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Abstract

ECG variability, as it relates to the influence of the autonomic nervous system on the
heart, is primarily studied via frequency-domain and time-domain analysis of heart rate
variability (HRV). HRV studies the variability of the RR intervals in the ECG; these
intervals are modulated by the autonomic influence on the periodicity of the the heart's

pacemaker, the sino-atrial node. The autonomic influence at this level is dominated

by the parasympathetic nervous system. In order to have a robust assessment of au-

tonomic balance, there is a need for an ECG-based approach to assess the influence

of the sympathetic nervous system. In this thesis, using spectral analysis, we quantify
the variability of the QT interval, which is primarily modulated by the sympathetic
nervous system. We also estimate the time constant of the sympathetic nervous system
by least-squares fitting of the QT time series resulting from step perturbations in auto-

nomic balance. This study is carried out on graded head-up tilt test data. Our results
demonstrate the potential of QT interval variability as a non-invasive assessment of the
sympathetic nervous system activity on the heart.

Thesis Supervisor: George C. Verghese
Title: Henry Ellis Warren (1894) Professor of Electrical and Biomedical Engineering

Thesis Supervisor: Thomas Heldt
Title: Assistant Professor of Electrical and Biomedical Engineering
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Chapter 1

Introduction

A N electrocardiogram (ECG) is a graphical recording of the electrical activity of

the heart muscle over time. The electrical system of the heart, also known as

the cardiac conduction system, controls the events that occur as the heart expands to

fill up with blood and contracts to pump blood throughout the body. The electrical

impulses generated within the heart muscle are detected by electrodes placed on the

surface of the skin, and connected by leads to the ECG machine.

Different types of ECG exist and are referred to by the number of leads that are

recorded. There are 3-lead, 5-lead and the 12-lead ECGs. The standard 12-lead ECG

used in clinical practice to make recordings consists of six frontal and six precordial

leads placed on each arm, each leg and across the chest. The machine can be found

in hospitals and ambulatory settings. The advancement of technology has now allowed

for portable ECG machines to be attached to patients as they go about their everyday

activities.

In the clinical setting, the ECG has become an important diagnostic tool. It is

useful in indicating if there are any irregular heart beats or heart rhythms, if the heart

has enough blood, if any part of the heart is damaged or whether a heart attack has

occurred or is likely to be occurring. It is also used in the diagnosis of a variety of heart

15



16 CHAPTER 1. INTRODUCTION

diseases including coronary heart disease, congenital heart defects and pericarditis.

However, a normal ECG does not rule out serious heart disease, and this has given rise

to specialized ECGs like the exercise ECG and ambulatory ECG, which are worn for

24-48 hours.

In addition to diagnostics, other information about the heart can be obtained from

the ECG. For example, the reciprocal of the distance between successive dominant peaks

(or R waves) of the ECG measures the instantaneous heart rate in beats per second.

The ECG also shows the duration of the depolarization and repolarization (in the case

of the ventricles) of the different chambers of the heart. The wealth of information the

ECG provides has given rise to the assessment of the autonomic nervous system (ANS)

influence on the heart via ECG variability. Quantifying the variability of intervals in

the ECG provides a non-invasive measure of the modulation of cardiac autonomic tone.

In the literature, cardiac autonomic tone is predominantly assessed by heart rate

variability (HRV). HRV is the analysis of how the heart rate varies with time, and con-

sequently how RR intervals vary. As a result, HRV primarily measures the modulation

of the parasympathetic nervous system (PNS), one of the branches of the ANS. In order

to analyze to effects of the other branch of the ANS, the sympathetic nervous system

(SNS), the variability of the QT intervals has to be studied.

The QT interval is one of the major intervals on the ECG. There are several rea-

sons QT interval variability is a better assessment of SNS modulation. First, the QT

interval measures the depolarization and repolarization of the ventricles, where sym-

pathetic activity is dominant. Second, QT variability depends on autonomic inputs

regulating ventricular repolarization duration independent of the heart period [29] [8].

Third, sympathetic activity has a more pronounced effect on ventricular myocardial

contractility and a much smaller effect on heart rate.
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In order to characterize QT interval variability, we first detect the QT intervals

from the ECG by implementing a curve length transform algorithm. These detected

QT intervals make up the time series data that is used in spectral analysis and time-

domain classification of QT variability. To make a contrast between the effects of

PNS and SNS on the QT interval, these methods are also applied to the RR intervals

equally detected from the ECG. Spectral analysis provides a quantitative marker of

sympathovagal balance and highlights the primary influence of the SNS on the QT

interval. The time-domain analysis goes a step further and allows us to estimate the

time constant of autonomic influence on the QT interval.

Analysis is done on graded head-up tilt table data, which is an experimental con-

dition known to produce an increase of sympathetic tone and modulation according to

the inclination of the tilt table. Results show that the QT interval is primarily influ-

enced by the SNS, and QT variability has great potential to be used as a non-invasive

measure of cardiac sympathetic tone.

The remaining chapters in this thesis are organized as follows. Chapter 2 presents

the background information necessary to understand the effects of the ANS on the

heart, why it is necessary to quantify ANS modulation, and the reason the ECG is the

right tool for assessment of brain-heart interaction. The detection of the QT intervals

and the results from testing the implemented algorithm are detailed in Chapter 3.

Chapter 4 provides a description of the spectral analysis method and the method used

in the time-domain analysis, least-squares fitting. Chapter 5 reports QT variability

characterization results in both the frequency and time domain. Finally, Chapter 6

summarizes the contributions of the thesis and touches on the possible directions of

future work.
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Chapter 2

Background

O F all the organs in the body, the heart is one of the most monitored and studied

in both the clinical and research settings. Hence, hospital acute medical care,

ambulatory services and other emergency medical service providers constantly utilize

cardiac monitors to assess patients cardiac rhythms. Technology advances have even

made it possible for health care providers to monitor the heart outside of hospital

settings, with patients given the opportunity to carry around event monitors.

Electrocardiograpy is the primary way of cardiac monitoring. It consists of using a

machine to produce a graphical recording of the electrical activity of the heart, called an

electrocardiogram (ECG). This record highlights changes in a patient's heart condition

and helps to aid diagnosis.

The first use of electrocardiography in humans dates back to 1885 when Augustus

D. Waller first recorded the heart's electrical activity. However, Dr. Willem Einthoven,

a Dutch physiologist and Nobel laureate, coined the term "electrocardiogram" in 1893

[3]. Ever since, the ECG has been used as a first-line diagnostic tool, and health care

providers at different levels find it necessary to interpret the ECG. The ECG has helped

in the diagnosis of various forms of heart disease, especially arrhythmias (abnormal

heart rhythms), acute myocardial infarction and ischemic heart disease.

19
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The use of the ECG has now gone beyond clinical diagnostics of arrhythmic heart

disease. The ECG can provide information about heart rate, and since heart rate is

influenced by the autonomic nervous system (ANS) [26], information from the ECG

can be harnessed to investigate cardiac autonomic tone.

* 2.1 Cardiovascular Physiology

The major function of the heart is to pump blood around the body, carrying oxygen

and nutrients to organs, muscles and tissues, and transporting waste such as carbon

dioxide to the lungs for expiration. It accomplishes this task by expanding its muscles

to fill up with blood, and contracting to push out blood from the chambers within its

walls.

