
Smaller Steps for Faster Algorithms:

A New Approach to Solving Linear Systems

by

Aaron Daniel Sidford

B.S., Cornell University (2008)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of
AACVNS

Master of Science in Computer Science and Engineering s
0? TECHNOLOGY

at the
OCT 0 2 2013

MASSACHUSETTS INSTITUTE OF TECHNOLOGY L

September 2013 LiBRARIES

@ Massachusetts Institute of Technology 2013. All rights reserved.

A uthor
Department of Electrical Engineering and Computer Science

August 26, 2013

Certified by.......
Jonathan Kelner

Associate Professor
Thesis Supervisor

Accepted by
'ProfAEr Leslie A. Kolodziejski

Chair, Department Committee on Graduate Students

2

Smaller Steps for Faster Algorithms:

A New Approach to Solving Linear Systems

by

Aaron Daniel Sidford

Submitted to the Department of Electrical Engineering and Computer Science
on August 26, 2013, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

In this thesis we study iterative algorithms with simple sublinear time update steps,
and we show how a mix of of data structures, randomization, and results from nu-
merical analysis allow us to achieve faster algorithms for solving linear systems in a
variety of different regimes.

First we present a simple combinatorial algorithm for solving symmetric diago-
nally dominant (SDD) systems of equations that improves upon the best previously
known running time for solving such system in the standard unit-cost RAM model.
Then we provide a general method for convex optimization that improves this simple
algorithm's running time as special case. Our results include the following:

* We achieve the best known running time of 0 (m log312 1 log log n log(e 1 log n))
for solving Symmetric Diagonally Dominant (SDD) system of equations in the
standard unit-cost RAM model.

e We obtain a faster asymptotic running time than conjugate gradient for solving
a broad class of symmetric positive definite systems of equations.

e We achieve faster asymptotic convergence rates than the best known for Kacz-
marz methods for solving overdetermined systems of equations, by accelerating
an algorithm of Strohmer and Vershynin [55].

Beyond the independent interest of these solvers, we believe they highlight the
versatility of the approach of this thesis and we hope that they will open the door for
further algorithmic improvements in the future.

This work was done in collaboration with Jonathan Kelner, Yin Tat Lee, Lorenzo
Orecchia, and Zeyuan Zhu, and is based on the content of [30] and [35].

Thesis Supervisor: Jonathan Kelner
Title: Associate Professor

3

4

Acknowledgments

First, I would like thank my advisor, supervisor, and mentor Professor Jonathan

Kelner for his continuous support and guidance over the past two years. From our

first meeting, when I was a prospective student, to our research discussions, when

I was just getting acclimated, to the successful projects detailed in this thesis, and

during all the time in between Jon has been a never-ending source of inspiration and

wisdom. He keeps me focused while at the same time encouraging me to do the

impossible with a kindness and enthusiasm that I cherish. I am forever grateful for

all he taught me and for all he continues to teach.

Next, I would like to thank my collaborators Yin Tat Lee, Lorenzo Orecchia,

and Zeyuan Zhu. It has been a thrill to work with them all and I thank them for

the great ideas and long conversations that were the genesis of this thesis. I thank

Zeyuan for his collaboration and for helping me to identify weaknesses in arguments

that needed to be addressed. I thank Lorenzo for his patience, his thoughtfulness,

and for encouraging me to look at the big picture and strike at the true heart of a

problem. I thank Yin Tat for his enthusiasm, for his constant stream of ideas, and

for encouraging me to look at problems in new ways and rise beyond all obstacles. I

have been fortunate to have the opportunity to work with them all.

I would also like to thank my friends and professors at MIT for creating an exciting

and enjoyable academic environment. I would like to express special thanks to Michael

Forbes for being an excellent student buddy who helped me transition to MIT, to

Professor David Karger for teaching my first class at MIT and delivering some of my

favorite lectures in my research area, to Adam Bouland and Matt Coudron for their

instrumental collaboration on my first research paper at MIT, to Adam, Abhishek,

and Andreea for helping start "Not So Great Ideas" a Thursday night social forum,

and to Gautam for organizing countless other social events. To the MIT graduate

student community, I am grateful for all the CSC events, fun Thursday nights, hall

adventures, dinners with professors, theory retreats, frisbee games, and more fond

memories then I could possibly list.

5

Furthermore, I am very grateful for the constant support and encouragement from

my girlfriend, Andreea. Through all the highs and lows of graduate school, from the

all-nighters to the shattered theorems, as well as the eventual victories, Andreea

continuously provided just the right mix of humor, sarcasm, love, and seriousness

that has made every day a little brighter.

Finally, I would like to thank those not at MIT who have supported me over the

past two years. I would like to thank Professor John Hopcroft, Professor Thorsten

Joachims, and Jim Holt for their encouragement and recommendations that allowed

me to start graduate school with excitement and enthusiasm. I would also like to

thank my friends for helping me through the transition from work to graduate school.

Lastly, I would like to thank my family. For my parents, Bill and Nancy Sidford and

my siblings Rachel and Sarah Sidford, I have only the deepest gratitude. Without

their limitless supply of encouragement, hope, and love I would be lost. I cannot

possibly thank them enough.

This work was partially supported by an Akamai presidential fellowship, Hong

Kong RGC grant 2150701, NSF awards 0843915 and 1111109, a NSF Graduate Re-

search Fellowship (grant no. 1122374), and a Sloan Research Fellowship, and I thank

them for their support.

6

Contents

1 Introduction

1.1 SDD Systems

1.1.1 Previous Nearly Linear Time SDD Solvers

1.2 First Order Methods .

1.2.1 Previous First Order Methods

1.3 O ur Results .

1.3.1 Comparison to SDD Solvers

1.3.2 Comparison to General Linear System Solvers . .

1.4 Thesis Organization .

2 A Simple Nearly Linear Time Solver for SDD Systems

2.1 Overview of our Approach .

2.2 Preliminaries

2.2.1 Electrical Flow . . .

2.2.2 Spanning Trees and C

2.3 The Algorithm

2.3.1 A Simple Iterative Ap

2.3.2 Algorithm Guarantees

2.4 Convergence Rate Analysis .

2.4.1 Cycle Update Progress

2.4.2 Distance to Optimalit

2.4.3 Convergence Proof .

2.5 Cycle Update Data Structure

. 20

. 21

. 22

ycle Space 24

. 26

proach 26

. 28

. 29

. 29

y. 30

. 30

32

7

9

. 10

. 11

12

12

. 14

. 15

. 16

. 17

19

2.5.1 The Data Structure Problem 32

2.5.2 Recursive Solution . 33

2.5.3 Linear Algebra Solution . 34

2.6 Asymptotic Running-Time . 36

2.7 Numerical Stability . 39

3 Efficient Accelerated Coordinate Descent 43

3.1 Prelim inaries . 44

3.2 Review of Previous Iterative Methods 47

3.2.1 Gradient Descent . 48

3.2.2 Accelerated Gradient Descent 48

3.2.3 Coordinate Descent . 49

3.3 General Accelerated Coordinate Descent 50

3.3.1 ACDM by Probabilistic Estimate Sequences 51

3.3.2 Numerical Stability . 55

3.3.3 Efficient Iteration . 57

3.4 Faster Linear System Solvers . 59

3.4.1 Comparison to Conjugate Gradient Method 59

3.4.2 Accelerating Randomized Kaczmarz 61

3.4.3 Faster SDD Solvers in the Unit-cost RAM Model 64

A Additional ACDM Proofs 69

A.1 Probabilistic Estimate Sequence Form 69

A.2 Bounding ACDM Coefficients . 72

A.3 Numerical Stability of ACDM . 74

8

Chapter 1

Introduction

In recent years iterative methods for convex optimization that make progress in sub-

linear time using only partial information about a function and its gradient have

become of increased importance to both the theory and practice of computer science.

