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Abstract

As field electron emitters shrink to nanoscale dimensions, the effects of quantum con-

finement of the electron supply and electric field enhancement at the emitter tip play a

significant role in determining the emitted current density (ECD). Consequently, the

Fowler-Nordheim (FN) equation, which primarily applies to field emission from the

planar surface of a bulk metal may not be valid for nanoscale emitters. While much

effort has focused on studying emitter tip electrostatics, not much attention has been

paid to the consequences of a quantum-confined electron supply. This work builds

an analytical framework from which ECD equations for quantum-confined emitters

of various geometries and materials can be generated and the effects of quantum con-

finement of the electron supply on the ECD can be studied. ECD equations were

derived for metal emitters from the elementary model and for silicon emitters via a

more physically-complete version of the elementary model.

In the absence of field enhancement at the emitter tip, decreasing an emitter's

dimensions is found to decrease the total ECD. When the effects of field enhancement

are incorporated, the ECD increases with decreasing transverse emitter dimensions

until a critical dimension dpeak, below which the reduced electron supply becomes the

limiting factor for emission and the ECD decreases. Based on the forms of the ECD

equations, alternate analytical methods to Fowler-Nordheim plots are introduced for

parameter extraction from experimental field emission data. Analysis shows that the

FN equation and standard analysis procedures overpredict the ECD from quantum-

confined emitters. As a result, the ECD equations and methods introduced in this

thesis are intended to replace the Fowler-Nordheim equation and related analysis

procedures when treating field emission from suitably small field electron emitters.

Thesis Supervisor: Akintunde I. Akinwande
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

The terahertz (THz) regime, which lies between 0.1THz and 1OTHz, is one of the

most promising, yet technologically underdeveloped, regions of the electromagnetic

spectrum. Recently, this frequency range has garnered increased attention within the

scientific community due to its wide variety of practical applications in astronomy [6],

medicine and biology [7], chemistry [8], atmospheric science [9], security [10], [11], and

defense [12]. However, taking advantage of the properties of THz radiation has been

especially challenging due to the lack of radiation sources that can operate with a

significant power output (above 1 W) in this frequency range. This has come to

be known as the THz technology gap. Figure 1-1 plots the power output of state-

of-the-art continuous-wave electromagnetic radiation sources against their operating

frequency. Solid-state devices such as frequency multipliers, amplifiers, resonant tun-

neling diodes, Impatts oscillators, and Gunn oscillators have achieved maximum op-

erating frequencies of over 150 GHz, but are limited by the effects of electron velocity

saturation, series resistance, and shunt capacitance as device sizes scale down [13].

Continuous-wave quantum cascade lasers (QCL) have demonstrated operation at fre-

quencies as low as 0.84 THz, but must be cryogenically cooled to enable lasing at

such low frequencies [14]. From the limitations of each of these types of devices, it
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is clear that a new approach is needed. Vacuum nanoelectronic (VNE) devices are a

Solid-State THz Sources (CW)
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Figure 1-1: A plot of the output power vs. operating frequency of state-of-the-art
continuous-wave terahertz sources shows a lack of devices with power outputs of 1
W or greater between approximately 100 GHz and 10 THz. QCLs are represented
by (0), frequency multipliers by (e) and other electronic devices by (-). Cryogenic
results are plotted as hollow symbols.

prime candidate for bridging the THz gap. Unlike solid-state electronic devices, the

electrons in VNE devices travel through vacuum and can have saturation velocities

that approach the speed of light. As an advantage over QCLs, VNE devices natively

operate at room temperature [15]. In addition, if the electron transit distance in a

VNE device is smaller than the mean free path of an electron in air, the devices need

not be operated in a vacuum at all. To date, multiple terahertz VNE devices, such as

the integrated microcavity klystron [16], vacuum channel transistor [17], and micro

Barkhausen-Kurz THz oscillator [13], have been proposed.

The primary active component of any VNE device is the electron source. These

sources are typically implemented via an electron field emitter array (FEA), which

consists of a large number of closely-spaced field electron emitters. Due to the require-

ment of high current outputs from the electron source under low applied voltages [18]

for VNE devices, it is desirable to reduce the lateral dimensions of field emitters for
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larger electric field enhancement at the emitter tip and lower turn-on voltages. While

experimentalists have succeeded in fabricating FEAs based on nanoscale field emitters

in a variety of shapes and materials, such as carbon nanotubes [19], semiconductor

nanostructures [20], and graphene [21], theoretical treatments and modeling of new

types of field emitters have not kept pace. Primarily, as emitter dimensions shrink

into the nanoscale, the effects of quantum confinement and electric field enhance-

ment at the emitter tip play a significant role in determining the emitted current

density (ECD). Consequently, the oft-cited Fowler-Nordheim (FN) equation, which

was developed for and primarily applies to field emission from the planar surface of

a bulk metal may not be valid for predicting the ECD from nanoscale emitters. This

limitation of the FN equation is consistently overlooked in experimental studies and

FN-type equations are routinely used to describe the ECD from carbon nanotubes,

semiconductor nanowires, and graphene sheets. While many studies have focused on

the electrostatics of nanoscale tip geometries [22-39], few have addressed the effects

of quantum confinement on the electron supply in the emitter.

This work develops a unifying framework for treating field emission that incorpo-

rates effects of quantum-confinement on the electron supply. The framework unifies

the existing ECD equations based on elementary models, such as the FN equation [40]

and nanowall equation [41], and generates ECD equations for quantum-confined emit-

ters of arbitrary geometry. In addition, the framework allows for an analysis of the

effects of quantum confinement on emitters, such as the dependence of the ECD on

the dimensions of the emitter. The ECD equations also provide an additional tool for

experimentalists to use when analyzing field emission data from nanoscale emitters.

This thesis is divided into six chapters. Chapter 2 reviews previous theoretical

and modeling work of field emission from metals, semiconductors, and quantum-

confined structures. A framework for treating cold field emission from metal emitters

of reduced dimensionality and equations predicting the emitted current density from
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specific emitter geometries are derived in Chapter 3. Chapter 4 extends the applica-

bility of the framework to silicon field emitters by incorporating correction factors into

the ECD equations that account for physical phenomena that were omitted in devel-

oping the framework for metals. In Chapter 5, an analysis of the effects of quantum-

confinement of the electron supply on the emitted current density from emitters of

reduced dimensionality is performed, alternate data analysis procedures are proposed

for quantum-confined emitters, and the ECD predicted by the model is compared to

experimental field emission data from the literature for vertical graphene sheets and

carbon nanotubes. Finally, a summary of the thesis, conclusions, limitations of the

model, and proposed future work are covered in Chapter 6.
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Chapter 2

Background

2.1 Fowler-Nordheim Equation

The first treatment of field electron emission came in 1928, with the publication of

Fowler and Nordheim's "Electron emission in intense electric fields" [40]. This work

produced the Fowler-Nordheim equation, which predicts the magnitude of the ECD

emitted from the surface of a bulk metal: a metal large enough that the distribution

of energy levels is assumed to be continuous. Fowler and Nordheim's model consisted

of a Sommerfeld-type metal [42] at T = OK with an electric field applied normal to a

planar surface of the metal. The metal is composed of an ideal gas of free electrons

which obey Fermi-Dirac statistics and have mass m, the mass of an electron in free

space. All electronic states up to a maximum energy EF, the Fermi energy, are

occupied by electrons. Electron momenta in each translational degree of freedom are

assumed to be independent of each other and can be separated into components that

are normal and parallel to the emitting surface. Electrons with momentum normal to

the emitting surface are defined as normal electrons with normal energy W, while all

other electrons are termed transverse electrons, with transverse energy Et, such that

E = W + Et. The surface of the metal is taken to be planar, perfectly smooth, free
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of defects, and to have a uniform local work function equal to <. The applied electric

field, F, does not penetrate into the metal and creates a nearly triangular potential

barrier between the metal and vacuum at the metal surface.

The emitted current density from a bulk metal, J (F) is proportional to the prod-

uct of the supply function, N (W), and transmission function D (F, W), as illustrated

in Figure 2-1. The total emitted current density is calculated by integrating over all

Electric Field

M e1ectrons per unit area, per unit time

Electrons D probability of electron
tunneling into vacuum

Figure 2-1: Field emission consists of electrons being emitted from a material that
has an electric field applied to one of its surfaces. The magnitude of the emitted
current density depends on the electron flux at the surface of the emitter and the
probability of electrons tunneling from the material into vacuum.

normal energies and multiplying by the elementary charge, e:

J(F)=e IN(W)D(FW)dW (2.1)

In the FN model, the supply function quantifies the number of electrons passing

through a plane parallel to the emitting surface per unit area, per unit time. It is

calculated by integrating the product of the electron group velocity, density of states

in the direction of emission, density of states transverse to the direction of emission,

and Fermi function over all k vectors in the transverse plane. The resulting supply

function is

4lrmokBT W[W-F1N (W) = ln I+ exp [- k J (2.2)
Wh I kBT _
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where kB is Boltzmann's constant, h is Planck's constant, T is the thermodynamic

temperature of the metal, W is the energy normal to the emitting surface, and EF

is the Fermi energy. The probability of an electron tunneling through the poten-

tial barrier is determined by the transmission function, which is calculated using a

Jeffreys-Wentzel-Kramers-Brillouin (JWKB)-type approximation [43-46]:

D (F, W) ~ exp [-go j H - eV (F, z)dz (2.3)
_ 1

where z is the emission direction, go = 47r/2mo/h, H = + EF - W is the height

of the potential barrier in the absence of an applied electric field (zero-field barrier

height), V is the barrier potential, and 0 and Z are the classical turning points of the

electron. For the exact triangular barrier V (F, z) = Fz and

D (F, W) = exp [ H3/2 (2.4)
IF I

where B = (87r/3eh) V2mo is the second FN constant, and F is the electric field at

the surface of the metal. Figure 2-2 shows the relation between the electron normal

energy, barrier height, and barrier thickness. Since most of the emitted electrons

come from states near in energy to the Fermi energy, Equation 2.4 can be expanded

about W = EF:

D (F, W) = exp [ #03/2 + c (W -EF) (2.5)
FI

where c = 3B/45/2F is the transmission function decay rate [47]. Integrating the

product of Equation 2.2 and Equation 2.5 over all energies normal to the emitting

surface and multiplying by the elementary charge yields the total current density

emitted from the metal. In order to obtain an approximate, analytical solution, the

limit as T - 0 K is taken in Equation 2.2 and the lower limit of integration is extended

from W = 0 to W = -oo. The result is the elementary Fowler-Nordheim equation,
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Figure 2-2: Normal energy diagram for a bulk metal emitter. As W increases, the
barrier height seen by tunneling electrons decreases.

which predicts the magnitude of the ECD from the planar surface of a metal:

jh"em (F) = A#-'F 2e xp [ 3/2 (2.6)

where A = e 3 /87rh is known as the first FN constant.

Although the FN equation was derived from a basic physical model, it captures

the qualitative characteristics of cold field emission, such as the emitted current den-

sity's quadratic dependence on the applied field in the pre-exponential factor and its

-1/F dependence in the exponent. In experimental studies of field emission, Fowler-

Nordheim plots of ln [I/V 2 ] vs. 1/V are constructed using the measured I-V data. If

it is assumed that I is linearly proportional to J and V is linearly proportional to F,

an FN plot of field emission data should form a straight line. Aside from verifying

that an electron emission process is due to field emission, FN plots can be used to

extract the local work function (or field factor) by measuring the slope of a linear fit

to the data: m = -B# 3/2 . Figure 2-3 shows an FN plot and the extracted local work

function, 0.

The standard form of the FN equation does not use the exact triangular potential

barrier, but instead uses a triangular barrier rounded by an image potential. This is
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Figure 2-3: Fowler-Nordheim plot for an emitter with # = 5 eV. The linear fit y-
intercept is equal to A and the slope is -B 3

/2.

known as the Schottky-Nordheim barrier [48] and is shown in Figure 2-4. The barrier

Normal
Energy

WR=E

W

HR=# H=#+EF-W

Figure 2-4: Normal energy diagram for a bulk emitter with the Schottky-Nordheim
barrier potential.

potential then takes the form

V(F,z) = -
167coz

Fz (2.7)

where co is the permittivity of free space. Substituting the potential from 2.7 into

29

y = - 13.41 - 7.826x

0 x



Equation 2.3 yields a new form for the transmission function [49]

D (F, W) = exp F V [y] H3/2 . (2.8)

Expanding D about W = EF gives an approximate transmission function

D (F, W) ~ exp [ 3/2V [YEF] + c (W - EF) (2.9)

where [3,50]

3B
C = 2Ft [yEF

[ [y] = 1 + / - y2]1 E (k2) _y 2K k2
v/2 1 /1 -y2

~1 - y2 + ± y2ln[y]
2 2vy

t [y] V [y] y (2.10)
3 dy.

+ 1 [y2 _ Y2 In [y]]
9

k2 2/1 -y
2

I+ V1 -y 2

Y /e 3 F/47rEo

0 + EF -W'

YEF =/e 3 F/47rco/#, K (k 2 ) is the complete elliptic integral of the first kind, and

E (k 2 ) is the complete elliptic integral of the second kind. In general, these values

must be calculated numerically, but good analytical approximations for v and t exist

via the work of Forbes, as listed above. The exact values for v and t as functions of

y are given in Table 2.1. Proceeding as in the case of deriving the elementary FN

equation, integrating over all normal energies yields the standard Fowler-Nordheim
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y 0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1
u (y) 1.000 0.982 0.937 0.872 0.789 0.690 0.577 0.450 0.312 0.161 0
t (y) 1.000 1.004 1.011 1.021 1.032 1.044 1.057 1.070 1.083 1.097 1.111

Table 2.1: Values for v and t as functions of y [3].

equation [47]:

J Stan (F) = A- 1t [YEF - 2 F 2  e [YEF] 032 (2.11)

As can be seen by looking at the values taken by v and t, the incorporation of the

image potential increases the transmission probability and emitted current density

for a given applied field relative to the exact triangular barrier.

2.2 Fowler-Nordheim-Type Equations

While Fowler and Nordheim's results formed the foundation of the theory of field

emission, their model was not complete. Due to non-ideal effects, the FN equation

predicts ECDs that are significantly lower than experiments have shown for metal and

semiconductor emitters [51]. To improve the accuracy of models for field emission,

multiple correction terms have been appended to the standard FN equation to account

for these non-idealities. This equation is known as the physically-complete Fowler-

Nordheim equation:

JP (F) = ATBAP AO AY2F 2 Pexp B /03/2 (2.12)

where AT is a temperature correction factor, AB is the band structure correction factor,

-ya is a field enhancement factor, Ap is a tunneling prefactor correction factor, AT is

a decay rate correction factor, P is the tunneling prefactor, and V is a barrier-shape

correction factor. The physics behind each of the correction factors is detailed below.
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2.2.1 Temperature Correction Factor: AT

The standard Fowler-Nordheim equation is a result of taking the limit as T -+ 0 K of

the integrated product of the elementary charge, supply function, and transmission

function. If this limit is not taken, the emitted current density is weakly dependent

on temperature within the field emission regime. For a bulk emitter, the temperature

correction factor to first order takes the form [47]

XT - wrckBT
sin [7rckBT]

Accordingly, when the limit as T -+ 0 K is taken, AT evaluates to unity.

2.2.2 Band Structure Correction Factor: AB

By using the free electron mass and assuming spherical constant energy surfaces

when deriving the Fowler-Nordheim equation, all band structure details specific to the

emitter material are ignored. In actuality, the constant energy surfaces of a material

are not spherical and are characterized by the shape of the conduction band minimum

and valence band maximum. Many studies of varying levels of complexity and detail

have investigated incorporating band structure effects into field emission calculations,

ranging from directly calculating electron wave functions [52,53] to using the effective

mass approximation [54]. For the purposes of this framework, an analytical method

was desired and the approach of Stratton was chosen to address band structure effects.

Stratton was the first to incorporate band structure effects into field emission

calculations, as part of a study of field emission from semiconductors. In his work,

he assumes the emitter material has a spherical constant energy surface characterized

by an isotropic effective mass m,. Later, this treatment of band structure effects

was generalized to include constant energy surfaces of arbitrary geometry, such as the

one in Figure 2-5, by Gadzuk and Plummer [1]. Although comparatively simple, this
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*kZ

Figure 2-5: An example of a constant energy surface. This constant energy surface is
being projected into the k,-ky plane, which is perpendicular to the emission direction.
Figure adapted from [1].

approach has been used to reconcile qualitative discrepancies between experimental

and theoretical total energy distributions from single emitters [55].

The energy of an electron is given by

h2k2  h2k2 h2 k2

2m, 2my 2 m,
(2.14)

where mX, my, and mz are the effective masses in the x, y, and z directions. A constant

energy surface is generated by all points in k-space at which the sum of the energy

components is equal to E. For the free electron constant energy surface, mx = my =

'mz = MO, forming a spherical shell in k-space. However, electrons in semiconductors

are often characterized by effective masses in the x, y, and z dimensions that are

different from the free electron mass. Thus, for a given set of effective masses that
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are not equal to m0 , the constant energy surface defined by the effective masses will

be larger or smaller than the free electron constant energy surface in some regions,

as shown in Figure 2-6. Since the volume enclosed by each of the constant energy

surfaces represents the total number of electronic states contributing to the ECD, the

volume between constant energy surfaces represents the excess number of electronic

states that contribute to the free electron ECD, but should be omitted to calculate

the ECD solely from the semiconductor. The goal of these band structure corrections

is to calculate a correction ECD from states that lie between the free electron and

emitter material's actual constant energy surfaces, then subtract it from or add it to

the free electron ECD to obtain the ECD from the emitter.

k k

(a) (b) (c)

Figure 2-6: (a) Ellipsoidal constant energy surface with mo > m, > m, my (blue)
compared to the free electron constant energy surface (red), (b) ellipsoidal and free
electron constant energy surfaces projected into the kX - ky plane, and (c) ellipsoidal
and free electron constant energy surfaces projected into the kX - k, plane.

Assuming that the momentum of the electrons is uncoupled between transla-

tional degrees of freedom, the electron energy can be split into normal energy W

(kz-direction) and transverse energy Et (kx-kv plane). This separation of energies

allows for the constant energy surfaces to be projected into the transverse plane and

the integral over all k space to be separated into a transverse part and a normal part.

For a given free electron energy E and polar angle 4 in the transverse plane, there is a
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maximum transverse k-vector and minimum transverse k-vector value that define the

shape of the projected constant energy surface. The corrected ECD is calculated by

integrating over all transverse k vectors and all free electron energies via the following

equation [1]:

00 kt (E )
J (F, T)= - f (E) dE D (E, kt) ktdkt +(2r)-l

7r h J 1
X 27r kt(E,) ktin (E,#))

]0c kkt(E0) kfin(E,O)

(2.15)

where e is the elementary charge and D (E, kt) is the transmission function. If con-

sidered in terms of the transverse energy, the integration is performed between a min-

imum effective mass (EM) transverse energy, Et,EM,min, and some maximum trans-

verse energy, Et,EM,max. For free electrons (FE), the minimum transverse energy is

Et,FE,min= 0 and the maximum transverse energy possible at an energy E occurs

when W = 0, leading to Et,FE,max = E. In the transverse plane, the states that

contribute to the free electron ECD are located between Et = 0 and Et = E, while

states that contribute to the effective mass ECD are located between Et,EM,min and

Et,EM,max, which are functions of # in general, as shown in Figure 2-7. When the true

constant energy surface of the material is smaller (larger) than the free electron con-

stant energy surface, electron states have been erroneously counted towards (omitted

from) the actual ECD and must be subtracted from (added to) the free electron ECD

as a correction term. For each free electron energy E and angle 0, there will be a

discrepancy between the maximum transverse free electron energy and the maximum

transverse effective mass electron energy. Since this energy is the difference between

a total energy and a transverse energy, it can be considered to be a normal energy

AW. When AW is positive, it is considered an energy surplus, while when AW is

negative, it is deemed an energy deficit.
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Figure 2-7: Actual and free electron constant energy surfaces projected into the E.-
Ey plane. The area inside the red (blue) contour represents electron states that
contribute to the free electron (actual) ECD. Areas shaded gray (orange) are electron
states that contribute to the actual (free electron) ECD, but are excluded by the free
electron (actual) ECD. If the constant energy surface has a neck, it is projected as an
absence of electronic states in the E,-E, plane and therefore is also shaded orange.
Figure adapted from [1].

In order to proceed further in calculating the emitted current density, a specific

material must be designated and the shape of its constant energy surfaces must be

defined. Because the result of this particular calculation is used extensively in this

thesis, the constant energy surfaces will be taken as spherical shells characterized

by an isotropic effective mass rnm. Changing coordinates from kt to Et and taking

into account that spherical constant energy surfaces are independent of #, the ECD

equation becomes

J(F,T) 4=r n 0 0 dE Em

V3 o JO
dE D (E - Et)

I 1+exp[(E - EF) kBT]

where Em = (m,/mo) E is the maximum value of Et,EM for a given value of E and EF

is the Fermi level. Making another variable change with W = E - Et and integrating
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over Et gives an equation of the form

J(F, T) = e 7 BTJ dWln 1 + exp [EF-W 1  (2.17)

x{D(W)- [-E (W)] D(W-Em(W))

where E (W) is the derivative of Em (W) with respect to W. The details of the

variable substitution and integral transform are given in Appendix I of [54]. Inserting

the expression for Em above and defining y, = 1 - (mn/mo) gives the equation for

ECD with band structure corrections:

4mokBT *~F-J (F, T) = e 4 7 BT dW In 1 + exp [{D (W) - D ('yW)}h0 . kBT __ ( ) - y D( -n~

(2.18)

After specifying a form for the transmission coefficients and a value for the effective

mass, an ECD equation can be derived. Factoring out all terms common to the

Fowler-Nordheim equation gives a term of the form AB = 1 - C, where C includes

the band structure effects.

