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Abstract

In this dissertation, we develop recovery techniques for web applications and demonstrate that automated
recovery from intrusions and user mistakes is practical as well as effective.

Web applications play a critical role in users' lives today, making them an attractive target for
attackers. New vulnerabilities are routinely found in web application software, and even if the software
is bug-free, administrators may make security mistakes such as misconfiguring permissions; these bugs
and mistakes virtually guarantee that every application will eventually be compromised. To clean up
after a successful attack, administrators need to find its entry point, track down its effects, and undo
the attack's corruptions while preserving legitimate changes. Today this is all done manually, which
results in days of wasted effort with no guarantee that all traces of the attack have been found or that
no legitimate changes were lost.

To address this problem, we propose that automated intrusion recovery should be an integral part of
web application platforms. This work develops several ideas-retroactive patching, automated UI replay,
dependency tracking, patch-based auditing, and distributed repair-that together recover from past
attacks that exploited a vulnerability, by retroactively fixing the vulnerability and repairing the system
state to make it appear as if the vulnerability never existed. Repair tracks down and reverts effects of the
attack on other users within the same application and on other applications, while preserving legitimate
changes. Using techniques resulting from these ideas, an administrator can easily recover from past
attacks that exploited a bug using nothing more than a patch fixing the bug, with no manual effort
on her part to find the attack or track its effects. The same techniques can also recover from attacks
that exploit past configuration mistakes-the administrator only has to point out the past request that
resulted in the mistake.

We built three prototype systems, WARP, POIROT, and AIRE, to explore these ideas. Using these systems,
we demonstrate that we can recover from challenging attacks in real distributed web applications with
little or no changes to application source code; that recovery time is a fraction of the original execution
time for attacks with a few affected requests; and that support for recovery adds modest runtime
overhead during the application's normal operation.

Thesis Supervisor: Nickolai Zeldovich
Title: Associate Professor
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Chapter 1

Introduction

Web applications today play an important role in the computing landscape, and consumers and businesses
alike rely on them for day-to-day computing; this makes them an attractive target for attackers. Despite
a significant amount of past research on prevention of vulnerabilities, new vulnerabilities in web
applications are being routinely found. For example, over the past 4 years, an average of 3-4 previously
unknown cross-site scripting and SQL injection vulnerabilities were reported every single day to the CVE
bug database [61]. Even if a web application's code contains no vulnerabilities, administrators may
misconfigure security policies, making the application vulnerable to attack, or users may inadvertently
grant their privileges to malicious code [33]. As a result, even well-maintained applications can and do
get compromised [3, 6, 21, 30, 31, 65, 71, 76].

Though most vulnerabilities discovered until now were fixed before attackers could do serious harm,
past attacks like Stuxnet [4] and the compromise of Google's systems in China [22] show that it is
only a matter of time before attackers launch successful attacks that cause serious damage. Every
web application will eventually have a successful compromise, and when that happens, administrators
of web applications need to recover from the compromise. Due to lack of automated recovery tools,
administrators today resort to manual recovery, which, as we shall see, is both tedious and error-prone.

This dissertation's thesis is that web applications need automated intrusion recovery and that recovery
is an important security mechanism that is complementary to, and as important as preventive security
measures. In this dissertation, we develop recovery mechanisms which demonstrate that recovery from
intrusions and user mistakes is both practical and effective.

Computer system

Use User Command PersistentUsrinterface execution storage

Remote computer system

Figure 1-1: Conceptual model of a general computer system. Users issue commands to the system via the user interface; this
could result in execution of the system's code, which may read and write data to persistent storage and communicate with
remote computer systems over the network.
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1.1 Recovery approach

It is instructive to understand what recovery means in a general setting, before specifically focusing
on recovery in web applications. A general computer system can be modeled as shown in Figure 1-1.
The system accepts commands from users via its user interface (for instance, as keyboard and mouse
input), executes the commands, and displays results back to the users. During command execution, the
system may read data from, and write data to, persistent storage such as file systems and databases.
Furthermore, the system may communicate with remote systems over the network using protocols such
as HTTP, SMTP, and SSH. The model in Figure 1-1 is quite general, and systems ranging from desktop
operating systems to web-based and mobile applications are conceptually structured in this manner; for
example, in a typical web application, the user interface is a browser, network communication is over
HTTP, user commands translate to HTTP requests, and a database is used for persistent storage.

Some commands issued to a computer system could be illegal, and result in executions that corrupt
the system's persistent state and violate one or more of the system's invariants. For example, an attacker
may have issued a command that exploited a bug or misconfiguration in the system's software to modify
data that she would not otherwise have been able to, or a legitimate user may have issued a command
with incorrect data. A correctly functioning system would reject an illegal command outright; however,
bugs in the system's code that checks for illegal commands could allow some illegal commands to run.
After an illegal command corrupts data in the persistent store, later executions of other commands may
use the corrupted data, potentially making them illegal as well.

The goal of recovery then is to restore the system's integrity by undoing corruptions due to past
illegal commands, while preserving state changes by legitimate commands. A well-known recovery
approach, which we call rollback-and-redo, achieves this goal in the following three steps. First, an illegal
command that initially corrupted the system state is identified (e.g., a command that was an attack entry
point). Second, the persistent state of the system is rolled back to a time before the illegal command,
thereby reverting all corruptions to the system state. As this rollback step also reverts legitimate changes,
the final step replays all commands after the rollback time except for the illegal command; this reapplies
legitimate changes to the persistent state. Rollback-and-redo is a general recovery approach, and many
existing recovery systems (such as [15, 45]) are based on this approach; the work in this thesis is based
on this approach as well.

The above high-level description of rollback-and-redo omits some important design details of the
recovery steps. As we describe later (§1.5), different systems based on rollback-and-redo have different
designs for the recovery steps, leading to their differing capabilities. To illustrate the challenges involved
in recovery, we use a strawman recovery system that is based on rollback-and-redo, with a design that
relies on the administrator to perform the first and third recovery steps-the administrator identifies
the initial invalid command (perhaps by inspecting the system logs), and after the recovery system
performs rollback, the administrator replays all user commands since the rollback time except for the
illegal command (perhaps using a recorded log of the user commands).

When performing recovery using rollback-and-redo, the result of a replayed command may be differ-
ent from its result during original execution if the command relied on corrupt data that was reverted by
recovery. In particular, the command may display a different output to the user or it may change network
communication with other systems. This in turn may require changes to subsequent user commands or
to the system's subsequent network communications. In the strawman, the administrator has to take this
into account when replaying commands during recovery-if the UI output changes, the administrator
may have to adapt replay of subsequent commands accordingly; if a network communication changes
(e.g., content of an outgoing email changes), the administrator may have to apply a compensating action
(e.g., notify the email recipient of the change in email contents).
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For correctness, recovery assumes that the illegal commands being repaired could not tamper with
any logs used for recovery. As a result, system components used for logging are part of the trusted
computing base and are assumed to be free of vulnerabilities.

If the system is non-deterministic, there may be many possible repaired states. After recovery
completes, the system is guaranteed to be in one of those states, which may not necessarily be the one
closest to the pre-repair state. In other words, non-deterministic changes unrelated to the attack may
appear as a result of repair, but the repaired state is guaranteed to be free of effects of attack actions.

1.2 Recovery challenges

The strawman illustrates the four challenges that should be addressed to be make recovery practical. First,
recovering from an attack requires finding the attacker's illegal command. This is difficult and tedious
for an administrator to do manually: either she has to pore through system logs looking for possible
attacks or she has to audit persistent storage for suspicious data and use a tool like Backtracker [46] to
identify attacks from that data. Furthermore, despite expending significant manual effort to find attacks,
there is no guarantee that the administrator found all attacks; missing an attack's illegal command
results in incomplete recovery and could leave the system corrupt and vulnerable to future attacks.

Second, replaying all users' commands during recovery demands significant effort from the adminis-
trator. If an attack was found a month after it occurred, recovery requires the administrator to replay the
commands issued by all users during that month; this can require the administrator to interact with the
application's UI for a month or more, which is not practical.

Third, recovering from a month-old attack by replaying the month's worth of user commands requires
system resources comparable to those needed to originally execute them. However, typically only a
few of those commands rely on the attack's corrupt data and are affected by it. The executions of the
remaining unaffected commands during recovery have the same result as their original executions.
Replaying them during recovery is therefore a waste of time and resources, and the challenge is to avoid
replaying them while replaying only the affected commands.

Finally, a compromised system may spread the attack to a remote system by communicating with
it; this could corrupt the remote system's persistent state, which could affect later commands on the
remote system. When this happens, recovery should repair the remote system as well; one option is for
the administrator to perform manual recovery on the remote system as part of a compensating action.
However, performing manual recovery on each affected remote system in turn raises the challenges
described in this section, and is therefore often not practical.

The first three challenges described above are in decreasing order of importance, as solving the
first challenge is necessary to ensure correctness of recovery by not missing any attacks, solving the
second challenge is necessary to minimize user burden, while a solution to the third challenge is purely
a performance optimization.

1.3 Contributions

This thesis develops several ideas to solve the above challenges in recovery, as existing work on recovery
does not adequately address them (§1.5). These ideas include retroactive patching, automated UI
replay, dependency tracking, patch-based auditing, and distributed repair; the rest of this section is
devoted to introducing these ideas. To make these ideas concrete, we also designed, implemented
and evaluated them in the context of web applications, which are one of the most popular type of
applications today. This thesis focuses on web applications that have browser-based UIs, use HTTP for
network communication, and store persistent data in a relational database.
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Figure 1-2: Example web applications. Each application has an HTTP server that communicates with browsers; application
code runs on a language runtime, stores persistent data in an SQL database, and communicates with other web applications
over HTTP; users interact with the applications using browsers. The spreadsheet application stores access control lists for the
other applications and periodically pushes the access control lists to the applications.

Though this thesis focuses on making recovery practical for web applications, the ideas developed in
this thesis are not limited to web applications. These ideas rely only on the fact that a web application's
UI, persistent storage, and network communication have a well-defined structure (for instance, that the
HTML UI of a web application has a DOM structure), as will become evident in the subsequent discussion.
Therefore, they can also be adapted to other systems that have a well-defined structure to their UI,
storage, and network protocols, such as mobile applications, web applications with non-relational
databases, and even some traditional desktop applications.

Running example. We use the following running example to introduce the main ideas in this thesis.
Businesses today routinely use web applications like Salesforce, Netsuite, and Quickbooks, which
integrate with each other to provide workflows suitable for each business. Consider a company that
employs several such applications, as shown in Figure 1-2. Each application typically consists of an
HTTP server, with application code running on a language runtime, persistent data stored in a relational
database, and users interacting with the application using web browsers. User commands on the
application's UI can cause browsers to send HTTP requests to the server; applications may communicate
with each other using HTTP requests as well.

Imagine that to simplify permission management across the applications, the company's administra-
tors centralize the applications' access control lists in a spreadsheet stored on a service similar to Google
Spreadsheets; the administrators use an update script to periodically update the access control lists on
the applications, using a capability similar to Google Apps Script. Suppose the spreadsheet application
has a cross-site scripting (XSS) vulnerability and an attacker exploits it by tricking a privileged user to
visit an attack web page; the attack runs in the background on the attack page and modifies the update
script to add the attacker to every application's access control list; later, the attacker logs into the other
applications and uses the newly granted privileges to modify data in those applications. Recovering
from this attack requires first identifying that the attack took place, and then undoing the attack's
modifications to the access control lists as well as the attacker's changes to the other applications' data;
the rest of this section shows how the ideas in this thesis recover from this attack.

1.3.1 Identifying attacks

Suppose the developers of the spreadsheet application discover the XSS vulnerability at a later time
and issue a patch to fix it. The first challenge faced by recovery is to identify any attacks that exploited
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the vulnerability Previous work on intrusion recovery [15, 24, 29, 37, 45] relied on the spreadsheet
application's administrator to identify intrusions. Administrators typically do this today by manually
inspecting the application's logs or perhaps by using an intrusion analysis tool like Backtracker [46];
however, both these options are tedious for administrators and can miss intrusions. Another option is to
require the application's developer to write vulnerability-specific predicates [40] that test whether each
request exploited the vulnerability; however, this adds extra burden for the developer, as the developer
has to repeat this process for each discovered vulnerability.

Though the illegal execution in the above example was due to an attack that exploited the XSS
vulnerability, in general, illegal executions can arise due to three root causes: (i) a bug in the software
that was triggered by an illegal request, possibly with a malicious intent, as was the case in the XSS
attack example, (ii) a configuration mistake that was exploited by an illegal request, or (iii) a user
mistake that resulted in invalid data being passed to a request. So, the general version of recovery's
first challenge is to identify all illegal requests that resulted from a root cause, once the root cause
is discovered. This is relatively straightforward for user mistakes, as the user knows which requests
she issued incorrectly. However, finding all illegal requests that exploited a bug or misconfiguration is
difficult, tedious and error-prone, and missing any illegal requests leads to incorrect recovery.

To solve this challenge, our key insight is that recovery can just fix the root cause instead of identifying
and fixing each illegal request that exploited the root cause. The administrator fixes the root cause in
the past and replays all requests, including illegal requests; because the root cause is fixed, the illegal
requests are no longer successful, while the valid requests are successful, thereby recovering from the
effects of the illegal executions. For configuration mistakes, fixing the root cause involves correcting
the mistake. For software bugs, this involves retroactive patching, a novel technique developed in this
thesis that fixes a bug in the past by applying a patch at the time the bug was introduced. With these
techniques, we fix the system's execution history to make it appear as if the configuration mistakes or
bugs were never present, and relieve the administrator of the tedious and error-prone task of identifying
illegal requests.

1.3.2 Reducing administrator burden

The second challenge for recovery is replaying users' interactions with the spreadsheet application after
rolling back the application's state. The strawman relies on the administrator to manually replay the
user interactions; however, this is impractical as it places too much burden on the administrator.

The solution to this problem is to automate replay of user interactions and remove the need for
administrator involvement during replay. But, a roadblock to automated replay is that the UI during
recovery may be different from what it was during original execution. When this happens, one option is
to notify the administrator so that she can manually replay the user's interaction on the changed page;
we call this situation a conflict. However, as the UI during recovery is oftentimes slightly different from
the UI during normal execution, a naive replay algorithm that flags a conflict whenever the UI changes
can lead to too many conflicts and thereby result in increased burden on the administrator.

We solve this challenge with two ideas. First, we allow each web application to define an application-
specific UI replayer that is used to replay user interactions during that application's recovery. An
application's UI replayer better understands the application semantics and hence may be able to
automatically handle small changes in UI between original execution and repair. The UI replayer gets
as arguments the user's input during original execution, the UI during original execution, and the UI
during recovery. The UI replayer automatically replays the user input if it can; if it cannot perform
automatic replay (e.g., because the UI changed considerably), it flags a conflict. On a conflict, recovery
stops for the command that caused the conflict and the administrator is notified. Recovery does not wait
for the administrator to resolve the conflict, and continues repairing other commands affected by the
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attack. When the administrator later resolves the conflict, recovery repairs the command that caused
the conflict, thereby reapplying the command's legitimate changes. Until the administrator resolves the
conflict, repaired state is missing the command's legitimate changes, but it is still correct in that it is free
of the attack's effects.

Second, we record the UI's structure and the user input in a format that is semantically meaningful
to application developers and users; in particular, for web applications we record the document object
model (DOM) structure of the web pages and the DOM elements on which each user input acts. This
helps the UI replayer understand the user's intent during original execution and thereby be more effective
at replaying in situations where the UI has changed during repair.

To understand why both the above ideas are necessary, consider the XSS attack described earlier.
Suppose that the attack added an invisible div element to the victim user's page that changed positioning
of other page elements slightly (which the user cannot notice), and uses a handler on the element to
issue the background attack request. Also, assume that the user performed a legitimate action on the
page by clicking on a link. If the attack div element was removed, as it is during recovery, the layout of
the page changes but the user does not observe any visible difference in the page and hence would still
perform the legitimate action by clicking on the same link.

During recovery, a naive UI replayer that operates at the pixel level (i.e., the UI is recorded as
screenshots and the mouse input is recorded along with the screen coordinates) cannot determine from
the recorded information (i.e., the screenshots of the original and the repaired pages, and the mouse
click information) that the user clicked on a link and that the click has to be replayed at a different
location on the repaired page; this results in the naive replayer raising a conflict. However, a UI replayer
that operates at the DOM level understands that the user's click originally acted on the link element, and
so automatically replays the user's click on the same link in the repaired page without raising a conflict.

To alleviate the need for each application developer to develop a UI replayer, we built a default UI
replayer that assumes independence of different DOM elements in a page and works as follows: if the
user input's DOM element is found in the repaired page and the element's properties did not change, the
default UI replayer replays the input on that element; otherwise, the default UI replayer flags a conflict.
This default UI replayer suffices for many applications. However, the assumption of independence of
DOM elements may not be appropriate for some applications, in which case the application developer
can override the default UI replayer with an application-specific UI replayer. For example, an XSS attack
may change the description text on a page, as a result of which the user may enter invalid information in
a text element on the page. Though recovery reverts the attacker's change to the description, the default
UI replayer replays the user's invalid input into the text element, which is incorrect. The application
developer understands the link between the description and the text element, and can provide an
application-specific UI replayer that flags a conflict in this scenario.

1.3.3 Optimizing recovery performance

The strawman performs recovery by replaying all requests after the time of the root cause. Though
automating the replay of these requests reduces administrator burden, replaying them all is still a waste
of time and resources, as many requests are not affected by the root cause. The third challenge then is
to replay only the affected requests, and thereby minimize the resources and time needed for recovery.
Though a solution to this challenge is purely a performance optimization and does not affect correctness
of recovery, it is nevertheless crucial to making recovery practical.

We say that a request is affected by (or depends on) the root cause if the result of the request during
recovery, executed on the system with the root cause fixed, is different from its result during original
execution. A request can be affected by the root cause in two ways: first, it directly exploits the root
cause (e.g., by exploiting a bug in the application code), and second, it relies on persistent data written
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by an affected request. To identify affected requests, we track dependencies of requests on a patch fixing
a vulnerability, and of requests on each other through the database. We give an overview of how we
track these dependencies later in this section.

Once recovery identifies the affected requests, it re-executes each of them, after fixing the root cause.
To re-execute a past request, we need to solve two problems. First, we need to make it appear as if
the request is re-executing in the past, at the time when it originally executed. We solve this by rolling
back database state that the request accesses, to its original execution time (except for the state already
fixed by recovery). Our database rollback has to be precise, as rolling back additional database state
requires re-executing other requests just to restore the additionally rolled back state. We develop a
time-travel database that allows us to roll back precisely the database rows accessed by the request to the
exact time of the request execution, thereby avoiding unnecessary re-execution for the sole purpose of
reconstructing database state.

Second, we need to provide the original inputs to the re-executed request (except for inputs fixed by
recovery). We solve this by recording all inputs to the request during original execution and reusing them
during recovery. This recorded input also includes results of any non-deterministic function calls made by
the request (e.g., calls to system time or the random number generator); the recorded non-deterministic
values are fed back during recovery to ensure that a request's results during recovery are not needlessly
different from that of its original execution. Returning a different value for a non-deterministic function
call (either because it was not recorded during original execution or because the request made different
non-deterministic calls during recovery) does not affect recovery correctness; it may only lead to a
different final repaired state, increase the amount of re-execution, or increase the number of conflicts
that users need to resolve.

We now give an overview of how we use dependency tracking to identify affected requests.

Dependency tracking requirements. We have two requirements for dependency tracking. First, as
our goal is to reduce resource usage during recovery, we want dependency tracking itself to be fast
and not be resource-intensive. Second, for correctness, dependency tracking should not have any false
negatives (i.e., it should not miss any affected requests). However, it may have false positives (i.e.,
incorrectly identify some unaffected requests as affected), as false positives do not impact correctness
of recovery and only lead to more re-execution. Nevertheless, to minimize re-execution and resource
usage, we want dependency tracking to be precise and have a minimal number of false positives.

To make dependency tracking both fast and precise, our general dependency tracking strategy is
as follows. First, we statically filter out requests that are not dependent, by using information logged
during normal execution. This is fast because it does not require any re-execution, and in practice static
filtering often eliminates a large fraction of the non-dependent requests even though it is imprecise.
Second, to make dependencies more precise, we perform partial re-execution of the requests remaining
after static filtering. We developed techniques to make partial re-execution efficient, which we review
below. Only the requests that are not eliminated by these two steps are re-executed to perform recovery.

Dependencies on patch. A request depends on a patch if its result when executed with the patch
applied is different from its result during original execution; this follows from our earlier definition
of a request's dependency on a root cause. A request that depends on a patch fixing a bug potentially
exploited the bug; therefore, we call tracking dependencies on a patch patch-based auditing, as it amounts
to using the patch to detect intrusions that exploited the bug.

Naively re-executing every request to audit a patch requires as much resources as the original
execution, which defeats our goal of optimizing resource usage. So, we developed three techniques to
speed up patch-based auditing. The first is control-flow filtering, which is a fast static filtering technique
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that filters out requests that did not execute any patched code and are therefore not dependent on the
patch. Though the remaining requests executed patched code, some of them may not be dependent
on the patch, because their results when executed with the patched code may be identical to their
results during original execution. To make dependencies more precise by eliminating such requests,
the remaining requests are re-executed twice-once with the original code and once with the patch
applied-and the results are compared. The second technique, function-level auditing speeds up this re-
execution by eliminating redundant computation between the two executions while auditing a particular
request. The third technique, memoized re-execution, eliminates redundant computation across auditing
of multiple requests. We show that these techniques together speed up patch-based auditing by several
orders of magnitude.

Dependencies through database. Suppose that recovery identifies a request A as affected and re-
executes it, as part of which it wrote some data to the database. Another request B depends on A through
the database if a read query in B, when re-executed, returns different data from the database than it did
during original execution. We consider B to be affected and re-execute it as well.

We track dependencies through the database by first statically filtering out unaffected read queries.
To do this, we group read queries issued during original execution, by the database column values they
used to look up data. During recovery, we use the column values updated by a re-executed write query
to efficiently look up the groups of read queries that were potentially affected by that write query; the
rest of the reads were unaffected by the write and are filtered out. Once static dependency tracking
identifies reads that may be affected, we re-execute each of them and check whether its new result is
indeed different from its result during original execution. This makes dependencies precise, and if a
read's result was unchanged, avoids the more expensive re-execution of an entire request.

1.3.4 Propagating recovery across web applications

An attack can spread from one web application to another, as in the example scenario, where the XSS
attack propagated from the spreadsheet application to the other applications via the update script. The
recovery techniques discussed until now can perform local recovery on the spreadsheet application,
and during this local recovery, the contents of the update script's requests to the other applications are
different from what they were during original execution. One option for the recovery process is to notify
the administrator so that she can perform compensating actions to repair the remote applications; this is
the only option if remote applications were not running our recovery system. However, if the remote
applications are running our recovery system and cooperate, we can automatically propagate repair to
those applications as well and perform repair across all the applications. Making this work in practice
requires the following four techniques.

First, as there is no strict hierarchy of trust among web applications and no single system can be
trusted to orchestrate repair across multiple applications, we automatically extend each application's API
to define a repair protocol that allows applications to invoke repair on their past requests and responses
to other applications. Second, as some applications affected by an attack may be unavailable during
repair and blocking repair until all applications are online is impractical, we perform asynchronous
repair by decoupling the local repair on a single application from the repair of its interactions with other
applications. An application repairs its local state as soon as it is asked to perform a repair, and if any
past requests or responses are affected, it queues a repair message for other applications, which can be
processed when those applications become available.

Third, our repair protocol should not give attackers new ways to subvert the application. To this
end, we enforce access control on every repair invocation. As access control policies can be application-
specific, access checks are delegated to applications using an interface designed for this purpose. Finally,
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with asynchronous repair, some applications affected by an attack can be already repaired, while others
may not yet have received or processed their repair messages. Some applications support such partially
repaired state, while others may not; in an application that does not, partially repaired state can appear
as corrupted to the application's clients and can lead to unexpected behavior. We develop a model to
reason about an application's support for partially repaired state and use the model to show that real,
loosely-coupled web applications support partially repaired state with little or no code changes.

1.4 End-to-end recovery example

This section describes how the techniques developed in this thesis come together to help the administrator
of the spreadsheet application recover from the example XSS attack; we assume that all applications are
running our recovery system. During normal operation, information about each application's execution
is continuously recorded to a recovery log on the application's server. This information includes HTTP
requests, database queries, and versioned rows in the time-travel database; user input in users' browsers;
and communication between servers. During recovery, this recorded information is used both for
dependency tracking as well as re-executing affected requests.

When the developers of the spreadsheet application find the XSS vulnerability and fix it, the
spreadsheet's administrator initiates recovery using the patch, which proceeds as follows (recovery
proceeds similarly for attacks that exploit configuration mistakes or user mistakes).

