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Abstract

This thesis presents the derivation, analysis, and implementation of a novel class of
decentralized mutual information-based gradient-ascent controllers that continuously
move robots equipped with sensors to better observe their environment. We begin
with the fundamental problem of deploying a single ground robot equipped with a
range sensor and tasked to build an occupancy grid map. The desired explorative
behaviors of the robot for occupancy grid mapping highlight the correlation between
the information content and the spatial realization of the robot's range measurements.
We prove that any occupancy grid controller tasked to maximize a mutual information
reward function is eventually attracted to unexplored space, i.e., areas of highest
uncertainty. We show that mutual information encodes geometric relationships that
are fundamental to robot control and yields geometrically relevant reward surfaces
on which robots can navigate.

Taking inspiration from geometric-based approaches to distributed robot coordi-
nation, we show that many multi-robot inference tasks can be cast in terms of an
optimization problem. This optimization problem defines the task of minimizing the
conditional entropy associated with the robots' inferred beliefs of the environment,
which is equivalent to maximizing the mutual information between the environment
state and the robots' next joint observation. Given simple robot dynamics and few
probabilistic assumptions, none of which involve Gaussianity, we derive a gradient-
ascent solution approach to these optimization problems that is convergent between
sensor observations and locally optimal. More formally, we invoke LaSalle's Invariance
Principle to prove that, given enough time between consecutive joint observations,
robots following the gradient of mutual information will converge to goal positions
that locally maximize the expected information gain resulting from the next obser-
vation.

We show that the algorithmic implementation of the generalized gradient-ascent
controller is not readily distributed among multiple robots, and thus sample-based
methods are introduced to distributively approximate the likelihoods of the robots'
joint observations. Not only are the involved non-parametric representations com-
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patible with any type of Bayesian filter, but the computational complexities of the
resulting decentralized controllers are independent with respect to the number of
robots. Concerning the distributed approximations, we give two example consensus-
based algorithms that run on an undirected network graph. The first consensus-based
algorithm approximates discrete measurement probabilities, while the second approx-
imates continuous likelihood distributions. We show that these anytime approxi-
mations provably converge to the correct values on a static and connected network
graph without knowledge of the number of robots in the network or the corresponding
graph's topology.

Lastly, we incorporate the resulting consensus-based algorithms into both a hard-
ware system and a simulation environment to allow for decentralized controller evalu-
ation under non-ideal network settings. For the hardware experiments, the task is to
infer the state of a bounded, planar environment by deploying five quadrotor flying
robots with simulated sensors in both indoor and outdoor settings. For the numer-
ical simulations, Monte Carlo-based analyses are performed for 100 robots, where
each robot is simulated on an independent computer node within a computer cluster
system. Simulations are also performed for 1000 robots using a single workstation
computer equipped with a multicore GPU-enabled graphics card. The results from
both the hardware experiments and numerical simulations validate our theoretical
and computational claims throughout the thesis.

Thesis Supervisor: Daniela L. Rus
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Multi-robot systems will change the way we sense the world. Consider, for example,

the problem of monitoring a national park susceptible to forest fires - a problem

often addressed by flying manned aircraft over areas of concern to provide aerial

surveillance (Rauste et al., 1999). This and other "traditional mechanisms" (San-

Miguel-Ayanz et al., 2005) are human and resource intensive, and thus limited to

periods marked with active fires or elevated risk (Kelha et al., 2001). A paradigm

shifting solution materialized two decades ago when researchers began employing

satellite technology to continuously survey vulnerable areas at a global scale (Justice

and Korontzi, 2001). These "near realtime" solutions use a combination of low Earth

orbit and geostationary satellites, with the former providing periodic high resolution

imagery and the latter providing continuous yet lower resolution imagery (deGroot

et al., 2007).

Given this state-of-the-art approach to aerial surveillance, naturally we ask: does

there exist a more capable solution that enables both persistent and high resolution

imagery, especially if the surveillance task is not conducted at a global scale but in-

stead at the scale of, for example, a national park? Considering recent advancements

in unmanned aerial vehicle (UAV) technology, e.g., ultra-light UAV imagery (Kung

et al., 2011), the answer to our question is undoubtedly yes from a hardware per-

spective. However, we believe current limitations in autonomy are self-evident from

the undeniable absence of fielded multi-robot systems with autonomous surveillance
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Communicationnetwork

Presence/
absence of fire\\

Observe
heat / no heat

Figure 1-1: Example application using two flying robots to monitor a national park
susceptible to forest fires. Each robot's observation provides information on whether
or not heat exists within its field of view (red dashed circles), and the robots share this
information on the communication network (orange arrow) to improve the quality of
their beliefs (blue circles) of the environment state. In this thesis, we address how
these robots can reason about where to position their sensors for future observations.

capabilities (Christensen, 2013). To reveal the next paradigm shifting solution to the

forest fire and many other information acquisition problems, we must enable these

multi-robot systems to efficiently, robustly, and provably learn the environment and

autonomously reason where to make future sensor observations, e.g., see Figure 1-1.

To this end, we present the derivation, analysis, and implementation of a novel

class of decentralized controllers that continuously move robots equipped with sensors

to better observe their environment. Built on an information-theoretic foundation,

these controllers aim to maximize the expected information gain of the robots' next

sensor observations when paired with a Bayesian filter. They allow for general con-

vergent results, and lead to practical control strategies that account for the limited

computational resources of the robots, the decentralized nature of their computation,

and the finite bandwidth of their communication network. The controllers are able to

dynamically adapt to changing network connectivity and be scalable with respect to

the number of robots, enabling robot teams of large size and heterogeneous compo-

sition. Lastly, they exhibit anytime performance when augmented with distributed

algorithms to approximate the measurement likelihoods for system-wide observations.
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Figure 1-2: Geometric-based multi-robot control for camera coverage in the spirit
of (Schwager et al., 2011b). Five flying robots are tasked to cover a bounded en-
vironment with the fields of view of their downward facing cameras. Left to right:
The system of five robots i) is deployed, ii) converges to a locally optimal configura-
tion, iii) compensates for the removal of two robots, and lastly iv) covers the entire
environment with the single remaining robot.

This thesis aims to improve on the state-of-the-art approaches for controlling a

network of sensing robots for information acquisition tasks. Most existing approaches

employ optimization functions that directly relate the robots' positions to geometric

features of the environment (Bullo et al., 2009). For example, the camera coverage

approach in (Schwager et al., 2009) formulates a system-wide cost function that de-

pends on the projection of the cameras' fields of view onto the environment, e.g., see

Figure 1-2. By moving in the negative gradient of the cost function with respect to its

own position, each robot employing this geometric-based controller reaches a final goal

position that is of locally minimal cost with respect to the system-wide cost function.

In fact, many geometric-based controllers owe their beginnings to a Voronoi-based ap-

proach introduced by Cortes et al. (2004), and can be considered solution approaches

to variations on the same optimization problem (Schwager, 2009). Although we are

greatly inspired by this unifying geometric-based approach to decentralized robot

control, this thesis considers optimization functions that relate the robots' positions

to the performance of Bayesian filters designed to infer the environment state.

The proposed information-based controllers in this thesis ensure that the resulting

decentralized controllers take into account how the robots' next sensor observations

improve on their past observations to resolve current uncertainty associated with the

inference. As a result, we are interested in controllers that aim to maximize a mutual

information reward function over a single step horizon. Mutual information' is an

1In this thesis, mutual information is always considered to be between the random variable
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information-theoretic quantity (Cover and Thomas, 1991) that predicts how much fu-

ture observations will decrease the robots' uncertainties associated with their inferred

beliefs of the environment state. By moving in the direction of increasing mutual

information reward, the robots provably increase the information gain resulting from

their next joint observation. State-of-the-art mutual information-based controllers

often evaluate the change in mutual information reward for a discrete set of control

actions, then select the action resulting in the largest reward. Although this approach

is shown to be optimal for greatly simplified cases (Castanon, 1993), the discretization

of the control space can be somewhat arbitrary for real robots moving in continuous

configuration spaces.

This thesis distinguishes itself from previous works in that the controllers are de-

rived from the analytical gradient of the mutual information reward function. By

distributively employing a gradient-ascent controller, the control actions are of vec-

tor form dictating the desired velocities within the robots' continuous configuration

spaces. These control actions can drive any type of sensing robot platform employ-

ing probabilistic sensor models and accepting velocity command inputs. In other

words, the implementation of these mutual information-based gradient-ascent con-

trollers does not require the robot to have particular dynamics (e.g., integrator, second

order) or sensors (e.g., passive power sensors, active range sensors).

Not surprisingly, the performance of these controllers do depend on these prop-

erties, and thus we focus on robots that have integrator dynamics and sensors with

sufficiently smooth probabilistic models. With respect to integrator dynamics, one

can often employ lower-level closed-loop controllers to emulate such dynamics, e.g.,

on quadrotors that are traditionally modeled with second ordered dynamics (Michael

et al., 2010). With respect to sufficiently smooth sensor models, there exists many

simple sensors (e.g., magnetometers, light sensors) that inherently have this property,

especially in the absence of sensor obscuration. For example, an underwater robot

may more accurately sense the distance to an acoustic source the closer the robot

representing the environment state and the random variable representing the robots' next joint
observation.
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is to that source, and the change in the corresponding measurement probabilities2

is often continuous with respect to the robot's motion. When tasked to track these

acoustic sources, a team of such underwater robots employing the controllers in this

thesis would continuously balance the tendencies to move closer to the sources while

managing environmental uncertainties (e.g., yet to be discovered sources) elsewhere

within a bounded volume of water. Again, the robots' behaviors are driven by the goal

of maximizing the informativeness of their next joint observation such that the system

can best locate all sources. More complex sensors (e.g., cameras, laser rangefinders)

may not inherently have sensor models that are sufficiently smooth, however, one can

often derive different forms of the sensor models to induce smoothness. We employ

such a technique to derive a smooth sensor model for laser rangefinders in this thesis.

Given these robot dynamics and probabilistic assumptions, the mutual information-

based gradient-ascent controllers are shown to be convergent between sensor observa-

tions and, in their generalized form, locally optimal. Thus, the robots' locally calcu-

lated control actions are provably favorable from a system-wide perspective, which for

our problem formulation encompasses stronger control-theoretic statements than can

be made for the state-of-the-art mutual information-based controllers. For example,

the performance of controllers that evaluate mutual information reward for a discrete

set of control actions is often correlated to the size of the control set. On the other

hand, directly calculating the gradient of the mutual information reward function

avoids the need to discretize the robots' continuous control or configuration spaces,

which weakens the controllers' optimality guarantees. In addition, since calculating

the gradient of the mutual information reward function is equivalent in computational

complexity to calculating one reward value, the ability to calculate the gradient ver-

sus a set of rewards for robot control results in a constant factor improvement in

computational complexity.

To overcome the requirement of global knowledge required for mutual information-

based calculations, we introduce sample-based methods to support the distributive

2We define the measurement probability as the probability of particular observation given a
realized environment state.
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approximation of system-wide probability distributions. These methods enable each

robot to form non-parametric representations for measurement probability distribu-

tions3 describing the next joint sensor observation, which can be realized from proba-

bility distributions of arbitrary form. For example, we do not assume that the statis-

tics of the involved random variables are exactly described by particular distributions

defined using a finite number of parameters. Such assumptions are commonplace in

decentralized mutual information-based control, e.g., Kalman filter-based controllers

employing the Decentralized Data Fusion architecture (Manyika and Durrant-Whyte,

1994). The use of non-parametric representations of the joint measurement distribu-

tions preserve aspects of the mutual information reward function and its gradient that

are discarded by Gaussian and other parametric-based assumptions. In addition, this

non-parametric formulation yields controllers that are compatible with any type of

Bayesian filter, where state-of-the-art controllers are often designed for specialized

filters assuming particular distributions.

Given the resulting set of likely joint observations, we show that the measurement

likelihoods4 required for the controller calculations can be approximated using a va-

riety of distributed algorithms. In fact, the joint measurement likelihood calculations

are decoupled from the controller calculations. We show that this "modular" approach

to the likelihood and controller calculations allows for scalable implementations with

respect to the number of robots. We then give two example consensus-based algo-

rithms that run on an undirected network graph. The first consensus-based algorithm

approximates discrete measurement probabilities for discrete environment state ran-

dom variables, while the second approximates continuous likelihood distributions for

continuous environment state random variables. We show that these anytime ap-

proximations provably converge to the correct values on a static and connected graph

without knowledge of the number of robots in the network or the corresponding

graph's topology.

3We define the measurement probability distribution as the probability distribution with respect
to all observations given a realized environment state.

4We define the measurement likelihood as the probability of an observation with respect to all
possible environment states.
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Lastly, we incorporate the resulting consensus-based algorithms into both a hard-

ware system and a simulation environment to allow for controller evaluation under

non-ideal network settings. For the hardware experiments, the task is to infer the

state of a bounded, planar environment by deploying five quadrotor flying robots

with simulated sensors in both indoor and outdoor settings. For all experiments, the

controllers are ran in distributed fashion either on a single ground computer or on

multiple onboard computers, with the latter resulting in a completely decentralized

hardware system. For the numerical simulations, Monte Carlo-based analyses are

performed for 100 robots, where each robot is simulated on an independent computer

node within a computer cluster system. By incorporating a message passing protocol

between simulated robots on independent nodes, the controllers again ran in com-

pletely distributed fashion. Simulations are also performed for 1000 robots using a

single workstation computer equipped with a multicore GPU-enabled graphics card.

The results from both the hardware experiments and numerical simulations validate

our theoretical and computational claims throughout the thesis.

1.0.1 Aerial surveillance use case

Let us revisit the task of monitoring a national park susceptible to forest fires using

flying robots. For such aerial surveillance, it is common to employ downward facing

infrared cameras to detect elevated heat signatures from active fires. Prior to de-

ployment, these cameras are calibrated to characterize their noise characteristics in

support of building a belief of the national park's state, i.e., the Bayesian inference.

It is the resulting sensor models that link the positions of the robots to the accuracy

associated with any heat signature reading.

As shown in Figure 1-3, the controllers in this thesis are applicable to a single

robot, continuously driving it along the positive gradient of the mutual information

between the state of the national park and the next heat signature reading. If the

robot is restricted to move translationally in two-dimensions, it would move towards

areas of high uncertainty with respect to the Bayesian inference. In other words,
the more the robot is unsure of the existence of fire at a particular location within
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Figure 1-3: Single- and multi-robot systems using mutual information-based control
to monitor the state of a national park. Left: By following the positive gradient of
the mutual information between the state of the national park and the next sensor
observation, a single robot positions its sensor in a globally optimal fashion, although
such a controller only guarantees local optimality. Right: By navigating on a higher
dimensional mutual information reward surface, two robots position their sensors in
a similar manner.

the national park, the more attractive the overhead airspace becomes. The resulting

motion in physical space can be visualized in information space as a single point

ascending a two-dimensional mutual information reward surface.

To increase the pervasiveness of this aerial surveillance system, additional robots of

varying sensors can be used, e.g., downward facing optical cameras. The decentralized

mutual information-based gradient ascent controllers remain applicable even though

every robot's sensor model may differ. Much like the single robot system, the joint

motion of the robot team can again be visualized in information space as a single

point ascending a mutual information reward surface, however, the surface is now

higher dimensional. Regardless, the robots are continuously attracted to areas of

high uncertainty, maximizing the informativeness of their next joint observation.

1.1 Technical approach

Our technical approach focuses on three research pillars that support the novel class

of decentralized mutual information-based gradient-ascent controllers (Figure 1-4).
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Figure 1-4: The research pillars and foundation that support the contributions of this
thesis.

We now describe each of these pillars in greater detail.

i) Relevancy: We show that maximizing the mutual information between the

environment state and the robots' next joint observation is relevant to robot

inference tasks, e.g., occupancy grid mapping (Chapter 4). We also show that

multi-robot systems employing sensors whose noise characteristics smoothly de-

pend on the robots' positions can be cast in terms of an optimization problem

to maximize a mutual information reward function (Chapter 5). A decentralized

gradient-ascent solution approach to this optimization problem yields the novel

controller class.

ii) Correctness: We prove that any member of the novel controller class is con-

vergent between sensor observations, i.e., the velocities of all robots converge to

zero given enough time between sensor observations (Chapter 5). We considered

this property to be correct from a control-theoretic perspective since it rigorously

characterizes how the robots improve their positions prior to the next update of

the sequential Bayesian filter. In the generalized case when no sample-based ap-

proximations are made in support of the controller, we prove that the resulting

goal positions are locally optimal.
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iii) Scalability: We implement several members of the novel controller class and

show that these algorithms scale to large multi-robot teams (Chapter 5). More

specifically, the computational complexities of these decentralized controllers are

independent of the number of robots. To induce scalability on non-ideal commu-

nication networks, distributed algorithms are used to approximate sample sets of

measurement likelihoods describing system-wide observations (Chapter 6). These

anytime approximations provably converge to the correct values as more compu-

tational resources are allocated for the multi-robot system.

These three research pillars are built upon an information-theoretic foundation that

supports many other robot controller classes (Chapter 2). Throughout this thesis,

we validate our theoretical and computational claims through numerical simulations

and hardware experiments concerning traditional robot applications such as mapping,

exploration, and surveillance.

1.1.1 Scope and limitations

Our technical approach is built on several assumptions that focus the scope of this

thesis. In the following list, we detail the assumptions made in each chapter, high-

lighting the limitations they may introduce. Note that assumptions do not carry over

to other chapters unless explicitly stated.

i) Mutual information-based control for mapping applications (Chap-

ter 4): We assume that a single robot equipped with a range sensor employs the

occupancy grid mapping algorithm. For simplicity, we focus on constructing a

map in two dimensions using a narrow beam-based sensor model, but hypothesize

that the results are valid for higher dimensions and divergent beam-based sensor

models. We also assume that the sensor model is unbiased and the measure-

ment's prior is clamped. Intuitively speaking, an unbiased sensor model ensures

that a correct map will be built in expectation, while a clamped measurement's

prior prevents overconfidence with respect to the sensor calibration process.
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ii) Gradient-ascent control for multi-robot inference tasks (Chapter 5):

We assume that each robot equipped with a decentralized Bayesian filter has

simple dynamics where the control input is the robot's velocity, i.e., the robots

have integrator dynamics. We also assume that each robot knows its own position

with certainty, as well as the physical extent (i.e. boundary) of the environment

and the set of possible values (i.e., alphabet) for the random variable represent-

ing the environment state. Note that if probabilistic localization is employed,

each robot can choose one hypothesized position as input to its controller, e.g.,

the maximum a-posteriori position. In addition, we assume that the sensor is

calibrated and of finite range, with the former implying that each robot knows

its local sensor model, which is also assumed to be sufficiently smooth. A robot's

position and sensor model do not need to be known by any other robot.

iii) Distributed algorithms enabling decentralized inference and coordi-

nation (Chapter 6): We again assume that the local sensor observations are

synchronous and conditionally independent between all robots. The former im-

plies that all robots simultaneously perform Bayesian filter calculations at a con-

stant rate. The latter implies that given the environment state, the errors on

the local observations are uncorrelated between robots. To formalize the conver-

gence of consensus-based algorithms, we assume that the robots' communication

is governed by an unweighted and undirected network graph that is static and

time-invariant between consecutive joint observations. These last assumptions

combined with the existence of an upper bound on each robot's in/out degree

form the communication model employed in Chapter 6.

1.2 Research contributions

The main research contributions of this thesis are as follows.

i) We prove that any occupancy grid mapping controller tasked to maximize a

mutual information reward function is eventually attracted to unexplored space.
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This proof relies on a commonly employed beam-based sensor model versus a

more abstract additive white Gaussian noise model.

ii) We develop an analytical approach that allows for the identification of mutual

information-based behaviors for occupancy grid mapping. This approach allows

us to identify the effect of changing the belief of one or more cells while keeping

all other aspects (e.g., robots' positions, realized map) the same between two

theoretical situations. We believe this approach can be used to prove many

future claims concerning control for more general inference tasks.

iii) We provide a computationally tractable algorithmic implementation of the mu-

tual information reward function. More specifically, the time and space complex-

ities of this algorithm are at worst quadratic and linear, respectively, with respect

to the occupancy grid map's spatial resolution. In contrast, a naive implemen-

tation ignoring the assumption of sensor obscuration has a time complexity that

is exponential, i.e., is computationally intractable.

iv) We apply the gradient of the mutual information reward function to control

robots to make informative measurements for such tasks such as exploration and

surveillance. The computation engine for this controller is generalizable to many

other Bayesian inference tasks.

v) We provide non-parametric sample-based methods for representing the robots'

likely observations to enable decentralized coordination. The resulting approx-

imation for the gradient of the mutual information reward function forms the

basis for the novel class of decentralized gradient-ascent controllers.

vi) We present novel consensus-based algorithms for approximating the robots' joint

measurement likelihoods in both a discrete and continuous setting. We prove

that these approximations converge to the true values as more system resources

are allocated or as the network graph becomes complete. We also formalize rates

of convergence and information-based bounds for the continuous case.
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vii) We provide the results of numerous quadrotor hardware experiments in both

indoor and outdoor environments, one of which is conducted on a completely

decentralized hardware system. We also give the results of numerical simulations

using as many as 1000 robots.

1.2.1 Publications

This thesis is a culmination of the following journal articles, conference proceedings,

and workshop abstracts.

i) B. J. Julian, S. Karaman, and D. Rus. On mutual information-based control of

range sensing robots for mapping applications. The Int. J. of Robotics Research,

2013. Submitted.

ii) B. J. Julian, S. Karaman, and D. Rus. On mutual information-based control

of range sensing robots for mapping applications. In Proc. IEEE/RSJ Int.

Conference on Intelligent Robots and Syst., Tokyo, Japan, Nov 2013. Accepted.

iii) B. J. Julian, M. Angermann, and D. Rus. Nonparametric inference and coor-

dination for distributed robotics. In Proc. IEEE Conference on Decision and

Control, Grand Wailea, HI, USA, Dec 2012.

iv) B. J. Julian, M. Angermann, M. Schwager, and D. Rus. Distributed robotic

sensor networks: an information-theoretic approach. The Int. J. of Robotics

Research, 31(10):1134-1154, Sep 2012.

v) B. J. Julian, S. L. Smith, and D. Rus. Distributed approximation of joint mea-

surement distributions using mixtures of Gaussians. In Proc. Robotics: Sci. and

Syst. Conference, Sydney, Australia, Jul 2012.

vi) B. J. Julian, M. Angermann, M. Schwager, and D. Rus. A scalable information

theoretic approach to distributed robot coordination. In Proc. IEEE/RSJ Int.

Conference on Intelligent Robots and Syst., San Francisco, CA, USA, Sep 2011.
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vii) B. J. Julian, M. Angermann, M. Frassl, M. Lichtenstern, and D. Rus. Towards a

unifying information theoretic framework for multi-robot exploration and surveil-

lance. In RSS Workshop on 3D Exploration, Mapping, and Surveillance with

Aerial Robots, Los Angeles, CA, USA, Jun 2011.

1.3 Thesis outline

This thesis is organized as follows. The next two chapters provide background ma-

terial essential to the writing of this thesis, starting in Chapter 2 with a discussion

of prior works from three influential research areas. We follow with a discussion of

mathematical notation and definitions in Chapter 3.

In Chapter 4, we introduce the well-known occupancy grid mapping algorithm,

providing in Section 4.1 the formal statement that any controller tasked to maximize

a mutual information reward function is eventually attracted to unexplored space.

In Section 4.2, we rigorously prove this result using numerous lemmas and corollar-

ies that are interesting in their own right. The proof for attraction hinges on the

construction of an analytical approach employing two independent theoretical exper-

iments. In Section 4.3, we formally derive the analytical and discretized expressions

for the mutual information reward function and its gradient, then discuss the compu-

tational complexity of their algorithmic implementations. We conclude the chapter

by discussing the results from two separate hardware experiments in Section 4.4.

In Chapter 5, we formalize the general multi-robot inference and coordination

problem, deriving in Section 5.1 an expression for the analytical gradient of mutual

information between the environment state and the robots' next joint sensor ob-

servation. In Section 5.2, we formulate a mutual information-based gradient-ascent

controller, then apply non-parametric sampling methods to form the novel class of

decentralized controllers. Several algorithmic implementations of these controllers are

given in Section 5.3, from which two are realized in hardware experiments in both an

indoor and outdoor setting. We conclude the chapter by discussing the results from

these experiments in Section 5.4.
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In Chapter 6, we discuss distributed algorithms that enable decentralized infer-

ence and coordination. We formalize our distributed robot network in Section 6.1,
specifically the employed communication model and properties associated with the

underlying network graph. We then provide consensus-based approaches that enable

distributed approximations for discrete measurement probabilities (Section 6.2) and

continuous measurement likelihood distributions (Section 6.3). Algorithmic imple-

mentations of these two approaches are also provided, allowing for numerical simula-

tions to be distributively run on a computer cluster system. We conclude the chapter

by discussing the results from these parallelized numerical simulations in Section 6.4.

Lastly, we conclude the thesis in Chapter 7, giving final thoughts, lessons learned,

and future work.
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Chapter 2

Prior works

This thesis builds on prior works from the research areas of i) occupancy grid mapping

and simultaneous localization and mapping (SLAM); ii) decentralized inference and

coordination; and iii) distributed algorithms for multi-robot systems. We discuss in

this chapter the prior works from all three research areas, noting that there is con-

siderable overlap between the areas. The material in this chapter does not constitute

novel research contributions by this thesis.