From a practical perspective, the increasing volume and distributed nature of data

are forcing efficient practical algorithms to be amenable to asynchronous and parallel

settings where only a subset of the data is available to a single processor at any point

in time. From a theoretical perspective, rapidly converging algorithms with sublinear

time update steps create the hope for new faster algorithms for solving old problems.

In this thesis we present several results showing that by combining simple sublin-

ear steps with a mix of data structures, randomization, and results from numerical

analysis one can achieve faster and simpler algorithms for solving a wide array of

linear systems. In the first half of this thesis we show how to use these techniques to

produce a simple combinatorial algorithm that solves symmetric diagonally dominant

(SDD) systems of equations in nearly linear time and improves upon the best previ-

ously known running times for solving SDD systems in the unit-cost RAM model.

In the second half of this thesis we generalize and improve upon the iterative

framework applied by this SDD solver. We show to obtain a general first order method

for convex optimization that can solve a broad class of linear systems faster than

conjugate gradient, generically improve the convergence rate of randomized Kaczmarz

[55], and obtain a faster SDD solver in the unit-cost RAM model.

9

1.1 SDD Systems

While the results in this thesis apply to general problems in convex optimization,

they were motivated by the desire to achieve faster and simpler algorithms for solving

symmetric diagonal dominant (SDD) systems of equations. A matrix A E Rn,,

is SDD if AT = A and A ;> EO I AiI for all i E [n]. While the best known

algorithm for solving a general linear system takes time 0(n 2 .373) [61], a seminal

paper by Spielman and Teng [50] showed that when A is SDD one can solve AX = b

approximately in nearly linear time. 1

Fast algorithms for solving SDD linear systems have found broad applications

across both the theory and practice of computer science. They have long been cen-

tral to scientific computing, where solving SDD systems is the main computational

task in modeling of electrical networks of resistors and performing finite element sim-

ulations of a wide range of physical systems (see, e.g., [12]). Beyond this, SDD system

solvers have been applied to foundational problems in a wide range of other fields,

including machine learning, random processes, computer vision, image processing,

network analysis, and computational biology (see, for example, [36, 33, 37, 60, 22]).

More recently, SDD solvers have emerged as a powerful tool in the design of

graph algorithms. To every graph G, one can associate a SDD matrix L called

its Laplacian (see Section 2.2) such that there are deep connections between the

combinatorial properties of G and the linear algebraic properties of L. By exploiting

these connections, researchers have used nearly linear time algorithms for solving

SDD systems to break longstanding barriers and provide new algorithms for a rapidly

growing list of fundamental graph problems, including maximum flow problems [16],

multi-commodity flow problems [28], generating random spanning tree [27], graph

sparsification [48], lossy flow problems [17], sparsest cut [46], distributed routing [26],

and balanced separator [44], as well as fundamental linear algebraic problems for SDD

'Throughout this thesis we are primarily interested in approximate linear system solvers, that
is algorithms that compute I E IRn such that XF - 'optIA 5 eIX-OptIA for any e E fR > 0 where

xOpt E GR' is a vector such that A-Opt = b. By a nearly linear time SDD system solver we mean an
an algorithm that computes such a I in time O(m log' n log e-1) where m is the number of nonzero
entries in A and c > 0 E GR is a fixed constant.

10

matrices, including computing the matrix exponential [44] and the largest eigenvalue

and corresponding eigenvector [53]. (See [49, 57, 59] for surveys of these solvers and

their applications.)

1.1.1 Previous Nearly Linear Time SDD Solvers

The first nearly linear time algorithm for solving SDD systems was given by Spielman

and Teng [50], building on a long line of previous work (e.g., [58, 20, 7, 13, 11]). Their

algorithm and its analysis is a technical tour-de-force that required multiple funda-

mental innovations in spectral and combinatorial graph theory, graph algorithms, and

computational linear algebra. Their work included the invention of spectral sparsifica-

tion and ultra-sparsifiers, better and faster constructions of low-stretch spanning trees,

and efficient local clustering algorithms, all of which was used to construct and ana-

lyze an intricate recursively preconditioned iterative solver. They divided this work

into three papers totaling over 130 pages ([51, 53, 52]), each of which has prompted

a new line of inquiry and substantial follow-up work. Their work was was followed

by two beautifully insightful papers by Koutis, Miller, and Peng that simplified the

SDD system solver while improving its running time to 6(m log nlog 61) [31, 32]12.

For a more in-depth discussion of the history of this work see [53].

These algorithms all rely on the same general framework. They reduce solving

general SDD systems to solving systems in graph Laplacians. Given a graph, they

show how to obtain a sequence of logarithmically many successively sparser graphs

that approximate it, which they construct by adding carefully chosen sets of edges

to a low-stretch spanning tree. They then show that the relationship between the

combinatorial properties of a graph and the spectral properties of its Laplacian enables

them to use the Laplacian of each graph in this sequence as a preconditioner for the

one preceding it in a recursively applied iterative solver, such as the Preconditioned

Chebyshev Method or Preconditioned Conjugate Gradient.

We remark that multigrid methods (see, e.g., [15]), which are widely used in

2Here and in the rest of the thesis we use 5(.) to hide lower order log terms in n, e.g. 5(m)=
0(m log' n) and O(m log' n) = 0(m log' n log logdn) for some constants c, d > 0.

11

practice on graphs with sufficiently nice topologies, can be thought of as following a

similar multilevel recursively preconditioned iterative framework. Indeed, Koutis et

al. have an algorithm and implementation based on related techniques that they refer

to as "combinatorial multigrid" [9]. Even if one does not demand provable running

time bounds, we are not aware of any algorithm whose running time empirically

scales nearly linearly on large classes of input graphs that does not roughly follow

this general structure. 3

1.2 First Order Methods

The iterative framework applied by all known nearly linear time SDD solvers fall

into the broad category of first order methods for convex optimization. That is, they

all run combinatorial algorithms to set up convex optimization problems and then

they solve these problems by repeatedly computing only values and gradients of the

objective function being optimized. In fact, all iterative optimization algorithms in

this thesis (including the new one we develop) can be similarly viewed as first order

methods.

1.2.1 Previous First Order Methods

Gradient descent is one of the oldest and most fundamental first order methods in con-

vex optimization. Given a convex differentiable function the gradient descent method

is a simple greedy iterative method that computes the gradient at the current point

and uses that information to perform an update and make progress. This method is

central to much of scientific computing and from a theoretical perspective the stan-

dard method is well understood [41]. There are multiple more sophisticated variants

of this method [25], but many of them have only estimates of local convergence rates

which makes them difficult to be applied to theoretical problems and be compared in

general.

3With the exception of the new algorithms considered in this thesis.

12

In 1983, Nesterov [40] proposed a way to accelerate the gradient descent method

by iteratively developing an approximation to the function through what he calls an

estimate sequence. This accelerated gradient descent method or fast gradient method

has the same worst case running time as conjugate gradient method and it is appli-

cable to general convex functions. Recently, this method has been used to improve

the fastest known running time of some fundamental problems in computer science,

such as compressive sensing [5, 6], undirected maximum flow [16, 34, 29], linear pro-

gramming [42, 8].

The accelerated gradient descent method is known to achieve an optimal (up to

constants) convergence rate among all first order methods, that is algorithm that only

have access to the function's value and gradient [41]. Therefore, to further improve

accelerated gradient descent one must either assume more information about the

function or find a way to reduce the cost of each iteration. Using the idea of fast but

crude iteration steps, Nesterov proposed a randomized coordinate descent method

[43], which minimizes convex functions by updating one randomly chosen coordinate

in each iteration.

