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Abstract

A source of random bits is an important resource in modern cryptography, algorithms and
statistics. Can one ever be sure that a “random” source is truly random, or in the case of
cryptography, secure against potential adversaries or eavesdroppers? Recently the study
of non-local properties of entanglement has produced an interesting new perspective on
this question, which we will refer to broadly as Certifiable Randomness Expansion (CRE).
CRE refers generally to a process by which a source of information-theoretically certified
randomness can be constructed based only on two simple assumptions: the prior existence
of a short random seed and the ability to ensure that two or more black-box devices do not
communicate (i.e. are non-signaling).

In this work we make progress on a conjecture of [Col09] which proposes a method
for indefinite certifiable randomness expansion using a growing number of devices (we
actually prove a slight modification of the original conjecture in which we use the CHSH
game as a subroutine rather than the GHZ game as originally proposed). The proof requires
a technique not used before in the study of randomness expansion, and inspired by the
tools developed in [RUV12]. The result also establishes the existence of a protocol for
constant factor CRE using a finite number of devices (here the constant factor can be much
greater than 1). While much better expansion rates (polynomial, and even exponential)
have been achieved with only two devices, our analysis requires techniques not used
before in the study of randomness expansion, and represents progress towards a protocol
which is provably secure against a quantum eavesdropper who knows the input to the
protocol.
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Chapter 1

Introduction

In his Ph.D. thesis, Colbeck [Col09], was the first to propose protocols for “Private Ran-
domness Expansion”, here referred to as Certifiable Randomness Expansion (CRE). These
proposals sparked a series of works to refine and improve CRE protocols and their analysis
[PAM10, CK11, VV11, FGS13, PM13]. Most of the protocols proposed by these works
use only two non-signaling devices, and follow a basic format in which the devices are
required to play a certain quantum game (such as the CHSH game, or GHZ game) many
times in serial, reporting their output bits for one round to a referee before receiving the
randomized input bits for the next round. At the end of all the rounds the referee may
perform a test that the devices are expected to pass. A good protocol has the property that,
conditioned on the devices passing the test, one can prove a lower bound on the entropy

of the output. For more on the formal framework for such protocols see [CVY13].

The best known expansion rate for such two-device non-adaptive protocols is exponen-
tial [VV11]. That is, it can be certified that, conditioned on the devices passing the referee’s
test, the output has smoothed min-entropy which is exponential in the size of the random
seed. In [VV11] it is further proved this the min-entropy of the output is secure against
any quantum eavesdropper that has no knowledge of the seed. The analysis of [VV11]
uses a concept called the “guessing game”. Their proof shows that, if an eavesdropper

could guess some information about the output of the devices running this protocol (con-
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ditioned on the devices passing the referee’s test), then that eavesdropper can guess a lot
of information about the random input seed. This is very unlikely since, by assumption,

the random input seed is unknown to the eavesdropper.

Colbeck’s original proposals for CRE protocols (section 5 of [Col09]) were based around
serial repetition of the GHZ game. Essentially, he proposes that if one were to have three
non-signaling devices play r rounds of the GHZ game (a game which requires three
devices) in serial, with appropriately randomized input at every round, then the output
(conditioned on the devices winning the GHZ game at every round) should have smoothed
min-entropy proportional to r, secure even against an quantum eavesdropper that knows
the input to the rounds. Even if true, this conjecture would not establish randomness
expansion since the output is no larger than the input. Therefore, Colbeck further proposes
a protocol in which these r rounds of serial GHZ are repeated simultaneously by n different
triples of devices (all devices being jointly multi-partite non-signaling). Furthermore, each
of the triples of devices must receive the same random input as the other triples throughout
the course of the protocol. He conjectures that the output of these devices (conditioned on
the devices winning every GHZ game) has smoothed min-entropy proportional to nr. This
is, therefore, a proposal of a CRE protocol which has expansion factor linear in the number
of devices used, and thus has an arbitrarily large expansion factor if one is allowed access
to an arbitrary number of devices. The intuition behind this proposition is that, since each
triple of devices produces randomness secure even against an eavesdropper who knows
the input, the output of each triple must still have randomness even conditioned on the

outputs of all the other device triples (which may be viewed as eavesdroppers).

This is an interesting and natural proposal. Nonetheless, it is difficult to prove such
results using an analysis based on the “guessing game” because we can no longer assume
that the eavesdropper has no knowledge of the input. Indeed, each device triple has full
knowledge of the input used on every other device triple. A priori, this could allow them
to correlate their answers arbitrarily and produce very low total output entropy while still

passing the referee’s test. We will show that, at least in one particular natural setting, no
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such cheating strategy is possible.

In this work we will give a proof of these conjectures with a couple modifications.
Instead of using the GHZ game as a subroutine, we will use the CHSH game. This means
that instead of device triples, we will speak of device pairs. In order to accommodate the
optimal winning probability of the CHSH game the referee’s test in the protocol will also
change. Otherwise the protocol remains the same (for a precise statement refer to Definition
1.2.1 below). We will not explicitly prove security against quantum eavesdropper for this
protocol in this work, though we note that, as discussed above, the indefinite expansion
result which we do prove already requires an implicit notion of such security. We expect
that security against a quantum eavesdropper (even one that knows the input to the
protocol) can be derived from this analysis in a straightforward manner, but leave this for

future work.

The main technical observation of this work is that, by applying an analysis similar to
that in [RUV12] we can certify that the devices in the protocol must actually be performing
a particular type of quantum measurement on a particular type of quantum state in order
to pass the referee’s test with high probability. With such specific knowledge we can show
that the output of certain pairs of devices has high entropy, even conditioned on other

devices in the protocol who know the input.