2.1 Occupancy grid mapping and SLAM

The seminal work of Moravec and Elfes (1985) introduced the concept of occupancy

grid maps as a space representation model. Since then, much research has focused

on constructing maps in higher dimensions, fusing measurements from multiple sen-

sors/robots, and simultaneously/concurrently localizing. With respect to construct-

ing maps in higher dimensions, Moravec and Martin (1994) used stereo vision to

extend occupancy grid maps to three-dimensions, with Johnson and Kang (1999)

improving on this extension by using a modified iterative closest point algorithm to

merge multiple textured data sets. Inspirational to our focus on multi-robot sys-

tems, Thrun et al. (1998a) first introduced multi-sensor fusion for occupancy grid

mapping, which lead to multiple approaches for multi-robot exploration, e.g., (Sim-

mons et al., 2000; Burgard et al., 2000). Also introduced by Thrun et al. (1998c,b)
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was the concept of incorporating topological mapping approaches (Smith and Cheese-

man, 1986; Moutarlier and Chatila, 1989; Smith et al., 1990; Kuipers and Byun, 1991;

Leonard and Durrant-Whyte, 1991) alongside occupancy grid mapping for SLAM ap-

plications.

Unlike the works cited in the previous paragraph, the purpose of Chapter 4 is

not to propose new occupancy grid-based mapping algorithms. Instead, we focus on

conducting information-theoretic analyses using these preexisting algorithms for the

underlying Bayesian inference framework. For example, we evaluate our theoretical

results in Section 4.4.3 using a Monte Carlo-based SLAM algorithm (Montemerlo

et al., 2002) that employs the occupancy grid mapping algorithm. We believe that our

analyses can be applied to many other Bayesian derived mapping algorithms where

sensor noise depends on the robot's position in the environment, such as those relying

solely on object-based (Chatila and Laumond, 1985) or landmark-based (Smith and

Cheeseman, 1986) maps.

The task of maximizing a mutual information reward function has recently emerged

as a powerful objective for controlling a robot to improve the quality of the occupancy

grid map. The early work of Elfes (1995) proposed employing mutual information

between sensor observations and the map as a reward function for general information

acquisition tasks. Specific to SLAM exploration, Bourgault et al. (2002) combined this

reward function with the mutual information between sensor observations and robot

localization. Many following works focused on mutual information-based control for

robot localization (Krdse et al., 2001) and joint robot/target localization (Grocholsky,

2002; Stump et al., 2009). Specific to frontier identification, Rocha et al. (2005) used

a decentralized gradient-based approach for selecting boundaries between explored

and unexplored space. The explorative behaviors reported by this work are well de-

scribed by the results in Chapter 4, as are the behaviors from many other mutual

information-based approaches (Stachniss, 2006; Visser and Slamet, 2008; Amigoni

and Caglioti, 2010; Bhattacharya et al., 2010).

Chapter 4 also gives insight into a larger class of uncertainty-driven controllers en-

abling occupancy grid map building. Many early works used entropy-based methods
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to again improve target and/or robot localization, see (Burgard et al., 1997; Whaite

and Ferrie, 1997; Roy et al., 1999). With respect to uncertainty associated with a

map, Elfes (1995) suggested using entropy to quantify the uncertainty associated with

all grid cells. At the same time, Cassandra et al. (1996) proposed using information

maximization methods to drive robot navigation. These contributions were followed

by Moorehead et al. (2001) who computed the entropy of all cells to determine the

utility of future measurements. Not surprisingly, these (if not all) exploration ap-

proaches for mapping are benchmarked against the traditional geometric approach of

frontier exploration first proposed by Yamauchi (1998).

2.2 Decentralized inference and coordination

Concerning state estimation of an environment, the body of work addressing Bayesian

estimation methods based on a family of Kalman filters, which are Bayesian filters for

linear Gaussian systems, have commonly been used. For example, Lynch et al. (2008)

proposed a distributed Kalman filtering approach in which the robots use consensus-

based algorithms to share information while controlling their positions to decrease the

error variance of the state estimate. In addition, Cortes (2009) developed a distributed

filtering algorithm based on the Kriged Kalman filter for estimating environmental

fields. The algorithm also estimated the gradient of the field, which is then used for

multi-robot control. There have been similar Kalman filter approaches for tracking

multiple targets, such as in (Chung et al., 2004). Although research in Kalman-based

filtering has provided many advances concerning Bayesian inference, we emphasize

that this thesis does not restrict itself to linear Gaussian systems. Moreover, the

non-parametric representations we employ are compatible with any Bayesian filter

approach, including Kalman-based ones.

Concerning non-parametric representations, the use of sample-based filters have

become popular in robotics as the platforms become more computationally capable.

In an early work, Engelson and McDermott (1992) used a sequential Monte Carlo

method to construct an algorithm robust enough to address the kidnapped robot
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problem. Since then, non-parametric methods have become commonplace in localiza-

tion (Borenstein et al., 1997), target tracking (Schulz et al., 2001), and SLAM (Monte-

merlo et al., 2002). Fox et al. (2000) applied these methods to multiple collaborating

robots using a sample-based version of Markov localization. Similar to the work in

Chapter 5 are the recent efforts of Hoffmann and Tomlin (2010) who proposed a se-

quential Monte Carlo method to propagate a Bayesian estimate of the environment,

then used greedy and pair-wise approximations to calculate mutual information. In

addition, Belief Propagation (Pearl, 1988) has seen non-parametric extensions (Ihler

et al., 2005), which use Gaussian mixtures to solve graphical inference problems.

Concerning mutual information-based control, the early work of Cameron and

Durrant-Whyte (1990) used mutual information as a reward function for sensor place-

ment without explicitly considering the mobility of the sensors. Later Grocholsky

et al. (2003) proposed controlling multiple robot platforms near an object of interest

so as to increase mutual information in tracking applications. Bourgault et al. (2002)

used similar methods for exploring and mapping uncertain environments, which re-

lates to our work in Chapter 4. In addition, the difficult problem of planning paths

through an environment to optimize mutual information has been recently investi-

gated, most notably the work by Singh et al. (2007, 2009), Ny and Pappas (2009), Choi

and How (2010), and Ryan and Hedrick (2010). Once again, all works mentioned in

this paragraph assume some form of a Gaussian process, a control assumption we do

not make in this thesis.

Regarding the formulation of the novel class of controllers in this thesis, our

work (Julian et al., 2011b) in collaboration with Schwager et al. (2011a) demon-

strates the first results in robotics on using the analytically derived expression for the

gradient of mutual information.' Given the long lineage of information-theoretic con-

trol approaches, we believe that the inherent mathematical complexity of the mutual

information expression deterred the robotics research community from analytically

evaluating its gradient. Therefore, we believe the closest related works are ones that

'Note that similar efforts have previously been discussed for applications such as image align-
ment (Viola, 1995) and channel coding (Palomar and Verdl, 2007)
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evaluate the change in mutual information for a discrete set of control actions, e.g.,

(Grocholsky, 2002; Bourgault et al., 2002; Rocha et al., 2005; Stachniss, 2006; Hoff-

mann and Tomlin, 2010). Since publishing (Julian et al., 2011b), the work by Dames

et al. (2012) has explored using mutual information-based gradient-ascent control

when considering hazardous environments, as well as methods to improve controller

performance when a centralized server and/or cloud computing is accessible (Dames

and Kumar, 2013).

Although we do not explicitly discuss the task of robot localization (i.e., each

robot inferring its own configuration within a global frame) and map alignment,

the problem of decentralized inference is related to the multi-robot SLAM problem.

Most relevant is the work of Leung et al. (2012), which proposed a decentralized

SLAM approach able to obtain "centralized-equivalent" solutions on non-complete

communication graphs. This approach is sufficiently generic to employ a wide range

of Bayesian filtering methods, contrary to prior works specifically using extended

Kalman filters (Nettleton et al., 2000), sparse extended information filters (Thrun

and Liu, 2005), or particle filters (Howard, 2006). For our work, incorporating the

robots' configurations and map offsets into the robots' beliefs has direct benefits for

multi-robot SLAM exploration. For a more in-depth discussion concerning SLAM

and multi-robot SLAM, please see (Thrun et al., 2005).

2.3 Distributed algorithms for multi-robot systems

In a multi-robot context, the main challenges in using mutual information for control

are computational complexity and network communication constraints. As previ-

ously stated, the complexity of computing mutual information and its gradient is

exponential with respect to the number of robots, and thus is intractable in real-

istic applications using a large multi-robot team. Furthermore, the computation of

mutual information requires that every robot has current knowledge of every other

robot's position and sensor measurements. Thus, many of the prior mutual informa-

tion methods are restricted to small groups of robots with all-to-all communication
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infrastructure. To relax this communication requirement with respect to Bayesian

distributed hypothesis testing, Olfati-Saber et al. (2005) developed a consensus al-

gorithm with provable convergence guarantees when run on a static sensor network.

In Chapter 6, we develop a consensus-based algorithm inspired by Olfati-Saber et al.

to compute the joint measurement probabilities needed for the mutual information

based controller and the Bayesian filter calculations.

We have also been inspired by over two decades worth of advancements in dis-

tributed estimation algorithms. An approach to compute locally optimal estima-

tors from many independent sensor measurements at a central fusion center was

described in detail by Gubner (1993). Concerning decentralization, the early work of

Durrant-Whyte et al. (1990) with decentralized Kalman filters laid the basis for the

Decentralized Data Fusion architecture (Manyika and Durrant-Whyte, 1994). Ex-

tensions incorporating consensus-based algorithms (Cort6s, 2008; Xiao et al., 2007)

have been used for maximum-likelihood parameter estimation (Xiao et al., 2005),

maximum a-posteriori estimation (Olfati-Saber et al., 2005), and distributed Kalman

filtering (Alighanbari and How, 2006; Yang et al., 2007).

One of the most relevant works in distributed Kalman filtering is by Ren et al.

(2005), who showed the convergence of a filter incorporating information-based states.

The proof of convergence for the Gaussian parameters for the joint distribution ap-

proximation closely follows in the work in Chapter 6, even though our algorithms

apply to a larger class of Bayesian filters, such as the work by Aragues et al. (2010)

supporting map merging. This generality is shared by the approach of Fraser et al.

(2012) using hyper-parameters. However, our work enables the early termination

of the consensus-based algorithm without the risk of 'double-counting' any single

observation, even when the maximum in/out degree and the number of robots are

unknown.

Lastly, the positioning of the robots influences the communication properties of

the system. Hence, Krause et al. (2008) formalized the task of balancing the in-

formativeness of sensor placement with the need to communicate efficiently. This

task was shown to be an "NP-hard tradeoff," which motivated the development of
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a polynomial-time, data-driven approximate algorithm for choosing sensor positions.

Closely related is the work of Zavlanos and Pappas (2008), which describes a connec-

tivity controller that enables the robots to remove communication links with network

neighbors while maintaining global connectedness. The controller uses local knowl-

edge of the network to estimate its topology, rendering the algorithm distributed

among robots.

Although in our work we analyze the performance of our algorithms assuming

global connectedness (but not completeness), we note that our approach naturally

accommodates the splitting and merging of network subgraphs by correctly fusing the

beliefs of the involved robots. This property also facilitates the use of communication

schemes that lack the notion of active connectivity maintenance. For example, we

have previously presented how state estimates can be efficiently exchanged within a

robot team by broadcasting estimates of nearby robots more frequently than distant

ones (Julian et al., 2009).

2.4 Summary

In this chapter we discussed prior works relevant to the contributions of this thesis. In

the coming chapters, we i) analyze the relevance of mutual information-based control

to occupancy grid mapping and SLAM; ii) derive a novel decentralized gradient-ascent

controller class; and iii) present distributed algorithms to induce controller scalability.

However, we first introduce in Chapter 3 the mathematical notation and definitions

used throughout the thesis.
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Chapter 3

Background

This chapter gives the mathematical notation and definitions used throughout the

thesis. The material in this chapter does not constitute novel research contributions

by this thesis.

3.1 Mathematical notation

Throughout this thesis, we make use of the following notation.

Notation Description

t Time (continuous)

k Time (discrete step)

rK Time (communication round)

P[ Approximation for the ith robot's joint fth measurement likeli-

hood at time step k

P[ Approximation for the ith robot's joint measurement likelihoods

at time step k
[q Approximation for the ith robot's sampled joint fth measurement

likelihood at time step k

ip Approximation for the ith robot's sampled joint measurement like-

lihoods at time step k
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Notation Description

[i] Belief of the ith occupancy grid cell at time step k

O() Big 0 notation

AK Conditioning event for the independent theoretical experiments at

time step k

BK,k Conditioning event for the independent theoretical experiments at

time steps k and k

Consensus state for the ith robot at communication round n

Consensus state for the ith robot at communication round n,

Consensus state (exponential) for the ith robot at communication

round K

7ri Consensus state (exponential) for the ith robot at communication

round n,

Ut Control action of ith robot at time t

Ut Control action of multi-robot system at time t

Control gain of ith robot

-+ Converges to

diam(.) Diameter of a network graph

H(.) Entropy of a random variable

[- Entry in jth position of a tuple or vector

[-Jk Entry in (j, k) position of a matrix

E(.) Expectation of a random variable

OilI Exponential factor for the ith robot's approximated joint measure-

ment likelihoods

0iFloodMax state for the ith robot at communication round ,

i FloodMax state for the ith robot at communication round n

7c(- , -) ~Gaussian function defined using canonical parameters

A(-, -) Gaussian function defined using normal parameters

E Independent theoretical experiment (first)

E Independent theoretical experiment (second)
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Notation Description

r[i] Information matrix for the ith robot's measurement likelihood dis-

tribution of scaled Gaussian form

Information matrix for the joint measurement likelihood distribu-

tion of scaled Gaussian form

Information vector for the ith robot's measurement likelihood dis-

tribution of scaled Gaussian form

Information vector for the joint measurement likelihood distribu-

tion of scaled Gaussian form

i] (-) Inverse sensor model for the jth range measurement at the ith

occupancy grid cell

6 (-) Inverse sensor model for the range sensor observation at the ith

occupancy grid cell

C4 Known position of ith robot at time t

Ct Known position of multi-robot system at time t

Ck Known position of ith robot at time step t

Ck Known position of multi-robot system at time step k

f(-) Lebesgue integral

max(.) Maximum valued element of a set

min(.) Minimum valued element of a set

I(- Mutual information between two random variables

-; -Mutual information numerical approximation between two ran-

dom variables

log(.) Natural logarithm

g Network graph of the multi-robot system

A Network's adjacency matrix

A Network's maximum in/out degree

W Network's Metropolis-Hastings matrix

nm Number of cells in the occupancy grid map

nr Number of communication rounds in a single time step
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Notation Description

nz Number of measurements per range sensor observation

Number of neighbors for the ith robot

nr Number of robots in the multi-robot system

431L Perceptual range of the jth measurement at time step k

As Perceptual range of the sensor observation at time step k

P(-) Probability measure

R[] Random variable for the belief of the ith occupancy grid cell at

time step k

Xk Random variable for the environment state at time step k
yi]Yk Random variable for the ith robot's sensor observation at time

step k

Yk Random variable for the joint sensor observation at time step k

fk Random variable for the sampled ith robot's sensor observation

at time step k

Yk Random variable for the sampled joint sensor observation at time

step k

Ml Random variable for the ith occupancy grid cell

M Random variable for the occupancy grid map

ZLU] Random variable for the jth range measurement at time step k

Zk Random variable for the range sensor observation at time step k

Uk Reward function for robot control at time step k

mUi Reward function approximation for the ith robot at time step k
9Uk Reward function numerical approximation for the ith robot at time

step k

pli] Scaling factor for the ith robot's measurement likelihood distribu-

tion of scaled Gaussian form

p Scaling factor for the joint measurement likelihood distribution of

scaled Gaussian form

§ Set denoting a sphere
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Notation Description

NM Set of neighbors for the ith robot

1,jW Set of possible control actions for the ith robot

U Set of possible control actions for the multi-robot system

X Set of possible environment states

y~i] Set of possible ith robot's sensor observations

Y Set of possible joint sensor observations

-Set of sampled ith robot's sensor observations at time step k
Yk Set of sampled joint sensor observations at time step k

M Set of possible occupancy grid maps

Z Set of possible range measurements

R Set of real numbers

Z Set of integers

]J(-) Set product

Z(-) Set summation

nx Size of sample set of environment states

ny Size of sample set of likely observations

Az Spatial resolution of the numerical approximation of mutual infor-

mation

Ax Spatial resolution of the numerical approximation of mutual infor-

mation for a continuous-valued environment state

Am Spatial resolution of the occupancy grid map

int(.) Subset of interior points

TS Time interval between consecutive observations for the multi-robot

system

ei Tuple for ith Euclidean basis

1 Tuple of all ones

0 Tuple of all zeros

Table 3.1: Notation used in this thesis.

47



3.2 Mathematical preliminaries

Let x E S denote an element x belonging to a set 8, while {x E S : P(x)} denotes

the set of elements belonging to S with the assertion P(x) being true. If S is finite,

let ISI denote the number of its elements. Let int(S) denote the interior of the set

S. If R is a subset of or equal to S, then we write R C S. Given two sets S[1] and

S[21, let S[1] U S[2], s[11 n S[2], and S[1] x S[21 denote their union, intersection, and

Cartesian product, respectively. Note that indices are written as superscript within

square brackets (multiple indices will be separated with commas). Let superscripts

without square brackets denote Cartesian powers, e.g., S3 S S x S x S. Given a

collection of sets {S[] } indexed by a set I, let U s5 [i], ni, I], and HET Sti

denote their indexed union, intersection, and Cartesian product, respectively.

Let > and > denote greater than and greater than or equal to, respectively, for two

real numbers. We mean for these symbols to be applied element-wise for two vectors,

while for two matrices we mean positive-definiteness and nonnegative-definiteness,

respectively. Let Z and R denote the set of all integers and real numbers, respectively,

with Z>o, Z>o, R>o, and R>o being the sets of nonnegative integers, positive integers,

nonnegative real numbers, and positive real numbers, respectively. Given d E Z>O, let

Rd and Sd C Rd+l denote the d-dimensional Euclidean space and the d-dimensional

sphere, respectively. Given x, y E R, let (x, y) and [x, y] denote the open and closed

interval, respectively, between x and y.

3.2.1 Probability theory

Given a sample space Q, a o-algebra T C 2', and a probability measure P, let the

triple (, F, P) denote a probability space. Given a random variable X that maps Q

to an alphabet X, i.e., X : Q -+ X, let P(X = x) denote the probability or probability

density when X takes the value x E X. For convenience, let P(X) be shorthand for

P(X = x) with x E X. Given a second random variable Y : Q -- Y, let P(X, Y)
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denote the joint probability, i.e., P({X = x} n {Y = y}) with x E X and y E Y.

From Kolmogorov's definition, the conditional probabilities of X given Y is defined

as P(XIY) := P(X, Y)//P(Y). Given a real random variable Z : Q -+ R, let E(Z)

denote the expected value, i.e., fq Z dP.

Given two independent theoretical experiments E 1] and EP2 I that are statistically

identical, let (Q[11, .F111, [1) denote the probability space for the first experiment Ell].

Similarly, define (2[2], y[2], p[2]) for the second experiment E[2]. Since the two exper-

iments are statistically identical, these two probability spaces are identical. Let X 11

and X[21 be random variables defined on (Q11, [11, I?[P]) and (Q[2]1 F[2]1 p 2]), respec-

tively. The two random variables are statistically identical, i.e., they are identical

as a function from the o-algebra to the appropriate range space. Let (Q[3], T[ 31, p[3])

denote the product probability space of (N[1], 11, P1']) and (Q[ 2], [2]1 p[21), see (Hal-

mos, 1974). More formally, the sample space is Q[3] - Q[l] X Q[ 2], the sigma algebra

.[3] c [3] is the smallest o-algebra such that F[3] -D F[l] X F[21, and the probability

measure P[3] is such that, for any event C[3] = C~l' x C[2] c F[3] with C[11 C y[1] and

C[2] C 7 2] , we have P[3 1(C[3]) = p[](C[11) x p[2](C[2])

3.2.2 Information theory

Given a random variable X, let H(X) denote the entropy, i.e.,

H(X) := -E [log (P(X))]

with log(.) being the natural logarithm function. Given a finite collection of random

variables X111, ... , X[n], let H(X[I1 , ... , X[n]) denote the joint entropy, i.e.,

H(X1 , ... ., X["]) = -E [log (P(XA7', . . . [,AXfl))]

We have that

H(X11,. .. , X[n]) < H(X I])
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with equality if and only if the XWi] are independent, i.e.,

P(X11, .. X n])) P(Xlil).

In addition, the conditional entropy

H(XIl LXUI) := -E [log (P(Xil lXUI))]

is less that or equal to H(X Wi]), for any i, j E {1,. . . ,n }, with equality if and only if

X[i] and XUW are independent.

The mutual information between two random variables X and Y is defined as

I(X; Y) := J P(Y = yX = x)P(X = x) log

yEY xEX

P(X I X-Y- dx dy,IP(X - X) ), xy

and is endowed with the following properties:

i) I(X; Y) = I(Y; X) ;> 0 with equality if and only if X and Y are independent;

ii) I(X; Y) = H(X) - H(X|Y) = H(Y) - H(Y|X) = H(X) + H(Y) - H(X, Y);

iii) I(X[11, . . . , X[n]; Y) = En_1 I(Xiil; YJX11, . . ., X~), where

I(Xi; YjX11, .. I ., X-') = H(XI'l JX 11 , . . ,Xl-]) - H(X[ |Y, X1l, Xli-l])

is the conditional mutual information of X~Il and Y given the finite collection of

random variables X[11, ... , X[,-1].

Note that the last property implies that

I(Xll, . . , X[n]; y) ; (X i]; Y)

with equality if and only if the X[i] are independent.
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3.2.3 Complexity theory

Let f, g : R -+ R be two functions that map the set of real numbers to itself. The

function f is said to be order at most g, denoted f E O(g), if there exists a constant

c E R such that limaso0 f(n)/g(n) ; c. In other words, asymptotically the function

f grows much slower than the function g (Russell et al., 1995).

3.3 Summary

Although used throughout the thesis, the mathematical notation and preliminaries

presented in this chapter are heavily relied on within the proof-based Sections 4.1.4,
4.6, 5.6, and 6.6. The material within these upcoming chapters constitutes novel

research contributions, beginning in Chapter 4 with a rigorous proof that mutual

information-based mapping controllers are eventually attracted to unexplored space.
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Chapter 4

Mutual information-based control

for mapping applications

For occupancy grid mapping, the most successful robot control algorithms are grounded

in geometric-based principles. Frontier detection, or the identification of boundaries

between unknown and unoccupied space (Yamauchi, 1998), drives many exploration

algorithms, while path planning algorithms considering these frontiers often employ

spatial metrics and heuristics (LaValle, 2006). This approach is not surprising given

that the mapping algorithm's output is a representation of shapes, sizes, and positions

of obstacles within the environment. However, underneath the mask of maximum like-

lihood, a map is fundamentally a field of binary random variables (Moravec and Elfes,

1985; Elfes, 1987), and a sensor is a probabilistic channel that links robot motion in

the physical world to information gain for the Bayesian inference. One should expect

that geometric-based intuition agrees with information-based reasoning concerning

robot control, however, this agreement up till now is at most a conjecture.

Thus, our goal in this chapter is to rigorously characterize how the robot's motion

in the physical world affects the relevance of its sensor measurements with respect

to occupancy grid mapping. This goal goes beyond identifying which of the map's

grid cells correspond to the largest amount of uncertainty, i.e., entropy (Elfes, 1995).

We instead consider mutual information between the map and future sensor mea-

surements to be the main reward for information-based control. Mutual information
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Occupancy Entropy Mutual Info
Grid Map Map Reward Surface

Frontier 155
0.75 40
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Figure 4-1: A 3 m by 9 m hallway "dead end" with three walls and one open frontier.
Left: The occupancy grid map with occupied (black), unoccupied (white), and un-
known (gray) cells. Surrounding cells not shown are assumed to be unknown. Middle:
A drawing of the the resulting entropy map where the open space is indistinguish-
able from the walls and, more importantly, the open frontier is indistinguishable from
boundaries between occupied and unknown cells. Right: A more geometrically rel-
evant mutual information reward surface that guides a robot away from the three
walls and towards the open frontier at the top left. Note that the white curves high-
lighting the entropy map's and mutual information reward surface's geometries are
for illustrative purposes, and that the two linear color scales represent different bit
ranges.

is an information-theoretic quantity (Cover and Thomas, 1991) that, in occupancy

grid mapping applications, predicts how much future measurements will decrease the

robot's uncertainty associated with all grid cells (Elfes, 1995). Since it is a function of

both the robot's position and the uncertainty of the surrounding cells, mutual infor-

mation encodes geometric relationships that are fundamental to robot control, thus

yielding geometrically relevant reward surfaces on which the robot can navigate.

Consider the hallway mapping situation illustrated in Figure 4-1. With respect

to the shown occupancy grid map, the mutual information reward surface within the

unoccupied space rises to higher values towards the center of the hallway, reaching

its largest value at the open frontier. A mutual information-based gradient-ascent

controller acting on this surface would drive a robot away from the three walls and

out past the open frontier. In other words, this controller would naturally exhibit safe

navigation (i.e., stay away from obstacles) and frontier exploration (i.e., go towards
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open frontiers) without geometrically interpreting the map (e.g., label space as either

occupied or unoccupied). An entropy-based gradient-ascent controller acting on the

adjacent entropy map would not exhibit such behavior and instead result in no robot

motion within the unoccupied space. In other words, the entropy map lacks the

geometrical relevance that is inherent to the mutual information reward surface.