Coordinate descent methods, which use gradient information about a single coor-

dinate to update a single coordinate in each iteration, have been around for a long

time [62]. Various schemes have been considered for picking the coordinate to up-

date, such as cyclic coordinate update and the best coordinate update, however these

schemes are either hard to estimate [38] or difficult to be implemented efficiently.

Both the recent work of Strohmer and Vershynin [55] and Nesterov [43] (as well as

the algorithms in this thesis) overcame these obstacles by showing that by perform-

ing particular randomized updates one can produce methods with provable global

convergence rate and small costs per iteration.

Applying the similar ideas of accelerated gradient descent, Nesterov also proposed

an accelerated variant called the accelerated coordinate descent method (A CDM) that

achieves a faster convergence rate while still only considering a single coordinate

of the gradient at a time. However, in both Nesterov's paper [43] and later work

[45], this method was considered inefficient as the computational complexity of the

13

naive implementation of each iteration of ACDM requires 8(n) time to update every

coordinate of the input, at which point the accelerated gradient descent method would

seem preferable.

1.3 Our Results

In this thesis we present both a simple, combinatorial algorithms that solves SDD

systems in nearly linear time and a general first order method for convex optimization

that improves the running time of this solver as a special case.

The SDD solver uses very little of the machinery that previously appeared to be

necessary for a nearly linear time algorithm. It does not require spectral sparsifiers (or

variants such as ultra-sparsifiers or incremental sparsifiers), recursive preconditioning,

or even the Chebyshev Method or Conjugate Gradient. To solve a SDD system all the

algorithm requires is a single low-stretch spanning tree4 of G (not a recursive collection

of subgraphs), and a straightforward data structure. Given these, the algorithm can

be described in a few lines of pseudocode, and its analysis can be made to fit on a

single blackboard.

We show how to cast this solver as an instance of the coordinate descent algorithm

of Nesterov [43] and we provide a a first order method for convex optimization that

both strengthens and unifies this result and the randomized Kaczmarz method of

Strohmer and Vershynin [55]. In particular, we present a more general version of

Nesterov's ACDM and show how to implement it so that each iteration has the

same asymptotic runtime as its non-accelerated variants. We show that this method

is numerically stable and we show how to use this method to outperform conjugate

gradient in solving a general class of symmetric positive definite systems of equations.

Furthermore, we show how to cast both randomized Kaczmarz and the simple SDD

solver in this framework and achieve faster running times through the use of ACDM.5

4This can be obtained in nearly-linear time by a simple ball-growing algorithm [3]; the construc-
tions with the best known parameters use a more intricate, but still nearly linear time, region growing
technique [18, 1, 31, 2]. See [30] for a discussion of how even this requirement can be relaxed.

sThis algorithm can also be shown to have an asymptotically tight running time in certain regimes
and we refer the reader to [35] for a discussion of these lower bounds.

14

1.3.1 Comparison to SDD Solvers

Previous nearly-linear time SDD solvers relied on Preconditioned Chebyshev meth-

ods, whose numerical stability is quite difficult to analyze. At present, the best known

results show that they can be implemented with finite-precision arithmetic, but the

number of bits of precision required is log K(L) log' n log e-, where K(L) is the con-

dition number of L, and c is some possibly large constant [53]. Therefore, while the

stated running time of the best SDD solver is 0(m log n log e-1) [32], this is assuming

arbitrary precision arithmetic. If one analyzes it in the more standard unit-cost RAM

model, where one can perform operations only on O(log n)-bit numbers in constant

time, this introduces several additional logarithmic factors in the running time.

In contrast, we show that our algorithms are numerically stable and do not

require this additional overhead in the bit precision. Our simple algorithm ap-

proximately solves both SDD systems and the dual electrical flow problem in time

O(m log 2 n log log n log_(n)) 6 and our accelerated solver solves these problems in

time 0 (m log3 1 2 n /log log n log(e' log n)). As such, our algorithm gives the fastest

known algorithm for solving SDD systems in the unit-cost RAM model. If one allows

infinite precision arithmetic to be performed in constant time, our fastest algorithm

is slower than [32] by a factor of O(log n) for solving SDD systems and actually faster

than [32] for the dual problem of computing E-approximate electric flows when e is

constant.7

Due to the complexity of previous nearly linear time solvers and the intricate and

delicate nature of their analyses, it was necessary to apply them as a black box. By

providing a new, easy-to-understand algorithms, it is our hope that algorithms that

use SDD solvers can be improved by "opening up" this black box and modifying it to

take advantage of specific features of the problem, and that similar techniques can be

applied to related problems (e.g., ones with additional constraints or slight deviations

from linearity or diagonal dominance). Furthermore, due to the lightweight nature of

6 For a discussion of how to improve the running time to O(m log2 nloglognlog(e')) using a
different technique we refer the reader to [30].

7To the best of our knowledge, to convert the SDD system solver of [32] to an -'-approximate
electrical flow solver, one needs to pick e = O(e'1 n).

15

the algorithm and data structure, we hope it to be fast in practice and adaptable to

work in multicore, distributed, and even asynchronous settings.

1.3.2 Comparison to General Linear System Solvers

In some sense, the principle difference between the asymptotic running time of the ef-

ficient ACDM presented in this thesis and accelerated gradient descent (or conjugate

gradient in the linear system case) is that as accelerated gradient descent depends

on the maximum eigenvalue of the Hessian of the function being minimized, ACDM

instead depends on the trace of the Hessian and has the possibility of each itera-

tion costing a small fraction of the cost a single iteration of of accelerated gradient

descent. As a result, any nontrivial bound on the trace of the Hessian and the compu-

tational complexity of performing a single coordinate update creates the opportunity

for ACDM to yield improved running times.

Beyond demonstrating how ACDM yields a faster SDD solver we show that under

mild assumptions ACDM solves positive definite systems with a faster asymptotic

running time than conjugate gradient (and an even milder set of assumptions for

Chebyshev method), and it is an asymptotically optimal algorithm for solving general

systems in certain regimes.

Furthermore, consider over-constrained systems of equations where the random-

ized Kaczmarz method of Strohmer and Vershynin [55], which iteratively picks a

random constraint and projects the current solution onto the plane corresponding to

a random constraint, has been shown to have strong convergence guarantees and ap-

pealing practical performance. We show how to cast this method in the framework of

coordinate descent and accelerate it using ACDM yielding improved asymptotic per-

formance. Given the appeal of Kaczmarz methods for practical applications such as

image reconstructions [21] , there is hope that this could yield improved performance

in practice.

We remark that while our analysis of applications of ACDM focus on solving

linear systems there is hope that our ACDM algorithm will have a broader impact

in both theory and practice of efficient algorithms. Just as the accelerated gradient

16

descent method has improved the theoretical and empirical running time of various,

both linear and nonlinear, gradient descent algorithms [19, 5], we hope that ACDM

will improve the running time of various algorithms for which coordinate descent

based approaches have proven effective. Given the generality of our analysis and

the previous difficulty in analyzing such methods, we hope that this is just the next

towards a new class of provably efficient algorithms with good empirical performance.

1.4 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2 we present and analyze

our simplest nearly linear time SDD solver proving that it achieves a running time of

o (m log 2 n log log n log(_i'n)) in the unit cost RAM model. In Chapter 3 we take a

more general approach and present a new first order method, the efficient accelerated

coordinate descent method (ACDM) and show how ACDM yields faster algorithms

for solving a variety of linear systems. In Appendix A we provide additional proof

details for generalizing ACDM and showing its numerical stability.

The material in Chapter 2 is based on joint work with Jonathan Kelner, Lorenzo

Orecchia, and Zeyuan Zhu [30] and the material in Chapter 3 and Appendix A is

based on joint work with Yin Tat Lee [35].

