{aligned} & 5.656 \\ & (5.27) \end{aligned}$	-----	-. 147	-. 056	-. 197	. 4177
				(1.66)	(0.63)	(0.70)	
Equation 4	------	,-----	$\begin{aligned} & 6.325 \\ & (5.24) \end{aligned}$	-. 225	-. 051	. 160	. 8026
				(4.53)	(0.65)	(1.39)	
Equation 5	5.13	-----	------	-. 095	$\begin{aligned} & -.059 \\ & (0.96) \end{aligned}$	------	. 4510
				(3.62)			
Equation 6	4.35	------	------	-. 122		. 216	. 5859
				(4.76)		(2.54)	

t-values are given in brackets

Table 14: Regression Coefficients, Nominal Rate of Return on Equity after Taxes

- Machinery Industry -

Equation	Constants			Trend	Growth Rate of GNP	Inflation Rate	R^{2}
	1961-1979	1961-1968	1969-1979				
Equation 1	12.41 	-----	--	-. 376	. 084	-. 295	. 7867
				(5.47)	(0.56)	(1.21)	
Equation 2		13.90	16.20	-. 531	-. 021	-. 527	. 8183
	-----	(9.00)	(5.97)	(4.47)	(0.13)	(1.90)	
Equation 3	-----	15.368	------	-. 516	-. 149	-. 915	. 4889
		(4.67)		(1.90)	(0.55)	(1.05)	
Equation 4	------	-----	14.456	-. 516	. 135	-. 318	. 7592
			(4.10)	(3.56)	(0.59)	(0.95)	
Equation 5	11.42	------	-----	$\begin{aligned} & -.414 \\ & (6.67) \end{aligned}$	$\begin{gathered} .148 \\ (1.03) \end{gathered}$	------	. 7660
Equation 6	12.93	-----	-----	$\begin{aligned} & -.378 \\ & (5.63) \end{aligned}$	-----	$\begin{aligned} & -.343 \\ & (1.53) \end{aligned}$. 7823

t-values are given in brackets

Table 15: Regression Coefficients, Real Rate of Return on Total Capital after Taxes

- Machinery Industry -

OLS - Ordinary least squares estimation, OLSDV - Ordinary least squares method with dummy variables
t-values are given in brackets
for the individual firms : Regression Coefficients, Real Rates of Return on Equity after Taxes

- Machinery Industry -

[^4]Appendix 6: Time Series of Exogenous Variables
Growth Rate in Percent

Yea	1971	1972	1973	1974	1975	1976	1977	1978	1979
Price for Raw Materials	2.00	1.96	7.79	30.24	1.37	4.05	1.65	1.90	6.23
Wages and Salaries	11.00	8.92	10.42	10.19	7.89	6.36	7.11	5.31	5.78
Demand (real)	2.86	3.19	3.01	-. 30	-2.57	2.64	2.80	3.50	4.50
Price of Product	2.95	3.22	6.07	12.74	4.40	4.28	1.35	1.94	3.94
Price of Investment Goods	7.90	3.71	4.56	9.06	8.62	4.33	4.15	2.99	3.42
Interest Rate on Long-Term Debt*	8.50	8.40	10.00	11.00	8.90	8.00	7.00	6.80	7.80
Cost of Equity*	13.50	13.10	13.00	13.80	13.70	12.80	13.10	13.60	13.70
Other Expenditures and Marketing Exp.	9.98	-1.24	17.30	17.63	-1.35	8.41	8.13	6.41	6.99
Actual Interest payment on Debt*	3.9	3.4	3.7	3.9	3.5	2.9	2.8	2.7	2.5

* absolute values

[^0]: OLS - Ordinary Least squares estimation, OISDV - Ordinary least squares method with dummy varlables t-values are given in brackets
 for the individual. firms

[^1]: OLS - Ordinary least squares estimation, OLSDV - Ordinary least squares method with dummy variables
 t-values are given in brackets t-values are given in brackets for the individual firms

[^2]: Ow - Ordinary least squares estimation, OLSDV - ordinary loast squaros mothod with dummy variables t-values are given in brackets

[^3]: OLS - Ordinary least squares estimation, OLSDV - Ordinary least squares method with dummy variables
 t-values are given in brackets for the individual firms

[^4]: OLS - Ordinary least squares estimation, OISDV - Ordinary least squares; method with dummy varlables
 t-values are given in brackets