To this effect, the main result of this chapter provides a geometric interpreta-

tion for the mutual information-based reasoning of a robot using the occupancy grid

mapping algorithm and a narrow beam-based range sensor. More specifically, we

prove that any controller tasked to maximize a mutual information reward function

is eventually1 attracted to unexplored space.2 To prove this result, we develop a

novel analytical approach that allows for the identification of mutual information-

based behaviors. We consider simultaneously running two independent theoretical

experiments defined under the same probability space. At a given time instance, we

have the ability to induce slight differences in the conditioning of these experiments,

e.g., the ability to condition both experiments with identical map posteriors except

for a single cell of interest. We then employ expected value calculations (e.g., future

map posteriors) to illuminate qualitative robot behaviors (e.g., attraction to unex-

plored space) that result from the quantitative behaviors of mutual information (e.g.,
increasing entropy overlap between random variables). Remarkably, the analytic ap-

proach and thus our theoretical findings are independent of the implemented control

algorithm. Sampling-based, gradient-based, and potential field methods all exhibit

attractive behavior as long as they aim to maximize a mutual information reward

function.

To enable such control algorithms, we provide an algorithmic implementation for

this reward function that is at worst quadratic and linear in time and space complex-

ities, respectively, with respect to the map's spatial resolution. This computational

tractability is achieved by exploiting a sensor obscuration assumption that is inher-

'By eventually we mean that this attraction does not need to be initially true, but instead it will
be true at and after some time in the future.2By attracted to unexplored space we mean that unknown cells within the map yield a higher
mutual information reward compared to the hypothetical situation where these cells are correctly
known.
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ent in the occupancy grid mapping algorithm. Using this algorithm, we present

experimental results that support our theoretical and computational findings. We

consider two different hardware experiments, each using an omnidirectional ground

robot equipped with a laser rangefinder. The first experiment involves mapping a lab-

oratory equipped with a motion capture system, and thus we provide the occupancy

grid mapping algorithm with accurate robot position information. This experiment

shows the evolution of open frontiers as the robot expands the map, as well as suggests

that obstacles are repulsive. The second experiment involves mapping a single floor

of a large university building using a simultaneous localization and mapping (SLAM)

algorithm (Leonard and Durrant-Whyte, 1991; Montemerlo et al., 2002). Even when

calculating mutual information using the robot path of maximum a posteriori (Kret-

zschmar and Stachniss, 2012), the resulting reward surface highlights areas of the map

where there exists open frontiers, obscured space, and potential SLAM issues (e.g.,

failed loop closures). These powerful experimental results support our theoretical

findings while simultaneously validating the algorithm's time and space complexities.

4.1 Eventual attraction to unexplored space

In this section we review the occupancy grid mapping algorithm then formally state

the main theoretical result of this chapter. A detailed proof of this theorem is given

in Section 4.2.3, and experimental results that support our findings are provided in

Section 4.4.3.

4.1.1 The occupancy grid mapping algorithm

Consider the problem of constructing a map of an environment using a single robot

equipped with a sensor that provides range measurements, i.e., the robot's distance

to nearby obstacles. Suppose the robot employs the well-known occupancy grid map-

ping algorithm (Moravec and Elfes, 1985; Elfes, 1987) for constructing the map from

the noisy observations. For simplicity, we focus on the two-dimensional mapping

problem, meaning that a robot of known position ck E R2 x S at the discrete time
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step' k E Zo moves in the two-dimensional Euclidean plane. The occupancy grid

mapping algorithm models the static map of the robot's environment as an nm-tuple

random variable M = (M[1', .. ., M[n1), where each independent binary random vari-

able Mil takes the value 0 or 1 when an obstacle is absent or present, respectively,

within a uniquely identified cell i E {1, ... , nm}. Inference of this map is enabled by

observations the robot receives originating from its sensor. These observations are

modeled as random variables Zk that take values Zk, for all times k.

Robot position is CC-1 Ck Ck+1dynamic and known

Sensor observations k k k+are random variables

Map is a static Mrandom variable

Figure 4-2: Dynamic Bayesian network for occupancy grid mapping. Note that since
the robot's position is known, we show in the top row the realized values ck instead
of corresponding random variables.

As illustrated in Figure 4-2, both the unknown map and the robot's known po-

sitions influence the noisy observations within this dynamic Bayesian network. Our

goal of building a map is equivalent to estimating the posterior probability over all

possible maps given the previous observations, which leads to the binary Bayesian

filter

r i'(z1:k) := IP(A[] - 11 Z1:k) 6(zk)r[21 z1:k_1), (4.1)
P(M[" = 0jz1:k)

where ri' is the odds ratio4 of the posterior of cell i being occupied, 6[il is the odds

ratio of the inverse sensor model, and Z1:k is shorthand for f,_ 1{Zk, = zk'}. Note

that for all cells i {1, . .. , nm}, we assume an uninformative map prior P(MWil =

0) = P(MWIl = 1) = 0.5. We also use ri] as shorthand for r[l'(z1:k) and refer to it

'In this chapter, we only consider discrete time steps and refer to these as simply time k.
4The reader may be more familiar with the log odds representation of the binary Bayesian filter

(4.1). Although we use log odds ratios in the implementation for our experiments, the mathematical
conclusions in this chapter are more compactly expressed using odds ratios.
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as the robot's belief for cell i at time k. When considering this belief as a random

variable, we use the notation RMt: rWi(Zlk), where Z1:k is shorthand for fl3, 1 {ZkI}.

We consider in this chapter a beam-based range sensor that produces finite ra-

dial measurements of known bearing to nearby obstacles, even though our analysis

is applicable to a wide range of sensor models. In addition, we assume that the

beam is narrow, i.e., the width of the sensor's beam is negligible when compared

to the size of our occupancy grid cells. This is the case for many laser-based sen-

sors, e.g., laser rangefinders. Multiple measurements per time step are accommo-

dated by modeling the observation Zk as an n,-tuple random variable (Z[ ,... ,Z z])

whose elements take values z' from a common set of range measurements Z C R>O.

The occupancy grid mapping algorithm assumes independence among the measure-

ments j E {1, ... , n,, and computes the odds ratio of the inverse sensor model by

6[9](zk) = H, 1 6['i](zd), where

rocc, if zU] and ck imply a measurement

location within cell i,

'z) =< remp, if Z and ck imply a sensor beam

passed through cell i,

1, otherwise,

with rocc E (1, oc) and remp E (0, 1) being constants. Note that for all functions, we

do not include the robot's position Ck as an argument since it is known at all times k.

It is useful to consider the ordered set of cell indices IjU located along the jth

measurement's beam in the absence of obstacles. In other words, the jth measure-

ment's perceptual range contains all cells that align with this beam and are within the

maximum range of the sensor. As illustrated for the example system in Figure 4-3, by

'ordered' we mean that set operators will consider the cell indices sequentially based

on proximity to the robot, with the nearest cells being considered first. Also note that

for all cells f not in the observation's perceptual range _: U IE, any realized

observation zk results in an odds ratio of the inverse sensor model of 64 (zk) - 1. This

58



Occupancy grid map
Beam 4 Beam 3

Beam 6 Beam I

B e amt 8 1B e am 9

Cells in

Cells not
in 1 k

This cell is the
last element in kIl

Figure 4-3: The perceptual ranges for an example robot with a ten beam range sensor.
Note that the assumption of measurement independence within a single observation
may overlook the property that one cell is traversed by multiple measurements' beams.

implies that the belief rjf of this cell will not change over time if the robot remains

stationary. On the other hand, for a cell i in the observation's perceptual range 1 k,

any realized observation Zk with P] (Zk) 4 1 will change the corresponding belief, i.e.,

I' $ rI_ 1. We call such an observation that influences the belief an informative

observation for cell i. Clearly an informative observation Zk (z,... Znz]) must

be composed of at least one informative measurement z for cell i. For simplicity,

we sometimes say the jth measurement is informative for cell i when 6 [ij(]) 1.

4.1.2 Main technical assumptions

Throughout the chapter, we assume that the sensor model is unbiased and the mea-

surement's prior is clamped. Given enough number of informative observations for

each of the cells, an unbiased sensor model assumes that the robot is able to cor-

rectly infer the realized states of all cells in the occupancy grid map. For all practical

purposes, an unbiased sensor model is the desired result of proper sensor calibration

since it implies the following intuitive property. Given that an observation Zk is in-

formative for a cell i, the expected value of the inverse sensor model eS[i](Z) is less

than 1 for an unoccupied cell (i.e., MI'l = 0) and greater than 1 for an occupied one

(i.e., MIl = 1). Otherwise, incorrect inferences in expectation would be possible.
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The assumption of a clamped measurement's prior P(Zk7$1 Z1:k) is a consequence

of the calibration process that generates the sensor model, which commonly involves

measuring a reference marker (e.g., a white kent sheet for laser rangefinders) within

assumed free space. In other words, the calibration process considers the marker

to be an ideal obstacle and does not account for the non-zero probability of other

unexpected obstacles (e.g., airborne particulates, electromagnetic interference). Thus,

we make the technical assumption that the resulting measurement's prior P(Zjj Z1:k)

is clamp with respect to the belief r1z1 of a cell i within that measurement's perceptual

range +1. For example, a cell i strongly believed to be unoccupied (i.e., r) < 1)

results in a measurement's prior equal to P(Z[lZ1:k, = 0). We now formally

define these two assumptions.

Assumption 1 (Unbiased sensor model) For all times k E Z>O, given that the

next observation Zk+1 is informative 61'](Zk+1) $ 1 for a cell i c 'k+1, the expected

value of 61i](Zk+1) is less than 1 if the cell is unoccupied and greater than 1 if it is

occupied.

Assumption 2 (Clamped measurement's prior) For all times k E Z>0, cells

i k±1] and measurements j E {1,...,nz}, there exists an co > 0 such that if

rk < 60, then

P(Zk IZ1:k) = P(ZI Zl:k , M[i] = 0).

Similarly, there exists an e1 < oo such that if ri > el, then

(Zk M) = P(ZD'i Iz1:k, MEi] 1).

Both of these assumptions are arguably satisfied by any range sensing robot run-

ning the occupancy grid mapping algorithm in a reasonable manner. For example,
consider a stationary robot using a biased sensor to continuously measure an obsta-

cle. If the magnitude of the bias is much larger than the size of the occupancy grid

cells, one can easily show that the mapping algorithm will almost surely yield an
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incorrect map. This example also highlights why the proper sizing of the occupancy

grid cells with respect to sensor performance is important. Conversely, given that

the sensor is unbiased, almost surely there will be a time after which the uncertainty

associated with the map will be lower than with the calibration environment (see

Corollary 11 in Section 4.2.2). Our assumption about a clamped measurement's prior

insures that the resulting probabilities remain conservative when the robot becomes

overly confident about the map, i.e., more confident that during the calibration pro-

cess. Interestingly, this assumption is usually satisfied in a real system not because

the system designer clamps the measurement's prior, but instead he/she clamps the

robot's beliefs to avoid numerical instabilities associated with the Bayesian inference

and mutual information calculations (Yguel et al., 2007). Note that the latter is a

more strict assumption that we do not enforce.

4.1.3 Identification of mutual information-based behaviors

Given the previous observations Z1:k, we are interested in minimizing the expected

uncertainty (i.e., conditional entropy') of the map M after receiving the robot's next

observation Zk+l, i.e., we wish to minimize

H(MIZk+1, Z1:k) = H(MIZl:k) - I(M; Zk+1|Z1:k).

Since the entropy H(MlZl:k) of the map is independent of the robot's future position

Ck+1, the control objective of minimizing the conditional entropy H(MIZk+1, Z1:k) is

equivalent to maximizing the mutual information I(M; Zk+1 Z1:k) between the map

and the next observation. In addition, since both M and Zk+1 are tuple random vari-

ables with independence among elements, we express total mutual information as the

summation of I(M[i]; Zlk Z:k) between MM and ZL2] over all cells i E {1,. . . , nm}

5 The conditional entropy given the next observation should not be confused with the current
entropy of the map M. The latter is independent of the next robot position Ck+1 and the next
observation Zk+1.
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and measurements j E { 1,... , nz }. We further simplify this expression to

nZ

I(M; Zk+llzl:k) = E E I(M[i]; ZkUllzl:k) (4.2)

since the mutual information between a measurement and any cell not in the measure-

ment's perceptual range is equal to 0, i.e., I(Mlil; Z1Uilz1:k) 0 for all j E {1,. , fz}

with i i4] (see Lemma 6 for a rigorous treatment). We refer to I(MW; ZtI Z1:k)

as the mutual information contribution of cell i, but note that it is also specific to

the particular measurement j.

We refer to expression given in (4.2) as the mutual information reward function, a

function that drives many information-based control approaches that are cast in terms

of an optimization problem. In this chapter, we exploit certain algebraic properties

of this reward function to show that maximizing (4.2) implies eventual attraction to

unknown space. Intuitively speaking, we show that unknown cells (i.e., those cells i

for which the belief rk is equal to 1) at and after some time are expected to yield a

higher mutual information reward compared to the hypothetical situation where these

cells are correctly known (i.e., the belief r[' is less than or greater than 1 depending

on if cell i was realized to be unoccupied or occupied, respectively).

Remark 3 (Cell-wise effect on mutual information-based behavior) Ideally we

would define attraction to be the behavior that, given a map where one cell i is un-

known (i.e., Ai = 1) and another cell e is known (i.e., ri $ 1), the robot moves in the

direction of cell i. This definition is unfortunately not useful since many other factors

influence robot motion, including but not limited to the sensor model, the position of

these two cells, the realization of the rest of the map, and the implemented control al-

gorithm. In other words, the effect the cells i and f have on mutual information-based

behavior cannot be reasoned about using this definition without additional assump-

tions.

To formalize the simultaneous existence of an actual situation and a hypothetical

one, we construct a novel analytical approach that we call two independent theoretical
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Experiment E

Maps are equal
between experiments

Experiment k

Ck-1 Ck .Ck+1

Zk-1 Z10Z+1

M

k-1 2k kk1

Figure 4-4: Dynamic Bayesian network for the two independent theoretical experi-
ments, E and E, for which all random variables are generated by a single probability
space. Note that the positions ck and ak are equal, for all times k E Z>O.

experiments. This approach allows us to identify the effect of changing the belief of

one or more cells while keeping all other aspects (e.g., robot's positions, realized map)

the same between the two situations. These situations are, in fact, modeled as two

independent theoretical experiments running simultaneously under the same proba-

bility space and conditioned appropriately. Both experiments start at time 0, run

until time k > 0, and have identical robots with identical sensors moving over identi-

cal paths, all of which are known. It is also known that these experiments are carried

out on maps conditioned to be equal, however, the value of the maps themselves are

not given to the two robots. As a result, each robot can only infer the state of its

map based on conditions given at some fixed time in the past. The result of these

experiments is to conclude expected characteristics of the mutual information reward

function given subtle yet relevant differences in the conditioning of both robots' be-

liefs while avoiding the issues discussed in Remark 3. Informally speaking, the two

independent theoretical experiments approach is a proof technique that allows us to

consider these differences in beliefs with "all else being equal." Defined rigorously
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below, we believe that this approach is important on its own right for proving the

validity of widely-used heuristics in information-based control.

Definition 4 (Two independent theoretical experiments) Let E and k denote

two independent theoretical experiments with identical robots, paths, sensor models,

and inverse sensors models, i.e., all deterministic variables and functions are the

same. Suppose the first experiment's map M is of equal value to the second experi-

ment's map M1, although the value itself is unknown to the robots. In addition, suppose

the observations Z1:k := ,l {Z,} and Z1:= :-- , 1 Zkt,} are independently realized

in E and E, respectively. At some time K ; k in the past, the robots have known

beliefs R and i :=- rW( 1:K) for all cells, which can be used to condition their

expected beliefs E(R ') and E(Rj]), respectively, at time k.

The intuition behind the experiments E and t comes from thinking of time k as

being in the future versus thinking of time K as being in the past. Doing so immedi-

ately raises the following question: Given information about the map at time K, can

we reason about the expected behavior of mutual information-based control at time k?

Even for arbitrary maps, the expected beliefs E(Rf ) and E(R[']) give insight into how

past observations can affect future uncertainty - note that future beliefs are indeed

random variables. It is this insight that provides a basis for qualitatively evaluating

the behaviors of controllers employing the mutual information reward function.

4.1.4 A theorem for attractive behavior

The main theoretical result of this chapter implies that any controller seeking to max-

imize the mutual information reward function is eventually attracted to unexplored

regions of the map. Below we formally state this result with the use of the analytical

approach described in the previous section.

For the first experiment E, suppose that a subset of cells I c { 1, ... , nm} is

composed of unknown cells at time K, meaning that the beliefs R" are all equal to

1 for all i E I. In the second experiment k, however, suppose that the same subset

of cells are correctly known at time K. By correctly known we mean that for any
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cell i E R at time K, the belief R% is less than 1 if the cell is unoccupied, otherwise,

it is greater than 1. We again note that the maps M and M are of equal value yet

unknown to the robots. Lastly, suppose that for all other cells not in the subset R,

the beliefs between experiments E and t are equal but otherwise arbitrary in value.

More formally, we have that Rk] = R for all cells e E Ic= {1, . . . , nm}/.

Let the event AK represent the intersection of all aforementioned events between

the two experiments at time K, i.e.,

AK :={M= } 0 R)= N } nnf {R['] - 1}

ffO f{9il = 0} nff{5% < 1} u ({~l=1} n {fN)' > 1}
iER

When reasoning about the mutual information contributions I(Mil; Z$l Z1:k) for all

measurements j E {1,... n_} and cells i E {1, ... nm} at time k > K, we wish to eval-

uate these values based on the expected beliefs E(Rf ) and E(j'l) given the event AK-

In other words, we are evaluating the resulting mutual information reward function

I(M; Zk+1 Z1:k) employing the expected beliefs for the robots in both experiments E

and . This event is formally described by

n f {R[' - E(R[t] JAK)}n{f[01 - IE(R' AK)}},BK,k := k{ kf =E |Kk -

Note that this event does not explicitly include the event AK since this informa-

tion (e.g., the state of the map) is unknown to the robots. We now state the main

theoretical result of the chapter.

Theorem 5 (Attraction to unexplored space) Consider the two independent ex-

periments E and . Given enough number of informative observations with 6[i] (zk) j

1 for the subset of cells i E I, there exists a time x > K such that for all times k > x,
we have that

I (M ;Zk+1|BK,k) I k4+11 K,k ) (4.3 )
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H (MIz: H ( k1z1:k ) H (Mil-k1 H (Zk+1|I 1:k )

Mutual information

P(each cell is occupied) = 50% P(each cell is occupied) = 40%

Figure 4-5: An illustration of when, given identical robots, a larger amount of entropy
at a given time does not imply a greater mutual information reward, i.e., a greater
overlap of the shown entropies. Consider the case when the path of the two robots are
identical and their maps are composed of the shown cells realized to be unoccupied.
Theorem 5 states that, in expectation, there is a future time at and after which
mutual information will be greater for robot 1 than robot 2.

if any cell i E E is in the observation's perceptual range Tk+1-

Note that although an unknown cell always has the maximum amount of entropy

at time K, more certain beliefs (i.e., rA' $ 1) of that cell may result in larger mutual

information contributions at time K, e.g., Figure 4-5. Conditioning on the expected

beliefs for all cells, Theorem 5 states that, in expectation, there is a future time at

and after which the mutual information reward function is greater if these cells are

unknown at time K than if they were correctly known. This statement is stronger

than one stating that the cell's mutual information contribution will be greater for a

particular measurement. This statement also holds for any observation that perceives

at least one of these cells, regardless of the sensor model. Thus, we conclude that

mutual information-based controllers are eventually attracted to unexplored space.
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4.2 On informative behaviors

In this section, we prove this chapter's main theoretical result stated in Theorem 5.

Along the way, we provide a number of other results that may be interesting in their

own right. The proofs for the later results are given in Section 4.6 so that we can

focus primarily on the proof for the main result.

4.2.1 Algebraic properties of mutual information

Concerning an arbitrary cell i E {1, . . , nm} and measurement j E {1, .... , nz}, the

following lemma expresses the corresponding mutual information contribution as an

integral of two functions, one of which has useful algebraic properties.

Lemma 6 (Mutual information contribution) The mutual information at time

k between a single measurement j and a single cell i given the observations Z1:k can

be written as

I(M[i]; Z ziZk:) = P(Z = zlZ1:k) f (6J[il(z), rh]) dz (4.4)

zeZ

where the nonnegative function f(6, r) is endowed with the following two algebraic

properties:

1. For 6 = 1 we have that f(6, r) = 0 for any r E (0, oc);

2. For any value of 6 E (0, oo)/{1}, there exists some -r(6) E (0, o0) such that

f (6, r) is monotonically increasing in r for all r < r(6) and monotonically

decreasing in r for all r > r(S).

Remark 7 (Belief thresholds) For an informative measurement, we have that 6

is equal to either rc, or remP, implying that the belief threshold r(6 ) is either less

than 1 or greater than 1, respectively. Suppose cell i is unknown, i.e. ri = 1.

Then measurement locations within cell i result in r(rocc) < 1, implying that f(6, ,])

is monotonically decreasing in the belief r For measurements of greater value,

r(rem,,p) > 1 and f (6, A') is instead monotonically increasing.
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One can interpret f(6, r) in Lemma 6 as an information gain function for potential

measurement values z E Z. For example, the second algebraic property states that no

information about a cell is received from a measurement that does not intersect that

cell, whether because the measurement "stops short" of the cell or simply because the

cell is not in the measurement's perceptual range. This geometric dependency relates

back to the construction of the index sets 1 k in Section 4.1.1, and likewise allows for

the mutual information reward function to be calculated over a reduced domain size.

In other words, no matter how the jth measurement's prior P(Zf 1 Z1:k) behaves, the

integral of (4.4) does not need to evaluate measurement values z E Z that imply

6 [ij] (z) = 1 for any cell i in the measurement's perceptual range IU1.

For many robot exploration tasks, one can use mutual information to create reward

surfaces for realtime motion planning algorithms, e.g., grid-based and sample-based

searches. On the other hand, the gradient of mutual information with respect to

the robot's position is needed for potential field planners and greedy reactive con-

trollers. Previous works often approximate this gradient by calculating the difference

in expected information gain associated with moving the robot to neighboring cells,

see (Grocholsky, 2002; Rocha et al., 2005; Hoffmann and Tomlin, 2010). Here we

show that the analytical gradient of mutual information can be calculated for this

general class of range sensors, although we will discuss in Section 5.2.2 a variant that

is more appropriate for gradient-based control.

Corollary 8 (Gradient of mutual information contribution) Let the sensor

model P(Zk M) be differentiable almost everywhere with respect to the robot's position.

Then the gradient of mutual information at time k between a single measurement j

and a single cell i given the observations Z1:k exists and can be written as

ai(Mlil; ZU], l:k) _ p(Zy =11 Zlzl:k) g g 2k+ Zk4 + f f (J~~1z), r~ dz. (4.5)Ock+1 Ick+1
zeZ

Remark 9 (Similarity of forms) It is interesting that the mutual information con-

tribution and its gradient have the same form, except that in the latter the measure-
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ment's prior is replaced by its gradient with respebt to the robot's position. Schwager

et al. (2011a) observed a similar property for general mutual information expressions

being summed (or integrated) over all possible states. We will show in Section 4.3.2

that the expectation over all possible map states is inherently incorporated into the

total mutual information expression and its gradient without a summation operation,

thus further simplifying these expressions.

4.2.2 Expected values of future beliefs

For the main theoretical result in Theorem 5, we are interested in the geometric inter-

pretations of the monotonic properties of the information gain function f(6, r), i.e.,

the second algebraic property of Lemma 6. For example, consider an unoccupied cell

i with Oi = 0 that is unknown (i.e., r = 1) to a stationary robot. Suppose this

robot receives a sequence of measurements all extending past the aforementioned cell.

Lemma 6 says that the information gain function f(6, r") itself provably decreases

with each observation, implying that the potential to receive informative observa-

tions was highest when the cell was originally unknown. This behavior suggests that

unknown cells have stronger attractive properties for measurements implying the ab-

sence of an obstacle.

We would like to have the same result for measurement locations falling within a

cell. This would imply that for all measurements large enough to "reach" the unoccu-

pied cell, the information gain function provably decreases as the robot becomes more

certain of the cell's unoccupied state. From Remark 7, this is not the case for rk = 1.

Fortunately, T(rocc) in Lemma 6 gives the necessary belief threshold below which the

monotonicity result holds for any informative measurement. Given the expectation

to infer the correct state for observable cells, we have that all unoccupied cells would

eventually exhibit the desired behavior, i.e., the expected information gain decreases

with increased certainty of the state of a cell. The same interpretation holds true for

occupied cells, which motivates the following lemma and corollaries that explore the

robot's beliefs and measurements' priors in expectation.

69



Lemma 10 (Relationship between expected beliefs) Suppose a numerical re-

lationship (i.e., less than, greater than, or equal to) is given at time K > 0 between

the beliefs RK and RK, for any cell i. Then for all times k > K, the numerical

relationship between the expected beliefs E(R' |A[) and E(R' |A[) will remain the

same.

Corollary 11 (Convergence of expected beliefs) The expected beliefs E(Rf| A[)

and E(R' |A[) of any unoccupied (occupied) cell i monotonically converge to 0 (oc,

respectively) as the number of informative observations for this cell tends to oo.

Corollary 12 (Equality of measurements' priors) Consider the set R[ from Sec-

tion 4.1.4 as a set consisting of a single cell i. Given enough number of informative

observations for this cell, there exists a time x > K such that for all times k > x,

we have that the jth measurements' priors P(Z |lBk) and P( IB ,) are equal

for all measurements j.

Consider the example given in Figure 4-5, and suppose the shown state of the

two experiments are that of time K. Lemma 10 implies that for all time k > K, the

expected beliefs of robot 1 will be greater than those of robot 2 for all shown cells.

Corollary 11 implies that the beliefs of both robots will converge to 0 as the number of

informative observations for the corresponding cell tends to oc. Lastly, given enough

number of these informative observations, Corollary 12 implies that there exists a

time x > K such that for all times k > x, any measurement priors between the

experiments is equal.