The heart is divided into four chambers (see Figure 2.1). The upper and lower

chamber on each side of the heart are called the atrium and ventricle respectively. The

heart also has two pumps arranged in series, which by generating pressure, pump blood

through the blood vessels to the body. Each pump is made up of an atrium and a

ventricle. The right heart (one of the pumps) drives de-oxygenated blood through the

lungs and back to the heart; this is the pulmonary circulation. The left heart, the other

pump, drives oxygenated blood around the body; this is the systemic circulation. The

coordination of these rhythmic mechanical contractions and expansions is provided by

an electrical signal conducted throughout the heart muscles.

* 2.1.1 Electrophysiology of the Heart

The cardiac cycle is the term used to describe the relaxation and contraction that

occur periodically as the heart works to pump blood through the body. In order for



Sec. 2.1. Cardiovascular Physiology
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valveMitral valve
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runk and Lower Extrerty

Figure 2.1: Diagram of the heart showing the four chambers, major blood vessels and

direction of blood flow [16].

the heart to effectively act as a pump, the ventricular muscles have to be electrically

activated and then contract. The presence of any form of disturbances in the heart's

electrical activity can cause significant abnormalities in its mechanical function. In

fact, malfunction of the heart's electrical behavior is the principal cause of sudden

cardiac death [16]. Cardiac electrophysiology includes all of the processes involved in

the electrical activation of the heart: the cardiac action potentials; the conduction of

action potentials along specialized conducting tissues; the electrocardiogram (ECG);

and the modulating effects of the autonomic nervous system on heart rate [10].

The heart has the ability to create its own electrical impulses or action potentials,

and to control the route the impulses take via a specialized conduction pathway. The

pathway includes the sino-atrial (SA) node, atrio-ventricular (AV) node, the bundle of

His, the left and right bundle branches and the Purkinje fibres (as shown in Figure 2.2).

21



The action potential originates in the SA node, which is located just below the

superior vena cava on the right atrium. The SA node is made up of conducting cells

which are specialized muscle cells that spread action potentials rapidly over the entire

heart muscle. The SA node serves as the pacemaker of the heart. During normal sinus

rhythm (i.e., when the pattern and timing of the action potential are normal), the SA

node sets the sequence and timing for the conduction of action potentials to the rest of

the heart.

Airmoetriul node

Bundle of His

Right bundle branch RightLeft bundle anch

Figure 2.2: Schematic showing the conduction pathway through the heart [10].

The conduction then goes through the AV node while it is simultaneously conducted

throughout the atria. The AV node is located at the base of the atria. Conduction

through this node is slower than through any other cardiac muscle. This slow conduction

gives the ventricles enough time to fill up with blood before they get activated to

contract. When the action potential exits the AV node, it goes through the ventricular

conducting system, starting with the bundle of His. Afterwards, it goes through the

left and right bundle branches, and then the smaller bundles of the Purkinje system.

Conduction through the ventricular conduction system is very fast. This is necessary

22 CHAPTER 2. BAC.KGROUND



Sec. 2.2. The Electrocardiogram (ECG) 23

for efficient contraction and ejection of blood from the ventricles.

N 2.1.2 Cardiac Action Potential

The cardiac action potential varies in form across the cells of the SA node, atrium,

and ventricle. In general there are have five different phases. The ventricular action

potential displays the numbered phases in Figure 2.4. The phases are made up of an

initial interval of depolarization, when there is a high inflow of current into the cell

membrane, and intervals of repolarization, when there is an outflow of current from

the cell membrane. Phase 0 or upstroke is the phase of rapid depolarization; at its

peak, the membrane is depolarized to about +20 mV (by convention, intracellular

potential is expressed relative to extracellular potential, i.e., inside potential minus

outside potential). Phase 1 or initial repolarization is a brief period of repolarization

that immediately follows the upstroke. Phase 2- or plateau occurs immediately after

phase 1. The plateau is a long period of relatively stable depolarized potential, when

there is no net current flow. At phase 3, repolarization begins gradually and then moves

rapidly to the resting potential. Phase 4 is the resting membrane potential; it occurs

after the membrane potential fully depolarizes in phase 3 and returns to a resting level

of about -85 mV. In phase 4, the membrane potential is stable again and there is no

net flow of currents. In the SA node, phases 1 and 2 are absent, resulting in a shorter

action potential duration.

* 2.2 The Electrocardiogram (ECG)

One of the most important and oldest tools for assessing the cardiac conduction system

is the ECG. As the action potential moves through the heart, an electric potential field

is generated, and this field can be measured by electrodes placed on the body surface.
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The sequence of depolarization and repolarization of the heart makes it possible to

measure this potential difference on the body surface. The entire heart does not depo-

larize at the exact same time; the depolarization occurs in sync with the phases of the

action potential through the heart muscles. As a result, the atria depolarize before the

ventricles; the ventricles depolarize in a particular sequence; the atria repolarize while

the ventricles are depolarizing; and the ventricles repolarize in a particular sequence.

The ECG is made up of different wave segments as well as isoelectric segments

during which either no electric activity is detected or the chambers of the heart remain

depolarized. The prominent wave segments of the ECG are the P-wave, the QRS com-

plex (consisting of the Q, R and S waves) and the T-wave, see Figure 2.4. The P-wave

represents the change in voltage on the body's surface as the atrium gets depolarized,

the QRS complex represents ventricular depolarization, and the T-wave represents ven-

tricular repolarization. The atrial repolarization wave occurs but it is buried under
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Figure 2.4: Sketch of a ventricular action potential (above) and corresponding typical

single electrical ECG event (below) [16].

the QRS complex and its not identifiable on the ECG. The PQ segment, which is the

isoelectric segment after the P wave and before the QRS complex, represents the time

the action potential travels through the AV node and ventricular conduction system.

The ST segment corresponds to the plateau period of the action potential during which

the ventricles remain depolarized.

An important interval measured on the ECG is the RR interval, from which heart

rate is derived (HR = 1) and heart rate variability (HRV) is studied (see Subsection

2.4.1). This interval is measured as the distance between successive R waves (se Figure

??). Another important interval, the QT interval, is measured from the start of the

QRS complex until the end of the T-wave. The QT inteval captures the electrical

activity during depolarization and repolarization of the ventricles.

25Sec. 2.2. The Electrocardiogram (ECG)
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RR-
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Figure 2.5: Mock ECG showing measurement of QT and RR interval. Adapted from
Al-Khatib et al [2].

* 2.3 Neural Regulation of the Cardiovascular System

Neural regulation of the cardiovascular system is effected through the parasympathetic

(PNS) and sympathetic (SNS) nervous system. They are known to be the principal

systems involved with short-term cardiovascular control, on the time scale of 0.5 - 30

seconds.These two systems make up the autonomic nervous system (ANS). One of the

functions of the ANS is to increase and decrease the workload of the heart depending

on the requirements of the body. In most physiologic conditions, the outflow of either

the PNS or SNS is closely followed by the inhibition of the other.

The PNS predominates in resting conditions and has a restorative function; it

always tries to conserve energy. When activated, the effects of the PNS are seen more

rapidly. The major site of action of the PNS on the heart is the SA node. When

activated, it decreases heart rate, in contrast to SNS. It also has mild inhibitory effects

on the contractile force of the heart [24].