Recovery begins with patch-based auditing that identifies all requests dependent on the patch; these
requests potentially exploited the XSS bug fixed by the patch and are considered attack suspects. Then
retroactive patching applies the patch and re-executes each of the suspect requests in the past; this
recovers from any corruption caused by them and makes it appear as if these requests executed with the
patched code all along. To re-execute a request in the past, recovery uses the time-travel database to
roll back the rows that the request either wrote to during original execution or will write to as part of
re-execution, to their values at the time the request originally executed; the time-travel database also
allows requests to read past values of rows without rolling them back.

Re-execution of a request leads to re-execution of other requests for three reasons. First, the request's
response could change, in which case the application's UI replayer is invoked on the browser page
rendered by the new response. If there is a conflict, it is queued so that the user can later resolve it;
otherwise, the user input is replayed, which can lead to changes in later requests issued by the browser,
and those are marked for re-execution as well. In the XSS attack example, during recovery, the response
to the attack request does not contain the attack code; after replaying user input on the repaired attack
page, the background request modifying the update script is not issued, and so it is canceled (i.e.,
re-executed with null arguments to make it a no-op).

Second, a request that depends on a re-executed request through the database is also marked
for re-execution. In the XSS attack example, assuming that the update script contents are stored in
the database, illegal executions of the update script depend on the background request, and they are
re-executed as well.

Finally, re-execution of a request can change data communicated to other applications. In the attack
example, when the update script is re-executed during recovery, the communicated access control list
changes, as the attacker is no longer part of the access control list. In this case, repair is propagated to
the remote applications using their repair protocol, and they asynchronously perform local recovery;
this reverts the corruptions resulting from the attacker's illegal logins to those applications.

Recovery continues until there are no more requests to re-execute, at which point the state of the
system has been updated to undo the effects of attacks that exploited the XSS bug, while preserving
effects of legitimate actions.
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1.5 Related work

Existing recovery systems do not adequately address the challenges discussed in this chapter. In this
section, we review them and discuss how they fall short. We present a detailed review of other related
work in Chapter 6.

Industrial backup and restore systems like TimeMachine and Dropbox, and research systems like
ReVirt [24] and Polygraph [52], allow the user to roll back selected system state to a past time. But,
these systems only provide the rollback step of rollback-and-redo and thereby solve just a small part of
the recovery problem; the administrator still has to find the attack, track down modifications made by
the attack, and redo legitimate changes after using these systems to revert the attack's modifications,

Akku§ and Goel's web application data recovery system [11] uses taint tracking to track every
request's database updates, and future requests that read the updated data; it also uses database logs to
generate compensating transactions that revert data modified by a request. This allows an administrator
to identify the data that was tainted by an attack request and roll back those changes. However, this
system has several limitations: using taint for dependency tracking can lead to the problem of taint
explosion, resulting in too many false positives. To deal with this problem, the system allows for false
negatives in dependency tracking, as a result of which it may not fully recover from an attack; this makes
it suitable only for recovering from accidental corruptions caused due to software bugs. Furthermore,
finding the attack and reapplying legitimate changes is still left to the administrator.

Finally, recovery systems like Operator Undo [15] and Retro [45] are closest to, and provide
inspiration for, the work in thesis. They perform recovery using the rollback-and-redo approach
for certain classes of systems-Operator Undo for Email servers, and Retro for shell-oriented Unix
applications on single machine. Once an administrator finds the attack, she can use these systems to roll
back the state to before the attack and redo all the later requests, after fixing the root cause manually.
However, if directly applied to web application recovery, these systems are similar to the high-level
approach discussed in Section 1.1, and they run into the limitations discussed therein. The contributions
of this thesis are in solving the challenges resulting from these limitations, as discussed in this chapter.

1.6 Organization

The ideas in this thesis were explored, implemented, and evaluated as part of three systems, each of
which solves a part of the recovery problem. The first system is WARP [17], which uses the ideas of
retroactive patching, UI replay, time-travel database, and dependency tracking to automate recovery
from attacks that target a single web application. The second system, POIROT [43], optimizes WARP by
making its patch-based auditing precise and efficient using control-flow filtering, function-level auditing,
and memoized re-execution. Finally, the third system, AIRE [18], extends WARP to recover from attacks
that spread across multiple applications. In Chapters 2, 3, and 4, we discuss these three systems in
more detail along with the ideas explored therein. In Chapter 5, we discuss assumptions underlying
our recovery approach and the limitations of our approach. We discuss related work in Chapter 6, and
finally conclude in Chapter 7.
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Chapter 2

Recovery for a single web application

This chapter describes WARP [17], a system which automates recovery from attacks that target a single
web application, including recovery from attacks that run in users' browsers. WARP'S goal is to undo all
changes made by an attacker to a compromised system, including all effects of the attacker's changes on
legitimate actions of other users, and to produce a system state that is as if all the legitimate changes
still occurred, but the adversary never compromised the application.

Though limited to a single web application, WARP by itself is a complete recovery system, and its
design illustrates the core challenges in using rollback-and-redo to perform automated recovery; the
other two systems that comprise this thesis, POIROT and AIRE, build on the foundation laid by WARP. To
perform recovery, WARP needs to solve the following three recovery challenges introduced in Chapter 1
(§1.2): identifying intrusions, reducing administrator burden, and optimizing resource usage. WARP uses
three ideas that were introduced in Chapter 1 to solve these challenges: retroactive patching (§1.3.1),
DOM-level UI replay (§1.3.2), and time-travel database (§1.3.3). This chapter describes these ideas in
detail and presents experimental results of evaluating them in a WARP prototype.

2.1 Overview

We begin with an overview of WARP'S design, which is illustrated in Figure 2-1 and involves the web
browser, the HTTP server, the application code, and the database. Each of these four components
corresponds to a repair manager in WARP. During the application's normal operation, each repair
manager records information that is required to perform rollback and re-execution during repair. As
WARP'S repair relies on this recorded information, the OS, the HTTP server, the application language
runtime, and the database server are in WARP'S trusted computing base. WARP also trusts a user's browser
when repairing requests issued by that user. WARP can recover from attacks on the web application
that do not compromise these trusted components, including common web application attacks such as
SQL injection, cross-site scripting, cross-site request forgery, and clickjacking. WARP can also recover
from attacks that exploit application configuration mistakes and user mistakes, as long as the trusted
components are not compromised.

The information recorded by the repair managers includes information needed for dependency
tracking. This dependency tracking information is organized into a dependency graph called an action
history graph, which captures input and output dependencies of actions on data (e.g., dependencies of
database queries on database rows). The action history graph is used during recovery to identify actions
that are affected (and therefore need to be re-run) when some data is repaired. WARP borrowed the
concept of action history graph from the Retro intrusion recovery system [45] and adapted it to web
application recovery.

25



WARP's workflow begins with the administrator deciding that she wants to make a retroactive fix to
the system, such as applying a security patch or changing a permission in the past. At a high level, WARP

then applies the retroactive fix, uses the action history graph to identify requests affected by the fix,
and re-executes them after rolling back the appropriate database state. Re-execution of these requests
could in turn affect other requests; WARP uses the action history graph to identify those requests and
re-executes them as well. WARP continues this recovery process until all affected requests are repaired.
This produces a repaired system state that would have been generated if all of the recorded actions
originally happened on a system with the fix already applied to it. If some of the recorded actions
exploited a vulnerability that the fix prevents, those actions will no longer have the same effect in the
repaired system state, effectively undoing their exploits.

User's computer Server computer

User Browser - o HTTP server Application Application's
. -r . surce code

Logging - -im- Log module ifApp. runtime -FOU
extension

Figure 2-1: Overview of WARP's design. Components introduced or modified by WARP are shaded. Solid arrows are the original
web application interactions that exist without WARP. Dashed lines indicate interactions added by WARP for logging during
normal execution, and dotted lines indicate interactions added by WARP during repair.

The rest of this section gives an overview of WARP's repair using the following worst-case attack
example. Imagine that a company has a Wiki site that is used by both employees and customers, and
that each user has privileges to edit only certain pages or documents. An attacker logs into the Wiki site
and exploits a cross-site scripting (XSS) vulnerability in the Wiki software to inject malicious JavaScript
code into one of the publicly accessible Wiki pages. When Alice, a legitimate user, views that page, her
browser starts running the attacker's code, which in turn issues HTTP requests to add the attacker to
the access control list for every page that Alice can access, and to propagate the attack code to some
of those pages. The adversary now uses his new privileges to further modify pages. In the meantime,
legitimate users (including Alice) continue to access and edit Wiki pages, including pages modified or
infected by the attack.

Some time after the attack takes place, the administrator learns that a cross-site scripting vulnerability
was discovered by the application's developers, and a security patch for one of the source files-
say, calendar .php-is now available. In order to retroactively apply this security patch, WARP first
determines which runs of the application codel may have been affected by a bug in calendar. php
that was fixed by the patch. WARP then applies the security patch to calendar. php, and considers
re-executing all potentially affected runs of the application. In order to re-execute the application, WARP

records sufficient information during the original execution about all of the inputs to the application,
such as the HTTP request. To minimize the chance that the application re-executes differently for reasons
other than the security patch, WARP records and replays the original return values from non-deterministic
function calls. We call this technique retroactive patching, and §2.2 discusses how WARP implements
retroactive patching in more detail.

'A request to a web application results in execution of application code on the server; we call this execution an application
run.
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Now consider what happens when WARP re-executes the application code for the attacker's initial
request. Instead of adding the attacker's JavaScript code to the Wiki page as it did during the original
execution, the newly patched application code will behave differently (e.g., pass the attacker's JavaScript
code through a sanitization function), and then issue an SQL query to store the resulting page in the
database. This SQL query must logically replace the application's original query that stored an infected
page, SO WARP first rolls back the database to its state before the attack took place.

After the database has been rolled back, and the new query has executed, WARP must determine
what other parts of the system were affected by this changed query. To do this, during original execution
WARP records all SQL queries, along with their results. During repair, WARP re-executes any queries
it determines may have been affected by the changed query. If a re-executed query produces results
different from the original execution, WARP re-executes the corresponding application run as well, such
as Alice's subsequent page visit to the infected page. §2.3 describes the design of WARP'S time-travel
database in more detail, including how it determines query dependencies, how it re-executes queries in
the past, and how it minimizes rollback.

When the application run for Alice's visit to the infected page is re-executed, it generates a different
HTTP response for Alice's browser (with the attack now gone). WARP must now determine how Alice's
browser would behave given this new page. Simply undoing all subsequent HTTP requests from Alice's
browser would needlessly undo all of her legitimate work, and asking Alice to manually check each
HTTP request that her browser made is not practical either. To help Alice recover from such attacks,
WARP provides a browser extension that records all events for each open page in her browser (such as
HTTP requests and user input) and uploads this information to the server. If WARP determines that her
browser may have been affected by an attack, it starts a clone of her browser on the server, and runs
a UI replayer that re-executes her original input on the repaired page, without having to involve her.
Since Alice's re-executed browser will no longer issue the HTTP requests from the XSS attack, WARP will
recursively undo the effects of those requests as well. §2.4 explains how WARP'S browser extension and
UI replayer work in more detail.

If a user's actions depend on the attacker's changes, the UI replayer may be unable to replay the
user's original inputs in the browser clone. For example, if the attacker created a new Wiki page, and
a curious user subsequently edited that page, the UI replayer will not be able to re-execute the user's
actions, as repair removes the attacker's page. In this case, WARP signals a conflict and asks the user (or
administrator) to resolve it. WARP cannot rely on users being always online, SO WARP queues the conflict,
and proceeds with repair.

When the user next logs in, WARP redirects the user to a conflict resolution page. To resolve a conflict,
the user is presented with the original page they visited, the newly repaired version of that page, and the
original action that WARP iS unable to replay on the new page, and is asked to specify what actions they
would like to perform instead. For example, the user can ask WARP to cancel that page visit altogether.
Users or administrators can also use the same mechanism to undo their own actions from the past, such
as if an administrator accidentally gave administrative privileges to a user. §2.4 further discusses WARP'S

handling of conflicts and user-initiated undo.

2.2 Retroactive patching

To implement retroactive patching, WARP'S application repair manager must be able to determine
which runs of an application may have been affected by a given security patch, and to re-execute
them during repair. To enable this, WARP'S application repair manager interposes on the application's
language runtime (PHP in our current prototype) to record any dependencies to and from the application,
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including application code loaded at runtime, queries issued to the database, and HTTP requests and
responses sent to or from the HTTP server.

2.2.1 Normal execution

During normal execution, the application repair manager records three types of dependencies for the
executing application code (along with the dependency's data, used later for re-execution). First, the
repair manager records an input dependency to the HTTP request and an output dependency to the
HTTP response for this run of the application code (along with all headers and data). Second, for each
read or write SQL query issued by the application, the repair manager records, respectively, input or
output dependencies to the database. Third, the repair manager records input dependencies on the
source code files used by the application to handle its specific HTTP request. This includes the initial
PHP file invoked by the HTTP request, as well as any additional PHP source files loaded at runtime
through require or include statements. WARP uses input dependencies on source code files to track
dependencies on a patch, and an application run is marked dependent on a patch if it loaded a patched
file. WARP'S patch dependencies can be imprecise and Chapter 3 describes techniques that make them
precise.

In addition to recording external dependencies, WARP'S application manager also records certain
internal functions invoked by the application code, to reduce non-determinism during re-execution.
This includes calls to functions that return the current date or time, functions that return randomness
(such as mt-rand in PHP), and functions that generate unique identifiers for HTTP sessions (such as
session-start in PHP). For each of these functions, the application manager records the arguments
and return value. This information is used to avoid re-executing these non-deterministic functions during
repair, as we will describe shortly.

2.2.2 Initiating repair

To initiate repair through retroactive patching, the administrator needs to provide the filename of the
buggy source code file, a patch to that file which removes the vulnerability, and a time at which this
patch should be applied (by default, the oldest time available in WARP'S log). In response, the application
repair manager adds a new action to WARP'S action history graph, whose re-execution would apply the
patch to the relevant file at the specified (past) time. The application repair manager then requests that
WARP'S repair controller re-execute the newly synthesized action. WARP will first re-execute this action
(i.e., apply the patch to the file in question), and then use dependencies recorded by the application
repair manager to find and re-execute all runs of the application that loaded the patched source code
file.

2.2.3 Re-execution

During re-execution, the application repair manager invokes the application code in much the same
way as during normal execution, with two differences. First, all inputs and outputs to and from the
application are handled by the repair controller. This allows the repair controller to determine when
re-execution is necessary, such as when a different SQL query is issued during repair, and to avoid
re-executing actions that are not affected or changed.

Second, the application repair manager tries to match up calls to non-deterministic functions during
re-execution with their counterparts during the original run. In particular, when a non-deterministic
function is invoked during re-execution, the application repair manager searches for a call to the same
function, from the same caller location. If a match is found, the application repair manager uses the
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original return value in lieu of invoking the function. The repair manager matches non-deterministic
function calls from the same call site in-order (i.e., two non-deterministic function calls that happened
in some order during re-execution will always be matched up to function calls in that same order during
the original run).

One important aspect of this heuristic is that it is strictly an optimization. Even if the heuristic fails
to match up any of the non-deterministic function calls, the repair process will still be correct, at the
cost of increased re-execution (e.g., if the application code generates a different HTTP cookie during
re-execution, WARP will be forced to re-execute all page visits that used that cookie).

2.3 Time-travel database

The design of WARP'S time-travel database is motivated by three requirements: first, the need to rollback
database state to re-execute SQL queries in the past; second, the need to track database dependencies
and identify application runs affected by an attack; and finally, the need to repair a web application
concurrently with normal operation. WARP aims to minimize the number of SQL queries that are
executed to address these requirements; this section discusses how WARP achieves this goal.

2.3.1 Database rollback

The database manager re-executes an SQL query during repair for one of two reasons: to track database
dependencies or because it was issued by a re-executed application run. The re-executed query runs at
the (past) time at which it originally executed, and so it should see database state as of that time. This is
achieved by rolling back database state to that time, before re-executing the query.

When re-executing a write SQL query, one option is to roll back the entire table that the query
updates, to the time of the query. However, this requires re-execution of all later write SQL queries on
the table to re-apply legitimate changes to the table. This is wasteful, as a write query typically updates
only a few rows.

Instead, to minimize re-execution of write SQL queries, the database manager performs fine-grained
rollback, at the level of individual rows in a table. This ensures that, if one row is rolled back, it may not
be necessary to re-execute updates to other rows in the same table. One complication lies in the fact
that SQL has no inherent way of naming unique rows in a database. To address this limitation, WARP

introduces the notion of a row ID, which is a unique name for a row in a table. Many web applications
already use synthetic primary keys which can serve as row IDs; in this case, WARP uses that primary key
as a row ID in that table. If a table does not already have a suitable row ID column, WARP'S database
manager transparently adds an extra row-id column for this purpose.

To re-execute a read SQL query, one option is to roll back all the rows that the query reads. However,
as read queries often read many rows, this can lead to re-execution of many write queries just to
reconstruct legitimate state. To address this issue, WARP performs continuous versioning of the database,
by keeping track of every value that ever existed for each row. If a re-executed query only reads some
rows that were untouched by repair and does not write to them, WARP allows the query to access the
old value of the untouched rows from precisely the time that query originally ran. Thus, continuous
versioning allows WARP'S database manager to avoid rolling back and reconstructing rows for the sole
purpose of re-executing a read query on their old value.

Some write SQL queries can update different sets of rows during original execution and repair. To
re-execute such multi-row write queries, WARP performs two-phase re-execution by splitting the query
into two parts: the WHERE clause, and the actual write query. During normal execution, WARP records the
set of row IDs of all rows affected by a write query. During re-execution, WARP first executes a SELECT
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statement to obtain the set of row IDs matching the new WHERE clause. These row IDs correspond to the
rows that would be modified by this new write query on re-execution. WARP uses continuous versioning
to precisely roll back both the original and new row IDs to a time just before the write query originally
executed. It then re-executes the write query on this rolled-back database.

To implement continuous versioning, WARP augments every table with two additional columns,
start-time and end-time, which indicate the time interval during which that row value was valid.
Each row R in the original table becomes a series of rows in the continuously versioned table, where
the end-time value of one version of R is the start-time value of the next version of R. The column
end-time can have the special value oo, indicating that row version is the current value of R. During
normal execution, if an SQL query modifies a set of rows, WARP sets end-time for the modified rows to
the current time, with the rest of the columns retaining their old values, and inserts a new set of rows
with start-time set to the current time, endtime set to cc, and the rest of the columns containing
the new versions of those rows. When a row is deleted, WARP simply sets end-time to the current time.
Read queries during normal execution always access rows with endtime = 0c. Rolling back a row to
time T involves deleting versions of the row with st art_time > T and setting end_t ime +- oo for the
version with the largest remaining end-time.

Since WARP'S continuous versioning database grows in size as the application makes modifications,
the database manager periodically deletes old versions of rows. As repair requires that both the old
versions of database rows and the action history graph be available for rollback and re-execution, the
database manager deletes old rows in sync with WARP'S garbage-collection of the action history graph.

2.3.2 Dependency tracking

A re-executed application run may have updated the database, which may affect other application runs,
requiring them to be re-executed as well. Each affected application run has a read query that when
issued on the updated database returns data different from what it returned originally. So, the problem
of database dependency tracking is to identify application runs that may be affected, by finding the read
queries that return different data on the updated database.

Dependency tracking is complicated by the fact that application runs issue queries over entire tables,
and tables often contain data for many independent users or objects of the same type. A naive approach
to track dependencies is to re-execute all read queries after a re-executed application run, and check if
they return different data; however, this defeats our goal of minimizing the number of re-executed SQL
queries to perform dependency tracking.

Instead, the database manager uses static dependency tracking to minimize re-execution of read
queries, as follows. It logically splits each table into partitions, based on the values of one or more of the
table's columns. It then inspects the WHERE clause of every read query logged during original execution
to statically determine the partitions read by the query. For example, in a Wiki application that stores its
Wiki pages in a table with an editor column that indicates the user ID of the last editor of a page, a read
query with a WHERE editor='Alice' clause reads from partition (editor, Alice). After inspecting
the read queries, the database manager creates an index mapping partitions to queries that read those
partitions. If the database manager cannot determine what partitions a query might read based on the
WHERE clause, it conservatively assumes that the query reads all partitions.

During repair, the database manager keeps track of the set of partitions that have been modified (as a
result of either rollback or re-execution), by identifying all the rows each write query affects (see §2.3.1)
and marking partitions corresponding to the column values of these affected rows as modified. The
database manager then looks up the partition index to identify the read queries that may be affected.
Only these read queries are re-executed to check if their return value has changed.
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In our current prototype, the programmer or administrator must manually specify the row ID column
for each table (if they want to avoid the overhead of an extra row-id column created by WARP), and
the partitioning columns for each table (if they want to benefit from the partitioning optimization). A
partitioning column need not be the same column as the row ID. For example, a Wiki application may
store Wiki pages in a table with four columns: a unique page ID, the page title, the user ID of the last
user who edited the page, and the contents of that Wiki page. Because the title, the last editor's user ID,
and the content of a page can change, the programmer would specify the immutable page ID as the row
ID column. However, the application's SQL queries may access pages either by their title or by the last
editor's user ID, so the programmer would specify them as the partitioning columns.

2.3.3 Concurrent repair and normal operation

Since web applications often serve many users, it's undesirable to take the application offline while
recovering from an intrusion. To address this problem, WARP'S database manager introduces the notion
of repair generations, identified by an integer counter, which are used to denote the state of the database
after a given number of repairs. Normal execution happens in the current repair generation. When
repair is initiated, the database manager creates the next repair generation (by incrementing the current
repair generation counter by one), which creates a fork of the current database contents. All database
operations during repair are applied to the next generation. If, during repair, users make changes to
parts of the current generation that are being repaired, WARP will re-apply the users' changes to the next
generation through re-execution. Changes to parts of the database not under repair are copied verbatim
into the next generation. Once repair is near completion, the web server is briefly suspended, any final
requests are re-applied to the next generation, the current generation is set to the next generation, and
the web server is resumed.

WARP implements repair generations by augmenting every table with two additional columns,
startgen and end-gen; these columns indicate the generations in which a row is valid. Much as
with continuous versioning, endgen = oc indicates that the row has not been superseded in any later
generation. During normal execution, queries execute over rows that match start_gen < current and
endgen > current. During repair, if a row with startgen < next and endgen > next is about to be
updated or deleted (due to either re-execution or rollback), the existing row's end-gen is set to current,
and, in case of updates, the update is executed on a copy of the row with startgen = next.

2.3.4 Rewriting SQL queries

WARP intercepts all SQL queries made by the application, and transparently rewrites them to implement
database versioning and generations. For each query, WARP determines the time and generation in which
the query should execute. For queries issued as part of normal execution, WARP uses the current time
and generation. For queries issued as part of repair, WARP'S repair controller explicitly specifies the time
for the re-executed query, and the query always executes in the next generation.

To execute a SELECT query at time T in generation G, WARP restricts the query to run over cur-
rently valid rows by augmenting its WHERE clause with AND starttime < T < end-time AND
start-gen < G < end-gen.

During normal execution, on an UPDATE or DELETE query at time T (the current time), WARP

implements versioning by making a copy of the rows being modified. To do this, WARP sets the
end-time of rows being modified in the current generation to T, and inserts copies of the rows with
start _time <- T, endtime <- oo, startgen <- G, and endgen <- oc, where G = current. WARP

also restricts the WHERE clause of such queries to run over currently valid rows, as with SELECT queries
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above. On an INSERT query, WARP sets start-time, endtime, start-gen, and endcgen columns of
the inserted row as for UPDATE and DELETE queries above.

To execute an UPDATE or DELETE query during repair at time T, WARP must first preserve any rows
being modified that are also accessible from the current generation, so that they continue to be accessible
to concurrently executing queries in the current generation. To do so, WARP creates a copy of all matching
rows, with end gen set to current, sets the startgen of the rows to be modified to next, and then
executes the UPDATE or DELETE query as above, except in generation G = next. Executing an INSERT
query during repair does not require preserving any existing rows; in this case, WARP simply performs
the same query rewriting as for normal execution, with G = next.

2.4 DOM-level replay of user input

During repair, WARP replays user input in a re-executed browser for two reasons. First, to automatically
replay user actions in a changed web page without involving the user, thereby reducing burden on the
user. Second, to help users recover from attacks that took place in their browsers; for example, if a
repaired HTTP response no longer contains an adversary's JavaScript code (e.g., because the cross-site
scripting vulnerability was retroactively patched), re-executing the page in a browser will not generate
the HTTP requests that the attacker's JavaScript code may have originally initiated, and will thus allow
WARP to undo those requests.

When WARP determines that a past HTTP response was incorrect, it re-executes the changed web
page in a browser and replays user input, to determine how that page would behave as a result of the
change. WARP'S browser re-execution uses two ideas. First, as users' browsers may not be online during
repair, WARP uses a cloned browser on the server for the re-execution. Second, WARP performs DOM-level
replay of user input when re-executing pages in a browser. By recording and re-executing user input
at the level of the browser's DOM, WARP can better capture the user's intent as to what page elements
the user was trying to interact with. A naive approach that recorded pixel-level mouse events and key
strokes may fail to replay correctly when applied to a page whose HTML code has changed slightly. On
the other hand, DOM elements are more likely to be unaffected by small changes to an HTML page,
allowing WARP to automatically re-apply the user's original inputs to a modified page during repair.