4.2.3 A proof for attractive behavior

We now give the proof for the main theoretical result in Theorem 5.

Proof 13 (Theorem 5) Suppose the subset E C {1, ... , nm} for the two experiments

E and E consists of a single cell i of arbitrary state. Denote this subset as R1. We

first show that (4.3) holds for this subset regardless of the state of cell i.
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Suppose this cell is realized to be unoccupied, i.e., MI'l = 0. From Corollary 11,

the two expected beliefs E(R' |AK) and E(R?' AK) monotonically converge to 0 as

the number of informative observations for cell i tends to oc. Thus, there exists a

time X1'1 > K such that for all k > xj1 , both these expected beliefs are smaller than

the belief thresholds r(rocc) and r(remp). In addition, the second algebraic property

of Lemma 6 guarantees that for all times k > x 1l, the information gain function

f(6,Ar) employing E(R AK) and K) is monotonically decreasing in r for

both 6 = rc and 6 = rem. Since at time K cell i was unknown (i.e., R[ = 1) in

the first experiment E and correctly known (i.e., R < 1) in the second experiment

Z, we have from Lemma 10 that E(R] |AK) is larger than E(R |AK), hence the

corresponding f(6, r) is larger. Also due to Lemma 10, we have for any time k that

the expected beliefs E(R] |AK) and E(R[ 1 AK) of all other cells f E i are equal. This

implies that the information gain function f(6, r) for these expected beliefs are also

equal between experiments.

Now consider the expected behavior of the measurements' priors P(Z |BK,k) and

P(Z 1 BK,k) for the two experiments E and Z, respectively. From Corollary 12,

there exists another time x K such that for all times k > x[2, these measure-

ments' priors are equal. From Lemma 6, we have for all time k > max{x[], x[2] }

that I(M 1; Z 1 BK,k) is greater than I(M[i]; U±1 BK,k) for any measurement j with

i ] For all other measurements or cells in 1, these mutual information con-

tributions are equal. This proves (4.3) holds for the subset 11 consisting of a single

unoccupied cell i with a threshold time of max{xin, x }.

The proof that (4.3) holds for the subset E1 consisting of a single occupied cell i

follows verbatim; however, this proof results in two subtle difference. Firstly, there

exists a time x_ > K such that for all times k > x1, the two expected beliefs

E(R[ |AK) and E(R[] |AK) are greater than both belief thresholds r(rc,) and r(remP).

Secondly from Corollary 12, there exists a time _ > K such that for all times

k> x', the measurements' priors P(ZI |K,k k 1 BK,k) are equal. Thus,

(4.3) holds for the subset 11 consisting of a single cell i of arbitrary state with a

threshold time of xi := max{x 11 I [, x 1 }.
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We conclude by showing that (4.3) holds for subsets R, of arbitrary size s. The

proof proceeds by induction on s, with s = 1 already proved. Let us assume that the

result is true for some s > 1. For s + 1 with the subset 1,+1, define a one cell subset

S :=1,+1/1, containing the one cell not originally in 11, then let ' := ... , n}/J.

The proof to show that the mutual information reward function I(M; Zk+1I3K,k) in the

first experiment E is strictly greater that I (M; Zk+1 BK,k) in the second experiment

Z follows verbatim as the proof for 11, with the exception that the analysis yields a

threshold time of x,. Thus, Theorem 5 holds in general for an arbitrary subset R, with

a threshold time of x = max U){x}.

4.3 Computing mutual information for mapping

In this section we give the complete derivation of a numerical expression used to

compute the mutual information reward function for a range sensing robot. We

also discuss the resulting computational complexity and highlight the benefits of

employing a narrow beam-based sensor model predisposed to sensor obscuration.

4.3.1 Computing the measurement's prior

The inverse sensor model 6[iJ1 for the occupancy grid mapping algorithm inherently

involves the assumption of sensor obscuration. Roughly speaking, the closest occu-

pied cell within a given measurement's perceptual range obscures all cells behind it

along the beam, i.e., the sensor model is conditionally independent of the state of

all cells located behind an obstacle. This assumption leads to significant computa-

tional benefits when numerically evaluating the mutual information reward function.

However, we first rigorously state the assumption of sensor obscuration, using the

fact that the index set IAf representing the jth measurement's perceptual range is

ordered for any measurement j at any time k E Z>o.

Assumption 14 (Sensor obscuration) For any cell f appearing after an occupied

72



cell i in the index set - 1, we have that

P(ZUJl MNt] = 1, MA = 0) = P(Z U_ Mil = 1, M111 = 1) (4.6)

for any time k and measurement j.

Remark 15 (Finite range sensors) Suppose a cell e is not within the jth mea-

surement's perceptual range, i.e., f V k±1. For finite range sensors, (4.6) provides

a rigorous statement for probabilistic independence with respect to any cell i in the

map.

We now express the measurement's prior P(Z 1 1|zl:k) and its gradient

P(ZklI Z1:k)/&Ck+1 compactly as functions of the robot's sensor model and beliefs.

Lemma 16 (Measurement's prior) Suppose the assumption of sensor obscuration

holds (Assumption 14). We have for any time k and measurement j that

UP(Z$1  ) -- ( IM = 0) + k U1P(Zjl]lM= )
k (] + 1) H(rk + 1)

k+1+1

(4.7)

where f < i denotes the sequence of indices in Ik appearing before or equal to i.

Corollary 17 (Measurement's prior gradient) Suppose the assumption of sen-

sor obscuration holds (Assumption 14). We have for any time k and measurement j
that

OP(Z4I Z1:k) r' aP(Z U1 |M= ei)
k+ k k^ +(4.8)

OCk+1 .' H(r[] + 1) .(Ck+.

k+1 e<j

Remark 18 (Sensor obscuration) We immediately see the effects of sensor ob-

scuration on a cell inferred to be occupied, i.e., rk is greater than 1. As the robot

becomes more certain that this cell is occupied, (4.7) and (4.8) imply that all cells in
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k1 located farther from the robot have a decreasing influence on the measurement's

prior and its gradient.

By inherently accounting for sensor obscuration, the measurement's prior compen-

sate for the otherwise strong attractive properties of unknown cells located behind

obstacles. Without this compensation, the robot may believe that additional infor-

mation about these unknown cells can be obtained by simply moving towards the

obstacle. This hypothetical and undesirable behavior best highlights the dangers as-

sociated with assuming conditional independence of the sensor model among cells,

i.e., P(ZJFl1M) = P(Z tlM[Il) for a given i e IUli.

4.3.2 Computing the mutual information reward function

We now finalize the expressions for analytically evaluating the mutual information

reward function I(M; Zk+1 Z1:k) and its gradient oI(M; Zk+1 Z1:k)/ack+1.

Lemma 19 (Analytically evaluating reward) For any time k, we have that

I(M ;Zk+1z1:k) = Z Z J (6 z),r

r +1

k+1
f~k1 ( P(Zt

+ r1+ ( 1M = 0) dz. (4.9)
+ ~ (r[( + +)

Corollary 20 (Analytically evaluating the gradient of reward) For any time

k, we have that

OI(M; Zk±1 IZ1:k ) - S: J f (j [J"](Z),r l])
I( M Zk+ |zi= 1 

k

r aIP(ZU = zM = et)
xL + dz. (4.10)
E rj ](r [I+ 1) 09Ck+l

t-k+1 (<,
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From an implementation standpoint, the mutual information reward function (4.9)

and its gradient (4.10) are numerically calculated in a discretized fashion. More

specifically, the integral over all possible range measurements is computed using

a discretized approximation. Let Z be the discretized set of range measurements

representing the set Z. In addition, let A, be the numerical integration's reso-

lution for this discretized set. The expression to approximate I(M; Zk+1 Z1:k) and

9I(M; Zk+1|Z1:k)/&Ck+1, denoted I(M; Zk+1|Z1:k) and WI(M; Zk+1lZ1:k)/&Ck+1, respec-

tively, are given in the following corollaries.

Corollary 21 (Numerically evaluating reward) For any time k, we have that

n,

I(M; Zk+1|Z1:k) = Z Z f(61 'i(z),r ')

j=1 iefi] zEZ

k+k)

+ (Z =z|M = 0 zl (4.11)0) Aj1
S(rk + 1)

Corollary 22 (Numerically evaluating the gradient of reward) For any time

k, we have that

OI(M; Zk+1|Z1:k) - Sl',jl (z r
i9Ck±1 

k

V]3 ap(Z =zIM = ej)
x L2 AZ 1. (4.12)

w H (r( + 1) &Ck+1

4.3.3 Computational complexity

Consider the implementations of (4.11) and (4.12) given in Algorithm 1 and Algo-

rithm 2, respectively. To determine their computational complexities, let us assume

that the occupancy grid map composed of square cells has a spatial resolution of Am,

i.e., Am2 is the area of any cell. We now state the time and space complexity for Algo-
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Algorithm 1 MappingMutualInformationReward(

Require: Beliefs Ai for all cells i E Ik+1;

1: // initialize reward function
I - 0;

2: for j = 1,..., n do
3: // employ favorite ray casting algorithm

_Tk+ *- RayCast(j);
4: // precompute denominators found in (4.8)

r7 +- BeliefCumulationProduct(4 1 );

5: for all i E ±I do
6: POCC, Pemp +- 0;
7: for allzEZ do
8: if 6[i'i](z) = r,,, then
9: // measurement suggests occupied cell

POCC +- P,,, + MeasurementPrior(j, z, ri);
10: else if 641'J(z) = remp then
11: // measurement suggests unoccupied cell

Pemp +- Pmp + MeasurementPrior(j, z, rj);
12: end if
13: end for
14: // update mutual information accumulation

I+- I+ f (rc,, r[1 )Pocc + f (remp, r"])Pemp;
15: end for
16: end for
17: return IA-';

rithm 1 and Algorithm 2 in terms of Big-O notation O(.) using the map's resolution

Am, the numerical integration's resolution Az, and the number of range measurements

n, per observation.

Proposition 23 (Computational complexity) For both Algorithm 1 and Algo-

rithm 2, the time and space complexities are O( 2 Aznz) and O(Am), respectively. In

words, the time (space) complexity of calculating mutual information reward and its

gradient is at worst quadratic (linear, respectively) in the map's spatial resolution

and linear (independent, respectively) in both the number of range measurements per

observation and the numerical integration's resolution.

We have found that the serial implementation of Algorithm 1 and Algorithm 2 is

appropriate for most post processing tasks concerning mutual information reward (see
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Algorithm 2 MappingMutualInformationRewardGradient()

Require: Beliefs rk for all cells i E k+1;

1: // initialize reward function's gradient
dI - 0;

2: for j=1,...,n do
3: // employ favorite ray casting algorithm

LU] 1 RayCast(j);
4: // precompute denominators found in (4.8)

r/ -- BeliefCumulationProduct(D);

5: for all i E 1D dok±1
6: dPocc, dPemp+-0;

7: for all z E Z do
8: if JIJ] (z) = rocc then
9: // measurement suggests occupied cell

dPocc +- dPoce + MeasurementPriorGradient(j, z, r7);
10: else if 65i'j](z) = remp then
11: // measurement suggests unoccupied cell

dPmp +- dPmp + MeasurementPriorGradient(j, z, q);
12: end if
13: end for
14: // update mutual information accumulation

dI +- dI+ f(rocc, r')dPoc + f (remp, r[")dPemp;

15: end for
16: end for
17: return dIA; 1;

Sections 4.4). Further speedups leading to realtime computation can be obtained by

the parallelization of these algorithms at line 2, i.e., the for loop with respect to the

independent measurements. With respect to computing mutual information reward

surfaces, additional parallelizations can be used among the desired robot locations.

These implementation details are relevant due to the computational tractability im-

plied by Proposition 23, which is the direct consequence of assuming sensor obscura-

tion (Assumption 14). The following proposition highlights this property.

Proposition 24 (Intractability when not assuming sensor obscuration) Sup-

pose Assumption 14 does not hold. The necessary modifications to Algorithm 1 and

Algorithm 2 result in a time complexity of O(2AmAmAzfnz). In other words, the time

complexity of calculating mutual information reward and its gradient without the as-
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Algorithm 3 BeliefCumulationProduct (Ik1)

1: for all i E + do

2: if i = First(4l 1 ) then
3: // first entry of tuple

+-rk +1;
4: else
5: // tuple augmentation

r7 +- (n, Last()(r' + 1));
6: end if
7: end for
8: return 7/

Algorithm 4 MeasurementPrior(j, IU 1, z,)

1: // first line of (4.7)
P<- P(ZD = z M=O)/Last(q);

2: for all i E i do
3: // second line of (4.7)

P <- P+r rP(ZLl = zIM = ei)/77
4: end for
5: return P

sumption of sensor obscuration is exponential in the map 's spatial resolution and thus

computationally intractable.

4.4 Experiments in mapping

Using Algorithm 1 presented in Section 4.3.3, we present experimental results that

support our theoretical and computational findings. We consider two different hard-

ware experiments, each using an omnidirectional ground robot equipped with a laser

rangefinder. The first experiment employs a traditional occupancy grid mapping al-

gorithm to show the progression of open frontiers as the robot expands the map,

as well as suggests that obstacles are repulsive. The second experiment employs a

simultaneous localization and mapping (SLAM) algorithm to show that the result-

ing mutual information reward surface highlights areas of the occupancy grid map

where there exists open frontiers, obscured space, and potential SLAM issues (e.g.,
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Algorithm 5 Measurement PriorGradient(j, I-LD, z, r)

1: // initialize summation
dP <- 0;

2: for all i E IAEL$1 do
3: // second line of (4.8)

dP +- dP + r az A=z| M=e [i]
k Ck+l

4: end for

5: return dP

failed loop closures). We first, however, discuss the technical aspects of our hardware

mapping system.

Parameter Symbol Value
Hit weighting Zhit 0.7
Range set Z (0.0,5.6)
Short weighting Zshort 0.1
Max weighting Zmax 0.1
Random weighting Zrand 0.1
Occupy constant rocc 1.50
Unoccupy constant remp 0.66
Hit standard deviation C-hit max{0.03 m, 0.03zexp}
Short decay Ashort 5.0 m-1

Table 4.1: Parameters for the beam-based proximity mixture sensor model.

4.4.1 Hardware mapping system

Using the Robot Operating System (Quigley et al., 2009), we employed an omnidi-

rectional ground robot custom built at MIT Lincoln Laboratory (Figure 4-6). We

equipped this robot with a Hokuyo laser rangefinder module that produces n., = 1024

horizontal measurements over 360 degrees at a rate of 10 Hz. For both hardware

experiments, we selected measurement range values of Z = (0.0, 5.6) m, mapping al-

gorithm parameters of (rocc, remp) = (1.50,0.66), and a beam-based proximity mixture

sensor model (Thrun et al., 2005) with parameters found in Table 4.1. Figures 4-7 and

4-8 show the corresponding measurement distribution P(Z' 1 1M = ej) and gradient

Ip(ZDIk1M = ei)/Ock+l, respectively, for various expected measurement values.
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Figure 4-6: An omnidirectional ground robot with 360 degree laser rangefinder is
driven clockwise around a center opaque barrier for the occupancy grid mapping
experiment. The hardware experiment in Section 4.4.3 employing a SLAM algorithm
uses the same robot system within a different environment.

4.4.2 Mutual information for occupancy grid mapping

We now discuss the resulting mutual information reward surfaces describing the over-

lap between map uncertainty and information gain from the robot's laser rangefinder.

To simplify these surfaces, we prohibited the omnidirectional robot from rotating, i.e.,

for a particular translational position, the robot is always assumed to be facing in one

direction. This constraint is not overly restrictive due to the rotational symmetry of

the sensor, yet it allows us to ignore the, in general, nontrivial effect rotational motion

has on mutual information.

Figure 4-6 shows the setup for the occupancy grid mapping experiment. The en-

vironment to be mapped was set up with a center barrier and several scattered obsta-

cles. A motion capture system tracked the position of the robot in realtime, negating

the need to probabilistically infer the location of the robot during the mapping pro-

cess. In order to build a mostly complete map using a simplistic path, we manually
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Figure 4-7: The measurement distribution for the sensor model for expected mea-
surement values of 2, 3, and 4 m.
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Figure 4-8: The measurement distribution gradient with respect to the robot's posi-
tion for the sensor model for expected measurement values of 2, 3, and 4 m.

drove the robot around the center barrier in a single loop. The data recorded from

this 60 second run was then used to generate a time series of occupancy grid maps

with spatial resolution Am = 5 m- 1 . Figure 4-9 shows five time instances for which

we calculated the resulting mutual information reward surfaces. Due to the strong

propagating frontiers (red regions) leading the robot, the evolution of these surfaces

suggest that mutual information-based controllers would have drawn the robot down

a similar path for exploration. In addition, we noted that the center barrier and ex-

terior walls exhibited repulsive tendencies (i.e., low mutual information reward) due

to the likelihood of sensor obscuration. These conclusions are not only consisted with

the theoretical findings of this chapter, but are consisted among 10 additional runs

of varying time durations that we conducted.
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Figure 4-9: The evolution of the occupancy grid map and mutual information reward
surface for occupancy grid mapping. Left to right: The map (top) and corresponding
surface (bottom) at times of 0, 15, 30, 45 and 60 s. As open frontiers move within the
occupancy grid map, the mutual information reward evolves to reflect new locations
for informative exploration. At the end of the experiment, the mutual information
reward surface highlights smaller frontiers and areas obscured by obstacles. These
surfaces also suggest that known obstacles (e.g., exterior walls) are repulsive due to
their low mutual information rewards. Note that the linear color scale from blue to
red represents [4, 68] bit for the mutual information reward surfaces.

All calculations were performed in MATLAB R2012a running on a 3.4 Ghz quad-

core desktop equipped with a GTX 690 nVidia graphics card. Each mutual informa-

tion reward surface was generated using a numerical integration resolution of A, = 50

m- 1. Note that these surfaces evaluate mutual information reward with respect to

robot positions located at the centroid of all occupancy grid map cells. Consider-

ing that most mutual information-based controllers consider finite horizons, we can

reduce the set of robot positions over which these reward surfaces are calculated.

4.4.3 Mutual information for SLAM

For the second experiment, we employed the GMapping simultaneous localization

and mapping (SLAM) package (Grisetti et al., 2007). We again manually drove the

robot, however, the environment to be mapped was much larger (1500+ M2 ). Over
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Figure 4-10: The evolution of the occupancy grid map and mutual information reward
surface for SLAM. Left to right: The map (top) and corresponding surface (bottom)
at times of 5, 10, 15, 25 and 50 min. Note that the linear color scale from white to
black represents [9,48] bit for the mutual information reward surfaces.

50 minutes of data was collected, after which SLAM was performed to build an

occupancy grid map with spatial resolution Am = 3.3 m- 1. Figure 4-11 compares

the resulting entropy map against the mutual information reward surface generated

with a numerical integration's resolution of A, = 33 m--. In the entropy map, we

see many cells of high uncertainty, however, they tend to be in isolated clusters near

objects. On the other hand, the mutual information reward surface gives strong visual

indicators throughout the open areas of the map. In particular, locations of interest

to a mapping robot (e.g., frontiers, obscured space, and potential SLAM issues) are

easily identifiable by either human or algorithm. Thus, we conclude that mutual

information can both enable and monitor the SLAM algorithm. Lastly, we note that

even for this large map, the mutual information reward surface over all known cells

can be calculated from scratch in less than ten seconds on our desktop computer.
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Mutual Info Surface

Figure 4-11: The occupancy grid map, entropy map, and mutual information reward
surface generated after a 50 minute SLAM experiment performed on the first floor
of the MIT Stata Center. Left: The resulting occupancy grid map. Middle: The
entropy map showing cells of high uncertainty. Right: A more geometrically relevant
mutual information reward surface that highlights locations of frontiers, obscured
space, and potential SLAM convergence issues. Note that the linear color scales from
white to black represent [0, 1] bit for the entropy map and [9, 48] bit for the mutual
information reward surface.

4.5 Summary

Although occupancy grid mapping is a fundamental information acquisition tasks

in robotics, it is also one of the simplest from a probabilistic perspective. We next

formulate in Chapter 5 the generalized information acquisition problem using many

robots equipped with sensors. By applying the gradient of the mutual information

reward function to these control robots, we derive the novel class of decentralized

mutual information-based gradient-ascent controllers.

4.6 Proofs

This section contains proofs for all lemmas, corollaries, and propositions stated in

this chapter.
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Proof 25 (Lemma 6) From information theory (Cover and Thomas, 1991), the

mutual information contribution is defined as

~(P(Mlil = mrllZ =5 Z1:k)

I(Mi]; Z 1 Z1:k) = J +log
ZkL + f log P(Mli] = M[' I Z1:k)

zEZ m[']E{O,1}

x ( = =Z, Zl:k)P(ZDrlI = Z Z1:k)dz. (4.13)

Since the complement of P(M[iIlZ1:k) and P(M[IlI Zk 1, Z1:k) are equal to 1-P(M[i]IZ1:k)

and 1 - P(MIl|Z 1, Z1:), respectively, we have from (4.1) that

(rl' - 1)mnfil + 1
P(M[i] = m[i] IZ1:k) - [] (4.14)

rk + 1

and

(rj 16[(z) - 1)m l + (
P(Mli Mi] U~llk1 =kz~a (4.15)Zk+1~~ ~~ = 7Z:)[i il](z) +1

Substituting (4.14) and (4.15) into (4.13) gives (4.4), where

f (j,r) := log - .og6 (4.16)

Immediately, the first algebraic property of f(6, r) follows directly from (4.16) with

6 = 1 from the inverse sensor model.

To prove the second algebraic property of f(6, r), consider a measurement value

z e Z that results in 6 4 1. Taking the partial derivative of f(6, r) with respect to r,

we get that

af(6, r) 1 1 6 log(6)
= - -- + -(4.17)ar r + 1 r + J-1 (6r +1) 2 '

Now define the belief threshold r(6 ) as

r(J) := 6log(6)-6+1 (4.18)
J(6 - log(6) - 1)'
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and note that -(6 ) E (0, oc) for all r E (0, oc). Substituting (1 + c)r(6 ) for r in (4.17)

gives

o~f (, r)(4.19)
ar (+( (e + (6 - 1) 2 )( + _y) 2

where , , and -y are defined as (6 log(6)-6+1), (6-log(6)-1), and (log(6)-6 log(6)),

respectively. By applying the natural logarithm inequalities of (6 - 1) 6 log(6)

6(6-1), we have that 6, ,, and -y are all positive. This implies that (4.19) is finite and

positive for all c E (0, oc), which gives the desired result for negative monotonicity.

For positive monotonicity, we again apply the previously mentioned natural loga-

rithm inequalities to have that is less than or equal to both (6 - 1)2 and -Y. This

implies that both (e + (6 - 1)2) and (e + -y) are finite and positive for E E (-1, 0),

hence (4.19) is finite and negative.

Proof 26 (Corollary 8) Given a measurement value z e Z, we have for all cells

i and measurements j that f (61'J(z), r[']) is independent of the robot's position ck+1-

Thus, the partial derivative of (4.4) with respect to the robot position is simply (4.5).

To show that this gradient exists, we use the total law of probability and the product

rule of differentiation to write

kP(Z I Z:k) P(Z I M = m, z1:k)
a~k+ 19k~lP(M =mjz1:k)

Dck+1 M ck+1

+ E P(ZkU1 M = m, ZI:k) ,P(M = Mjz1:k) (4.20)
MEM a+ck+1

where M is the set of all possible occupancy grid maps. Since P(M[] IZ1:k) is indepen-

dent of the robot's position, the second summation on the right hand side of (4.20) is

equal to zero. The proof follows by evaluating (4.5) as an improper integral.

Proof 27 (Lemma 10) The proof proceeds by induction on k. If k = K, then the

beliefs are equal to their realized values. Thus, this lemma trivially holds for k = K.

Let us now assume that the result is true for some k > K. Note that if i f Ik+1, then

the lemma trivially holds for k +1. Now suppose i E Ik+1, and define the conditioning
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event SK to be

sK= {M = m} n { = m} n{R < f[}

for some m E M. For the first experiment E, we have that

E (R[ |SK) = E(6W'1(Zk+1)Rj|SK)

= E(6li ( Zk+1)|SK) E (R[ |SK)

SE (63] (Z 1 ) 1SK)IE (R[' ISK), (4.21)
j=1

where the second and third equality come from the property of independence between

observations and measurements, respectively. In addition, (4.21) is identical to the

expression for the second experiment Z except with R , Zk, and Z being replaced

by f['1, Zk, and ZJD, respectively, for all times k. From the inverse sensor model and

the law of total probability, we have for the first experiment E that

E (61'i] (Zk+1)1SK) = ( I(M = m' SK) J P(Z 1 = Z|SK, M = M') 6 ',](z)dz
m'EM zEZ

= J (ZIF = zISK)6[',](z)dz (4.22)

zeZ

where the last equally comes from the property that the event SK contains the condition

M = m. Since (4.22) also contains the condition M = m for the second experiment

F, and both experiments have identical sensor and inverse sensor models, we have

that E(6i'i](Z -U] 1 )|SK) is equal to E(6[li' U](Z]1) SK). Thus from (4.21), we have that

E(R[] Sk) E(f? Sk)
k+ k+(4.23)

E(R |Sk) E(f[] Sk)

and thus this proof holds for RI being less than k'] given that M and k are both

equal to the map value m. To complete the proof, we note that the derivation of (4.23)

is not specific to the map value m E M nor the numerical relationship between RI<j
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and ZL.

Proof 28 (Corollary 11) Considering (4.21) in Lemma 10, the proof follows from

Assumption 1.