17

18

Chapter 2

A Simple Nearly Linear Time

Solver for SDD Systems

In this chapter we present a simple combinatorial algorithm for solving SDD sys-

tems in nearly linear time. The algorithm uses very little of the machinery that

previously appeared to be necessary for a such an algorithm. It does not require

recursive preconditioning, spectral sparsification, or even the Chebyshev Method or

Conjugate Gradient. After constructing a "nice" spanning tree of a graph associated

with the linear system, the algorithms consist of the repeated application of a sim-

ple (non-recursive) update rule, which can be implemented using a lightweight data

structure. The algorithms is numerically stable and achieves a faster running time in

the standard unit-cost RAM model than was known for previous solvers.

The rest of this chapter is organized as follows. In Section 2.1 we provide an

overview of our approach, in Section 2.2 we provide technical background that needed

for our analysis, in Section 2.3 we present the algorithm, in Section 2.4 we prove

the algorithm's convergence rate of the algorithm, in Section 2.5 we present a data

structure allowing us to implement the algorithm efficiently, in Section 2.6 we prove

the asymptotic running time of the algorithm, and in Section 2.7 we prove that the

algorithm is numerically stable and achieves the desired running time in the unit-cost

RAM model.

19

2.1 Overview of our Approach

Here we provide a basic overview of our simple algorithm in order to motivate the

definitions and analysis that follow. Using standard reductions techniques we reduce

solving arbitrary SDD systems to solving LY = ', where L E IR"X is the Laplacian of

a weighted connected graph G = (V, E, w') with n vertices and m edges and E ERR,

(see Appendix A of [30] for details). Just to simplify the overview we suppose that

X= e. - e and e' and s' are the unit basis vectors corresponding to arbitrary s, t E V.

Such Laplacian systems Lu = ' can be viewed as electrical flow problems: each

edge e E E can be viewed as a resistor of resistance re = 1/we, where we is the

weight of this edge, and one unit of electric current needs to be sent from s to t.

Now, if V' is a valid solution to L' = X, then the entries of V' can be viewed as the

electrical potentials of this system, and the amount of electric current or flow f(e)

on an edge e = (i, j) from i to j is given by (V'6 - iij)/re. The fact that electric flows

are induced by vertex potential differences is a crucial property of electrical systems

that our algorithm is going to exploit.

While previous solvers worked with the potential vector V, our algorithm works

with the flow vector f Our algorithm begins with any arbitrary unit s-t flow (e.g.,

a path from s to t) and maintains its feasibility throughout the execution. If f were

a valid electrical flow, then it would be induced by some potential vector iY E RV

satisfying f(e) = (V'J - i3)/re for all edges e = (i, j) E E, and in particular, for any

cycle C in G, we would have the potential drop EeEC f(e)re = 0. Exploiting this

fact, our entire algorithm consists of simply repeating the following two steps.

- Randomly sample a cycle C from some probability distribution.

- Compute EeEC f(e)re and add a multiple of C to f to make it zero.

To turn this into a provably-correct and efficient algorithm we need to do the following:

* Specify the cycle distribution. The cycles are those found by adding edges

to a low-stretch spanning tree. They are sampled proportional to their stretch

(See Section 2.2.2 and 2.3).

20

" Bound the number of iterations. In Section 2.4, we show that repeating this

process a nearly linear number of times yields an e-approximate solution.

* Implement the iterations efficiently. Since a cycle may contain a large

number of edges, we cannot simply update the flow edge-by-edge. In Section 2.5,
we give a data structure that allows each iteration to take O(log n) time.

While in the next chapter we show how this algorithm can be viewed as an instan-

tiation of coordinate descent, here we note that this algorithm has a geometric inter-

pretation and can be viewed as an application of the randomized Kaczmarz method

of Strohmer and Vershynin [55] (see Section 3.4), which solves a linear system by

randomly picking a constraint and projecting the current solution onto its feasible

set. For a more detailed exposition on this fact and discussion of how the algorithm

can be viewed as providing a linear approximation to Lt we refer the reader to [30].

2.2 Preliminaries

For the remainder of this chapter we let G = (V, E, w) be a weighted, connected,

undirected graph with n = IVI vertices, m = EJ edges and edge weights we > 0. We

think of we as the conductance of e, and we define the resistance of e by re = 1/we.

For notational convenience, we fix an orientation of the edges so that for any vertices

a and b connected by an edge, exactly one of (a, b) E E or (b, a) E E holds.

We make extensive use of the following matrices associated with G:

Definition 2.2.1 (Incidence Matrix). The incidence matrix B E RExV is defined by

1 a c

V(a,b) E E , Vc E V : B(a,b),c= - b c

0 otherwise

Definition 2.2.2 (Resistance Matrix). The resistance matrix, R E R is the

diagonal matrix where Re,e = re for all e E E.

21

Definition 2.2.3 (Laplacian Matrix). The Laplacian matrix, L E R"V', is defined

for all a, b E V by

{a,u}EE Wa,u a b

La,b = {a,b} E E

0 otherwise

For a vector f E RE and an edge e = (a, b) E E, we write f(e) = f(a, b) for the

coordinate of f corresponding to e, and we adopt the convention f(b, a) = -f(a, b).

This allows us to think of f as a flow on the graph (not necessarily obeying any

conservation constraints) that sends f(e) units of flow from a to b, and thus -f(e)

units of flow from b to a.

The following facts follow by simple manipulations of the above definitions:

Claim 2.2.4. For all f E RE, x E R, a e V and (a,b) E E:

" [BTf] a = E(b,a)EE f(b, a) - Z(a,b)EE f(a, b)

" L = BTR-lB ,

* [Bx](a,b) = x(a) - x(b) , and

SxT Lx = E(ab)EE r(ob

One can interpret the first assertion in Claim 2.2.4 as saying that BTf is a vector

in IRV whose a-th coordinate indicates how much flow f leaves (or enters, if it is

negative) the graph G at vertex a. We say that f is a circulation if BTf 0.

2.2.1 Electrical Flow

For any vector f E RE, we define its energy (j) by

() Z refi(e)2 fRf =Lf|I|
eEE

We fix a demand vector X e Rv and we say a flow f E RE is feasible (with respect to 2),

or that it meets the demands, if BT = . Since G is connected it is straightforward to

check that there exists a feasible flow with respect to ' if and only if X f(v) = 0.

22

Definition 2.2.5 (Electrical Flow). For a demand vector ' E IRV that satisfies

aEV X(a) = 0, the electrical flow satisfying ' is the unique minimizer to

fopt = arg min (f . (2.1)
fERE : BT=

This quadratic program describes a natural physical problem. Given an electric

circuit with nodes in V, for each undirected edge e = {a, b} E E we connect nodes

a and b with a resistor of resistance re. Next, we fix the amount of current entering

and leaving each node and denote this by demand vector '. Recalling from physics

that the energy of sending i units of current over a resistor of resistance r is i2 _ r the

amount of electric current on each resistor is given by fopt. The central problem of

this chapter is to efficiently compute an e-approximate electrical flow.

Definition 2.2.6 (e-Approximate Electrical Flow). For e E RO, we say f E RE is

an e-approximate electric flow satisfying ' if BTf= X, and +) (1+e) -((pt)

Duality

The electric flow problem is dual to solving LY = ' when L is the Laplacian for the

same graph G. To see this, we note that the Lagrangian dual of (2.1) is given by

max 2V - - VfLVY (2.2)

For symmetry we define the (dual) energy of VY E RV as C (6) d 2iT' - f'LV'. Setting

the gradient of (2.2) to 0 we see that (2.2) is minimized by 'J E RV satisfying L = '

Let Lt denote the Moore-Penrose pseduoinverse of L and let deEt L+ denote a

particular set of optimal voltages . Since the primal program (2.1) satisfies Slater's

condition, we have strong duality, so for all V' E RV

C(i) C(vopt) = (fop)

23

Therefore, for feasible f E RE and if E RV the duality gap, gap(f, 6) 1 - (f) - ((U)

is an upper bound on both (f) - (fopt) and ((Opt) - ((6).