2.4.1 Tracking page dependencies

In order to determine what should be re-executed in the browser given some changes on the server,
WARP needs to be able to correlate activity on the server with activity in users' browsers.

First, to correlate requests coming from the same web browser, during normal execution, WARP'S
recording browser extension assigns each browser client a unique client ID value. The client ID also
helps WARP keep track of log information uploaded to the server by different clients. The client ID is
a long random value to ensure that an adversary cannot guess the client ID of a legitimate user and
upload logs on behalf of that user.

Second, WARP also needs to correlate different HTTP requests coming from the same page in a
browser. To do this, WARP introduces the notion of a page visit, corresponding to the period of time that
a single web page is open in a browser frame (e.g., a tab, or a sub-frame in a window). If the browser
loads a new page in the same frame, WARP considers this to be a new visit (regardless of whether the
frame navigated to a different URL or to the same URL), since the frame's page starts executing in the
browser anew. In particular, WARP'S browser extension assigns each page visit a visit ID, unique within a
client. Each page visit can also have a dependency on a previous page visit. For example, if the user
clicks on a link as part of page visit #1, the browser extension creates page visit #2, which depends
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on page visit #1. This allows WARP to check whether page visit #2 needs to re-execute if page visit #1
changes. If the user clicks on more links, and later hits the back button to return to the page from visit
#2, this creates a fresh page visit #N (for the same page URL as visit #2), which also depends on visit
#1.

Finally, WARP needs to correlate HTTP requests issued by the web browser with HTTP requests
received by the HTTP server, for tracking dependencies. To do this, the WARP browser extension assigns
each HTTP request a request ID, unique within a page visit, and sends the client ID, visit ID, and request
ID along with every HTTP request to the server via HTTP headers.

On the server side, the HTTP server's manager records dependencies between HTTP requests and
responses (identified by a (clientid, visit id, request id) tuple) and runs of application code (identified
by a (pid, count) tuple, where pid is the PID of the long-lived PHP runtime process, and count is a unique
counter identifying a specific run of the application).

2.4.2 Recording events

During normal execution, the browser extension performs two tasks. First, it annotates all HTTP requests,
as described above, with HTTP headers to help the server correlate client-side actions with server-side
actions. Second, it records all JavaScript events that occur during each page visit (including timer events,
user input events, and postMessage events). For each event, the extension records event parameters
(e.g., time and event type) and properties of the event's target DOM element (e.g., ID and XPath), which
help perform DOM-level replay during repair.

The extension uploads its log of JavaScript events for each page visit to the server, using a separate
protocol (tagged with the client ID and visit ID). On the server side, WARP's HTTP server records the
submitted information from the client into a separate per-client log, which is subject to its own storage
quota and garbage-collection policy. This ensures that a single client cannot monopolize log space on
the server, and more importantly, cannot cause a server to garbage-collect recent log entries from other
users needed for repair.

Although the current WARP prototype implements client-side logging using an extension, the exten-
sion does not circumvent any of the browser's privacy policies. All of the information recorded by WARP'S

browser extension can be captured at the JavaScript level by event handlers, and this could be used
to implement an extension-less version of WARP'S browser logging by interposing on all events using
JavaScript rewriting.

2.4.3 Server-side re-execution

When WARP determines that an HTTP response changed during repair, the browser repair manager
spawns a browser on the server to re-execute the client's uploaded browser log for the affected page visit.
This browser uses a re-execution extension to load the client's HTTP cookies, load the same URL as during
original execution, and replay the client's original DOM-level events. The user's cookies are loaded
either from the HTTP server's log, if re-executing the first page for a client, or from the last browser
page re-executed for that client. The re-executed browser runs in a sandbox, and only has access to the
client's HTTP cookie, ensuring that it gets no additional privileges despite running on the server. To
handle HTTP requests from the re-executing browser, the HTTP server manager starts a separate copy of
the HTTP server, which passes any HTTP requests to the repair controller, as opposed to executing them
directly. This allows the repair controller to prune re-execution for identical requests or responses.

WARP'S re-execution extension uses a UI replayer to replay the events originally recorded by the user's
browser. For each event, the UI replayer tries to locate the appropriate DOM element using the element's
ID or XPath. For keyboard input events into text fields, the UI replayer performs a three-way text merge
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between the original value of the text field, the new value of the text field during repair, and the user's
original keyboard input. For example, this allows the UI replayer to replay the user's changes to a text
area when editing a Wiki page, even if the Wiki page in the text area is somewhat different during repair.

If, after repair, a user's HTTP cookie in the cloned browser differs from the user's cookie in his or
her real browser (based on the original timeline), WARP queues that client's cookie for invalidation, and
the next time the same client connects to the web server (based on the client ID), the client's cookie
will be deleted. WARP assumes that the browser has no persistent client-side state aside from the cookie.
Repair of other client-side state could be similarly handled at the expense of additional logging and
synchronization.

2.4.4 Conflicts

During repair, WARP'S UI replayer may fail to re-execute the user's original inputs, if the user's actions
somehow depended on the reverted actions of the attacker. For example, in the case of a Wiki page, the
attacker may have added an attack link that the user clicked on, or the user may have inadvertently
edited a part of the Wiki page that the attacker modified. To deal with such scenarios, WARP'S UI replayer
replays original user input on a DOM element only if the element is found in the repaired page and the
element's properties are unchanged (except for the three-way merge on text fields, as described earlier);
otherwise WARP'S browser repair manager signals a conflict, stops re-execution of that user's browser,
and requires the user (or an administrator, in lieu of the user) to resolve the conflict.

Since users are not always online, WARP queues the conflict for later resolution, and proceeds with
repair, assuming, for now, that subsequent requests from that user's browser do not change. When the
user next logs into the web application (based on the client ID), the application redirects the user to a
conflict resolution page, which tells the user about the page on which the conflict arose, and the user's
input that could not be replayed. The user must then indicate how the conflict should be resolved. For
example, the user can indicate that they would like to cancel the conflicted page visit altogether (i.e.,
undo all of its HTTP requests), and apply the legitimate changes (if any) to the current state of the
system by hand.

2.4.5 Application-specific UI replay

WARP'S default UI replayer is concerned with replaying inputfrom the user on the correct DOM element;
hence it replays user input on a DOM element if the element's properties are unchanged, and flags a
conflict otherwise. This scheme makes the simplifying assumption that a user action on a DOM element
is not influenced by other DOM elements on the page. Though this works well in general, it may not be
appropriate for some scenarios, where important information must be correctly displayed to the user,
because the user's action depends on the displayed information. For example, consider an online money
transfer application that displays the transfer amount to the user before she clicks the submit button.
Assume an attacker initiates a transfer of $1,000 from a user but subverts the transfer application to
display only $500 to trick the user into clicking the submit button. During repair, the displayed amount
is corrected to $1,000; however, WARP's default UI replayer clicks on the submit button (because repair
did not change the button's properties) and completes the transfer, which is incorrect.

To handle such scenarios, WARP allows the application's programmer to override the default UI
replayer with an application-specific UI replayer. The application's UI replayer, given the DOM trees
of the original and repaired pages, and the original user actions, can replay the user actions or flag
a conflict. In the above example, the application's UI replayer detects that the transfer amount has
changed and signals a conflict, so that the user can take corrective action (e.g., cancel the transfer).
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Firefox extension 2,000 lines of JavaScript / HTML
Apache logging module 900 lines of C
PHP runtime / SQL rewriter 1,400 lines of C and PHP
PHP re-execution support 200 lines of Python
Repair managers: 4,300 lines of Python, total

Retro's repair controller 400 lines of Python
PHP manager 800 lines of Python
Apache manager 300 lines of Python
Database manager 1,400 lines of Python and PHP
Firefox manager 400 lines of Python
Retroactive patching manager 200 lines of Python
Others 800 lines of Python

Table 2.1: Lines of code for different components of the WARP prototype, excluding blank lines and comments.

2.4.6 User-initiated repair

In some situations, users or administrators may want to undo their own past actions. For example, an

administrator may have accidentally granted administrative privileges to a user, and later may want to
revert any actions that were allowed due to this misconfiguration. To recover from this mistake, the
administrator can use WARP'S browser extension to specify a URL of the page on which the mistake
occurred, find the specific page visit to that URL which led to the mistake, and request that the page
visit be canceled. Our prototype does not allow replacing one past action with another, although this is
mostly a UI limitation.

Allowing users to undo their own actions runs the risk of creating more conflicts, if other users'
actions depended on the action in question. To prevent cascading conflicts, WARP prohibits a regular
user (as opposed to an administrator) from initiating repair that causes conflicts for other users. WARP'S

repair generation mechanism allows WARP to try repairing the server-side state upon user-initiated repair,
and to abort the repair if any conflicts arise. The only exception to this rule is if the user's repair is a
result of a conflict being reported to that user on that page, in which case the user is allowed to cancel
all actions, even if it propagates a conflict to another user.

2.5 Implementation

We have implemented a prototype of WARP which works with the Firefox browser on the client, and
Apache, PostgreSQL, and PHP on the server. Table 2.1 shows the lines of code for the different
components of our prototype.

Our Firefox extension intercepts all HTTP requests during normal execution and adds WARP'S client
ID, visit ID, and request ID headers to them. It also intercepts all browser frame creations, and adds an
event listener to the frame's window object. This event listener gets called on every event in the frame,
and allows us to record the event. During repair, the re-execution extension tries to match up HTTP
requests with requests recorded during normal execution, and adds the matching request ID header
when a match is found. Our current conflict resolution UI only allows the user to cancel the conflicting
page visit; other conflict resolutions must be performed by hand. We plan to build a more comprehensive
UI, but canceling has been sufficient for now.

In our prototype, the user's client-side browser and the server's re-execution browser use the same
version of Firefox. While this has simplified the development of our UI replayer, we expect that DOM-
level events are sufficiently standardized in modern browsers that it would be possible to replay events
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Reflected XSS 2009-0737 The user options (wgDB*) in the live web- Sanitize all user options with
based installer (config/index.php) are not htmlspecialchars( o(r46889).
HTML-escaped.

Stored XSS 2009-4589 The name of contribution link Sanitize the ip parameter with
(Special:Block?ip) is not HTML-escaped. htmlspecialchars o(r52521).

CSRF 2010-1150 HTML/API login interfaces do not properly Include a random challenge token in a
handle an unintended login attempt (login hidden form field for every login attempt
CSRF). (r64677).

Clickjacking 2011-0003 A malicious website can embed MediaWiki Add X-Frame-Options: DENY to HTTP
within an iframe. headers (r79566).

SQL injection 2004-2186 The language identifier, thelang, is not prop- Sanitize the thelang parameter with
erly sanitized in SpecialMaintenance. php. wfStrencode o.

ACL error - Administrator accidentally grants admin privi- Revoke the user's admin privileges.
leges to a user.

Table 2.2: Security vulnerabilities and corresponding fixes for MediaWiki. Where available, we indicate the revision number of
each fix in MediaWiki's subversion repository, in parentheses.

across different browsers, such as recent versions of Firefox and Chrome. We have not verified this to
date, however.

Our time-travel database and repair generations are implemented on top of PostgreSQL using SQL
query rewriting. After the application's database tables are installed, WARP extends the schema of all the
tables to add its own columns, including row-id if no existing column was specified as the row ID by the
programmer. All database queries are rewritten to update these columns appropriately when the rows
are modified. The approach of using query rewriting was chosen to avoid modifying the internals of the
Postgres server, although an implementation inside of Postgres would likely have been more efficient.

To allow multiple versions of a row from different times or generations to exist in the same table,
WARP modifies database uniqueness constraints and primary keys specified by the application to include
the end-ts and end-gen columns. While this allows multiple versions of the same row over time to
co-exist in the same table, WARP must now detect dependencies between queries through uniqueness
violations. In particular, WARP checks whether the success (or failure) of each INSERT query would
change as a result of other rows inserted or deleted during repair, and rolls back that row if so.
WARP needs to consider INSERT statements only for partitions under repair. Our time-travel database
implementation does not support foreign keys, so it disables them. We plan to implement foreign
key constraints in the future in a database trigger. Our design is compatible with multi-statement
transactions; however, our current implementation does not support them, and we did not need them
for our current applications.

WARP extends Apache's PHP module to log HTTP requests that invoke PHP scripts. WARP intercepts
a PHP script's calls to database functions, mtrand, date and time functions, and sessionstart, by
rewriting all scripts to call a wrapper function that invokes the wrapped function and logs the arguments
and results.

2.6 Putting it all together

We now illustrate how different components of WARP work together in the context of a simple Wiki
application. In this case, no attack takes place, but most of the steps taken by WARP remain the same as
in a case with an attack.
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Consider a user who, during normal execution, clicks on a link to edit a Wiki page. The user's
browser issues an HTTP request to edit .php. WARP'S browser extension intercepts this request, adds
client ID, visit ID, and request ID HTTP headers to it, and records the request in its log (§2.4.1). The
web server receives this request and dispatches it to WARP'S PHP module. The PHP module assigns this
request a unique server-side request ID, records the HTTP request information along with the server-side
request ID, and forwards the request to the PHP runtime.

As WARP'S PHP runtime executes edit .php, it intercepts three types of operations. First, for each
non-deterministic function call, it records the arguments and the return value (§2.2.1). Second, for each
operation that loads an additional PHP source file, it records the file name (§2.2.1). Third, for each
database query, it records the query, rewrites the query to implement WARP'S time-travel database, and
records the result set and the row IDs of all rows modified by the query (§2.3).

Once edit. php completes execution, the response is recorded by the PHP module and returned
to the browser. When the browser loads the page, WARP'S browser extension attaches handlers to
intercept user input, and records all intercepted actions in its log (§2.4.2). The WARP browser extension
periodically uploads its log to the server.

When a patch fixing a vulnerability in edit. php becomes available, the administrator instructs WARP

to perform retroactive patching. The WARP repair controller uses the action history graph to locate all
PHP executions that loaded edit . php and queues them for re-execution; the user edit action described
above would be among this set.

To re-execute this page in repair mode, the repair controller launches a browser on the server,
identical to the user's browser, and instructs it to replay the user session. The browser re-issues the
same requests, and the WARP browser extension assigns the same IDs to the request as during normal
execution (§2.4.3). The WARP PHP module forwards this request to the repair controller, which launches
WARP'S PHP runtime to re-execute it.

During repair, the PHP runtime intercepts two types of operations. For non-deterministic function
calls, it checks whether the same function was called during the original execution, and if so, re-uses the
original return value (§2.2.3). For database queries, it forwards the query to the repair controller for
re-execution.

To re-execute a database query, the repair controller determines the rows and partitions that the
query depends on, rolls them back to the right version (for a write operation), rewrites the query to
support time-travel and generations, executes the resulting query, and returns the result to the PHP
runtime (§2.3).

After a query re-executes, the repair controller uses dependency tracking to find other database
queries that depended on the partitions affected by the re-executed query (assuming it was a write). For
each such query, the repair controller checks whether their return values would now be different. If so,
it queues the page visits that issued those queries for re-execution.

After edit.php completes re-execution, the HTTP response is returned to the repair controller,
which forwards it to the re-executing browser via the PHP module. Once the response is loaded in the
browser, the WARP UI replayer replays the original user inputs on that page (§2.4.3). If conflicts arise,
WARP flags them for manual repair (§2.4.4).

WARP'S repair controller continues repairing pages in this manner until all affected pages are re-
executed. Even though no attack took place in this example, this re-execution algorithm would repair
from any attack that exploited the vulnerability in edit . php.
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2.7 Evaluation

In evaluating WARP, we answer several questions. §2.7.1 shows what it takes to port an existing web
application to WARP. §2.7.2 shows what kinds of attacks WARP can repair from, what attacks can be
detected and fixed with retroactive patching, how much re-execution may be required, and how often
users need to resolve conflicts. §2.7.3 shows the effectiveness of WARP'S UI repair in reducing user
conflicts. §2.7.4 compares WARP with the state-of-the-art work in data recovery for web applications [11].
Finally, §2.7.5 measures WARP'S runtime cost.

We ported MediaWiki [55], a popular Wiki application that also runs the Wikipedia site, to use
WARP, and used several previously discovered vulnerabilities to evaluate how well WARP can recover
from intrusions that exploit those bugs. The results show that WARP can recover from six common attack
types, that retroactive patching detects and repairs all tested software bugs, and that WARP'S techniques
reduce re-execution and user conflicts. WARP'S overheads are 24-27% in throughput and 2-3.2 GB/day
of storage.

2.7.1 Application changes

We did not make any changes to MediaWiki source code to port it to WARP. To choose row IDs for
each MediaWiki table, we picked a primary or unique key column whose value MediaWiki assigns once
during creation of a row and never overwrites. If there is no such column in a table, WARP adds a new
row-id column to the table, transparent to the application. We chose partition columns for each table
by analyzing the typical queries made by MediaWiki and picking the columns that are used in the WHERE
clauses of a large number of queries on that table. In all, this required a total of 89 lines of annotation
for MediaWiki's 42 tables.

2.7.2 Recovery from attacks

To evaluate how well WARP can recover from intrusions, we constructed six worst-case attack scenarios
based on five recent vulnerabilities in MediaWiki and one configuration mistake by the administrator,
shown in Table 2.2. After each attack, users browse the Wiki site, both reading and editing Wiki pages.
Our scenarios purposely create significant interaction between the attacker's changes and legitimate
users, to stress WARP's recovery aspects. If WARP can disentangle these challenging attacks, it can also
handle any simpler attack.

In the stored XSS attack, the attacker injects malicious JavaScript code into a MediaWiki page. When
a victim visits that Wiki page, the attacker's JavaScript code appends text to a second Wiki page that the
victim has access to, but the attacker does not. The SQL injection and reflected XSS attacks are similar in
design. Successful recovery from these three attacks requires deleting the attacker's JavaScript code;
detecting what users were affected by that code; undoing the effects of the JavaScript code in their
browsers (i.e., undoing the edits to the second page); verifying that the appended text did not cause
browsers of users that visited the second page to misbehave; and preserving all users' legitimate actions.

The CSRF attack is a login CSRF attack, where the goal of the attacker is to trick the victim into
making her edits on the Wiki under the attacker's account. When the victim visits the attacker's site, the
attack exploits the CSRF vulnerability to log the victim out of the Wiki site and log her back in under the
attacker's account. The victim then interacts with the Wiki site, believing she is logged in as herself, and
edits various pages. A successful repair in this scenario would undo all of the victim's edits under the
attacker's account, and re-apply them under the victim's own account.

In the clickjacking attack, the attacker's site loads the Wiki site in an invisible frame and tricks
the victim into thinking she is interacting with the attacker's site, while in fact she is unintentionally
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Reflected XSS Retroactive patching R / 0
Stored XSS Retroactive patching / 0
CSRF Retroactive patching / 0
Clickjacking Retroactive patching / 3
SQL injection Retroactive patching / 0
ACL error Admin-initiated / 1

Table 2.3: WARP repairs the attack scenarios listed in Table 2.2. The initial repair column indicates the method used to initiate
repair.

interacting with the Wiki site, logged in as herself. Successful repair in this case would undo all
modifications unwittingly made by the user through the clickjacked frame.

We used retroactive patching to recover from all the above attacks, with patches implementing the
fixes shown in Table 2.2.

Finally, we considered a scenario where the administrator of the Wiki site mistakenly grants a user
access to Wiki pages she should not have been given access to. At a later point of time, the administrator
detects the misconfiguration, and initiates undo of his action using WARP. Meanwhile, the user has
used her elevated privileges to edit pages that she should not have been able to edit in the first place.
Successful recovery, in this case, would undo all the modifications by the unprivileged user.

For each of these scenarios we ran a workload with 100 users. For all scenarios except the ACL error
scenario, we have one attacker, three victims that were subject to attack, and 96 unaffected users. For
the ACL error scenario, we have one administrator, one unprivileged user that takes advantage of the
administrator's mistake, and 98 other users. During the workloads, all users login, read, and edit Wiki
pages. In addition, in all scenarios except the ACL error, the victims visit the attacker's web site, which
launches the attack from their browser.

Table 2.3 shows the results of repair for each of these scenarios. First, WARP can successfully repair
all of these attacks. Second, retroactive patching detects and repairs from intrusions due to all five
software vulnerabilities; the administrator does not need to detect or track down the initial attacks.
Finally, WARP has few user-visible conflicts. Conflicts arise either because a user was tricked by the
attacker into performing some browser action, or because the user should not have been able to perform
the action in the first place. The conflicts in the clickjacking scenario are of the first type; we expect
users would cancel their page visit on conflict, since they did not mean to interact with the MediaWiki
page on the attack site. The conflict in the ACL error scenario is of the second type, since the user no
longer has access to edit the page; in this case, the user's edit has already been reverted, and the user
can resolve the conflict by, perhaps, editing a different page.

2.7.3 UI repair effectiveness

We evaluated the effectiveness of WARP's UI repair by considering three types of attack code, for an XSS
attack. The first is a benign, read-only attack where the attacker's JavaScript code runs in the user's
browser but does not modify any Wiki pages. The second is an append-only attack, where the malicious
code appends text to the victim's Wiki page. Finally, the overwrite attack completely corrupts the victim's
Wiki page.

We ran these attacks under three configurations of the re-execution browser: First, without WARP'S
UI replayer; second, with WARP'S UI replayer but without WARP'S text merging for user input; and third,
with WARP'S complete UI replayer. Our experiment had one attacker and eight victims. Each user logged
in, visited the attack page to trigger one of the above three attacks, edited Wiki pages, and logged out.
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Attack action Number of users with conflict
No UI replayer No text merge WARP

read-only 8 0 0
append-only 8 8 0
overwrite 8 8 8

Table 2.4: Effectiveness of WARP's UI repair. Each entry indicates whether a user-visible conflict was observed during repair.
This experiment involved eight victim users and one attacker.

Table 2.4 shows the results when WARP is invoked to retroactively patch the XSS vulnerability.
Without WARP'S UI replayer, WARP cannot verify whether the attacker's JavaScript code was benign
or not, and raises a conflict for every victim of the XSS attack. With the UI replayer but without
text-merging, WARP can verify that the read-only attack was benign, and raises no conflict, but cannot
re-execute the user's page edits if the attacker did modify the page slightly, raising a conflict in that
scenario. Finally, WARP'S full UI replayer is able to re-apply the user's page edits despite the attacker's
appended text, and raises no conflict in that situation. When the attacker completely corrupts the page,
applying user's original changes in the absence of the attack is meaningless, and a conflict is always
raised.

2.7.4 Recovery comparison with prior work

Here we compare WARP with state-of-the-art work in data recovery for web applications by Akku and
Goel [11]. Their system uses taint tracking in web applications to recover from data corruption bugs.
In their system, the administrator identifies the request that triggered the bug, and their system uses
several dependency analysis policies to do offline taint analysis and compute dependencies between
the request and database elements. The administrator uses these dependencies to manually undo the
corruption. Each specific policy can output too many dependencies (false positives), leading to lost data,
or too few (false negatives), leading to incomplete recovery.

Akku and Goel used five corruption bugs from popular web applications to evaluate their system.
To compare WARP with their system, we evaluated WARP with four of these bugs-two each in Drupal
and Gallery2. The remaining bug is in Wordpress, which does not support our Postgres database. Porting
the buggy versions of Drupal and Gallery2 to use WARP did not require any changes to source code.
We replicated each of the four bugs under WARP. Once we verified that the bugs were triggered, we
retroactively patched the bug. Repair did not require any user input, and after repair, the applications
functioned correctly without any corrupted data.

Table 2.5 summarizes this evaluation. WARP has three key advantages over Akku and Goel's system.
First, unlike their system, WARP never incurs false negatives and always leaves the application in an
uncorrupted state. Second, WARP only requires the administrator to provide the patch that fixes the
bug, whereas Akku and Goel require the administrator to manually guide the dependency analysis by
identifying requests causing corruption, and by whitelisting database tables. Third, unlike WARP, their
system cannot recover from attacks on web applications, and cannot recover from problems that occur
in the browser.