Proof 29 (Corollary 12) From Corollary 11, there exists a time x > K such that

for all times k > x, the two expected beliefs E(R' |AK) and E(Rj] |AK) are both

smaller than some co > 0 or larger than some e1 < oc, depending on whether MIz]

and M1ni are both of value 0 or 1, respectively. From Assumption 2, this implies that

P(Zk+IBK,k) I(zk 1 BK,k nfl {Mi = }
jEll

= iP(Zg1 'BK,k nfl {[~Il - M~i]}) =-(g B~)
il

where the third equality is due to all other expected beliefs E(R] |AK) and E0] AK)

being equal between experiments for any cell f e Ec.

Proof 30 (Lemma 16) From the law to total probability, we have for the measure-

ment's prior P(Z ]kZ1:k) that

P(Zk21 IZ1:k) = "P1(Z1 M = m)P(M = m Z1:k),
mEM

noting that the sensor model P(Z U1 |M) is independent of the previous observations

Z1:k. Since the posterior distribution P(MlZl:k) is independent of ZJ] and the index

set IU1 is ordered, Assumption 14 implies that

k(Zl$z1:k) =P(Zk 1M =) 1l P(M[i] = 0Zi:k)+
Ek+ 1

P(Z] M = ej)P(M = eI Z1:k) HP(Me] - 0 1Z1:k) (4.24)
i]g e<i

where f < i denotes the sequence of indices in I4-ll appearing before i. Substituting

(4.15) into (4.24) gives (4.7).
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Proof 31 (Corollary 17) Noting that P(Zklh zIM = 0) is independent of robot

position Ck+1, i.e., aP(Z41 = zIM = 0)/Dck+1 = 0, the proof follows directly from

Lemma 16.

Proof 32 (Lemma 19) By considering the mutual information reward function (4.2),

I(M; Zk+1lZ1:k) = S I(MS]; ZUjj1 Z1:k),

the proof follows from Lemma 6 and Lemma 16.

Proof 33 (Corollary 20) The proof follows directly from Corollary 8 and Lemma 19.

Proof 34 (Corollary 21) The proof follows directly from Lemma 19 with integra-

tion over possible measurement values being approximated by a sum of step size Az-'.

Proof 35 (Corollary 22) The proof follows directly from Corollary 20 with inte-

gration over possible measurement values being approximated by a sum of step size

A-1

Proof 36 (Proposition 23) For any measurement j, the perceptual range set I U

has at most [2+V max(Z)Am~| elements. Given the set of range measurements Z, we

have that the space complexity of constructing Ik is O( Am), while its corresponding

time complexity using a naive ray casting algorithm for RayCast is also O( Am). Thus,

the time and space complexities of Algorithm 3 are both O( Am). In addition, the time

and space complexities of both Algorithm 4 and Algorithm 5 are O(m) and 0(1),

respectively.

To finish the proof, we note that Algorithm 1 constructs sets in lines 3 and 4 of

size O( Am). Both Algorithm 4 and Algorithm 5 are called within three for loops of

sizes nz, O(Am) and O(Az).

Proof 37 (Proposition 24) Let Mik1 denote the random variable tuple composed

of all cells within the jth measurement's perceptual range, i.e., we define MI 14 :=
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(M[i, . .. , M[ N1) with iU1 = {i1, ... , iN - Without the assumption of sensor obscu-

ration, the expression for the jth measurement's prior becomes

P(Zk|I Z1:k) = S P(Zk d M[I 11= m)P(M[ll ] = m~z1k). (4.25)

mMM[3'+1,]

The time complexity of an algorithm used to calculate (4.25) is exponential with

Q( 2Am). To finish the proof, we update the complexity for Algorithm 1 given in Propo-

sition 23.
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Chapter 5

Gradient-ascent control for

multi-robot inference tasks

We consider in this chapter the task of using a robotic sensor network to infer the

state of an environment, for example to collect military intelligence, gather scientific

data, or monitor ecological events of interest. Our goal is to enable the robots to

efficiently, robustly, and provably learn their environment and reason where to make

future sensor measurements. To this end, we present the derivation, analysis, and

implementation of a novel class of decentralized controllers that continuously move

sensing robots to better observe their environment. Built on an information-theoretic

foundation, these gradient-ascent controllers attempt to maximize the expected infor-

mation gain of the robots' future sensor observations when paired with a sequential

Bayesian filter. They allow for general convergent results, and lead to practical con-

trol strategies that account for the limited computational resources of the robots, the

decentralized nature of their computation, and the finite bandwidth of their commu-

nication network. The controllers are able to dynamically adapt to changing network

connectivity and be scalable with respect to the number of robots, enabling robot

teams of large size and heterogeneous composition. Lastly, they exhibit anytime

performance when augmented with appropriate distributed algorithms to calculate

statistical distributions describing the likelihood of system-wide observations.
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The key to our solution is in the use of non-parametrici sample-based representa-

tions of the probability distributions present in the system. This construction leads to

scalability with respect to the number of robots, and allows for completely decentral-

ized computation under few probabilistic assumptions. Specifically, we do not assume

that any probability distribution can be accurately represented by a Gaussian dis-

tribution. Assuming Gaussianity significantly simplifies many aspects of the system.

However, Gaussian distributions often do not adequately represent the characteris-

tics of realistic environments and sensors, and may result in misleading inferences

and poor controller performance. Instead, we approximate likely local observations

using sample sets that are distributively formed and provably unbiased. In addition

to enabling the information seeking controller to move the robots and orient their

sensors, these non-parametric sampled distributions can be used in conjunction with

a decentralized Bayesian filter to update the robots' beliefs.

5.1 Problem Formulation

We motivate our approach with an information-theoretic justification of the mutual

information reward function, then develop the problem formally for a single robot

followed by the centralized multi-robot case with an ideal network.

5.1.1 Mutual information reward for Bayesian inference

We wish to infer the state of an environment from measurements obtained by a

number of robots equipped with sensors, e.g., see Figure 5-1. Ideally, we would

represent the potentially time varying state in a continuous manner. However, the

robots' inference calculations happen at discrete times, and for this thesis we assume

that all robots perform these calculations synchronously at a constant rate of 1/T,.

Thus at time t = kT, where k again denotes the discrete time step, we model the

'We use the term non-parametric to convey that we do not assume that the statistics of the
involved random variables can be exactly described by particular distributions defined using a finite
number of parameters.
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P(Xk) before observation

P(XkIYk) given observation

Environment \
state Xk

Joint
observation Yk

Figure 5-1: A centralized multi-robot system within a probabilistic framework. The
robots observe the state of the environment using sensors of finite footprints. The
joint measurement distribution describe the accuracy of the joint observations, which
through Bayes' Rule provide the relationship between the system's prior distribution
P(Xk) and its posterior distribution P(XkIYk).

environment state as a discrete-time random variable Xk that takes values from an

alphabet X.

Joint position is Ck-1 -k Ck+1dynamic and known

Joint observations Yk .1k k+1are random variables

Environment state is a
dynamic random variable 1k +

Figure 5-2: Dynamic Bayesian network for multi-robot inference tasks. Note that
since the joint position is known, we show in the top row the realized values ck
instead of corresponding random variables.

Our goal is to enable the inference calculations necessary for collectively estimating

the environment state and reducing uncertainty in the system. Each robot forms an

observation from sensor measurements influenced by noise and other sources of error.

We consider the observations of all robots together as a single joint observation, which

we model as a discrete-time random variable Y that takes values from an alphabet Y.

The relationship between the true state and the noisy joint observation is described
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by the joint sensor model P(YlXk). Sensing may be interpreted as using a noisy

channel, and since the sensors are attached to the robots, the joint sensor model is

dependent on the position of the robots and the orientation of their sensors. On the

dynamic Bayesian network shown in Figure 5-2, we can use a joint observation and

Bayes' Rule to compute the system's posterior distribution

P(Xk |Yk) = P(Xk)P(YkXk)(5.1)
f P(Xk = X)P(YXk = x)dx'

XeX

where P(Xk) is the system's prior distribution.

H(Xk) H(Yk)
Region of high -
uncertainty Mutual

information W

WOW reve ng

Figure 5-3: Robots moving their sensors' field of view towards a region of the envi-
ronment that corresponds to high uncertainty. The movement happens in a direction
of increasing mutual information (i.e., reward) since this direction corresponds to
a decrease in conditional entropy of the environment state given the next joint ob-
servation. Top right: Mutual information can be visualized in a Venn diagram as
the overlap of the entropy of the joint observation, H(Yk), and the entropy of the
environment state, H(Xk).

Since our objective is to best infer the environment state, we are motivated to move

the robots and their sensors into a position that minimizes the expected uncertainty

of the environment state after receiving the next joint observation. Equivalent to

our mapping objective in Chapter 4, our optimization objective is formally stated as

minimizing the conditional entropy

H(X|Yk) = H(Xk) - I(Xk;Yk),
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where H(Xk) is the entropy of the environment state and I(Xk; Yk) is the mutual

information between the environment state and the next joint observation. Since the

entropy of the environment state before receiving an observation is independent of the

position of the robots, minimizing the conditional entropy is equivalent to maximizing

mutual information. Hence, we define the reward function for the system to be

Uk -=I(X; Yk)

1 JP(Yk = YXk = x)P(Xk =x)log PXk=x ) dx dy. (5.2)
f I P(Xk = X)

YEY xEX

Figure 5-3 illustrates the concept of mutual information reward and how it relates

to the movement of the robots. We are interested in a class of controllers that use

a gradient-ascent approach with respect to the reward function Uk, leading to the

following theorem.

Theorem 38 (Gradient of the reward function) The gradient of the reward func-

tion Uk with respect to a single robot's position ci at continuous time t E ((k -

1)T,, kT,] is given by

aUk f [PY = |X(=x)P(Xk =x|Yk = y
a4 kk = k = X) IP(Xk = ) 1g) dx dy. (5.3)

C EYXEXc P(X = X)

5.1.2 Single robot case

Consider a single robot, denoted i, that moves in a configuration space C[l] c Rrr_ x

Sc . This space describes both the position of the robot platform and the orientation

of its sensors, and does not need to be the same space as the environment, denoted

Q c R'' x S'q. For example, if we have a planar environment within R 2 , we could

have a ground robot with an omnidirectional sensor moving in R2 or a flying robot

with a gimbaled sensor moving in RI x . Let ct E CI denote the robot's position

at continuous-time t, with c] being shorthand for c4 with t = kT.

Let this robot have a belief of the environment state, which is represented by

its prior distribution P] (Xk). We model each robot's local observation as a random
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variable YfI] that takes values from an alphabet ylil and is characterized by the local

sensor model P(Yfl 1Xk). We assume that the local sensor model is known a priori by

the robot, or in other words, its sensors are calibrated.

Assumption 39 (Calibrated sensors) For all positions 4 e Cr21, we have that

the ith robot correctly (or conservatively) knows its local sensor model P(Yi] |Xk).

Using its sensor model, the robot is able to compute its posterior distribution

( Y P[i](Xk)E(Y, t] Xk)
T( a|l ) = , (5.4)f Pil (Xk= x)IP(Yl2] Xk= x)dx(

XeX

which is used in conjunction with its state transition distribution P[il (Xk+1 Xk) and

its realized local observation yi] E yMi] to form at time t = (k + 1)T, its new prior

distribution

f PJiR(Xk+1 |Xk = x)P(Xk = xi]= yj])

P'i] (Xk+l) = -* (5.5)
f f Pil Xk+ = x'Xk= x)IP(Xk= x Y] = y)dx dx'

x'EX xEX

Equations (5.4) and (5.5) form the well-known duet of update and prediction, respec-

tively, in sequential Bayesian estimation.

5.1.3 Centralized multi-robot case with ideal network

Given a centralized system with an ideal network (i.e., complete with infinite band-

width and no latency), the multi-robot case with n, robots is a simple extension of the

single robot case with a common prior distribution Pi (Xk) - IP(Xk) and state tran-

sition distribution Plil (Xk+1Xk) = P(Xk+l Xk) for all robots i E {1, ... , nr}. Let the

system of joint position ct = (4 Il . . , ) E C = HJn Cil be synchronous in that the

robots' local observations are simultaneously received at a sampling rate of 1/T,. We

model the joint observation as an nr-tuple random variable Yk = (Y~l] , ".. Yfl) that

takes values from the Cartesian product of all the robots' local observation alphabets

y =Hrnri~lY[i].
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Figure 5-4: A centralized multi-robot system with an ideal network. The robots
synchronously receive a local observation then transmit the corresponding likelihoods
over an ideal network to a data fusion center. The joint measurement likelihood is
then used to update the system's prior distribution to form the posterior distribution.

We assume that the noise on the observations are uncorrelated between robots,

or in other words, that the robots' local observations are conditionally independent.

Assumption 40 (Conditionally independent observations) For all joint posi-

tions ct c C, we have that

flr

P(Yk Xk) = P(Y Xk). (5.6)

Since the sensors of any two robots are physically detached from each other, we

can expect that correlated noise is the result of environmental influences. The more

these influences are accounted for within the environment state, the more accurate

the assumption of conditional independence becomes. Employing Assumption 40, the
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system's posterior distribution from (5.4) becomes

P(Xk) H P(Y Xk)
P(XklYk) = , (5.7)

f P(Xk = x) H P(Yk Xk = x)dx
xEX i=1

and the system's prior distribution from (5.5) becomes

f P(Xk+ 1 7k = x)P(Xk - Xlyk = Yk)

IP(Xkl )= xeX
+1) f f P(Xk+1 = x'|Xk = x)P(Xk = X|Yk = Yk)dx dx"

x'EX xEX

where yk = (y, . . . yJlr]) E Y is the value of the realized joint observation. Note

that there is one common prior distribution (i.e., belief) and posterior distribution

(i.e., update) for the centralized system, as illustrated in Figure 5-4. For the decen-

tralized system, we commonly use the notation P[il to represent distributions for a

particular robot. The notable exception concerns the local sensor models P(Yi] Xk),

where writing p~i] (Y Xk) is unnecessary and thus the extra superscript is omitted

for clarity.

5.2 Multi-robot coordination

Consider the system approach for decentralized inference and coordination shown in

Figure 5-5. In this section, we discuss the derivation and analysis of the decentral-

ized mutual information-based gradient-ascent controller. We discuss properties of

distributed algorithms approximating the soon to be discussed joint measurement

likelihoods in Chapter 6.

5.2.1 Gradient-ascent control

At any given time, the robot can choose a control action uf taken from a control space

t4 c Rrc x S§e . For simplicity, we assume that the robots have continuous-time

integrator dynamics.
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Figure 5-5: Our approach to distributed inference and coordination. Starting with
its local belief (i.e., prior distribution), each robot distributively approximates the
measurement likelihoods describing a sampled set of joint observations, then applies
its decentralized mutual information-based gradient-ascent control. Once the ob-
servation is realized, each robot distributively approximates the corresponding joint
measurement likelihood to update its belief (i.e., posterior distribution), enabling
decentralized control during the next time step.

Assumption 41 (Integrator dynamics) The ith robot is governed by the dynam-

ics

dcj []
= u .(5.8)

dt

The assumption of integrator dynamics is common in the multi-robot coordination

literature (Bullo et al., 2009). In our applications using the quadrotor flying robot

platform, we found that generating position commands at a relatively slow rate (e.g.,

1 Hz) and feeding these inputs into a relatively fast (e.g., 40 Hz) low-level position

controller emulates integrator dynamics (5.8).

Consider the control objective from Section 5.1.1. We wish to move the robot

system into a position that minimizes the conditional entropy of the environment

state given the next joint observation. With respect to the reward function Uk, our

objective is equivalent to solving the constrained optimization problem max Uk. One
cec
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solution approach is to have the each robot calculate from (5.3) the partial derivative

of the reward function with respect to that robot's position

k / fP(Yj~ = yX[ = X )
k ?(Xk =X)Oca c

yey xEX

x 11 (Yi = y'] lXk -- x)

P( ~ Xk -- x|X=)

x log P(k=Xy )dx dy, (5.9)
P(Xk -- X)

then continuously move in a valid direction of increasing reward. Note that receiving

an observation may induce instantaneous changes in the reward function's gradient

even if the gradient is continuous on the configuration space during the time step. Be-

cause of this property, we use the phrase convergent between observations to describe

the limit of a state given enough time between Bayesian filter updates. We considered

this to be a useful property since it describes how the robots improve their positions

based on the information at hand, i.e., prior to receiving the next observation. Consid-

ering (5.9) and its dependence on the sensor model gradient aIP(Yi Xk)/Dc , we are

interested in finite range sensors whose probabilistic models are sufficiently smooth.

Assumption 42 (Finite range sensor) There exists some constant difl > 0 such

that for all positions c] E CI with mindist(ci, q) > dWi, we have that
qeQ

M Y= 0, (5.10)act

where dist : CI x Q -+ R>o is a valid distance function.

Assumption 43 (Sufficiently smooth sensor model) The local sensor model

]P(Yi] |Xkl)/4c is differentiable on the configuration space CM, while the resulting

gradient P(Y 1 |Xk)/D[c] is continuous on CI.

The finite range assumption is arguably satisfied by any realistic robot sensor.

For example, the range of an optical sensor on a UAV can be limited by atmospheric
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visibility, imaging resolution, or (at the very extreme) the curvature of the Earth. In

other words, at some distance away from the environment of interest, the change in

local sensing uncertainty is independent of the motion of the robot. The assumption

of a sufficiently smooth sensor model is more abstract; however, it is common that

a robot's sensor model can be formulated to satisfy this assumption, e.g., see Sec-

tion 5.2.2. We now state the main theorem for convergence and local optimality for

mutual information-based gradient-ascent controllers.

Theorem 44 (Convergence and local optimality) Suppose Assumptions 39-43

hold. Let the robots move in the same configuration space and sense a bounded en-

vironment that is a subset of the configuration space. Then for a positive scalar ji,

the controller

[i] _ & Uk
au= k (5.11)

is convergent to zero between observations for all robots. In addition, an equilibrium

joint position c, = (cL ,..., cln") defined by

=k 0, Vi E {1, ... , nr}
Ct=*

is Lyapunov stable if and only if it is locally optimal with respect to maximizing the

reward function Uk.

Remark 45 (Required local and global knowledge) For the class of controllers

presented in this thesis, we assume that each robot has knowledge of i) its local config-

uration c4 ; ii) its local sensor model P(Y['] |Xk); and iii) the extent of the environment

Q. However, the gradient-ascent controller (5.11) also requires that each robot has

global knowledge of i) the centralized prior P(Xk); ii) the joint position ct; and iii)

the joint sensor model P(Y|Xk). Thus, the controller is not distributed among the

robots.

Remark 46 (Intractability of the general form) Consider both Xk and Yk to be
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discrete-valued random variables that take values from alphabets of size |X| and at

most maxi |y[i] I|r, respectively. To calculate and store all possible instantiations from

the posterior calculation (5.7), an algorithm requires maxi O(nr| XI yi| flr) time and

maxi O(|Xj|y[i| n) space. In addition, an algorithm requires maxj O(nrIX||y[i] |nr)

time to calculate the reward function's gradient oUgk/& 4. Since the computational

complexities of implementing the gradient-ascent controller (5.11) are exponential with

respect to number of robots nr, such an algorithm is not scalable.

5.2.2 Occupancy grid mapping case

Mutual Information Zoom-in for narrow
Reward Surfsce beam-based sensor model

Non-smooth features
of reward surface

Figure 5-6: Non-smooth features of the mutual information reward surface for the
narrow beam-based sensor model. Obtaining sufficient smoothness for the sensor
model comes at the cost of computational complexity for our occupancy grid mapping
robot.

For a single robot, consider the narrow beam-based sensor model discussed through-

out Chapter 4. For control approaches that navigate directly on the mutual infor-

mation reward surface, we see that "smooth" surfaces can be efficiently generate by

only considering robot positions in the center of the occupancy grid cells, e.g., see

Figure 4-1. However, as the robot is positioned elsewhere in the cells, "non-smooth"

features of the mutual information reward surface become more apparent, e.g., see

Figure 5-6. These discontinuities are the result of abrupt narrow beam transitions

that occur along the cell boundaries, e.g., see Figure 5-8. The narrow beam-based

sensor model is not sufficiently smooth as defined in Assumption 43, which suggests

that a gradient-ascent controller employing Algorithm 2 may perform poorly. Note
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Figure 5-7: Non-smooth characteristics of the narrow beam-based sensor model. Left:
As the robot moves in an orthogonal direction to a grid cell, one if its narrow beams
instantaneously transitions from measuring within the cell to measuring completely
outside the cell. Right: The measurement probability associated with this cell expe-
riences a discontinuous "jump" with respect to the robot's position. The resulting
mutual information reward surface on which the robot navigates will contain disconti-
nuities, thus precluding the use of LaSalle's Invariance Principle to prove convergence
between observations for the corresponding controller.

that Assumption 43 is a sufficient condition and not a necessary one, thus our analysis

from Theorem 44 does not prove the lack of convergence or local optimality for the

corresponding controller.

Now we concentrate on formulating an appropriate beam-based sensor model that

is sufficiently smooth for occupancy grid mapping. We do so at the cost of computa-

tional complexity but arguably produces a more realistic sensor model for proximity

sensing. Consider each measurement beam to have a non-zero angular width e, i.e.,

the beam is divergent instead of narrow. This divergence implies that a beam covers

a non-zero area of the cells it passes through, meaning that the sensor model should

take into account that increased cell coverage equates to better sensing of that cell.

More specifically, let the jth measurement's prior for the divergent beam-based sensor
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Figure 5-8: Smooth characteristics of the divergent beam-based sensor model. Left:
As the robot moves in an orthogonal direction to a grid cell, one if its divergent beams
gradually transitions from measuring within the cell to measuring completely outside
the cell. Right: The measurement probability associated with this cell continuously
transitions to is smallest value as a larger percentage of the beam leaves the cell. The
resulting mutual information reward surface on which the robot navigates does not
contain any discontinuities, and thus LaSalle's Invariance Principle can be used to
prove convergence between observations for the corresponding controller.

model be

(1 (ZL ]1
H ((k +

C E ('e + )

+ _p(Zk -=zM = ej) dO,
EIo H(r +1)

k+1 (<j

= zzM = 0)

(5.12)

where the measurement's perceptual range 1f9 now considers the angle within the

beam's width. Given square occupancy grid cells and a non-zero minimum for the set

of possible range measurements Z, the divergent beam-based sensor model yielding

(5.12) and employing the beam-based proximity mixture model from Section 4.4 is

sufficiently smooth as defined in Assumption 43, e.g., see Figure ??. The model also

allows for straightforward modifications to Algorithm 1 and Algorithm 2, with the
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latter employing the gradient of the measurement's prior

8P(Z kl1:k) 1 r[

DCk+1 - e I (rI +)

5.2.3 Sample sets for likely observations

0.

Lclbelief

*114*ill
151

'I

.0

,p(Zu- ZIM = ej)

k Ck+1 dO.

Local observation

Likely observationsLocal sensor model

Environment state

Figure 5-9: The sampling methodology for creating a robot's local observation sample
set. Each robot draws samples from its local belief of the environment state to
form a temporary unweighted sample set. Using this set, each robot draws from its
measurement distribution samples representing likely local observations.

We now discuss the methodology for distributively creating a sample set of likely

joint observations needed to approximate the reward function's gradient DUk/6C9 .

Suppose each robot maintains a local belief of the environment state via some decen-

tralized Bayesian filter, e.g., see Section 5.3.2 for an example implementation. Using

its local belief, let each robot create a temporary unweighted environment state sam-

ple set by drawing n. samples from its prior distribution. Note that the drawn samples

represent equally likely state instantiations as they are formed in a method analogous
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to the importance sampling step for particle filters (Thrun et al., 2005). Let each

robot then form a local observation sample set

by drawing one observation sample for each entry in the temporary state sample set

using its local sensor model. For all y E , the corresponding sampled measurement

likelihoods become

I)-n P(Yli = y Xk)
IP( ri = yIgk) =

P(Yli = y Y Yi]Yk Xk)
i=1

where Ykz is a random variable that takes values from Y . This sampling methodol-

ogy is illustrated in Figure 5-9.
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Figure 5-10: The sampling methodology for creating the joint observation sample
set. A concatenation among all robots' local observation sample sets is formed over
the network. This concatenation process can be interrupted for anytime performance
purposes and still yield an joint observation sample set that is unbiased, as shown
here with a set consisting of three samples.

We then define the joint observation sample set Ak as the unweighted set of n,-
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tuples formed from the robots' observation samples having equal indices. More for-

mally, we have that

Note that a naive formulation of a joint observation sample set would be the Cartesian

product of all the robots' observation sample sets fl7r 1 [i, which scales exponen-

tially in size with respect to the number of robots. Here we use the fact that the local

observation sample sets are unweighted (i.e., all samples are equally likely) and condi-

tionally independent to form an unbiased joint observation sample set of constant size

with respect to the number of robots. In other words, each robot independently draws

its own local observation samples using its local sensor model, and due to conditional

independence, the concatenation of these samples across all robots is equivalent to a

sample set formed by using the system's joint sensor model. This property also allows

each robot to employ its own variant of the Bayesian filter, as long as the alphabet

X of the environment state is known by the robot team. Such a situation is shown

in Figure 5-10.

5.2.4 Decentralized control

We will show in Chapter 6 that by using a consensus-based algorithm, each robot

can distributively approximate the sampled joint measurement likelihoods P(' =

ylXk) for all y E J2 k, where Yk is a random variable that takes values from the joint

observation sample set -2k. Let b= (p ', ... ""]) denote the ny-tuple containing

these approximations, which gives an approximation to the posterior calculation (5.7)

of

V]P il ( Xk =- X) Pk(
P(Xk = X~k = yk) (

, P[i] (Xk = X') p" (x')dx'

for all x e X and f E {1, ... , ny,}, where X ' I(x) is the value of k evaluated at x.