2.2.3 Field Enhancement Factor: a

Basic electrostatics dictates that the electric field at the surface of a cathode depends

on its geometry. Rounded or pointed surfaces, such as the tips of field emitters, cause

the electric field to be amplified at the apex relative to the surrounding applied field.

Many models have been proposed for the field enhancement at the tip of a field emitter

such as the ball-in-a-sphere model [27], hemisphere on a plane model [56], floating

sphere between two plates model [31, 32], hemisphere on a post model [33, 38, 57],

and hemi-ellipsoid on a plane model [31]. While the hemisphere on a post model is

the most physically realistic for emission from thin whiskers, it comes at the cost of

requiring numerical methods to evaluate the electric field at the emitter tip.
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Figure 2-8: A schematic for the "floating sphere at emitter plane potential" model.
The center of the sphere of radius p is located a distance 1 above the emitter plane.
Far away from the sphere, the electric field is FM, while at the apex of the sphere it
is approximately (3.5 + l/p) Fm.

For emitters with large aspect ratios (emitter height to emitter width), the floating

sphere at emitter plane potential model, shown in Figure 2-8, serves as a good semi-

analytical approximation. In this model, the emitter tip is taken as a sphere that is

floating in space above an emitter plane. The sphere is held at a uniform potential

equal to that of the emitter plane below it. The field enhancement factor at the apex

of the sphere is found to be [31]

a = 3.5 + - (2.19)
p

where I is the height of the center of the sphere above the emitter plane and p is the

radius of curvature at the emitter tip.

2.2.4 Tunneling Prefactor and Correction Factor: P and Ap

The form of the JWKB approximation appropriate for deriving the transmission func-

tion is dependent upon the shape of the potential barrier. The most mathematically

rigorous and exact of these forms was derived by Fr6man and Fr6man (FF) in the

1960s [58]:

F exp [-G]
D (P, G) =+Pexp [-G] (2.20)

1 + P exp [-G]
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where P is the tunneling prefactor and G is the JWKB exponent given by

G = goJ M (z)1/2 dz (2.21)

with go = 47r (2mo) /h, M = U (z) - W, and U (z) being the specific form of the

1D barrier potential. The integration is performed over all positive values of M,

between the classical turning points of the electron. This expression for the trans-

mission function is general and all other forms of transmission functions from JWKB

approximations can be obtained from it by employing the proper approximations [59].

The validity of the approximations made to the FF JWKB expression is qualified

by the shape of the potential barrier. Barrier shapes are classified as either weak

(e-G ~ 1) or strong (e-G < 1) and ideal (P = 1) or non-ideal (P z 1) [59]. The form

of the JWKB expression used in deriving the standard FN equation [47] corresponds

to that of a strong, ideal barrier potential and is given by the "simple JWKB" form

D (G) = exp [-G] . (2.22)

However, according to Forbes [59], the exact triangular barrier (along with others) is

not an ideal barrier potential and P # 1. In the limit of the strong barrier regime,

the proper form of the transmission function should be that proposed by Landau and

Lifschitz (LL) [60]. The LL formula is the simple JWKB expression with the addition

of a tunneling prefactor

D (P, G) = P exp [-G] . (2.23)

In general, the tunneling prefactor depends on the normal energy and after integra-

tion over all normal energies produces a correction factor Ap that is dependent upon

the form of P. For barriers with exact, analytical solutions for the electron trans-

mission probability, P can be calculated by determining the transmission probability
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and making approximations (usually strong barrier) to arrive at an expression with

the form of the LL formula. This procedure has been carried out for the rectangular

barrier, exact triangular barrier, parabolic barrier, and Eckert barrier [59]. For po-

tential barrier shapes without analytical transmission probability solutions, P must

be determined numerically.

2.2.5 Barrier Shape and Decay Width Correction Factors: v

and AT

If nearly-triangular potential barrier shapes are used instead of the exact triangular

barrier, they can be incorporated into FN theory by way of a barrier shape correction

factor, v. One of the most common potential barrier shapes used is the Schottky-

Nordheim barrier [48] shown in Figure 2-4 and given by Equation 2.7. Using this

potential barrier, the barrier shape correction factor takes the form v [y] as derived

in the standard Fowler-Nordheim equation above [49]. When a transmission function

incorporating v is expanded about a particular normal energy, it generates an addi-

tional correction term that is grouped with decay rate, c. After the final integration

step over all normal energies in deriving the ECD equation, this additional term,

called the decay rate correction factor, appears in the pre-exponential factor and is

denoted by A,. In the standard FN equation, A, = t- 2 [ e3F/4rco/1].

2.3 Emission from Semiconductors

When treating field emission from metals, electrons are emitted from the conduction

band and the majority of them have energies close to the Fermi level, which is positive

with respect to the conduction band edge. In the case of semiconductor emitters, the

Fermi level may be negative with respect to the conduction band edge and emission

also occurs from states in the valence band. Stratton was the first to address the
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topic of emission from semiconductors [61], providing treatments of emission from

the conduction band for positive and negative Fermi levels and emission from the

valence band [54,62].

The major difference between these emission cases is the energy level from which

the majority of the electrons are emitted and as a result, the energy level about

which the transmission coefficients are expanded via Taylor series. The transmission

function for emission from bulk semiconductors takes the form [54]

Ap/2o ( + F -W )1/2 V _3F/?
D (F, W) = exp [ - . (2.24)

3 h F 0 + EF - W

W is the electron energy in the direction of emission, v is the Schottky-Nordheim

barrier shape correction factor, and v = 0 - 1) / (Cs + 1), with e, being the di-

electric constant of the semiconductor. A more convenient form for performing the

required expansions on the transmission coefficients that will be used in each of the

cases below is

U (#+EF - W)3 /2 i
D (F W) exp [U/2 ( .+ K±E/2WJ (2.25)

V)2#+ EF -W_

where

32moe 4 4

9 h2

3 F (2.26)

2.3.1 Emission from the Conduction Band for EF > 0

Emission from semiconductors with a Fermi level above the edge of the conduction

band is treated in the same manner as emission from metals. Just like in a metal, the

majority of emitted electrons have energies that are close to the Fermi level, as shown

in Figure 2-9. Stratton gives the transmission coefficients expanded about EF > 0
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D (F, W) = exp [-bi + cl (W - EF)]

b1 = Ul/ 2 3/2 j /v)2 _ B v eF 03/2

ci1 F 4reO

3 3B v esF
ci = -U1/201/2t /t2 = t - #1/2

2 01 2F # 47E

E=O E
EF

E

E
9

(2.27)

(2.28)

z=O z

Figure 2-9: When the Fermi energy of a semiconductor emitter is located above the
conduction band edge, most emitted electrons come from states close in energy to the
Fermi energy. These electrons see a barrier height equal to the work function of the
semiconductor, 0.

Multiplying the transmission coefficients by the supply function (Equation 2.2)

and the elementary charge and integrating over all normal energies gives the emitted

current density from the conduction band of a semiconductor with EF > 0 for the

free electron mass:

jeo (F,T) = A exp [-b 1 ] H1 (clkBT, EF/kBT) . (2.29)
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where

k w 2 ~ ,rc1 kBTH1 (clkBT, EF/kBT) = (c1kBT) si rckBT - exp [-c1EF] (1 + c1EF)
_sin [7rc~kBT

- (ckBT)2 ] exp [-cEF (1 exp [-rEF/kBT]

YJ ] d n (n + cikBT)n= 1

(2.30)

and A = e47mo (kBT) 2 /h 3 . In order to make corrections for the effective mass, the

expansion coefficients for D (NyW) must be determined. Inserting 'ynW for W in

Equation 2.25 and factoring out '3/ 2 allows for the transmission coefficients to be

expanded about W. Expanding about W EF and rearranging gives the coefficients

for the effective mass correction:

b'i=b 1
(2.31)

where a bar over the variable indicates that # should be replaced by an effective

work function 0' = [0 + (1 - -Yn) EF] n. Substituting these coefficients into the

transmission function and following the same procedure as above for calculating the

ECD from a semiconductor with EF > 0 gives the ECD correction due to the effective

mass:

j (F, T) = -A-yn exp [-bl] H1 (7nf1kBT, EF/kBT) (2.32)

The total corrected ECD is given by

j (F, T) =A {exp [-b 1 ] H1 (clkBT, EF/kBT)
(2.33)

-ynexp [-b 1] H1 ('-yfikBT, EF/kBT)}
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Noting that exp [-c1EF] < 1, the above equation can be simplified to

47rmo _2 7rc~kBT _ 2 -yckBT-
jc (F, T) = e { cI exp [-b 1 ] - ciT exp [-b1]

hsin [7rc~kBT sin [7F-nc-IkBT]

(2.34)

2.3.2 Emission from the Conduction Band for EF < 0

When EF < 0, the Fermi level is located in the forbidden energy gap of the semicon-

ductor and no electrons may occupy states at EF. The closest occupied electron states

to the Fermi level are located at the bottom of the conduction band and the majority

of emitted electrons come from these states, as shown in Figure 2-10. Therefore, the

transmission coefficients should be expanded about W = 0, giving

D (F, W) = exp [-bo + coW] (2.35)

where

= U 1 / 2 (0 + EF )3 / 2 [V/i/Xe] B v e F 3/2

i F Xe 47rc 0

S 3F1/ (2.36)

CO = 3/2U1/2Xi/2t [4/Xe] -t3B - eF X/2
e 2 F Xe 47ro 0

and Xe is the electron affinity of the semiconductor. Proceeding to calculate the ECD

as above, the ECD for the free electron mass evaluates to

El - (1) exp [nEF1
jco (F, T) = A exp -bo + F ] E 1BT . (2.37)

kBT _= (n + 1) (n + 1 + cokBT) -

Retaining only the first term, recognizing that 1 > cokBT, and using the relation

between the Fermi energy and the electron density n, gives a simplified form of the
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Figure 2-10: When the Fermi energy of the semiconductor is below the conduction
band edge, most emitted electrons come from states close in energy to the edge of the
conduction band. This presents a barrier height equal to the electron affinity of the
semiconductor, Xe.

ECD for the free electron mass for EF < 0, valid when -EF/kBT > 1:

kBT
jco (F, T) ~ en exp [-bo]

27rmo
(2.38)

The effective mass correction for this case only requires that cO be replaced by yaco .

The ECD correction due to the effective mass is

j' (F, T) ~ e
kBT
wm0B exp [-bo]

V27mo
(2.39)

and the total, corrected ECD is then

je (F, T) ~_ en (1 - ' .)
kBT

2wm0 exp [-bo]V27mo

It should be noted that Stratton's equations for emission from semiconductors

with EF < 0 ignore the effects of band-bending and the formation of an accumulation

layer of electrons near the surface of the semiconductor. Thus, the above equation
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is not physically realistic. It is suspected that the total ECD from semiconductor

emitters withEF < 0 far from the surface is approximately the sum of the current

from extended states and bound states in the accumulation layer as developed in the

subsections below [2]. Alternatively, including band bending and the formation of an

accumulation layer leads to a modified version of the Fowler-Nordheim equation with

the work function reduced by the difference between the total amount of conduction

band bending and the Fermi energy, which may be more physically realistic than

Stratton's work in describing emission from extended states [63]. Analytical methods

for treating band bending and electrons tunneling from an accumulation layer through

a triangular barrier are presented in §2.3.4 and §2.3.5.

2.3.3 Emission from the Valence Band for EF, < 0

Emission from the valence band requires that the energy coordinates used for emission

from the conduction band be modified. For these calculations, E,, W,, and Et, are

the negative total energy, normal energy, and transverse energy of the electron as

measured downward from the top of the valence band, with E, = W, - Et,. EF, is

the negative Fermi level with respect to the valence band edge and is defined such that

EF + EFV = -Eg. In order to account for this change of variables in the transmission

coefficients, W must be replaced by -W, - Eg where E is the energy gap of the

semiconductor. This gives transmission coefficients of the form

A 4 /2mo (Xe + Eg + Wv)3/2 V eOF

D, (F, Wv) = exp . (2.41)3 h F X, + Eg + Wv 4rceo

Making the proper substitutions for the energies in the Fermi-Dirac distribution gives

a form appropriate for emission from the valence band:

1
fv (Wv , Etv) = ( 2.42)

1 + exp (W--Et-EFVex kBT
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Integrating the product of f, and the density of states over all transverse energies

gives the supply function for emission from the valence band:

47rmokBT ' Wv - EFV
Nv (Wv) = m T In 1 + exp [WV-EF 1 1  (2.43)

Using these definitions, an equation for calculating the effective-mass-corrected ECD

from the valence band can be derived, analogous to Equation 2.18 for the conduction

band [62].

jv (F, T) =L EV dWln 1 + exp [WV-EFv
[0 . kBT

x {D, (Wv) - [+ E ,(Wv)] Dv (Wv + Evm (W,)) (2.44)

+In I+ exp Ev-fFv ]jj Dv (Wv dW
I kBTI . . EVI

where EV is the bandwidth of the valence band and Evm is the maximum value

of Etv for a given value of Ev. For spherical constant energy surfaces, Emv (Ev) =

(mlp/mo) Ev where mp is the hole effective mass at the top of the valence band.

Seeing as no electronic states in the band gap may be occupied and Dv increases with

decreasing W, the majority of electrons should be emitted from energy states close

in energy to the valence band edge when EFv < 0 (Fermi level is above the valence

band edge), as seen in Figure 2-11. Thus, Dv is expanded about Wv = 0, giving the

transmission coefficients for emission from the valence band as

Dv (Wv) ~ exp [-bv - cvW,] (2.45)
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Figure 2-11: For emission from the valence band, the majority of emitted electrons
have energies close to the valence band edge. The barrier to transmission is the sum
of the semiconductor's electron affinity, Xe, and band gap energy, Eg.

with b, and c, defined as follows:

bV = U 1/ 2 (Xe + Eg)3 /21, [kb/ (Xe + E_)]/V2= B _ _

F X, + Eg

eF 1
4 , 0reo

(Xe + Eg) 3/2

-c = 3/2U1 2 (Xe + Eg) 1/ 2 t [$/ (xe + Eg)] /02 = 3B t vC V = 3 / 2 U[ 'O i ( X e + i 2 F X , + E g

e3F]

4,rco
(Xe + Eg)1/2

(2.46)

Integrating over the product of the elementary charge, supply function, and trans-

mission coefficients gives the ECD from the valence band for the free electron mass,

when EFv < 0:

jvo (F,T) =
4irm0 (kBT) 2

e exp [-b]
W (2.47)

x [(cvkBT 2 + exp [EFV/kBT] HO (-cvkBT, EFV/kBT)]
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Modifying the transmission coefficients for the effective mass correction requires that

c, be replaced by 'yvcv:

,f 1 47rmo (kBT) 2

Ao (F, T) = -C- 3 exp [-bv]
N -2 V . _ (2.48)

x [(cvkBT) - -y exp [EF Ho (--yvcvkBT, EFv/kBT)
.kBT I

where = 1+(mp/mo). The total, corrected ECD from the valence band for EFv <0

is

47rmo (kBT) 2 - (ckT 2jo(FT)e exp[-b] [1-- (ckB

+ exp EFVJ {Ho (-Cr kBT, EFv/kBT) - 'vHo (-vcvkBT, EFv/kBT)1
IkBT

(2.49)

When EFV/kBT < -1, the equation simplifies to

Jv (F, T) = e 4TO c7 2 1 -- exp [-b] (2.50)
V V,

2.3.4 Field Penetration and Band Bending

When an electric field is applied to the surface of a solid, charges in the solid rearrange

to set up an internal electric field that opposes the direction of the applied field. In the

case of metals, the electron density is extremely large and the applied field is negated

very close to the metal-vacuum interface. Semiconductors, however, have a much

lower charge density that is set by the dopant concentration, allowing the applied

field to penetrate to an appreciable depth. In the case of field emission, this results

in an accumulation layer of electrons at the semiconductor-vacuum interface, which

is depicted by the conduction band bending downwards in energy band diagrams, as

in Figure 2-12.
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Figure 2-12: For F = 5 x 107V/cm, ND = 10 1 7 cm 3 , and T = 300 K, the magnitude
of the band bending in silicon is approximately AO = 0.259eV.

Band bending in semiconductors has been treated in general by Tsong [64] and

for cases relevant to field emission by Stratton [54] and Gomer [63]. All of these

treatments are numerical in nature, requiring repeated integrations over tabulated

functions to obtain the electric field in the space charge region, the semiconductor

potential, and the surface potential. Seeing as the focus of this work is an analytical

treatment of field emission from quantum-confined emitters, analytical expressions

for parameters related to band-bending are desired. Expressions of this nature can

be obtained by making the assumption that band bending is only significant for non-

degenerate semiconductors, which allows for the use of Maxwell-Boltzmann statistics

for electrons [4]. For an n-type semiconductor, the band-bending parameters are as
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follows:

2NDkBT [
F (z) = n+Es vacES 2NkBT _

q(z)- 2 kBTln [ +
e LD Fvac6  

NkBT (a c _ -_ (2.51)
CO

Fs=-Fvac
Es

2kBT E0 E
#s=In Fvac

e 2NDBT

Zacc ~ VLD

where Xacc is the approximate width of the accumulation layer, Fvac is the applied

electric field in vacuum, F is the electric field in the semiconductor, 0 is the potential

in the semiconductor, 0, and F. are the potential and electric field at the surface

of the semiconductor, and LD = [EkBT/ (e2ND)]l/2. These equations are valid when

# >> kBT/e, which is satisfied for fields relevant to field emission applied to a non-

degenerate semiconductor. The details of the band-bending derivation are located in

Appendix A.

2.3.5 Tunneling from an Accumulation Layer

Band bending and the formation of an accumulation layer of electrons near the surface

of the semiconductor can play a major role in determining the emitted current density.

Due to the accumulation layer, the concentration of electrons at the surface of the

semiconductor is much higher than it is in the bulk. In addition, the sharp change

in carrier concentration close to the surface acts as a confining potential, keeping

the electrons in the accumulation layer and separating them into subbands [2]. If

the potential well is wide enough to allow for a bound state, as shown in Figure

2-13, electrons in this state will contribute to the tunneling current through the
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barrier. This effect was studied in the case of electrons tunneling through a thin

gate oxide from an accumulation layer in a MOSFET by Rana et al. [2]. Due to the

oxide presenting a triangular potential barrier to tunneling electrons, this work is also

directly applicable to field emission from semiconductors.

tSubstrate
Gate Silicon

Polycrystalline
Silicon EF

Subbands

I I :
x=-t0  x=O x=L

Figure 2-13: Band bending near the surface of a semiconductor leads to the formation
of an accumulation layer and quasi-bound, discrete electronic states. In a MOS
structure, the electrons in the accumulation layer can tunnel through the thin oxide
layer from the substrate into the gate, leading to a current across the oxide layer.
Figure adapted from [2].

The total emitted current density from a semiconductor with an accumulation

layer is the sum of the current from the extended states and current from the bound

states.:

Jtotal = Jextended + Jbound (2.52)

The emitted current density from extended states is given by Equation 2.40, while the

emitted current density from bound states must be calculated differently, as trans-

mission probability through the barrier is not a meaningful concept for bound states.

Instead, the approximate lifetime of the bound states should be used to determine
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the emission current:

1 T (E) (2.53)
T. (Et) fofl V'2mz/ [En - Ec (z)] dz

where Tn is the lifetime of the state, T (E) is the transmission probability, E is the

total energy, mz is the effective mass in the emission direction, En is the subband

energy for the state, x, is the classical turning point for the nth bound state, and E, is

the conduction band edge as a function of position. The inverse of the state lifetime

gives the rate of attempts at tunneling through the barrier, in the nth subband.

Multiplying this by the number of electrons in the inversion layer and summing over

all subbands in the well gives the bound state emitted current density [65]:

Jbound e kBT) 6nmzln 1 + exp 1 (2.54)
,7h2 ) : n ( E) kBT

where 6n is the Kronecker delta function.

2.4 Emission from Quantum-Confined Emitters

Recently, a few treatments of field emission from quantum-confined structures have

been developed. Spurred mainly by the abundance of field emission data from

graphene and no suitable ECD equations for analysis, the following treatments pertain

to emission from quasi-two-dimensional systems.

2.4.1 Emission from a Nanowall Edge

In 2010, Qin et al. derived approximate, analytical equations appropriate for describ-

ing the emitted line current density from the edge of a nanowall emitter at T = 0

K [41]. As illustrated in Figure 2-14, a nanowall is a nanoscale, upright, blade-like

structure with a length and height that are very large when compared to its width.

53



Aside from the incorporation of quantum confinement effects, the model employed

in this study is identical to that used in deriving the elementary Fowler Nordheim

equation. The major difference between the nanowall and a bulk emitter is that the

FM

Z

L
Figure 2-14: Illustration of a nanowall emitter and the relative sizes of its dimensions.
The structure is absolutely small in the x direction and has a quantum well width Lx
in that dimension. The electric field FM is applied from the z direction.

nanowall is transversally quantum-confined in one dimension (x dimension). Con-

sequently, the electron energies in the x dimension are discretized and separate the

electrons into subbands. These discrete energies are assumed to take the form of

those of the infinite square well, given by

En = (2.55)

where n is the "vibrational level" and subband index of the electrons and Lx is the

width of the nanowall in the x direction, or the transverse well width. Accordingly, the

energy of an electron in the emitter takes the form E = W + Et = W + En + p /2mo.

The supply function is calculated per subband of electrons, each of which have a 2D

density of states. Integrating the product of the Fermi-Dirac distribution, transverse

density of states, and electron group velocity in the emission direction, z, gives the
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line supply function

21
Nn(WT) =2 1 dpv (2.56)

h2 -o +YE-~~ IW± 2mo±E
1+ exp kBT

where W is the normal energy, f,, is the Fermi-Dirac distribution, and py is the electron

momentum in the y direction. This integral has no known analytical solution, so the

evaluation of the line supply function is not possible at this point.