2.7.5 Performance evaluation

In this subsection, we evaluate WARP'S performance under different scenarios. In these experiments, we
ran the server on a 3.07 GHz Intel Core i7 950 machine with 12 GB of RAM. WARP'S repair algorithm is
currently sequential. Running it on a machine with multiple cores makes it difficult to reason about the
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False +ves User input False +ves User input
Drupal - lost voting info 89 / 0 Yes 0 No
Drupal - lost comments 95 / 0 Yes 0 No
Gallery2 - removing perms 82 / 10 Yes 0 No
Gallery2 - resizing images 119 / 0 Yes 0 No

Table 2.5: Comparison of WARP with Akku§ and Goel's system [11]. False positives are reported for the best dependency policy
in [11] that has no false negatives for these bugs, although there is no single best policy for that system. Akku§ and Goel
can also incur false negatives, unlike WARP. The numbers shown before and after the slash are without and with table-level
white-listing, respectively

Page visits / second Data stored per page visit
Workload No WARP WARP During repair Browser App. DB
Reading 8.46 6.43 4.50 0.22 KB 1.49 KB 2.00 KB
Editing 7.19 5.26 4.00 0.21 KB 1.67 KB 5.46 KB

Table 2.6: Overheads for users browsing and editing Wiki pages in MediaWiki. The page visits per second are for MediaWiki
without WARP, with WARP installed, and with WARP while repair is concurrently underway. A single page visit in MediaWiki can
involve multiple HTTP requests and SQL queries. Data stored per page visit includes all dependency information (compressed)
and database checkpoints.

CPU usage of various components of WARP; so we ran the server with only one core turned on and with
hyperthreading turned off. However, during normal execution, WARP can take full advantage of multiple
processor cores when available.

Logging overhead. We first evaluate the overhead of using WARP by measuring the performance of
MediaWiki with and without WARP for two workloads: reading Wiki pages, and editing Wiki pages. The
clients were 8 Firefox browsers running on a machine different from the server, sending requests as fast
as possible; the server experienced 100% CPU load. The client and server machines were connected
with a 1 Gbps network.

Table 2.6 shows the throughput of MediaWiki with and without WARP, and the size of WARP'S logs.
For the reading and editing workloads, respectively, WARP incurs throughput overheads of 24% and 27%,
and storage costs of 3.71 KB and 7.34 KB per page visit (or 2 GB/day and 3.2 GB/day under continuous
100% load). Many web applications already store similar log information; a 1 TB drive could store
about a year's worth of logs at this rate, allowing repair from attacks within that time period. We believe
that this overhead would be acceptable to many applications, such as a company's Wiki or a conference
reviewing web site.

To evaluate the overhead of WARP'S browser extension, we measured the load times of a Wiki page
in the browser with and without the WARP extension. This experiment was performed with an unloaded
MediaWiki server. The load times were 0.21 secs and 0.20 secs with and without the WARP extension
respectively, showing that the WARP browser extension imposes negligible overhead.

Finally, WARP indexes its logs to support incremental loading of its dependency graph during repair.
In our current prototype, for convenience, indexing is implemented as a separate step after normal
execution. This indexing step takes 24-28 ms per page visit for the workloads we tested. If done during
normal execution, this would add less than an additional 12% overhead.

Repair performance. We evaluate WARP'S repair performance by considering four scenarios. First, we
consider a scenario where a retroactive patch affects a small, isolated part of the action history graph.
This scenario evaluates WARP'S ability to efficiently load and redo only the affected actions. To evaluate
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Number of re-executed actions
Page visits App. runs SQL queries

Original
exec. time Total

Repair time breakdown
Init Graph Firefox DB App. Ctrl Idle

Reflected XSS 14 / 1,011 13 / 1,223 258 / 24,746 180.04 17.87 2.44 0.13 1.21 1.24 2.45 8.99 1.41
Stored XSS 14/1,007 15/ 1,219 293/24,740 179.22 16.74 2.64 0.12 1.12 0.98 2.45 8.23 1.20
SQL injection 22 / 1,005 23 / 1,214 524 / 24,541 177.82 29.70 2.41 0.16 1.65 0.05 4.16 17.25 4.01
ACL error 13 / 1,000 13 / 1,216 185 / 24,326 176.52 10.75 0.54 0.49 1.04 0.03 2.25 6.04 0.35
(evcted start) 14 / 1,011 14 / 1,223 1,800 / 24,741 178.21 66.67 2.50 14.46 1.27 26.13 2.23 14.12 5.97

CSRF
Clickjacking

1,005 /1,005 1,007 / 1,217
1,011 /1,011 995 / 1,216

19,799 / 24,578
23,227 / 24,641

174.97
174.31

1,644.53
1,751.74

159.99 0.46 52.01 0.70 174.04 1,222.05 35.27
162.49 0.45 52.19 0.75 171.18 1,320.89 43.78

Table 2.7: Performance of WARP in repairing attack scenarios described in Table 2.2 for a workload with 100 users. The "re-executed actions" columns show the number of
re-executed actions out of the total number of actions in the workload. The execution times are in seconds. The "original execution time" column shows the CPU time taken by
the web application server, including time taken by database queries. The "repair time breakdown" columns show, respectively, the total wall clock repair time, the time to
initialize repair (including time to search for attack actions), the time spent loading nodes into the action history graph, the CPU time taken by the re-execution Firefox browser,
the time taken by re-executed database queries that are not part of a page re-execution, time taken to re-execute page visits including time to execute database queries issued
during page re-execution, time taken by WARP's repair controller, and time for which the CPU is idle during repair.

Attack scenario

Reflected XSS
Stored XSS
SQL injection
ACL error

Number of re-executed actions
Page visits App. runs SQL queries
14 / 50,011
32 / 50,007
26 / 50,005
11 / 50,000

14 / 60,023
33 / 60,019
27 / 60,014
11 / 60,016

281 / 1,222,656
733 / 1,222,652
578 / 1,222,495
133 / 1,222,308

Original
exec. time
8,861.55
8,841.67
8,875.06
8,879.55

Repair time breakdown
Total I Init Graph Firefox DB App. Ctrl
48.28
56.50

273.40
41.81

11.34
11.49

14.57
9.20

10.89
11.10
15.98
10.25

1.33
2.10
7.37
1.07

0.52
0.04
0.09
0.08

2.23
5.58
4.85
1.74

21.30
23.98

118.18
19.10

Table 2.8: Performance of WARP in attack scenarios for workloads of 5,000 users. See Table 2.7 for a description of the columns.

Attack scenario

Idle
0.67
2.22

112.36
0.37



this scenario, we used the XSS, SQL injection, and ACL error workloads from §2.7.2 with 100 users, and
victim page visits at the end of the workload. The results are shown in the first four rows of Table 2.7.
The re-executed actions columns show that WARP re-executes only a small fraction of the total number of
actions in the workload, and a comparison of the original execution time and total repair time columns
shows that repair in these scenarios takes an order of magnitude less time than the original execution
time.

Second, we evaluate a scenario where the patch affects a small part of the action history graph as
before, but the affected actions in turn may affect several other actions. To test this scenario, we used
the reflected XSS workload with 100 users, but with victims at the beginning of the workload, rather
than at the end. Re-execution of the victims' page visits in this case causes the database state to change,
which affects non-victims' page visits. This scenario tests WARP'S ability to track database dependencies
and selectively re-execute database queries without having to re-execute non-victim page visits. The
results for this scenario are shown in the fifth row of Table 2.7.

A comparison of the results for both the reflected XSS attack scenarios shows that WARP re-executes
the same number of page visits in both cases, but the number of database queries is significantly greater
when victims are at the beginning. These extra database queries are queries from non-victim page visits
which depend on the database partitions that changed as a result of re-executing victim pages. These
queries are of two types: SELECT queries that need to be re-executed to check whether their result
has changed, and UPDATE queries that need to be re-executed to update the rolled-back database rows
belonging to the affected database partitions. From the repair time breakdown columns, we see that
the graph loading for these database query actions and their re-execution are the main contributors to
the longer repair time for this scenario, as compared to when victims were at the end of the workload.
Furthermore, we see that the total repair time is about one-third of the time for original execution, and
so WARP'S repair is significantly better than re-executing the entire workload.

Third, we consider a scenario where a patch requires all actions in the history to be re-executed. We
use the CSRF and clickjacking attacks as examples of this scenario. The results are shown in the last two
rows of Table 2.7. WARP takes an order of magnitude more time to re-execute all the actions in the graph
than the original execution time. Our unoptimized repair controller prototype is currently implemented
in Python, and the step-by-step re-execution of the repaired actions is a significant contributor to this
overhead. We believe implementing WARP in a more efficient language, such as C++, would significantly
reduce this overhead.

Finally, we evaluate how WARP scales to larger workloads. We measure WARP'S repair performance
for XSS, SQL injection, and ACL error workloads, as in the first scenario, but with 5,000 users instead
of 100. The results for this experiment are shown in Table 2.8. The number of actions affected by the
attack remain the same, and only those actions are re-executed as part of the repair. This indicates
WARP successfully avoids re-execution of requests that were not affected by the attack. Differences
in the number of re-executed actions (e.g., in the stored XSS attack) are due to non-determinism
introduced by MediaWiki object caching. We used a stock MediaWiki installation for our experiments, in
which MediaWiki caches results from past requests in an objectcache database table. During repair,
MediaWiki may invalidate some of the cache entries, resulting in more re-execution.

The repair time for the 5,000-user workload is only 3 x the repair time for 100 users, for all scenarios
except SQL injection, despite the 50 x increase in the overall workload. This suggests that WARP'S repair
time does not increase linearly with the size of the workload, and is mostly determined by the number
of actions that must be re-executed during repair. The SQL injection attack had a 10x increase in
repair time because the number of database rows affected by the attack increases linearly with the
number of users. The attack injects the SQL query UPDATE pagecontent SET old-text = old-text
I I 'attack', which modifies every page. Recovering from this attack requires rolling back all the users'
pages, and the time to do that increases linearly with the total number of users.
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Concurrent repair overhead. When repair is ongoing, WARP uses repair generations to allow the web
application to continue normal operation. To evaluate repair generations, we measured the performance
of MediaWiki for the read and edit workloads from §2.7.5 while repair is underway for the CSRF attack.

The results are shown in the "During repair" column of Table 2.6. They demonstrate that WARP

allows MediaWiki to be online and functioning normally while repair is ongoing, albeit at a lower
performance-with 24% to 30% lower number of page visits per second than if there were no repair in
progress. The drop in performance is due to both repair and normal execution sharing the same machine
resources. This can be alleviated if dedicated resources (e.g., a dedicated processor core) were available
for repair.
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Chapter 3

Efficient patch-based auditing

This chapter presents POIROT [43], a system that performs precise and efficient patch-based auditing.
Given a patch fixing a vulnerability, POIROT identifies attack suspects, which are requests that potentially
exploited the vulnerability. Patch-based auditing marks a request as suspect if its result when run with
the patch applied is different from its result when run with the original code.

Recall from Chapter 2 (§2.2) that WARP'S recovery uses a patch to identify the first set of requests
to be re-executed for repair. WARP implemented a simple and efficient auditing scheme that flags as
suspect any request that ran a patched source code file during original execution. However, this scheme
is imprecise in practice, as patches often update common source code files (e.g., index. php) that were
run by a large fraction of requests during original execution. This can lead to many false positives in the
suspect list and can cause WARP to unnecessarily re-execute many requests during recovery. For example,
as we shall see in §3.7, 17 out of 34 recent MediaWiki patches modify common source code files that
are executed by every request in a realistic, attack-free workload. For these 17 patches, WARP therefore
marks the entire workload as suspect and needlessly re-executes all requests during repair.

POIROT's precise auditing solves this problem, and WARP can use it to avoid repairing benign
requests. POIROT makes patch-based auditing precise by re-executing every request on two versions of
the application source code-one with and one without the patch-and comparing the results. If the
results are the same (including any side-effects such as modifying files or issuing SQL queries), POIROT

concludes that the request did not exploit the vulnerability. Conversely, if the results differ, POIROT

reports the request as an attack suspect. Naively re-executing every request twice is clearly impractical,
as auditing a month's worth of requests can take several more months. POIROT's key contribution is in
speeding up auditing and making it practical by leveraging the following three key techniques.

First, POIROT performs controlflow filtering to avoid re-executing requests that did not invoke patched
code. To filter out these requests, POIROT records a control flow trace of basic blocks executed by each
request during normal execution, and indexes them for efficient lookup. For a given patch, POIROT

computes the set of basic blocks modified by the patch, and determines the set of requests that executed
those basic blocks. This allows POIROT to skip many requests for patches that modify rarely used code.

Second, POIROT optimizes the two re-executions of each request-one with the patch and one
without-by performing function-level auditing. Each request is initially re-executed using one process.
When a patched function is invoked, POIROT forks the process into two, executes the patched code in one
process and the unpatched code in another, and compares the results. If the results do not match, POIROT

marks the request as suspect and stops re-executing that request, and if the results are identical, POIROT

kills off one of the forked processes and continues re-executing in the other process. Function-level
auditing improves performance since forking is often cheaper than re-executing long runs of common
application code.
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As an extension of function-level auditing, POIROT terminates re-execution of a request if it can
determine, based on previously recorded control flow traces, that this request will not invoke any
patched functions for the rest of its re-execution. We call this early termination.

Third, POIROT eliminates redundant computations-identical instructions processing identical data-
that are the same across different requests, using a technique we call memoized re-execution. POIROT keeps
track of intermediate results while re-executing one request, and reuses these results when re-executing
subsequent requests, instead of recomputing them. The remaining code re-executed for subsequent
requests can be thought of as a dynamic slice for the patched code [8], and is often 1-2 orders of
magnitude faster than re-executing the entire request.

Our evaluation of POIROT (§3.7) shows that with the above techniques, POIROT can audit a month's
worth of requests in just hours or days in the worst case. After auditing, the suspect list generated by
POIROT can be used by WARP to initiate recovery. Alternately, an administrator can choose to use POIROT
for intrusion detection alone, and take remedial measures herself, without using WARP for recovery.

3.1 Motivating examples

The following two examples of recent vulnerabilities illustrate the need for POIROT's intrusion detection
capabilities, even if WARP were not used for recovery. First, consider the HotCRP conference management
software [47], which recently had a information disclosure bug that allowed paper authors to view a
reviewer's private comments meant only for program committee members [48]. After applying the patch
for this vulnerability, an administrator of a HotCRP site would likely want to check if any comments
were leaked as a result of this bug. In order to do so today, the administrator would have to manually
examine the patch to understand what kinds of requests can trigger the vulnerability, and then attempt
to determine suspect requests by manually poring over logs (such as HotCRP's application-level log, or
Apache's access log) or by writing a script to search the logs for requests that match a specific pattern.
This process is error-prone, as the administrator may miss a subtle way of triggering the vulnerability,
and the logs may have insufficient information to determine whether this bug was exploited, making
every request potentially suspicious. For example, there is no single pattern that an administrator could
search for to find exploits of the HotCRP bug mentioned above.

Manual auditing by the administrator may be an option for HotCRP sites with a small number of
users, but it is prohibitively expensive for large-scale web applications. Consider the recent vulnerability
in Github-a popular collaborative software development site-where any user was able to overwrite
any other user's SSH public key [65], and thus modify any software repository hosted on Github. After
Github administrators learned about and patched the vulnerability, their goal was to determine whether
anyone had exploited this vulnerability and possibly altered user data. Although the patch was just a
one-line change in source code, it was difficult to determine who may have exploited this vulnerability
in the past. As a result, Github administrators disabled all SSH public keys as a precaution, and required
all users to re-confirm their keys [28]-an intrusive measure, yet one that was necessary because of the
lack of alternatives. With POIROT, patch-based auditing pinpoints the requests that are attack suspects
and reports a diff of the results of running these requests with and without the patch; the Github
administrators can use this information to identify the few users whose SSH public keys were updated
by the attack suspects, and require only those users to re-confirm their keys.

The rest of this chapter is organized as follows. §3.2 presents an overview of POIROT's design and its
workflow. §3.3, §3.4, and §3.5 describe POIROT's three key techniques for minimizing re-execution. §3.6
discusses our prototype implementation, and §3.7 evaluates it.
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Figure 3-1: Overview of POIROT's design. Components introduced by POIROT are shaded. Solid lines, dotted lines, and dashed
lines indicate interactions during normal execution, indexing, and auditing stages, respectively. The Warp / administrator box
indicates that POIROT can be used either by WARP to determine the initial set of requests to be repaired, or by an administrator
to detect intrusions without invoking WARP for recovery.

3.2 Overview

To understand how POIROT performs auditing, suppose that some request exploited the HotCRP vul-
nerability mentioned in the previous section, and saw confidential comments. When that request is
re-executed by POIROT, the HTTP response with the patch applied will be different from that without the
patch (since the response will not contain the comments), and the request will be flagged as suspect. On
the other hand, requests that did not exploit the vulnerability will likely generate the same responses,
and will not be flagged as suspect. Similarly, in the Github scenario, an attack request that exploited the
vulnerability would issue an SQL query to modify the victim's public key. When the attack is re-executed
on patched code, the query will not be issued, and POIROT will flag that request as suspect.

More precisely, given a patch fixing a vulnerability in a web application, POIROT's goal is to identify a
minimal set of requests that may have exploited the vulnerability. Conceptually, POIROT re-runs each
past request to the web application twice-once each with the vulnerable and the patched versions
of the application's source code-and compares the results of these runs. If the results are the same,
the request is assumed to not exploit the vulnerability; otherwise, POIROT adds the request to a list of
requests that may have exploited the vulnerability. These requests can be repaired by WARP or can be
further audited by the administrator, based on whether WARP or the administrator invoked POIROT.

A request's result in POIROT logically includes the web server's HTTP response, as well as any side
effects of request execution, such as changes to the file system or queries issued to an SQL database.
This ensures that POIROT will catch both attacks that altered server state (e.g., modifying rows in a
database), as well as attacks that affect the server's HTTP response. POIROT's auditing flags only requests
that are possible attack entry points, but does not flag requests that read data written by an attack to
a database or requests that were issued by attacks in users' browsers. If WARP was used for recovery,
WARP's database dependency tracking and browser re-execution will identify and repair such requests.

POIROT consists of three phases of operation, as illustrated in Figure 3-1: normal execution, indexing,
and auditing. The rest of this section describes these three phases.

3.2.1 Logging during normal execution

In order to re-run a past request in a web application, much like WARP, POIROT needs to record the
original inputs to the application code that were used to handle the request. Additionally, in order to
perform control flow filtering, POIROT must record the original control flow path of each request.
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During the normal execution of a web application, POIROT records four pieces of information about
each request to a log. First, it records the request's URL, HTTP headers, any POST data, and the CGI
parameters (e.g., the client's IP address). Second, it records the results of non-deterministic function
calls made during the request's execution, such as calls to functions that return the current date or
time, and functions that return a random number. Third, it records the results of calls to functions that
return external data, such as calls to database functions. Finally, it records a control flow trace of the
application code, at the level of basic blocks [12]. The first three pieces of information are logged by
WARP as well, So if POIROT was used in conjunction with WARP, the logs can be shared.

POIROT implements logging by extending the application's language runtime (e.g., PHP in our
prototype implementation) and by implementing a logging module in the HTTP server.

3.2.2 Indexing

The second step in POIROT's auditing process is to build an index from the logs recorded during normal
execution. The index contains two data structures, as follows.

The first data structure, called the basic block index, maps each basic block to the set of requests
that executed that basic block, and is generated from the control flow traces recorded during normal
execution. This data structure is used by POIROT's control flow filtering to efficiently locate candidate
requests for re-execution given a set of basic blocks that have been affected by a patch.

The second data structure, called the function call table, is a count of the number of times each
request invoked each function in the application, and is also generated based on the control flow traces
recorded during normal execution. This data structure is used to implement the early termination
optimization.

POIROT's indexing step can be performed on any machine, and simply requires access to the appli-
cation source code as well as the control flow traces. Performing the indexing step before auditing
(described next) both speeds up the auditing step and avoids having to re-generate these data structures
for multiple audit operations.

3.2.3 Auditing

When a patch for a newly discovered security vulnerability is released, POIROT uses the patch as input to
start the auditing phase. POIROT's auditing code requires access to the original log of requests, as well
as to the index. POIROT first performs control flow filtering to filter out requests that did not invoke the
patched code, and then uses function-level auditing and memoized re-execution to efficiently re-execute
requests that did invoke the patched code. To ensure requests execute in the same way during auditing
as they did during the original execution, POIROT uses the log to replay the original inputs (such as
the URL and POST data), as well as the results of any non-deterministic functions and external I/O
(e.g., SQL queries) that the application invoked. Note that POIROT does not require a past snapshot of
the database for re-executing requests: if the application issues a different SQL query during request
re-execution-for which POIROT's log does not contain a recorded result-POIROT flags the request as a
potential attack and stops re-executing that request. POIROT performs re-execution by modifying the
language runtime (e.g., the PHP interpreter in our prototype), as we will describe later.

Once re-execution finishes, POIROT outputs a list of suspect requests that executed differently with
the patched code than they did with the unpatched code.
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3.3 Control flow filtering

POIROT's control flow filtering involves three steps. First, during normal execution, POIROT logs a control
flow trace of each request to a log file. Second, during indexing, POIROT computes the set of basic blocks
executed by each request. Third, when presented with a patch to audit, POIROT computes the set of
basic blocks affected by that patch, and filters out requests that did not execute any of the affected basic
blocks, since they could not have possibly exploited the vulnerability in the affected basic blocks. As an
optimization, POIROT builds an index that maps basic blocks to the set of requests that executed that
basic block, which helps speed up the process of locating all requests affected by a patch.

POIROT performs control flow filtering at the granularity of basic blocks because filtering at a coarser
granularity (e.g., at function granularity) can result in fewer requests being filtered out, reducing the
effectiveness of filtering. Furthermore, control flow traces at the granularity of basic blocks are also
needed for memoized re-execution (§3.5).

The rest of this section describes POIRoT's control flow filtering in more detail.

3.3.1 Recording control flow

In order to implement control flow filtering, POIROT needs to know which application code was executed
by each request during original execution. POIROT records the request's control flow trace, which is
a log of every bytecode instruction that caused a control flow transfer. For example, our prototype
implements control flow filtering at the level of instructions in the PHP interpreter (called "oplines"), and
our prototype modifies the PHP runtime to record branch instructions, function calls, and returns from
function calls. For each instruction that caused a control flow transfer, POIROT records the instruction's
opcode, the address of that instruction, and the address of the jump target.

Recording control flow traces across multiple requests requires a persistent way of referring to
bytecode instructions. PHP translates application source code to bytecode instructions at runtime, and
does not provide a standard way of naming the instructions. In order to refer to specific instructions
in the application, POIROT names each instruction using a (func, count) tuple, where func identifies the
function containing the instruction, and count is the position of the instruction from the start of the
translated function (in terms of the number of bytecode instructions). Functions, in turn, are named as
(filename, classname,funcname).

3.3.2 Determining the executed basic blocks

During the indexing phase, POIROT uses the log recorded above to reconstruct the set of basic blocks
executed by each request. To reduce overhead during normal execution, POIROT does not log branches
that were not taken. As a result, two adjacent control flow transfers in the log may span n basic blocks,
where the branches at the end of the first n - 1 basic blocks were not taken.

To compute the set of basic blocks executed by a given request, POIROT first computes the sequence of
basic blocks within each function, by translating the application's source code into bytecode instructions
and analyzing the control flow graph in that function. Then, for each pair of adjacent control flow
transfers A and B in the request's log, POIROT adds the sequence of basic blocks between the jump target
of A's instruction and the address of B's instruction to the set of basic blocks executed by that request. To
consistently name basic blocks across requests, POIROT refers to basic blocks by the first instruction of
that basic block.
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3.3.3 Determining the patched basic blocks

During the auditing phase POIROT must determine the set of requests to re-execute to audit the patch
provided as input. To filter out requests that were not affected by a given patch, POIROT must determine
which basic blocks are affected by a change to the application's source code, and which basic blocks are
unchanged. In general, deciding program equivalence is a hard problem. POIROT simplifies the problem
in two ways. First, POIROT determines which functions were modified by a patch. Second, POIROT

generates control flow graphs for the modified functions, 1 with and without the patch, and compares
the basic blocks in the control flow graph starting from the function entry point. If the basic blocks differ,
POIROT flags the basic block from the unpatched code as "affected." If the basic blocks are the same,
POIROT marks the basic block from the unpatched code as "unchanged," and recursively compares any
successor basic blocks, avoiding loops in the control flow graph.

3.3.4 Indexing

To avoid re-computing the set of basic blocks executed by each request across multiple audit operations,
and to reduce the user latency for auditing, POIROT caches this information in an index for efficient
lookup. POIROT's index contains a mapping from basic blocks (named by the first bytecode instruction in
the basic block) to the set of requests that executed that basic block. By using the index, POIROT can

perform control flow filtering by computing just the set of basic blocks affected by a patch, and looking
up these basic blocks in the index.

The index is generated asynchronously, after the control flow trace for a request has been logged, to
avoid increasing request processing latency. The index is shared by all subsequent audit operations. In
principle, the index (and the recorded control flow traces for past requests) may need to be updated to
reflect new execution paths taken by patched code, after each patch is applied in turn, if the we want
to audit the cumulative effect of executing all of the applied patches. Our current prototype does not
update the control flow traces for past requests after auditing.