In keeping with the electrical circuit interpretation we refer to a candidate dual

solution if E IRV as voltages or vertex potentials and we define Av (a, b) = 6(a) - 6(b)

to be the potential drop of if across (a, b). By the KKT conditions we know that

fopt = R-'Bv0 pt i.e. Ve E E : fopt(e) = Ar (e)
re

For e E E we call A(e) the flow induced by V across e and we call f(e)re the potentialre

drop induced by f across e.

The optimality conditions f0p = R-'Bopt can be restated solely in terms of flows

in a well known variant of Kirchoff's Potential Law (KPL) as follows

Lemma 2.2.7 (KPL). Feasible f E RE is optimal if and only if f"Rc = 0 for all

circulations ' E fRlE

2.2.2 Spanning Trees and Cycle Space

Let T C E be a spanning tree of G and let us call the edges in T the tree edges and

the edges in E \ T the off-tree edges. By the fact that G is connected and T spans G

we know that for every a, b E V there is a unique path connecting a and b using only

tree edges.

Definition 2.2.8 (Tree Path). For a, b E V, we define the tree path P(a,b) g V X V to

be the unique path from a to b using edges from T.1 In vector form we let p(a,b) E RE

denote the unique flow sending 1 unit of flow from a to b, that is nonzero only on T.

For the off-tree edges we similarly define tree cycles.

Definition 2.2.9 (Tree Cycle). For (a, b) E E \ T, we define the tree cycle C(a,b)

{ (a, b)} U P(b,a) to be the unique cycle consisting of edge (a, b) and P(b,a). In vector

form we let C(a,b) denote the unique circulation sending 1 unit of flow on C(a,b).

1Note that edges of P(a,b) are oriented with respect to the path, not the natural orientation of G.

24

Cycle Space

The tree cycles form a complete characterization of circulations in a graph. The set

of all circulations { E RE IBT = 0} is a well-known subspace called cycle space [10]

and the tree cycles { I e E E \ T} form a basis. This yields an even more succinct

description of the KPL optimality condition (Lemma 2.2.7). A feasible f E RE is

optimal if and only if f'R' = 0 for all e E E \ T.

We can think of each tree cycle Ce as a long resistor consisting of its edges in

series with total resistance EeEC re and flow induced potential drop of ZeECe f(e)re.

KPL optimality then states that f E RE is optimal if and only if the potential drop

across each of these resistors is 0. Here we define two key quantities relevant to this

view.

Definition 2.2.10 (Cycle Quantities). For e E E \ T and f E RE the resistance of

Ce, Re, and the flow induced potential across Ce, Ac.(r), are given by

Re Z ref = cTR' and A,(f E ref(e) =PfR,.
e'ECe eECe

Low-Stretch Spanning Trees

Starting with a feasible flow, our algorithm computes an approximate electrical flow

by fixing violations of KPL on randomly sampled tree cycles. How well this algorithm

performs is determined by how well the resistances of the off-tree edges are approx-

imated by their corresponding cycle resistances. This quantity, which we refer to as

as the tree condition number, is in fact a certain condition number of a matrix whose

rows are properly normalized instances of ' (see Section 3.4.3).

Definition 2.2.11 (Tree Condition Number). The tree condition number of spanning

tree T is given byr(T) - e E , and we abbreviate it as r when the underlying

tree T is clear from context.

This is closely related to a common quantity associated with a spanning tree called

stretch.

25

Definition 2.2.12 (Stretch). The stretch of e E E, st (e), and the total stretch of

T, st (T), are

st (e) e re and st (T) = st (e)
eEE

Since Re = re - (1 + st (e)) we see that these quantities are related by r(T) =

st (T) + m - 2n + 2.

Efficient algorithms for computing spanning trees with low total or average stretch,

i.e. low-stretch spanning trees, have found numerous applications [3, 18] and all

previous nearly-linear-time SDD-system solvers [50, 53, 31, 32], including the most

efficient form of the SDD solver presented in this thesis, make use of such trees. There

have been multiple breakthroughs in the efficient construction of low-stretch spanning

trees [3, 18, 1, 31, 2] and the latest such result is used in this thesis and stated below.

Theorem 2.2.13 ([2]). In O(mlog n log log n) time we can compute a spanning tree

T with total stretch st (T) = O(m log n log log n).

2.3 The Algorithm

Given a SDD system Ax = b we wish to efficiently compute X such that 11 - At j|A <

eIIAtbIA. Using standard reduction techniques (see Appendix A of [30]) we can reduce

solving such SDD systems to solving Laplacian systems corresponding to connected

graphs without a loss in asymptotic run time. Therefore it suffices to solve LU =

X in nearly-linear time when L is the Laplacian matrix for some connected graph

G. Here we provide an algorithm that both solves such systems and computes the

corresponding e-approximate electric flows in 0 (m log 2 n log log n log(E-n)) time.

2.3.1 A Simple Iterative Approach

Our algorithm focuses on the electric flow problem. First, we compute a low stretch

spanning tree, T, and a crude initial feasible fo E R' taken to be the unique A

that meets the demands and is nonzero only on tree edges. Next, for a fixed number

of iterations, K, we perform simple iterative steps, referred to as cycle updates, in

26

which we compute a new feasible fi E IRE from the previous feasible R'1 E RE while

attempting to decrease energy. Each iteration, i, consists of sampling an e E E \ T

proportional to e, checking if f_1 violates KPL on Ce (i.e. AC(L) L 0) and adding

a multiple of ' to make KPL hold on Ce (i.e. f = f_1 Since,

BTe = 0, this operation preserves feasibility. We show that in expectation fK is an

e-approximate electrical flow.

To solve LVY = ' we show how to use an e-approximate electrical flow to derive

a candidate solution to LY = ' of comparable quality. In particular, we use the fact

that a vector f E IRE and a spanning tree T induce a natural set of voltages, v' E R'

which we call the tree induced voltages.

Definition 2.3.1 (Tree Induced Voltages). For r E IRE and an arbitrary (but fixed)

s E V, 2 we define the tree induced voltages V' E R" by v(a) d f (e)re for
Va E V.

Our algorithm simply returns the tree induced voltages for fK, denoted K as the

approximate solution to LY = . The full pseudocode for the algorithm is given in

Algorithm 1.

Algorithm 1: SimpleSolver

Input :G = (V, E, r), ' E IRV, E R+
Output: f E IRE and Y E IRV

T := low-stretch spanning tree of G;

fo :=unique flow on T such that BTfo -;
Pe(:= 7 -foralleEE\T;

K = rr log (st(T>T(T)

for i = 1 to K do
Pick random ei E E \ T by probability distribution f;

0 - A,. Y*-) -

end

return rK and its tree induced voltages VK

2We are primarily concerned with difference between potentials which are invariant under the
choice s E V.

27

2.3.2 Algorithm Guarantees

In the next few sections we prove that SimpleSolver both computes an e-approximate

electric flow and solves the corresponding Laplacian system in nearly linear time:

Theorem 2.3.2 (SimpleSolver). The output of SimpieSoiver satisfies 3

E[((f)] (1 + e) - (('p) and E| j- LtI - | Lf t|L

and SimpieSolver can be implemented to run in time O(m log 2 nlog log nlog('n))

By construction SimpleSolver outputs a feasible flow and, by choosing T to be a

low stretch spanning tree with properties guaranteed by Theorem 2.2.13, we know that

the number of iterations of simple solver is bounded by O(m log n log log n log(e'n)).