The presence of transverse quantum confinement in the emitter also affects the

transmission function. It is convenient to define an emission reference level (ERL) [66],

which is the normal electron state which has the maximum tunneling probability per

subband. In the case of a bulk metal emitter at T = 0 K, there exists an electronic

state for which E = EF, Et = 0, and W = EF. This is the ERL for a bulk emitter.

For the nanowall, there exists a state in which E = EF, however, there is no state with

Et = E, + p /2mo = 0 due to the restriction of E, being a discrete, positive value.

Therefore, the ERL for a given subband of the nanowall emitter is WERL= EF - E".

The introduction of the ERL allows for the definition of a reference zero-field

barrier height, HR, which denotes the barrier height seen by an electron occupying

the state at the ERL in each subband. For the nanowall, the lower-energy ERL

results in a higher reference barrier height, HR= 1'+ EF - WERL= 0 + E" than for

a bulk emitter. As a result, each electronic state in the nanowall emitter has a lower

probability of tunneling through the potential barrier than in the bulk emitter case.

The relation between the ERL and HR is shown in the normal energy diagram for the

nanowall in Figure 2-15. The same general form of the transmission function used

in deriving the FN equation (Equation 2.4) is also applicable in this case. Assuming

that the majority of the emitted electrons come from energy states near the ERL,

H can be expanded about HR (identical to expanding W about WERL) to the first
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Figure 2-15: Normal energy diagram for a nanowall emitter. The presence of trans-
verse quantum confinement decreases the ERL in each subband and increases the
reference zero-field barrier height relative to a bulk emitter.

order, giving a transmission function of the form

D (F, W) = exp - H 32 exp [-cR (H - HR)]. (2.57)

B is the second FN constant and CR = 3B//2F is the transmission function decay

rate at the ERL. Integrating the product of Equation 2.56 and Equation 2.57 from

W = -oo to W = oc and multiplying by the elementary charge gives the emitted

line current density from a single electron subband [41]:

Jn"w (F) = eg 2/27rmcC- 3/ 2 B (0 + En)3/2 (2.58)

where n is the electron subband index and c, = 3BV/#+ E,/2F. The total emitted

current density is found by summing over all electron subbands in the emitter and

dividing by the transverse well width L,:

Jn"w (F) = e Lxh2 /m27rMO c 3/ 2 exp [- ( + E)3/2 (2.59)
n
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2.4.2 Emission from a Thin Slab

The case of field emission from a quasi-2D structure which is quantum confined in

the direction of emission was studied by Forbes [67]. The "thin slab" is a structure

which is absolutely and relatively small in the direction of emission and large in

dimensions transverse to the emission direction, as shown in Figure 2-16. Electrons

in the emitter see an infinite potential outside the rear surface of the thin slab and a

rounded triangular potential outside the emitting surface. In this treatment, the thin

slab is assumed to be a single atomic layer thick, consistent with the thickness of a

graphene sheet.

z
Y

FM

L

Figure 2-16: A thin slab is absolutely small in the direction of emission, z, but semi-
infinite in the x and y directions. Lz is small enough to consider the emitter to be
quantum confined, discretizing energies in the emission direction.

Unlike for bulk and nanowall emitters, the normal energies of a thin slab emitter

are confined. The electrons are treated semi-classically, as particles vibrating between

the walls of the thin slab in the dimension of emission [68]. The number of emitted

electrons can be calculated by determining the frequency at which electrons strike the

emitting surface, the spatial density of electrons per subband, and their transmission

probability through the barrier per tunneling attempt. Normal energies take the form
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of those for the infinite square well:

Wq- qh 2  (2.60)
8m0 Li

where q is the vibrational level of the electron and L, is the thickness of the thin slab

in the direction of emission. The classical frequency of vibration is given by

q2 h
fe = .2(2.61)

Since the thin slab is assumed to be one atomic layer thick, only a single electron

subband should exist in the emitter below the maximum energy EF. The classical

current density incident on the emitting surface is

Zq = eNq fq/E = Nqqat"'/L Z (2.62)

where Nq is the number of electrons from each atom included in the qth level, e is

the elementary charge, atns is a constant, and E is the surface area associated with

each atom.

The transmission function takes the same form as in Equation 2.4. As the nor-

mal energies are quantized, the barrier heights in the transmission function are also

quantized, with H = #+ EF - Wq. Due to the quantization of the normal energies,

thin-slab emitters will most likely see higher barrier heights than bulk emitters.

In this model, only a single electron subband (the highest energy subband, q) is

assumed to contribute to the emitted current density. As a result, the ECD is given

by the product of the transmission function and the classical current density incident

on the emitting surface:

Ats atnsN q B
Jts = Lexp FVq ( EF)3/2 (2.63)
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where P is a tunneling prefactor, vq is the barrier-shape correction factor for electrons

tunneling from the qth vibrational level, and A"' is a supply correction factor.

2.5 Chapter Summary

The Fowler-Nordheim equation and model have been the primary method for analyz-

ing experimental field emission data since the late 1920s. In order to attain greater

agreement between the FN model and experimental results, correction terms have

been appended to the FN equation that account for physical phenomena omitted

by the model and a separate treatment of field emission was developed for emis-

sion from semiconductors. However, these models are only appropriate for treating

field emission from bulk emitters and may not be valid for treating field emission

from quantum-confined structures. Recently, a few models for field emission from

quantum-confined systems such as the nanowall and thin slab have emerged. These

works treat field emission from quasi-2D structures, but a framework for treating field

emission from systems of arbitrary geometry and reduced dimensionality is desired.

Chapter 3 develops such a framework and employs it to derive ECD equations for a

variety of quantum-confined emitter geometries.
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Chapter 3

Elementary Framework for Cold

Field Emission from Metal

Emitters

3.1 Introduction

In this chapter, an elementary framework for field emission from metals at T

OK is developed. The elementary framework includes only the most basic physical

phenomena required for treating field emission from metals, enabling the derivation of

approximate, analytical, emitted current density equations for emitters with a 3D, 2D,

or ID electron density of states. Such equations make it possible to isolate changes in

the supply function, transmission function, and total emitted current density solely

due to imposing quantum confinement upon the electron supply. The elementary

framework also serves as the basis for the development of the treatment of field

emission from silicon emitters, which is the subject of Chapter 4.
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3.2 Model for Field Emission from Quantum-Confined

Emitters

3.2.1 Definition of Emitter System

The model that serves as the basis of the framework is qualitatively the same as the

model used in deriving the elementary Fowler-Nordheim equation in §2.1, but with

the addition of quantum confinement effects. In this model, quantum confinement

is classified into two categories based on the orientation of the confinement direction

relative to the emission direction. Transverse quantum confinement occurs when a

dimension transverse to the emission direction is confined, while normal quantum

confinement is the case in which the dimension in the direction of emission is con-

fined. As the supply of electrons to the emitting surface and transmission probability

of electrons through the potential barrier are functions of the normal energy, it is

convenient to separate electron emitters into two categories: (i) normally-unconfined

(NU) emitters and (ii) normally-confined (NC) emitters, both of which may also be

transversally-quantum-confined. These two cases of emission are illustrated in Figure

3-1. Energies of confined electrons are taken to be those of the well consistent with

the system's geometry.

3.2.2 Quantum Confinement of Electrons

At some point, when a system of electrons is compressed spatially, the assumption

that they have a quasi-continuous distribution of wave vectors and energies becomes

invalid. Their wave functions, wave vectors, and energies are no longer those of the

free electron and must be calculated directly from the time-independent Schr6dinger

equation:

EV) = -- 720 + V@ (3.1)
2mo
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Normally-Unconfined Emission

P F
L

F

Electrons

Figure 3-1: Normally-unconfined emission (left) is characterized by a lack of quantum
confinement in the direction of emission, while normally-confined emission (right)
consists of an emitter confined in the emission direction.

where E is the energy of the electron, 4 is the electron wave function, and V is the

system's potential. As the emitted current density equations for the nanowall and

cylindrical nanowire will be applications of this framework, the well geometries of

interest here are the infinite square well and infinite cylindrical well.

Infinite Square Well

Quantum-confined dimensions of emitters with rectangular geometries will be treated

as infinite square wells, shown in Figure 3-2. The potential for the one-dimensional

infinite square well is

0 for 0 < z < L
V (z) =0

oc for z < 0 and z > L

where L is the width of the well. Inserting the

time-independent Schr6dinger equation gives

infinite square well potential into the

(3.3)
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Figure 3-2: Diagram of the infinite square well of width L and the first four energy
levels.

which is valid for 0 < z < L. Defining k2  2moE/h2 , the differential equation has

the solution

V) (z) = A sin [kz] + B cos [kz] (3.4)

where k is the electron wave vector. Due to boundary conditions, the value of the

wave function must be equal to zero at the well edges, requiring that B = 0 and

k = nrT/L. Equating the value of k as defined in the differential equation with k from

the boundary condition gives the wave functions and energies of the infinite square

well [69]:

(z= i ntO n ( 2 s~ (3.5)
E n 

8moL 2

where n is the vibrational level and subband index of the electron. For the three-

dimensional Schrddinger equation in Cartesian coordinates, the energies in the x and
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Figure 3-3: Diagram of the infinite cylindrical well of radius a.

y dimensions take those of the free electron and the total energy for the system is

h2k2  h2k2 n2h2
E = h2k2+ h2k2+ .2h (3.6)

2mo 2mo 8mOL 2

Infinite Cylindrical Well

A quantum-confined emitter with a cylindrical geometry is treated as an infinite

cylindrical well, shown in Figure 3-3. The infinite cylindrical well has a potential of

the form

V (p) = 0 for 0 < p < a (3.7)

oc for p > a

where p is the radial coordinate as measured from the center of the well and a is the

radius of the well. Since the potential is not one-dimensional for the cylindrical well,

the time-independent Schr6dinger equation must be solved in cylindrical coordinates

for 0 < p < a:

h2 1 D (P aO(pj , z)+ 1 a 2 0 (p , z) + 27p (p, , z)1EO (p, 0, z) = - + + (3.8)
2mO 1p ap ap p 2 1902 0Z2 I

where # is the polar angle and z is the axis about which the cylinder is centered. The

equation can be solved by the method of separation of variables, assuming that there
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is a solution of the form

(p, 0, z) = R (p) D (#) Z (z) . (3.9)

Substituting the above form for the wave function into the Schr6dinger equation and

rearranging gives the equation

1 1 D24()

02( () a$2

I a2Z (Z)
+ Z (3.10)Z(Z) 9z 2 *

Due to the sum of the equations being equal to a constant, the Schr6dinger equation

can be separated into parts that only involve z, #, and p. Once separated, the equation

involving Z (z) is recognizable as the Schrddinger equation for a free electron in one

dimension:

1 8 2Z (z)
z Z(z) &z 2 (3.11)

whose solution yields the wave functions and energies of the electron in the z-dimension:

Z (z) = exp [±tkzz]
(3.12)

Ez (z) = z
2mo

where k, is the electron wave vector in the z direction. The equation for 4 (#) is [70]

0 2 p ( #) = 0. (3.13)

Solving this equation yields a set of angular wave functions, which are eigenfunctions

of the angular momentum operator, but have no energy eigenvalues:

1
<D (#) = exp [m9]

(3.14)

L = hm
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where m is an integer and quantum number related to the electron's angular momen-

tum. The remaining function is R (p), which has an equation of the form:

p_2 2 + (p) +[k 2P2 -m 2]R(p)=0 (3.15)
op op

The solution to this differential equation is the sum of a Bessel function of the first

kind and a Bessel function of the second kind:

R (p) = AJm(kp)+ BN(kp) (3.16)

Imposing the boundary conditions that the radial wave function must be finite at

p = 0 and zero at p = a gives the radial wave functions and energies:

R (p) = Jm(kp)

h 2e2 (3.17)
E = mn

87r 2moa2

where am,n is the nth zero of the mth order Bessel function of the first kind. Summing

the energy contributions from all dimensions of the well gives the total energy for an

electron in an infinite cylindrical well as

h22 h2 k2
E = - 2 'n + Z (3.18)

87r2 moa2  2mo

While the energy terms come only from the radial and free-electron wave functions,

not all of the kinetic energy is directed radially or along the z axis. The angular

momentum present for wave functions for which m 7 0 leads to an average non-

radial kinetic energy component equal to [70]

= R (p) 2 2 IR (p) (3.19)
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The radially-directed kinetic energy of the electron is then defined as

< Tp >= E, -Ki. (3.20)

3.3 Construction of the Framework

3.3.1 Emitted Current Density

The emitted current density from a single electronic state Jq,, for a normal en-

ergy Wq and transverse energy Et is proportional to the product of supply func-

tion Nq,, (Wq), the electron flux impinging on the emitting surface, and transmission

function Dq,o (F, Wq), the probability of electron transmission through the potential

barrier into vacuum. The total emitted current density is calculated by summing

over the contributions from all electronic states in the system and multiplying by the

elementary charge:

J (F) = e Nq,a (Wq) Dq,a (F, Wq) (3.21)
q ce

where e is the elementary charge ,q is the subband index of normal electrons, and

a is the subband index for transverse electrons. In the remainder of this section, a

general framework for constructing supply functions and transmission functions for

quantum-confined emitters is developed.

3.3.2 Supply Functions

The supply function quantifies the flux of electrons traveling normal to the emitting

surface. In general, the supply function consists of two components: an attempt
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frequency v and a transverse electron density nt:

N (W) = v x nt (3.22)

Attempt Frequency

The attempt frequency is the frequency at which electrons pass a plane parallel to

the emitting surface and is comprised of the normal electron group velocity vg and

the spatial density of states normal to the emitting surface dn1 .

V = vgdni (3.23)

Within the Sommerfeld theory of metals, the electrons are treated as point particles

and the electron group velocity is readily calculated to be vg = 2W/mo. Excluding

the spin degeneracy of electrons, the number of energy levels per unit length in a

normal energy range dW, is found to be dni = 1/h/mo/2WdW [5]. The resulting

arrival rate for NU emitters is the product of the group velocity and density of states:

1
VU = -dW. (3.24)

h

For NC emitters, if it is assumed that the electron is semi-classical, moving at the

group velocity, and bouncing between the walls of a well with a bottom defined by

the shape of the conduction band edge, the attempt frequency is given by [2]:

W = q 2 )odz (3.25)
= ( 10 W,- Ec (z)

where Wq is the discrete normal energy of electrons in subband q, E, is the position

of the conduction band edge as a function of z, and 0 and Zq are the classical turning

points of the electron. If the well is a square well of width Lz, the attempt frequency
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simplifies to

2m0
Vsquare,q WqLm. (3.26)

Transverse Electron Density

The transverse electron density counts the spatial density of electrons in the metal

with momentum parallel to the emitting surface and consists of two components:

(i) the Fermi-Dirac distribution f (W, kt) and (ii) the transverse density of states

pt,M = dn/dkt. The number of electrons with k-vectors in planes parallel to the

emitting surface is determined by integrating the product of f and pt,M over all

transverse k-vectors, kt. The dimensionality of the system is given by M and is

equivalent to the number of unconfined dimensions parallel to the emitting surface.

A factor of 2 is appended to account for the spin degeneracy of electrons.

nt = 2 f q, (Wq, kt) pt,M (kt) dMkt (3.27)
(2 -r)M

where q and a are the normal and transverse subband indices. The form of the

Fermi-Dirac distribution used here is given in terms of the transverse k-vector and

is a function of the normal energy. When pt,M is transformed so that it depends

only on the magnitude of kt, E (kt) h2 k 2/ (2mo) plus any energy due to transverse

confinement.

fq,a (Wq, kt) = (3.28)
1+ exp Wq+Et (kt)-EF

While the form of the attempt frequency depends only on the dimensionality of the

system normal to the emitting surface, the transverse electron density is sensitive to

the transverse dimensionality. Therefore, the specific form for pt,M and the integration

space are governed by the number of unconfined dimensions parallel to the emitting
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surface.

27rkt for M=2, (3.29a)

pt,m (kt) 26, for M=1, (3.29b)

6a for M=O, (3.29c)

The spatial dependence of the supply function is per unit area, which may require

that the subband supply function be divided by the transverse cross sectional length

or area of the emitter's quantum wells, denoted by L 2 -.

With all of the necessary pieces of the supply function, forms specific to both the

NU emission case, Nu, and NC emission case, NC, can be assembled:

2 f dk1Nou = -MdW fc (W, kt) pt,M (kt) Mt (3.30a)
hL2 - I (27)m

N L2- Z W Ec( dz) fq,a(Wkt)pt,M(kt) (2dk (3.30b)

3.3.3 Transmission Function

In the interest of obtaining approximate, analytical solutions for the emitted current

density, the transmission function is derived using a JWKB-type approximation [43].

The Landau and Lifschitz form of the transmission function [71], which is valid in

the case of a strong, non-ideal barrier regime (exp [-G] < 1), applies to the nearly

triangular potentials inherent in studies of cold field electron emission.

D (F, H) ~ P exp [-G (F, H)] (3.31)

P is known as the tunneling prefactor [72] and depends on the potential barrier shape

and G is the JWKB exponent, as defined below. For the elementary framework, P is

taken to be unity, which is consistent with previous treatments of cold field electron

emission [40,41]. The JWKB exponent also depends on the shape of the potential
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barrier and is defined as follows:

G (F, H) = go I /M (l,F, H)dl (3.32)

where go = (47/h) V2mo is the JWKB coefficient for electrons, M is a function that

is defined by the shape of the potential barrier, 1 is the distance into vacuum, as

measured from Z1 the first classical turning point and the surface of the metal, and

Z2 is the second classical turning point. For the exact triangular barrier,

MET (1, F, H) = H - eFi (3.33)

where H is the potential barrier height that the electron sees when approaching the

barrier with normal energy W and F is the magnitude of the electric field at the

surface of the metal. Taking the emission direction to be z, Z1 = 0, and Z 2 = H/eF,

the JWKB exponent is calculated [41]:

HH/
G (F, H) = go j H - eFzdz = FH /2. (3.34)

where B =g is the second Fowler-Norheim constant, 7Ya is the geometry-dependent3e

field enhancement factor at the emitter tip, and H is the zero-field barrier height. It

should be noted that more physically realistic barrier shapes, such as the Schottky-

Nordheim barrier [48], are nearly triangular and their effect on the transmission func-

tion can be readily reincorporated into the JWKB exponent via the addition of a

barrier shape correction factor v [73], which is carried out in Chapter 4. For the case

of the exact triangular barrier, v - 1 [47], which is consistent with the calculation

above. The zero-field barrier height, H, is defined as the electron affinity of the metal,

which is the sum of the local work function, #, and the Fermi energy, EF, minus the
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normal energy of the electron.

H = # + EF- W (3.35)

For field emitters in which quantum confinement effects are significant, it is con-

venient to define an emission reference level (ERL), which identifies the normal

electronic state R in each subband that has the highest probability of transmission

through the potential barrier [66]. In this model, the highest tunneling probability is

defined as the electronic state with the highest normal energy, WR. From the concept

of ERL, two more mathematically convenient parameters can be defined: the refer-

ence zero-field barrier height, HR, and the transmission function decay rate, cR [47].

The reference zero-field barrier height is the magnitude of the potential barrier seen

by an electron that is occupying the electronic state designated as the subband ERL.

HR= = + EF -WR (3.36)

The transmission function decay rate, cR, is the reciprocal of the amount that

the zero-field barrier height must be lowered in order to increase the probability of

electron transmission by a factor of approximately exp [1] at the reference state. It

is a result of the usual expansion of the transmission coefficients about a particular

forward energy level:

d (inD) 3B H
CR = - ~ H . (3.37)

dH 2yaF (

Since the transmission probability exponentially increases with increasing normal

energy, it is valid to assume that the majority of emitted electrons are from the highest

energy state, or W ~ WR. In this case, the transmission function can be expanded

via a Taylor series of H around HR and the transmission function for NU emitters is
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obtained:

D' (F, W) ~ exp [- B HR21 exp [-CR (H - HR)] (3.38)

Given that in the NU case, W = EF - Et,,, the ERL should be calculated by

minimizing the transverse kinetic energy of electrons. When electrons are unconfined

in dimensions parallel to the emitting surface, the transverse energies form a quasi-

continuum and Et,min can be reduced to zero, allowing WR = EF. However, when

electrons are transversally confined, their transverse energies are fixed at the energy

of the subband they occupy Et,,, which is determined by the shape of the well. Since

the maximum total energy of electrons is fixed at EF and the transverse energy is

fixed at Et,min,c, = Et,,, WR is reduced by Et,min,ck relative to the bulk emitter case.

Transverse quantum confinement requires that transverse electrons have non-zero

minimum energies, effectively making that energy inaccessible for normal electrons to

use for tunneling through the barrier. As a result, the reduced ERL has the effect of

raising HR by Et,min,& [41].

HR~ = H"uIk + Et,min, =q#+Ec (3.39)

When determining the reference barrier height in the case of NC emitters, it is

important that the definition of the ERL remain consistent with its previous usage.

To reiterate, the ERL is the electronic state within each subband that has the highest

probability for transmission through the barrier. This has important implications

for the NC emission case, as within each subband there is only one possible value of

normal energy for electrons: Wq, the discrete normal energy of the subband. Conse-

quently, for all subbands, WR = W and HR = Hq, so the transmission function for

NC emitters reverts to its form prior to the Taylor series expansion:

D' (F, Wq) = exp B H /2] (3.40)
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Figure 3-4: Normal energy diagrams for (a) bulk emitter, (b) normally-unconfined
emitter that is also transversally confined, and (c) normally-confined emitter that is
not transversally confined (c).