3.4 Function-level auditing

After POIROT's auditing phase uses control flow filtering to compute the set of requests affected by the
patch, it re-executes each of those requests twice-once with and once without the patch applied-in
order to compare their outputs. A naive approach of this technique is shown in Figure 3-2(a). However,
the only code that differs between the two executions comes from the patched functions; the rest of
the code invoked by the two executions is the same. For example, suppose an application developer
patched a bug in an access control function that is invoked by a particular request. All the code executed
by that request before the access control function will be the same both with and without the patch
applied. Moreover, if the patched function returns the same result and has the same side-effects as the
unpatched function, then all the code executed after the function is also going to be the same both with
and without the patch.

To avoid executing the common code twice, POIROT implements function-level auditing, as illustrated
in Figure 3-2(b). Function-level auditing starts executing each request in a single process. Whenever the
application code invokes a function that was modified in the patch, POIROT forks the process, and invokes
the patched function in one process and the unpatched function in the other process. Once the functions
return in both processes, POIROT terminates the child fork, and compares the results and side-effects
of executing the function in the two forks, as we describe in §3.4.1. If the results and side-effects are

1PHP has no computed jumps within a function, making it possible to statically construct control flow graphs for a function.
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Figure 3-2: Three refinements of request re-execution: (a) naive, (b) function-level auditing, and (c) early termination.
Thick lines indicate execution of unmodified application code, dotted lines indicate execution of the original code for patched
functions, and dashed lines indicate execution of new code for patched functions. A question mark indicates comparison of
executions for auditing.

identical, POIROT continues executing common application code. Otherwise, POIROT flags the request as
suspect, since the request's execution may have been affected by the patch.

Comparing the results of each patched function invocation, as in POIROT's function-level auditing,
can lead to more false positives than comparing the output of the entire application. This is because the
application may produce the same output even if a patched function produces a different return value
or has different side-effects with or without the patch. For example, some request may have invoked
a patched function, and obtained a different return value from the patched function, but this return
value did not affect the eventual HTTP response. These extra false positives can be eliminated by doing
full re-execution on the suspect list, and comparing application-level responses, after the faster forked
re-execution filters out the benign requests. Our PHP prototype does not implement this additional step,
as none of our experiments observed such false positives.

3.4.1 Comparing results and side-effects

A key challenge for function-level auditing is to compare the results and side-effects of invoking an
individual function, rather than comparing the final HTTP response of the entire application. To do
this, POIROT tracks three kinds of results of a function invocation: HTTP output, calls to external I/O
functions (such as invoking an SQL query), and writes to shared objects, which are objects not local to
the function.

To handle HTTP output, POIROT buffers any output during function execution. When the function
returns, POIROT compares the outputs of the two executions.

To handle external I/O functions, POIROT lOgS the arguments and return values for all external I/O
function calls during normal execution. When an external I/O function is invoked during re-execution
(in either of the two forks), POIROT checks that the arguments are the same as during the original
execution. If so, POIROT supplies the previously recorded return value in response. Otherwise, POIROT
declares the request suspect and terminates re-execution.

To handle writes to shared objects, POIROT tracks the set of shared objects that are potentially
accessed by the patched function. Initially, the shared object set includes the function's reference
arguments and object arguments. The function's eventual return value is also added to the shared
object set, unless POIROT determines that the caller ignores the function's return value (by examining the
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caller's bytecode instructions). To catch accesses to global variables, POIROT intercepts PHP opcodes for
accessing a global variable by name, and adds any such object being accessed to the shared object set.

When the function returns, POIROT serializes all objects in the shared object set, and checks that their
serialized representations are the same between the two runs. If not, it flags the request as suspect and
terminates re-execution. POIROT recursively serializes objects that point to other objects, and records
loops between objects, to ensure that it can compare arbitrary data structures.

3.4.2 Early termination

If a patch just modifies a function that executes early in the application, re-executing the rest of the
application code after the patched function has already returned is not necessary. To avoid re-executing
such code, POIROT implements an early termination optimization, as shown in Figure 3-2(c). Early
termination stops re-execution after the last invocation of a patched function returns.

To determine when a request invokes its last patched function, POIROT uses the request's recorded
control flow trace to count the number of times each request invoked each function. As an optimization,
the indexing phase builds afunction call table storing these counts.

3.5 Memoized re-execution

Many requests to a web application execute similar code. For example, if two requests access the same
Wiki page in Wikipedia, or the same paper in HotCRP, the computations performed by the two requests
are likely to be similar. To avoid recomputing the same intermediate results across a group of similar
requests, POIROT constructs, at audit time, a template that memoizes any intermediate results that are
identical across requests in that group. Of course, no two requests are entirely identical: they may
differ in some small ways from one another, such as having a different client IP address or a different
timestamp in the HTTP headers. To capture the small differences between requests, POIROT's templates
have template variables which act as template inputs for these differences. POIROT can use a template to
quickly re-execute a request by plugging in that request's template variables (i.e., unique parameters)
and running the template.

Memoizing identical computations across requests requires addressing two challenges. First, locating
identical computations-sequences of identical instructions that process identical data-across requests
is a hard problem. Even if two requests invoke the same function with the same arguments, that
function may read global variables or shared objects; if these variables or objects differ between the two
invocations, the function will perform a different computation, and it would be incorrect to memoize its
results. Similarly, a function can have side effects other than its return value. For instance, a function can
modify a global variable or modify an object whose reference was passed as an argument. Memoizing
the results of a function requires also memoizing side effects.

Second, POIROT's templates must interleave memoized results of identical computations with re-
execution of code that depends on template variables. For example, consider the patch for a simple PHP
program shown in Figure 3-3, and suppose the web server received three requests, shown in Figure 3-4.
The value of $s computed on lines 7, 8, and 9 is the same across all three requests, but line 10 generates
a different value of $s for every request, and thus must be re-executed for each of the three requests.
This is complicated by the fact that memoized and non-memoized computations may have control
flow dependencies on each other. For instance, what should POIROT do if it also received a request for
/script . php?q=foo, which does not pass the if check on line 5?

POIROT's approach to addressing these two challenges leverages control flow tracing during normal
execution. In particular, POIROT builds up templates from groups of requests that had identical control
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1 function name ($nm) {
2 - return $run;
2 + return htmlspecialchars($nm);

3 }
4

5 if ($_GET['q'] == 'test') {
6 $nm ucfirst($_GET['name']);

7 $s "Script ";
8 $s $_SERVER['SCRIPTURL'];
9 $s " says hello ";

1 $s .name($nxn);

11 echo $s;
12 }

Figure 3-3: Patch for an example application, fixing a cross-site scripting vulnerability that can be exploited by invoking this
PHP script as /script .php?q=test&name=<script>. .</script>. The ucfirst O function makes the first character of its
argument uppercase.

1 /script.php?q=test&name=alice
2 /script.php?q=test&name=bob
3 /script .php?q=test&name=<script>. .</script>

Figure 3-4: URLs of three requests that fall into the same control flow group, based on the code from Figure 3-3.

flow traces, even if their inputs differed, such as the three requests shown in Figure 3-4. By considering
requests with identical control flow, POIROT avoids having to locate identical computations in two
arbitrary executions. Instead, POIROT'S task is reduced to finding instructions that processed the same
data in all requests with identical control flow traces, in which case their results can be memoized in
the template. Moreover, by grouping requests that share control flow, POIROT simplifies the problem of
separating memoized computations from computations that depend on template variables, since there
can be no control flow dependencies.

More precisely, POIROT's memoized re-execution first groups requests that have the same control
flow trace into a controlflow group. POIROT then builds up a template for that group of requests, which
consists of two parts: first, a sequence of bytecode instructions that produces the same result as the
original application, when executing any request from the control flow group, and second, a set of
memoized intermediate results that are identical for all requests in the control flow group and are used
by the instructions in the template. Due to memoization, the number of instructions in a template is
often 1-2 orders of magnitude shorter than the entire application (§3.7).

The rest of this section explains how POIROT generates a template for a group of requests with
identical control flow, and how that template is used to efficiently re-execute each request in the group.

3.5.1 Template generation

To generate a template, POIROT needs to locate instructions that processed the same data in all requests,
and memoize their results. A naive approach is to execute every request, and compare the inputs and
outputs of every instruction to find ones that are common across all requests. However, this defeats the
point of memoized re-execution, since it requires re-executing every request.

To efficiently locate common instruction patterns, POIROT performs a taint-based dependency anal-
ysis [62], building on the observation that the computations performed by an application for a given
request are typically related to the inputs provided by that request. Specifically, POIROT considers the
inputs for all of the requests that share a particular control flow trace: each GET and POST parameter,
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Line Op Bytecode instruction

5 1 FETCHR $ <- '_GET'
5 2 FETCHDIMR $1 <- $@, 'q'
5 3 ISEQUAL -2 <- $1, 'test'

5 4 JMPZ -2 -+20
6 5 FETCHR $3 <- 'GET'

6 6* FETCHDIMR $4 <- $3, 'name'

6 7* SENDVAR $4
6 8* DOFCALL $5 -- 'ucfirst'
6 9* ASSIGN !@ +- $5

7 10 ASSIGN !1 +- 'Script

8 11 FETCHR $8 <- '_SERVER'

8 12 FETCHDIMR $9 - $8, 'SCRIPTURL'
8 13 ASSIGNCONCAT !1 <- !1, $9
9 14 ASSIGNCONCAT !1 <- !1, ' says hello

10 15* SENDVAR !0
10 16* DOFCALL $12 <- 'name'
10 17 ASSIGNCONCAT !1 <- !1, $12
11 18 ECHO !1
12 19 JMP --+20
13 20 RETURN 1

Figure 3-5: PHP bytecode instructions for lines 5-12 in Figure 3-3. The line column refers to source lines from Figure 3-3 and
the op column refers to bytecode op numbers, used in control transfer instructions. A * indicates instructions that are part of a
template for the three requests shown in Figure 3-4 when auditing the patch in Figure 3-3.

CGI parameters (such as requested URL and the client's IP address), and stored sessions. In PHIP these
inputs appear as special variables, called "superglobals", such as $_GET and $_SERVER. POIROT then
determines which of these inputs are common across all requests in the group (and thus computations
depending purely on those inputs can be memoized), and which inputs differ in at least one request
(and thus cannot be memoized). Inputs in the latter set are called template variables. For instance, for
the three requests shown in Figure 3-4, the GET parameter name is a template variable, but the GET
parameter q is not.

To generate the template, POIROT chooses an arbitrary request from the group, and executes it
while performing dependency analysis at the level of bytecode instructions; we describe the details of
POIROT's dependency tracking mechanism in §3.5.2. POIROT initially marks all template variable values
as "tainted", to help build up the sequence of instructions that depend on the template variables and
thus may compute different results for different requests in the group. Any instructions that read tainted
inputs are added to the template's instruction sequence, and their outputs are marked tainted as well. If
an instruction is added to the template but some of its input operands are not tainted, the current values
of those operands are serialized, and the operand in the instruction is replaced with a reference to the
serialized object, such as the $3 operand of instruction 6 in Figure 3-5. This implements memoization of
identical computations. Instructions that have no tainted inputs, as well as any control flow instructions
(jumps, calls, and returns), are not added to the template.

For example, consider the PHP bytecode instructions shown in Figure 3-5. Instructions 1-5 do not
read any tainted inputs, and do not get added to the template. Instructions 6-9 depend on the tainted
$_GET 'name '] template variable, and are added to the template. Instructions 10-14 again do not read
any tainted inputs, and do not get added to the template. Finally, instructions 15 and 16 are tainted,
and get added to the template, for a total of 6 template instructions.
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When POIROT's template generation encounters an invocation of one of the functions being audited,
it marks the start and end of the function invocation in the template, to help audit these function
invocations later on, as we will describe in §3.5.3. If the recorded control flow trace indicates that
there will not be any more invocations of patched functions, template generation stops. Going back to
Figure 3-5, template generation stops after instruction 16, because there are no subsequent calls to the
patched name ( function.

3.5.2 Dependency tracking

In order to determine the precise set of instructions that depend on template variables, POIROT performs
dependency analysis while generating each template at audit time. In particular, POIROT keeps track of a
fine-grained "taint" flag for each distinct memory location in the application. The taint flag indicates
whether the current value of that memory location depends on any of the template variables (which are
the only memory locations initially marked as tainted). The value of any untainted memory location can
be safely memoized, since its value cannot change if the template is used to execute a different request
with a different value for one of the template variables. In the PHP runtime, this corresponds to tracking
a "taint" flag for every zval, including stack locations, temporary variables, individual elements in an
array or object, etc.

POIROT computes the taint status of each bytecode instruction executed during template generation.
If any of the instruction's operands is flagged as tainted, the instruction is said to be tainted, and is
added to the template. The instruction's taint status is used to set the taint flag of all output operands.
For example, instruction 6 in Figure 3-5 reads a template variable $_GET['name']; as a result, it is
added to the template and its output $4 is marked tainted. On the other hand, instruction 12 reads
$_SERVER[' SCRIPTURL'], which is not tainted; as a result, its output $9 is marked as non-tainted.

A template contains only the tainted instructions, which are a subset of the total instructions executed
during a request. The output of executing the template instructions for a request is a subset of the output
of fully re-executing a request. It is sufficient for POIROT to use the output of template instructions for
auditing because the output of non-tainted instructions would be the same in both the patched and
unpatched executions.

POIROT's taint tracking code knows the input and output operands for all PHP bytecode instructions.
However, PHP also includes several C functions (e.g., string manipulation functions), which appear as a
single instruction at the bytecode level (e.g., instruction 8 in Figure 3-5). To avoid having to know the
behavior of each of those functions, POIROT assumes that such functions do not access global variables
that are not explicitly passed to them as arguments. Given that assumption, POIROT conservatively

estimates that each C function depends on all of its input arguments, and writes to its return value,
reference arguments, and object arguments. We encountered one function that violates our assumption
about not affecting global state: the headero function used to set HTTP response headers. POIROT

special-cases this function.

3.5.3 Template re-execution

Once a template for a control flow group is generated, POIROT uses the template to execute every
request in that control flow group. To invoke the template for a particular request, POIROT assigns the
template variables (e.g., $_GET ['name'] in Figure 3-5) with the values from that request, and invokes
the template bytecode. In the example of Figure 3-5, this would involve re-executing instructions 6-9
and 15-16. When the template bytecode comes to an invocation of a patched function (e.g., instruction
16 in Figure 3-5), POIROT performs function-level auditing, as described in §3.4, to audit the execution
of this function for this particular request. Once the function returns, POIROT compares the results of the
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Component Lines of code

PHP runtime logger / replayer 9,400 lines of C
Indexer 300 lines of Python
Audit controller 1,200 lines of Python
Control flow filter tool 4,800 lines of Python

Table 3.1: Lines of code for components of the POIROT prototype.

function between the two versions (with and without the patch), and assuming no differences appear,
POIROT continues executing the template's bytecode instructions.

In principle, it should be possible to use memoized re-execution to reduce the number of bytecode
instructions executed inside the patched function as well. We chose a simpler approach, where the entire
patched function is re-executed for auditing, mostly to reduce the complexity of our prototype. Most
patched functions are short compared to the number of instructions executed in the entire application,
allowing us to gain the bulk of the benefit by focusing on instructions outside of the patched functions.

3.5.4 Collapsing control flow groups

The efficiency of memoized re-execution depends on the number of requests that can be aggregated
into a single control flow group. Even though the cost of template generation is higher than the cost
of re-executing a single request, that cost is offset by the much shorter re-execution time of all other
requests in that control flow group.

Building on the early termination optimization from §3.4.2, we observe that the only part of the
control flow trace that matters for grouping is the trace up to the return from the last invocation of a
patched function. Instructions executed after that point are not re-executed due to early termination.
Thus, two requests whose control flow traces differ only after the last invocation of a patched function
can be grouped together for memoized re-execution.

POIROT uses this observation to implement control flow group collapsing. Given a patch, POIROT first
locates the last invocation of a patched function in each control flow group, and then coalesces control
flow groups that share the same control flow prefix up to the last invocation of a patched function
in each trace. This optimization generates larger control flow groups, and thus amortizes the cost of
template generation over a larger number of similar requests.

3.6 Implementation

We implemented a prototype of POIROT for PHP. Table 3.1 shows the lines of code for the different
components of our prototype. We modified the PHP language runtime to implement POIROT's logging
and re-execution. The rest of the POIROT components are implemented in Python. The indexer and
control flow filter tool use the PHP Vulcan Logic Dumper [66] to translate PHP source code into PHP
bytecode in an easy-to-process format, and use that to identify executed and patched basic blocks during
control flow filtering.

In order to perform efficient re-execution, POIROT assumes that all patched code resides in functions.
However, PHP also supports "global code," which does not reside in any function and is executed when a
script is loaded. This causes function-level auditing to execute all of the application code twice, since the
"patched function", namely, the global code, returns only at the end of the script. This can be avoided by
refactoring the patched global code into a new function that's invoked once from the global code. We
performed this refactoring manually for one patch when evaluating POIROT.
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Workload # CFG Latency Thruput Per-request overheads
increase reduction Log space Index space Indexing time

Single URL (1k) 5 13.8% 10.3% 4.95 KB 0.06 KB 12.3 msec
Unique URLs (1k) 238 14.9% 20.4% 21.32 KB 1.79 KB 28.9 msec
Wikipedia (10k) 499 14.1% 16.9% 6.72 KB 4.12 KB 3.5 msec
Wikipedia (100k) 834 14.1% 15.3% 5.12 KB 0.23 KB 0.8 msec

Table 3.2: POIROT's logging and indexing overhead during normal execution for different workloads. The CFG column shows
the number of control flow groups. Storage overheads measure the size of compressed logs and indexes. For comparison with
the last column, the average request execution time during normal execution is 120 msec.

POIROT's control flow filtering does not support PHP's reflection API. For example, if a patch adds a
new function that was looked up during the original execution of a request (and did not get executed
because it did not exist), control flow filtering would miss that request, and not re-execute it. Supporting
reflection would require logging calls to the reflection API, and re-executing requests that reflected on
modified functions or classes. We did not find this necessary for the applications we evaluated.

3.7 Evaluation

Our evaluation aims to support the following hypotheses:

- POIROT incurs low runtime overhead (§3.7.2).

- POIROT detects exploits of real vulnerabilities with few false positives (§3.7.3).

- Even for challenging patches that affect every request, POIROT can audit much faster than nafve
re-execution and POIROT's auditing can significantly improve WARP'S repair performance.

- POIROT's techniques are important for performance (§3.7.5).

Using a realistic MediaWiki workload and a synthetic HotCRP workload, we show that POIROT's
re-execution for auditing is 24-133 x faster than that of naive re-execution, and an additional factor of
~5 x faster than WARP'S re-execution for repair. POIROT catches exploits of real vulnerabilities, with only

one patch out of 34 in MediaWiki (and none out of four in HotCRP) causing false positives.

3.7.1 Experimental setup

The test applications used for these experiments were MediaWiki, the popular Wiki application we
used to evaluate WARP (§2.7), and HotCRP, a popular web-based conference management system. All
experiments ran on a 3.07 GHz Intel Core i7-950 machine with 12 GB of RAM. Since the POIROT
prototype is currently single-threaded (although in principle the design has lots of parallelism), we used
only one core in all experiments.

To obtain a realistic workload, we derived our MediaWiki workload from a real Wikipedia trace [72].
That trace is a 10% sample of the 25.6 billion requests to Wikipedia's ~20 million unique Wiki pages
during a four-month period in 2007. As we did not have time to run the entire four-month trace, we
downsampled it to 100k requests. To maintain the same distribution of requests in our workload as in
the Wikipedia trace, we chose 1k Wikipedia Wiki pages and synthesized a workload of 100k requests
to them, with the same Zipf distribution as in the Wikipedia trace. This new workload has an average
of 100 requests per Wiki page, which is more challenging for POIROT than the Wikipedia workload (1k
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requests per Wiki page), since memoized re-execution works better when more requests have identical
control flow traces.

As the Wikipedia database is several terabytes in size, we used the database of the smaller Wikimedia
Labs site [5] for our experiments, and mapped the URLs of Wikipedia Wiki pages in our workload
to the URLs of Wikimedia Labs Wiki pages. Finally, for privacy reasons, the trace we used did not
contain user-specific information such as client IP addresses; to simulate requests by multiple users in
the workload, we assigned random values for the client IP address and the user-agent HTTP headers.

3.7.2 Normal execution overheads

To illustrate POIROT's overhead during normal execution, we used several workloads; the results are
shown in Table 3.2. The single URL workload has 1k requests to the same URL, the unique URLs
workload has one request to each of the 1k unique URLs in the Wikipedia workload, and the Wikipedia
10k and 100k workloads contain 10k and 100k requests respectively, synthesized as above.

The results demonstrate that POIROT's logging increases average request latency by about 14%,
reduces the throughput of normal execution by 10-20%, and POIROT logs require 21 KB per request in
the worst case, when all URLs are distinct. POIROT's storage overhead drops considerably for workloads
with more common requests, because the log size primarily depends on the number of unique control
flow groups. We expect that log sizes for the full Wikipedia trace [72] would be even smaller, since it
has an order of magnitude more common requests than our 100k workload. Recall from §2.7.5 that
WARP'S throughput overheads for logging are -25%. As WARP and POIROT log similar information, when
used together for recovery their logs can be shared, resulting in a combined overhead that is closer to
WARP'S overhead instead of the sum of the overheads.

Table 3.2 additionally reports the time taken by POIROT's indexing, even though it can be executed at
a later time on a separate machine. The indexer takes 1-29 msec per request, and the index file size is
0.06-4.12 KB per request. As with normal execution, indexing time and storage requirements drop for
workloads with more common requests. This is because most of the indexing overhead lies in indexing
control flow traces, and common requests often have identical control flow traces.

3.7.3 Detecting attacks

We evaluated how well POIROT detects exploits of patched vulnerabilities by using previously discovered
vulnerabilities in our two applications, MediaWiki and HotCRP. Using MediaWiki helps us compare
POIROT to WARP, and we used the same five vulnerabilities that we used to evaluate WARP. The real
Wikipedia trace [72] did not contain any attack requests for these vulnerabilities, so we constructed
exploits for all five vulnerabilities, and added these requests to our 100k workload. Table 3.3 shows the
results of auditing this workload with POIROT. POIROT can detect all the attacks detected by WARP, and
has no false positives for four out of the five attacks. For the clickjacking vulnerability, the patch adds
an extra X-Frame-Options HTTP response header. This modifies the output of every request, causing
POIROT to flag each request as suspect. Extending POIROT's re-execution during auditing to include the
browser would likely prevent these false positives. Additionally, POIROT incurs no false positives for 29
other patches shown in Table 3.4.

To show that POIROT can detect information disclosure vulnerabilities in HotCRP, we constructed
exploits for four recent vulnerabilities, including the comment disclosure vulnerability mentioned in
§3.1, and interspersed attack requests among a synthetic 200-user workload consisting of user creation,
user login, paper submissions, etc. Table 3.5 shows the results. POIROT is able to detect all four attacks
with no false positives.
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CVE Description Detected? False +ves

2009-4589 Stored XSS 0
2009-0737 Reflected XSS / 0
2010-1150 CSRF / 0
2004-2186 SQL injection / 0
2011-0003 Clickjacking / 100%

Table 3.3: Detection of exploits and false positives incurred by POIROT for the five MediaWiki vulnerabilities handled by WARP.

CVE POIROT Naive WARP
# Req Time (s) # Req Time (s) # Req Time (s)

2011-4360 100k 267 100k 23,900 100k -121,000
2011-0537 100k 269 100k 23,700 100k -121,000
2011-0003 100k 989 100k 25,100 100k -121,000
2007-1055 100k 1,013 100k 24,300 look -121,000
2007-0894 100k 236 look 31,500 100k -121,000

12 cases (*) 0 0.03-0.11 100k -25,000 100k -121,000

17 cases (t) 0 0.02-0.19 100k -25,000 0 < 1 second

* 2011-1766, 2010-1647, 2011-1765, 2011-1587, 2011-1580, 2011-1578,
2008-5688, 2008-5249, 2011-1579, 2011-0047, 2010-1189, 2008-4408.

2010-2789, 2010-2788,
2009-4589, 2009-0737,
2008-0460, 2007-4828,

2010-2787, 2010-1648, 2010-1190,
2008-5687, 2008-5252, 2008-5250,
2007-0788, 2004-2186.

Table 3.4: POIROT's auditing performance with 34 patches for MediaWiki vulnerabilities, compared with the performance of
the naive re-execution scheme and with WARP'S estimated repair performance for the same patches using its file-based auditing
scheme (WARP'S re-execution of a request during repair is estimated to take lOx the original execution time, based on our
evaluation of WARP'S repair performance in §2.7.5). WARP takes less than a second to access its index for file-based auditing.
Naive results are measured only for the top 5 patches; its performance would be similar for the 29 other patches.

3.7.4 Auditing performance

To show POIROT's auditing performance, we used POIROT to audit the Wikipedia 100k workload for
34 real MediaWiki security patches, released between 2004 and 2011. We ported each patch to one
of three major versions of MediaWiki released during this time period. We ran the workload against
the three MediaWiki versions, which took an average of 12,116 seconds (3.4 hours) to execute during
normal operation. POIROT's indexing took on average 79 seconds for this workload. We measured the
time taken by POIROT to audit all requests for these patches, the time taken by a naive scheme that
simply re-executes every request twice-with and without the patch-and compares the outputs, and
the estimated time taken by WARP to repair the requests it considers as attack suspects.