By incorporating the joint observation sample set and their approximated mea-
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surement likelihoods into (5.3), we define

k k J(XkX)

9Uk :=E ci
f=1 EXt

X Pli] (Xk = X) fikx

t=(k-1)T.

[ ' (x)
x log dx (5.13)

x Lg Pi ] (Xk = x') (x')dx'

to be the ith robot's approximation of the reward function's gradient given its lo-

cal measurement likelihoods at time t = kT,. Multiplying this result by the positive

scalar control gain y1i results in a gradient-ascent controller that is distributed among

the robots and uses non-parametric sample-based representations of the joint mea-

surement probability distributions. Note that the incorporation of these distributed

approximations does not preclude the use of LaSalle's Invariance Principle to prove

convergence, leading to the following.

Corollary 47 (Convergence of decentralized controller) Suppose

Assumptions 39-43 hold. Let the robots move in the same configuration space and

sense a bounded environment that is a subset of the configuration space. Then for a

positive scalar jyi], the controller

[i] = [Ei]6Ul (5.14)

is convergent to zero between observations for all robots.

Definition 48 (The novel controller class) The main contribution of this chap-

ter is the derivation, analysis, and implementation of the class of decentralized mutual

information-based gradient-ascent controllers of the form (5.14). We will refer to this

class as the novel controller class.

Remark 49 (Distributed among robots) Compared with its general form (5.11),

we note that the gradient-ascent controller (5.14) does not require that each robot has
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global knowledge of i) a centralized prior P(Xk); ii) a joint position ct; and iii) a joint

sensor model P(YkXk). Thus, the controller is distributed among the robots.

Remark 50 (Loss of local optimality) Since the distributed controller (5.14) in-

corporates approximations for the joint observations and corresponding measurement

likelihoods, an equilibrium system configuration, c, = (c ,...,c ), defined by

mUl = 0, Vi e {1, .. .,n,}

is not guaranteed to be locally optimal solution to constrained optimization problem

max Uk.
CEC

Remark 51 (Computational tractability) Again consider Xk to be a discrete-

valued random variable that takes a value from an alphabet of size |X|. An algorithm

employing the reward function's gradient approximation (5.13) requires O(ny|X|) time

and O(ny) memory, where the memory requirement is due to precomputing the sum-

mation in the logarithm function for all joint observation samples. Hence, the mem-

bers of the novel controller class scale linearly with respect to the sizes of the joint

observation sample set. Moreover, their computational complexity remain constant

with respect to the number of robots.

Remark 52 (Details of the sensor model) For the approximate gradient of the

reward function to be well defined, we must have P (Y l] Xk) > 0 for all robot positions

c E C&]. For this property, it is sufficient to have non-zero probabilities associated

with all robots' observations. In addition, note that P((Y] |Xk) in the denominator of

(5.13) is evaluated at time t = (k - 1)T, since the terms that make up P are formed

at the beginning of the time step (see Figure 5-5).

5.3 Algorithmic implementations

In this section we give algorithmic implementations for the members of the novel

controller class, then show their compatibility with any decentralized Bayesian filter
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designed to infer the environment state.

5.3.1 Decentralized standard Bayesian estimation

We consider the two cases when the environment state Xk is a discrete-valued random

variable and a continuous-valued random variable. Both algorithmic implementations

assume a decentralized standard Bayesian estimation approach, i.e., when the pos-

terior distribution calculation (5.7) is computed in full with respect to all (possibly

discretized) environment state values. We leave the details of specialized Bayesian

estimation approaches (e.g., Kalman filters) to the reader.

First consider the environment state Xk to be a discrete-valued random variable.

The controller given in Algorithm 6 is a member of the novel controller class and

is designed to distributively run on each robot to generate local velocity control

commands.

Algorithm 6 DiscreteEnvironmentStateController( 1 )
Require: Beliefs P[il (Xk = x) for all states x E X.

1: // initialize normalization tuple found in (5.13)
+ +- 0;

2: for e = 1, ... , n do
3: // augment normalization tuple

77 +- (r, 0);
4: for all x E X do
5: 7[f] <- n[i] + P[i] (Xk = X) Pk (;
6: end for
7: end for
8: // initialize reward function's gradient

MU +- 0;
9: for e = 1, ... ny do

10: for allxE Xdo
11: // sum elements of (5.13)

SU & SU= +i~ [g,flgxsx Pxa);(X)(Oog(Ai e(X))-IOg(?7f)).
acf (?=i x=2t P~k~i= k"]IXk=X) I=kIT

t=(k-1)Ts

12: end for

13: end for
14: return 7[i] 6U;
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Proposition 53 (Computational complexity for discrete case) The time and

space complexities of Algorithm 6 are O(n|X|) and O(n), respectively. In words,

the time (space) complexity of the controller is at worst linear (linear, respectively)

in the size of the observation sample set and linear (independent, respectively) in the

size of the environment state alphabet.

Now consider the environment state Xk to be a continuous-valued random vari-

able. To numerically calculate the integrals in (5.13), let X be a discretized set of

environment state values representing the alphabet X. In addition, let A. be the

the numerical integration's resolution for this discretized set. The controller given

in Algorithm 7 is again a member of the novel controller class and is designed to

distributively run on each robot to generate local velocity control commands.

Algorithm 7 ContinuousEnvironmentStateController( [)

Require: Beliefs P[il (Xk = x) for all states x E X.
1: // initialize normalization tuple found in (5.13)

77 +- 0;
2: for f = 1,. .. , nY do
3: // augment normalization tuple

7 +- (7, 0);
4: for allxE Xdo
5: 7[1] +- gqe] + P[i](Xk = X)Pk (X);
6: end for
7: //include integration discretization measure

8: end for
9: //initialize reward function's gradient

09U +- 0;
10: for = 1,..., n, do
11: for allxE do
12: // sum elements of (5.13)

t=(k -1 )T8
13: end for
14: end for
15: return -yi] U AX 1
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Proposition 54 (Computational complexity for continuous case) The time and

space complexities of Algorithm 7 are O(nykA) and O(n.), respectively. In words, the

time (space) complexity of the controller is at worst linear (linear, respectively) in the

size of the observation sample set and linear (independent, respectively) in the size of

the numerical integration's resolution of the environment state alphabet.

5.3.2 Non-parametric decentralized Bayesian estimation

Not all applications allow the posterior distribution calculation (5.7) to be computed

in full. For example, consider the discrete-valued case when the alphabet size 1XI

makes the computational complexity of Algorithm 6 intractable, such as an occu-

pancy grid mapping problem with dependence between cells. For these applications,

principled approximations are needed to represent the robots' beliefs of the environ-

ment state. In the spirit of how likely observations are represented in Section 5.2.3,

we now give an approach that uses a non-parametric sample-based method, and by

doing so show that this and any other decentralized Bayesian filter is compatible with

the members of the novel controller class.

Let each robot maintain a weighted environment state sample set

[]- { (I [,?i') :j Ef {1, 1 .nx}}

of size nx, where each sample, 22'A E X, has a corresponding weight2 , , E(O,1).

Each sample is a candidate instantiation of the environment state, and the pairing of

the samples and their corresponding weights represents a non-parametric representa-

tion of the robot's belief of the environment state.

Once a joint observation y e Y is received, an approximation for the joint mea-

surement likelihood P(Y -- YkXk) needs to be distributively calculated. We will

discuss consensus-based algorithms to do so in Chapter 6, but for now let the pl'

2 We have for all robots that E . [i'j] = 1
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Algorithm 8 SequentialImportanceResampling(k4-)

1: +- 0.
2: for j = 1 to nx do
3: Sample 4i j~ P[i] (Xk+1 Xk =

' k+1 nx [iil [] (t
lj=Ik Ph (k±1)

5: - U { (. t o }5: 1 k k+1k Wk±1)
6: end for
7: Apply appropriate resampling technique.
8: return k+'

Algorithm 9 NonparametricEnvironmentStateController(Pk)

Require: Non-parametric belief .
1: // initialize normalization tuple found in (5.13)

+ +- 0;
2: for f = 1, ... , n do
3: // augment normalization tuple

r+- (r,0);
4: for j =n1,..., do do
5: 77[f] +- rt] + tbi'] # '(k)
6: end for
7: end for
8: // initialize reward function's gradient

MU <- 0;
9: for f = 1, ... , n, do

10: for j = 1, .. ., n, do
11: // sum elements of (5.13)

U < U (, ] lxk=x) Wij]j '(x) (log( ] '(x))-log(ri['))
M~U +- M~U + "( P(V=9i" lie]IXk)

09cl ( il'i ,= ) t=(k-1)T
12: end for
13: end for
14: return -y[i] 6tU;
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Figure 5-11: The joint observation sampling methodology using various decentralized
Bayesian filters. The first robot employs a non-parametric Bayesian filter for inferring
the environment state, while the second employs a standard Bayesian filter. Besides
local variations in the controller implementation (Algorithm 9 versus Algorithm 7),
the overall employment of the controllers remains identical among the robots.

denote this approximation. The posterior calculation from (5.7) becomes

P(Xk - [IYk = yk) ~ (5.15)

for all j E {1,..., n}, where pk (x) is the value of pk evaluated at x. Thus, each

robot forms its weighted environment state sample set for the upcoming time step

k + 1 by drawing from its state transition distribution Plil (XklI Xk), calculating the

corresponding weights from (5.15), and applying an appropriate resampling technique.

The process given in Algorithm 8 is the well-known sequential Monte Carlo method

called sequential importance resampling (Thrun et al., 2005).

Using this non-parametric representation of the robot's belief, the controller given

in Algorithm 9 is, once again, a member of the novel controller class and is designed

to distributively run on each robot to generate local velocity control commands.
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Proposition 55 (Computational complexity for non-parametric case) The

time and space complexities of Algorithm 9 are O(nny) and O(ny), respectively. In

words, the time (space) complexity of the controller is at worst linear (linear, respec-

tively) in the size of the observation sample set and linear (independent, respectively)

in the size of the weighted environment state sample set.

Remark 56 (Compatibility of the novel controller class) The members of the

novel controller class are compatible with any type of decentralized Bayesian filter.

In other words, as long as the local controller has access to a probabilistic represen-

tation of the environment state, it can perform mutual information-based gradient-

ascent control. More over, different robots can employ different types of decentralized

Bayesian filters within the same system, as illustrated in Figure 5-11.

5.4 Experiments in multi-robot systems

Figure 5-12: A snapshot of the autonomous deployment of five quadrotor flying robots
for an outdoor hardware experiment. Even though the robots were fully autonomous,
a safety pilot was assigned to each robot to allow for manual overrides in the event
of an emergency.
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We first describe the technical details of our hardware system employing five

quadrotor flying robots, then verified three members of the novel controller class by

presenting results from two indoor experiments and one outdoor experiment.

5.4.1 Quadrotor flying robot system

We are working towards a multi-robot system that can rapidly assess the state of

disaster-affected environments. In these cases the state can represent a wide spectrum

of relevant information, ranging from the presence of fires and harmful substances to

the structural integrity of buildings. Motivated by this goal, the task for the hardware

experiments was to infer the state of a bounded, planar environment by deploying

five Ascending Technologies Hummingbird quadrotor flying robots (Gurdan et al.,

2007). Five heterogeneous sensors were simulated with measurement noise that was

proportional to the field of view, meaning that sensors of larger footprints produced

noisier observations. Lastly, an ideal disk network model was enforced on the system

to limit the peer-to-peer communication range.

For each environment, we defined W to be an n,, cell partition3 , where for each

cell W[m], the state was modeled as a binary random variable Xm] that took val-

ues from the alphabet X[m] = {0, 1}. Thus for the environment state, we had an

n,-tuple random variable Xk= (- , . . , X ) that took values from the alphabet

x = 1 X[m]. A first order Markov model was used for the state transition distri-

butions, where a uniform probability represented the likelihood that the state of an en-

vironment discretization cell transitioned to any other state. We modeled the robot's

observation as an no-tuple of binary random variables Yi = (Y .. . , that

took values from the alphabet y[il = 1- ylim] with y[im] = {0, 1}.

For simplicity, we assumed conditional independence between environment dis-

cretization cells for the measurement probabilities. This assumption resulted in the

cell-wise sensor model P(Y['mlI Xk) being dependent on the state of the correspond-

'The partition W is defined as a collection of closed connected subsets of Q satisfying
H[L 1 Wlm] = W, U= 1 We'" = Q and nf- 1 int(W[m]) = 0, where int(.) denotes the subset
of interior points.
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ing environment discretization cell Xm] and conditionally independent from all other

Y[im'] with m' $ m. More formally, we have that
k

P(Y$X ) = 17 i p(yl'"m]X "). (5.16)
m=1

In words, the robot's observation was composed of nv conditionally independent ob-

servation elements, where each element concerned a specific environment discretiza-

tion cell. For all experiments, the robots had maximum cell-wise measurement proba-

bilities P(Y'" 1 = 01X M] = 0) and P(Y'"] =1 1X M] = 1) of {0.95, 0.9, 0.85,0.8, 0.75},

which decreased quadratically (e.g., power decay of light) to 0.5 at the edge of the

robot's field of view.

Parameter Symbol Value
Environment state XIm {01}
alphabet
Local observation y[im] {0 1}alphabet
Min cell-wise min P(Y"m = 0 X M] 0)
measurement prob. minP(Ym = 1|Xm = 1)

Max cell-wise maxP(Y'" = 0Xm] 0)
k) 10.95, 0.9, 0.85, 0.8, 0.75}measurement prob. maxP(Y[ ' - 1|X[m = 1)

Observation
sample set size I 5

Table 5.1: Common parameters for the hardware experiments in Section 5.4.

Remark 57 (Complexity of environment state) We do not assume independence

between environment discretization cells, resulting in a state alphabet size that scales

exponentially with respect to the number of cells, i.e., maxm O(|X[m]| -). One can

assume independence to have this size scale linearly with respect to the number of

cells, i.e., maxm O(nw|%[|m]), which is a common assumption in the robot mapping

literature, e.g., occupancy grid mapping in Chapter 4.

Remark 58 (Using simulated sensors) We note that the experiments are a vali-

dation of the novel controller class and not of the sensing capabilities of our hardware
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platforms. The selection of the simulated sensor properties was primarily motivated

by their generality, in particular for systems employing passive sensors that measure

the intensity of electromagnetic signals radiating from point sources. Nonetheless,

we expect qualitatively good controller performance for systems that obtain noisier

observations towards the boundaries of their sensors' limited range, even though con-

vergence guarantees may not be provable for such systems.

5.4.2 Indoor experiment using a decentralized discrete

Bayesian filter

Figure 5-13: Five quadrotor flying robots inferring the state of an indoor environment
using a decentralized discrete Bayesian filter. The hexagon cells overlaying the snap-
shot illustrate the state and location of the discretized environment. The green lines
between robots represent network connectivity. Top right: This schematic illustrates
the state of each robot's inference enabled by simulated sensors with their footprints
drawn in red dashed circles.

For the first indoor experiment, the 10 m long environment (see Figure 5-13) was

discretized into n,, = 10 hexagon cells, each being of inner radius 2 m and having a

binary static state of either 0 (e.g., no fire) or 1 (e.g., fire). In addition, the random

variables representing the robots' local observation elements Y i' also took values ofk

118



0 (e.g., no heat observed) or 1 (e.g., heat observed). The experiment was conducted

in an MIT CSAIL laboratory equipped with a Vicon motion capture system. The

realtime software for each robot ran in distributed fashion on a single computer. This

software included a low level linear-quadratic regulator position controller that ac-

cepted waypoint inputs from Algorithm 6 and sent low level control commands to the

robots via 2.4 Ghz Xbee-Pro wireless modules. The five heterogeneous sensors were

simulated with maximum sensing radii of {2.0, 2.1, 2.2,2.3, 2.4} m. We represented

these sensing properties by setting the hovering heights proportional to the sensing

radii. In other words, robots hovering closer to the environment had more accurate

observations, but also had smaller fields of view.

10

2 -

0 20 40 60 80 100 120
Time step k

Figure 5-14: This plot shows the decrease in entropy of a five robot experiment
using a decentralized discrete Bayesian filter. The entropy of the robots' beliefs and
centralized belief are averaged over 10 consecutive runs. In addition, the light gray
lines show the entropy of each robot's belief for every run.

For all robots, we used a control policy set of lUi = [-0.1, 0.1]2 m/s, a control gain

of -yj = 10, and a ideal disk network radius of 3 m radius. In addition, a safety radius

of 1 m was enforced between neighboring robots, meaning the gradient projection of

ut would be taken to prevent two directly communicating robots from moving closer

than 1 m from each other. An observation sample set size of ny = 500 was used,

which allowed for a sampling interval of T, ~ 2 s.

We recorded 10 consecutive runs deploying the five robots from the bottom of

the environment, including one robot that started on the environment boundary and

another outside. The plot in Figure 5-14 shows a decrease in average entropy (i.e.
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Parameter Symbol Value
Control gain 7[ 10
Control policy lil [-0.1, 0.1]2 m/s
Ideal disk
network radius
Number of environment
discretization cells 10
Safety radius 1 m
Sample period T, ~ 2 s
Sensor radii - {2.0, 2.1, 2.2, 2.3, 2.4} m
State transition P[i](XM] x X[m] = x) 0.99, uniform otherwise
distribution Zh+l =

Table 5.2: Parameters for the indoor experiment in Sections 5.4.2 and 5.4.3.

uncertainty) of the robots' beliefs compared to a centralized one. The centralized

inference considered observations from all robots, and can be interpreted as a baseline.

On average the entropy of the robots' beliefs were within 1 bit of the centralized one

over the 240 s. To date, we have over 100 successful runs with various starting

positions and algorithm parameters, compared to one unsuccessful run caused by

the motion capture system losing track of one robot. Even during this run, the

decentralized controller continued to run properly for the other robots, showing the

approach's robustness to individual robot failures.

5.4.3 Indoor experiment using a decentralized non-parametric

Bayesian filter

For the second indoor experiment, most experimental details were identical to the first

experiment except that a decentralized non-parametric Bayesian filter (Algorithm 8)

and controller (Algorithm 9) ran onboard the robots using a weighted environment

state sample set of size n, = 500. Each onboard 2 GHz single board computer hosted

its own independent Robot Operating System (ROS) environment (Quigley et al.,

2009) and wirelessly communicated with other robots via UDP multicast over 802.11.

Thus, the non-parametric version of our decentralized controller (Algorithm 9) ran
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Figure 5-15: Left: Five quadrotor flying robots inferring the state of an indoor en-
vironment using a decentralized non-parametric Bayesian filter. The green lines be-
tween robots represent network connectivity. Right: This schematic illustrates the
state of each robot's inference enabled by simulated sensors with their footprints
drawn in red dashed circles.

in purely distributed fashion, for which we used the same parameters as in the first

indoor experiment found in Section 5.4.2.

We recorded 10 consecutive runs deploying the five robots from the same starting

location as in the first indoor experiment. Figure 5-16 shows the beginning, middle,

and end configuration of a typical run, along with a plot showing the decrease in aver-

age entropy (i.e., uncertainty) of the robots' beliefs compared to a centrally computed

one. Again, the centralized inferences considered observations from all robots, and can

be interpreted as a baseline. Overall, the behavior of the non-parametric implemen-

tation compared similarly to the standard one, suggesting that enough computational

resources were allocated to effectively approximate the probability distributions in-

herent to the information acquisition task.
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Parameter Symbol Value
Control gain _ _ __ _ 5
Control policy set lij [-3, 3]2 m/s
Environment state n 500
sample set size
Ideal disk 50 m
network radius
Number of environment
discretization cells
Safety radius 10 m
Sample period T, ~ 1 s
Sensor radii - {30, 32.5, 35, 37.5, 40} m
State transition P[](x[= XXm] x) 0.95, uniform otherwise
distribution Nk+- k

Table 5.3: Parameters for the outdoor experiment in Section 5.4.4.

5.4.4 Outdoor experiment using a decentralized non-parametric

Bayesian filter

For the outdoor experiment, a 150 m wide environment (see Figure 5-17) was dis-

cretized using a Voronoi partitioner into nw = 58 heterogeneous cells. The decentral-

ized non-parametric Bayesian filter (Algorithm 8) and controller (Algorithm 9) ran in

distributed fashion for all robots at 1 Hz on a single ground workstation. The resulting

GPS-based control commands were wirelessly transmitted via the Xbee-Pro modules

to each robot's onboard autopilot. The five heterogeneous sensors were simulated

with measurement noise proportional to the sensor radii of {30, 32.5, 35, 37.5, 40} m,

again meaning that sensors of larger footprints produced noisier observations. Each

robot used a control policy set of Uli = [-3, 3]2 m/s, a control gain of -y[i] - 5, and

an ideal disk network radius of 50 m.

In preparation for the outdoor experiment, reproducible results were recorded from

multiple preliminary deployments, producing over 25 minutes of total flight time, e.g.,

see Figure 5-18. This initial effort was to verify the non-parametric implementation

without any higher level control except for the manual override capabilities enabled

by the Disaster Management Tool (DMT) developed at the German Aerospace Center
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DLR (Frassl et al., 2010). Once we obtained qualitative validation for our approach,

the algorithms were adjusted to handle binary event detection (e.g., fire or no fire)

as described for the indoor experiment. In addition, a decentralized communication

scheme continuously assigned robots to act as dynamic network relays, overriding the

control actions produced by the distributed controller. For the experiment, the robots

were deployed from outside the environment, and at any given point could have at

most 58 bits of uncertainty concerning the environment state. The plot in Figure

5-17 shows the decrease in entropy over the extent of the experiment, even though

the higher level control scheme at times was overriding the decentralized mutual

information-based gradient-ascent controller.

5.5 Summary

Concerning the decentralized controllers presented in this chapter, scalability with re-

spect to the number of robots comes from the algorithmic decoupling of the controller

from the joint measurement likelihood calculations. By implementing distributed al-

gorithms to approximate these likelihoods, we can induce scalability for the entire

control approach. We next present in Chapter 6 novel consensus-based algorithms

for approximating the robots' joint measurement likelihoods in both a discrete and

continuous setting.

5.6 Proofs

This section contains proofs for all theorems, corollaries, and propositions found in

this chapter.

Proof 59 (Theorem 38) This proof was derived in collaboration with Schwager

et al. (2011a), and a similar result in the context of channel coding was proved by

Palomar and Verdi (2007). Concerning the partial derivative of (5.2) with respect to

a robot's position ct , we can move the differentiation inside the integrals since they

do not depend on 42. Applying the chain rule to the integrand and separating the two
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resulting terms, we have

aDlk J f IE1P(X = X|Yk =Y) (Y = y) dx dy

yey xeX
+| aP(Yk = y|Xk =) xP(Xk = X)

x log P(Xk = XlYk = Y) dx dy, (5.17)
P(Xk = x)

where

P(Yk) J P(YXk = x)TP(Xk = x)dx

xEX

from the law of total probability. We will now show that the first integration term on

the right hand side of (5.17) is equal to zero. First using the chain rule to take the

partial derivative of (5.1) with respect to c , we have

&P(Xk Yk) _ OP(YkXk) 1(Xk) _P(Yk = y) P(YkXk)IP(Xk)
act] act' P(k) actPY) .(.8

Substituting (5.18) back into the first integration term on the right hand side of (5.17)

and considering the two resulting integrals separately, we have

J P(Yk = yXk = x) (Xk = x) dx dy

yeY xeXt

i] J P(Yk = y|Xk = x)P(Xk = x) dx dy

tc

=0
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and

f &IP(Yk = Y) P(Y = yXk = x)(X = x)

I I a4tl' IP(Yk - Y) xd
yeY xex

= f P(Yk = y) P(Y = Y|Xk = x)P(Xk =x) dxdy
J cal4 J P(Yk =y)

/ J P(Ya = y dy
YEY

= P(Y= y) dy
acli

a
= 1

acli

=0.

Proof 60 (Theorem 44) Let

Vk = -U = - )P(Y = y|Xk = x)P(Xk X) 10g P X dx dy
yeY xEX

be a Lypanov-type function candidate whose partial derivative with respect to c A is

the negative of DUk/0 42] from (5.3). Firstly, the closed loop dynamics

dcfl 73

dt a4li'

are autonomous. Assumption 43 implies that these dynamics are continuous on the

robot's configuration space CM], as well as that Vk is differentiable on these spaces.

Therefore, we have that Vk is continuously differentiable on the joint configuration

space C.

Taking the Lie derivative of Vk along the trajectories of the system, we have

S=Vk dct - fl <; .
=~~ S ] dt _ tx a4 < <0.
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Now consider robots "far" enough away from the environment Q such that for all

robots and q E Q, we have dist(ct , q) > dr". Assumption 42 implies for all robots

i E {1, ... , nl} that

aJp(ykZ Xk) = 0
0 4c0

and thus we have that dct /dt = 0 for all time. Hence, all evolutions of the system

are bounded.

Finally, consider the set of all c, = (cv ,... ,ck") E C such that for all robots

i E {1,...,nr} we have that

8V/k
0 4 iV= 0.

This set is invariant since it implies Uk/&c = 0 for all i e {1, ... , n,}. Thus,

all conditions of LaSalle's Invariance Principle are satisfied and the trajectories will

converge to this invariant set (LaSalle, 1960; Bullo et al., 2009).

In addition, we have that c, is either a local minimum, maximum, or saddle point

for the constrained optimization problem max Uk. However, for a gradient system of
cEC

this type, we know that this configuration is a Lyapunov stable equilibrium if and only

if it is a local maximum, and thus locally optimal (Hirsche and Smale, 1974).

Proof 61 (Corollary 47) The proof directly follows the convergence proof for The-

orem 44, using the Lypanov-type function candidate

Vk = - 0 ,
i=1
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where

:= (? = Y[i] Xk = x)

= i X)~e(X)X P[i] (X k = x) Pk (k)

P (i] = p'i I Xk = X)( ~~NA(X) d
x log 1 5k dx

(f, EPEi(Xk=X1)Pk (X dxI

can be thought of as an the ith robot's approximation of the reward function Uk given

its local measurement likelihoods at time t = kT.