Normal energy diagrams for a bulk emitter, NU emitter, and NC emitter are shown

in Figure 3-4.

In order to obtain the total emitted current density from quantum-confined emit-

ters, it is necessary to sum over all subbands that contribute to emission. For T = 0K,

the highest contributing subband energy may not exceed EF. For the cylindrical well,

the subband indices are given by the zeros of the Bessel functions, which are tabu-

lated. Therefore, all subbands in a cylindrical well with indices leading to an energy

less than or equal to the Fermi energy contribute to emission. For the infinite square

well, the expressions for the terminal subband indices depend on the nesting order of

the summations. In the case of a single degree of quantum confinement, the terminal
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subband index A is calculated using EF as the maximum energy:

2Lx
AX = Integer [ V2moEF] (3.41)

In the case of two degrees of quantum confinement, the terminal subband index of the

inner summation must be calculated with regard to the outer summation's subband

index, with a maximum energy EF - Ea

AY = Integer 2mo (EF - Eax) (3.42)

where Eax is the energy of the outer summation's subband, Lx is the infinite square

well width for the outer summation, and LY is the inner subband's infinite square well

width. This method ensures that only valid subband energies enter the summation

and no contributing subbands are excluded.

3.4 Application of the Elementary Framework: Emit-

ted Current Density Equations

In order to extract the qualitative effects of transverse and normal quantum confine-

ment on the current density emitted from a metal at T = 0 K, emitted current density

equations for specific emitter geometries are derived. The systems were chosen in con-

junction with the Fowler-Nordheim equation and the NU nanowall equation to cover

the cases of NU emitters with zero, one, and two transversally-confined dimensions

and the cases of NC emitters with zero and one transversally-confined dimension. An

emitted current density equation was not derived for the case of a NC emitter with

two transversally-confined dimensions (quantum dot) because Fermi-Dirac statistics

are not suitable for describing the behavior of a small, finite number of electrons,

which places it outside the scope of the model.
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In applying the framework to specific emitter geometries, it is assumed that all

emitters are oriented such that the electric field F is applied from the z direction and

all electrons are emitted into the z direction. All energies lacking a subscript are to

be considered continuous variables, while energies with an index in the subscript are

discrete due to quantum confinement. Energies normal to the emitting surface are

in general denoted by W and all other energies are denoted by E. In systems that

are transversally-confined (in Cartesian coordinates), the first dimension subject to

confinement is the x direction, with well width L2, and the second is the y direction,

with well width Ly. In normally-confined systems the well width is denoted by Lz.

While the highlights of the derivations are in the sections below, the details of the

derivations are located in Appendix B. In addition, expressions for the field enhance-

ment factors (-y,) relevant to the tip geometries of the emitters considered below are

derived in Appendix C.

3.4.1 Normally-Unconfined Emitted Current Density Equa-

tions

Fowler-Nordheim Equation and Nanowall Equation

Within the class of normally-unconfined emitters are two systems whose emitted cur-

rent density equations are already known: the bulk emitter and the NU nanowall,

both shown in Figure 3-5. Applying the framework to a bulk emitter yields the

elementary form of the Fowler-Nordheim equation that is consistent with the approx-

imations and assumptions made in developing this framework [40] and will be referred

to as the bulk emitted current density equation.

Jbulk (F) = e 47mo c3 2 [_ B 3/2 (3.43)

where c3 = 3BV4/5/2-yF.

77



X

L, ZXz

Applied Electric Field

Electrons

Figure 3-5: Emission from a bulk emitter (left) and normally-unconfined nanowall
emitter (right).

Another known equation that falls under the category of an NU emitter is the

nanowall equation, as derived by Qin et al. [41]:

e -- = 27rmOL- 6oc2exp - ( + (3.44)
h2 XaX=1 -,e

where 6% is the Kronecker delta function, c2 , = 3B / + EQ,/2'yaF,Ec, is the

energy associated with transverse quantum confinement in the x-direction, with length

L, ax is the electron subband index, and Ax is the index of the highest energy

subband in the system.

NU Nanowire Equation

A normally-unconfined nanowire is transversally-confined in the x - y plane, but semi-

infinite in the emission direction, z. Since multiple nanowire geometries are possible

(Figure 3-6), the ECD equation is derived in terms of a general transverse confinement
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Figure 3-6: Emission from a normally-unconfined rectangular nanowire (left) and
normally-unconfined cylindrical nanowire emitter (right).

energy, Et,,, cross-sectional area, Ae, and electron subband a. The supply function

is given by Equation 3.30a and pt,M with M = 0 by Equation 3.29c:

2
No (W) = dW a

hAe 1 + exp [W+Eta-EF
[ kBT J

(3.45)

For the transmission function, the reference zero-field barrier height is equal to the

work function plus the energy associated with transverse quantum confinement for

the given subband:

HRO = # + Et,a (3.46)

The transmission function is given by substituting the above expression for HR,, in

Equation (3.38).

D, (F, W) = exp
B

74yF
(0 + Et') 3/2 exp [c 1,0 (W + Eta
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Also dependent on the reference zero-field barrier height is the transmission decay

rate, which is defined per electron subband:

3B
Ci,a =_ 3 # O+Et,a (3.48)

27/aF

In order to obtain the emitted current density per electron subband, the product of

the electron charge, supply function, and transmission function is integrated over all

normal energies, from 0 to EF - Et,,. Performing the integration (§A.1.1) yields the

ECD equation for the NU nanowire:

In'wire (F) = e hAe - exp yaF (q + Eiyy) .](3.49)

The ECD equation for a rectangular nanowire is obtained by noting that the trans-

verse confinement energies are those of the infinite square well (Equation 3.6) in x

and y (Et,, = Ex + Ea,) and by defining a cross-sectional area Ae,rect = LxLy. This

gives the NU rectangular nanowire emitted current density equation

1~~~A E Ax ',ay

J",wire (F) = ehLxL A ac--e 1 ,exp [-F (# + Ea, + EO,) (3.50)

where ci,,,, = 3B q + EQX + EaY/2YaF. For the cylindrical nanowire, the trans-

verse confinement energies take the form of those in Equation 3.17 and the cross-

sectional area is defined as Ae,cyi = ra 2 , where a is the radius of the nanowire. Making

these substitutions yields the NU cylindrical emitted current density equation:

Am,n B

Jcwire (F)=e ra2 6am,n c- exp [ F )+ (3.51)

where cC=# E mn a2F.Ya

where c1 ,amn =3BV/q5± Emyn/2 aF.
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3.4.2 Normally-Confined Emitted Current Density Equations

NC Nanowall Equation

The supply function for the normally-confined nanowall with normal well width Lz,

shown in Figure 3-7, is given by Equation 3.30b with pt,M corresponding to Equation

3.29a, indicating no transverse quantum confinement.

2 2W 2irkt dkt
Nq (W) = q2 .(3.52)

27r2L z m o q w -- E
1+exp t ]2

The integral also appears in the supply function for a bulk emitter and has a known

analytical solution:

Nq (W) 87mOkBT qln + exp [EF-W] (3.53)
h 3 q I IkBT _

Since there is no meaningful definition of a reference zero-field barrier height for

NC emitters, it is not useful to expand the transmission function about an emission

reference level and the transmission probability is given by (3.40).

Dq (F, Wq) = exp B (0 + EF - Wq) 3 .2 (3.54)

The emitted current density from a single subband of electrons is calculated from

the product of the elementary electron charge, supply function, and transmission

coefficients (§B.2.1). The total ECD for the NC nanowall is

8,m W BW
JnwalI (F) =e 8hrr' 0 ) Wq 6 (EF - Wq)exp [ F(0 + EF -Wq) 2 (3.55)

q=1q YFJ
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Figure 3-7: Emission from a normally-confined nanowall emitter.

NC Nanowire Equation

Just as in the NU nanowire case, the ECD equations for the NC nanowire can be

presented in a geometry-independent form by defining the transverse confinement

energy as Et,,, a cross-sectional length Lg, and distance between collisions with the

emitting surface, d. While the supply function for a normally-confined nanowire is

readily found by using Equation 3.30b and Equation 3.29b, the integral has no known

analytical solution and approximations must be made in order to continue (§B.2.1).

The approximate supply function is given by

8 VW
Nq,a (Wq) - dhLe Wq (EF - Wq -Eta) (3.56)

Multiplying the supply function by the elementary charge, transmission function in

Equation 3.40 and summing over all subbands produces the NC nanowire emitted
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current density equation.

8 Q A

Crwire (WF)e L- E Wq (EF - Wq - Eta)
e q a (3.57)

x exp [ B (0+ EF - Wq)3 3.

For a NC rectangular nanowire (Figure 3-8), emission occurs in the z direction,

with an cross-sectional length of Lx in the x direction. The well energies in the x and

x

L zz

Lx

Applied Electric Field

Electrons

Figure 3-8: Emission from a normally-confined nanowire emitter.

z dimensions are given by the infinite square well energies with subband indices ax

and q and the distance traveled between collisions with the emitting surface is twice

the well width in the z direction, Lz. These geometric parameters give the emitted

current density for a rectangular nanowire:

4 Q Ax,q

JC.,e (W,,F)= LhEE Wq(EF -W,- Ea,)
q=1 ax (3.58)

x exp [ (0 + EF - Wq)"2
.- -yq F
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Due to the model requiring that emission come from a planar surface, emission from

the NC cylindrical nanowire falls outside direct focus of the work in this thesis. How-

ever, an ECD equation can still be derived for which the details are located in §B.2.2.

3.5 Chapter Summary

Using an elementary model of field emission similar to that employed by Fowler and

Nordheim, a framework for treating emission from normally-unconfined and normally-

confined emitters has been developed. General supply functions and transmission

functions for NU and NC emitters of arbitrary geometry that apply to systems with

two and one degrees of transverse quantum confinement were derived. Quantum

confining an emitter transversally is shown to increase the zero-field barrier height

seen by electrons traveling towards the barrier and reduce the density of states in the

supply function. Emitted current density equations for the NU nanowire (rectangular

and cylindrical), NC nanowall, and NC nanowire (rectangular) were presented and

are part of an analysis of the consequences of quantum confinement of the electron

supply on the ECD in Chapter 5.
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Chapter 4

Treatment of Field Emission from

Quantum-Confined Silicon

Emitters

4.1 Introduction

While the framework and emitted current density equations developed in Chapter

3 provide a qualitative understanding of the effects of quantum confinement on the

electron supply, many simplifications were made that make the model physically unre-

alistic. Due to these simplifications, the elementary framework is not appropriate for

treating emission from semiconductors or for rough fits to experimental field emission

data. This chapter develops a more physically-complete treatment of field emission,

specifically for silicon field emitters, by incorporating the Schottky-Nordheim barrier

potential for semiconductors, and band structure effects. Total emitted current den-

sity equations from the conduction band of emitters with Fermi energies above and

below the conduction band edge are derived for the same emitter geometries as in

Chapter 3.
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4.2 Correction Factors: Emitter Electrostatics

4.2.1 Schottky-Nordheim Barrier for Semiconductors

Although the Schottky-Nordheim barrier potential, which incorporates the image po-

tential from electrons just outside the emitting surface, was discussed for metals in

§2.1, a correction must be made when applying it to semiconductor surfaces. The

change in electrical permittivity between vacuum and the semiconductor, which has

a dielectric constant c, causes an abrupt change in the electric field at the semicon-

ductor surface and alters the strength of the image potential correction. Including

this correction into the potential yields the transmission function [54]

D (F, H) exp - v [y] H/2 (4.1)

where v = V(c, - 1)/ (c, + 1), y = e3vF/47rco/H, and H is the zero-field bar-

rier height. When expanded about a reference barrier height HR, the transmission

function becomes

D (F, H) ~- exp - V [yR H32 exp [CR (HR - H)] (4.2)

where YR = e3 vF/47rco/HR, CR = 3B VHRt [YR] /2F is the barrier decay rate at the

reference state, and t is a weak function of YR, tabulated along with values for v in

Table 2.1.
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4.3 Correction Factors: Emitter Electron Supply

for Silicon

4.3.1 Material Properties of Silicon

In order to proceed in constructing a more physically-complete model, it is necessary

to designate an emitter material. Silicon is chosen due to its widespread use as

an emitter material [74-82] and compatibility with microfabrication techniques [83].

Silicon is an indirect bandgap semiconductor with a diamond crystal structure, an

energy gap of Eg = 1.12eV, conduction band minima in the <100> crystal directions,

and a valence band maximum at the F point. It has two conduction band effective

masses, defined as longitudinal (mi) and transverse (mt), which give rise to ellipsoidal

constant energy surfaces in the conduction band [5], as shown in Figure 4-1. There

4 !
Ik

Heavy Holes

-- * kz

k

Light Holes

Figure 4-1: Electron constant energy
surfaces of silicon.

Figure 4-2: Heavy hole and light hole
constant energy surfaces for the valence
band of silicon. The split-off band is ex-
cluded due to its maximum lying lower
in energy than the heavy hole and light
hole bands.

are three valence band effective masses, one each for the light hole band (mlh), heavy

hole band (mhh), and split-off band (m,), all of which give rise to spherical constant
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Physical Parameter Symbol Value Units
Electron Affinity x 4.04 eV
Bandgap Energy A T=300K Ey 1.12 eV
DOS Electron Effective Mass mde 1.09mo eV-s2/cm 2

DOS Hole Effective Mass mdh 1.15mo eV.s 2 /cm 2

Longitudinal Conduction Band Effective Mass m1  0.9163mo eV.s2 /cm 2

Transverse Conduction Band Effective Mass mt 0. 1905mo eV-s2/cm 2

Heavy Hole Valence Band Effective Mass mnhh 0.537mo eV.s2 /cm 2

Light Hole Valence Band Effective Mass mh 0. 153mo eV.s2 /cm 2

Split-Off Hole Valence Band Effective Mass in 80  0.234mo eV-s2/cm 2

Conduction Band Effective DOS N, 2.86 x 1019 cm-3
Valence Band Effective DOS N, 3.10 x 1019 cm-3
Intrinsic Carrier Concentration A T=300K nri 1.07 x 1010 cm-3

Table 4.1: Selected material parameters of silicon [4,5].

energy surfaces in the valence band, as seen in Figure 4-2. The properties of silicon

most relevant to studies of field emission are listed in Table 4.1.

4.3.2 Band Structure Corrections for QC Emitters

Spherical Approximation for Ellipsoidal Constant Energy Surfaces

Although the band structure corrections as applied to a bulk emitter with spherical

constant energy surfaces were discussed for the conduction band and valence band

in §2.2.2, the constant energy surfaces of silicon are ellipsoidal. Defining k, as the

emission direction in k-space, projections of the constant energy surfaces into the

transverse plane are circles (along the k, axis) and ellipses (along the k" and ky axes),

as shown in Figure 4-3. In order to calculate band structure corrections for silicon via

Stratton's method, it is necessary to determine the relation between the maximum

transverse energy of the elliptical constant energy projections and the free electron

energy as a function of q, the angular coordinate in the k, - k, plane. For an ellipse,

the maximum transverse energy for a circular projection is [55]

Em (E #) = . +E (4.3)
sin2 (0) + E c2C(2
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where r1 = mt/mo and r2 = mi/mo for silicon. This gives a corrected ECD for

k
y

Elliptical

intl -111 s ,-k

Circular

Figure 4-3: When projected into the ky-ky plane, the ellipsoidal constant energy
surfaces of silicon become circles (characterized by mt) along the axis of emission and
ellipses (characterized by mt and mi) on axes perpendicular to the axis of emission.

emission from the conduction band of bulk silicon as

47rmo 2 in E0 'l s 0
J = (F, T) e j dEf (E) dO M ) D (E - Et) dEt. (4.4)

Since this integral does not have an analytical solution, approximations are needed in

order to proceed. If it is assumed that the supply function is dominated by the total

number of states enclosed by each constant energy surface, but is insensitive to the

exact distribution of the states in k-space, the elliptical constant energy projections

of silicon can be taken as circular constant energy projections. The effective mass

that characterizes this new circular constant energy projection is found by equating

the area enclosed by a circular constant energy projection with the area enclosed by

silicon's elliptical constant energy projections. The result is an effective mass that is

the geometric mean of the transverse effective mass and longitudinal effective mass.
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Figure 4-4: Plotting the ECD from an elliptical constant energy projection of a bulk
emitter together with the ECD from the approximated circular constant energy pro-
jection with Em = Emtmi/mo shows that the approximation is in good agreement
with the exact result.

For constant energy surfaces with elliptical projections in the transverse energy plane,

the maximum transverse energy becomes

Em (E) = E (4.5)
mo

Figure 4-4 shows the validity of this approximation by plotting the numerically-

calculated ECD from an elliptical constant energy projection and the ECD from

the approximate circular constant energy projection for a bulk emitter. Using this

approximation, the band structure corrections for spherical constant energy surfaces

can be directly applied to all six constant energy surfaces of silicon.

Quasi-continuum Approximation for QC Emitters

When an emitter is quantum confined, electrons are split into subbands and the

constant energy surfaces are reduced in dimension, as illustrated in Figure 4-5. This

requires that the supply function integral in Equation 2.16 be replaced by its 2D and

ID counterparts and the band structure corrections be derived per electron subband.
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k k
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Xk k k

k

Figure 4-5: The 3D constant energy surfaces of silicon are reduced to constant energy
contours in 2D and constant energy points in 1D.

Figure 4-6 shows that for a 3D electron gas, the energy discrepancy between the

maximum free electron transverse energy and the maximum effective mass electron

transverse energy, AEt, is a continuous variable, while it has both continuous and

discrete components for a 2D electron gas, and for a 1D gas is entirely discrete. In

Stratton's treatment of band structure effects, the transverse energy discrepancy is

integrated from 0 to oc, which are the same limits of integration as for W, allowing

the change of variables AEt -+ W, as in Equation 2.18. Attempting to directly apply

Stratton's band structure corrections to NU emitters results in problems for the 2D

and ID electron gases: i) the lack of a closed-form solution for the supply function

of a 2D electron gas prevents an exact analytical calculation of the band structure

corrections per subband in terms of AEt and ii) the lack of integration over transverse

energies to derive the supply function of a ID electron gas results in no clear way to

introduce band structure corrections.

However, if it is assumed that the energy states in the transverse plane lie close

enough together that the transverse energies can be considered to form a quasi-

continuum, AEt becomes a continuous variable for the 2D and ID electron gas cases

and the band structure corrections can be calculated in a manner similar to Stratton's
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Figure 4-6: For a 3D electron gas, AW is defined between two constant energy surfaces
and takes on continuous values, while for a 2D electron gas it is defined between two
constant energy contours of the same subband index and is continuous within each
subband. In the case of a ID electron gas, AW is defined between two constant
energy points in the transverse plane and is entirely discrete.

approach. This approximation allows for the band structure corrections to be entirely

incorporated into the transmission function, leaving the supply functions unchanged,

as in the bulk emitter case. Inspecting Equation 2.18, the corrected ECD from the

conduction band for a bulk emitter can be written more generally as

J, (F, T) = e j N (W) dW [D (F, W) - -yD (F, -ynW)] (4.6)

where I = 1 - ms/m. With the quasi-continuum approximation as stated above,

the ECD equations corrected for band structure effects can be derived by replacing

N (F, W) in Equation 4.6 with the form appropriate for a specific emitter geome-

try. While seemingly an approximation that contradicts the goal of the corrections

being made, it is in good agreement with the numerically-calculated band structure

correction factor for NU nanowall emitter, as shown in Figure 4-7.

4.4 Emitted Current Density Equations for Silicon

This section directly builds upon §3.4 by deriving emitted current density equations

that are applicable to semiconductor emitters. The physically-complete model used
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Figure 4-7: The numerically-calculated total ECD with band structure effects
(points) and analytical, band-structure-corrected total ECD calculated via the quasi-
continuum approximation for a single circular constant energy projection (solid) for
a 1 nm NU nanowall as a function of the applied field.

here differs from the elementary model in four significant ways: i) emitters are no

longer assumed to be at T = 0 K, ii) the barrier potential is now the Schottky-

Nordheim barrier, iii) electrons are no longer considered to be free electrons inside

the emitter, and iv) there are three pairs of constant energy surfaces for silicon, as

opposed to the single free electron constant energy surface. The emission direction is

defined as the [001] crystal direction of silicon, which corresponds to the k, direction

in k-space and the z direction in real space. Projected into planes transverse to the

emission direction, the emitter has two circular constant energy projections (along

the z axis) and four elliptical constant energy projections (along the x and y axes).

As discussed in §4.1.1, the elliptical constant energy surfaces can be assumed to be

circular constant energy projections.

The ECD equation derivations are split into two major sections: i) emission from

the conduction band for EF > 0 and ii) emission from the conduction band of an n-

type semiconductor with EF < 0. In both of these sections, the ECD from each of the

six constant energy surfaces of 3D, 2D, and ID NU and 2D and ID NC silicon emitters
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will be determined. Between constant energy surfaces, the only term that changes is

the effective mass of the electron, which is m, = mt for the circular constant energy

projections and me = Vmtmi for the elliptical constant energy projections. The total

ECD is the sum of the contributions from all of the constant energy surfaces. Due to

the number of variables with the same alphabetical representations in different ECD

equations, an additional set of subscript labels is applied to the variables HR, yR,

and cR. In addition to the subscript R, the first label denotes the dimensionality of

the emitter system and the second denotes the relative location of the Fermi energy

to the conduction band edge (p for positive or n for negative. For example, emission

from a bulk emitter with EF > 0 is labeled with 3p.