The SNS on the other hand, gets the body ready for activity. It is activated during
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stressful conditions and generates a "fight or flight" response. One of the primary effects

of the SNS on the heart is the stimulation of the heart muscles, thereby increasing the

contractility of the muscles in both the atria and ventricles. Another effect is the

increasing heart rate.

The SA node, the primary pacemaker of the heart, has both both sympathetic and

parasympathetic innervations. However, the SNS does not provide a constant input to

the sino-atrial node during resting conditions, whereas the PNS does.

N 2.3.1 Sympathetic Effects on the QT Interval

The primary neurotransmitter of the SNS is norepinephrine (NE). When the SNS is

activated, NE acts on receptors located in the heart. To increase cardiac contractility,

the SNS acts through a collection of nerve cells called the left stellate ganglion that act

directly on the left ventricle through NE and 3-adrenergic receptors (the receptor in

the heart that is concerned with the increase of contractility of the heart muscles). The

SNS therefore has a direct effect on the ventricles and consequently, the QT interval

(see Figure 2.6).

N 2.4 ECG Variability

The different intervals on the ECG vary with time. This is as a result of autonomic

control, breathing and other regulatory systems in the body, like the Renin-Angiotensin

system and thermoregulatory control. Various studies have established and quantified

the variability of the RR intervals, through heart rate variability, and the variability of

the QT intervals. The following subsections discuss the variability of these intervals as

assessed in the literature.



CHAPTER 2. BACKGROUND

Figure 2.6: Diagram showing the mechanism of sympathetic stimulation [24]. The
left stellate ganglion of the SNS releases NE to the left ventricles, which activates the
/-adrenergic receptors and causes an increase in contractility of the heart.

* 2.4.1 Prior Analysis: Heart Rate Variability

Heart rate variability (HRV) is a measure of how the heart rate varies under the action

of the ANS. Analyzing HRV in the time or frequency domain is one of the important

non-invasive assessments of the modulation of heart frequency by the sino-atrial node

(SA node). The dynamics of HRV serve as an indicator of how heart rate, respiration

and blood pressure are controlled by the body.

Under normal physiologic conditions, variability in heart rate is related to the

two phases of respiration. The heart rate increases with inspiration and decreases

with expiration. This rapid adjustment is primarily mediated by the PNS. Feedback

mechanisms for regulating temperature and blood pressure are also responsible for the

variation of heart rate.

The clinical importance of HRV as an indicator of mortality has been established

28
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as early as 1965 [34]. Cardiac abnormality can be associated with decreased heart

rate variability and thus, heart rate variability has been studied with the purpose of

diagnosing and predicting cardiovascular diseases. Some clinical diagnostic uses of HRV

include prediction of risk after acute myocardial infarction [28] [32] [38], an early warning

sign of diabetic neuropathy [27] [11] and detection of congestive heart failure (CHF)

[9][22].

Power spectral density (PSD) analysis is one of the major ways that HRV is ana-

lyzed in the frequency domain. It shows the distribution of the power in the instanta-

neous heart rate as a function of frequency. There are two major PSD analysis methods:

Welch's method, which is non-parametric; and autoregressive (AR) modeling, which is

parametric. AR modeling produces smoother spectral components in the presence of

noise. However, it might require a complex model with a very high order. Welch's

method utilizes the well known Fast Fourier Transform (FFT) algorithm for the calcu-

lation of the power spectrum. This algorithm is easy to implement (it is well developed

in MATLAB) and is efficient in terms of fast processing speeds.

There are three different ranges of spectral components that have been identified

as of interest in the power spectrum of HRV [34]. They are very low frequency (VLF):

< 0.04 Hz, low frequency (LF): 0.04 - 0.15 Hz and high frequency (HF): 0.15 - 0.4 Hz.

HRV studies have shown that PNS activity and respiratory activity can be quantified

by the power in the high frequency region, while the low frequency region quantifies

both the SNS and PNS response [1]. The physiological explanation of the VLF is

much less defined in the literature. It is important to note, however, that the various

spectral components measure the modulation of the tone of these activities and may

not necessarily reflect the degree of the tone [21].
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M 2.4.2 Prior Analysis: QT Variability

In the clinical setting, it is now widely accepted that the QT interval is subject to

variability. QT variability has been shown to be elevated in congestive heart failure

(CHF), ischemia and long QT syndrome [5], and thus accurate measurement of this

interval as well as study of its variability are important.

The variability of the QT interval can be a result of biological factors, differences in

autonomic tone, presence of electrolytes and drugs, inter- and intra-observer variability

resulting from variations in T-wave morphology, and technical factors including the

environment in which the ECG is recorded [2].

Heart rate also plays a major role among these many sources of variations, causing

clinicians to adjust the duration of the QT interval by correction formulas that normal-

ize the QT to heart rate alone. The aim of the correction is to produce an independence

of the QT interval from heart rate. The major correction formula used is the Bazett

formula, QT, = QT. However several studies have shown that this is not necessarily

well-suited to the intended uses, especially in cases of fast heart rate [2]. Other correc-

tion formulas that are widely used are the Fridericia cube root formula, QT, = ,

and Framingham linear regression equation [2]. Correction of the QT interval has been

the subject of debate for over a decade now [19]. Although it has been agreed in the

clinical setting that the QT interval should be corrected for heart rate, the best way to

do this adjustment has not been determined.

In addition to possible detection of cardiac diseases, QT variability is used as a

non-invasive measure of cardiac autonomic tone [25]. QT variability as a measure of

beat-to-beat probe of autonomic nervous system activity has only recently attracted

some popularity (in comparison to HRV studies) and is being investigated in various
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physiological conditions. Several studies have quantified beat-to-beat variability in QT

interval of the ECG using a QT variability index (QTVI) [5], QTVI is defined as:

QvQT2~log, [ /Q T ] (2.1)
0 [RRvIRR2

where QTv, RR, are the variance of QT and RR intervals respectively, and QTm, RRm

are the mean QT interval and mean RR interval respectively. The QTVI represents the

log ratio between the QT interval and the RR interval variabilities, each normalized

by their respective squared means. An increase in this index suggests an increase in

QT interval variability. One issue that has arisen from the use of this index is the

neglect of QT/RR hysteresis [20]. QTVI describes the variability of the QT interval

for simultaneously assessed RR intervals. However the QT-RR relationship may be

dependent on several past RR intervals [20].

In summary, there remains a need for a reliable quantitative measure of total cardiac

autonomic tone. Left ventricular dysfunction is one of the cardiovascular abnormalities

present after brain injury [13]. This and other ventricular abnormalities are responsible

for ventricular arrhythmias. The availability of an easily applicable and non-invasive

test that can assess ventricular autonomic regulation effected through the SNS is impor-

tant. HRV study, which is the earliest and best established study of cardiac autonomic

regulation, is restricted to the autonomic influence on the sinus nodal periodicity. The

autonomic influence at this level is dominated by the PNS. Therefore, there is a need

to be able to efficiently assess autonomic influence at the ventricular level, where SNS

is more prominent. Using methods similar to HRV, the spectral characteristics of QT

variability will be studied with the aim of quantifying the neural control mechanisms

of the QT interval. The variability of the QT interval will also be assessed in the time

domain.
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Chapter 3

QT Detection and Measurement

N spite of its well known limitations, manual measurement of the QT interval on

surface ECG and its correction for heart rate still remains the standard quantitative

evaluation of ventricular depolarization and repolarization clinically [23] [4]. In order

to study QT variability and the effect of sympathetic tone on the QT interval, the

interval lengths have to be determined from the ECG signal automatically and within

a sufficiently high level of accuracy. Since the QT interval is measured as the distance

between the Q-onset and the T-wave offset, these fiducial points have to be extracted

from the ECG. The challenge of automated QT detection is compounded by the inherent

imprecision in identifying the end of the T-wave in the ECG and the morphological

variations in the ECG arising from the presence of arrhythmias (see Figure 3.1).