For the soundness condition of our result we will need to assume that the devices use a

strategy in which the probability of passing the referee’s test is greater than 1 — —L1 . This

oly(r)"
assumption can be enforced through a form of polynomial amplification, but relr)nc})]\(fi)ng the
assumption altogether would make the result cleaner, and is an interesting open problem.
The smoothness parameter and probability bounds that we prove for this protocol are often
inverse polynomial where one might hope that they could be made inverse exponential
in r. Indeed, they are often only the inverse of a fractional power of r (like %). This
parameter scaling may be inherent in applying the tools of [RUV12], and improving the
scaling (by improving the analysis, or redesigning the protocol) is another very interesting

open problem. Nonetheless, proving randomness expansion results of this form (whatever
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the parameter scaling) is a necessary and potentially useful conceptual step in improving

our understanding of randomness expansion and quantum non-locality.
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1.1 Preliminaries

Let X be a random variable that takes values in some discrete domain D. Its min-entropy
is defined as Hoo(X) = — logmaxycp Pr(X = x)

The conditional min-entropy is defined as

HeolX|Y) = —log ( L Pr(Y = y)2~ H (XY=,
y

For two discrete random variables X, Y with the same domain, their statistical distance
is | X ~Y|l; = Eyep | Pr(X = x) — Pr(Y = x)|. When X and Y are defined by probability
distributions Py and P,, we may also write || Py — P,||; to denote || X — Y|y, the statistical
distance between X and Y. For € > 0, the smoothed min-entropy of a discrete random
variable X is defined as

H(X) = sup Hwo(X),
X|X-Xih<e

where the supremum is taken over all X defined on D. The smoothed conditional min-
entropy is

HE(X|Y) = sup Ho(X|Y).
ENNEN)-(XY)1<e

The CHSH game. The CHSH game is a two-player game with two non-communicating
players, Alice and Bob, who are given independent random inputs x,y € {0, 1} respectively.
Their task is to produce outputs a4,b € {0,1} such that a &b = x A y. By enumerating
over all deterministic strategies, it is not hard to see that the optimal classical winning
probability of the CHSH game is w.(CHSH) = 3/4. There is a simple quantum strategy
based on the use of a single EPR pair which demonstrates that the optimal quantum
winning probability is ws(CHSH) > cos?(71/8) ~ 85%, and in fact it is an optimal
quantum strategy [Cir80, CNJ. This “ideal”, or “optimal” quantum strategy is illustrated
in Table 1.1 which is taken from [RUV12].

We will see from Lemma 1.3.2 (also copied from [RUV12]) that this ideal strategy is, in
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Alice’s strategy Bob’s strategy

a=20 a= b=0 b=1
0)0] —x=0 |+)}+|—=x=0 MH4+N+M =y =0 M*]O)(0|M4>y 0
U x=1 |-}-|>x=1 MI=Y M~y =1 MM~y =1
R ' AY=0" Sy =0

x=0 a1 TN

Table 1.1: [This table taken from [RUV12]] An optimal quantum strategy for the CHSH
game. Alice and Bob each have one qubit of a shared EPR state ——(|00) + [11)). On

each input a . b, they make the two-outcome pro]ectlve measurements listed above.
Here, |+) = (|0) + 1)) and M = exp(—i§Y). Thus R§l = Z, R{ = X, RE = M'XM

and R? = M*ZM The measurements are also illustrated on a cross-section through the
xz-plane of the Bloch sphere.

a robust sense, the only strategy which can achieve the optimal winning probability for
the CHSH game. This property of the CHSH game is often referred to as rigidity. This is

the key idea which we will use in our analysis, in a manner similar to that pioneered by
[RUV12].
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1.2 The Main Result

Definition 1.2.1. We define a family of protocols (P, 5). Here, Py s (r,n € N, 1 > 8,1 > 0)
is a protocol designed for n pairs of devices (DY, D%) for | € [n], and a referee. The protocol takes
as input 2r uniform random bits, which we will denote with a vector ¥ € {0,1}*, and proceeds in
r rounds. At the i** round the referee sends x; = Fo;_1 to D', (for all | € [n]), and bit y; = 7y; to
D% (for all 1 € [n)]), and requests that each pair (D',, D) play a CHSH game with those bits as
input. The referee then collects the outputs of every pair of non-signaling devices and proceeds to
the next round. The output from D', at the i*" round will be denoted a} and that from DY, bl.

Let Win; = 1 [|{i: al ® bl = x;y;}| > r(OPT — 8)] be the event that the I'* pair of devices

“win” at least an OP'T — & fraction of the r rounds played. The referee accepts if and only if

Win=1{|{1: Win; = 1}| > (1—h)n] = 1. (1.2.1)

L. For v > 4 this protocol has completeness 1 —
\/;

2exp ( ) Furthermore, if Pr (Win=1) > 1 — f’ then

Theorem 1.2.2. Consider the protocol P

rn,,,

Kz

()
Hy, (Output|Win = 1) > T (1.2.2)

6

In particular, this implies that (following the convention of [CVY13] Definition 3.1) the fam-

ily of protocols (P, , 1L ) is a randomness amplifier with seed length 2r, completeness c(r) =
T

1—2exp ( > soundness s(r) = 1— -;ﬁ

against quantum strategies, smoothness €(r) =

n

® (—371\/—;), and expansion g(n,r) = 3.

Note that the expansion g(n,r) could, a priori, be a function of r, but in fact is only a
function of n. Furthermore, g(n,r) grows linearly with n regardless of the value of r, and
this is the sense in which this family of protocols gives a scheme for indefinite randomness

expansion, assuming access to arbitrarily many devices. Also note that Definition 3.1 of
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[CVY13] technically only covers protocols using two devices, but it is natural and straight

forward to generalize.
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1.3 Rigidity, and sequential CHSH games

In this section we review some results and notation for studying rigidity of the CHSH
game, and sequences of CHSH games. The material in this section is either cited or

paraphrased from [RUV12] (see citations).