Table 3.4 shows the results. For the bottom 29 out of 34 patches (85% of the vulnerabilities),
POIROT'S control flow filtering took less than 0.2 seconds to determine that the patched code was not
invoked by the workload requests, thereby completing the audit within that time. This is compared to
the more than 6.5 hours needed to audit using the naive re-execution scheme.
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Patch Description Detected? False +ves

f3Oeb4e5 Capability token lets users see restricted comments. / 0
638966eb Chair can view an anonymous reviewer's identity. / 0
3ff7b049 Acceptance decisions visible to all PC members. 0
4fb7ddee Chair-only comments are exposed through search. / 0

Table 3.5: POIROT detects information leak vulnerabilities in HotCRP, found between April 2011 and April 2012. We exploited
each vulnerability and audited it with patches from HotCRP's git repository (commit hashes for each patch are shown in the
"patch" column).

POIROT audits the remaining five challenging patches, which affect code executed by every request,
24-133 x faster than nafve re-execution (top 5 rows in Table 3.4). This means that POIROT can audit 3.4
hours worth of requests in ~ 17 minutes in the worst case.

To evaluate the improvement in WARP's repair performance if its file-based auditing were replaced
with POIROT's auditing, we estimated WARP'S repair performance on the 100k workload for the 34
patches; the results are shown in Table 3.4. These estimates are based on our evaluation of WARP'S
repair performance (§2.7.5), which showed that WARP'S repair re-executes a request ~10 X slower than
original execution. WARP'S file-level filtering statically discards all requests for 17 out of the 34 patches,
although it is unable to filter out requests for 12 patches that POIROT's basic-block-level filtering can.
For the remaining 17 patches, file-level filtering flags all requests as suspect (even though the workload
contained no attack requests) and WARP re-executes all of them, taking 2-3 orders of magnitude more
time than POIROT, even for the worst-case patches; so, for our 3.4 hour workload, WARP could take
1.4 days to process the workload for each of the 17 patches, instead of the less than 17 minutes taken
by POIROT. These results show that, for real workloads where most requests are benign, replacing
WARP'S file-based auditing with POIROT's fast and precise auditing can significantly improve WARP'S repair
performance, as POIROT quickly filters away benign requests and leaves WARP with just a few attack
suspects to repair.

3.7.5 Technique effectiveness

Control flow filtering allows POIROT to quickly filter out unaffected requests (in under 0.2 seconds), as
illustrated by the bottom 29 patches in Table 3.4. As vulnerabilities typically occur in rarely exercised
code, we expect control flow filtering to be highly effective in practice.

For the five challenging patches where re-execution is necessary, function-level re-execution and
early termination speed up re-execution, as shown in Table 3.6. The "Func-level re-exec" column shows
that it is 1.3-3.4x faster than naive re-execution, and the "early term. ops" column shows that early
termination executes a fraction of the -200k total instructions. For the CVE-2011-0003 vulnerability,
the patched function is invoked towards the end of the request, making early termination less effective.

Memoized re-execution further reduces re-execution time, as shown in Table 3.6. In particular,
template collapsing reduces the number of distinct templates from 834-844 to 1-589 ("collapsed CF
groups" column), thereby reducing the amount of time spent in template generation ("template gen.
time" column). Templates reduce the number of PHP opcodes that must be re-executed by 22-50x,
compared to early termination, as illustrated by the "template ops" column. For the CVE-2007-1055
vulnerability, memoized re-execution time is high even though it uses a single template (for its one

control flow group); this is because the patched function writes to many global variables, making
serialization for comparison expensive.
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Naive Func-level # early # collapsed Collapse Template # template Memoized
re-exec (s) re-exec (s) term. ops CF groups time (s) gen. time (s) ops re-exec (s)

2011-4360 23,900 8,480 6,437 /-~200k 4/844 31.0 2.10 289 234
2011-0537 23,700 18,900 4,801 / ~200k 1 / 834 30.3 1.17 96 238
2011-0003 25,100 19,600 117,045 / ~200k 589 / 834 30.5 395.00 5,427 563
2007-1055 24,300 7,150 5,571 / ~200k 2 / 844 30.1 0.83 177 982
2007-0894 31,500 10,500 24,973 / -200k 18 / 844 30.4 9.90 1,085 196

Table 3.6: Performance of the POIROT replayer in re-executing all the 100k requests of the Wikipedia 100k workload, for the five patches shown here. The workload has a total
of 834 or 844 control flow groups, depending on the MediaWiki version to which the patch was ported. POIROT incurs no false positives for four out of the five patches; it has
100% false positives for the patch 2011-0003, which fixes a clickjacking vulnerability. The "naive re-exec" column shows the time to audit all requests with full re-execution and
the "func-level re-exec" column shows the time to audit all requests with function-level re-execution and early termination. The "early term. ops" column shows the average
number of PHP instructions executed up to the last patched function call with early termination (§3.4.2) across all the control flow groups. The "collapsed CF groups" and
"collapse time"columns show the number of collapsed control flow groups and the time to perform collapsing of the control flow groups (§3.5.4), respectively The "template
gen. time", "template ops", and "memoized re-exec" columns show the time taken to generate templates for all the control flow groups in the workload, the average number of
PHP instructions in the generated templates, and the time to re-execute the templates for all the requests, respectively
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Chapter 4

Recovery for distributed web services

This chapter describes AIRE [18], a system that extends WARP'S recovery algorithm to repair distributed
attacks that spread between multiple web applications. In the past few years, it has become commonplace
for web applications to often interact with one another to exchange data, to simplify user authentication,
or to automate tasks that span multiple applications. For example, many web applications use Facebook's
QAuth service to allow users to log in with their Facebook credentials, and to access the user's Facebook
profile or wall postings. Salesforce similarly provides business users with the ability to combine multiple
web applications into a single business workflow. Finally, a number of sites run short user-written scripts
to integrate user information across many web applications [34, 38, 77, 78].

However, this integration comes at a price: if one of the web services is compromised, an adversary
may take advantage of this integration to propagate the attack to other services; manually tracking down
the extent of the attack and recovering all of the affected web services would be difficult at best. For
example, consider the attack scenario in Chapter 1 (§1.3), where an attacker exploited a vulnerability
in a spreadsheet application that stores access control lists for other applications, modified the access
control lists to gain access to the other applications, and corrupted their data. Even though WARP

can be used to repair each individual application's local state (once the attack requests that targeted
the application are identified), the administrator of each affected application still needs to manually
determine whether its communication with other applications changed due to repair. If it did, the attack
could have spread to the other applications, and the administrator needs to manually coordinate repair
with the other applications' administrators. This can be tedious, time-consuming, and error-prone, and
missing the spread of an attack can lead to incomplete recovery.

Though we do not yet know of a real attack similar to the example above, several recent vulnerabilities
in real web services [3, 6, 30-32] could be used to launch such distributed attacks. For example, a
recent Facebook OAuth bug [31] allows an attacker to obtain a fully privileged OAuth token for any user,
as long as the user mistakenly follows a link supplied by the attacker; the attacker could use this token
to corrupt the user's Facebook data, which other applications may access, spreading the attack further.

AIRE recovers from such distributed attacks by automatically propagating repair to all affected
applications. AIRE's key contribution is in making recovery across web services practical by addressing
three challenges, as follows:

Asynchronous repair. Propagating repair across services raises two issues. First, there is no strict
hierarchy of trust among web services and services do not expose their internal state to each other; so,
there is no single system that can be trusted to orchestrate repair across multiple services. Second, during
repair, some services affected by an attack may be down, unreachable, or otherwise unavailable. Waiting
for all services to be online in order to perform repair would be impractical, and may unnecessarily
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delay recovery in services that are already online. Worse yet, an adversary may purposely add their own
server to the list of services affected by an attack, in order to prevent timely recovery.

AIRE solves these issues with two ideas. First, to avoid services having to expose their internal state
and to minimize changes to existing services, AIRE's repair of a service is specified using the service's API.
AIRE automatically extends each service's API to define a repair protocol that allows services to invoke
repair on their past requests and responses to other services. Second, to quickly repair services after an
intrusion without waiting for unavailable services, AIRE performs asynchronous repair by decoupling
the local repair on a single service from the repair of its interactions with other services. A service
repairs its local state as soon as it is asked to perform a repair, and if any past requests or responses
are affected, it queues a repair message for other services, which can be processed when those services
become available.

Repair access control. AIRE must ensure that its repair protocol does not give attackers new ways to
subvert web services. To this end, AIRE enforces access control on every repair invocation. As access
control policies can be application-specific, AIRE allows applications to define their own policies, and
delegates access checks to applications using an interface designed for this purpose. If an application
does not define an access control policy, AIRE falls back to a default policy that allows a currently valid
user to repair a past request issued by the same user; this default policy makes sense in many applications
because the user can anyways manually repair the service in the absence of AIRE by issuing appropriate
API requests using her current privileges.

Reasoning about partially repaired state. With asynchronous repair, some services affected by an
attack can be already repaired, while others have not yet received or processed their repair messages. In
some services, such a partially repaired state can appear corrupted to clients and lead to unexpected
application behavior. To address this challenge, we model repair of a service as requests invoked by a
repair client on the service's API in the current time; if a service's API and its clients support this repair
model, then the service's partially repaired state appears valid to its clients. This model reduces the
problem of dealing with partially repaired states to the existing problem of dealing with concurrent
clients; as web application developers already build web services to handle concurrent clients, this makes
it easy for them to reason about partially repaired state. We show that real, loosely-coupled web services
support partially repaired state with little or no code changes.

The rest of this chapter is structured as follows. §4.1 provides an overview of AIRE's design. §4.2
describes AIRE's distributed repair, §4.3 discusses AIRE's access control, §4.4 presents a repair model
to reason about partial repair state, and §4.5 discusses our prototype implementation. §4.6 provides
a case study of using AIRE for intrusion recovery in several attack scenarios, and §4.7 evaluates the
performance overheads of AIRE.

4.1 Overview

AIRE's goal is to recover from intrusions or user mistakes that spread across multiple web services. AIRE

uses WARP for each affected service's local repair. AIRE assumes that repair starts at the service with
the root cause exploited by the attack (e.g., the spreadsheet application with the XSS bug in the attack
example described earlier); this service was the entry point of the attack and repair is initiated on it as
with WARP (§2.2). If during local repair of a service, AIRE determines that requests or responses to other
services may have been affected, AIRE asynchronously sends repair messages to those services informing
them of the affected requests and responses, along with a corrected version of the requests and responses.
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AIRE on each service that receives a repair message initiates local recovery in turn, after authorizing
the repair message. Once repair messages propagate to all affected services, the attack's effects will
be removed from the entire system. However, even before repair messages propagate everywhere,
applications that are already online can repair their local state.

While repair is propagating through different web services, an application using these services may
observe the overall system in a partially repaired state. For arbitrary distributed applications, this could
result in the state appearing as invalid from the application's point of view. However, AIRE is designed
for recovery in loosely-coupled web services, and we show that most of them can handle partial repair
states with little or no source code modifications.

In the rest of this section we describe scenarios motivating the need for AIRE, and present AIRE's
system model and architecture.

4.1.1 Motivating scenarios

In the past few years, it has become common for a web application to use well-defined web service APIs
to export its functionality, which was previously available only through the application's UI. This has
made it possible for services to integrate with each other, and has opened up many use cases. Here we
describe a few example scenarios that illustrate the benefits of web service integration and motivate the
need for repair in each scenario.

Single sign-on. Many web applications rely on third-party providers like Google, Facebook, Yahoo,
and Twitter to authenticate users via protocols such as OpenID or OAuth. This removes the need for
users to manage a separate account on each web site, but at the same time, if an adversary compromises
the user's primary account, as was recently possible to do with Facebook [30, 31], the attack can now
spread to many other sites. AIRE can help track down and recover from attacks that spread across
different sites the user accesses.

Scripting services. Several web sites allow users to set up server-side scripts to automate tasks across
the user's many web applications [34, 38, 77, 78]. For example, Zapier [78] allows a user to create
a script to automatically update a Google Spreadsheet with her new Github issues. Although this is
convenient for end users, a significant risk is that an attacker can install a script of his own, thereby
retaining access even after the initial entry point of the attack has been repaired. AIRE is able to track
down and repair all side effects of the attack, including scripts installed by an adversary.

Shared platforms. A number of web "platforms," such as Facebook, Google Drive, or Dropbox, help
third-party applications access, store, and exchange user data. Business users similarly use platforms
provided by Salesforce, Workday, and Concur to combine multiple third-party web applications into
unified business workflows. This enables interaction between different web applications used by the
same user, but also increases the risk of a single compromised application affecting the user's other
applications; indeed, checking whether an untrustworthy application has access to the user's shared data
is already common security practice [41, 70]. AIRE can help users deal with such scenarios by tracking
down what other applications might be affected, and repairing them.

Developer workflow. Developers often set up their development workflows by integrating several
web services, perhaps using Github for version control, Jira for project management, FogBugz for bug
tracking, and Amazon EC2 for building and testing. AIRE can help developers recover even if one of
these services is compromised.
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4.1.2 System model

AIRE assumes that the system consists of a set of HTTP web services, with each service exposing a set
of operations that can be performed on it, using a well-defined public API (e.g., a REST API [26]).
Clients of a service cannot directly access its internal state; they can change the service's state only by
performing operations using its public API. This model of web services is commonplace today, and some
well-known examples of such services are Amazon S3, Facebook, Google Docs, and Dropbox.

Under this model, an attack is an API operation that exploited a vulnerability or misconfiguration
in a service and caused unauthorized changes to the service's state. These state changes could have
affected other operations, both on this service as well as on other services, perhaps causing more state
changes on the services. Repair should undo all the state changes resulting from the attack.

An important issue during repair is how services propagate repair to each other. One option is for
services to expose their internal state to each other so that they can rollback and repair each other's
state. However, as services cannot access each other's internal state during normal operation, a key goal
of AIRE's design was to ensure that such access is not needed for repair as well. Instead, repair is invoked
at the API-level and AIRE is designed to repair past API operations. AIRE automatically extends the public
API of each service and defines additional operations to repair past operations, while adhering to the
service API's format. This allows services to use each other's APIs to invoke both normal operations and
repair, without needing access to their internal states.

Conceptually, the effect of API-level repair is as follows: when a client determines that its past API
operation to a service was incorrect and uses AIRE's repair API to fix the mistake, AIRE mutates the
state of the system to what it would have been if the mistake had never happened. AIRE performs this
mutation with rollback-redo for local repair, and by propagating repair to other affected services using
their repair API.

With API-level repair, AIRE can recover from attacks that exploit misconfigurations of a web service
or vulnerabilities in a service's code, and spread through HTTP requests between web services. This
includes several scenarios such as the ones in §4.1.1. Additionally, AIRE can repair corruptions that result
from user mistakes as well.

4.1.3 AIRE architecture

Figure 4-1 provides an overview of AIRE's overall design. Every web service that supports repair through
AIRE runs an AIRE repair controller, which extends WARP'S repair controller. The repair controller
maintains a repair log during normal operation by intercepting the original service's requests, responses,
and database accesses. The repair controller also performs repair operations as requested by users,
administrators, or other web services, by rolling back affected state and re-executing affected requests.

In order to be able to repair interactions between services, AIRE intercepts all HTTP requests and
responses to and from the local system. Repairing requests or responses later on requires being able
to name them; to this end, AIRE assigns an identifier to every request and response, and includes that
identifier in an HTTP header. The remote system, if it is running AIRE, records this identifier for future
use if it needs to repair the corresponding request or response.

During repair, if AIRE determines that the local system sent an incorrect request or response to
another service, it computes the correct request or response, and sends it along with the corresponding
ID to the other service. AIRE's repair messages are implemented as just another REST API on top of
HTTP. AIRE supports four kinds of operations in its repair API. The two most common repair operations
involve replacing either a request or response with a different payload. Two other operations arise when
AIRE determines that the local service should never have issued a request in the first place, or that it
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Figure 4-1: Overview of AIRE'S design. Components introduced or modified by AIRE are shaded. Circles indicate places where
AIRE intercepts requests from the original web service. Not shown are the detailed components for services B and C.

should have issued a request while none was originally performed; in these cases, AIRE asks the remote
service to either cancel a past request altogether, or to create a new request.

When repairing a request, AIRE updates its repair log just like it does during normal operation, so
that a future repair can perform rollback recovery on an already repaired request. This is important
because asynchronous repair can cause a request to be repaired several times as repair propagates
through all the affected services.

AIRE must control who can issue repair operations, to ensure that clients or other web services cannot
make unauthorized changes via the repair interface. AIRE delegates this access control decision to the
original service, as access control policies can be service-specific: for example, a service can require a
stronger form of authentication (e.g., Google's two-step authentication) when a client issues a repair
operation than when it issues a normal operation; or a platform such as Facebook can block repair
requests from a third-party application if the application is attempting to modify the profile of a user
that has since uninstalled that application.

To make implementing access control easy for services that use a standard authentication framework
(Django in the current prototype), AIRE provides a default policy that allows a past request to be repaired
only if repair is issued by the same principal that originally issued the request; services can choose to use
or extend this default policy.

In some cases, appropriate credentials for issuing a repair operation on another web service may not
be available. For example, AIRE on a service may need to repair a request it previously issued on behalf
of a user to a remote service; however, it cannot invoke repair if the remote service requires the user's
credentials for repair and the user is not currently logged in. AIRE treats this situation as if the remote
service is not available, and queues the repair for later. Once the user logs in, the service can use the
user's credentials to propagate repair.

4.2 Distributed repair

This section describes AIRE's design in more detail, focusing on how AIRE achieves asynchronous repair
among distributed web services.
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Command and parameters Description

replace (request id, newrequest) Replaces past request with new data
delete (request id) Deletes past request
create (request data, before id, after id) Executes new request in the past
replace-response (response_id, new_response) Replaces past response with new data

Table 4.1: AIRE's repair interface.

4.2.1 Repair protocol

Each AIRE-enabled web service exports a repair interface that its clients (including other AIRE-enabled
web services) can use to initiate repair on it. AIRE augments the interface of any existing web service to
do this, without requiring any effort on the part of the developer of the service. AIRE's repair interface is
summarized in Table 4.1, and we will now describe its components in more detail.

Request naming. In order to name requests and responses during subsequent repair operations, AIRE
must assign a name to every one of them. To do this, AIRE interposes on all HTTP requests and responses
during normal operation, and adds headers specifying a unique identifier that will be used to name
every request.

To ensure these identifiers uniquely name a request (or response) on a particular server, AIRE on
the service handling the request (or receiving the response) assigns the identifier; it becomes the
responsibility of the other party to remember this identifier for future repair operations. Specifically, AIRE
adds an Aire-Response-Id: header to every HTTP request issued from a web service; this identifier
will name the corresponding response. The server receiving this request will store the response identifier,
and will use it later if the response must be repaired. Conversely, AIRE adds an Aire-Request-Id:
header to every HTTP response produced by a web service; this identifier assigns a name to the HTTP
request that triggered this response. A client can use this identifier to refer to the corresponding request
during subsequent repair.

Repairing previous requests. AIRE's repair begins when some client (either a user or administrator,
or another web service) determines that there was a problem with a past request or response. To recover,
the client uses the AIRE repair API in Table 4.1 to initiate repair on the corresponding web service.

The simplest operation is replace, which allows a client to indicate that a past request (named by
its requestid) was incorrect, and should be replaced with newrequest instead. The new request contains
the corrected version of the arguments that were originally provided to the original request, including
the URL, HTTP headers, query parameters, etc. When AIRE's controller performs a replace operation, it
repairs the local state to be as if the newly supplied request happened instead of the original request. If
any HTTP requests or responses turn out to be affected by this repair, AIRE queues appropriate repair
API calls for other web services.

The delete operation is similar to replace, but it is used when a client determines that it should
not have issued some request at all. In this case, delete instructs the AIRE repair controller to eliminate
all side-effects of the request named by request id.

Finally, create allows a client to create a new request in the past, and replace-response allows a
server to indicate that a past response to a client, named by its response_id, was incorrect, and to supply
a corrected version of the response in new-response. We will discuss both of these operations in more
detail shortly.

68



To make it easier for clients to use AIRE's repair interface, AIRE's repair API encodes the request
being repaired (e.g., newrequest for replace) in the same way as the web service would normally
encode this request. The type of repair operation being performed (e.g., replace or delete) is sent
in an Aire-Repair: HTTP header, and the requestid being repaired is sent in an Aire-Request-Id:
header. Thus, to fix a previous request, the client simply issues the corrected version of the request as
it normally would, and adds the Aire-Repair: replace and Aire-Request-Id: headers to indicate
that this request should replace a past operation. In addition to requiring relatively few changes to client
code, this also avoids introducing infrastructure changes (e.g., modifying firewall rules to expose a new
service).

Creating new requests. Sometimes, repair requires adding a new request "in the past." For example,
if an administrator wants to recover from a mistake where she forgot to remove a user from an access
control list when the user should have been removed, the appropriate way to repair from this mistake is
to add a new request at the right time in the past to remove the user from the access control list. The
create call allows for this scenario.

One challenge with create is in specifying the time at which the request should execute. Different
web services do not share a global timeline, so the client cannot specify a single timestamp that is
meaningful to both the client and the service. Instead, the client specifies the time for the newly created
request relative to other messages it exchanged with the service in the past. To do this, the client first
identifies the local timestamp at which it wishes the created request to execute; then it identifies its
last request before this timestamp and the first request after this timestamp that it exchanged with the
service, and instructs the service to run the created request at a time between these two requests. The
before id and after id parameters to the create call name these two requests.

The above scheme is not complete, as it allows the client to specify order of the new request only
with respect to past requests it exchanged with the service executing the new request. The client cannot
specify precise ordering with respect to arbitrary messages in the system, and so this scheme cannot
handle situations where there are causal dependencies across multiple services. Precise ordering would
require services to exchange large vector timestamps or dependency chains, which can be costly; as we
have not yet found a need for it, we have not incorporated it into AIRE's design.

Repairing responses. In web services, clients initiate communication to the server. However, to invoke
a replace-response on a client, the service needs to initiate communication to the client. This raises
two challenges. First, the server needs to know where to send the replace-response call for a client.
To address this challenge, AIRE clients add an Aire-Notifier-URL: header to every request, along
with the Aire-Response-Id: header. If the server wants to contact the client to repair the response, it
sends a request to the associated notifier URL.

Second, once a client gets a replace-response call from a service, it needs to authenticate the
service. This is typically done by verifying the server's SSL certificate. To address this challenge, AIRE
clients treat any notifications sent to the notifier URL as a hint, which provides a response repair token;
when a client receives a response repair token, it contacts the server and asks the server to provide the
replace-response call for a particular response repair token. This way, the client can appropriately
authenticate the server, such as by validating its SSL certificate. Once the client fetches the repaired
response from the server, it repairs any past requests that originally read this response.

4.2.2 Asynchronous repair

AIRE's repair is asynchronous: it performs local repair on a service affected by an attack, without
coordinating with other services or waiting for repair on other services to complete. This allows each

69



service to repair local state at its own pace, without blocking for other slow or currently unavailable
services.

As part of local repair, AIRE re-executes operations affected by the attack. It is possible that one of
these operations will execute differently due to repair, and issue a new HTTP request that it did not issue
during the original execution. In that case, AIRE must issue a create repair call to the corresponding
web service, in order to create a new request "in the past." Re-execution can also cause the arguments of
a previously issued request to change, in which case, AIRE queues a replace message to the remote web
service in question. One difficulty with both create and replace calls is that to complete local repair,
the application needs a response to the HTTP requests in these calls. However, AIRE cannot block local
repair waiting for the response.

To resolve this tension, AIRE tentatively returns a "timeout" response to the application's request,
which any application must already be prepared to deal with; this allows local repair to proceed. Once
the remote web service processes the create or replace call, it sends back a replace-response,
which contains the new response. At this point, AIRE will perform another repair to fix up the response.

When re-execution skips a previously issued request altogether, AIRE queues a delete message.
Finally, if re-execution changes the response of a previously executed request, or computes the response
for a newly created request, AIRE queues a replace-response message.

AIRE maintains an outgoing queue of repair messages for each remote web service. If multiple repair
messages refer to the same request or the same response, AIRE can collapse them, by keeping only the
most recent repair message. Sometimes, AIRE may not be able to send a repair message, either because
the original request or response did not include the dependency-tracking HTTP headers identifying the
web service to send the message to, or because the communication to the remote web service timed out;
in either case, AIRE places the repair message in a pending queue that the application can inspect (as
discussed later) and notify the administrator, in case she wants to perform some manual compensating
action. AIRE also aggregates incoming repair messages in a incoming queue, and can apply the changes
requested by multiple repair operations as part of a single local repair.