There are several methods of QT detection, including use of the curve length trans-

form (CLT), template matching, wavelength-based delineator, and principal component

regression [37] [6] [33] [15]. The QT detection algorithm used in this thesis was imple-

mented in MATLAB using the curve length transform approach described in Zong et

al. [36] for the Q onset, and the backward curve length transform as described in Zong

et al. [37] for the T-wave offset. This approach was chosen because of the ease of

implementation and insensitivity to baseline wander, wave polarity and high frequency

33
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Figure 3.1: Different ECGs showing some of the various morphologies
the PhysioNet QT database [17], [12].

represented in

noise [37].

E 3.1 Q-onset Detection

Given a fixed window length w, the curve corresponding to the QRS complex will have

a longer length within the window than any other curve in the ECG. The ability to

choose an appropriate window length characteristic of the QRS complex makes the CLT

suitable for Q-onset detection.

For a differentiable function x(t), the curve length transform L(t) at a given time

t and over a window w is given as

L(t) = ds= (1 + )2dt' (3.1)

where ds denotes incremental length along the curve. Assuming samples Xk taken At
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apart, the discrete time version of this is

L(i) = At I + ( A k )2 - 3 At 2 + AX2 (3.2)
k=i-w k=i--w

where AXk = Xk - Xk_1.

If the window length is chosen such that it corresponds to the widest QRS complex,

the start of the rising edge in the transform will correspond to the Q-onset and the

end of the rising edge would correspond to the S-offset. This is illustrated in Figure

3.2. Physiologically, the QRS complex should be no wider than 130 ms in healthy

individuals and so the window length is set to 130 ms.

After lowpass filtering the ECG (a 3db cutoff at 16Hz), the CLT is used to detect

the Q-onset and S-offset. A threshold is used for to determine whether or not a QRS

complex has been found. If the threshold is crossed on any part of the CLT, the

algorithm searches for the start and end of the corresponding rising edge. As suggested

by Zong et al. [36], the start and end of the rising edge corresponds to the onset and

offset of the QRS complex respectively.

* 3.2 T-offset Detection

The detection of the T-offset is done using a variation of the CLT called the backward

curve length transform (B-CLT). After the QRS portion is detected, the P-QRS portion

of the filtered ECG signal is 'closed' using linear interpolation between the end points.

This is to remove the QRS complex from consideration in the subsequent processing.

For heart rates in the normal range, the P-QRS portion is defined as 160 ms before

and after the Q-onset. The B-CLT is then calculated from a Q-onset to the Q-onset of
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Figure 3.2: ECG and its curve length transform. Lower and upper arrow indicate the
start and end of rising edge respectively.

the previous beat as follows:

i+W i+W

L(i) 1 + (:k )2  + AX (3.3)
At Ek

k=i k=i

where AXk = Xk -Xk-_1, qk-1 i < qk, with qk and qk_1 denoting the Q-onset points for

current and previously detected beats respectively. The window size w for the T-wave

detection was chosen as 160 ms.

After the derivation of the B-CLT, a maximum distance search process, as described

by Zong et al. [37], was used to determine the T-wave offset. We first contract a line

from a peak point on the B-CLT signal to the Q-onset of the next beat. Moving

backwards in time, the lift-off of the B-CLT corresponds to the point whose minimum

distance to the constructed line is the maximum. As illustrated in Figure 3.3, this

lift-off point corresponds to the T-wave offset.
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Figure 3.3: Mock ECG signal with closed P-QRS portion (top); Backward curve length

transform signal (middle); Illustration of maximum distance search (Bottom). Adapted

from Zong et al [37].

N 3.3 Testing and Results

The PhysioNet QT research database serves as the reference for the validation and

comparison of algorithms that extract feature annotations from ECGs [17],[12]. The

database consists of a total of 105 records compiled from different PhysioNet databases.

The records are selected to avoid baseline wander and other artifacts. The QT-database

has a wide variety of QRS and T-wave morphologies, sufficient to challenge whatever

algorithm is developed. Each record has two leads of 15 minutes of ECG sampled

at 250Hz, and also has 30 - 70 beats annotated by at least one cardiologist; 11 of the

105 records were annotated by two cardiologists. In addition to the manual annotations

done by the cardiologists, each record has annotations generated by an inbuilt PhysioNet

detector. These automated annotations are available for the entire length of the record,

i.e., 15 minutes. Only 102 records had T-wave ends annotated by a cardiologist.

37Sec. 3.3. Testing and Results
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In order to evaluate the accuracy of the algorithm developed, the mean and the

standard deviation (std.) of the errors (i.e., the difference between the cardiologist

annotation and our algorithm annotations) were calculated for all 105 records. To

provide a means of comparison, the mean and standard deviation of the errors between

the cardiologists and PhysioNet's automated annotation were also computed for the

105 records.

For further comparison, an inter-observer variability study was also carried out.

This is the mean and standard deviation of the error difference between the annotations

of both cardiologists in the 11 records.

Table 3.1: Summary of results for Q-onset annotations

Num. of records Num. of beats Mean Std.

Algorithm 105 3616 -0.82 ms 13.4 ms

PhysioNet 105 3619 -6.96 ms 16.5 ms

Table 3.2: Summary of results for T-offset annotations

Num. of records Num. of beats Mean Std.

Algorithm 102 3388 -1.83 ms 29.82 ms

PhysioNet 102 3309 -7.64 ms 46.48 ms

Table 3.3: Inter-observer variability study

Q- onset T- offset

Records Beats Mean Std. Beats Mean Std.

11 404 5.24 ms 13.3 ms 401 4.94 ms 35.5 ms

The overall results of the tests are summarized in Tables 3.1, 3.2 and 3.3. Figures

3.4 and 3.5 show the distribution of the mean errors between algorithm produced anno-
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tations and cardiologist annotations, and Figure 3.6 shows some algorithm annotations

on three different ECG records from the QT database.
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Figure 3.4: Distribution of the mean errors between algorithm produced annotations
and cardiologists annotation of the Q-onset .
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Figure 3.5: Distribution of the mean errors between algorithm produced annotations
and cardiologists annotation of the T-offset .
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E 3.4 Discussion

The inter-observer variability study show that even between experts, annotating the

Q-onset and T-offset is prone to errors. It is therefore a challenge to come up with an

algorithm that annotates the QT interval quite accurately. The experts had errors of

5.24 ms and 4.94 ms for the Q-onset and T-offset respectively, more than a sampling

interval on average. The algorithm described in this chapter had errors of -0.82 ms

and -1.83 ms for the Q-onset and T-offset respectively, less than one sampling interval

on average for both cases. The algorithm also performed better than the automated

annotations on PhysioNet, which had errors of -6.96 ms and -7.64 ms for the Q-onset

and T-offset respectively, more than one sampling interval on average. The results

show that the CLT-based algorithm detects the Q-onset and T-offset with very good

accuracy.