Definition 1.3.1 (Paraphrased from [RUV12]). For convenience in studying the CHSH game
we will define OPT = cos?(7/8).
For € > 0, a quantum strategy for the CHSH game is e-structured if the winning probability

(with uniform random inputs) is at least OPT — §.

Lemma 1.3.2 (CHSH game rigidity: Reichardt, Unger, and Vazirani [RUV12]). There exists
a constant ¢ > 0 such that the following statements hold. Consider a quantum strategy for the
CHSH game, specified by Hilbert spaces H a, Hp and Hc, a state |p) € Ha @ Hp ® Hc, and
reflections RY € £(Hp) for D € {A, B} and « € {0,1}. Let € > 0 and assume that the strategy
is e-structured.

Then there are extensions of the Hilbert spaces H 4, Hp, and extensions of the reflections RD by

a direct sum with other reflections, so that the following properties hold:

o There is an isomorphism between Alice’s extended space and C? ® H 5, under which Rf =

Z®1and |(R{ = X®1)4 @ 1gc|p)| < cv/e.
e Bob's space is isomorphic to C? @ Hp, with RE = Z®@1and || (RE — X @ 1)) < cv/E.

e Finally, letting

") = (I (HM))\%QOO) +]11) (1.3.1)

where M = exp(—iZY) as in Table 1.1, and H is the two by two Hadamard matrix, there
exists a unit vector |P*) € Ha @ Hp @ Hc with |||¢p) — [¢*) @ [¢™)]| < cv/e.

Furthermore, if H 4 and Hp are finite-dimensional, then the isomorphisms into C2 ® H 4 and into

C2 ® Hp depend only on R§, R4 and on RE, RB, respectively.
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We now establish some notation for CHSH games played in sequence, one following the
next, such that devices cannot communicate between games. Each game is understood to

have a uniform random inputs, independent from all previous games.

Definition 1.3.3 (Paraphrased from [RUV12]). A strategy S for two provers, Alice and Bob, to
play n sequential CHSH games consists of the provers’ Hilbert spaces, their initial state and the

reflections they use to play each game. Fix the following notation:

Transcripts: Denote questions asked to Alice by a, . . ., an, questions asked to Bob by by, ..., by,

and possible answers by x1, . .., x, and yy, . . . , Yn, respectively. Write h}f‘1 = (ay,..., aj, X1, . ..

W= (b, b5y, .., y;) and hj = (hf, hP), a full transcript for games 1 through j.
Hilbert spaces: Let H 4 and Hp be the two provers’ Hilbert spaces, and Hc any external space.

Reflection and projection operators: In game j, for questions aj and b;, let R{é (h]‘f}, 1) and
jo (1}, ) be the reflections specifying Alice and Bob's respective strategies. Let PA(RE) =
2(1+ (Z1)9RG(hL ) and PP(RP) = §(1+ (~1)WRE (hE ).

States: Let |¢) € H s @ Hp @ Hc be the provers’ initial shared state, and let |$(hj_1)) be the

shared state at beginning of game j conditioned on the transcript hiq

Random variables: We use A;, B;, X;, Y; to denote the random variables for the questions and
answers in game j, and Hj for the transcript up through game j. Aj and B; are distributed
independently and uniformly at random. Conditioned on the transcript h;_1 for the first j — 1
games and the questions a and b]-, X; and Y; are distributed according to Pr[Xj =x;,Y; =
YilHj1 = hj1, Aj = a;, By = bj] = [PA(h") @ PP(hP) [ (h;_1))]1%
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Chapter 2

Proofs

2.1 Outline of Proof

Now let us consider a sequence of r rounds of CHSH played in serial with the same pair of
non-signaling players with uniform random, independent inputs at each round. We will
use the terminology of section 1.3 above. Let W; be the random variable indicating a “win”
in round i. Thatis, W; = 1® X; ®Y; ® A;B;. Let W = Y [_; W; be the random variable
counting the number of “wins” in the serial protocol. In the following lemma E[W;|H;_1]
denotes a conditional expectation, and is therefore a random variable, which is equal to
the winning probability of the i** round conditioned on H;_1, the transcript of all previous
games. We define S = Y7, E[W;|H, 1]

We now present a result about testing for individual e-structured games within a se-

quence of CHSH games. This result is similar in spirit and in proof to those in section 5.7

of [RUV12], though it is tailored to our purpose and does not appear there in this form.

Lemma 2.1.1. For 61,62 > 0,

—r(528— 51)2)

We will now consider the parallel randomness amplification scheme P, ,, j, 5 of Definition

Pr(W > (OPT —éd1)rand S < (OPT — &)r) < 2exp (

1.2.1. In light of the many pairs of devices present in the protocol P, , ; s we will update

19



the notation of Section 1.3. There we defined a number of terms regarding the strategies
and outputs of a single pair of devices (D4, Dp) playing a sequence of CHSH games each
with independent uniform random inputs. We now give each pair of devices (D}, D}) in
protocol Py, j, 5 its own copy of the notation defined in Section 1.3. We will denote this by
adding a superscript [ to the notation referring to outputs or strategies of the device pair
(DY, D%). Thus, X]l is the output of device D, at round j, Hll- is the random variable taking

the value of the transcript for the first j rounds of use of device pair (D';, D), Rﬁ'l (hﬁll)
is the reflection applied by D/, at the j' round given that H]A_'ll = h]’.q_’l1 and A; = a;-j and so
on.