Proof 62 (Proposition 53) By definition, the observation sample set Yk has ny

elements for any robot i, while the environment state alphabet has |X| elements. Thus,

the normalization tuple q has n. scalar elements and takes O(ny|Xl) time to construct.

More specifically for the latter, each element of q is calculated using a expression of

0(1) time complexity within a for loop of size |X|.

To finish the proof, we note that the expression on line 11 has a time complexity

of 0(1). Since this expression is within two for loops of sizes ny and |X|, the time

complexity for Algorithm 6 is O(nY|IX).

Proof 63 (Proposition 54) The proof directly follows the proof for Proposition 58,

except that the normalization tuple 7 takes O(nyhA) time to construct and the for loop

on line 11 in Algorithm 7 is of size O(A.,).

Proof 64 (Proposition 55) The proof directly follows the proof for Proposition 58,

except that the normalization tuple 7 takes O(nxny) time to construct and the for loop

on line 11 in Algorithm 9 is of size n,.
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Figure 5-16: Top: The beginning, middle, and end configuration of a five robot
experiment over a 10 cell environment, where the state of each cell is either 1 (black)
or 0 (white). The robots are represented by the gray circles, within which their prior
distributions can be visualized. The green lines represent network connectivity, and
the dashed red circles represent the simulated sensors' footprints. Bottom: This plot
shows the decrease in entropy of the inferences averaged over 10 consecutive runs.
In addition, the light gray lines show the entropy of each robot's belief for every
run. We note much more variability with the individual runs compared with the
runs of Figure 5-14, however, the averaged entropies are similar between two different
experiments.
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157 Exploration using the distributed
-inference and coordination algorithma ~ 50 outside

46 survey~
4 of envI

Time [s, -25 0 25 50 75 100 125 150

Figure 5-17: The deployment of five quadrotor flying robots (white o) tasked to ex-
plore a 150 m wide outdoor environment containing 58 discretized cells of binary
state. Exploration by the robotic sensor network (blue lines) is accomplished by a
decentralized mutual-information-based gradient-ascent controller that continuously
moves the robots to minimize the uncertainty associated with the inference. In par-
allel, the robots can be assigned by a higher level control scheme to act as dynamic
network relays (white filled o). The end result is a decrease in average entropy over
time, as shown in the lower plot.

XX X X X X X X manually X X X X

x 0 X x riverl x

)C

tim = 0 stim = 70timne IS 1 S

Figure 5-18: Preliminary deployment in preparation for the outdoor experiment (left).
One robot is manually tasked to exit the environment (middle), which is compensated
for by the other robots running a decentralized mutual information-based gradient-
ascent controller (right).
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Figure 5-19: The time evolution of a constellation of five quadrotor flying robots
(white circles) with simulated sensor (red dashed circles). These robots are tasked to
explore a 150 m wide outdoor environment containing 58 discretized cells of binary
state. Left: The experiment starts with all robots hovering at their starting positions.
Middle: The robots at time = 75 s have begun to explore the environment. In
addition, one robot is assigned by a higher level communication scheme to act as a
dynamic network relay (white filled circle), and thus the control actions produced by
the distributed controller are overridden for that robot. Right: At time = 150 s, even
though three robots are assigned as dynamic relays, the distributed controller has
driven the system into a configuration that covers a large portion of the cells.
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Chapter 6

Distributed algorithms enabling

decentralized inference and

coordination

This thesis is dedicated to the development of scalable control solutions to environ-

mental state estimation tasks such as tracking, surveillance, and exploration using

large teams of autonomous robots equipped with sensors. Consider the task of using

many aerial robots to monitor the flow of objects into and out of a major seaport

(e.g., ships, containers, ground vehicles). To collectively estimate the objects' posi-

tions, one approach is to wirelessly communicate all sensor measurements to a data

fusion center, perform the Bayesian estimation calculations in a centralized manner,

and then globally broadcast the results to enable the robots to better position their

sensors. For large systems, the central processor quickly becomes a computational

and communication bottleneck, and thus is not considered to be scalable (Durrant-

Whyte et al., 1990). Even if the robot controllers are implemented in a distributed

fashion, the system can still experience scalability issues with sequential Bayesian

estimation, and vice versa.

By design, the members of the novel controller class (Definition 48) require the

same type of probabilistic information to be "fused" over the communication network

when compared to decentralized Bayesian filters. More specifically, the filter and con-
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troller require measurement likelihoods describing the realized joint observation (the

former) and a sampled set of likely observations (the latter). The implication is that

the same type of distributed algorithm (Lynch, 1997) can be used for approximating

these distributions during each time step, although this property is not necessary (see

Figure 5-5). In this chapter, we introduce two consensus-based algorithms (Olfati-

Saber et al., 2005; Xiao et al., 2007), one to approximate discrete joint measurement

probabilities and the other to approximate continuous joint measurement likelihood

distributions. These distributed algorithms allow for resource adaptive Bayesian esti-

mation and decentralized mutual information-based gradient-ascent control, for which

the computational complexities do not depend on the number of robots.

We prove for all robots on a static and connected network graph that i) the

approximations to the joint measurement probabilities converge to the joint of all

the robots' local measurement probabilities; and ii) the approximations to the scaled

Gaussian joint measurement likelihood distributions converge weakly1 to the joint

of all the robots' local measurement likelihood distributions. The given restrictions

on the graph are used to derive bounds and convergence rates, specifically for the

latter case. Yet, the implementation works on arbitrary networks without risk of

catastrophic failures (e.g., robustness against robot failures), and without restriction

on the number of communication rounds that the robots need to use for the consensus-

based algorithm. An attractive aspect of this work is that expected performance

provably improves as more system resources are allocated, i.e., as the computational

and communication capabilities increase. We believe these theoretical contributions

can drive the development of application specific sensor fusion approaches that are

unbiased, convergent, and scalable. In addition, we used the provided consensus-based

algorithms to support the decentralized hardware experiments previously described

in Section 5.4.

'Also known as convergence in distribution.
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6.1 Distributed robot network

We introduce the multi-robot communication model used throughout this chapter,

then present a distributed algorithm to discover the maximum in/out degree of the

system.

6.1.1 Communication model

0 1 0 Ron 2[2/3 1/3 0
A= 1 0 1 W= 1/3 1/3 1/3

0 1 0 0 1/3 2/3

Figure 6-1: An unweighted undirected network graph describing the communication
capabilities of a three robot system. Also shown are the corresponding adjacency
matrix (left) and the Metropolis-Hastings matrix (right).

Let the robots simultaneously transmit and receive messages on the network at a

much faster rate than the rate at which joint observations are realized. Suppose that

this message exchange happens multiple times between consecutive joint observations.

We refer to a time period when a single message exchange occurs as a communication

round, denoted r, and assume that the exchanges within the robot system occur

according to an undirected, unweighted network graph g. Let the graph consist

of a vertex set V = {1,.. . ,n} and an unordered edge set 8 c V x V; that is,

{i, v} E 6 if the ith and vth robots can directly communicate with one another, i.e.,

are neighbors. Let N[i' denote the set of neighbors of the ith robot, which has an

in/out degree of AN := INI. Let A denote the maximum in/out degree among all

robots. The corresponding symmetric unweighted adjacency matrix A E {0, 1}lrxfr

for the network graph is defined as

[A] i= 1, if {i, E 9,

0, otherwise,
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while the corresponding Metropolis-Hastings weight matrix W E [0, 1] nrxn is

1 - Z ,A{] ]I it =,

0 1 otherwise.

Note that [ - liv and [ ]i denote the (i, v) matrix entry and ith vector entry. Figure 6-1

gives both the adjacency matrix and the Metropolis-Hastings matrix for an example

three robot system.

Given the volatile nature of mobile networks, we expect the network graph to be

incomplete, time-varying, and stochastic. The algorithms presented in this chapter

work in practice even when properties of the network graph cannot be formalized.

However, to allow for meaningful analysis from a theoretical perspective, we assume

that this graph remains connected and is time-invariant between consecutive joint

observations. Connectivity allows the system to be analyzed as a single unit instead

of separate independent subsystems. The property of time-invariance between joint

observations is more strict, however, this assumption is used to formalize the conver-

gence of our consensus-based algorithm. We also assume an upper bound exists on

each robot's in/out degree. This assumption comes from the property that physical

communication devices support a finite bandwidth, and thus the number of neigh-

bors a robot can have cannot increase without bound. We now formally state these

assumptions below.

Assumption 65 (Connected network graph) For any two vertices in V, there

exists a path2 in the network graph g.

Assumption 66 (Time-invariant network graph) Between two consecutive joint

observations, we have that the network graph ! is static.

Assumption 67 (Bounded in/out degree) For any number of robots n, there

2A path in a graph is an ordered sequence of vertices such that any pair of consecutive vertices
in the sequence is an edge of the graph.
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exists a finite integer M such that the in/out degree Ali1 is less than M for any robot

i E {1 ... nr}.

Remark 68 (Simplification of notation) Since the network graph is time-varying

over multiple time steps k, we would normally augment its symbol g as well as other

symbols with the subscript Uk. In this chapter, we only consider a single yet arbitrary

time step, and thus remove this subscript for clarity.

6.1.2 Discovery of the maximum in/out degree

The FloodMax algorithm is a well studied distributed algorithm used in leader elect

problems (Lynch, 1997). Traditionally implemented, each robot would transmit the

maximum unique identifier (UID) it received up to the given communication round

r. After diam(g) communication rounds, where diam(.) represents the diameter of a

graph, all robots would know the maximum UID in the network. To solve the leader

elect problem, the robot whose own UID matches the maximum UID of the network

would declare itself the leader.

For one of our consensus-based algorithms, the robots do not need to select a

leader, but instead need to discover the maximum in/out degree, denoted A. More-

over, we assume that each robot only know characteristics that describe its local

neighborhood, e.g., its own in/out degree Ai. In other words, the robots do not

know characteristics describing the overall network topology, such as the number of

robots and the network diameter. This restriction implies that the robots may never

identify that the maximum in/out degree has been found. Regardless, the robots can

still reach an agreement during consensus by using in parallel the FloodMax algorithm

described in the following lemma.

Lemma 69 (FloodMax for degree discovery) Suppose Assumptions 65-66 hold,

and consider the system of robots running a FloodMax algorithm of the form

O - max {{'} U {Ol'l : v E N} (6.1)
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where for each robot ?),"' is initialized to the robot's in/out degree plus one, i.e., l]+1.

Then for all robots after diam(g) communication rounds, 09' is equal to the maximum

in/out degree plus one, i.e., A + 1.

6.2 Consensus of joint measurement probabilities

Suppose Assumptions 65-66 hold, and consider the system of robots running a con-

sensus algorithm (Olfati-Saber et al., 2005) of the form

V = ± + ( (I - I]), (6.2)
VEN[i]

where E E (0, A- 1 ) guarantees for all robots that the state 4,K[z exponentially converges

to the average initial state of all robots, i.e., ZEn1 0/'1/n,. For the robots to select a

valid E, they need to know either the maximum in/out degree of the network graph

or the number of robots. Since we are assuming that neither parameter is known, the

consensus algorithm is modified to use in parallel the FloodMax algorithm of the form

(6.1). As a result, convergence to the average initial state is preserved as described

in the following lemmas.

Lemma 70 (Convergence of modified consensus algorithm) Suppose Assump-

tions 65-66 hold, and consider the system of robots running a FloodMax algorithm of

the form (6.1) in parallel with two consensus algorithms of the form

1[ = + + A + ', (6.3)
r.+1 K+1 N+1 VENI'

and

'9[i] 9[il f]Ai

(7 (i ~) '9[%] (7 [']) '9' J 7~ ] (6.4)
vENM

Then for all robots i E {1,... nr}, the states Op'I and wlI converge to Z', 1 Ov'/nr
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and Vl_11 (1r , respectively, in the limit as r, tends to infinity.

Lemma 71 (Convergence on complete network graphs) For a complete net-

work graph,3 0 and ir4 converge for all robots after one communication round.

Remark 72 (Order of calculations) We require that the state is available when

calculating both 0[" and 7r[". In other words, (6.1) is computed prior to (6.3) and (6.4)

during a given communication round. See Algorithm 10 for an example algorithmic

implementation of this concept.

6.2.1 Distributive approximations for the sampled joint mea-

surement probabilities

Suppose we wish to distribute a member of the novel controller class among robots

sensing an environment of discrete-valued state, e.g., Algorithm 6. From Section 5.2.4,

each robot must locally approximate the measurement probabilities P(' = yJX = x)

describing the sampled set of likely joint observations y e S) for all x E X. As

previously discussed, each robot represents these approximations with the ny-tuple

p[i], which for the current case has IXI-tuple elements plei'] for all f E {1, ... , n. }. Let

their be a predetermined ordering of elements in IXI that is known to the robots, i.e.,

X= {x :j E {1, ... X|}}.

For the robots to reach a consensus on the sampled joint measurement probabil-

ities, let 7r[, be a belief matrix 4 representing the unnormalized approximated nth

root of these probabilities known by the ith robot after n communication rounds, i.e.,

[r~]je P( = 9X = x(Y),

3 A complete network graph is a graph such that any pair of vertices is an edge of the graph (Bullo
et al., 2009).

4 We are using terminology introduced by Pearl (1988).
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for all j E {1,...,JXA} and E {1,. ... , ny}, where 77 is a normalization factor. In

addition, let the belief matrix be initialized as

7gi]gr = p(fri - 4[i'X = XI).

In words, the belief matrix is initialized to the ith robot's conditionally independent

contribution to the unnormalized sampled joint measurement probabilities

I XP((-J i]JX). (6.5)
i=1

By using (6.4) to evolve the belief matrix over a finite number of communication

rounds, termed the communication round size and denoted by n,, we can formally

define the approximation for the sampled joint measurement probabilities as

[7r['8i ]
_l_(xul) := ~ P(V - VIl IX = xU]) (6.6)

V'=1

for all j E {1,..., X } and E {1, ... ,rny}, where 7r['] and ON[i are shorthand denoting

7ri and On], respectively. Here, 0[' is an exponential factor accounting for the fact

that the consensus-based algorithm may terminate before converging. More specif-

ically, 7r.. can be thought of as the ith robot's weighted logarithmic summation of

J(Y[v'] IX) over all v E {1, .... , nr} at communication round r., while [ ] is the inverse

of the largest weight to ensure that no single measurement probability in the right

hand side product of (6.5) has an exponent of value larger than one. In other words,

no observation "gets counted" more than once.

Remark 73 (Size of the belief matrix) Due to the construction of the joint ob-

servation sample set - , the column size of the belief matrix remains constant with

respect to the number of robots. However, the row dimension is linear with respect to

the environment state alphabet size |XJ, which can be misleading since this alphabet

size is usually exponential with respect to other quantities. For example, the alphabet
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size for an environment that is partitioned into cells can scale exponentially with re-

spect to the number of cells, e.g., see the experiments in Section 5.4. Thus, a system

designer will need to consider both lossless and lossy compression techniques specific

for the application at hand.

Remark 74 (Anytime approximations) Note that there is no restriction on how

many communication rounds are needed for the distributed approximation (6.6). In

fact, if no communication rounds are performed, the each robot will believe it exists

in a "lonely world" and (6.6) will correctly return that robot's local measurement

properties. Therefore, consensus-based algorithms of this form can be considered as

anytime (Russell et al., 1995).

To calculate the exponential factor # in parallel with the belief matrix 7r, let

the state 01'1 evolve by using (6.3) and be initialized to ei. From the discussion above,

we have that

- kb l ]fl-1 .(6.7)

Note that 4,1 does not need to be initialized with a size of nr, which would induce

the requirement that the number of robots must be known. Instead, let each robot

maintain a tuple of indices, which can be arbitrarily augmented when unknown in-

dices are received during the communication round. We leave the details of this

implementation to the reader.

From Lemma 70, we have for all robots that ,3 converges to nr in the limit

as n tends to infinity, or after one communication round if the network is complete

(Lemma 71). This property is required for the convergence of the approximations

to the true sampled joint measurement probabilities, which is stated in the following

theorem and corollary.

Theorem 75 (Convergence of distributed approximations) Suppose Assump-

tions 65-66 hold. Then for all robots i E {1, ... , nr}, j E {1, ... , 1XI}, and f E

{1,... , ny}, we have that k iA(xU]) converges to P( - 91| X = xUl) in the limit as
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the total number of communication rounds n, tends to infinity.

Corollary 76 (Convergence on a complete network graph) Suppose Assump-

tion 66 holds, and suppose the network graph ! is complete. Then for all robots

i E 1, .1.., nr}, j E {1, ... , X }, and f E .1 ... , n.}, we have that f[41 (x U) is equal

to P(? = 94 |X - xWl) after one communication round.

With Theorem 75, we have that the robots can employ a consensus-based al-

gorithm of form (6.6) to enable a decentralized mutual information-based gradient-

ascent controller for sensing discrete-valued environment states. Moreover, this dis-

tributed approximation provably converges to the centralized solution as more com-

munication rounds are performed, i.e., as network bandwidth increases. With Corol-

lary 76, we have that the decentralized control problem reduces to the centralized

problem for a complete network graph.

6.2.2 Algorithmic implementation

The algorithmic implementation to approximate the sampled joint measurement prob-

abilities is summarized in Algorithm 10, and a discussion of its computational com-

plexity follows in Proposition 77. Note that for the experiments discussed in Section

5.4, we have that Algorithm 10 was used for the decentralized controller and Bayesian

filter. Please refer to Figure 5-5 for a system level overview of these processes.

Proposition 77 (Computational complexity) Suppose Assumption 67 holds for

a fix number of communication rounds n,. Then the time and space complexities of

Algorithm 10 are both O(ny|X|). In words, both the time and space complexities to ap-

proximate the sampled joint measurement probabilities are at worst linear in the sizes

of the joint observation sample set and the environment state alphabet. Moreover,

these computational complexities are independent of the number or robots.
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Algorithm 10 MeasurementProbabilitiesConsensus((Y[N)

// Initialize FloodMax state
O - (A] + 1);

// Initialize consensus state (shorthand)
+- ei;

for j = 1 to JXJ do
for f = 1 to ny do

// Initialize belief matrix
[7ri]]j P(k = p[iAi X = xuL);

6: end for
7: end for

for K= 1 to n. do
<- max {{0 1} U {O 1: v E N }}

// Update consensus state 7zI'1 from (6.3)
I& -1K_-

yvE

note calculations are element-wise

[NINli

11: // Update belief matrix i

1:7end r)_

12: end for

r from (6.4), note calculations
K I -Ai1

77 (7r[_1)7_77;
VENNi

are element-wise

13: // Calculate exponential factor ,3 [i from (6.7)
ONi +- |11 0111-1;

14: for j = 1 to IXI do
15: //Initialize normalization term

y +- 0;
16: for f = 1 to ny do
17: // Build normalization term found in (6.6)

?) +- r/ + [7r[i]] ;

18:
19:
20:

21:
22:

23:

end for
for f = 1 to ny do

// Insert entries into tuple pji]

p[li" (xul)
end for

end for
return [i];

+- 7 1;
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6.3 Consensus of joint measurement likelihood dis-

tributions

We will be employing a similar consensus-based approach as in Section 6.2.1 to ap-

proximate joint measurement likelihood distributions. To emphasize the overall flex-

ibility of the general approach, we consider the system of robots running consensus

algorithms of the form

o = [W]U01i] + 1 [W] ivlj (6.8)
VE N i

and

7r (7rk])[W] flJ (w[v])[W]iv (6.9)

Similarly to (6.3) and (6.4), we have for all robots that the states 01 and 7rii con-

verge to 21IJ /n, and [ () 1/n,, respectively (Xiao et al., 2007). Again,

this convergence happens for robots without knowledge of the network's maximum

in/out degree or the number of robots. Note that the distributive algorithms research

community is quite large, and that many other consensus-based algorithms yielding

asymptotic averages can be modified for our approach.

6.3.1 Distributive approximations for scaled Gaussian joint

measurement likelihood distributions

Suppose we wish to distribute a member of the novel controller class among robots

sensing an environment of continuous-valued state, e.g., Algorithm 7. Similar to

Section 6.2.1, each robot must locally approximate the likelihood distribution P(k =

yIX = x) describing the sampled set of likely joint observations y E Y for all x E X.

Consider the fth element y11 from the joint observation sample set Y. Now suppose

for all robots i E {1, ... , nr}, the corresponding local likelihood distribution P(k[i =
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yE141 X) can be accurately represented by a non-degenerate5 ng-dimensional scaled

Gaussian

P(r[i] = y[ie] X) = p[i'e q(',] n[q'])

with

and

det(f)2

77 C ( (2 7r ) n ge 6T f - l ) 2I

where for each robot, we have that GJ'[ E R'n is its information vector, fl' E R ngxn

is its information matrix, and pi' := P(Yli = yl'[e]) is its scaling factor. For such

distributions, we have for the sampled joint measurement likelihood distribution that

P(f - Y11 IX) = PA]AfW[e] ( -1),

where ] = i=t1  is the joint information vector, i=f = Z 2' is the joint

information matrix, and

is the joint scaling factor.

For a given environment state x E X, let 7r ' E R>O be initialized to the cor-

responding robot's local measurement likelihood distribution evaluated at x, i.e.,

7r6' =P(-NI = yA IX = x). In addition, let 0[i E [0, 1]nr be initialized to the

standard basis ei pointing in the ith direction of Rnr. Similar to the approach in Sec-

tion 6.2.1, we can use (6.9) and (6.8) at each communication round to have (7r, ')]

5By non-degenerate we mean that the information matrix of a Gaussian is a real positive-definite
symmetric matrix.
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converge to the joint measurement likelihood distribution evaluated at x in the limit

as n -+ oo, where again #3 i -;-' is a scalar exponential factor that converges

to nr. The expansion of leads to the following theorem.

Theorem 78 (Consensus of scaled Gaussian likelihood distributions) Suppose

Assumptions 65-66 hold. For all robots i E {1 ... n,} and samples E f {1...ny,

let $ e [0,]hr, ('A e , and ' e Rngxng be initialized to ej, ' and 0[',

respectively, and have all evolve according to (6.8). In addition, let a' E R>O be

initialized to pi~nc(] ' (' ]) and evolve according to (6.9). We then have that

a( (,']di[,'e]) p [epc((4], P[]), Vx e X, (6.10)

as K tends to infinity. In other words, the expression on the left hand side of (6.10)

converges weakly to the sampled joint measurement likelihood distribution.

Given Theorem 78, we can formally define the approximations to the sampled

joint measurement likelihood distributions as

)= ,c(0 '[ ,0[iln'4) (6.11)

for all j E {1, . . . , X } and E {1,. .. , ny }, where a A, ( 4, and f[i14] are shorthand

denoting a n and n2', respectively. Again, the exponential factor #] assures

that no observation "gets counted" more than once - a concept that will be discussed

in Section 6.3.3.

6.3.2 Algorithmic implementation

The algorithmic implementation to approximate the sampled joint measurement like-

lihood distributions is summarized in Algorithm 11, and a discussion of its computa-

tional complexity follows in Proposition 79.

Proposition 79 (Computational complexity) Suppose Assumption 67 holds for

a fix the number of communication rounds n,. Then the time and space complexities
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Algorithm 11 LikelihoodDistributionConsensus(M)

1: // Initialize consensus state
+- ei;

2: for f = 1 to n. do
3: //Initialize information vector, information matrix, and normalization factor

] - InformationVector (P(Yiri - [ie] X));
4: Q +- InformationMatrix (P(Vri] = y[i'e 1X));
5: ao'+ P(?[lil = y )(( ' 0)
6: end for
7: for rn = 1 to n, do
8: // Update consensus states Vbktfl from (6.8), note calculations are element-wise

+- [W] I"4k + EvEN[] VV;
9: for f = 1 to ny do

10: // Update consensus states & and ' using (6.8)
// note calculations are element-wise
4i'e < [W~lid! + WVEN [g]I[V]'.

11: *l'E+- [W~ '+ ZVEN>,e][W] '

12: // Update consensus state al' using (6.9)
// note calculations are element-wise

13: end for
14: end for
15: // Calculate exponential factor 1 [i] from (6.7)

ON +- |141iI 1;
16: for f = 1 to ny do
17: // Insert entries into tuple pI] via (6.11)

18: end for
19: return p];
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of Algorithm 11 are both O(nn 2). In words, both the time and space complexities

to approximate the sampled joint measurement probabilities are at worst linear in the

size of the joint observation sample set and quadratic in the dimension of the repre-

sentative Gaussians. Moreover, these computational complexities are independent of

the number or robots.

6.3.3 Performance guarantees

In the following subsection, we simplify notation by dropping sample index f. For

example, we have that & and &4) denote &eI and 01', respectively.

We begin to characterize the approximations to the sampled joint measurement

likelihood distributions by proving that the corresponding Gaussian-like distributions

'make sense.' Since we are forming these distributions from the canonical parameters

#] (J3 and /9 0%),this making sense objective is equivalent to proving for all robots

i E {1,...,nr} and communication rounds n E Z>o that ] is a real vector

and #3J1O[ is a real positive-definite symmetric matrix. Since the collection of real

vectors and the collection of positive-definite symmetric matrices are both closed

under addition and positive scalar multiplication (#31 E [1, nr] from the upcoming

Lemma 81), it holds that the likelihood approximation is composed of non-degenerate

scaled Gaussians.

The guarantee of non-degeneracy is fundamental to many of the claims to come.