Although the Q-onset has a low mean error, the standard deviation is about

13.4 ms, slightly more than 3 sampling intervals. This was partly due to some records

that had difficult morphologies. Again, however, this is essentially the same as the

standard deviation between two cardiologists.

There are some other sources of errors and potential areas for improvement. In

the case of ventricular arrhythmias, the Q-onset detection would work better if the

window length of 130 ms was not fixed but was predetermined based on the morphology

of the QRS complexes of each record. Records that had anomalous QRS complexes

characterized by a wider duration had higher Q-onset detection errors. Another source

of higher errors was the use of fixed thresholding in this implementation of the algorithm.

The threshold was predetermined as 1.5x the mean of the CLT. This posed a problem

for records that occasionally had large (and abnormal) T-waves. The part of the CLT

that corresponded to these T-waves, crossed the threshold and led to a false annotation
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of a QRS complex. Adaptive thresholding would allow for better performance in this

case. Also records that had P-waves abnormally close to the QRS complex created

problems for the algorithm. The CLT of these records was atypical and made searching

for the Q-onset less reliable.

The T-offset detection relies on accurately detected Q-onsets. However, the maxi-

mum distance search process helped reduce the effect of the Q-onset errors, as long as

the closing of the P-QRS portion did not affect the end of the T-wave. In addition to

erroneously detected Q-onsets, tachycardic records (short RR intervals, or rapid heart

rates) also contributed to large errors in the T-wave end detection. The predefined

P-QRS portion can affect the T-wave end if the the RR interval is not long enough.

Having an algorithm that would adjust the 160 ms interval used in the closing of the

P-QRS portion, depending on the heart rate of the record, would improve detection

and reduce errors.

In the chapters that follow, this algorithm is used to detect the Q-onset and T-offset,

and thereby characterize of QT variability in the frequency and time domain.
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Chapter 4

QT Variability: Spectral Methods

S PECTRAL analysis provides an estimate of the strength of different frequent com-

ponents in time-domain signals. This chapter will explore the following spectral

methods: power spectral density (PSD), coherence and error spectrum.

* 4.1 QT Power Spectral Density

Power spectral density (PSD) analysis provides the basic information of how power (or

the variance) in a stationary stochastic signal distributes as a function of frequency.

Independent of the method employed, only an estimate of the true PSD of the signals

can be obtained by proper mathematical algorithms.

After feature detection from the ECG, a time series of the QT intervals is obtained.

The series obtained is non-uniformly spaced in time as a result of the inherent variability

of the QT intervals. To analyze the power spectra of any series using the discrete Fourier

transform (DFT), the time series needs to have uniformly spaced intervals. Resampling

of the QT intervals series at a uniform rate of 2 Hz and lowpass filtering with a 1 Hz

cutoff is carried out using the algorithm described by Berger et al. [7]. Figure 4.1 shows

a time sequence of the resulting filtered QT intervals for a particular case.
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Figure 4.1: (a) Time sequence of QT intervals obtained from normal sinus rhythm
(NSR) record Sel103 from the Physionet QT database [12]. (b)Uniformly sampled QT
interval time series sampled at 2 sample/s and according the algorithm described in
Berger et al. [7].

The method of PSD estimation employed in this thesis is called Welch's method,

also known as averaged modified periodogram. The use of the fast Fourier transform

(FFT) in this method allows for faster computation time and a reduction in compu-

tations needed. It consists of overlapped sectioning and windowing the data and then

averaging the periodograms of the sections. Mathematically, the Fourier transform of

a windowed segment of x [n], x, [n] is defined as

X,(e") = FT{xr[n]}
L-1

= Zw[n]x[n]e-ijn,
n=O

(4.1)

(4.2)

where w[n] is the window used and L is the finite number of samples in the window.
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The modified periodogram estimate, Ir(w), of this rth segment is defined as

Ir (W) = LU Vr(ej)I2, (4.3)

where U is a required normalization to remove bias. Periodogram averaging consists of

time averaging K modified periodogram estimates Ir(w) as follows

K-1

7(w) = K Ir (). (4.4)
r=O

This averaged periodogram 7(w), estimates the PSD of the signal xfn]. Welch [351

showed that using a window other than the rectangular window and overlapping seg-

ments (optimum at 50% overlap), the variance of the estimate Ir(w) reduces and it

becomes a closer approximation of the actual PSD of the signal.

In the short term recording of the QT interval time series (2 to 5 minutes), there are

three main frequency bands identified in its PSD estimate: very low frequency (VLF)

below 0.04 Hz, low frequency (LF) from 0.04 to 0.15 Hz, and high frequency (HF) from

0.15 to 0.4 Hz. The power in the LF and HF frequency bands and the center frequency

are not fixed. They vary depending on changes in autonomic control, respiration and

heart period. The power in each frequency band is calculated as the area under the PSD

curve between the upper and lower bounds of the bands defined above. The power in

the low frequency (LFP) and high frequency (HFP) is typically expressed in normalized

units (n.u.) as follows:

LFP(n.u) LFP (4.5)
TP - VLFP

HFP
HFP(n.u.) ,FP (4.6)TP - VLFP

where VLFP is the power in the VLF band and TP is the total power from 0 - 0.4 Hz.
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This expression in n.u., emphasizes the behavior of the SNS in the LF and PNS

in the HF and reduces the effect of changes in total power on the LF and HF bands.

Another measure, LF/HF, the ratio of power in the LF and HF bands, is also used

as a quantitative marker of sympathovagal balance. Figure 4.2 shows a two sided QT

PSD of a normal sinus rhythm patient with a LF, HF and HF harmonics peak in the

high frequency band.
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Figure 4.2: Two-sided power spectrum of QT intervals of five minutes of normal sinus
rhythm (NSR) record Sel103 (from PhysioNet QT database [12]), showing a LF peak at
0.09 Hz, a strong HF peak 0.16 Hz, and another peak at 0.314 Hz, possibly a harmonic
of the HF peak.

* 4.2 Linear Prediction of QT from RR Interval

The QT interval is embedded in the RR interval, and this brings up the issue of how

much of QT interval variability is driven by RR interval variability. This has led to

the study of QT-RR coupling strength. The less the RR interval can predict the QT

interval, the less coupled the QT and RR intervals are, and the more independent QT
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variability is from RR variability. The major spectral method used to study the QT-

RR coupling strength is spectral coherence. This has as interesting interpretation in

the setting of linear prediction [6], though this has not been built on in the literature.

We also propose a new spectral method to quantify QT variability independent of RR

variability: residual error spectrum.

E 4.2.1 Coherence

The coherence between QT and RR intervals measures how well the QT interval can

be estimated or predicted from the RR intervals by passing the RR intervals through

an optimum (and generally non-causal) linear time-invariant (LTI) filter, also known as

the Wiener filter. The QT and RR interval series are uniformly sampled according to

the algorithm described in Berger et al [71, and the power spectra, P,_ and Pyy, of the

RR and QT time series respectively, as well as their cross spectrum, Py, are computed.