Furthermore, we will similarly update the notation of Lemma 2.1.1. Let Wil be the
binary random variable indicating a “win” by devices (D}, D%) at round i. That is,
Wi =1@&X &Y ©AjBl. Let S, = ¥]_ E[W/|H_,]. ‘

Here we pause to highlight a subtle but important point. Note that, WLOG, we may
assume that Rﬁ’l (hf_’ll) (resp. Rﬁ'l (hf _ll) ) are deterministic functions of a; and hf_’ll (resp.
bf. and h]B _l 1) nc])t random Varialgles. The reason for this is that, we have assumed that
all the devices (which are multi-partite non-signaling) must employ a quantum strategy,
and furthermore, any shared randomness used by the devices before the beginning of
the protocol can be instead encoded in their shared quantum state without changing the
outcome probabilities. Thus, the shared quantum state (shared between all 2n devices in
the protocol), and the reflections, which are deterministic functions of past transcripts and
current inputs, represent the most general quantum strategy. We will assume this, and it
will be important in order for the entire analysis to remain well defined.

The following lemma will ultimately allow us to establish, with high probability, the
existence of many e-structured individual games across all # pairs of devices (conditioned

on the entire protocol passing).

Lemma 2.1.2. Imagine a single use of protocol P, , p, s,. If

Pr([{l:$;> (OPT &)} > (1—s)n|Win=1)<1—d

20



Then,

(ds — h) Pr (Win = 1) < 2exp (:f_@%:ﬁﬁ)

As one might guess from the statement, the proof of Lemma 2.1.2 makes critical use of
Lemma 2.1.1.

The idea behind the proof of Theorem 1.2.2 is to use Lemma 2.1.2, and the guarantee
Pr(Win=1) > 1- 4%/? to prove existence of many values (I, i) € [n] x [r] (©(nr) such
values) such that round i played by the I** device pair is T-structured (with T = © (%\/F))
nearly all the time. Further analysis will reveal that the distribution of outputs a! at such

rounds satisfies the assumed property in Lemma 2.1.3 below. An application of Lemma

2.1.3 then completes the poof of Theorem 1.2.2.
Lemma 2.1.3. Suppose, for some § > 0, that we have a probability distribution P(xy,...,Xn) on
n-bit strings ¥ = (x1, ..., xn) € {0,1}" such that for all i € [n]

||P(x1, vy xl-) - P(xl, . xi_l) : P% (x,-)Hl < )

Here, P% is the uniform distribution on a single bit. It follows that

616 (= > 1 _ﬁ 1 >
HY (%) > log(1_3ﬁ> 4log(2+\/g

21



2.2 The Proof

Suppose that we choose parameters d, s, 1, d1, 6, > 0 such that
_ PRV
(ds — h) Pr(Win = 1) > 2exp (li‘sz—g_@_> (2.2.1)

Then it follows by Lemma 2.1.2 that

r

iZ]E W/ H, |Wzn—1]

1=1i=1

E

,
Xn:Z]EWl\ }>PrWzn:1
1=1i=1

> Pr(Win =1)Pr(|{l: 5/ > (OPT —&)r}| > (1 —s)n|Win = 1) (1 — s)n(OPT — &)r
Pr(Win =1)(1—d)(1 - s)(OPT — &)nr (2.2.2)

I\/

We know, by optimality of OP T as the maximal winning probability for the CHSH game,
and the fact that every round (/, ) is given a uniformly random input conditioned on H! |
that for all (1, i) € [n] x [r], E[W!|H!_,] < OPT (here E[W!|H!_,] is a random variable and
this inequality holds with probability 1). Therefore, also, ]E[IE[W’| 4l <orT. It follows
by Markov’s inequality and equation (2.2.2) that, for any 0 < <y; < 1 there can be at most

y1nr values (1,i) € [n] x [r] such that

(ot~ E[EMW![H,]]) > % (OPT — Pr(Win = 1)(1 — d)(1 — s)(OPT — &)

- O,;T (1 — Pr(Win = 1)(1 — d)(1 —s) (1 - 6%)) (2.2.3)
We now define
G={Wi) e x: (orT-E [EW!|HL,]]) < B} (2.2.4)

22



Where, for notational simplicity we have set

Bj= —— (1 = Pr(Win =1)(1 - 4d)(1 —s) (1 B _ég_))

gt OPT

By the above argument it follows that |G| > | (1 — y1)nr|. For any (1,i) € G it follows
by Markov’s inequality that forany 0 < 7, <1

B
Pr (Hf_1 € {hf_l : <OPT ~EWIH., = hﬁ,l]) > 7;})

<72 (2.2.5)

Note, in the above equation, that, for any value of hf._l, E [Wil|Hf_1 = hﬁ_l] is a constant

by definition. Reorganizing the above equation gives:

Pr(HL, € (W, EW/HL, = K] > B;})

>1-m7 (2.2.6)
where we have
B, = OPT (1 - (1 — Pr(Win = 1)(1 - d)(1 — 5) (1 - ﬁg_)))
2= T271 OPT

Let P ({x!: (I,i) € G}) be the probability distribution of the Alice outputs for the rounds
(1,7) € G. We define an order on the elements of G as follows: for (1,7), (I',7') € G we say

(', > (Li)ifl' > I,or !’ =l and i > i’. Otherwise we say (1,i) > (I',7).
Lemma 2.2.1. Define

OPT 62

e=89"T (1 ~ Pr(Win = 1)(1 - d)(1 —s) (1 - __._>>

Y271 OPT

23



For every (I',i') € G

“P ({xf L (Li) € Gand (1,i) < (I, i’)}) .y ({x§ :(Li) € Gand (I,i) < (I', i’)}) Py (x1) H
<4 (y2+4cVe) (22.7)

1

We are now ready to prove the main result, Theorem 1.2.2.