However, in order to prove the theorem we still need to show that (1) each iteration

makes significant progress, (2) each iteration can be implemented efficiently, and (3)

the starting flow and final voltages are appropriately related to (pt). In particular

we show:

1. Each iteration of SimpleSolver decreases the energy of the current flow by

at least an expected (1 - -) fraction of the energy distance to optimality (see

Section 2.4).

2. Each iteration of SimpleSolver can be implemented to take O(log n) time (see

Section 2.5).4

3. ' (fo) is sufficiently bounded, the quality of tree voltages is sufficiently bounded,

and the entire algorithm can be implemented efficiently (see Section 2.6).

3Although the theorem is stated as an expected guarantee on f and i, one can easily use Markov
bound and Chernoff bound to provide a probabilistic but exact guarantee.

4Note that a naive implementation of cycle updates does not necessarily run in sublinear time.

In particular, updating f := 1 - & -) 6, by walking Ce and updating flow values one by one
may take more than (even amortized) sublinear time, even though T may be of low total stretch.
Since st (T) is defined with respect to cycle resistances but not with respect to the number of edges
in these cycles, it is possible to have a low-stretch tree where each tree cycle still has Q(IVi) edges
on it. Furthermore, even if all edges have resistances 1 and therefore the average number of edges in
a tree cycle is O(logn), since SimpleSolver samples off-tree edges with higher stretch with higher
probabilities, the expected number of edges in a tree cycle may still be Q(IVI).

28

2.4 Convergence Rate Analysis

In this section we analyze the convergence rate of SimpleSolver. The central result

is as follows.

Theorem 2.4.1 (Convergence). Each iteration i of Simp ieSo lver computes feasible

A E IRE such that

E[(f) - I(oe -;(- ((fo) -(fopt) .

Our proof is divided into three steps. In Section 2.4.1 we analyze the energy gain

of a single algorithm iteration, in Section 2.4.2 we bound the distance to optimality

in a single algorithm iteration, and in Section 2.4.3 we connect these to prove the

theorem.

2.4.1 Cycle Update Progress

For feasible f E RE, we can decrease (f) while maintaining feasibility, by adding a

multiple of a circulation ' E RE to ! In fact, we can easily optimize to pick the best

multiple.

Lemma 2.4.2 (Energy Improvement). For fE RE, ' E IE, and * - RE E R

we have

arg min a(f +c) = - . an+ - (/) = 2

aE? ~T R C- c Rc

Proof. By definition of energy (f+ a) = (f+ aC)TR(f+ ac) = frRf+ 2afrR2+

a 2c'RE . Setting the derivative with respect to a to 0 and substituting in a = a*

yields the results. E

In the special case where = 3 is a tree cycle for some off-tree edge e E E \ T,

since Re = ceR' and ACe(!) = f"R', this procedure is precisely the iterative step

of SimpleSolver, i.e. a cycle update. The following lemma follows immediately and

29

states that the energy decrease of a cycle update is exactly the energy of a resistor

with resistance Re and potential drop A, (f)

Lemma 2.4.3 (Cycle Update). For feasible fE IE and e E E \ T we have

C. (f) Ac.Y) 2
f Re /,) () Re

2.4.2 Distance to Optimality

To bound how far f, in SimpleSolver is from optimality we use that the duality gap

between A and its tree induced voltages fi4 is an upper bound on this distance. Here

we derive a simple expression for this quantity in terms of cycle potentials.

Lemma 2.4.4 (Tree Gap). For feasible f. E Rand tree induced voltages E we

have

gap(f, 9)= Z rf

eEE\T e

Proof. By definition of primal and dual energy we have gap(f, V) = f'Rfo- (2Vfr -

vf'L6). Using that BTf= X and L = BTR-lB we get

gap(f V) = f"Rf - 2ifBTf ifBTR-B = (Rf - BVT R-1 (Rf - BV)

Therefore gap(f) = EeE e (f (e)re - Ay (e)). However, by the uniqueness of

tree paths, the antisymmetry of f E RE, and the definition of tree voltages we have

Va, b E V : AV (a, b) = i(a) - (b) = Z(e)re + 1 f(e)re = f(e)r.
eEP6. eEPab eEPab

Therefore, e - T => f(e)re-AVi(e) = 0 and e E E\T => f(e)re- Ag (e) = A(f). E

2.4.3 Convergence Proof

Here we connect the energy decrease of a cycle update (Lemma 2.4.3) and the du-

ality gap formula (Lemma 2.4.4) to bound the the convergence of SimpleSolver.

30

Throughout this section we use i4 to denote the tree induced voltages for flow f.
First, we show that in expectation each iteration i of SimpleSolver decreases

(f-i1) by a fraction of the duality gap.

Lemma 2.4.5 (Expected Progress). For iteration i of Simp LeSo lver we have

E)() - E(-1) gap(_ 1 , _1)] = -gap(_ 1 , -1)

Proof. In each iteration i, SimpleSolver picks a random ej E E \ T with probability

Pe, and adds a multiple of ' , which by Lemma 2.4.3 decreases the energy by A(.)2

Therefore

-A -. (f -)2
E - - 1) gap(i*_,i) = E [e) E ~, gap(f-1,vi1)

f i A - e E \ T I R

Using that pe = - R and applying Lemma 2.4.4 yields the result. E

Next, we show that this implies that each iteration decreases the expected energy

difference between the current flow and the optimal flow by a multiplicative (1 -

Lemma 2.4.6 (Convergence Rate). For all i > 0 let random variable Di E (fi) -

(fpt). Then for all iterations i > 1 we have E[Di] 1 (-) E[Di_1]

Proof. Since in each iteration of SimpleSolver one of a finite number of edges is

chosen, clearly Di is a discrete random variable and by law of total expectation we

have

E[Dj] = E Di_1 = c] Pr[Dj_1 = c]
C

However, we know Di- 1 <gap(f_ 1, _1) so by Lemma 2.4.5, E [D7D 1 = c] c-.

Therefore:

E[Dj] < 1 -)c -Pr[Di_1 = c]] = (I - E[Di_1]

CL

31

Finally, by induction on Lemma 2.4.6 and the definition of Di we prove Theo-

rem 2.4.1.

2.5 Cycle Update Data Structure

In this section we show how to implement each iteration (i.e. cycle update) of

SimpleSolver in O(logrn) time. In Section 2.5.1 we formulate this as a data struc-

ture problem, in Section 2.5.2 we present a recursive solution, and in Section 2.5.3

we provide a linear algebraic interpretation that may be useful in both theory and

practice.

2.5.1 The Data Structure Problem

In each iteration i of SimpleSolver we pick a random (a, b) E E \ T and for feasible

f E RE compute

C* - f (a, b)rab where (a) = f(e)re
R(a,b) R(a,b) whera6sa

and s is an arbitrary fixed vertex in V which we refer to as the root. Then a* is added

to the flow on every edge in the tree cycle C(a,b). By the antisymmetry of flows and

the uniqueness of tree paths, this update is equivalent to (1) adding a* to the flow

on edge (a, b), (2) adding -a* to the flow on every edge in P(,,b) and then (3) adding

a* to the flow on every edge in P(sa).

Therefore, to implement cycle updates it suffices to store the flow on off-tree edges

in an array and implement a data structure that supports the following operations.

* init(T, s E V): initialize a data structure D given tree T and root s E V.

" queryD(a E V): return 6(a) = EEP() f(e)re.

" updateD(a E V, a E R): set f(e) := J(e) + ce for all e E P(s,a).

32

2.5.2 Recursive Solution

While one could solve this data structure problem with a slight modification of link-cut

trees [47], that dynamic data structure is overqualified for our purpose. In contrast to

the problems for which link-cut trees were originally designed, in our setting the tree

is static, so that much of the sophistication of link-cut trees may be unnecessary. Here

we develop a very simple separator decomposition tree based structure that provides

worst-case O(log n) operations that we believe sheds more light on the electric flow

problem and may be useful in practice.