The coherence function is computed according to the following relation:

~(f) 12 
- P, (f)I2_q) = Ip12 y , 0 < 'Y(f) < 1, (4.7)

where p is the frequency-domain correlation coefficient. From the the equation above,

it can be seen that the effects of very low power in higher frequencies of Pxx or Pyy will

cause the coherence to be quite noisy. As a result, a correction term 6 is added to the

equation as follows:

P2 (f) 2
I^y)= ± (f) 0 < -y(f) < 1 (4.8)

(PX (f)+ JA)(PYY Y )+ 6Y)'--

The correction term 6, is chosen as the highest PSD value in the frequency region where

we are not concerned about the power content, i.e., the region of 0.4 - 1Hz. Although



this introduces an error to the correlation function -y(f), if 6 is chosen small enough,

the frequency areas with very strong correlation (areas we are interested in) are not

significantly affected.

The higher the coherence, the more coupled the QT interval is to the RR interval,

in the sense that one series can be well approximated (in a mean-square error sense)

by linear, time-invariant (LTI) filtering of the other. One issue with this index is that

the LTI filter associated with this estimation is non-causal. The coherence function

cannot be used to infer causality and does not allow the predefinition of the direction

of the interactions between the QT and RR intervals. For illustrative purposes, Figure

4.3 shows a plot of the PSD of RR and QT intervals superimposed. Figure 4.4 shows

the corrected coherence function from Eq. (4.8), with strong peaks corresponding to

areas of high coherence, or frequency regions where the RR interval can predict the QT

interval within a reasonable level of accuracy.
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Figure 4.3: RR and QT intervals two-sided PSD of five minutes of normal sinus rhythm
(NSR) record Sel103 (from PhysioNet QT database [12]), showing similar peaks at
0.166 Hz and another at 0.314 Hz.
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Figure 4.4: Corrected coherence of QT and RR intervals (spectra shown in Figure 4.3),
showing a strong correlation of about 0.9 at 0.166 Hz and another of about 0.5 at

0.314 Hz (possibly as a result of the presence of a harmonic).

* 4.2.2 Residual Error Power

Although the non-causal Wiener prediction of the QT interval QT from the RR interval

is optimum in the minimum mean squared error sense, it produces a residual error, e,

defined as

e = QT - Q^T (4.9)

It can be said that this error comprises of the part of the QT interval that cannot be

linearly predicted from the RR interval. Thus, the residual error contributes to the

part of QT variability that is not influenced by RR variability. Another quantitative

method of characterizing QT variability independent of RR variability (especially in

normal sinus rhythm cases), is by computing the PSD of the residual error.
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Dropping the frequency argument for notational convenience, the PSD of the error,

Pee, is defined as

Pee Pyy - HPxy, (4.10)

where H is the transfer function of the non-causal Wiener filter and is defined as

H = . (4.11)
Pxx

The residual error spectrum now becomes

P
Pee Pyy - yx Pxy (4.12)

Px

= Pyy (1 - "" Pxy) (4.13)
Pyy Pxx

Pyy (1 - IPX" ) (4.14)

= Pyy(1 - Ip 2) (4.15)

The equation above shows that the residual error spectrum is indeed what is left after

the QT interval has been linearly predicted from the RR interval. The power in the

error is calculated as the area under the curve of the Pee within the frequency bands of

interest.

Figure 4.5 shows the spectrum of the residual error. The influence of the domi-

nant frequency peak in the RR spectrum is removed and the LF peak that cannot be

predicted by the RR interval is dominant.
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Chapter 5

QT Variability: Tilt Table Data

T HE graded head-up tilt experiment imposes a progressive increase in the activity

and modulation of the sympathetic nervous system (SNS) [30]. Since QT intervals

are primarily influenced by the activation of the SNS, quantifying the variability of the

QT intervals obtained from this experiment would provide a quantitative assessment of

SNS activity on the heart.

* 5.1 Methods

ECGs were obtained from ten healthy subjects undergoing the tilt table experiment.

Each subject was placed on a tilt table with foot support, and underwent a series of

six postural changes: two stand-ups, two rapid tilts and two slow tilts. The sequence

of intervention was randomized for each subject. More details are explained in Heldt

et al. [14].

Our QT detection algorithm was used to annotate the Q-onsets and T-offsets of

the ECG. The R peaks were detected by doing a maximum point search along the ECG

interval in-between each detected Q-onset and T-offset. Figure 5.11 shows annotations

of Q-onset, T-offset and R peak of a tilt table data record using the algorithm.
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U 5.2 Results of Time Series Analysis

The QT and RR intervals obtained were plotted against time. Figures 5.1 and 5.2 show

the results that were obtained from two subjects. Other results are shown in Appendix

A. The red lines indicate the transition time from one intervention to a rest period. The

difference in adaptation to the changes from one intervention to a rest period is quite

clear. Looking at individual transitions, it is evident that the QT intervals adapted

quite slowly in comparison with the quick adaptation of the RR intervals. Figures 5.3,

5.4 and 5.5 show the results from the subject's supine position before the intervention

(before the red lines), the subject's upright position during the intervention (in-between

the red lines), and finally the subject's supine position after the interventions, for the

slow tilts, rapid tilts and stand-ups respectively. Note that in the case of the slow tilts,

the first two and last two red lines indicate the duration of the slow tilt-up and slow

tilt-down respectively.

The adaption of the QT interval when the subject is in a tilted position (during an

intervention) and when the subject is returning to supine position (after an intervention)

appears exponential. After low pass filtering the QT time series, least-squares fitting

was used to fit a single exponential to the QT response characteristics. This enabled

us to estimate the time constant, T, of the autonomic activity on the QT interval,

thus providing as estimate of the sympathetic time constant. The model used for the

exponential fit is as follows:

QT = QT(t = oc) - (QT(t = oc) - QT(t = 0)) e-- (5.1)

where A = 1/r, and where t = 0 and t = oc denote the start and the asymptote of

the adaptation transient. Taking logs converts this to a linear estimation problem (see
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Appendix C). Figure 5.6 shows the fitting of an exponential to two of the QT interval

transients and Table 5.1 contains the estimated time constants of subject 12755.
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Figure 5.3: From L-R: first and second slow tilts of subject 12734 (top), first and second
slow tilts of subject 12755 (bottom).

The SNS activity is a much slower acting system than the PNS, and thus changes

in the QT interval as a result of SNS activation will produce a slower transient. The RR

intervals on the other hand are primarily modulated by the parasympathetic nervous

system, a much faster system; this is the reason for a much faster RR interval adaptation

to changes produced by tilting the subjects.

This interesting exponential trend also gives rise to questions about the validity

of normalizing QT intervals to heart rate. As mentioned in Chapter 2, QT intervals

are often normalized to remove the dependence of the QT intervals on heart rate, but
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Figure 5.4: From L-R: first and second rapid tilts of subject 12734 (top), first and

second rapid tilts of subject 12755 (bottom).

as illustrated in Figure 5.7, the corrections dampen the slow rise and fall of the QT

intervals, making them less apparent.