2.2.1 Proof of Theorem 1.2.2

Restatement of Theorem 1.2.2

Consider the protocol P, 1 1 . Forr > 4 this protocol has completeness 1 — 2 exp (— ﬁz) .
s 4\1/;

Furthermore, if Pr (Win = 1) > 1 — -1, then

rl

® 1
Hm(T‘ZT) (Output|Win = 1) > % (2.2.8)

In particular, this implies that (following the convention of [CVY13] Definition 3.1) the

L4

family of protocols (P, , s ) is a randomness amplifier with seed length 27, completeness

c(r) =1-2exp (- ;%) ,soundness s(r) = 1 — % against quantum strategies, smoothness

e(r) =0 (#), and expansion g(n,r) = 3.

Proof of of Theorem 1.2.2

Proof. First we analyze completeness. Suppose that each pair of devices (D!,, D}) uses the

optimal CHSH strategy (presented in Table 1.1) at each of the r rounds. Then

24



Pr (Win; = 1) = Pr (i W/ > r(oPT — :};))

|

>1—exp (—2v7) (2.2.9)

Where the last inequality follows by Hoeffding’s inequality. When all the devices are
using the optimal CHSH strategy at all rounds, the random variables Win, are independent
since the states being measured by different pairs of devices are in tensor product with

each other. Thus,

Pr(Win=1) = Pr (ZWZ”I (1—%) ) >1—Pr<2wznz (1—%) )
I=1
>1-"Pr (E L Z Wznl}

(-eocsin)23)

>1-2exp (“;rrl—z) (2.2.10)

The last inequality once again uses Hoeffding’s inequality. Here we have assumed that r

is sufficiently large that exp (—2+/7) < 4 (r > 4 suffices for this).

We now analyze the soundness of the protocol. We assume that Pr Win=1)>1- —1-—

v
Setting h = and 6 = \/., we note that we are considering the P, , j, 5, protocol. Further
setting 6, = \/_, = \/i_ and s = \/; it is easy to see that (for sufficiently large r)
_ 52
(ds — h)Pr(Win=1) > 2exp (_Z@B——éi) (2.2.11)

Now set y; = %, and y; = % It follows by Lemma 2.2.1 that if we set
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—g2PT (1 _ Pr(Win = 1)(1 — d)(1 — 5) (1 - —52—>) (2.2.12)

T271 OPT

then we have that, for every (I,i’) € G (G here is as defined in equation (2.2.4))

“p({ 1 (Li) € Gand (1,i) < (I, ’)}) ({xf.:(z,i)ec;and (1,i) < (l’,i’)}).P% (xﬁﬁ)”l
4 (772 + 4c\/e) (2.2.13)

|‘_‘

A simple calculation gives thate = ©® ( 3 ), and thus

<K

4(12+4cve) =@ (1—3-\/;) (2.2.14)

Since |G| > (1 — 1)nr it follows by Lemma 2.1.3 that

6 @(wf> 1 (1—71) 1 1
(= (Li)eG}) > —lo - LA ( \/© )
© 5 1—3 /®(\[) 4 %6\27 (f)

(2.2.15)

So,

@(-3%/—;
Hea™™=Y ({2} : (1,i) € G}|Win = 1)

—log(Pr(Win = 1)) — log (1 - 3@1(%)) — a _Zl)nr log (% +O (%))
(2.2.16)




Since Pr(Win = 1) > 1— % and {x! : (I,i) € G} is a subset of the entire output we

have that, for sufficiently large r

[©) 1
Ho‘,(?%) (Output|Win =1) > el

16 (2.2.17)
O
2.2.2 Proof of Lemma 2.2.1
Restatement of Lemma 2.2.1
Define
OPT ) O ))
e=8——|1=-Pr(Win=1)1-d)(1-5)1— ——
OFL (1 pe(win = )1 -1 -3) (1- 5%

Forevery (I',i') € G

IP({s:iecand (i) < ,)}) P ({¥: (Li) e Gand (1i) < (i) }) - Py (])
<4 (,),2 + 40\/_6:) (2.2.18)

!

Proof of Lemma 2.2.1

Proof. The main idea of the proof is as follows. Given a particular (I,i') € G, we will
consider a new strategy for the devices in which only the conditional measurements(and
the quantum state) used at round (’,i’) have been modified. The modifications will be
such that the new strategy always outputs an independent uniform bit (conditioned on
the past) at round (!’,i"). We will show that each of the modifications made are small, and

thus that the output distribution of the modified strategy is close to the original output
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distribution.

Fix a particular (/,i") € G. From equation (2.2.5) we know that

Pr (Hj_, ¢ Good) < 7, (2.2.19)

Where we have defined

Good)y = {Hl;_, : E[W} |HI_ =H} ] > B} (2.2.20)

So, for each i}, _, ¢ Good!, » we modify RO (hAl ) (resp. RB 2 (hg'lll)) for both values of 4
(resp. b), as wellas [p(h},_,)) so that they match the ideal strategy for the CHSH game (illus-
trated in Table 1.1). We call the distribution of the outputs {x! : (1,i) € Gand (1,i) < (I',i")}

corresponding to this new strategy P’ ({x}: (I,i) € Gand (1,i) < (V',#)}). Since this new

strategy is unchanged whenever /!, v, € Good!, », we have that

HP ({xf . (1,i) € Gand (I,i) < (I, i')}) — P ({xﬁ L (1) € Gand (I,i) < (l’,i’)}) “1
<Pr(H) e coodfi) Hp ({xf : (1,i) € Gand (Li) < (1',i") } |HI_, € Good! )

_P ({xf. . (L) € Gand (1,i) < (I', i’)} H | e Goodg,)
+Pr (Hi_; ¢ Good)) |P({+l: ) eGand Li) < (1, z’)} |HY_; ¢ Good))

_P ({xg : (1,i) € Gand (L,i) < (1) } |HY_, ¢ Good) )H

< Pr(H}_; € Good!)) -0+ Pr (Hi_, ¢ Goodh) -2 < 2y (2.2.21)

Note that in the above Pr (Hf,’_l € Goodﬁf) =P (HI?,LI € Goodf:) = p” (Hl, 1 € Good! )

is well defined, since P and P’ are identical probability distributions on
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{xf. - (1,i) € Gand (1,i) < (l’,i’)}.