More interestingly, the mathematical structure of (6.8) that allows this guarantee also

allows for intuitive interpretations of how the approximations evolve over time, espe-

cially concerning the rate of convergence of the canonical parameters. We will discuss

these discussed shortly, but first we review the concept of exponentially decreasing

disagreement (Olfati-Saber et al., 2005; Xiao et al., 2007).

Lemma 80 (Exponentially decreasing disagreement) For all robots and com-

munication rounds, we have that

01i] -1- 1 Un:= W211-rV nr 2:UK nr 2 n.)r
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where lefthand side of the inequality is termed disagreement and || - ||2 for a matrix

denotes the spectral norm.

Lemma 81 (Properties of consensus state) For all robots and communication

rounds, we have that #l, E [0, 1]nr, 1I = 1, and 1011 1/n,.

Except when run on a complete network graph, we expect Algorithm 11 to prema-

turely terminate before the canonical parameters converge, and thus the exponential

factor 3 . indicates how 'close' the approximated information vector I I and informa-

tion matrix 0 are to the true joint canonical parameters and f, respectively. In

the following, we provide a strictly increasing lower bound for the exponential factor

that equals one at . = 0 and converges to n, in the limit as i tends to infinity.

Proposition 82 (Lower bound for the exponential factor) For all robots and

communication rounds, we have that

1 1

#21 L :=Uf 1 - -i + -

We now focus our attention to the geometric interpretation of the information ma-

trix #] 2, which describes ellipsoidal contours of equal density for the corresponding

scaled Gaussian. The squared lengths of the contours' principal axes are given by the

inverse of the information matrix eigenvalues, with larger values representing distri-

bution axes of higher certainty. As more communication rounds are performed and

the information matrix converges element-wise, we expect this certainty to increase

and also converge. This is in fact the case, and by using the lower bound for the

exponential factor, we provide a strictly increasing lower bound for the information

matrix eigenvalues.

Proposition 83 (Lower bound for the information matrix eigenvalues) Let A,

A < - - - < An,. Then for all robots, communication rounds, and m E {1, .... , n,}, we
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have that

Am(0i3j]I) > Li: max{L'-, L+ },

where

[L 'K] .'( ) + Jol

L( + (L, - [LJ)A0(LR )
e=i

with the robot indices ordered such that A1 ( 0) A 1 ... A 01 (G ) and

where

L+ :Am(fl) - n Ano(" ) - ([LO] - L")An,( 0 )
t= rLrO+1

with An,(f41 ) An() < - Ang(G}"'3).

Remark 84 (Maximum of two bounds) The use of both Lfl- and Ln+ yields an

intuitive bound on An(#,!0 ) in the instances where tc = 0 and i -+ 00, respectively.

The former implies Am(fo[ ') min, Am(d4'") and the latter with Lemma 81 implies

limnk,, Am(!O31 [) = Xm(f), both of which are obvious. In addition, the two bounds

are equivalent for univariate Gaussians (i.e., ng = 1).

Lastly, we derive the strictly shrinking range for the information vector elements,

which when combined with the bounds on the information matrix eigenvalues well

characterizes the convergence behavior of the resulting scaled Gaussians. We believe

such characterizations can lead to bounds on such information theoretic metrics such

as Kullback-Leibler divergence of the mixture of Gaussians, however, such efforts are

reserved for future work.

Proposition 85 (Bounds on the information vector elements) For all robots,

samples, communication rounds, and m G {l,... , ng}, we have that

LC [/l3jd]m < U ,
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where

L Jm + (LI - [L)]
v=1

with the robot indices arranged such that [ g 1 ]m [l ? ]m < < [{T"'3 ]m, and where

Um is defned the same as 4 but with [1]1m [ [2]1m -... [ ].

6.4 Parallelized numerical simulations

Using the LLGrid computer cluster system at MIT Lincoln Laboratory, numerical sim-

ulations employing the various algorithms discussed in this thesis were performed in

distributed fashion. More specifically, both the decentralized algorithms and the sim-

ulated dynamics for each robot ran on an independent computer cluster node, which

exchanged messages with other nodes using MatlabMPJ. In the following section, we

discuss both consensus-only simulations and consensus-enabled control simulations.

6.4.1 Consensus-only simulations approximating measurement

likelihood distributions

10
comm round n =0

8-

6 62~' 10 81 5

2 4 6 8 10
Environment state x

Figure 6-2: Left: A connected network graph on which ten robots distributively
estimate their joint measurement likelihood distribution. Right: One dimensional
normalized local measurement likelihood distributions for ten robots with respect to
their normalized joint (dashed black curve).
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We first consider ten robots distributively approximating their joint measurement

likelihood distributions from local distributions that can be accurately represented

by univariate scaled Gaussians. Such a simplified task best illustrates how each

robot's joint approximation converges weakly to the true one. Figure 6-2 shows the

normalized local measurement likelihood distributions, which for robots 1, . . . , 10 have

distributions of .A((22, 2.8), Ac(8, 2.3), JNc(11, 2.1), .N(5, 2.9), A(c(23, 2.6), N(6, 2.0),

.c(10, 2.7), .Mc(16,2.2), .Ac(16, 2.2), Ac(3, 2.4), Nc(15, 2.5). Note that we selected

the canonical parameters to separate the distributions for illustrative purposes, as

one should not expect such initial disagreement within a fielded robot system. Figure

6-2 also shows the normalized joint of nonzero mean, since the assumption of zero

mean can lead to misleadingly tight bounds, e.g., bounds that are not invariant under

translation.

oondo=I Com rsnd n= 2 Comm round n

L 4 E sae a 1o0 2 Ea 1 2 4 r s a
Environment state xe Envronment state xEnvionment statex

at
~o

0

10

11 2 4 a 8 i 10a 10 '2 2 4 a 8 10
Environment state x ' Environment state X Environment state x

Figure 6-3: Left to right, top to bottom: The evolution of each robot's normalized
joint approximation on the connected network graph in Figure 6-2 at communication
rounds of rn E {1, 2, 5,10, 20, 30}. The dashed envelope represents the feasible region
within which the peak of every robot's normalized approximation must lie.

We evaluated the performance of Algorithm 11 on the connected network graph

shown. Figure 6-3 shows the evolution of each robot's normalized joint approxi-

mation with respect to a strictly shrinking envelope derived from bounds given in

Propositions 83-85. These envelopes can be interpreted as feasible regions within

which the peaks of all the robots' approximations must lie, intuitively highlighting

the performance guarantees discussed in Section 6.3.3. We note that these bounds
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for this particular network graph are conservative; we found that graphs with higher

algebraic connectivity tend to produce tighter bounds, as shown in Figure 6-3.

C... 

rud 
d-I

o 

m 
round

a n omn tt

4 

Comm round K =I1

omm ond n=

S En rOnMent eaex a
Comun round x 5 0

Comm round , 0

2 Environment state x 1

Co.. round X 8131

SEnv lronment state X

Figure 6-4: Top to bottom: The evolution of each robot's normalized joint approxima-
tion on a star network graph (left column), chain network graph (middle column), and
a ring network graph (right column) at communication rounds of K E {1, 5, 10, 30}.
The dashed envelope represents the feasible region within which the peak of every
robot's approximation must lie.

6.4.2 Control simulations performing consensus for the mea-

surement probabilities

To demonstrate the scalability of our complete control approach with respect to the

number of robots, we simulated a n, = 100 robot system using different communi-

cation round sizes of n, for Algorithm 11. For each run, the heterogeneous sensors
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S

Time step k = 0 Time step k = 10 Time step k 20 Time step k = 30

S 0%

Time step k = 50 Time step k = 100 Time step k = 150 Time step k = 200

Figure 6-5: The position evolution of a simulated system of 100 heterogeneous
robots employing a decentralized standard Bayesian filter and a decentralized mu-
tual information-based gradient-ascent controller, both using a consensus round size
of n, = 5. Left to right, top to bottom: The positions of all robots (green o) at time
steps k E {0, 10, 20, 30, 50,100,150, 200}.

were uniformly selected from the sensor set used in the indoor hardware experiments

from Section 5.4, and the robots were deployed from a single location at the bottom

of the environment, e.g., see Figure 6-5. To emulate a physically larger environment

for the simulation, no safety radius was used and the network radius was fixed to 1.5

m - half the value used in the experiments. All other parameters remained the same

from the corresponding hardware experiments.

Implementing both Algorithm 6 (for a standard Bayesian filter) and Algorithm 9

(for a non-parametric Bayesian filter), we verified that the runtime for the simulation

remained constant as more robots were simulated. We then performed Monte-Carlo

simulations for a 100 robot system with i) all robots employing the decentralized

standard Bayesian filter (see Figure 6-5); ii) all robots employing the decentralized
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Standard Bayesian Filters Non-parametric Bayesian Filters Mixed Bayesian Filters
10 - 10 ...,10

0.' 100 200 300 0.~ 100 200 300 Ot. 100 200 300
Time step k Time step k Time step kc

Figure 6-6: Plots from 1000 Monte Carlo simulations showing the average entropy
over the 100 robots' beliefs for various communication round sizes. Left: All robots
employed the decentralized standard Bayesian filter. Middle: All robots employed the
decentralized non-parametric Bayesian filter. Right: The first 50 robots employed the
decentralized standard Bayesian filter, while the second 50 employed a non-parametric
one.

non-parametric Bayesian filter; and iii) the first 50 (second 50) robots employing

the decentralized standard (non-parametric, respectively) Bayesian filter. Figure 6-6

shows the decrease in the average entropy of the robots' beliefs over 1000 Monte-Carlo

simulations for each communication round size.

Considering the use of two different types of Bayesian filters (standard versus

non-parametric) and the drastic difference in the number of robots (100 versus 5 in

the hardware experiments), it is important emphasize that the decentralized mutual

information-based gradient-ascent controllers required no modifications to parameters

such as controller gain -yi], control space uld and observation sample set size np. This

validation of generality (former) and scalability (latter) best highlights the practicality

of such a control approach. We have also scaled up the simulations to 1000 robots

using a single workstation computer equipped with a multicore GPU-enabled graphics

card. As shown in Figure 6-7, we get qualitatively similar trajectories when using the

same control and inference parameters as in previous simulations.

With respect to the inference, we are not surprised that larger communication

round sizes resulted in lower overall uncertainty within the system. In other words,

the allocation of more network resources increases filter performance, however, there

is clearly evidence of diminishing returns. In addition, the simulations highlight the

importance of the network topology; even though many more robots are deployed in
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0Time step k = 20
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Figure 6-7: The position evolution of a simulated system of 1000 heterogeneous robots
employing a decentralized non-parametric Bayesian filter and a decentralized mutual
information-based gradient-ascent controller, both using the same parameters as in
Figure 6-5. Left to right, top to bottom: The positions of all robots (green o) at time
steps k E {0, 10, 20, 30, 50, 100}.

comparison to the hardware experiments, the propagation of information throughout

the system is hindered by the sparsity of the network when using small communication

round sizes. This result raises interesting questions about fundamental limitations

that cannot be overcome by simply deploying more robots.

6.5 Summary

Although theoretic in nature, the distributed algorithms presented in this chapter

should inspire application specific approaches to joint measurement likelihood ap-

proximation that are unbiased, convergent, and scalable. More importantly, the

derivation, analysis, and implementation of the novel class of decentralized mutual
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information-based gradient ascent controllers reveals a long list of open research ques-

tions. We discuss such future work in Chapter 7, as well as give concluding remarks

and lessons learned.

6.6 Proofs

Proof 86 (Lemma 69) The proof is a simple extension of the proof for Theorem

4.1 in (Lynch, 1997).

Proof 87 (Lemma 70) From Lemma 69, we have for all robots and i;.> diam(g)

that V. ' is equal to (1 +A). Substituting (1 +A) into (6.3) for all ti9J and 10+ results

in a consensus algorithm that is equivalent to (6.2) with E = 1/(1 + A). In addition,

we know for , < diam(g) that the time varying nonlinear system will not have worse

than exponential divergence since all coefficients in the right hand side of (6.3) are

bounded below and above by 0 and 1, respectively. Thus, since @b' in (6.2) was proven

to converge to ("Ln 01' 1/n, we have that 0z/ in (6.3) will do the same if and only if

EZ=i OA'] equals E, , for , = diam(g).

For this aim, consider the summation

_'~i -[' 1 =w '± E9(]gi] + ' (1b']
i=1 i1 i=1i=1 VENN

In an undirected graph, the last term on the right hand side of the last equation is

equal to zero, and thus we have for all communication rounds that

+1 1+1 -1 K

i=1 _=1 i=1
nr nr nr

+ ... + 1Z('0i] 'ON + Z [i] ) i] - 0[]1 i
i=1 i=1 i=1

implying that OJL1 @ equals E 1/3~v] when 0 +1 = A. Thus, we have that 0I

in (6.3) converges to Enr 1 @0/v/nr, which also implies that 7r[' in (6.4) converges to

'V=1" (76 A)l"
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Proof 88 (Lemma 71) We have for all robots that =0i] 0 (1 + A) for a com-

plete network graph. Thus, 01'1 and 7r[ are equal to ZVL1 Ob']/n, and ]76L (1f

respectively. The proof follows by induction on r,.

Proof 89 (Theorem 75) For all robots, j E {1, ... , X }, and f E {i, ... , n,}, let

[7r i] be initialized to

[7r ]gj = P(y[i = 9[i'] IX = XU])

and evolve using (6.4). From Lemma 70, we have that

[7r[i]]j - p(J]([v] = 9[ve IX = X ])1/fl r

v=1

and

in the limit as n, tends to infinity. Hence from (6.5) we have that

[7r1 il] -+ r -P(k = = x U).

Lastly, using the definition of pil] from (6.6), we have that

pli't] (xu ) -+ P(V = Q [eIX = xUI).

The proof for pi'] follows in the same manner with [,r[1] being initialized to P(YEil =

yNIX = xWl) and converging to P(Y = yIX = xWl).

Proof 90 (Corollary 76) Following the proof for Theorem 75, convergence after

one communication round for a complete network graph is a direct consequence of

Corollary 71.

Proof 91 (Proposition 77) By definition, the observation sample set j)l] has ny el-
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ements for any robot i, while the environment state alphabet has |X| elements. Thus,

the belief matrix wr, has nyIX entries and takes O(ny X|) time to update per commu-

nication round. Moreover, since the number of communication rounds n, is fixed and

Assumption 67 bounds the maximum number of neighbors A by a constant integer

M, the time and space complexities are independent of the number of robots n,.

For thoroughness, again note that the consensus state O> is not initialized to a

tuple of size n, but instead an indexed tuple of initial size 1.

Proof 92 (Theorem 78) We first note for all robots and communication rounds

that 7rw is a product of values taken from unnormalized Gaussians. Hence (r ) i

is itself a value that is taken from an unnormalized Gaussian proportional to

vE{{i}UNi]

which gives us the desired consensus update expressions for ,{1 and z] 1. Lastly,

from (Xiao et al., 2007) we have for every x c X that 7r, , 13J , and ar, converge to
11

c( )n,, and (pr(,))nr, respectively.

Proof 93 (Proposition 79) The proof follows the proof for Proposition 77, except

that i) there exists no for loop of size |X| and ii) the information matrix f2' is of

size n' for all samples e { . .. ,

Proof 94 (Lemma 80) The proof follows from Xiao et al. (2007) with '4 = e,

since

2(2 2 r1
nr- = - - + n - nr0 nr nr + n
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Proof 95 (Lemma 81) Since for all robots ||01"||1 = ||e, 1, = 1, we have that

W4 1 = [1 + E [WTiV||0! |,[
vEN[i]

=[Wii+ E [Wiv
vEN[i]

=~~ 1 Iv + [IWiv
vENUi VENM

= 1.

In addition, 0[4] is nonnegative since it is an element-wise summation of nonnegative

terms, which from the previous equation implies 0bjl ( [0, 1]nr. Lastly, we have from

the relationship between the 1-norm and the oo-norm that

nr nr

The proof follows by induction on r..

Proof 96 (Proposition 82) Consider the optimization problem of maximizing ||0'Il|

with 0[' being a free variable subject to the constraints in Lemma 81 and subject to

1 [ 1 !1
- 1- < U E 10, 1 - [0, U0]

nr 2 nr.

Note that an optimal solution 0* always exists. Put c > 0, and without loss of

generality suppose ||0*||. = [0*]1 and ||V* - 1 ||1= c2 . We define

P (O#'i, 91, P2) := Kil I + pl ( 2 - nr -2 + A2(|pa| 1)

and by using Lagrange multipliers obtain

1 1)2 + -[1 )2 - c2 = 0.
n,- nr t nr

158



Thus, we have that

1 1
-c 1--+- (6.12)

nr nr

and

c < 1 - -r (6.13)
nr

since E [0,1]. From (6.12), we have that [@d3] 1 is proportional to c, and thus

by (6.13) we conclude that c = U . Thus, the corresponding value of ['41 =|*|

is

U,? 1 !+i
U + -.

nr nr

Lastly, consider 0'j" as consensus term rather than a free variable. From above,

we can interpret ||@* |;-1 as a lower bound for i3" given U, which gives L,.

Proof 97 (Proposition 83) We first prove that Am(#3i'k 1 ) is bounded below by

L"-. Note that

V=1

Recursively applying Weyl's Theorem (Horn and Johnson, 1985), we have that

Amn( r"I) >! 1s E 0'] A1(nEI). (6.14)
v=1

Ordering the robot indices for A1 and using the lower bound from Proposition 82, we

have that

nr LL]

I32 [[]voi(O4">) ; A (n ]) + (LO - LLJ)(fL])
v=1

Substituting this inequality into (6.14) gives L-.
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Lastly we prove in similar fashion that Am(/] G is bounded below by L'+. Note

that

nr

= - ( -VI
V=1

Recursively applying Weyl's Theorem, we have that

Am(fl) <; Am( ') + Z(1 - #n][ ]v)An,(n[V]).
V=1

Ordering the robot indices for Ang and using the lower bound from Proposition 82, we

have that

(1 - #'[0]])Ang(G4'") ([LI] - L3)A ",()[L -) An+( ).
V=1 f= FLI']+1

Subtracting the summation term from both sides of (6.15), substituting the result into

the previous inequality gives Lf.

(6.15)

Proof 98 (Corollary 85) The proof follows from applying Proposition 82 to Theo-

rem 78.
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Chapter 7

Conclusions and remarks

In this thesis we present the derivation, analysis, and implementation of a novel class

of decentralized controllers that continuously move robots equipped with sensors to

better observe their environment. These controllers are designed to maximize a mu-

tual information reward function, which is shown to be relevant to many information

acquisition tasks. One such task is occupancy grid mapping, for which we proved

that such controllers are eventually attracted to unexplored space - a geometrically

intuitive behavior for exploration. More importantly, the insight we obtained in de-

riving this proof is exemplified by the results of our experiments. This result solidifies

the intuition that inherently guides our logic when designing motion planning algo-

rithms, however, we believe that much more can be proven. In particular, we leave as

a future work proving (under additional assumptions) that obstacles eventually repel

these controllers due to properties such as sensor obscuration, e.g., Figure 4-1. Such a

property would result in trajectories that naturally avoid obstacles and, more impor-

tantly, give insight into the overall performance of these controllers in unstructured

environments.

This thesis also gives insight into the information-theoretic foundation support-

ing the novel controller class. We showed that these controllers are intractable in

their general form, and that principled approximations forfeit optimality to induce

computational tractability. We also proved that each robot can distributively approx-

imate the joint measurement likelihoods such that they converge to the true values
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as more computational resources are allocated for inference and coordination. With

any real system, however, the amount of computational resources available to each

robot is always finite and stochastic. To this end, the derivation and implementation

of these decentralized controllers and distributed approximation algorithms should

work regardless' of the available resources. This anytime and any-input mentality to

decentralized control and inference is essential to making fielded multi-robot systems

with autonomous surveillance capabilities a reality.

7.1 Lessons learned

Seemingly with all robotics research, analysis is only useful up to a point. The

knowledge I gained through implementing (or at times, failing to implement) our

algorithms on real hardware is invaluable for two reasons. The obvious one is to

validate the analysis, where the implementation acts as the final step of the proof.

Not only is the real world too complex to be perfectly captured by any tractable

mathematical model, but the omnipresent probability space should not be insulted

by one relying too heavily on a random number generator. The second reason is, as an

engineer, I should always strive to "make stuff work." I have lost count of how many

times the implementation process has helped me better understand a mathematical

derivation and, as a result, the final analysis.

Although I have always tried to not "reinvent the wheel," I have learned to ex-

pand my literature search beyond the robotics community. By construction, robotics

is a multi-disciplinary field that builds upon many other research fields. I am often

tempted to use existing robotics publications as "cheat sheets" representing the vast

knowledge-base offered by these other fields - this temptation is dangerous for count-

ably infinite reasons. For one, these "cheat sheets" exist to act as the technical basis

for solutions to solved robotics problems, and obviously cannot cover all potential

solutions to unsolved problems. I have found that exploring this unfamiliar territory

'For the extreme case when no computational resources are available, we can only hope that
these algorithms do not catastrophically fail nor cause catastrophic failures within the robot team.
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has not only provided me with great technical growth and a powerful research arsenal,

but has also lead to some of my most valued collaborations and friendships.

Lastly, I have learned that the most powerful controllers are both information-

based and geometric-based. We implicitly constructed such a mixture for our quadro-

tor experiments in Section 5.4 by establishing the notion of a safety radius. Without

this geometric-based policy, the potential for midair collisions is not captured by the

environment state and effectiveness of the decentralized controller is reduced. We can

envision incorporating such hazards into the Bayesian inference, e.g., (Dames et al.,

2012), but this may not always be the ideal approach. For example, a downward

leading stairwell often results in attractive tendencies for mutual information-based

controllers (Chapter 4), which in turn leads to epic crashes for most ground robots.

Due to the simplicity of the occupancy grid map random variable, there is no inherent

way of representing such stairwells. Thus, we can either i) add complexity to the map

and lose much of the computational benefits the occupancy grid mapping algorithm

offers, or ii) penalize the mutual information reward function by a geometric-based

cost. From an implementation standpoint, I certainly prefer the latter.

7.2 Future work

The submission of this thesis is my first step towards addressing a long list of open

research questions revealed to me over the extent of my graduate career.

Although the environment state is continuous-time in general, the digital infer-

ence calculations occur at discrete-time instances, which is the motivation behind

representing the environment state as a discrete-time random variable with samples

taken at constant time intervals. In order to properly represent the temporal evo-

lution of the environment state and avoid aliasing, the Nyquist-Shannon sampling

theorem states that the sampling frequency be at least twice the highest temporal

frequency component of interest. Analogous to discretizing the environment state in

the temporal domain, the spatial domain is sampled in a similar manner to capture

frequency components in all dimensions.
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I am interested in formalizing the procedure of spatially and temporally partition-

ing the environment state for multi-robot information acquisition tasks. More impor-

tantly, we wish to best represent an environment in an adaptive way based on the

information sensed given limited computational resources. We believe information-

theoretic compression techniques will be an invaluable tool in not only computation-

ally processing and wirelessly communicating state information, but also to capture

the frequency components necessary for good inference and control performance, es-

pecially in dynamic environments.

Given the environment representation (or representation methodology if adap-

tive), we believe information-theoretic bounds naturally arise as a function of system

resources. I hope future works provide upper bounds on the quality of information

acquired before a system is deployed, especially concerning the number of robots em-

ployed. For example, if a systems designer wishes to track up to five separate cars

of known maximum velocity in a city area, I want to provide the necessary number

of robots to successful perform the task. I am also interested in how accurate our

sample-based non-parametric approximations are from an information-theoretic per-

spective, something Charrow et al. (2013) have begun investigating in target tracking

applications using Gaussian mixture models.

We have seen much evidence in our numerical simulations and hardware experi-

ments that given enough system resources (e.g., sensor, computational, network), the

robots tend to 'converge' to a configuration that mimics sensor coverage in geometric-

based control. This phenomenon makes sense - given that the robots can reduce

uncertainty in a way that dominates the rate at which the environment produces

uncertainty, the optimization surface on which the mutual information gradient is

calculated does not significantly change after 'convergence between observations.'

Thus, I am inspired to go beyond the idea of 'convergence between observations'

due to recent works on stochastic stability analysis over a finite-time horizons. Stein-

hardt and Tedrake (2011) provided bounds on the probability of motion planning

failure using a variant of the classical supermartingale result, which falls under the

framework of stochastic verification. Although I am interested in verification results
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(e.g., probability that robots explore a given percent of an environment within a

given time), my true interest lies in probabilistic analogs to geometric steady state

behaviors, such as flocking and coverage (Bullo et al., 2009).

I am also interested in periodic behavior with finite periods, which have been

shown in linear Gaussian processes to be independent of initial states (Zhang et al.,

2010). I believe periodic behavior is possible in expectation if the robots and environ-

ment are somehow matched in their uncertainty reduction / production, leading to

cyclic dynamics of the same optimization manifold. Given a relatively large amount

of uncertainty production by the environment, we hypothesize that robot motion

does not converge in expectation. This concept relates back to the bounds on system

performance discussed above.

With respect to the influence of time scales on latent networks, researchers have

made considerable progress on formalizing the interplay between decentralized con-

trollers and mesh protocols. Schwager et al. (2011c) showed that systems made up

of robots with stable first order dynamics are stable for all network update times,

positive feedback gains, and connected communication graphs. Although our robot

model employs first order integrator dynamics, we again are interested in the expected

behavior of the robots over stochastic events. From this viewpoint, the overall con-

trol strategy introduces nonlinear characteristics over numerous time steps and thus

may lead to 'divergence in expectation.' I believe the work of Smith and Hadaegh

(2007) on formation control with consensus-based state estimation algorithms will

provide a starting point working within our probabilistic framework. In addition,

results from research considering bounded (Olfati-Saber and Murray, 2004; Blondel

et al., 2005) and random network delays (Xiao et al., 2000) may be instrumental in

the investigation of stability.
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