Our solution is based on the well known fact that every tree has a good vertex

separator, tracing back to Jordan in 1869 [23].

Lemma 2.5.1 (Tree Vertex Separator). For a spanning tree T rooted at s with n > 2

vertices, in 0(n) time we can compute

(d, T, .. , Tk) = tree-decompose(T)

such that the removal of d E V (which might equal to s) disconnects T into subtrees

TO, ... , Tk, where To is rooted at s and contains d as a leaf, while other T 's are rooted

at d. Furthermore, each T has at most n/2 + 1 vertices.

Proof. We start at root s, and at each step follow an edge to a child whose corre-

sponding subtree is the largest among all children. We continue this procedure until

at some vertex d (which might be s itself) the sizes of all its subtrees have no more

than 1 vertices. This vertex d is the desired vertex separator. Now if s = d we let To2

be the subtree above d rooted at s with d being the leaf, and let each T be a sub-tree

below d and rooted at d; or when s = d we let To,... , Tk each denote a subtree below

d and rooted at d. ' By pre-computing subtree sizes tree-decompose(T) runs in

0(n) time. O

5For technical purposes, when V has only two vertices with s being the root, we always define
d E V such that d : s and define tree-decompose(T) to return no sub-trees, i.e., k = -1. By
orienting the tree away from s and precomputing the number of descendents of each node we can
easily implement this in 0(n) time.

33

Applying this lemma recursively induces a separator decomposition tree from

which we build our data structure. To execute init(T, s) we compute a vertex sep-

arator (d, To, . . . , Tk) and recurse separately on each subtree until we are left with a

tree of only two vertices. In addition, we precompute the total weight of the intersec-

tion of the root to d path P(,,d) and the root to a path P(,,a), denoted by height (a)

for every a E V, by taking a walk over the tree. SeeAlgorithm 2 for details.

With this decomposition we can support query and update by maintaining just

2 values about the paths P(,,d). For each subtree we maintain the following variables:

" d-drop, the total potential drop induced on the the path P(s,d), and

" d-ext, the total amount of flow that has been updated using the entire P(,d)

path, i.e. the contribution to P(,,d) from vertices beyond d.

It is easy to see that these invariants can be maintained recursively and that they

suffice to answer queries and updates efficiently (see Algorithm 3 and Algorithm 4).

Furthermore, because the sizes of trees at least half at each recursion, init takes

O(n log n) while query and update each takes O(log n) time.

2.5.3 Linear Algebra Solution

Here we unpack the recursion in the previous section to provide a linear algebraic

view of our data structure that may be useful in both theory and practice. We show

that the init procedure in the previous section computes for all a E V a query vector

q(a) and an update vector Ui(a) each of support size O(log V|), such that the entire

state of the data structure is an O(VI) dimensional vector X initialized to 0 allowing

query and update to be as simple as the following,

query(a) : return q(a) - Y

update(a, a) : := X + au(a) . (2.3)

To see this, first note that init recursively creates a total of N = O(IVI) subtrees

T,..., TN. Letting d-exti, d-dropi, height denote d.ext, d-drop, and height as-

34

Algorithm 2: Recursive init(T, s E V)
d-ext := 0, d-drop := 0 ;
(d, To, ... , T) := tree-decompose(T);
Va E V : height(a) :=ZeEP(a)P(,d) re

if IVI > 2 then
IVi E {, 1,.. ., k}: Dj:=init(T, d);

end

Algorithm 3: Recursive query(a E V)
if a = d then return d.drop ;
else if IV = 2 then return 0;
else if a E To then

I return d.ext - height (a) + queryD (a)
else

let T be unique tree containing a;
return d-drop + queryoi (a)

end

Algorithm 4: Recursive update(a E V, a E R)

d-drop := d-drop +a -height(a)
if VI = 2 then return;
if a 0 To then d.ext := d-ext + a;
if a , d then

let T be unique tree containing a;
updateD,(a, a);

end

sociated with tree T, the state of the data structure is completely represented by a

vector X~ E [{e,d}xN defined as follows

.. def d-exti ifc e;
xc,i =

d-dropi if c = d.

It is easy to see that given vertex a E V, in order for query(a) or update(a, a) to

affect tree T in the decomposition, it is necessary that a is a vertex in T and a is

not the root si of T. Accordingly, we let T(a) = {i E [N] I a E T and a = si} be the

indices of such trees that a may affect.

35

Next, in order to fully specify the query vector q(a) and the update vector u(a), we

further refine T(a) by defining To(a) E {i E T(a) I a is in To of tree-decompose(T)}

and T+(a) E T(a) \To(a). Then, one can carefully check that the following definitions

of q(a), U(a) E 1{e,d}xN along with their query and update in (2.3), exactly coincide

with our recursive definitions in Algorithm 3 and Algorithm 4 respectively.

height(a) c = e and i E To(a)

def
qj(a)(Ci) = 1 c = d and i E T+(a)

0 otherwise

and

1 c = e and i E T+(a)
def

u (a)(Ci) = height;(a) c = d and i E T(a)

0 otherwise

Furthermore, the properties of init and tree-decompose immediately implies that

each vertex a can appear in at most O(log n) trees where it is not the root, so jT(a) I =
O(log n). As a consequence, q(a) and Ui(a) each has at most O(log n) non-zero entries.

It is also not hard to see that we can pre-compute these vectors in O(n log n) time

using our recursive init.

Applying these insights to the definition of a cycle update we see that this data

structure allows each cycle update of SimpleSolver to be implemented as a single dot

product and a single vector addition where one vector in each operation has O(log n)

non-zero entries. Since these vectors can be precomputed each cycle update can

be implemented by iterating over a fixed array of O(logn) pointers and performing

simple arithmetic operations. We hope this may be fast in practice.

2.6 Asymptotic Running-Time

Here we give the remaining analysis needed to prove the correctness of SimpleSolver

and prove Theorem 2.3.2. First we bound the energy of fo.

36

Lemma 2.6.1 (Initial Energy). 6 :(fo) st (T) fopt

Proof. Recall that fo E RE is the unique vector that meets the demands and is

nonzero only on T. Now, if for every e E E we sent fopt(e) units of flow along P

we achieve a vector with the same properties. Therefore, fo = ZEE fopt(e)pe and by

applying the Cauchy-Schwarz inequality we get

= Zre 'E fopt(e2) E e EP re fopt(eI) 2
eET e'EEteEPe, eET Le'EEjeEPe, e'EEjeEPe,

Applying the crude bound that

Ve E re fopt(e') 2 < {tpt)

e'EEjeEPe,

and noting that by the definition of stretch

Ze Z eZZst (T)
eET e'EEjeETe, e'EE eETe r

the result follows immediately. El

Next, we show how approximate optimality is preserved within polynomial factors

when rounding from an e-approximate electric flow to tree induced voltages.

Lemma 2.6.2 (Tree Voltage Rounding). Let f E RE be a primal feasible flow with

(jf) (1 + e) . (fot) for e > 0 and let 'J E [Rv be the tree induced voltages. Then

the following holds

jjV - Lill -.7' -ilLfl|

Proof. By Lemma 2.4.5 we know that one random cycle update from SimpleSolver

is expected to decrease (f) by gap(f, 'i)/r. Therefore by the optimality of fopt we

have

- gap(f),) f

'This lemma follows immediately from the well known fact that T is a st (T)-spectral sparsifier
of G, cf. [53, Lemma 9.2], but a direct proof is included here for completeness.

37

and since (f~) (1 + e) - () and <(f) ('(t pt) we have gap(f'opt,) < E - r -

((fopt). Finally, using that ' - Lt, fopt = R-1B 0 p, and L = BTR-lB it is

straightforward to check

gap(f'pt,Ul) = 11V - Ltl-1 and (-Lt12

Finally, we have everything we need to prove the correctness of SimpleSolver.