We now further modify the strategy in the following way:
For each hl, 4 € Good we know from the definition of Goodf.f and the definition of €

that

EW! H,_ =h_] > opT — -g— (2.2.22)
Note that the input to round (I, 7') is still uniform and independent conditioned on the
event H l,/ 4= h’f _1- It follows by Lemma 1.3.2 that there are extensions of the Hilbert

spaces HAI (h’, 1) %B l'(hff 1), and extensions of the reflections RD¥ (hAl

1) by a direct
sum with other reflections (for D € {A, B} and a € {0, 1}), so that the following properties

hold:

o There is an isomorphism between Dl/ ’s extended space and C? ® ﬂA’ZI( l-: _1), under
which R4V (h4)) = Z@ 1and ||(R$ (hi1)) = X @ 1) 4 ® 1pclg) (|| < cV/e.

e There is an isomorphism between D ’s extended space and C? ® "HBI (h’, 1), under
which REV(hBY ) = Z @ 1and ||(REY (hB)) — X @ 1)s|9) (Hh_,)|| < cv/e.

o Finally, letting

ly*) = (I® (HM))— (|OO) +111)) , (2.2.23)

V2

where M = exp(—i§Y) as in Table 1.1, and H is the two by two Hadamard matrix,
there exists a unit vector |¢p*) € HAZ (hl, ) ® ’HBZ (hf: ) ® ?A{lg'll(hf»f“l) such that
after applying both aforementioned isomorphisms,

1) (Hy_y) = 19"y ® [p7) ]| < cv/e (2.2.24)
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In other words, the quantum strategy used by devices Df; and Dg at the 7/ th round,
conditioned on Hf,l_l = hf:.,l is very close to the ideal strategy for the CHSH game.
Therefore, we will modify the strategy so that it is exactly the ideal strategy for the CHSH
game. That is, we will replace |) (hf:_l) with |¢*) ® |¢*). It follows by the definition of

the trace norm and the triangle inequality that we still have

|(REF () — Z @ 1) 4 © 1pc|y™) @ [97)|| < cv/e

IR (rpE) = X ©1) 4 ® Lpc|9™) © [~ M| < 2cve

[(REF(HE) ~ Z@ 1) @ Lacly®) @ |97)|| < cv/fe

[(REY(hBF)) — X © 1)p ® 14c|9*) ® |9)]| < 2cv/E (2.2.25)

We now alter the values of P (hf_lll) (for D € {A,B} and a € {0,1}) so that we instead

have,

(RS (") — Z @ 1) a ® 15c]y™) ® |97)|| = 0
IR (1) = X ©1) 4 @ 1pclp™) ® [97) || = 0
(RS (H2F)) = Z© 1) @ 1aclp*) @ |9} | =0
I(RP (1Y) = X @ 1)5 @ 1acly™) @ [$)]| = 0 (22.26)

Note that, since the isomorphisms from Lemma 1.3.2 are invertible by definition, there
is a well defined way to do this. With all of these modifications to the state and the
measurements, the devices Df:l and Dg now use exactly the ideal strategy for the CHSH
game at the i/ th round, conditioned on Hll,' = hf: 1

We make these modifications for every value of hi:_l € Goodff, and we call the dis-
tribution of the outputs {x!: (1,i) € Gand (I,i) < (I',i')} resulting from this modified
quantum strategy P ({x!: (1,i) € Gand (1,i) < (I',i')}). Note that this modified quan-
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tum strategy now has the property that the devices DZ\ and Dl' use exactly the ideal strategy
for the CHSH game at the 7/ * round, conditioned on Hl' = H v_q, forall hf.:_l € Goodf:
by this most recent modification, and also for all K w1 & Good by the earlier modification

that took us from P to P’. It follows that

P'({xl: (i) € Gand (1,i) < (t,i0}) =P ({x: (Li) € Gand (1i) < w,}) Py (+)
(2.2.27)

Note that because, in this new strategy, devices Dl/; and Dg always use an ideal strategy
for the CHSH game at round 7 the output of D) at round # is a uniform random bit
independent of past transcript, and also independent of the outputs of the other device
pairs D!, and D%, where | # I'. We have implicitly used this fact in establishing equation
(2.2.27).

Furthermore, it follows from equations 2.2.26 and equation 2.2.24, through a simple

application of triangle inequality, that for any value K, a_q € Good!, - we have

[P" ({xf:(l,i) € Gand (1,i) < (l’,i’)}l L = 1)
—p'({xgz(z,i) € Gand (i) < (l',i’)}j L =H_ 1)”1
< 8cv/e (2.2.28)

Here the constant factor of 8 comes from the fact that we are including all of the bounds
in equations equations 2.2.26 and equation 2.2.24 into our triangle inequality calculation.
We could probably use fewer of these bounds a get a smaller constant factor, but we will

not worry about that here.
Of course, for hl, 1 ¢ Good!, » we have
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p_"({ . (L,i) € Gand (1,i) < (7, z')}|Hf, L =h_ )
:p'({g,(zz)ecand(zz> () I HE_y = )

since we didn’t modify the quantum strategy at all between P’ and P” in that event.