4.3 Repair access control

Access control is important because AIRE's repair itself must not enable new ways for adversaries to
propagate from one compromised web service to another. For example, a hypothetical design that allows
any client with a valid request identifier to issue repair calls for that request is unsuitable, because
an adversary that compromises a service storing many past request identifiers would be able to make
arbitrary changes to those past requests, affecting many other services; this is something an attacker
would not be able to do in the absence of AIRE.

AIRE delegates access control decisions to a handler provided by the web service; if a service does
not provide an access control handler, AIRE falls back to a default access control handler. This section
describes how AIRE's access control delegation works and the default access control policy implemented
by AIRE.

4.3.1 Delegation of access control

AIRE requires that every repair API call be accompanied with explicit credentials required to authorize
the repair operation. AIRE delegates access control decisions to the application because principal
types, format of credentials, and access control policies can be application-specific. For example, some
applications may use cookies for authentication while others may include an access token as an additional
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Interface exported to AIRE by services receiving repair messages
authorize (repair-type, original, repaired) Checks if a repair message should be allowed

Interface exported by AIRE to services sending repair messages
pending () Returns undelivered repair messages
retry (updatedmessage) Resends a repair message

Table 4.2: AIRE's access control interface with web services.

HTTP header; and some applications may allow any user with a currently valid account to repair a past
request issued by that user, while others may allow only users with special privileges to invoke repair.

The access control interface between AIRE and the services running it is shown in Table 4.2. Services
running AIRE export an authorize function that AIRE invokes when it receives a repair message; AIRE

passes the function the type of repair operation (create, replace, delete, or replace-response),
and the original and new versions of the request or response to repair (denoted by the original and
repaired parameters). The authorize function's return value indicates whether the repair should be
allowed; if the repair is not allowed, AIRE returns an authorization error for the repair message.

To perform access control checks, the service may need to read old database state (e.g., to look up
the principal that issued the original request). For this purpose, AIRE provides the application read-only
access to a snapshot of the application's database at the time when the request originally executed;
AIRE can do this because it versions the application's database in a manner similar to WARP'S time-travel
database (§2.3). Once a repair operation is authorized, AIRE re-executes the new request, if any. As part
of request re-execution, the application may apply other authorization checks, in the same way it does
for any other request during normal operation.

When a client invokes repair, AIRE requires the client to include credentials in the repair message,
much like the client needs to during normal execution. In some cases, the repair message may fail the
server's authorization check. For example, a server and a client may use OAuth 2.0 for authorization,
which supports an expiration time for tokens that users issue to clients. When the client issues a repair
message, it may have a stale OAuth token for the user on whose behalf the original request was issued,
causing the server to reject the repair message.

AIRE places repair messages that fail authorization in a pending queue, while it continues performing
repair requested by subsequent authorized messages. AIRE provides a pending function to the client
application to fetch messages in the queue, along with errors returned by the server. Once the application
fixes the credentials in a pending repair message, it can use the retry function to ask AIRE to resend
the message. In the OAuth example above, when a user logs in, the client application could display the
repair messages pending due to stale OAuth tokens of the user, and for each repair message, prompt the
user for a fresh OAuth token or to cancel the message altogether. If the user supplies a fresh token, the
application can ask AIRE to resend the repair message.

4.3.2 Default access control policy

For applications that use a standard authentication framework (e.g., Django's default authentication
system) and do not provide their own authorize function, AIRE implements a default access control
policy that requires a repair message to provide current credentials for the same principal that issued
the original request. This policy requires any potential adversary issuing repair calls to already posses
valid credentials for the appropriate user, and thus the damage from an adversary using AIRE's repair
API is no worse than the adversary using the user's credentials directly. AIRE's default policy also
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allows replace-response operations if the server's SSL credentials are valid, and it disallows create
operations, as there is no corresponding request in the past to check the principal against. For some
applications disallowing creates is not a problem, as deleting past attack requests and replacing a mistake
in a past request's arguments with the correct arguments are sufficient for many repairs. Applications
can use AIRE's default policy as is or can extend it for their purposes.

4.4 Understanding partially repaired state

AIRE's asynchronous repair exposes the state of a service to its clients after its local repair is done,
without waiting for repair to complete on other affected services. In principle, for a distributed system
composed of arbitrary tightly-coupled services, partially repaired state can appear invalid to clients of
the services. For example, if one of the services is a lock service, and during repair it grants a lock to a
different application than it did during original execution, then in some partially repaired state both the
applications could be holding the lock; this violates the service's invariant that only one application can
hold a lock at any time, and can confuse applications that observe this partially repaired state.

However, AIRE is targeted at web services, which are loosely-coupled, perhaps because they are under
different administrative domains and cannot rely on each other to be always available. In practice, for
such loosely-coupled web service APIs, exposing partially repaired state does not violate their invariants;
we call such APIs as compatible with partially repaired state. In the rest of this section, we first present
a model to reason about partially repaired state and show that many of today's web service APIs are
compatible. Then we show how we can extend the design of an API that is not compatible to make it
compatible.

4.4.1 Modeling repair as API invocations

Many web services and their clients are designed to deal with concurrent operations, and so web
application developers already have to reason about concurrent updates. For example, Amazon S3, a
popular web service offering a data storage interface, supports both a simple PUT/GET interface that
provides last-writer-wins semantics in the face of concurrency, and an object versioning API that helps
clients deal with concurrent writes.

Building on this key observation, we propose modeling repair of a service as a repair client performing
normal API calls to the service, in the present time. A service whose API and clients support modeling
repair in this manner (as another concurrent client) is compatible with partially repaired state. Then
application developers need to only reason about concurrent updates, which is a well-understood
problem, rather than having to reason about all possible timelines in which concurrent repair operations
are happening.

This model is already supported by many web services. For example, consider the scenario in
Figure 4-2, illustrating operations on object X stored in Amazon S3. Initially, X had the value vO. At
time t1, an attacker writes the value v1 to X. At time t2, client A reads the value of X and gets back the
value vi, and at time t3 the client reads the value of X again. In the absence of repair or any concurrent
operations, A should receive the value v1, but what should happen if, between t2 and t3, Amazon S3
determines the attacker's write was unauthorized and deletes that request?

If repair occurs between t2 and t3, the state of X will roll back to vO, and two things will happen
with A: first, it will receive vO in response to its second request at t3, and second, at some later time
it will receive a replace-response from S3 that provides the repaired response for the first get, also
containing vO. Client A observes partially repaired state during the time between when local repair on S3
completed (which is sometime between t2 and t3) and when A finally receives the replace-response
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Figure 4-2: Example scenario demonstrating modeling repair actions as concurrent operations by a repair client. Solid arrows
indicate requests during original execution, and dashed arrows indicate eventual repair propagation. The S3 service initiates
local repair in between times t2 and t3 by deleting the attacker's put. If S3's local repair completes before t3, op3 observes
value vO for X. If A has not yet received the propagated repair from S3, receiving the value vO for X at time t3 is equivalent to
a concurrent writer (the hypothetical repair client) doing a concurrent put (x, vo).

message; A sees this state as valid (with its first get(x) returning v1 and its second get(x) returning
v0), because a hypothetical repair client could have issued a put (x, vo) in the meantime.

4.4.2 Making service APIs repairable

A web service that offers a simple PUT/GET interface is trivially compatible with partially repaired
state, because clients cannot make any strict assumptions about the state of the service in the face of
concurrency. However, some web service APIs may provide stronger invariants that may make them
incompatible. For example, several existing web services provide a versioning API that guarantees an
immutable history of versions (§4.6.3); these services are incompatible with partially repaired state.
Suppose the client A from our earlier example in Figure 4-2 asked the server for a list of all versions
of X, instead of a get on the latest version. At time t2, A would receive the list of versions (v0, v1). If
repair simply rolled back the state of X between t2 and t3, A would receive the list of versions (v0) at
time t3 with v1 removed from the list, a state that no concurrent writer could have produced using the
versioning API.

Incompatible services and clients need to be modified to make them compatible, so that they are
repairable using AIRE; the rest of this section describes how we can make the versioning API in today's
web services compatible.

Consider a web service API that provides a single, linear history of versions for an object. Once a
client performs a put (x, v1), value v1 must appear in the history of values for x (until old versions
are garbage-collected). If the put (x, v1) turns out to be erroneous and needs to be repaired, what
partially repaired state can the service expose? Removing v1 from the version history altogether would
be inconsistent if the service does not provide any API to delete versions from history, and might confuse
clients that rely on past versions to be immutable. On the other hand, simply appending new versions to
the history (i.e., writing a new fixed-up value) prevents AIRE from repairing past responses. In particular,
if a past request asked for a list of versions, AIRE would have to send a new list of versions to that client
(using replace-response) where the effects of v1 have been removed. However, if AIRE extends that
past version history by appending a new version that reverts v1, this synthesized history would in turn
be inconsistent with the present history.

One way to make the versioning APIs compatible with partial repair is to extend them to support
branches, similar to the model used by the git version control system. With an API that supports branches,
when a past request needs to be repaired, AIRE can create a new branch that contains a repaired set
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Figure 4-3: Repair in a versioned service. The shaded operation put2 from the original history, shown on the left, is deleted

during repair, leading to the repaired history of operations shown on the right. The version history exposed by the API is shown

in the middle, with two branches: the original chain of versions, shown with solid lines, and the repaired chain of versions,
dotted. The mutable "current" pointer moves from one branch to another as part of repair.

of changes, and move the "current" pointer to the new branch, while preserving the original branch.
This makes the API compatible and has the added benefit of preserving the history of all operations that
happened, including mistakes or attacks, instead of erasing mistakes altogether.

For example, consider a simple key-value store that maintains a history of all values for a key, as
illustrated in Figure 4-3. During repair, request put2 is deleted. An API with linear history would
not be compatible with partial repair, but a branching API can. With branches, repair creates a new
branch (shown in the right half of Figure 4-3), and re-applies legitimate changes to that branch, such as
put3. These changes will create new versions on the new branch (such as vS mirroring the original v3);
the application must ensure that version numbers themselves are opaque identifiers, even though we
use sequential numbers in the figure. At the end of local repair, AIRE exposes the repaired state, with
the "current" branch pointer moved to the repaired branch. This change is consistent with concurrent
operations performed through the regular web service API.

For requests whose responses changed due to repair, AIRE sends replace-response messages that
contain the new responses; the new response for a get request is the repaired value at the logical
execution time of the request, and the new response for a versions request contains only the versions
created before the logical execution time of the request. In the example of Figure 4-3, the new response
for geti is v1, while the new response for the versions call is (vi, v2, v3, v5), and does not contain v4
and v6.

We explore the repairability of common web service APIs in §4.6.3, and describe how AIRE implements
repair for the versioned API example above in §4.5.

4.5 Implementation

We implemented a prototype of AIRE for the Django web application framework [2]. AIRE leverages
Django's HTTP request processing layer, its object-relational mapper (ORM), and its user authentication
mechanism. The ORM abstracts data stored in an application's database as Python classes (called
"models") and relations between them; an instance of a model is called a model object.

We modified the Django HTTP request processor and the Python httplib library functions to
intercept incoming and outgoing HTTP requests, assign IDs to them, and record them to the repair log.
AIRE versions model objects in a manner similar to WARP'S time-travel database, so that the model objects
can be rolled back during repair. To implement this, we modified the Django ORM to intercept the
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Figure 4-4: Attack scenario in Askbot demonstrating AIRE's repair capabilities. Solid arrows show the requests and responses
during normal execution; dotted arrows show the AIRE repair operations invoked during recovery. Request ( is the
configuration request that created a vulnerability in the OAuth service, and the attacker's exploit of the vulnerability results in
requests ®-®. For clarity, requests in the OAuth handshake, other than request (, have been omitted.

application's reads and writes to model objects. On a write to a model object, AIRE transparently creates

a new version of the object, and on a read, it fetches the latest version during normal execution and the

correct past version during repair. AIRE rolls back a model object to time t by deleting all versions after

t. In addition to tracking dependencies between writes and reads to the same model, AIRE also tracks

dependencies between models (such as unique key and foreign key relationships) and uses them to

propagate repair. We implemented AIRE's default access control policy in Django's default authentication

framework. We modified 2953 lines of code in Django to implement the AIRE interceptors; the AIRE

repair controller was another 2758 lines of Python code.

Repair for a versioned API. If a service's API implements versioning, it indicates this to AIRE by making

the model class for its versioned data a subclass of AIRE's VersionedModel class. VersionedModel

objects are not rolled back during repair, and AIRE does not perform versioning for these objects. If other

non-versioned model objects store references to VersionedModel objects, AIRE rolls them back during

repair.

4.6 Application case studies

This section answers the following questions:

- What kinds of attacks can AIRE recover from?

- How much of the system is repaired if some services are offline or authorization fails at a service?

- What happens to the system's invariants if some services are offline during repair?

- How much effort is required to port an existing application to run with AIRE?

4.6.1 Intrusion recovery

As we do not know of any significant compromises that propagated through distributed web services

to date, to evaluate the kinds of attacks that AIRE can handle, we implemented four challenging attack

scenarios and attempted to repair from each attack using AIRE. The rest of this subsection describes

these scenarios and how AIRE handled the attacks.
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Askbot. A common pattern of integration between web services is to use OAuth or OpenID providers
like Facebook, Google, or Yahoo, to authenticate users. If an attacker compromises the provider, he can
spread an attack to services that depend on the provider. To demonstrate that AIRE can repair from
such attacks, we evaluated AIRE using real web applications, with an attack that exploits a vulnerability
similar to the ones recently discovered in Facebook [30, 31].

The system for the scenario consists of three large open-source Django web services: Askbot [1],
which is an open-source question and answer forum similar to Stack Overflow and used by sites like the
Fedora Project; Dpaste, a Django-based pastebin service; and a Django-based OAuth service. These three
services together comprise 183,000 lines of Python code, excluding blank lines and comments. Askbot
maintains a significant amount of state, including questions and answers, tags, user profiles, ratings, and
so on, which AIRE must repair.

For this scenario, we configured Askbot to allow users to sign up using accounts in an external OAuth
service that we set up for this purpose. We also modified Askbot to integrate with Dpaste; if a user's
Askbot post contains a code snippet, the Askbot service posts this code to the Dpaste service for easy
viewing and downloading by other users. Finally, the Askbot service also sends users a daily email
summarizing that day's activity. These loosely coupled dependencies between the services mimic the
dependencies that real web services have on each other.

The attack in the scenario, shown in Figure 4-4, exploits an OAuth vulnerability during Askbot's user
signup. After Askbot gets an OAuth token for a user with the standard OAuth handshake (omitted from
the figure), Askbot prompts the user for her email and verifies the email with the OAuth service before
allowing signup to proceed. To simulate the recent Facebook vulnerability [31], we added a debug
configuration option in OAuth that always allows email verification to succeed. This option is mistakenly
turned on in production by the administrator by issuing request (1), thus exposing the vulnerability.
The attacker exploits this vulnerability in OAuth to sign up with Askbot as a victim user and post a
question with some code, thereby spreading the attack from OAuth to Askbot. Askbot automatically posts
this code snippet to Dpaste, spreading the attack further to Dpaste; later, a legitimate user views and
downloads this code from Dpaste. At an even later time, Askbot sends a daily email summary containing
the attacker's question, creating an external event that depends on the attack. Before, after, and during
the attack, other legitimate users continue to use the system, logging in, viewing and posting questions
and answers, and downloading code from the Dpaste service. Some actions of these legitimate users,
such as posting their own questions, are not dependent on the attack, while others, such as reading the
attacker's question, are dependent.

After the attack, we used AIRE to recover from it. The administrator starts repair by invoking a
delete operation on request @, which introduced the vulnerability. This is shown by the dotted arrow
on request (1D in Figure 4-4. This initiates local repair on OAuth, which deletes the misconfiguration,
and invokes a replace-response operation on request ® with an error value for the new response.
The replace-response propagates repair to Askbot: as requests ® and ( depend on the response to
request @, local repair on Askbot re-executes them using the new error response, undoing the attacker's
signup and the attacker's post. Local repair on Askbot also runs a compensating action for the daily
summary email, which notifies the Askbot administrator of the new email contents without the attacker's
question; it also re-executes all legitimate user requests that depended on the attack requests; and finally
it invokes a delete operation on Dpaste to cancel request @. Dpaste in turn performs local repair,
resulting in the attacker's code being deleted, and a notification being sent to the user who downloaded
the code. This completes recovery, which removes all the effects of the attack and does not change past
legitimate actions in the system that were not affected by the attack.
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Figure 4-5: Setup for the spreadsheet application attack scenarios.

Lax permissions. A common source of security vulnerabilities comes from setting improper permis-
sions. In a distributed setting, we consider a scenario where one service maintains an authoritative copy
of an access control list, and periodically updates permissions on other services based on this list, similar
to the attack example presented in §1.3. If a mistake is made in the master list, it is important to not
only propagate the change to other services, but to also undo any requests that took advantage of the
mistake on those services.

Since Askbot did not natively support such a permission model, we implemented our own spreadsheet
service for this scenario. The spreadsheet service has a simple scripting capability similar to Google
Apps Script [34]. This allows a user to attach a script to a set of cells, which executes when values in
cells change. We use scripting to implement a simple distribution mechanism for access control lists
(ACLs). The setup is shown in Figure 4-5. The ACL directory is a spreadsheet service that stores the
master copy of the ACL for the other two spreadsheets. A script on the directory updates the ACLs on
the other services when master list is modified.

The attack is as follows: an administrator mistakenly adds an unauthorized attacker to the ACL
by issuing a request to update the master ACL spreadsheet; the ACL script distributes the new ACL to
spreadsheets A and B. Later, the attacker takes advantage of these extra privileges to corrupt some cells
in both spreadsheets. All this happens while legitimate users are also using the services.

Once the administrator realizes her mistake, she initiates repair by invoking a delete operation on
the ACL directory to cancel her update to the ACL spreadsheet. The ACL directory reverts the update,
and invokes delete on the two requests made by its script to distribute the corrupt ACL to the two
services. This causes local repair on each of the two services, which results in rollback of the corrupt
ACL. All the requests since the corrupt ACL's distribution are re-executed, as every request to the service
checks the ACL. As the attacker is no longer in the ACL, his requests fail, whereas the requests of
legitimate users succeed; AIRE's repair thereby cleans up the attacker's corrupt updates while preserving
the updates made by legitimate users.

Lax permissions on the configuration server. A more complex form of the above attack could take
place if the directory server itself is misconfigured. For example, suppose the administrator does not
make any mistakes in the master ACL spreadsheet, but instead accidentally makes the master spreadsheet
world-writable. An adversary could then add himself to the master ACL, wait for updates to propagate
to A and B, and then modify data in those spreadsheets as above.

Recovery in this case is more complicated, as it needs to repair the ACL server in addition to the
spreadsheet servers. Repair is initiated by the administrator invoking a delete operation on her request
that configured the ACL directory to be world-writable. This initiates local repair on the ACL directory,
reverting its permissions to what they were before, and cancels the attacker's request that updated the
ACL. This triggers the rest of the repair as in the previous scenario, and fully undoes the attack.
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Propagation of corrupt data. Another common pattern of integration between services is synchro-

nization of data, such as notes and documents, between services. If an attack corrupts data on one
service, it automatically spreads to the other services that synchronize with it.

To evaluate AIRE's repair for synchronized services, we reused the spreadsheet application and the
setup from the previous scenarios, and added synchronization of a set of cells from spreadsheet service

A to spreadsheet service B. A script on A updates the cells on B whenever the cells on A are modified. As
before, the attack is enabled by the administrator mistakenly adding the attacker to the ACL. However,
the attacker now corrupts a cell only in service A, and the script on A automatically propagates the
corruption to B.

Repair is initiated, as before, with a delete operation on the ACL directory. In addition to the repair
steps performed in the previous scenario, after service A completes its local repair, it invokes a delete
operation on service B to cancel the synchronization script's update of B's cell. This reverts the updates
made by the synchronization, thereby showing that AIRE can track and repair attacks that spread via
data synchronization as well.

4.6.2 Partial repair propagation

Repair propagation may be partial if some services are offline during repair or a service rejects a repair
message as unauthorized. To evaluate AIRE's partial repair due to offline services, we re-ran the Askbot
repair experiment with Dpaste offline during repair. Local repair runs on both OAuth and Askbot; the
vulnerability on OAuth is fixed and the attacker's post to Askbot is deleted. Clients interacting with
OAuth and Askbot see the state with the attacker's post deleted, which is a valid state, as this could have
resulted due to a concurrent operation by another client. Most importantly, this partially repaired state
immediately prevents any further attacks using that vulnerability, without having to wait for Dpaste to

be online. Once Dpaste comes online, repair propagates to it and deletes the attacker's post on it as
well. When we re-ran the experiment and never brought Dpaste back online, AIRE on Askbot timed out
attempting to send the delete message to Dpaste, and notified the Askbot administrator, so she can
take remedial action.

We also ran the spreadsheet experiments with service B offline. In all cases, this results in local
repair on service A, which repairs the corrupted cells on A, and prevents further unauthorized access to
A. If the attacker can still connect to B, he can continue to access it, but once B comes online and the
directory server or A propagate repair to it (depending on the specific scenario), B is repaired as well.
Similar to the offline scenario in Askbot, clients accessing the services at any time find the services' state
to be valid; all repairs to the services are indistinguishable from concurrent updates.

Finally, we used the spreadsheet experiments to evaluate partial repair due to an authorization
failure of a repair message. We use an OAuth-like scheme for spreadsheet services to authenticate each
other-when a script in a spreadsheet service communicates with another service, it presents a token

supplied by the user who created the script. The spreadsheet services implement an access control policy
that allows repair of a past request only if the repair message has a valid token for the same user on
whose behalf the request was originally issued.

We ran the spreadsheet experiments and initiated repair after the user tokens for service B have
expired. This caused service B to reject any repair messages, and AIRE effectively treats it as offline; this
results in partially repaired state as in the offline experiment described before. On the next login of the

user who created the script, the directory service or A (depending on the experiment) presents her with
the list of pending repair messages. If she refreshes the token for service B, AIRE propagates repair to B,
repairing it as well.
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Service Versioned Conflict Description
CRUD erin check

Amazon S3 / / Simple file storage

Google Docs / / Office applications
Google Drive / / File hosting
Dropbox / / / File hosting
Github / / Project hosting
Facebook / Social networking
Twitter / Social microblogging
Flickr / Photo sharing

Salesforce / Web-based CRM
Heroku / Cloud apps platform

Table 4.3: Kinds of interfaces provided by popular web service APIs to their clients.

The results of these three experiments demonstrate that AIRE'S partial repair can repair the subset of
services that are online, and propagate repair once offline services or appropriate credentials become
available.

4.6.3 Partial repair in real web services

Here we evaluate whether AIRE'S partial repair preserves the invariants that real web service APIs offer
their clients, even when some of the services are offline. As real web services like Google Docs are closed-
source, we could not inspect their source, and could not run experiments on them to evaluate whether
they are compatible with partially repaired state. Instead, we studied the APIs of 10 popular web services
to understand the types of guarantees they offer, and implemented one such guarantee-versioning-in
our spreadsheet application.

API study. The interfaces exposed by typical web services fall into three categories, as shown in
Table 4.3. The simple CRUD (create, read, update, delete) functionality is offered by all services using
HTTP PUT, GET, POST, and DELETE operations on the resource objects exported by a service. There is no
concurrency control, and if multiple updates happen simultaneously, the last update wins.

Some services provide a versioning API to deal with concurrent updates, which provides a single
linear history of immutable versions for each resource. These services' APIs allow clients to fetch the
list of versions of a resource and to restore a resource to a past version (which creates a new version
with the contents of the past version). Making these versioned services compatible with partial repair
requires supporting branches as in §4.4.2.

Finally, Dropbox offers a conflict check interface in addition to versioning. In versioning, two
concurrent writes create two versions, but the later one silently becomes the current version. This default
method of resolving conflicts is insufficient for Dropbox's file synchronization, as the user may see this
as her updates being lost; so, Dropbox's update API allows a client to specify a parent version, and if the
parent version does not match, the update is saved as a new conflicted file, and the client is notified.

Based on the API results from Table 4.3, we conclude that most web services are either already
compatible with AIRE'S partial repair because they only support simple CRUD functionality, or can be
made compatible by extending their versioning API to support branches.

Versioned spreadsheet. To demonstrate extending versioning to support partial repair, we imple-
mented versioning of cells in our spreadsheet application, with support for branching as in Figure 4-3.
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With support for branches, conflict check functionality can be implemented as an additional branch, so
we do not evaluate it separately, even though it also fits in AIRE's model.

We re-ran the spreadsheet scenarios, with versioning turned on. The difference from the previous
run is that the repaired state contained a version tree for each cell that captured all the modifications,
including the attacker's corruptions as well as modifications by repair, as immutable versions of the cell.
The attacker's corruptions, however, are in a branch separate from the current timeline in the version
tree. This preserves the immutability of versions that versioned services guarantee their clients, while
still being compatible with partially repaired state resulting from AIRE's asynchronous repair; as before,
AIRE was able to recover from the attack. These results demonstrate that real web services can be made
compatible with AIRE's partially repaired state so that repair does not violate the guarantees they provide
their clients.