4.4.1 ECD Equations: Conduction Band EF > 0

When EF > 0 for a silicon emitter, the semiconductor is considered degenerate and

can be treated like a metal. As a result, band-bending is not significant in this

case and is ignored. Since most emitted electrons are expected to come from energy

states very close to the emission reference level in NU emitters, the transmission

coefficients are expanded about W = WR. In addition, band structure corrections

give rise to another transmission function term D (F, yW), which when expanded

about W = WR, generates different expansion coefficients. For NC emitters, no

expansion of the transmission coefficients is required. This leads to the expressions

for the transmission coefficients for emitters with EF > 0:

DNU (F, W) = exp B V [YR,] H exp [cR,p (HR,p - H)] (4.7a)

DNU (F, y, W) = exp [- FV [PR,p] p exp [yCR,p (HR,p - H)] (4.7b)
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where

m0Mn

HR,p = + EF - WR

3B(4)
CR,p = 2 aFt [YR,p] HR, (4.8)

v e%'aF

YRp=HR,p 4,7co

A bar over the variable denotes that WR is replaced by 7yWR and 7a is the field

enhancement factor at the apex of the emitter tip. For the circular constant energy

projections, 'yn is replaced by 7, = 1 - " and for the elliptical constant energy pro-

jections, it is replaced by 1e 1 - mt". Despite the additional physics incorporated

into the model, the supply functions for each of the emitter geometries from Chapter

3 remain unaltered.

Bulk Emitter

Substituting Equation 4.7a, Equation 4.7b, and Equation 3.30a with M = 2 into

Equation 4.6 and defining HR,3p = # yields the integral for determining the corrected

ECD from a single constant energy surface of silicon:

Jbulk,p (F,T) =e 4 hmOkBT j0 In I+ exp EF -W

x {exp [-bR,3p] exp [cR,3p (W - EF) (4.9)

-7Y exp [-IR,3p] exp ['7nCR,3p (W - EF)] } dW.
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The variables from the transmission functions are defined as follows:

B

bR,3p = - v'YaF3B
CR,3p -- -- t

2YaF

3B

CR,3p = F t
2-YaF

Sv /es3;aF /47o 1

VV/e aF /47reo_

#+ (I - N2) EF

ove%'aF/47ro

Z + (I - I) EF

(4.10)

S# + (1 -- yn) EF

Performing the integration (see §3.1 of [54]) and taking the leading term of Stratton's

Equation 24 gives

47rmo cR,3prkBT

h sin [cR,3p7rkBT]
1

cR,3p sin [cR,3p7rkBT]

CR,3p sin [LYJR,3prrkBT e

xC2 exp [-bR,3p]

(4.11)

The total ECD is given by the sum of the ECD from all of the constant energy

surfaces.

47Fm o  CR, 3p7FkBT
e h sin [cR,3p7rkBT]

x 6-2 CR,3p sin [cR,3prkBT]exp
e R,3pc sin [NcR,3pc7rkBT]

cR,3s, sin [cR, 3p~rkBT] F-4 C3 iexp [bR,3p
CR,3pe sin [Ne6R,3pe7rkBT]

[bR,3p - bR,3pc]

- 6R,3pe] cjj2p exp [-bR,3p]

(4.12)

where the subscripts c and e indicate that -y should be replaced by -Y, and -Ye, respec-

tively. As is discussed in §5.3.3, the band structure corrections per constant energy

surface for silicon emitters with EF > 0 are negligible and the total ECD can be
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approximated as

(4.13)4e 0 o CR,3p7rkBT 2

h6 sin [CR, 3 p7IkBT] , exp [-bR,3p]

NU Nanowall Emitter

The silicon ECD equation for the NU nanowall is derived in a parallel manner to

§3.4.1, with the same kind of band structure corrections as in the bulk ECD equation.

The total ECD for the NU nanowall emitter is

2 CR,2p7rkBT
e '

L~h2 sin [C R,2Plr kBTl

x E6,, 6 -2 CR,2p 1/2

CR,2pc

sin [CR,2pFkBT]

sin LYceR,2pc7rkBT e [bR,2p - bR,2pcl

sin [CR,2p7rkBTI
sin [YeeR,2pe7rkBT e

- bR,2pe]

x C32 exp [-bR,2p]

(4.14)

with the variables from the transmission functions defined as:

B
bR,2p -V

aF

B
bR,2p - V

2aF

3B
CR,2p = t

3B
CR,2p = -

' 2NF

V /e 3 yaF/47rEo I ( 3/2

#+ Ea,

V V/e 3 F/4Frco

#+ (-y) EF/ -4r~ qEa

V /3aF /47reo IO-E;:
0y/ + Ec

V V/e3 aF/47rco

#+ (1 - Nf)EF + '7nEaJ

(1 - _1 ) EF + _ynEax)
3

/2

(4.15)

t + (1 - -) + E + nEa..
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Just as for the bulk emitter, the band structure corrections here are negligible and

the ECD equation can be approximated as:

J F2 CR,2p7rkBT
~walI,p (F, T) '- 6 e Lxh 2 sin ECR,2p7rkBT]

00

S ' 6aRj,2p bR,2p1
oeX

(4.16)

NU Nanowire Emitter

Also In a manner parallel to §3.4.1, the physically-complete ECD equation for the

NU nanowire emitter is derived:

Jwire,p (F, T) =
2 CR,1p7kBT

Aeh sin [CRlp7ckBT]

x 00 6 - sin [CRlprkBT]exp [b,1 -XE6, 6- 2 -yc si [7ce R,1~7rkBT] ep[Rl

-4N sin [cRlp7kBT]
sin ['YeER,1pe7TkBT]

exp [bR,1p - bR,1pe]}C3/ exp [-bR,1p]-

(4.17)

with the variables from the transmission functions defined as

B
bR,1P = vb

'YaF

3B
CR,1P 2= T t

3B
CR,1p t

2'aF

[V Ve3 aF/47rco

+ Et,a

[

I(+ Et )3/2

V fe37aF/47co

#+ (I - N4) EF + 7N&,a

V Ve 3 yF/47rco
$+ Et,a I
V Ve 3 yF/47reo[+ (1 - Nf)EF + NEt,ce

(1 - }N) EF + 7nAt )3/2

(4.18)

+ + (1 - 7f) EF + 7nEta .

The band structure effects are negligible for parameters relevant to field emission and

the NU nanowire ECD equation can be approximated as

JWire,p (F, T) r- e2 CR,1p7rkBT 00 6C-32 exp [-bR,1p1.
eh sin [cR,lp~rkBT] E , 1p

a
(4.19)
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For a rectangular nanowire,

while for a cylindrical nanowire

NC Nanowall Emitter

Et,az =Eam~n

2Ae -a.

For the case of a NC nanowall emitter, the corrected ECD for a single constant energy

surface can be found by substituting Equation 3.53 and the unexpanded transmission

functions into Equation 4.6

u (F, T) =e 27rkBT q2moWqln 1
+ EF -W

+Ix kBTII

EB 31- 7 exp (3/2 - H3/2)
7 -YF (n

exp BH3/2

ex -yaF _

where H = 0+ EF - Wq and 5n = #+ EF - YnW. Totaling the contributions from

each of the constant energy surfaces and summing over all normal electron subbands

gives the total ECD from the nanowall:

27rkBT
-e Lzh 2

x 6 -

6 qV 2moWqln
q=1

2'c exp

B 
(f-4-y, exp (- Ya J3/2

1

B (ft 3/2

7a F

+ exp k B
I kBT I-

- H3/2 )

- H3/2)]} exp I
B
B H3/2

7yaF

(4.23)

I

where the subscripts c and e indicate that y7n should be replaced by "7c and 7c.
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NC Nanowire Emitter

The derivation of the NC nanowire ECD equation consists of substituting the ap-

proximate supply function from Equation 3.56, which was derived for T = 0 K, and

the unexpanded transmission functions into Equation 4.6:

JWire,p (F) =e Lh : 6,ZY W6,( E F - W, - Et,a)
(4.24)

- 7n exp - - H3/2)] exp
B (F

%aF

The total ECD from all electron subbands and constant energy surfaces is

JWire,p (F) =

800 00

e E 6q E9 > Wq (EF -Wq Et,a)
q a

- ( a 3/2 -

7aF
H3/2) ] - 4Nexp B 3/2

I--a eF
H3/2)] }

(4.25)

For the rectangular nanowire,

Et,a = Ea,

d = 2LZ (4.26)

Le = LX.

It should be noted that since the supply function was derived for T = 0 K, this ECD

equation is not strictly appropriate for describing emission at finite temperatures.

However, it can still serve as a good approximation for the ECD at temperatures

relevant to field emission.
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4.4.2 ECD Equations: Conduction Band EF < 0

When EF < 0 in the bulk, a semiconductor emitter can no longer be treated like a

metal and most of the emitted electrons are expected to come from states close in en-

ergy to the conduction band edge, WR = 0. As mentioned in §2.3.2, band bending for

non-degenerate semiconductors is non-negligible and may lead to a potentially signif-

icant current component from bound states in the accumulation layer. The equations

derived below do not include band bending and the formation of an accumulation

layer and thus are not physically realistic for predicting the ECD from a semiconduc-

tor emitter with EF < 0 in the bulk. Instead, the equations are more of an exercise

in calculating the band structure corrections for semiconductor emitters with EF < 0

in the bulk and are meant to serve as a lower limit on the ECD from a semiconductor

emitter. Also, the validity of the assumption that the total ECD from semiconductor

emitters is the sum of a FN-type ECD and a NC ECD is currently unknown and

will be investigated, along with ECD equations for emission from the accumulation

layer of quantum-confined emitters, in future work. An equation predicting the ECD

from a single conduction valley of the accumulation layer of a bulk silicon emitter is

derived in Appendix D.

Just as for the EF > 0 case, the band structure corrections necessitate the speci-

fication of two transmission functions, both expanded about W = 0:

DNU (F, W) = exp [-bR,,] exp [cR,,W (4.27a)

DNU (F, -ynW) = exp [-bR,l] exp [LYCR,nW] (4.27b)
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where

B
bRn =aF VR n e

3 B
CR,n = 2 -F t [YR,n] Xe (4.28)

v e3 F
YR,n - - __

Xe 47rro

Unlike for emission from degenerate semiconductors and metals, transverse quantum

confinement does not influence the barrier height seen by tunneling electrons, which

is the electron affinity of silicon, Xe. Due to the reference barrier height being inde-

pendent of the emitter geometry, the above expansion coefficients remain the same

for all NU derivations.

Bulk Emitter

Substituting Equation 4.27a, Equation 4.27b, and Equation 3.30a with M = 2 into

Equation 4.6 yields the integral for determining the corrected ECD from a single

constant energy surface of a bulk silicon emitter:

ulk~n (F, T) _e 47rmokBT joo EF-W]
Jouk~(F,)= h 0 1o n1+x kB _

x {exp [-bR,nl exp [cR,nW] - -y exp [-bR,,n] exp [_ncR,nW]} dW.

(4.29)

Performing the integration (see section 3.2 of [54]) and taking the first term of the

summation in Stratton's Equation 36:

47rmo (kBT) 2  1 - 7 EF b
h3  (1 - CR ,kBT) (1 - NCR,nkBT) e kBT

(4.30)
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Summing the contributions from all constant energy surfaces yields the total ECD

from a bulk silicon emitter with a Fermi energy below the conduction band edge:

4irm0 (kBT )2

Jbulk,n (F, T) =e h3  1 kBT
V 

T 
- CR,nkBT

2 Mt 4 V mitmi EF
m + mt}exp [ - b

I - -YeCR,nkBT mo I - 'YeCR,nkBT mo _kBT

(4.31)

NU Nanowall Emitter

While the supply function for a bulk emitter can be expressed in closed form, the

supply function for the nanowall cannot. However, for a non-degenerate semiconduc-

tor, Boltzmann statistics are a good approximation for electronic state occupation

probability and the Fermi-Dirac distribution can be replaced by exp [ - F. With

this substitution, the new supply function becomes

Na,(, )=c2 W + Ea - EF
No, (W, T= /2lrmokBT exp [ W+ +E I dW. (4.32)

Inserting the expanded transmission functions for EF < 0 and the above supply

function into Equation 4.6 results in

T 2 ~EF-Eax 1 f xp Wi
Jwall,n,ax h2L eXp _ kBT 110 eX p kBT

x {exp [-bR,n] exp [cR,nW] - -y exp [-bR,n] exp [ycR,,W]} dW.

(4.33)

Performing the integration produces

2 (kBT) 3/2-E -E
J ~aI (F, T) ~e- /2rm0  BT) exp [ En(

h2 CRnkBT) (1 - %CRkBT) kBT (434)

x {1 - 'yn} exp [-bR,n]
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Adding the contributions from all constant energy surfaces and summing over all

subbands gives the total ECD from the nanowall

2 (kBT)3
/2

e 2 2rm0  exp
Lxh 2 1 - cR,nlkBT

EF - Ea1
E kBTI

{ 2 mt + 4 Vmtmi
1 - ecCR,fkBT m0 1 - 'YeCR,nkBT m0

x exp kBT bR,n E o exp
aX=1 1

(4.35)

NU Nanowire Emitter

For consistency with the previous equations, the supply function for the nanowire is

also derived using Boltzmann statistics:

2 [W+ Et 0 - E
N, (W, T) = e exp - ' ] dW.

hAe I kBT _
(4.36)

Inserting the expanded transmission functions for EF < 0 and the above supply

function into Equation 4.6 leads to

JW>ire,n,a (F, T)
2 EF - Eta

eh Ae kBT .. 0
exp [ kWTI

-kBT_

x {exp [-bR,a] exp [cR,nW] - y1n exp [-bR,n] exp [YcCR,,W]} dW.

(4.37)

Integrating over all W gives

29 k
JwFire,n,a ( ) ~ e (1 (-wire~n'" hAe (I -- CR,nkBT ) (1 - -nCR,nkBT )

(4.38)
x exp F -- Eta

_ kBT_
{1 - 7Y} exp [-bR,,]
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Adding the contributions from all constant energy surfaces and summing over all

subbands gives the total ECD from the nanowire

Jwire,n (F, T)
2 kBT

Aeh 1 - CR,nkBT

S 2 rn
x - +

I -- _ecR,nkBT mo
1-4 /mlm}
I - -YeCR,nkBT mo (4.39)

EF
x exp kT - bR,n] I 6, exp

Eta

kBT _

For a rectangular nanowire,

(4.40)
Ae = LLy

and for a cylindrical nanowire,

(4.41)
Ae - ra 2

NC Nanowall Emitter

Due to the lack of expansion of the transmission functions for normally-confined

systems, the form of the equation does not change for EF < 0. Therefore, the ECD

equation for the NC silicon nanowall is given by Equation 4.23, but with q$ + EF

replaced by Xe in the transmission function:

6q V ln 1W

B

Ya F

-4y, exp [- F (e3/2

(ft
3 /2 - H3/2 )]

- H3/2) exp
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x 6 - 27c exp

+ exp EF - W'
+Ix kBTII

(4.42)

BH312

yaF _

Et,c, = Eo, + Eo,

I-



where

H X Wq(4.43)

H Xe - YnW,

NC Nanowire Emitter

Using Maxwell-Boltzmann statistics, the supply function for the NC silicon nanowire

is

Nla (WT ) = -,r kBTW exp EF BqT (4.44)
dhLe q EkBT a

The total ECD from the nanowire is obtained by incorporating the transmission

function and band structure corrections and summing over all subbands:

4 0 00EF - Wq - Et ~
Ji'ire,n (F, T) =e Ledh Tr kBT (q E6a Wex[p FykB jq a

- 2yc exp B (F 3
/2 - H3/2) (4.45)

-4-y exp -- (- 3/2 - H3/2) exp - H3/2
._ -yF (l -yaF _

For the rectangular nanowire,

Et,o, = Ea ,

d = 2L, (4.46)

Le = L2.

4.5 Chapter Summary

In this chapter, correction factors for quantum-confined silicon emitters were de-

rived and applied to the elementary framework to create a more physically-complete

treatment of field emission. The treatment for silicon consists of incorporating the

Schottky-Nordheim barrier, finite temperatures, and band structure effects into the
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elementary framework derived in Chapter 3. Approximating the elliptical constant

energy projections of silicon as circles with a new effective mass and employing a

quasi-continuum approximation allows for Stratton's band structure corrections to

be applied to quantum-confined silicon field emitters. With these correction factors,

ECD equations for emission from silicon were derived for Fermi energies above and

below the edge of the conduction band for each of the emitter geometries considered

in Chapter 3.
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Chapter 5

Analysis of the Emitted Current

Density from Quantum-Confined

Emitters

5.1 Introduction

Having derived equations predicting the emitted current density from emitters of

reduced dimensionality and various geometries, the next step is to investigate how

these equations differ from the bulk emitter ECD equations. In order to gain a

qualitative understanding of how quantum confinement of the electron supply affects

the emitted current density, ECD equations from the elementary model are compared

to the elementary FN equation as a function of the emitter dimensions. In addition,

the influence of emission at finite temperatures, the incorporation of the Schottky-

Nordheim barrier potential, and band structure effects on the total ECD for silicon

emitters with EF > 0 and EF < 0 are analyzed. The validity of using FN plots

for analyzing field emission data from quantum-confined emitters is investigated and

an alternative method for data analysis for quantum-confined emitters is proposed.
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Finally, ECD equations are compared to field emission data from vertical, single-

layer graphene and single carbon nanotube emitters in order to test the validity of

the framework.

5.2 ECD as a Function of Emitter Dimensions: El-

ementary Model

In this section, the emitted current density from the elementary ECD equations de-

rived in @3.4 are compared to the elementary FN equation (Equation 2.6) as a function

of the emitter dimensions. The ECD equations are normalized to the elementary FN

equation and plotted versus the appropriate quantum well width(s). The effects of

transverse quantum confinement and normal quantum confinement on the normalized

ECDs are analyzed as a function of the quantum well width(s) with ya = 1 and the

physical mechanisms behind the behavior of the normalized ECD plots are discussed.

In order to investigate the competing effects of quantum confinement of the electron

supply and field enhancement at the emitter tip, plots of the ECD versus quantum

well width(s) under a constant applied voltage are presented and discussed.

5.2.1 Effects of Transverse Quantum Confinement

Figure 5-1 shows the normalized elementary ECD equations from the NU nanowall,

NU rectangular nanowire, and NU cylindrical nanowire as a function of the appro-

priate quantum well width(s) with Ya = 1. As the well width decreases, the ECD

decreases exponentially, eventually reaching zero. As the well width increases towards

infinity, the ECD from each of the emitter geometries asymptotically approaches the

elementary Fowler-Nordheim equation ECD (FN limit).

As discussed in §3.2.2, quantum confinement of the electron supply discretizes

electron energies, separating the formerly-continuous band of electrons into subbands.
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Figure 5-1: ECD from the NU nanowall emitter, NU rectangular nanowire emitter,
and NU cylindrical nanowire emitter as a function of L2, L, = LY, and 2a respectively,
with #= 5 eV and EF= 10 eV at F =2 x 107 V/cm.

At T = 0 K, no electronic states may be occupied at energies above EF, which limits

the electron subbands that contribute to the total ECD to a finite number with

energies below the Fermi energy. In the case of the NU nanowall, transverse quantum

confinement fixes the x-directed electron kinetic energies at Ex = a2h 2 / (8moL )

within each subband ax. As Lx decreases, the minimum kinetic energy of electrons in

each subband increases and when Ex exceeds EF the number of subbands contributing

to emission is reduced by one. Fewer subbands of electrons contributing to emission

leads to a lower total electron flux at the emitting surface and decreases the total

ECD relative to a bulk emitter.

Changes in the transmission function due to transverse quantum confinement are

also responsible for the reduced ECD of transversally-confined emitters. According

to Equation 3.35 and Equation 3.38, the probability of an electron being transmitted

through the potential barrier is a strong function of the electron normal energy W =
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E - Et, where E is the total kinetic energy of the electron and Et is its transverse

kinetic energy. In the bulk emitter case, all components of W and Et are continuous

and each can range from 0 to EF. However, when a system is transversally quantum-

confined, at least one component of the transverse energy becomes discretized and

electrons in that dimension are limited to minimum kinetic energy values greater

than zero. For the NU nanowall, within a given subband aY, Et,m,ax is fixed at

Ea = a2h 2 / (8moL2) and the range of energy values available to W is reduced to

0 < W < EF - E0 z, also reducing WR. The effect of reducing WR in the transmission

probability arises in the reference zero-field barrier height (Equation 3.36) of the

expanded transmission function Equation 3.38, which becomes HRCx = + Eax [41].

Therefore, limiting the normal electron energy to a lower maximum value in each

subband reduces the maximum transmission probability of electrons in each subband

relative to the bulk emitter case. Since the emitted current density is an exponential

function of HR/2 and Ex is a function of L; 2 , the current density decreases with

decreasing transverse well width approximately as exp [L;3]. Adding an additional

degree of transverse quantum confinement, such as in the case of the NU nanowire,

leads to a greater confinement energy term in HR,, and further reduces the ECD.

A more realistic look at how the ECD of NU emitters changes with transverse

emitter dimensions is gained by incorporating the effects of field enhancement at

the emitter tip into the model. Using the floating sphere model (§C.1) for the NU

cylindrical nanowire emitter, a plot of the total ECD versus quantum well radius

for a constant applied electric field was constructed. Figure 5-2 shows that above a

critical size, dpeak, decreasing the emitter width increases field enhancement at the

emitter tip and the higher local electric field increases the ECD. Below dpeak, emission

is limited by the supply of electrons to the barrier and the ECD decreases despite

further increases in the local electric field at the emitter surface. As a result, there is

an optimal set of transverse emitter dimensions that lead to the maximum-attainable

112



for a given emitter geometry, height, and applied field.ECD
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Figure 5-2: Normalized ECD of the NU cylindrical nanowire emitter and bulk emitter
with ya defined by the floating sphere model, with a constant applied field far from
the emitter surface of Fm = 1.145 x 10' V/cm, # = 5 eV, EF = 10 eV, and an
emitter height of I = 1 pm. The peak in the ECD curve occurs at a = dpeak, right of
which field enhancement dominates the ECD and left of which quantum confinement
dominates the ECD.