Putting all this together we get

({x (1,i) e Gand (1,i) < (I, z’)})
({ :(l,i) € Gand (1,7) < (I, z’)})”
Z Pr

(Hl, (= hl, 1) p’ ({x,- : (1,i) € Gand (1,1) < (I, z’)} ]H 4= hg:_1>

~P ({ :(l,i) € Gand (1,i) < (I, ‘/>}| -1= hg:—1>H1
<) PI'(HI = Hi 1)80\/5

< 8cv/e (2.2.29)

Note that in the above Pr (H}_, = l_,) = P’ (H}_, = H} ) =P" (H, , =h}_,) is
well defined, since P’ and P” are identical probability distributions on
{xf. . (1,i) € Gand (1) < (I, i’)}.

We are now ready for the final calculation. Using equations 2.2.21, 2.2.27 and 2.2.29

along with the triangle inéquality we see that

Hp ({x’. 1 (Li) € Gand (I,i) < (z’,i’)}) _p ({xl? 1 (1,i) € Gand (1,i) < (l’,i’)}) P, ( ) ||1
< Hp({ 1 (1) € Gand (1,1) < (I, z')}) ({xg 1 (Li) € Gand (I,i) < (1’,{)}) (x51)||1
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P'({xf: (Li) € Gand (i) < (1) }) - P'({xt: (Li) € Gand (i) < (I ) ()
P' ({xl: (1i) € Gand (1,i) < (17 i)})
~P”({x (1,i) € Gand (I,i) < (Ui ')}) P, ( )]

p” ({xf. :(1,i) € Gand (1,i) < (z’,z')}) Py (x)
—P ({x}: (Li) € Gand (1,i) < W, )}) Py (+h) |1
< 29, + 8cV/E+0+ | P ({x}: (1i) € Gand (i) < (z',i’)})
=P ({x}: (Li) € Gand (1,i) < (I',7) })“
3272+86\/E+HP({x£:(l,1)EGand (i) < (t,ih})
—P ({xg . (1,i) € Gand (I,i) < (l’,i’)}) (ng) 1
P ({x,l- . (1) € Gand (1,i) < (l’,i’)}) =P ({x}: (1i) € Gand (1,i) < (z',i')}) €
< 2(272 + 8cve) = 4(72 +4cVe)

!

+|

!

2.2.3 Proof of Lemma 2.1.1

Restatement of Lemma 2.1.1

For 61,0, > 0,

(G — 502
Pr(W > (OPT — 8;)rand S < (OPT — &)r) < 2exp ( r((528 &1) )

Note that Lemma 2.1.1 was originally stated using notation for sequential CHSH games
with a single pair of devices, and therefore the notation does not include the superscript
I. However, the same statement and proof would, of course, apply if we added the
superscript | for any I € [n].

Proof of Lemma 2.1.1

Proof. The idea for this proof is to show that the serial protocol has a martingale structure,
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and then use Azuma'’s inequality to obtain the desired result.

For every j define A; = W; — E[Wj| H;_1], so we clearly have EE [Aj|H;_1] = E[W;|H;_q] —
E[W;|H;_1] = 0 (is identically zero as a random variable).

We now define ®; = Z;:l A;. Note that we have @, = Z]r-:l Aj = Z]r':l W; — ):]r_:] E[W;|H,_1] =
W — ¥ E[Wj|H;4].

Now note that for any i € [r — 1]
E [(Di—f-llcpi/ s @1] —®;, =E [q)i+1 - q)ilq)i,..., (I)l] =E [A,’+11q)i, ey q)l] =E [Ai—{—l‘Ai/ ey Al]

= Y E[AmlHi=h] E[1[H; = ]|, ..., 0] =0
hiE{O,l}‘u

Here 1[H; = h;] is the indicator variable which is 1 if H; = k; and 0 otherwise. The
third equality follows because the values of ®;, ..., ®; can be calculated deterministically
given the values of A;, ..., A1 and vice versa. The final equality follows because, since we
established earlier that [E [A;;1]|H;] = 0 (is identically zero as a random variable), it follows
that [E [A;1|H; = h;] = 0 for every value of k; that occurs with non-zero probability.

Thus, by definition, we have that the sequence of random variables ®; is a martingale.
Note that if we define ®; = 0, we may include it at the beginning of the martingale
sequence ®; without changing the martingale structure (since E [®; [Py = 0] = E [®4] = 0).
Further note that |®; — ®;_1| = |A;] < 2. It follows by Azuma’s inequality that

—2
>t)] <2exp (————)
2y7 122

—f2
= 2exp (W) (2.2.30)

14

W — Y E[W,|H; 1]

Pr(|®, —Dp| > t) =Pr(|®)] >¢t) =Pr (
j=1

It follows that,
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r

Pr(W > (OPT —d1)rand S < (OPT — dp)r)
W — Y E[W;|H;_q]
=1

SPr(
]:

< 2exp (1(52;—51)2> (2.2.31)

= IW—S| > (52 —51)7‘)

2.24 Proof of Lemma2.1.2

Restatement of Lemma 2.1.2

Imagine a single use of protocol P, , 5, 5, . If

Pr(|{l:S; > (0oPT—d)r}| > (1—s)n|Win=1)<1-d

Then,

(ds — h) Pr (Win = 1) < 2exp (:L%_*Jﬁ)

Proof of Lemma 2.1.2

Proof. Recall that

Win =1[|{l : Win; =1} > (1 -h)n] = 1. (2.2.32)

By linearity of expectation we have that
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n 1

L Pr(Win = 1)

-1 [Wil’l = Winl = 1]}
I=1

1¢ : . 1
=Y Pr(Win; =1|Win=1) = ~E
ni= n

gy L Win = 1} 2 (1= nl| = - PR =D

>((1—-h)- R —
z(1=h)-E Pr(Win =1

So,

n
% Y (1 — Pr(Win; = 1 Win = 1)) < h (2.2.33)