* 5.3 Results of Spectral Analysis

Spectral analysis of the tilt table data was also carried out on the part of the data

that has attained steady state (i.e., after transients). After resampling and filtering

the QT and RR interval tachogram at 2Hz using the algorithm described by Berger
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Figure 5.5: From L-R: first and second stand-ups of subject 12734 (top), first and second
stand-ups of subject 12755 (bottom).

et al. [7], power spectra were obtained by using Welch's method. The direct current

(DC) component was removed by subtracting the mean value of the data set. A sliding

Hamming window of 512 points or 1024 points (depending on the length of the segment

analyzed) with 50% overlap was used. As frequency domain measures, LF (n.u.), HF

(n.u.) and LF/HF were calculated. Figures 5.8 and 5.9 show a PSD plot of a slow-tilt

up and Figure 5.10 shows the plot of the residual error spectrum. Some other examples

are in Appendix B. Tables 5.2 - 5.7 summarize the values obtained from frequency

domain normalized power calculations.
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Table 5.1: Estimated time constants (T)

r (sec) Average r (sec)

Rapid tilt 72.0 72

99.0
Slow tilts 94

88.9

79.5
Stand-ups 78

76.3
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Transitions to supine 81.9 79
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Figure 5.7: Illustration of QT normalization using intervals from subject 13960.

Table 5.2: First slow tilt-up

Before tilt-up After tilt-up

LF (n.u) HF (n.u) LF/HF LF (n.u) HF (n.u) LF/HF

RR 0.51 0.48 1.07 0.61 0.33 1.87

QT 0.61 0.36 1.63 0.61 0.33 1.87

Table 5.3: Second slow tilt-up

Before tilt-up After tilt-up

LF (n.u) HF (n.u) LF/HF LF (n.u) HF (n.u) LF/HF

RR 0.45 0.53 0.85 0.83 0.14 6.01

QT 0.59 0.39 1.51 0.65 0.32 2.07
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Figure 5.8: From L-R: PSD before and after first slow tilt up of 12734. Time series

shown in the top plots in Figure 5.3. RR PSD (top) and QT PSD (bottom).

Table 5.4: First rapid tilt-up

Before tilt-up After tilt-up

LF (n.u) HF (n.u) LF/HF LF (n.u) HF (n.u) LF/HF

RR 0.62 0.35 1.79 0.83 0.13 6.26

QT 0.63 0.34 1.83 0.50 0.46 1.09
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Figure 5.10: Residual error spectrum of first slow tilt-up of record 12734

Table 5.5: Second rapid tilt-up

Before tilt-up After tilt-up

LF (n.u) HF (n.u) LF/HF LF (n.u) HF (n.u) LF/HF

RR 0.35 0.58 0.61 0.77 0.13 6.02

QT 0.50 0.41 1.22 0.67 0.22 3.05

Table 5.6: First stand-up from supine

Supine Stand-up

LF (n.u) HF (n.u) LF/HF LF (n.u) HF (n.u) LF/HF

RR 0.50 0.44 1.15 0.72 0.18 3.83

QT 0.64 0.30 2.13 0.54 0.38 1.41
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Table 5.7: Second stand-up from supine

Supine Stand-up

LF (n.u) HF (n.u) LF/HF LF (n.u) HF (n.u) LF/HF

RR 0.39 0.59 0.66 0.68 0.18 3.82

QT 0.50 0.45 1.13 0.50 0.43 1.18

From the results in tables 5.2-5.6, the LF peak and normalized power of the QT

spectra do not change much before and after the interventions. In the case of the RR

spectra, there is a dramatic increase in LF normalized power and a more prominent LF

peak during the interventions that stimulate an activation of the sympathetic nervous

system, i.e., tilted positions and the stand up posture. The slower oscillations that are

seen in the RR intervals during the activation of the SNS contributes to the increase of

the LF normalized power. The stability of the QT spectra before and after interventions

shows that the QT is primarily affected by the SNS.

High frequency components of the QT spectra are not dominant. This signifies

lower dependence of the QT interval on PNS activity. This is in direct contrast with

the spectrum of the RR intervals. In RR spectra, the HF components significantly

reduce when the SNS is activated, implying a reliance of the RR interval on the PNS.

This reduction in HF power also establishes the fact that the activation of the SNS is

accompanied by inhibition of the activity of the PNS and vice versa.

The LF/HF ratio of the RR intervals increases drastically when the SNS is acti-

vated. This is as a result of a shift in the sympathovagal balance: from parasympathetic

dominance to sympathetic dominance. This shift is not quite represented in the LF/HF

ratio of the QT spectra. Also, the power of the residual error spectra is barely changed,

implying that RR variability does not contribute a lot to QT variability before and af-
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ter interventions. This is in agreement with fact that in an experiment where the SNS

activity is highlighted, its primary modulation of the QT interval in also highlighted.

Thus, it shows that QT variability is driven primarily by the modulation of the SNS.

In general, RR intervals shows a significant decrease in total spectral power when

the SNS is activated, and consequently PNS is withdrawn, while QT has a LF peak

that remains quite constant all through the experiment. This demonstrates, through

the frequency domain, that QT intervals are primarily affected by SNS and RR intervals

are primarily affected by PNS.

In summary, the results in both frequency and time domain demonstrate a clear

difference between the response of the QT intervals and of the RR intervals to the SNS.

The characteristics of the SNS such as slow response time and dominant LF activity

are highlighted by looking at the variability of the QT intervals. This has shown that

QT variability indeed has potential to be a quantitative marker of sympathetic nervous

system modulation.
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Chapter 6

Conclusion

T H E strong role of the autonomic nervous system in cardiovascular activities has

been long established. While heart rate variability has been the well established

means of assessment, QT variability has now proved to be a potential quantitative

marker of cardiac autonomic tone effected through the sympathetic nervous system.

The fact that the QT interval is embedded in the RR interval gives rise to a need

for independent variability characterization. The residual error spectrum was proposed

as a new way of quantifying QT variability independent of RR variability. The use of

spectral coherence as it relates to both the QT and RR intervals was also re-defined,

with the coherence being used as an indicator of how well the RR intervals can linearly

predict the QT intervals. This is also an indication of how independent QT variability

is from RR variability.

The time-domain analysis showed a striking difference between the way QT and RR

intervals adapt to changes in autonomic balance. The fast response of the RR intervals

imply that they are primarily modulated by the parasympathetic nervous system, while

the slow response of the QT intervals indicate that that they are primarily modulated by

the sympathetic nervous system. Since the QT intervals and RR intervals are modulated

primarily by the different branches of the autonomic nervous system, it is necessary to
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always take both QT and RR variability into account when assessing cardiac autonomic

tone.

Although it is clear that QT variability is the primary maker of sympathetic nervous

system activity in the heart, more work still needs to be done in order to develop

algorithms that can accurately quantify its modulation via QT variability.

Another future goal is the adaptation of non-linear methods in the assessment of

QT-RR coupling. The relationship between QT and RR intervals is non-linear and so

in order to fully characterize the interaction between the cardiovascular system and the

autonomic nervous system, a combined linear and non-linear approach is needed. In

addition to existing methods, conditional entropy can also make it possible to explore

the coupling of the QT and RR intervals non-linearly, and to also develop a quantitative

marker of sympathetic activity via QT variability.

The availability of linear and non-linear algorithms for QT variability assessment

will be useful in the detection of ventricular abnormalities in the early stages of brain

injury or other impaired ventricular regulation.



Appendix A

Tilt Table Data Results

* A.1 RR, QT Intervals

The plots below show a time plot of the RR intervals on the top, and QT intervals

on the bottom. The red lines dividing each plot mark the initiation and conclusion of

each of the interventions performed. The list of annotations indicates (in order of left

to right) which intervention is marked by each of the red lines.