5.2.2 Normal Quantum Confinement

The ECD of the elementary NC nanowall and NC rectangular nanowire normalized

to the elementary Fowler-Nordheim equation as a function of the well width(s) with

Ya = 1, as shown in Figure 5-3. The effects of normal quantum confinement on the

ECD are analyzed within the NC nanowall system. The analysis is simplified if the

normal well width, LZ, is sufficiently small such that the highest-energy subband ,WQ,

makes the dominant contribution to the total ECD. Under this assumption, J.all is

proportional to the product of the supply function and the transmission function for

113

0.50.0
- - -



the dominant subband (Q):

Jwall,Q (F) ~ e 4rmo 2 WQ [LZ]

x [EF - WQ [L1] exp - (0+ EF - WQ [Lz])31

The plot of the normalized ECD against L2 in Figure 5-3 raises two important ques-

tions: i) Why does the emitted current density oscillate as a function of Lz and ii)

What physical mechanisms determine the shape of the ECD's envelope function?

5 
5

4

4-

3 -

00 5 10 15 20

2 -LzLx [nm]

0 '--
0 5 10 15 20

Lz [nm]

Figure 5-3: ECD from the NC nanowall and NC rectangular nanowire as a function
of L, and L, = L, respectively, with # = 5 eV and EF= 10 eV at F = 2 x 107 V/cm.
Plot points represent the average ECD per well width, calculated from a Gaussian
distribution of well widths with a mean of the well width and standard deviation of
10% of the mean.

The oscillatory nature of the emitted current density is a direct result of the

migration of the subband energies with varying normal well width and the lack of

occupied electronic states above the Fermi energy at T = 0 K. If only one subband is
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being considered, such as in Equation 5.1, the energy of the subband can be shifted

by changing L,; thus WQ may be treated as a continuous variable as a function of

LZ, bounded by 0 and EF. Figure 5-4 illustrates the effect that shifting the subband

energies via changes in Lz has on the ECD. The plot on the left shows the ECD from

the dominant subband of the NC nanowall as a function of Lz, with the ECD noted

at four well widths labeled Lzi, Lz2 , Lz3 , and Lz4 . Creating infinite square wells with

these well widths and noting the location of the dominant subband energy WQ and

the next highest energy WQai (outside the well) relative to the Fermi energy in each

of the wells leads to the center diagram. In the right diagram, the average emitted

electron flux is plotted versus the WQ, with the nornal energies WQi, WQ2, WQ3,

and WQ4 corresponding to the value of WQ for each of the well widths in the center

diagram. According to the diagrams, as Lz increases, the ECD from the subband

(proportional to the average emitted electron flux) increases until Lz2 , then decreases

until L 4 . For normal well widths larger than Lz4, a new electron subband with energy

just below EF begins to emit and becomes the new dominant emitting subband. This

new subband (Q + 1) displays the same ECD behavior as was seen for the previous

dominant subband (Q), causing oscillations in the total ECD to occur.

The envelope function that serves as the upper bound of the NC nanowall ECD

increases as L, decreases due to the reduced distance traveled between tunneling

attempts for normally-confined emitters. The smaller normal well width translates

into a reduced travel distance between collisions with the emitting surface and greatly

increases the attempt frequency of electrons at the potential barrier, producing an

ECD that may exceed that of the bulk emitter case for certain normal well widths.

For well widths below a transition point that marks the boundary between emitters

comprised of 3D and 2D electron gases, single subbands become increasingly more

dominant contributors to the total ECD. Given that the total ECD is comprised of

the sum of the contributions from all emitting subbands, as fewer subbands contribute
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Figure 5-4: ECD from the first subband of an NC nanowall emitter with selected
quantum well widths labeled (top left), quantum wells with widths equal to the labels
in the ECD plot and the corresponding normal energy level in each well (top right),
and the average number of emitted electrons from the subband as a function of the
normal energy WQ (bottom).

significantly, the total ECD decreases to values closer to zero each time the dominant

subband energy equals the Fermi energy, for which J 1 Q = 0. When the emitter

dimensions are small enough that the energy of the last contributing subband is raised

to EF, emission from the emitter ceases completely.

Although predicted by the model, the oscillatory behavior of the ECD from nor-

mally confined systems cannot currently be linked with any physical systems. Instead,

an expected value for the ECD can be calculated by averaging the ECD from a Gaus-

sian distribution of normal well widths (simulating surface roughness) with a mean

of L, and standard deviation of 10% of the mean. For both the NC nanowall and

NC rectangular nanowire, the expected value of the ECD exhibits a behavior similar

to that of the NU emitters in Figure 5-1. For both NC systems, at small normal well

widths the expected value of the ECD drops exponentially towards zero and for large

normal well widths, the ECD approaches the FN limit, as shown by the black points
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on both plots in Figure 5-3.

5.3 ECD as a Function of the Quantum Well Width:

Silicon ECD Equations

The silicon ECD equations incorporate the effects of emission at finite temperatures,

the Schottky-Nordheim barrier potential, and band structure corrections. In this

section, the effects of each of these physical phenomena on the ECD are analyzed.

5.3.1 Finite Temperature

Within the elementary framework (T = 0 K), any electron subbands with energies

greater than the Fermi energy were forbidden to contribute to emission due to zero

probability of electrons occupying those states. When considering Fermi-Dirac statis-

tics at finite temperatures, all energies above EF have a non-zero electron occupation

probability and the total ECD is a sum over all electron subbands. However, due to

the occupation probabilities of states more than 3kBT above the Fermi energy being

negligible at typical cold field emission temperatures, there is only a small additional

contribution to the ECD from subbands just above EF for NU emitters with EF > 0.

Because 3kBT ~ 0.075 eV at T = 300 K, the additional ECD contributions due

to finite temperature are only significant when multiple subband energies are in the

range EF < E, < EF + 3kBT, which could occur if EF is close to the conduction

band edge and the emitter is large enough that there are many subbands near the

conduction band edge. For NC emitters with a EF > 0, raising the temperature

causes the distribution of the average number of emitted electrons per subband in

Figure 5-4 to broaden, replacing the oscillating subband ECD segments with more

linear ones.

Unlike emission from metals and semiconductors with EF > 0, emission from the
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conduction band of semiconductors with EF < 0 cannot occur at T = 0 K. Without

thermal energy to promote electrons to the conduction band from either the valence

band or donor levels, no emission can occur. As a result, the ECDs for semiconductor

emitters with EF < 0 are highly dependent upon the temperature of the emitter

and are reduced to zero at T = 0 K. Although the qualitative characteristics of NU

emitter ECD plots with EF < 0 are the same as those of the NU emitter ECD

plots with EF > 0, non-degenerate semiconductor emitters suffer from a severely

reduced ECD due to the emitting subbands being at least 3kBT above EF. The

position of the Fermi energy far below all emitting subbands is also responsible for

the elimination of oscillations in the ECD plots for NC silicon emitters. Since the

oscillations were a result of subbands with normal energies below EF emitting more

strongly than subbands with normal energies above EF, having a system in which

all emitting subbands have normal energies far above EF reduces the discrepancy

between subband ECD contributions and leads to a smoothed ECD for NC silicon

emitters.

5.3.2 Schottky-Nordheim Barrier

The incorporation of quantum-confinement into models of field emission directly af-

fects the values of the argument of the barrier shape correction factor V and the decay

rate correction factor t. For NU emitters with EF > 0, the argument YR is dependent

upon the reference zero-field barrier height of the electrons in the subband:

YR,a = H ' (5.2)
47rco

The introduction of transverse quantum confinement increases HR,, and, in turn,

decreases the value of YR,Q. A reduced YR,a pushes the values for V [YR,o] and t [YR,,]

closer towards unity (see Table 2.1), diminishing the effect of both of these correction
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factors relative to the bulk emitter case. This is physically intuitive, as most emis-

sion is occurring at energy levels that are far from the top of the rounded potential

barrier where the effects of a rounded barrier have little geometric influence on the

transmission probably.

Since the transmission function for NU emitters with EF < 0 is expanded about

the conduction band edge, the reference zero-field barrier height for emitters is the

electron affinity, leading to

e3 7yaF1
YR - Xe (5.3)

47eo

for all emitters, independent of their dimensionality. As a result, v and t do not

change form between bulk emitters and transversally-confined NU emitters.

Since the transmission function remains unexpanded for emission from NC emit-

ters with EF > 0 and EF < 0, Yq depends heavily on the normal energy of the

emitter

Yq a (Xe - Wq) 1  (5.4)47rEo

where Wq is the normal energy of electrons in subband q. Due to V for the bulk

emitter being fixed at a value less than or equal to v for NC emitters (Hq ;> ), the

transmission probability for electrons in a bulk emitter will be greater than or equal

to the transmission probability in NC emitters.

5.3.3 Band Structure Effects

The band structure corrections for NU and NC, n-type semiconductor emitters with

EF > 0 and EF < 0 have varying degrees of influence on the total ECD. For NU

emitters with EF > 0 the band structure corrections for a single constant energy

surface take the form

sin [clrkBT]-
AB 1 - Gsin [_~rkBT] exp [b - b] (5.5)

sin [-yJc7rkBT
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Figure 5-5: Correction factors for a bulk emitter, 1 nm NU nanowall emitter, and 1
nm x 1 urn rectangular nanowire emitter as a function of the applied field for the
first subband, at T = 300 K, with q = 5 eV and EF= 5 eV.

where G is a function of ,, c, and e. Figure 5-5 shows the correction factors for both

the circular and elliptical constant energy cross sections of the bulk, NU nanowall,

and NU rectangular nanowire emitters as a function of the applied electric field. As

can be seen, across all applied fields in the plot, the band structure correction factor

is approximately unity. Increases in the Fermi energy and work function result in

the band structure correction factors converging to unity at higher applied fields.

Consequently, the band structure corrections for NU emitters with EF > 0 can be

ignored without introducing significant error into the total ECD and the new band

structure correction factor for a single constant energy surface becomes AB 1.

Correction factors for NC emitters with EF > 0 and EF < 0 play a more significant

role in determining the total ECD and take the form

AB,q 1 - neXp F (EF ± - nWq) 3/2 - (EF ± q - Wq)3/2 . (5.6)

As Figure 5-6 shows, the correction factors for both the NC nanowall and NC rect-

angular nanowire can reach values as low as 0.2 at high applied fields for the higher
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energy subbands. The correction factors also show a weak dependence on both the

Fermi energy and work function of the material, with the band structure correction

factors for the lower energy subbands increasing towards unity as the Fermi energy

and work function increase. Band structure correction factors of this magnitude

significantly reduce the emitted current density compared to the elementary ECD

equations. For the NC rectangular nanowire, the correction factors are shown in

Figure 5-7. Relative to the NC nanowall, these correction factors exhibit a different

dependence on the field due to the incorporation of a non-unity field enhancement

factor, 7,,. Again these correction factors are non-negligible and reduce the ECD in

a significant manner relative to the elementary ECD from the corresponding emitter

type. The same dependence on the Fermi energy and work function as was found

for the NC nanowall band structure corrections also applies to the NC rectangular

nanowire correction factors.

In the case of NU emitters with EF < 0, the band structure correction factors
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Figure 5-8: The correction factors for NU emitters with EF < 0 are the same between
emitter geometries. For low applied fields, the correction factors increase sharply, but
converge to the ratio of the effective mass to the free electron mass for high applied
fields.

take the form

AB= (5.7)
1 - gnCR,flkBT

and are shown in Figure 5-8. For low applied fields, the correction factors exceed unity

and seemingly enhance the emitted current density. However, the current density from

this enhancement is most likely not significant due to the low tunneling probabilities at

such low applied fields. As the applied field increases, the correction factors approach

the ratio of the effective mass to the free electron mass for the given constant energy

surface. Consequently, these correction factors are non-negligible at fields relevant to

field emission and have a noticeable impact on the ECD. Correction factors for NC

emitters with EF < 0 are functionally the same as shown in Figure 5-6 and Figure

5-7, but with slightly larger first subband correction factors due to the substitution

of Xe eV for # + EF in Equation 5.6.
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5.4 Fowler-Nordheim Plots for Quantum-Confined

Emitters

A common way of analyzing experimental field emission data is with Fowler-Nordheim

plots, which plot ln [J/F 2 ] vs. 1/F or ln [I/V 2 ] vs. 1/V. Since the elementary form

of the Fowler-Nordheim equation is

J (F) = A-- 1F 2 x e [ Bq3/2 (5.8)

the slope of the FN plot can be used to determine the work function or field enhance-

ment factor of the emitter from experimental field emission data. Different forms

of FN plots, termed normally-unconfined and semiconductor FN plots are needed

for parameter extraction from quantum-confined emitters and are presented in this

section.

5.4.1 Parameter Extraction from Normally-Unconfined Emit-

ters

In order to investigate the applicability of using FN plots to analyze data from

quantum-confined emitters, the work function of the NU nanowall and NU rect-

angular nanowire emitters (with 7, = 1) is extracted from their FN plots in Figure

5-9 and compared to the work function used in generating the ECD data. As can

be seen, the slopes of the 1 nm NU nanowall and 1 nm x 1 nm NU rectangular

nanowire are larger than the slopes for the 5 nm NU nanowall and 5 nm x 5 nm

NU rectangular nanowire, which appear to display bulk emitter characteristics. As a

result, the values of # extracted from the FN plot for the smaller NU nanowall and

NU rectangular nanowire in Table 5.1 do not agree with the known work function.

The discrepancy between the extracted and known work function is due to: i) the
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construction of the FN plot and ii) the method used in extracting the work function

for quantum-confined emitters.
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Figure 5-9: FN plots for for an elementary bulk emitter, 5 nm NU nanowall emitter,
1 nm NU nanowall emitter, 5 nm x 5 nm NU rectangular nanowire emitter, and 1
nm x 1 nm rectangular nanowire emitter for which EF = 10 eV, # = 5 eV.

Traditionally, FN plots are constructed by dividing J by F2 , then taking the

natural log of the result and plotting it against 1/F, yielding a straight line. The

work function or field enhancement factor of a bulk emitter can then be extracted

from the slope of the FN plot by

(_# an = - (5.9)

where m is the slope of the FN plot, B is the second FN constant, and -Ya is the field

enhancement factor at the emitter tip. However, the ECD for NU emitters is not

always proportional to F 2. A more general form for elementary ECD equations of
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Emitter Type FN # (eV) % Error FN-type # (eV) % Error
Bulk 5.00 0 -
1 nm NU NW 5.35 6.90 5.00 0
2.5 nm NU NW 5.04 0.81 5.01 0.26
5 nm NU NW 5.01 0.23 5.03 0.58
1 nm x 1 nm NU rNW 5.69 13.8 5.00 0
2.5 nm x 2.5 nm NU rNW 5.08 1.63 5.03 0.52
5 nm x 5 nm NU rNW 5.02 0.46 5.06 1.17

Table 5.1: Work functions extracted from FN plots and FN-type plots for which
EF = 10 eV, q= 5 eV, and -a = 1.

NU emitters can be expressed as

J (F) = e AFP exp - (#+ E 3/) (5.10)

where A, is a constant per subband, p is the pre-exponential field power, and Et,,

are any transverse quantum confinement energies of subband a. Due to the pre-

exponential field power of NU emitters comprised of ID and OD electron gases in

dimensions transverse to emission depending on powers of the applied electric field

other than two, the slope of the FN plot is not constant. This can be corrected

by generating plots analogous to FN plots, normally-unconfined Fowler-Nordheim

(NUFN) plots, of the form ln [J/FP] vs 1/F. The slope extracted from NUFN plots

can be used to determine the approximate barrier height seen by electrons at the

emission reference level of the dominant emitting subband.

Having determined the slope of the NUFN plots, it is possible to extract the

approximate work function. Assuming that the emitter is small enough that the ECD

from a single subband constitutes the majority of the total ECD from the emitter

leads to a simplification of Equation 5.10:

J (F) ~i eA 1 FP exp o + Et, t ) s32 .5.11)

By dividing J by FP and taking the natural log of the result, the slope of the NUFN
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plot becomes

m = - ( + E",1 )3/2 (5.12)

and the work function can be extracted from the slope using

= (-a") 2  - Et,. (5.13)

NUFN plots were prepared for both the NU nanowall and NU rectangular nanowire

emitters with ya = 1, the slope was measured, and the work function was extracted

using Equation 5.13, as listed in the last two columns of Table 5.1. The results

show a greater accuracy in extracting the work function from the 1 nm and 2.5 nm

NU nanowalls and 1 nm x 1 nm and 2.5 nm x 2.5 nm NU rectangular nanowires,

but lower accuracy for the work functions of the 5 nm NU nanowall and 5 nm x

5 nm NU rectangular nanowire, when compared to traditional FN analysis for bulk

emitters. The decrease in accuracy for the 5 nm emitters is due to the breakdown

of the assumption that only one subband contributes significantly to emission as the

emitter's dimensions increase. When additional subbands are incorporated into the

NUFN plot, the function plotted on the y-axis is no longer the natural log of a single

exponential term, but the natural log of a sum of exponentials, resulting in no clear

way to extract the work function analytically. Thus, the breakdown of the single

subband assumption marks the onset of the transition region in which the emitter

cannot be decisively treated as comprising a 1D or 2D or 3D electron gas. However,

Table 5.1 shows that using either the FN or NUFN procedure to extract the work

function of an emitter in the transition region leads to errors of similar magnitude in

the extracted work function, both under 1.5%. An extended analysis on the transition

region and how particular system parameters affect the location of the transition point

between electron gas dimensionalities can be found in Appendix E.

After the incorporation of band structure effects and the Schottky-Nordheim bar-
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rier into the model of field emission from silicon, the work function cannot be reliably

extracted from FN plots. The band structure effects introduce additional exponential

terms that contain the difference between the work function and effective work func-

tion for each of the constant energy surfaces, which eliminates the pure exponential

character of the ECD equations. In addition, due to the introduction of a barrier

shape correction factor (v) that is dependent upon the applied field, the FN plot is

no longer a straight line. The sum of these effects is a greater error in determining

the work function or field enhancement factor of silicon emitters.

For emitters with EF < 0, the electron affinity of the emitter is able to be extracted

from semiconductor FN (SFN) plots. Due to the pre-exponential factor in the ECD

equations not being a strong function of the applied field, a plot of the form ln [J]

vs. 1/F is appropriate for data analysis. Since the transmission function is expanded

about W = 0, there are no quantum confinement energies in the zero-field reference

barrier height and the electron affinity can be extracted from

mya 2/3

Xe = (5.14)

which is appropriate for all non-degenerate semiconductor NU emitters, regardless of

their dimensionality.

5.4.2 NC Emitters

Theoretically, the work function or field enhancement factor of NC emitters can also

be extracted via the slope of logarithmic plots of experimental field emission data. Us-

ing the single subband approximation, the general form for the ECD from elementary

NC emitters is

J(F) ~ Aq exp - (<+EF - Wq)3/2 (5.15)
I- 7aFI
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where Aq is a constant per subband q and W is the normal energy of the emitter for

subband q. As the pre-exponential field power is zero for NC emitters, the appropriate

plot needed to extract function for NC emitters is the same as for the SFN plot: In [J]

vs. 1/F. This leads to an equation that gives a work function of

$ = (-")" ) EF +W. (5.16)

In practice, this does not appear to be a reliable way of extracting the work function

since the extraction requires that the Fermi energy, field enhancement factor, and the

normal energy of the dominant subband also be known. As a result, extracting the

work function or electron affinity from NC emitters is not discussed further here.

5.5 Comparison of Framework Equations to Ex-

perimental Data

In order to test the validity of the framework, ECD equations are compared to ex-

perimental data from various field emitters. While data for arrays of emitters of

various geometries and materials is readily available, validation of the framework

requires data from a sufficiently small single emitter (<- 5 nm). Data from a sin-

gle, quantum-confined emitter is preferred because the ECD equation can be directly

compared to both the plot of J vs. F. Two systems that fit these requirements are

those of a vertical single-layer graphene emitter and single carbon nanotube emitter.

5.5.1 Vertical Single-Layer Graphene

Tsai et al. fabricated and measured the field emission characteristics of a single,

vertically-oriented piece of single-layer graphene [84]. Treating graphene as a metal

allows for the use of the following equation from the framework in predicting the
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ECD:

u 2 v/2-m-7F 2- ,,F 3/2 B_ a /

I[wal (F) = eAemis 2 /2mow exp - ( E 2 1rrnshLx k3BtV#+Ee .aF

(5.17)

where 7a is the field enhancement factor of the floating cylinder given by Equation

C-2, the work function of graphene is approximately 5.0 eV [85], and the approximate

emission area was extracted to be Aemis = 6.12 x 10- 16cm 2 . Since the thickness of

graphene layers is approximately 0.335 nm [86], the emitter width is taken to be

LX = 0.335 nm.

Using these parameters, the ECD from Equation 5.17 was plotted against the

experimental data in Figure 5-10. Since no emitter height was given with the data,

emitter heights were adjusted in the ECD equations to find a field enhancement factor

that gave the best visual fit to the data for each sweep, resulting in an emitter heights

of 8.5 pim, 10.5 pm, and 14pum for the first, second, and third sweeps respectively.

For comparison, the ECD predicted from bulk emitters of equivalent geometry are

also shown as the dashed curves.

In agreement with the results in §5.2.1, the difference between the bulk ECD

equations and NU nanowall ECD equations is significant for an emitter of such a

small size. In addition, for an emitter of this size, the effects of quantum confinement

of the electron supply are of approximately the same order of magnitude as the effect

of field enhancement at the emitter tip. Since the typical size of graphene flakes

prepared using the method from [84] are on the order of several micrometers, the

emitter heights predicted by fitting the ECD equations to the experimental data

seem reasonable. However, the comparison of the NU nanowall ECD equation to the

current emitted from a single-layer graphene edge is a rough approximation at best.