Also by linearity of expectation

% é r(S; 2 (OPT—&)r|Win=1) = %fil’r(Tzi:—f)—E [1[S; > (OPT — &)r and Win = 1]]
< Pr(W; :“1)1[3 [L[{l:S; > (OPT — &)r}| > (1 —s)nand Win = 1]]
+(1-5s) L E[1[|{l:8; =2 (0PT —&)r}| < (1-s)nand Win = 1]]

Pr(Win = 1)
=Pr(|{l:5; > (OPT —é&y)r}| > (1 —s)n|Win =1)
+(1=s)(1=Pr(|{I:S; > (0PT—=&)r}| > (1 —s)n|Win=1)) < (1-d)+ (1—-s)d=1—ds

So,
1& 1
1-- Y Pr(S; > (OPT — &)r|Win = 1) = " Y (1=Pr(S; > (OPT — &)r|Win = 1))
=1 i=1
1 n
= - Y Pr(S; < (OPT — &)r|Win = 1) > ds (2.2.34)

l

i
Pt

It follows by combining equations 2.2.33 and 2.2.34 that there exists an I’ € [n] such that
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Pr(Winp =1and Sy < (OPT — &)r| Win = 1)
> Pr(Sy < (OPT —6)¢|Win = 1) — (1 — Pr(Winy = 1|{Win = 1))

SIP—-‘

i (OPT — &)r|Win = 1) — (1 — Pr(Win; = 1|Win = 1)))

>

U
©n

_ (2.2.35)

By combining equation 2.2.35 with Lemma 2.1.1 we get

8
> Pr(Win = 1)(ds — h) (2.2.36)

(5 — 512
2exp (M> > Pr(Winy =1and Sy < (OPT — &)r|Win =1) - Pr(Win = 1)

O

2.2.5 Proof of Lemma 2.1.3

Restatement of Lemma 2.1.3
Suppose, for some d > 0, that we have a probability distribution P(x;, ..., x,;) on n-bit
strings X = (xq, ..., x,) € {0,1}" such that for all i € [n]

|P(x1,.., xi) — P(x1, ..., xi-1) 'P%(xi)lh <6

Here, P% is the uniform distribution on a single bit. It follows that

H8Y*(%) > —1log (1 _13\/3) _ Zlog( + \/—>

Proof of Lemma 2.1.3

Proof. Note that
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d > ||P(x1, .., %) — P(xq, ., Xi—1) - Pl (xi)ll1
= Y Y IP(xl, s Xi) = P(x1, ..., Xi-1) 'P%(xi)l

(21,0~ 1)6{01}’ 1x;€{0,1}

= Z Z lP(xl,..,xi_l)-P(xiixl,...,xi_l) —P(xl,...,xi_l) -P% (x,-)
(xl ..... x,'_l)E{ ,1}i_1 xie{O,l}
= Z . P(x].l o xi——l) ’ IIP(xi“xll“‘l xi—-l) - P% (xi)lll (2237)

Let us denote the probability distribution P(x; = x|x; = y1,..., Xi—1 = ¥i-1) by P,y . (%).
Given a string ¥ = (y1,...,yn) € {0,1}", we say that 7 is -Bad at site i if | Py,,.., , () —
P% (x)]l1 > 7, and y-Good otherwise.

So for any i, and for i sampled from the distribution P, we see from the above equation

and Markov’s inequality that

E |1|7is Vo-Bad atsitei] | = Pr (is Vo-Bad atsite i) < V5

By linearity of expectation we have that

E

n
Y1 [17 is v/6-Bad at site z]}
i=1

= Zn:]E [I [y'is V/5-Bad at site ZH < nv's
i=1

Once again using Markov’s inequality we have that
Pr (7 is V/6-Bad at more than |n/2] sites —V5 < 3\/_
g < 7]

If i is not v/3-Bad at more than |n/2] sites, then it is v/6-Good at more than | /2] sites.
This means that, for more than [n/2] sites i we have ||Py,,. y, ,(x) — Pl (x)|l1 € V38, and
thus 'Py1 ,,,,, v (X =13) l <V, 50Py,, y . (x=y) <I+V6 It follows that (for X
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chosen according to the probability distribution P):

n

- . n 1 {n/2]
Pr(x=%) =][Pxi=vyilx1=y1, . xici = yic1) = [ [ Proyoos 1 (X = ¥i) < (5 + \/3>
i=1 i=1

Thus, in order to modify the distribution on ¥ induced by P to produce another distribu-

\n/2]
i ' wi ! — 1 (1 — 1 —n 1
tion P’ with He(P') > —log (1_3\/3 (2 + \/c_S) ) > —log (1_3\/3) 1log (2 + \/3)
we only need to take all the probability mass at any # that is v/3-Bad at more than [1/2]

sites and redistribute it over the remaining values of i/ in a manner proportional to the
probability mass already at those values of ij. The above work shows that we move a total
3+/3 units of probability mass during this process, since there are only 3v/8 units of proba-
bility mass at all the "Bad” values of if combined. Moreover, it is evident that this process
is equivalent to deleting the probability mass at all values of i that are v/5-Bad at more
than |n/2] sites, and re-normalizing the remaining probability mass to be a distribution.
Since all the remaining values of i are v/3-Good at at least |1/2] sites, it follows that the

probability distribution P’ which is produced this way has

. . 1 1 \/_ Ln/ZJ
m;xP(x—y)SlmB’ﬂ(E-i- 5)

and the Min-Entropy bound on P’ follows (here the T—%W factor represents the largest
possible renormalization factor). Moreover, we moved at most 3v/8 probability mass to

transform P into P/, so ||P — P'||; < 6+/4. Thus,

1 n 1
H8Y%(P) = H8YO (%) > —1 ( )—-—-1 <-+\/5)
(P) (¥) = —log =375 183
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