4.6.4 Porting applications to use AIRE

Askbot, Dpaste, and Django OAuth are large open source Django applications that are in active use,
with 183,000 lines of code in total, excluding comments and blank lines. We did not need to make
any changes to run them with AIRE. However, to run the attack scenario in §4.6.1, we needed to
modify Askbot to integrate with Django OAuth and Dpaste, which it did not do out-of-the-box. These
modifications took 74 and 27 lines of Python code, respectively. We also needed to modify OAuth to add
the misconfiguration vulnerability, which took another 13 lines of Python code.

The spreadsheet application without versioning did not need any changes to run with AIRE as well.
To evaluate the difficulty of porting the spreadsheet application with versioning, we first implemented a
simple linear versioning scheme, where each version is just an incrementing counter. Then we extended
it to support version trees and be compatible with AIRE's partial repair. This involved adding parent
and timestamp fields to each version, and a pointer to the current version for each cell. This required
modifying 44 lines of code in an application with 840 total lines of code. Most versioned services like
Dropbox, Amazon S3, and Google Spreadsheets record version creation timestamps and do not use
sequential version numbers, so they already maintain enough version information to support AIRE's

branched versioning, though implementing branching could involve extra effort.

4.7 Performance evaluation

To evaluate AIRE's performance, this section answers the following questions:

- What is the overhead of AIRE during normal operation, in terms of CPU overhead and disk space?

- How long does repair take on each service, and for the entire system?

We performed experiments on a server with a 2.80 GHz Intel Core i7-860 processor and 8 GB of
RAM running Ubuntu 12.10. As our prototype's local repair is currently sequential, we used a single
core with hyperthreading turned off to make it easy to reason about overhead.

4.7.1 Overhead during normal operation

To measure AIRE's overhead during normal operation, we ran Askbot with and without AIRE under two
workloads: a write-heavy workload that creates new Askbot questions as fast as it can, and a read-heavy
workload that repeatedly queries for the list of all the questions. During both workloads, the server
experienced 100% CPU load.
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Workload Throughput Log size per req.
No AIRE AIRE App. DB

Reading 21.58 req/s 17.58 req/s 5.52 KB 0.00 KB
Writing 23.26 req/s 16.20 req/s 8.87 KB 0.37 KB

Table 4.4: AIRE overheads for creating questions and reading a list of questions in Askbot. The first numbers are requests per
second without and with AIRE. The second numbers show the per-request storage required for AIRE'S logs (compressed) and
the database checkpoints.

Askbot QAuth Dpaste

Repaired requests 105 / 2196 2 / 9 1 / 496
Repaired model ops 5444 / 88818 9 / 128 4 / 7937
Repair messages sent 1 1 0
Local repair time 84.06 sec 0.10 sec 3.91 sec
Normal exec time 177.58 sec 0.01 sec 0.02 sec

Table 4.5: AIRE repair performance. The first two rows show the number of repaired requests and model operations out of the
total number of requests and model operations, respectively

Table 4.4 shows the throughput of Askbot in these experiments, and the size of AIRE'S logs. AIRE
incurs a CPU overhead of 19% and 30%, and a per-request storage overhead of 5.52 KB and 9.24 KB
(or 8 GB and 12 GB per day), respectively. One year's worth of logs should fit in a 3 TB drive at this
worst-case rate, allowing for recovery from attacks during that period.

4.7.2 Repair performance

To evaluate AIRE's repair performance, we used the Askbot attack scenario from §4.6.1. We constructed
a workload with 100 legitimate users and one victim user. The attacker signs up as the victim and
performs the attack; during this time, each legitimate user logs in, posts 5 questions, views the list of
questions and logs out. Afterwards, we performed repair to recover from the attack.

The results of the experiment are shown in Table 4.5. The two requests repaired in the OAuth
service are requests T and @ in Figure 4-4, and the one request repaired in Dpaste is request @. The
repair messages sent by OAuth and Askbot are the replace-response for request @ and the delete
for request ®, respectively. Askbot does not send replace-response for requests © and , as the
attacker browser's requests do not include a Aire-Notifier-URL: header.

Local repair on Askbot re-executes 105 out of the 2196 total requests. This is because the attacker
posted the question at the beginning of the workload, and subsequent legitimate users' requests to
view the questions page depend on the attacker's request that posted the question. These requests are
re-executed when the attacker's request is canceled, and their repaired responses do not contain the
attacker's question. AIRE on Askbot does not send replace-response messages for these requests as
the user's browsers did not include a Aire-Notifier-URL: header, because the current AIRE prototype
does not support user's browsers; AIRE can be integrated into user's browsers in a manner similar to
WARP so that repair can propagate to browsers as well.

Repair takes longest on Askbot, and it is the last to finish local repair. In our unoptimized prototype,
repair for each request is -10x slower than normal execution. This is because the repair controller
and the replayed web service are in a separate processes and communicate with each other for every
Django model operation; optimizing the communication by co-locating them in the same process should
improve repair performance.
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Chapter 5

Discussion

5.1 Assumptions

Our design of web application repair makes the following assumptions.

Trusted computing base. Recovery of a web application assumes that the application's web software
stack is in the trusted computing base, as it relies on the repair logs recorded by the software stack during
normal operation. The trusted computing base therefore includes the OS, the HTTP server, the database
server, the language runtime, and any framework (such as Django or Rails) used by the application; our
recovery system cannot recover from an attack that compromises these system components. However,
many common web application attacks, such as SQL injection, cross-site scripting, cross-site request
forgery, clickjacking, and the scenarios in §4.1.1, do not compromise these system components, and
our system can recover from them. Recovery also trusts each user's browser to correctly record a log of
the user's actions; however, if a user's browser is compromised, it affects recovery of only that user's
actions and not the actions of other users, as recovery trusts a browser's log only as much as it trusts the
browser's HTTP requests.

Reducing recovery's trusted computing base is desirable from a security point of view, and two
promising approaches to do so are as follows. First, by borrowing ideas from prior work [45, 58, 63]
and tracking dependencies at multiple levels of abstraction, we can use lower layer logs to recover
from compromises in system components. For example, OS-level repair logs could be used to repair a
compromised database server or language runtime. Second, by inserting proxies in front of the HTTP
server and the database, and performing logging in the proxies instead of in the application's web
software stack, we can remove the need to rely on the web software stack for logging. However, this
may also lead to more re-execution during repair, as the captured logs are not exact (e.g., the exact
database queries made for each HTTP request are not captured).

Correct and minimal patches. We assume that the patch used for patch-based auditing and retroactive
patching correctly fixes the vulnerability being repaired. Recovery works best with patches that do
not change program behavior aside from fixing the vulnerability. Patches that both fix security bugs
and introduce new features, or that significantly modify the application in order to fix a vulnerability,
could generate false positives during auditing, and could result in unnecessary re-execution or raise too
many conflicts during repair. For example, if the patch upgraded commonly used functionality in the
application that was used by legitimate requests, auditing flags those legitimate requests as suspects,
and repair needlessly re-executes them.
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Applications are recovery-enabled. Automatic repair propagation across applications assumes that
all the applications to which repair needs to be propagated are running our recovery system and have
recovery enabled on them. If an affected application is not running our recovery system, repair cannot
be automatically propagated to it and recovery loses track of the spread of the attack beyond that point.
If repair propagation from an application to a remote application fails, the application's administrator
is notified of this fact, along with the repair that cannot be propagated, so that she can take remedial
action (perhaps notify the administrator of the remote application, so she can initiate manual recovery).

Application support for repair. Recovery makes three assumptions about each recovery-enabled
application. First, that the application defines an appropriate UI replayer that correctly replays user input
in a repaired page and correctly flags conflicts. Second, that the application defines an appropriate access

control policy that denies access to unauthorized clients requesting repair. Finally, that the application

and its clients support partially repaired state. If the first assumption does not hold, recovery may not
fully revert an attack's effects; if the second assumption does not hold, attackers would be able to use
repair to make unauthorized changes to a service; and, if the third assumption is broken, a service's
clients may observe partially repaired state as being corrupt. Though WARP'S default UI replayer and
AIRE's default access control policy work for many applications, we rely on an application's developer
to override them with suitable alternatives if they do not work for that application. Similarly, though
most existing web applications support partially repaired state with no modifications, we rely on an
application's developer to suitably modify the application if it does not support partially repaired state.

User support for repair. Recovery makes two assumptions about the administrator (or user) who
initiates repair. First, recovery assumes that the administrator resolves any conflicts that are flagged
during repair. Second, recovery assumes that the administrator takes remedial measures (e.g., by
applying a compensating action) for any affected network communications that it cannot automatically
repair (perhaps, because the remote system is not recovery-enabled). If the first assumption is broken
and the administrator does not resolve a conflict, legitimate effects of the command that caused the
conflict would be missing from the repaired state. If the second assumption is broken, repair may not
propagate to all the affected machines, and some machines may still have state corrupted by the attack.

5.2 Limitations

This section discusses limitations of our current prototypes along with approaches to address them.

Repairing data leaks. Recovery cannot undo disclosures of private data, such as if an adversary steals
sensitive information from the application, or steals a user's password. However, when private data is
leaked, recovery can still help track down affected users; if the administrator specifies which data is
private, recovery can notify her of reads that returned the private data only during original execution
but not during repair, and hence are potential attacks that leaked the data.

In the case of stolen credentials, an attacker can use them to impersonate the user and perform
unauthorized actions; recovery cannot distinguish the attacker's actions from legitimate user's actions,
as both used the same credentials. However, if the user is willing to identify her legitimate browsers or
the administrator can identify the attacker's IP address, recovery can undo the attacker's actions.

Logging sensitive data. The client-side logs, uploaded by WARP'S browser extension to the server, can

contain sensitive information. For example, if a user enters a password on one of the pages of a web
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application, the user's key strokes will be recorded in the client-side log, in case that page visit needs to
be re-executed at a later time. Although this information is accessible to web applications even without
our system, applications might not record or store this information on their own, and this additionally
stored information must be safeguarded from unintended disclosure. Similarly, server-side logs can also
contain sensitive information in the logged HTTP requests.

One way to avoid logging known-sensitive data, such as passwords, is to modify replay to assume
that a valid (or invalid) password was supplied, without having to re-enter the actual password. The
logs can also be encrypted, and recovery can require the administrator to provide the corresponding
decryption key to initiate repair.

Garbage collection of repair logs. Repair logs and database versions grow in size over time. It is up
to the administrator of the applications to decide how long to store the logs. For a small application
such as HotCRP it may make sense to store all logs from the time when the conference starts, so that the
system can recover from any past attack. For a larger-scale web site, such as Wikipedia, it may make
sense to discard old logs and old database versions at some point (e.g., after several months), although
recovery would not be possible for attack requests whose logs were discarded.

Application source code updates. Our current WARP prototype assumes that the application code
does not change, other than through retroactive patching. While this assumption is unrealistic, fixing it
is straightforward. WARP'S application repair manager would need to record each time the application's
source code changed. Then, during repair, the application manager would roll back these source code
changes (when rolling back to a time before these changes were applied), and would re-apply these
patches as the repaired timeline progressed (in the process merging these original changes with any
newly supplied retroactive patches).

Similarly, patch-based auditing in our current POIROT prototype assumes the application source code
is static, but in practice, application source code is upgraded over time. In order to audit past requests
that were executed on different versions of the software, the patch being audited must be back-ported
to each of those software versions; this is already common practice for large software projects such as
MediaWiki. From POIROT's point of view, the indexes generated for each version of the software must be
kept separate, and POIROT's control flow filter must separately analyze the basic blocks for each version.
Finally, re-execution of a request must use the source code originally used to run that request (plus the
backported patch for that version).

Need for a browser extension. To recover from intrusions that involve a user's browser, our WARP

prototype requires the user to install a browser extension that records client-side events and user input,
and uploads them to WARP-enabled servers. If a user does not have our prototype's extension installed,
but gets compromised by a cross-site scripting attack, WARP will not be able to precisely undo the effects
of malicious JavaScript code in that user's browser. As a result, server-side state accessible to that user
(e.g., that user's Wiki pages or documents) may remain corrupted.

However, WARP will still inform the user that her browser might have received a compromised reply
from the server in the past. At that point, the user can manually inspect the set of changes made to her
data from that point onward, and cancel her previous HTTP requests, if unwanted changes are detected.
Furthermore, we believe it would be possible to implement the extension's recording functionality in
pure JavaScript as well, perhaps by leveraging Caja [57] to wrap existing JavaScript code and record
all browser events and user input; the browser's same-origin policy already allows JavaScript code to
perform all of the necessary logging.
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Distributed repair involving browsers Our current WARP prototype cannot repair mashup web
applications that communicate with each other in a user's browser, since the browser event logs for
each application would be uploaded to that application's server. WARP can be extended to repair such
multi-origin web applications in two ways. The first approach is to extend the WARP browser extension
to support AIRE's distributed repair protocol: users' browsers become participants in distributed repair
and propagate repair across the web applications in a mashup. However, in this approach, repair
propagation has to wait for each affected user's browser to come online, which can slowdown progress
of repair. The second approach is to have the browser sign each event that spans multiple origins (such
as a postMessage between frames) with a private key corresponding to the source origin. This would
allow the repair controller at the source origin's server to convince the repair controller on the other
frame's origin server that it should be allowed to initiate re-execution for that user, and does not require
involvement of users' browsers during repair.
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Chapter 6

Related work

There has been a significant amount of past research related to the work in this thesis, in areas such
as intrusion detection, recovery, taint tracking, databases, and debugging. This chapter places our
contributions in the context of prior research.

Intrusion detection. Past intrusion recovery systems explored several approaches to identify initial
intrusions. One approach adopted by systems like Retro [45], Taser [29], Back to the Future [37],
ReVirt [24] and Operator Undo [15], is to rely on the administrator to identify intrusions. The
administrator could manually inspect logs or use intrusion detection tools [36, 49, 51, 75] to look for
symptoms of an attack, and use a tool like BackTracker [46] to track down the attack's initial entry
point. However, this approach requires significant manual effort on the administrator's part and is
error-prone. Another approach is to rely on developers to specify vulnerability-specific predicates [40]
for each discovered vulnerability. Each predicate is run against past system executions to determine
attacks that exploited the vulnerability checked by the predicate. However, this approach imposes
significant extra effort for developers.

Unlike prior systems, POIROT'S patch-based auditing and WARP'S retroactive patching use just the
patch fixing a vulnerability to identify and recover from any attacks that exploited the vulnerability, and
therefore do not place additional burden on administrators or developers.

POIROT's approach to auditing compares the execution of past requests on patched and original
code, which is similar to Rad [74]. POIROT'S contributions over Rad lie in its techniques to improve the
performance of this approach for web applications, namely, control flow filtering, function-level auditing,
and memoized re-execution.

Recovery. The two recovery systems closest to WARP and AIRE are Retro [45] and Dare [44], respec-
tively Though WARP borrows the action history graph concept from Retro, Retro focuses on shell-oriented
Unix applications on a single machine and cannot be directly applied to web application recovery, for the
following three reasons. First, Retro requires the administrator to detect attacks, unlike WARP, which just
needs a security patch to perform retroactive patching. Second, Retro's file- and process-level rollback
and dependency tracking cannot perform fine-grained rollback and dependency analysis for individual
SQL queries that operate on the same database table, which WARP'S time-travel database can. Finally,
repairing any network I/O in Retro requires user input; in a web application, this would require every
user to resolve conflicts at the TCP level. WARP'S automated UI replay eliminates the need to resolve
most conflicts, and presents a meaningful UI for the true conflicts that require user input.

Dare extends Retro to perform intrusion recovery on a cluster of machines. However, Dare's dis-
tributed repair is synchronous and it assumes that all machines are under the same administrative
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domain; both these design decisions make it not applicable to distributed web services. AIRE's asyn-
chronous repair, in contrast, is designed for loosely-coupled distributed services, and AIRE's repair
protocol supports repair of services across administrative domains.

Operator Undo [15] recovers from an operator mistake in an email server by rolling back the server
state, repairing the mistake in the past, and replaying a recorded log of operations. This is similar to
our recovery approach. However, Operator Undo is limited to recovering from accidental mistakes and,
unlike our work, it cannot recover from attacks. Furthermore, in contrast to retroactive patching, it
relies on the administrator to repair the past mistake; also, it replays all recorded operations after the
mistake whereas we use dependency tracking to replay only requests affected by an attack.

Akku* and Goel's data recovery system uses taint tracking to analyze dependencies between HTTP
requests and database elements, and thereby recover from data corruption errors in web applications.
However, it can only recover from accidental mistakes, as opposed to malicious attacks (in part due to
relying on white-listing to reduce false positives), and requires administrator guidance to reduce false
positives and false negatives. Our work, on the other hand, can fully recover from data corruptions due
to bugs as well as attacks, with no manual intervention (except when there are conflicts during repair).
Our evaluation of WARP (§2.7.4) compared WARP to Akku§ and Goel's system in more detail.

Polygraph [52] recovers from compromises in a weakly consistent replication system by rolling
back corrupted state. Unlike our work, Polygraph does not attempt to preserve legitimate changes to
affected files, which can lead to significant data loss. Furthermore, it does not automate detection of
compromises. Polygraph works well for applications that do not operate on multiple files at once. In
contrast, our work deals with web applications, which frequently access data in a single shared database.

Simmonds et al.'s user-guided recovery system [67] recovers from violations of application-level
invariants in a web service and uses compensating actions and user input to resolve these violations.
However, it does not recover from attacks or accidental data corruptions.

Provenance and taint tracking Provenance-aware storage systems [59, 60] record dependency infor-
mation similar to WARP, and can be used by an administrator to track down the effects of an intrusion
or misconfiguration. Margo and Seltzer's browser provenance system [53] shows how provenance
information can be extended to web browsers. WARP similarly tracks provenance information across
web servers and browsers, and aggregates this information at the server, but WARP also records sufficient
information to re-execute browser events and user input in a new context during repair. However, our
WARP prototype does not help users understand the provenance of their own data.

Ibis [63] and PASSv2 [58] show how to incorporate provenance information across multiple layers
in a system. While WARP only tracks dependencies at a fixed level (SQL queries, HTTP requests, and
browser DOM events), ideas from these systems could be used to extend WARP so that it can recover
from intrusions that span many layers (e.g., the database server or the language runtime).

POIROT's dependency analysis is similar to taint tracking systems [25, 62]. A key distinction is that
taint tracking systems are prone to "taint explosion" if taint is propagated on all possible information
flow paths, including through control flow. As a result, taint tracking systems often trade off precision for
fewer false positives (i.e., needlessly tainted objects). POIROT addresses the problem of taint explosion
through control flow byfixing the control flow path for a group of requests, thereby avoiding the need to
consider control flow dependencies.

Databases. Tracking down and reverting malicious actions has been explored in the context of
databases [13, 50]. WARP cannot rely purely on database transaction dependencies, because web
applications tend to perform significant amounts of data processing in the application code and in web
browsers, and WARP tracks dependencies across all those components. WARP'S time-travel database is in
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some ways reminiscent of a temporal database [64, 68]. However, unlike a temporal database, WARP
has no need for more complex temporal queries, has support for two time-like dimensions (wall-clock
time and repair generations), and allows partitioning rows for dependency analysis.

Many database systems exploit partitioning for performance; WARP uses partitioning for dependency
analysis. The problem of choosing a suitable partitioning has been addressed in the context of minimizing
distributed transactions on multiple machines [20], and in the context of index selection [27, 39]. These
techniques might be helpful in choosing a partitioning for database tables in WARP.

Testing and debugging. Mugshot [56] uses record and replay for debugging web applications,
whereas our work uses it for intrusion recovery. Mugshot's recording and replay of JavaScript events
is deterministic, and it cannot replay events on a changed web page. WARP, on the other hand, must
replay user input on a changed page in order to re-apply legitimate user changes, after effects of the
attack have been removed from a page. WARP'S DOM-level replay matches event targets between record
and replay even if other parts of the page differ.

POIROT's approach to auditing a system for intrusions is based on comparing the execution of past
requests using two versions of the code: one with a patch applied, and one without. This is similar to
the approach used by delta execution [69] and TACHYON [54] for patch validation. POIROT's memoized
re-execution is similar to dynamic slicing [8], which computes the set of instructions that indirectly
affected a given variable. Program slicing, and dynamic slicing in particular, was proposed in the context
of helping developers debug a single program. POIROT shows that similar techniques can be applied to
locate and memoize identical computations across multiple invocations of a program.

POIROT's control flow filtering is similar to the problem of regression test selection [9, 14]: given a
set of regression tests and a modification to the program, identifying the regression tests that need to
be re-run to test the modified program. POIROT demonstrates that control flow filtering works well for
patch-based auditing under a realistic workload, and further introduces additional techniques (function-
level auditing and memoized re-execution) which significantly speed up the re-execution of requests
beyond static control flow filtering.

Khalek et al. [42] show that eliminating common setup phases of unit tests in Java can speed up test
execution, similar to POIROT's function-level auditing. However, Khalek et al. require the programmer
to define undo methods for all operations in a unit test, which places a significant burden on the
programmer that POIROT avoids.

Past work on distributed debugging [10] intercepted executions of unmodified applications and
tracked causal dependencies for performance debugging, whereas AIRE tracks dependencies to recover
from attacks and mistakes.

Other related work. Dynamic dataflow analysis [19] and symbolic execution [16] have been used to
generate constraints on a program's input that elicit a particular program execution. These techniques
are complementary to control flow filtering and could be extended to apply to POIROT's auditing.

Memoization has been used to speed up re-execution of an application over slightly different
inputs [7, 35, 73]. Though POIROT's techniques can be extended to work for that scenario as well,
memoized re-execution in the current POIROT design detects identical computations across different
executions of a program, and separates memoized computations from input-dependent computations,
by grouping requests according to their control flow traces.

Heat-ray [23] considers the problem of attackers propagating between machines within a single
administrative domain, and suggests ways to reduce trust between machines. On the other hand, AIRE is
focused on attackers spreading across web services that do not have a single administrator, and allows
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recovery from intrusions. Techniques such as Heat-ray could be helpful in understanding and limiting
the ability of an adversary to spread from one service to another.
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Chapter 7

Conclusion

This dissertation demonstrated that automated recovery in web applications is practical as well as
effective. Our work developed several key ideas for this purpose: retroactive patching, automated UI
replay, dependency tracking, patch-based auditing, and distributed repair. With these ideas, we can
audit applications for past intrusions and recover them from intrusions and user mistakes, with little to
no effort on the part of system administrators. Automated auditing and recovery are important tools in
an administrator's security toolbox, complementary to intrusion prevention, because, despite the best
efforts of administrators, every system will eventually have a compromise. Though this thesis focused on
automated recovery in web applications, our ideas are more generally applicable, and can be adapted to
other systems such as mobile applications and desktop applications.

We built three systems, WARP, POIROT, and AIRE, to explore and evaluate our ideas. The WARP

intrusion recovery system introduced three of the key ideas to make recovery practical in a single web
application. Retroactive patching allows administrators to recover from past intrusions that exploited
a vulnerability by simply supplying a security patch fixing the vulnerability, without having to identify
intrusions or even knowing if an attack occurred. The time-travel database allows WARP to perform
precise repair of just the affected parts of the system, by tracking the spread of the attack through the
database and rolling back just the affected parts of the database during repair. Finally, DOM-level replay
of user input allows WARP to replay legitimate users' input and preserve legitimate changes, with no
administrator or user involvement in many cases. Our evaluation of a WARP prototype shows that it can
recover from attacks, misconfigurations, and data loss bugs in real applications, without requiring any
code changes, and with modest runtime overhead.

POIROT's patch-based auditing identifies past requests in a web application that potentially exploited
a patched security vulnerability. POIROT's auditing improves WARP'S repair performance, as it is more
precise than WARP'S patch-based auditing and returns fewer false positives. POIROT's auditing is efficient
as well, due to three key techniques that POIROT introduced: control-flow filtering, function-level
auditing, and memoized re-execution. We evaluated a prototype of POIROT and showed that it is effective
at detecting exploits of real vulnerabilities in MediaWiki and HotCRP; that it has false positives on only
1 out of 34 recent MediaWiki patches as compared to WARP'S false positives on 17 out of the same 34
patches; and that its optimizations allow it to audit challenging patches, which affect every request,
12-51 x faster than the original execution time of those requests.

AIRE extended WARP'S recovery to repair attacks that spread across multiple web applications.
AIRE introduced three key techniques that make distributed repair practical. First, an asynchronous
repair protocol to propagate repair across services that span administrative domains, even when not
all the services are available. Second, an access control mechanism that delegates access checks to
the application to ensure that the repair protocol does not give attackers new ways to subvert web
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applications. Finally, a repair model to reason about partially repaired states resulting from asynchronous
repair. We demonstrated, using a prototype of AIRE, that porting existing applications to AIRE requires
little effort, that AIRE can recover from realistic distributed attack scenarios, and that typical web service
APIs can support partially repaired states resulting from AIRE's asynchronous repair.
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