Xiao et al. have performed a more extensive analysis of emission from the edge of a

single-layer graphene emitter that is specific to graphene emitters [87].
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Figure 5-10: Experimental field emission data from a vertically-oriented single-layer
graphene sheet for three different voltage sweeps, overlaid by the ECD predicted by
Equation 5.17 for emitters with heights of 8.5 pum, 10.5 Mm, and 14 pm. Dashed
curves represent the ECD predicted for a bulk emitter of equivalent geometry.

5.5.2 Single-Walled Carbon Nanotube

The framework was also compared with data from single, single-walled carbon nan-

otubes (SWNT) via the equation for the elementary NU cylindrical nanowire emitter

with the Schottky-Nordheim barrier:

ItUwire,am,n (F ) = eAemis 2 ( 2 y EF

m,n " 3 (5.18)

x exp [ Fv (0 + Ean)3/2

where Ya is given by the floating sphere at emitter plane potential model in Equation

C-2, # = 5 eV, and Aemis = ira 2 . Equation 5.18 was compared to experimental field

emission data from multiple SWNT emitters with varying lengths, radii, and anode

spacings, as shown in Figure 5-11 [88]. On each of the plots, the NU cylindrical

nanowire equation for the appropriate system parameters was plotted alongside the

equivalent bulk emitter equation.
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Figure 5-11: Field emission data from four sets of experimental setups, where a is
the SWNT radius, 1 is the SWNT length, and d is the SWNT-anode spacing: (a)
a = 5 nm, I = 0.66 pm, d = 2 ,im, (b) a = 7 nm, 1 = 1.32 fum, d = 2 pm, (c) a = 7
nm, I = 2.35 pam, d = 3.75 Mm, and (d) a = 5 nm, 1 = 4.56 [am, d = 5.8 pm. Both
the NU cylindrical nanowire equation and bulk emitter equation are plotted for each
data set.

The NU cylindrical nanowire equation seems to universally underestimate the

current emitted from the SWNT, but due to a lower field enhancement factor than

extracted from the data and not from quantum confinement of the electron supply.

Overall, the plots show that for emitters of these sizes (a = 5, 7 nm) field enhance-

ment at the emitter tip exerts significantly more influence over the total emitted

current than quantum confinement of the electron supply, as evidenced by the sim-

ilarity between the calculated emission curves for the NU cylindrical nanowire and

bulk emitter. As a result, the majority of the error between the framework and the

experimental data comes from the model used for calculating the field enhancement

at the tip of the emitter and the adjustment to the ECD from quantum confinement

is minimal, yet still quantifiable.

5.6 Chapter Summary

In this chapter, the effects of quantum confinement on the ECD, relative to the

ECD predicted by the elementary FN equation were investigated. While transverse

quantum confinement of an emitter decreases the emitted current density, normal

quantum confinement leads to an oscillatory ECD that may exceed the ECD predicted
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by the FN equation for small normal well widths. The incorporation of electric field

enhancement at the emitter tip into the model reveals that at some critical emitter

width(s), the effects of an increasingly quantum-confined electron supply overcome the

barrier thinning introduced by field enhancement and the ECD reaches a maximum

value before decreasing toward zero at very small well widths.

The effects of finite temperature, the Schottky-Nordheim barrier, and the band

structure of silicon on the ECD were also discussed. Emitters at a finite temperature

emit a slightly higher amount of current than their T = 0 K counterparts, but in

most cases this additional contribution is negligible. The Schottky-Nordheim barrier

increases the absolute ECD of all types of emitters relative to emitters modeled by the

exact triangular barrier, but as the amount of quantum-confinement of the electron

supply increases, the additional ECD from the rounded barrier is reduced due to

the majority of the ECD coming from energy levels far below the top of the barrier.

Band structure effects per constant energy surface of silicon serve to reduce the ECD

relative to the free electron constant energy surfaces used in traditional field emission

theory. While able to be ignored for degenerate silicon emitters, band structure effects

significantly reduce the ECD from non-degenerate, n-type silicon emitters.

When analyzing field emission data from quantum-confined emitters via FN plots,

it was found that the FN equation is appropriate for use with emitters that have mul-

tiple subbands contributing significantly to the total ECD. For NU metal and degen-

erate semiconductor emitters with a single dominant subband, a normally-unconfined

FN plot should be used, which divides by a different pre-exponential power of the

field depending on the dimensionality of the electron supply. In order to extract the

work function or field enhancement factor from NUFN plots, it is also necessary to

take into account the transverse confinement energy of the dominant subband. For

NU non-degenerate semiconductor emitters and all types of NC emitters, there is no

factor of F in the pre-exponential factor and a plot of J vs. 1/F should be used.
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When compared with experimental data for vertical single-layer graphene and

single-walled carbon nanotubes, the framework demonstrated that except in cases

where emitters are extremely small (<~ 1 nm), the difference between the bulk

emitter equation ECD and the NU emitter ECD equation were negligible compared

to the difference in the ECD for varying field enhancement factors. As a result, unless

emitters are sufficiently small, quantum-confinement of the emitter's electron supply

does not appear to be a significant when determining the total ECD from nanoscale

emitters.
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Chapter 6

Thesis Summary and Future Work

6.1 Summary

At the outset of this work, the ultimate goal was to investigate the effects of quantum

confinement of a field electron emitter's electron supply on the emitted current density

via analytical emitted current density equations. While providing clear qualitative

results, the elementary framework for cold field emission, its extension to silicon

emitters, and the associated analysis developed in this thesis are just a small step

into a largely unexplored region of the theory of field emission.

The elementary framework provides physically-simplified emitted current density

equations that are meant to predict the ECD from emitters with quantum-confined

electron supplies more accurately than the elementary Fowler-Nordheim equation.

Notable differences from the elementary FN equation for transversally-quantum-

confined NU emitter ECD equations include a weaker dependence on the applied

field in the pre-exponential factor and the addition of transverse quantum confine-

ment energy terms to the emitter work function in the exponential portion, resulting

in a comparatively larger tunneling barrier height for electrons. The lack of integra-

tion over normal energies for NC emitter ECD equations results in no dependence
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on the applied field in the pre-exponential term, a strong dependence on the normal

energy of the electron subband, and no concept of a reference zero-field barrier height.

In order to extend the model to silicon emitters in Chapter 4, a more physically-

complete set of ECD equations was derived by incorporating various correction factors

to account for finite temperature, the Schottky-Nordheim barrier potential, and the

non-spherical constant energy surfaces of silicon. Across all cases, the incorporation

of the SN barrier potential and band structure effects increase the ECD predicted

from silicon emitters relative to the elementary model, as electrons see a lower barrier

height and silicon has six conduction valleys from which electronic states contribute

to emission. For emission from the conduction band of materials with EF > 0, the

band structure corrections for silicon emitters were negligible aside from the multipli-

cation factor of six to account for electronic states in all conduction valleys. Emission

from the conduction band of materials with EF < 0 was significantly affected by band

structure corrections and the emitted current density from each constant energy sur-

face was reduced by a factor equal to approximately the ratio of the effective mass of

electrons transverse to the emission direction to the free electron mass.

Using equations generated by the elementary framework, the effects of normal and

transverse quantum confinement of the electron supply on the ECD were investigated

in the absence of geometry-dependent field enhancement in Chapter 5. In NU emit-

ters, transverse quantum confinement of the electron supply causes a decrease in the

ECD with decreasing transverse dimensions due to fewer electrons in the emitter and

an increased tunneling barrier height seen by electrons. As a function of the normal

well width, the emitted current density of NC emitters oscillates due to the cyclic

process of dominant emitting electron subbands leaving or entering the quantum well

and can exceed that predicted by a bulk emitter because of high tunneling attempt

frequencies for electrons confined to very small normal well widths. Incorporating

the field enhancement factor into the elementary ECD equations demonstrated that
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the ECD increases as transverse emitter dimensions decrease due to the increasing,

geometry-dependent local electric field until a critical emitter width or radius dpeak.

Below dpeak, the supply of electrons to the barrier becomes the limiting factor and

the ECD decreases with decreasing transverse emitter dimensions. However, as the

calculations using material parameters for tungsten show, transverse quantum con-

finement effects only dominate over electrostatic field enhancement for an emitter

diameter below approximately 1 nm. Plots of the NU silicon ECD equations versus

emitter dimensions yielded qualitatively similar results to the elementary ECD equa-

tions. However, for emitters with EF < 0, the absolute ECD was reduced relative to

emitters with EF > 0 as a result of the decreased electron supply. For NC emitters

with EF < 0, the oscillatory behavior seen in the elementary ECD equations disap-

peared as a result of all emitting subbands contributing more evenly to the total ECD

when the ERL (conduction band edge) was located at least 3kBT above EF.

With respect to parameter extraction from FN plots, it was found that using the

bulk theory to describe emission from quantum-confined emitters led to noticeable

errors in results. An alternative set of plotting and parameter extraction procedures

specifically designed for emitters with quantum-confined electron supplies was pro-

posed and an analysis was carried out that demonstrated that when a single subband

dominated the total ECD, the proposed procedures were more accurate than tradi-

tional FN theory. When multiple subbands contribute significantly to emission, these

proposed plotting procedures are less accurate for parameter extraction and seem to

work approximately as well as using FN plots.

6.2 Model Limitations

Providing a simple set of equations for the ECD from emitters with quantum-confined

electron supplies has naturally introduced many trade-offs with respect to the physical
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validity of the model. As this thesis has focused on issues exclusively related to

quantum confinement of the electron supply, only model limitations directly relevant

to electronic structure will be addressed in this section. However, it should be noted

that there are many other areas of field emission theory and modeling that have

opportunities to make significant progress in closing the gap with experimental results,

such as the theory dictating FN plot interpretation, theory of electron tunneling,

behavior of non-metallic field emitters, and emitter tip electrostatics [89].

The largest assumption made in the model is that the emitters are comprised of an

ideal electron gas with plane-wave wave functions for electrons. The validity of this

assumption for electrons in unconfined dimensions of metallic emitters seems to be

acceptable, as it has been successful at describing experimental phenomena related to

the electrical and thermal properties of metals and is employed in texts on solid state

physics [90,91]. On the other hand, the applicability of this model to semiconductor

emitters is unclear, due to the expected importance of the details of band structure,

crystal orientation, and defects/impurities for emission calculations. More rigorous

solutions for the electronic wave functions, energies, and band structures may be

obtained via including the several potential terms typically found in crystalline solids

into a field emission model [92].

Another consideration that has been overlooked is detailed modeling of the field

penetration and electronic states in semiconductors near or on the emitting surface.

Penetration of the applied field into the semiconductor near the emitting surface leads

to the formation of an accumulation layer of electrons which may contribute signifi-

cantly to the total emitted current density. More detailed models for band bending

exist [54,64] and the analytical approach from Appendix D should be compared to

such models to test its validity. Similarly, the electronic structure close to and on the

emitting surface is known to be different from that of the emitter bulk [92], likely lead-

ing to different emission physics than what was presented in this work. Especially for
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the NC emitter case, treating the electrons semi-classically as particles bouncing be-

tween the walls of such a small, normally-confined well seems inappropriate with two

surfaces in close proximity. It is expected that these issues should be addressed with

more detailed quantum-mechanical models of electronic wave functions and energies

that may incorporate atomic structure, but it is unclear if these additional physical

considerations have a significant enough effect for inclusion in engineering models of

field emission. The result would be a more physically accurate description of field

emission, but the degree to which analytical solutions can be provided is unknown at

the current time.

6.3 Future Work

Future work on the effects of the quantum confinement of the electron supply on field

emission is informed both by the shortcomings of the model discussed above as well

as additional models and theory that are needed by the field. A more physically valid

description of emission from semiconductors, including modeling additional quantum-

mechanical effects of electrons in nanoscale crystalline solids and emission from the

surfaces of very thin emitters, is needed for better agreement between emission theory

and experiment. Similarly, the details of the electron supply to and in the emitter

tip are poorly understood. Calculating the energy level distribution of electrons in

different tip geometries could lead to determinations of whether or not quantum

confinement effects are important to consider in such situations. Finally, it would

be useful to have procedures for determining the point at which a nanoscale emitter

should be considered quantum-confined and under what conditions the emitter can

be approximated as a bulk emitter. Ideally, analytical solutions to these problems

would be found and incorporated into relatively simple equations for immediate use

by field electron emission experimentalists.
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Appendix A

Poisson-Boltzmann Formulation of

Band Bending

In order to investigate the electrostatics near the surface of the semiconductor, the

Poisson equation must be solved. Taking the semiconductor-vacuum interface to be

an infinite plane in the x and y dimensions located at z = 0, the one-dimensional

Poisson equation is

d'O () _p(A. 1)
dz 2  

Es

where 0 is the potential in the semiconductor as a function of z, p is the charge

density, and c, is the dielectric constant of the semiconductor. Assuming an n-type

semiconductor in which all of the donor dopants are ionized, the charge density can

be written as

p = e (n - p+ ND) (A.2)

with e being the elementary charge, n the electron density, p the hole density, and

ND the density of ionized donor dopants. Invoking Maxwell-Boltzmann statistics for

electrons, the carrier concentrations can be expressed in terms of the potential in the
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semiconductor

[ eq# F e#S 1
n = noB exp kBj P POB exp _k (A.3)

nOB and POB are the equilibrium concentrations of electrons and holes in the bulk of

the semiconductor (z - oc), for which -= 0. In the bulk, charge neutrality must

hold and ND = POB - nOB. In addition, it is a fair assumption that n ~- ND in the

bulk, making p ~ n/ND. Substituting the above definitions into Equation A.1 leads

to

d' (z) _xeND -e - ( [ 1exp - 1 (A.4)
dz 2  Ns [N e _ kB B

Multiplying both sides of the equation by 2 (d#/dz) and integrating from z =o to

z = 0 on the left side and from # = 0 to # = # on the right side yields

do# _ _ 2kBT [_n_ + e- e e, 1/2

dz S kBT B }+eXp _kBT kBT /1_
(A.5)

In accumulation for an n-type semiconductor, 0 is positive and the above equation

can be simplified if > kBT/e.

do 2kB __
= -F(z exp (A.6)

dz e2kBT_

Integrating do/dz and imposing the boundary conditions # (0) = #5 and F (0) =

F, where F is the electric field in the semiconductor, gives the potential in the

semiconductor as a function of z:

O(z)=- 2kBT In + (A.7)
e vf2-L D F

L- ~2N D k BT_
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In terms of the applied electric field, Fvac, the equations take the forms listed in

Equation 2.51.
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Appendix B

Elementary Emitted Current

Density Equations

B.1 Normally-Unconfined Emitted Current Den-

sity Equations

B.1.1 NU Nanowire

As a result of electrons in states higher than W = WR and lower than W = 0

contributing relatively little to the emitted current density in the limit of T -+ 0

K, the limits of integration can be extended to -oc and oc. The integral takes the

following form:

wire,a (F) = ehAe 1 + exp [W+E -EF]

(B.1)

x exp (0+
'- -yF

Et,a)3/2] exp [cia (W + Et,a - EF)] dW

This definite integral has a standard solution and its evaluation yields a temperature-

dependent equation for the emitted current density due to a single subband of elec-
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trons, with index a.

2 CO1arkBT ' B 3
Jguire,a (F) =eh n. [ 6o- kTc& exp [+ Et,a) (B.2)

h Ae sin [c1,,wrkB~j [ ''yaFI

Taking the limit as T -+ 0 K and summing over all subbands yields an approximate,

analytical solution for the emitted current density from a NU rectangular nanowire,

per unit area, which is Equation 3.50.

B.2 Normally-Confined Emitted Current Density

Equations

B.2.1 NC Nanowall

As T -+ 0 K, ln [1 + exp [(EF - Wq) /kBT]] ~ (EF - Wq) /kBT and the expression is

simplified to

JwalI,q (Wq, F) = e V 6q (EF - Wq) exp [- ( + EF - Wq) (B.3)

The total emitted current density is found by summing over all subbands of electrons

in the system, with the terminal subband index Q given by Equation 3.41, yielding

Equation 3.55.

B.2.2 NC Rectangular Nanowire

While the supply function for a normally-confined rectangular nanowire is readily

found by using Equation 3.30b and Equation 3.29b, the integral has no known ana-
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lytical solution and approximations must be made in order to continue.

4 2W 0 1
Nq,a (Wq) = [hrd 6 ^2k2 dkt (B.4)

2dLe m 0  J -2-+Et,c+Wq-EF
1+exp [ kBT

The integral is recognized as the Fermi-Dirac integral of order -1/2 and the supply

function can be recast with the integral in standard form with x = h2 k 2/ (2mokBT)

and 1 = (EF- Et,O - W) /kBT. In the limit as T -+ 0 K, o - oc and oc can be

replaced by T/ as the upper limit of integration.

4 xl/-2
Nq,a (Wq) = VlWqkBTa 6q dx (B.5)

dhLe 0 1+ exp [x-

As ] > 1, the exponential in the denominator is negligible compared to unity and

the integrand can be approximated by 2x 1 /2 , yielding an approximation of the supply

function that is within approximately 2% of the exact value [93].

Nq,a (Wq) = dhLe6q6a Wq (EF - Eta - Wq) (B.6)

Multiplying the supply function by the elementary charge and transmission function

in Equation 3.40 and summing over all subbands produces the rectangular nanowire

emitted current density equation, as given in Equation 3.58.

B.2.3 NC Cylindrical Nanowire

Since emission from a NC cylindrical nanowire is always in the radial direction and the

well is defined radially, there are no confined transverse energy levels Et,,. However,

a portion of the subband energy in the cylindrical well is non-radial in nature and

the normal (radial in this case) energy is given by Equation 3.20, denoted by Wom*.

The electron travels a distance equal to four times the nanowire radius a between
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collisions with the emitting surface and the length over which the emission occurs is

half the circumference of the nanowire: L, = 7ra. These definitions yield the emitted

current density equation for the NC cylindrical nanowire:

J Ve (Wam,n, F) =e ra2 h "'"'" Wen (EF - Wm)

6mn (B.7)

x exp (0 + EF - Warn)3/21

.- 70FI
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Appendix C

Field Enhancement Factor

When a uniform electric field is applied to a convex surface, the maximum magnitude

of the electric field at the apex is greater than the average field far from the surface.

The expression for the field at the apex of the curved surface is dependent upon the

specific geometry of the surface. This consequence of electrostatics is important for

field emission, as fabricating emitters with very small radii of curvature allows for

field emission to occur at lower applied voltages than predicted by the elementary FN

equation. In this section, the emitting surfaces of the geometries studied in Chapter

3 are modeled as a (i) floating sphere at the emitter plane potential, (ii) a floating

cylinder at the emitter plane potential, or (iii) a perfectly planar surface.

C.1 Floating Sphere at Emitter Plane Potential

Due to bulk emitters typically being shaped like a needle or whisker, the emitter tip

is commonly modeled as a hemisphere on a post or an emitting sphere floating above

an emitter plane. Of the emitter geometries studied in Chapter 3, the floating sphere

model is applicable to the bulk emitter, NU rectangular nanowire, and NU cylindrical

nanowire. The field enhancement factor at the apex of the floating sphere is equal
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to [31]

~ 3.5 + (C.1)
p

where 1 is the height of the center of the sphere above the emitter plane and p is the

radius of the sphere.

C.2 Semicylinder on Emitter Plane

For emitter geometries that are more accurately described as emitting along an edge,

rather than emitting from a tip, a better model for the field enhancement factor is

that of a floating cylinder at the emitter plane potential. Before embarking on that

derivation, it is useful to determine the lower limit on the field enhancement factor

at the apex of the cylinder. This lower limit is set by the model of a semicylinder of

radius p resting on the emitter plane, as shown in Figure C-1. The solution to the

electrostatics problem posed here is entirely determined by the boundary conditions

specified by the model: (i) far away from the semicylinder, F = FM, where FM is de-

fined as the average, uniform electric field applied to the emitter (ii) the semicylinder

and the emitter plane must form an equipotential system, and (iii) the semicylinder

and emitter plane must be at a uniform potential.

FM

Figure C-1: The "semicylinder on emitter plane" model consists of a semicylinder
of radius p on a plane. The semicylinder and emitter plane form an equipotential
system.

Using Gauss's Law, a uniform electric field of magnitude FM, far away from the
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semicylinder is generated by a sheet charge on the emitter plane equal to o- = CoFM.

This also creates a potential I) (y) = -yFM, where y is measured as the distance

above the emitter plane. In order for the emitter plane and semicylinder to form

an equipotential system, the potential at the surface of the semicylinder must be

4)d (y) = yFM. Due to the application of the field to the semicylinder, the natural

choice for the source of this potential is an infinitely long line of dipoles oriented

in the y direction and centered on the emitter plane surface. The potential from an

infinitely long line of dipoles can be modeled as two infinitely long lines of charge (one

positive, one negative), separated by a distance d. The potential from an infinitely

long line of charge is given by [94]

1ine P27Lo n [p] (C.2)

where PL is the line charge density and p is the radial distance away from the line

chaige in cylindrical coordinates. Summing the potential contributions from both

line charges and taking the limit as d - 0 yields an expression for the potential from

an infinitely long line of dipoles:

) =PLCOS 
[]

27rcop

where PL is the dipole density and # is the polar angle as measured from the y axis.