1. Record 12726

Annotations for Figure A.1

1. Initiate slow tilt up

2. Conclude slow tilt up

3. Initiate slow tilt down

4. Conclude slow tilt down

5. Initiate and conclude rapid tilt up

6. Movement artifacts

7. Initiate and conclude rapid tilt down

8. Stand up and lost ECG signal due to poor electrode-skin contact

9. Transition back to supine
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Figure A.1: 12726

10. Stand up

11. Transition back to supine

12. Initiate slow tilt up

13. Conclude slow tilt up

14. Initiate slow tilt down

15. Conclude slow tilt down

16. Initiate and conclude rapid tilt up

17. Initiate and conclude rapid tilt down

2. Record 12734

Annotations for Figure A.2

1. Initiate slow tilt up

2. Conclude slow tilt up

3. Initiate slow tilt down
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Rec 12734
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Figure A.2: 12734

4. Conclude slow tilt down

5. Initiate and conclude rapid tilt up

6. Initiate and conclude rapid tilt down

7. Initiate slow tilt up

8. Conclude slow tilt up

9. Initiate slow tilt down

10. Conclude slow tilt down

11. Stand up

12. Transition back to supine

13. Stand up

14. Transition back to supine

15. Initiate and conclude rapid tilt up

16. Initiate and conclude rapid tilt down
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Figure A.3: 12744

3. Record 12744

Annotations for Figure A.3

Initiate and conclude rapid tilt up

Initiate and conclude rapid tilt down

Misfire of marker signal

Initiate slow tilt up

Conclude slow tilt up

Initiate slow tilt down

Conclude slow tilt down

Stand up

Transition back to supine

Stand up

Transition back to supine

I

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.
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12. Initiate slow tilt up

13. Conclude slow tilt up

14. Initiate slow tilt down

15. Conclude slow tilt down

16. Initiate and conclude rapid tilt up

4. Record 12754
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Figure A.4: 12754

Annotations for Figure A.4

1.

2.

3.

4.

5.

Stand up

Transition back to supine

Initiate and conclude rapid tilt up

Initiate and conclude rapid tilt down

Stand up
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6. Transition back to supine

7. ECG noise due to poor electrode contact

8. Initiate and conclude rapid tilt up

9. Initiate and conclude rapid tilt down

10. Initiate slow tilt up

11. Conclude slow tilt up

12. Initiate slow tilt down

13. Conclude slow tilt down

14. Initiate slow tilt up

15. Conclude slow tilt up

16. Initiate slow tilt down

5. Record 12755
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Figure A.5: 12755

Annotations for Figure A.5
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1. Failed attempt to tilt rapidly

2. Initiate and conclude rapid tilt up

3. Initiate and conclude rapid tilt down

4. Initiate slow tilt up

5. Conclude slow tilt up

6. Initiate slow tilt down

7. Conclude slow tilt down

8. Stand up

9. Transition back to supine

10. Initiate slow tilt up

11. Conclude slow tilt up

12. Initiate slow tilt down

13. Conclude slow tilt down

14. Stand up

15. Transition back to supine

16. Initiate and conclude rapid tilt up

17. Initiate and conclude rapid tilt down

6. Record 12815

Annotations for Figure A.6

1. Initiate slow tilt up

2. Conclude slow tilt up

3. Initiate slow tilt down

4. Conclude slow tilt down

5. Initiate and conclude rapid tilt up
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Figure A.6: 12815

Initiate and conclude rapid tilt down

Initiate slow tilt up

Conclude slow tilt up

Initiate slow tilt down

Conclude slow tilt down

Initiate and conclude rapid tilt up

Initiate and conclude rapid tilt down

Stand up

Transition back to supine

Stand up

Transition back to supine

7. Record 12819

Annotations for Figure A.7

6.

7.

8.
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10.

11.

12.

13.

14.

15.

16.
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Figure A.7: 12819
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Transition back to supine
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15. Initiate slow tilt down

16. Conclude slow tilt down

8. Record 12821

Rec 12821
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600 -c**

0 500 1000 1500 2000 2500 3000
Time (seconds)

6

a

0 500 1000 1500 2000 2500 3000
Time (seconds)

Figure A.8: 12821

Annotations for Figure A.8

1. Initiate slow tilt up

2. Conclude slow tilt up

3. Initiate slow tilt down

4. Conclude slow tilt down

5. Initiate and conclude rapid tilt up

6. Initiate and conclude rapid tilt down

7. Stand up

8. Transition back to supine
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Initiate and conclude rapid tilt up

Initiate and conclude rapid tilt down

Stand up

Transition back to supine

Initiate slow tilt up

Conclude slow tilt up

Initiate slow tilt down

Conclude slow tilt down
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Figure A.9: 13960

Annotations for Figure A.9

1. Initiate and conclude rapid tilt up

2. Initiate and conclude rapid tilt down

9.

10.

11.

12.

13.

14.

15.

16.

9. Record 13960

2~\ ~
2000 2500 3000

'

79Sec. A.1. RR, QT Intervals
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3. Stand up

4. Transition back to supine

5. Initiate and conclude rapid tilt up

6. Initiate and conclude rapid tilt down

7. Initiate slow tilt up

8. Conclude slow tilt up

9. Initiate slow tilt down

10. Conclude slow tilt down

11. Stand up

12. Transition back to supine

13. Initiate slow tilt up

14. Conclude slow tilt up

15. Initiate slow tilt down

16. Conclude slow tilt down

M A.2 RR, QT and QTc Intervals

The figures below show RR, QT and corrected QT intervals. The corrections used here

are the Bazett formula, QT, = QT and the Federica cube root formula, QT, = .
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Figure A.11: 13960 showing QT interval corrections
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Appendix B

Spectral Analysis of Tilt Table Data

These are some examples of power spectral density and residual error spectrum plots

derived from the tilt table data. These plots are from subject 12344 before and after

the interventions in the tilt table experiment.
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Figure B.1: From L-R: PSD
shown in figure 5.4 RR PSD

before and after second slow tilt up of 12734. Time series

(top) and QT PSD (bottom).
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Figure B.2: From L-R: PSD before and after first rapid tilt up of 12734. Time series

shown in the top plots of Figure 5.4. RR PSD (top) and QT PSD (bottom).
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Figure B.3: From L-R: PSD before and after second rapid tilt up of 12734. Time series
shown in the top plots of Figure 5.3. RR PSD (top) and QT PSD (bottom).
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Figure B.4: From L-R: PSD before and after first stand up of 12734. Time series shown

in the top plots of Figure 5.5. RR PSD (top) and QT PSD (bottom).
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Figure B.5: Residual error spectrum of second slow tilt-up of record 12734
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Figure B.6: Residual error spectrum of first rapid tilt-up of record 12734
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Figure B.7: Residual error spectrum of second rapid tilt-up of record 12734
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Figure B.9: Residual error spectrum of second stand-up from supine of record 12734



Appendix C

Exponential Fit Model

y(t) = y(t = cO) - (y(t = oc) - y(t = 0))e~*t

where A =

y(t = 0) - y(t) e_= t

y(t = o) - y(t = 0)

Taking logs,

In (y(t = oo) - y(t)) - In (y(t = oc) - y(t = 0)) = -At

Let the lefthand side of the above equation be r(t), then the least squares estimate for

A is

r(ti)ti
A= >mt?

The estimated curve, y(t) becomes,

(t) = y(t = oc) - (y(t = oc) - y(t = 0))e-t
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