Equating Equation C.3 with the boundary condition ?d = pcos (#) Fm leads to a

dipole density of

PL = 27FEOFMp (C.4)

The goal is to determine the field at the apex of the semicylinder, which corresponds

to # = 0. At the apex, it can be shown that the non-radial component of the electric

field from the line of dipoles is zero, while the expression for the radial electric field
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Figure C-2: In the "floating cylinder at emitter plane potential" model, the center of
a cylinder of radius p is a distance I above the emitter plane. The wire between the
cylinder and the emitter plane indicates that they form an equipotential system.

is

F (p) - 2 P (C.5)
27rEop

Inserting the dipole density from Equation C.4 gives the radial field at the apex of

the cylinder from the dipoles as Fp = FM. Summing this with the contribution at the

apex from the emitter plane gives Fa = 2FM and an apex field enhancement factor of

N = 2 (C.6)

C.3 Floating Cylinder at Emitter Plane Potential

The "floating cylinder at emitter plane potential" model, illustrated by Figure C-2, is

similar to the semicylinder on a plane model except that the center of the cylinder is

elevated a distance 1 above the emitter plane. Assuming the apices of the emitters are

curved, this model is appropriate for describing emission from the NU nanowall and

NC nanowire geometries. Using the same dipole and sheet charge densities as were

used in the "semicylinder on emitter plane" model leads to a difference in potential

between the emitter plane and the cylinder surface of approximately A<D = -lFI. In

order to eliminate this potential difference and restore the equipotential system, an

infinitely long line of positive charge can be introduced at the center of the cylinder.
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Setting the potential of an infinitely long line of charge equal to the negative of the

potential difference requires that the charge density of the line of charge be

PL1 lFln [p(C.7)

However, this line of charge creates a non-uniform potential distribution across the

emitter plane that again upsets the equipotential system. This non-uniformity can

be rectified by placing an image line charge a distance 1 behind the emitter plane

with charge density PL1- However, the addition of this image line charge does not

yet solve the problem because it changes the potential at the surface of the cylinder.

By ensuring that the sum of the potentials from the additional line charge and image

line charge add up to lFM, the line charge density can be chosen such that boundary

conditions are met:

P 2 rcolFM (C.8)
In( 2)

Inserting this dipole density into Equation C.3 gives the contributions to the radial

electric field at the apex from the line charge and the image line charge

Fa,i (p) = F 1
ln( LP

Fa,im (p)= Fm1 2(C.9)
In -2)2

Adding these terms to the radial field at the apex of the "semicylinder on emitter

plane" model yields the field enhancement factor at the apex:

Na = 2 + 1 ( 1). (C.10)
In 2l 1 p 2

P
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Appendix D

Emission from an Accumulation

Layer

D.1 Accumulation Layer Well

When a negative electric field is applied to the surface of a non-degenerately doped

semiconductor, a portion of the field penetrates into the material. As a response, the

electrons in the conduction band of the semiconductor move towards the semiconductor-

vacuum interface to set up an canceling electric field to reach equilibrium within

the material. The presence of the electric field inside the semiconductor causes the

conduction band to bend downwards (often below the Fermi level) and forms an

accumulation layer of electrons.

According to the Poisson-Boltzmann formulation of band bending for an n-type

semiconductor in Appendix A, the conduction band has an approximate shape given

by:

Ec (z) = 2kBT in -i int 1)
VE~E DFVac2NDkBT

where z is the distance from the semiconductor-vacuum interface into the material, C8
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is the permittivity of the semiconductor, Fac is the applied electric field in vacuum,

ND is the donor dopant concentration, LD is the Debye length, and V/2LD is the

extent of the accumulation layer. The total amount of band bending is given by

evaluating Equation D.1 at z = 0:

AE, = 2kBT In Fvac k (D.2)
_ F ND BI

Like the electrons in an inversion layer of a MOSFET [4], the electrons in an

accumulation layer are confined by a potential related to the downward bending of

the conduction band. Similar to NC emitters, this confining potential creates an

"accumulation layer well" in which electrons are normally quantum confined. The

accumulation layer well is bounded by the conduction band edge in the bulk, the

conduction band edge near the interface, and the semiconductor-vacuum interface, as

shown in Figure D-1.

E

EF

Accumulation
Layer Wei I

z z=O

Figure D-1: The accumulation well is bounded by the energy of the conduction band
edge in the bulk, the conduction band edge near the interface, and the semiconductor-
vacuum boundary.

The energy levels in the well cannot be calculated exactly via analytical methods,

but approximate analytical forms for the bound state energies can be derived from
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a form of the JWKB approximation [95]. In this method, the energy levels are

calculated based upon the classical turning points of the particle and setting the wave

function's phase difference by specifying the number of walls with infinite potentials.

The normalized time-independent Schr6dinger equation is

co (y) = ±d2 (y) + v(y) (y) (D.3)

where E is the normalized energy, b is the wave function, and v is the normalized

potential. By using the sine version of the JWKB approximation, the wave function

is given by

sin [#5]
) (y) = s(D.4)

where # is the phase of the wave function and - ± E - v (y). The phase difference

for a potential well with one hard boundary (semiconductor-vacuum interface) and

one soft boundary (conduction band edge in the semiconductor) should be equal to

(n - 1/4) 7r and is calculated by integrating over ij between minimum and maximum

y values. Normalizing the Schr6dinger equation requires that the variables in use be

scaled accordingly, giving

z

Y v/2LD

8moLD

h2 E 2(D.5)
16mokBTLD

h =

a exp -2kBT

where #, is the potential at the semiconductor surface. With the above definitions,

the potential is defined as

v (y) = cln [y] (D.6)
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and the equation to solve for the energy levels is

V/e_ - c n [y]dy = (n - 1/4) 7r. (D.7)
f Ymax

Using the electron's classical turning points as the limits of integration yields ymin = 0

and Ymax = exp [E/c]. Carrying out the integration and solving for the energy levels

gives

C = In 2 -F n -
-

(D.8)
E,~ 2kBT In - - -T-

2LD MOkBT (n 4

The first five normalized energy levels of the accumulation layer well are given in

Table D.1.

In order to check the validity of the approximate energy levels, the energies were

calculated exactly by using a three-point shooting Numerov method [96]. Via this

method, the normalized time-independent Schr6dinger equation is discretized and

valid energy levels are found by adjusting the normalized energy parameter until the

wave function satisfies all requisite boundary conditions. The Numerov normalized

time-independent Schr6dinger equation is given by

Ui = 2ui - ui_1 + h2ui (ln [yi] - c) (D.9)

where u is the wave function, the subscripts indicate the position in discrete space

as a function of the index i, h is the spacing between points, y is the normalized

position coordinate, and c is the normalized energy. Setting the initial index of the

wave function, which is far into the semiconductor, to 0 and adjusting c until the wave

function equals zero at the semiconductor-vacuum interface results in the normalized

energies for the well. The first five normalized energies are listed in Table D.1, which
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n Approximate Exact

1 0.97783 1.04375
2 1.82513 1.84625
3 2.27711 2.28875
4 2.58727 2.59500
5 2.82366 2.82875

Table D.1: Normalized energy levels for the logarithmic well calculated via the ap-

proximate JWKB method and exact three-point shooting Numerov method.

ND (cm 3 ) 105 1016 1017 1018 1019

1 -0.24447 -0.18497 -0.12546 -0.06596 -0.00645
2 -0.20068 -0.14117 -0.08167 -0.02216 0.03734
3 -0.17732 -0.11781 -0.05831 0.00120 0.06070
4 -0.16129 -0.10178 -0.04228 0.01723 0.07673
5 -0.14907 -0.08956 -0.03006 0.02945 0.08895

Table D.2: The first five energy levels in the accumulation layer well as a function of

the donor dopant density in eV at T = 300 K. The conduction band edge in the bulk

is taken as the energy reference.

shows good agreement between the energy values generated by the two methods.

As an additional note, changing the applied field (which changes the potential) has

little to no effect on the relative location energy levels and energy level spacing with

respect to the bottom of the well at the semiconductor-vacuum interface, consistent

with Equation D.8.

The shape and size of the accumulation layer well changes for different donor

dopant densities, as the electron concentration near the semiconductor surface de-

termines the extent to which the applied field penetrates. Since the typical donor

dopant densities of electrons in silicon typically range from 1015 cm- 3 to 1019 cm- 3,

the first five approximate subband energies for the logarithmic well with these dopant

densities are given in Table D.2.
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D.2 Accumulation Layer Emitted Current Density

The calculation of the emitted current density from the accumulation layer is the same

as that of a normally-confined emitter. As an example, the ECD from a bulk silicon

emitter will be considered for various values of ND at a constant applied field. The

supply function is the product of the attempt frequency and the transverse electron

density. Using the general form for the attempt frequency and the logarithmic shape

of the conduction band gives

vc" (Wq) kBT exp Wq Erf Wq - In
27rmOLeD 2kBT 2kBT F f- 2

- - v~ac E8 N NB

-Erf [2 + ln [2] - In 2 + V2_ Z
2 kBT Fv LO- LDvac E. 2 NDBT

(D. 10)

where Zq is the classical turning point of the electrons in each subband given by

1r 1 ,/1LD
Zq = h - - . (D

2mokBT 4 F EO
Fvac.,2NNB

The transverse electron density is the same as in the bulk emitter:

(W 27rmokBT 1 [+Wq- EF(
nh,q (Wq) = 2  n +exp - TJJ. (D

The transmission function takes an unexpanded form:

Dq (F, W) = exp (Xe W2 . (D

.11)

.12)

.13)
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ND cm -3 Jacc,bulk [p-tA/cm] Jbulk [ptA/cm2 ]

1015 2.85 x 10-3 3.51 x 10- 4

1016 3.17 x 10-2 3.50 x 10- 3

1017 0.320 3.50 x 10-2
1018 2.90 0.349
1019 24.0 3.49

Table D.3: Emitted current density from the accumulation layer well of a bulk silicon
emitter (Jacc,bulk) and from the bulk silicon ECD equation without band bending

(Jbulk) for F = 2 x 10 7 V/cm.

Per subband, the emitted current density is given by the product of the supply func-

tion and transmission function

Jacc,bulk,q (F) =
2-nmokBT

e h2
(D. 14)

exp W -EF]
IkBT__

exp [ (Xe -
IF

In order to obtain the total ECD, the ECD contributions from all subbands in the

system must be totaled, giving

Jacc,bulk (F) =
2-FmokBT V-

e h2ac2
(D. 15)

x In 1 + exp I
W - EFl

kBT _
exp [ (xe -

_ F
W q)3/2I

Comparing the ECD from the accumulation layer well to the ECD equations

derived in Chapter 4 that do not include band bending reveal that the accumulation

layer ECD is significant. For a single, free-electron constant energy surface of a bulk

semiconductor emitter with a Fermi energy below the conduction band edge in the

bulk, the ECD is given by

4lrmokBT
bulk (F) e exp

SEF 1kBT _J

B 32

eXp IF xe .-

Table D.3 lists the total ECDs from the accumulation layer well of a bulk silicon

emitter and from Equation D.16. Results show that the ECD from the accumulation
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layer well is significant and cannot be neglected in studies of field emission from

non-degenerately doped semiconductor emitters. As of now it is unclear whether the

accumulation layer ECD is the only physical ECD from semiconductor emitters or if

it is in addition to the ECD calculated without band bending.
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Appendix E

Transition Region Between

Emitter Dimensionalities

E.1 Transition Point

A possible benchmark for determining approximately when an emitter transitions

from being quantum-confined to bulk is the well size for which the FN plot and

the NUFN plots give the same extracted work function. Since these plots assume

a constant slope when plotted against 1/F, the transition point derived using this

method is independent of the applied field. The extracted transition region midpoint

as a function of selected values of # and m* is listed in Table E. 1. The results show

the trends in the work function and effective mass as discussed in 55.2 and predict a

transition point that ranges from approximately 2 nm to 6 nm.
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m* in0] 0.25 0.50 0.75 1.00

2 4.57 3.23 2.64 2.28
3 5.04 3.56 2.91 2.52
4 5.41 3.82 3.12 2.70
5 5.70 4.04 3.29 2.85

Table E.1: The midpoint of the transition region between the NU nanowall and bulk
emitter, as determined by matching the extracted work functions from the FN plot
and NUFN plots for the nanowall emitter, given in terms of L, (nm).

E.2 Transition Region and the Influence of System

Parameters

For both the NU and NC ECD plots, the point at which the emitters change from

being 1D or 2D to 3D electron gases is unclear. However, this transition happens over

a range of well widths for which the normalized ECD is between 0 and the FN limit,

termed the transition region. While for the elementary ECD equations, the width of

this transition region remains rather constant for a given emitter geometry, system

parameters such as the work function, effective mass(es) of electrons in the quantum

well(s), and the applied electric field can change the well widths over which it occurs.

The effects of these system parameters on the NU nanowall emitter's normalized

ECD and transition region are investigated below. Although changes in the work

function, effective mass, and applied field have the same effects on the ECD of NC

emitters as in NU emitters, there is no well-defined transition region. Another system

parameter, the Fermi energy, plays less of a role in determining the transition region,

but is responsible for important qualitative characteristics of the normalized ECD

plots for both NU and NC emitters.
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E.2.1 Work Function

The magnitude of the work function plays a significant role in determining the de-

gree of confinement of an emitter, as it sets the reference barrier height within each

subband of electrons. Keeping the well width, Fermi energy, and applied field con-

stant, decreasing (increasing) the work function leads to a lower (higher) barrier to

transmission for all electron subbands in the well. As a result, the subbands with

the lowest reference barrier heights constitute a smaller (larger) fraction of the total

ECD, while the higher energy subbands contribute a larger (smaller) fraction than

before the decrease (increase) in the work function. Thus, lowering (raising) the work

function increases (decreases) the number of subbands contributing significant cur-

rents to the total ECD. Figure E-1 and Figure E-2 illustrate the effect of changing #

on the normal energy diagram and ECD curve for an NU nanowall emitter: a shift

of the transition region to the left (right) as / decreases (increases).

Normal'
Energy

EF

W R

- - - - - - - - - - - - - - - - - - - - -
I

(P I -------------

I (P2

Ea
- - - - - - --- -

H

0.1,

vv-U Z=O

Figure E-1: Normal energy diagram for

emission from the NU nanowall. Lower-

ing 4 reduces the barrier thickness seen

at the reference energy WR and increases

the transmission probability of electrons
in that subband.

...................................... .......... ............. ............ ............. ............... .............. ...........

6 = 2.5 cV

= 5.0 CV

b = 7.5 eV

6= to CV

L, [nm

Figure E-2: The ECD of the NU nanowall
normalized to the FN equation, as a func-
tion of the transverse well width L, with
the work function as a parameter, for
which F = 2 x 10' V/cm, EF = 10 eV.
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E.2.2 Effective Mass of Electrons

The effective mass of electrons in the infinite square well is inversely proportional to

energy levels of the well. Thus, increasing (decreasing) the effective mass of electrons

leads to a downward (upward) migration of energy levels in the well and a lowering

(raising) of the reference zero-field barrier height for electrons in each subband, as in

Figure E-3. In addition, due to the condition that for T = 0 K, no subbands with

energies above EF may contribute to emission, an increase (decrease) in the effective

mass could result in subbands being added to (removed from) the well. These two

effects are responsible for the leftward (rightward) shift of the normalized ECD curves

for the NU nanowall emitter as the effective mass is increased (decreased), as shown

in Figure E-4.

Normal
Energy

EF

W R

WR.

E
- - - - - - - - - -

0.4

<0.1
m0>m

VV=V Z=O

Figure E-3: Normal energy diagram for
emission from the NU nanowall. Decreas-
ing the effective mass of electrons in the
well, m* causes all well energy levels to
migrate upwards in energy, leading to a
decrease in the reference state energy from
WR to W and a reduced transmission
probability for electrons in that subband.

.7

0 3 0 IS 20

0 5 10 Is
L. [nml

Figure E-4: The ECD of the NU nanowall
normalized to the FN equation, as a func-
tion of the transverse well width L. with
the effective mass m* as a parameter, for
which F = 2 x 10' V/cm, EF = 10 eV,
< = 5 eV.
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E.2.3 Applied Electric Field

The applied field also has a significant effect on the absolute location of the transition

region between emitter dimensionalities. Increasing (decreasing) the applied field has

the direct effect of increasing (decreasing) the transmission probability of all subbands

in the well due an overall thinning (thickening) of the barrier to emission, as shown

in Figure E-5. Consequently, an increase (decrease) in the applied field leads to more

(fewer) subbands contributing to emission and a shift in the transition region to the

left (right). Figure E-6 shows ECD plots from the elementary NU nanowall emitter

as a function of the applied field.

Normal
Energy

WO

EF

W R
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0.2

V z=O F2  F,

Figure E-5: Normal energy diagram for
emission from the NU nanowall. Increas-
ing the applied electric field directly re-
duces the barrier thickness seen by elec-
trons at reference energy WR, increasing
their transmission probability.

0" o 5 '0 15 20

Figure E-6: The ECD of the NU nanowall
normalized to the FN equation, as a func-
tion of the transverse well width L, with
the applied field as a parameter, for which
EF = 10 eV and 0 = 5 eV.

E.2.4 Fermi Energy

For T = 0 K, the Fermi energy marks the sharp boundary between occupied electronic

states (below EF) and non-occupied electronic states (above EF). As was discussed

above, electron subbands with energies above EF cannot contribute to the total ECD

from a quantum-confined emitter. As a consequence of this cutoff in the electron

supply, the absolute magnitude of the Fermi energy determines the smallest well-
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width for which the total ECD of an emitter is non-zero. For the NU nanowall

emitter, the smallest infinite square well with a Fermi energy EF that can support

an electron subband is

Won = h . (E. 1)
8mOEF

While a higher EF ensures a lower w0,, it does not guarantee a higher ECD from the

nanowall emitter or a faster convergence to the FN limit. With a larger EF, subbands

can be admitted into the well at much smaller well widths, but these subbands see a

reference zero-field barrier height equal to

h 2
HR 2+.8mow (E.2)

Consequently, a lower won also corresponds to a higher barrier to transmission for elec-

trons in the subband, leading to a lower subband ECD and no leftward or rightward

shift in the ECD curve due to changes in EF.

While changes in EF result in no horizontal shifts in the normalized ECD plots,

the qualitative characteristics of ECD plots for NU and NC emitters can be altered

in other ways by lowering the Fermi level to values near zero. For NU emitters,

lowering EF below some energy EFcrit results in the segmentation of the continuous

normalized ECD curve into multiple curves that represent the ECD contributions

from each of the subbands in the well, as shown in Figure E-7. These discontinuities

occur in the ECD plot if the Fermi energy is low enough that when new subbands

are admitted into the well (E,, < EF), their reference zero-field barrier heights are

low enough that the subband ECD is significant compared to the ECD contributions

from the subbands already in the well. Roughly, the discontinuities begin to appear in

the ECD plots when the ECD from the newly-added subband exceeds approximately

1% of the ECD from the next highest subband. Using the ECD from the first two
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subbands of the NU nanowall to calculate the cutoff EF leads to the expression

0.01 < + 3/4 + exp (0 + E 2 )3/2-( + El)3/2 (E.3)
#O+E2) .- F

where E1 and E 2 are the first and second subband energies of the infinite square well,

respectively. Since the discontinuities occur when a new subband is added to the well,

E 2 = EF

El E2 _EF (E.4)
44

Making the substitutions for the energy levels and taking the log of both sides leads

to
t o - # + E r 3 / 4 - B O E F / 2E F 3/

In [0.01] < ln 4 (#0+EF) -#+ (E.5)
# O+EF F 4

Assuming that this critical Fermi energy is much smaller than the work function leads

to an expression for EF,crit of the form

EF,crit [- (n [0.01] - B 03/2 3/2 - (E.6)

which is appropriate for the NU nanowall. For F - 2 x 10' V/cm and # = 5 eV, the

predicted EF,Crit for the NU nanowall is approximately 0.40 eV.

For NC emitters, lowering EF results in two qualitative changes in the ECD:

i) a decrease in the amplitude of the ECD oscillations and ii) a broadening of the

ECD oscillations, leading to fewer oscillations over the same range of well widths.

Due to EF serving as the upper energy boundary for subbands in the well, a lower

Fermi energy restricts the subbands to lower normal energies, Wq, and consequently,

lower electron group velocities. The lower group velocities limit the electrons to

comparatively lower arrival rates for the same well widths, leading to oscillations

with lower maximum amplitudes. A lower EF also results in fewer subbands entering
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Figure E-7: The normalized ECD of the elementary NU nanowall for selected values
of EF. Above EF,crit, changes in the Fermi energy do not affect the normalized ECD,
while the ECD curve becomes discontinuous for Fermi energies below EF,crit.

the well and contributing to emission over a change in well width AL. For example,

over a range of normal well widths L2, the magnitude of the energy migration of a

higher energy level of index n + k in terms of the magnitude of the energy migration

of a lower energy level of index n is

AEn+k =- +2 (E.7)
n

showing that for the same change in LZ, higher energy levels in the well have a greater

energy shift. As a result of the slower rate of change of lower energy levels with respect

to Lz, a lower EF leads to fewer subbands being added to the well (fewer oscillations)

and a slower progression along the curve of the average number of emitted electrons

for each subband in Figure 5-4 (broader oscillations). The normalized ECD of the

NC nanowall emitter for selected values of EF is shown in Figure E-8. For very

182

L.01



small values of EF (<~ .20 eV), the assumption that extending the lower limit of

integration over W from 0 to -oo breaks down and the normalized ECD of the NC

nanowall converges to values smaller than unity. As a solution, the NC nanowall ECD

is normalized to a numerically-integrated version of the elementary Fowler-Nordheim

equation, shown in Figure E-8.
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Figure E-8: The normalized ECD of the elementary NC nanowall for selected values of
EF. As EF decreases, the normalized ECD oscillations decrease in amplitude, become
broader, and converge more quickly to the FN limit. For values of EF <- 0.2 eV,
the ECD is normalized to a numerically-integrated version of the FN equation.
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