Proof of Theorem 2.3.2. Applying Theorem 2.4.1,Lemma 2.6.1 , and the definition of

K immediately yields the following.

1 -log(e' 1st(T)r-)

E} ((K1st (T)E ((Kopt s fopt fopt -

Using several crude bounds and applying Lemma 2.6.2 we get

E[(K 1 + pt) and ElKl - Lt ILIL

which is stronger than what we need to prove for the theorem.

All that remains is to bound the running time. To do this, we implement the al-

gorithm SimpleSolver using the latest low-stretch spanning tree construction (The-

orem 2.2.13) and construct a spanning tree T of stretch st(T) = O(m log n log logn)

in time O(mlog n log log n) yielding r = O(mlog n log log n).

Next, to compute fo we note that given any demand vector - e RV with E> j = 0,

the quantity fo(e) on a tree edge e E T is uniquely determined by the summation of

X, where v is over the vertices on one side of e. Therefore, fo can be computed via a

DFS in O(n) time.

To compute Re for each off-tree edge e E E\T we could either use Tarjan's off-line

LCA algorithm [56] that runs in a total of O(m) time, or simply use our own data

structure in O(m log n) time. In fact, one can initiate a different instance of our data

structure on T, and for each off-tree edge (a, b) E E \ T, one can call update(b, 1)

38

and update(a, -1), so that Re = query(b) - query(a) + re.

Finally, we can initialize our data structure in O(n log n) time, set the initial

flow values in O(n log n) time, perform each cycle update in O(log n) time, and

compute all the tree voltages in O(n log n) time using the work in section Sec-

tion 2.5. Since the total number of iterations of our algorithm is easily seen to be

O(m log n log(ne-1) log log n) we get the desired total running time. E

2.7 Numerical Stability

Up until this point our analysis has assumed that all arithmetic operations are exact.

In this section, we show that SimpleSolver is numerically stable and achieves the

same convergence guarantees when implemented with finite-precision arithmetic.

For simplicity of exposition, we assume that the resistances re and the coordinates

of the demand vector ' are all represented as b-bit integers with absolute values

bounded by N = 2b. We show that SimpleSolver works when arithmetic operations

are implemented with O(max(b, log n, log 1/E)) bits of precision (which is necessary

simply to guarantee we can represent an answer meeting the required error bound).

In particular, if the entries of the input and e can be stored in log n-bit words, our

running time guarantees hold in the standard unit cost RAM model, which only allows

arithmetic operations on O(log n)-bit numbers to be done in constant time.

We start our algorithm by multiplying the demand vector X by [4mN 2/F, to

ensure that in Apt there exist at least [4mN 2/e] total units of flow on the edges.

Since the resistances are at least 1, this guarantees that (fpt) ;> F4mN 2/e]. Next,

we ensure that throughout our algorithm all flow vectors fj are integer vectors. At

each iteration of SimpleSolver, when we are given a primal feasible flow f and want

to compute the optimal cycle update * - , we round this fraction to the nearest
cCe'

integer and suppose we pick some d E Z such that |a* - aj ;

Based on the modifications above, it is easy to see that our algorithm can be

run on a RAM machine with word size O(max(b, log n, log 1/E)), since all flow values

are integers bounded above by O(poly(N, n, 1/6)). All we have left to show is the

39

convergence analysis for such integral updates.

We do so by strengthening our cycle update lemma, Lemma 2.4.3.

cycle update, if we add d = a*(1 + 6) units of flow on the cycle instead

corresponding energy decrease is

((f a*(1 + 6)C) - = (f a*(1 + 6)c) TR(f*- a*(1 +),e) - f Rf

= -2a*(1 + 6)fTRe ± (c*(1 + 6))2 CRe

= C (e 62)
Re

where the last equality has used the fact that Re = c~R. We have 61 ! , so, as

long as a* > 1, the decrease in the energy decrease is at least j of what it would be4

for 6 = 0. We call an off-tree edge "good" if its a* > 1, and "bad" otherwise. We

can rewrite the duality gap as

A (f) 2 A 2 Re
gap(f,) = e f)=E e

eEE\T eEE\T e re

c.(f)2 R2 Ac()2 R

R 2 e Re re
eEE\T e eEE\T
e is bad e is good

< mN 2 z Ace(f) 2 Re

eEE\T Re re
e is good

As a consequence, if one samples 7 each tree cycle ', with

the expected energy decrease is at least:

Re A Ce(f)2

< ~ eT) ReeEE\T
e is good

(((- 1) - ((-) - mN2)

4,r/3

probability to ,then

23
4)

-- 0
E (()-(fi-) fgap('_1,1 -1)

< (gap(J>1, ';- 1) - mN2)
~ 4-r/3

7Recall that exact sampling takes expected 0(1) time on a machine with O(log n)-sized words.

40

For each

of a*, the

If one defines a random variable D (fopt)- mN 2, then

E[DjjDj-1] < 1 -Di1 .1

Using the same analysis as before, after K = 4 log (,) we have with probability3 s(+(

at least 1 - p that J(K 1+ f) ((f0 t) + mN2) 5 (1 +e) (f0 t) as desired.

41

42

Chapter 3

Efficient Accelerated Coordinate

Descent

In the previous chapter we saw how how repeated application of a simple computa-

tional efficient update rule can be used to obtain a nearly linear time SDD solver.

This idea of using simple sublinear-time iterative steps to solve a convex optimization

problem is in fact an old one [24, 62, 4]. It is an algorithmic design principle that has

seen great practical success [39, 21, 4] but has been notoriously difficult to analyze.

In the past few years great strides have been taken towards developing a theoretical

understanding of randomized variants of these approaches. Beyond the results in the

previous chapter, in 2006 Strohmer and Vershynin [55] showed that a particular sub-

linear update algorithm for solving overconstrained linear systems called randomized

Kaczmarz converges exponentially and in 2010 Nesterov [43] analyzed randomized

analog of gradient descent that updates only a single coordinate in each iteration,

called coordinate gradient descent method and provided a computationally inefficient

but theoretically interesting accelerated variant, called accelerated coordinate gradient

descent method (ACDM).

In this chapter we provide a framework that both strengthens and unifies these

results. We present a more general version of Nesterov's ACDM and show how to

implement it so that each iteration has the same asymptotic runtime as its non-

accelerated variants. We show that this method is numerically stable and optimal

43

under certain assumptions. Then we show how to use this method to outperform

conjugate gradient in solving a general class of symmetric positive definite systems

of equations. Furthermore, we show how to cast both randomized Kaczmarz and

SimpleSolver in this framework and achieve faster running times using ACDM.

The rest of this chapter is organized as follows. In Section 3.1, we introduce the

problem and function properties that we will use for optimization. In Section 3.2, we

briefly review the mathematics behind gradient descent, accelerated gradient descent,

and coordinate descent. In Section 3.3, we present our general ACDM implementa-

tion, prove correctness, and show how to implement the update steps efficiently. In

Section 3.4, we show how to apply ACDM to achieve faster runtimes for various linear

system solving scenarios and in Appendix A we provide missing details of the proof

of ACDM convergence and provide numerical stability proofs.

3.1 Preliminaries

For the remainder of this chapter we change notation slightly and focus on the general

unconstrained minimization problem 1

min f(Y)

where the objective function f :Rn -+ R is continuously differentiable and convex,

meaning that

V, Y E R : f (j) > f(S) + (Vf(x), Y - X)

We let f* mingen f(Y) denote the minimum value of this optimization problem

and we let * arg mingEofl f(X) denote an arbitrary point that achieves this value.

To minimize f, we restrict our attention to first-order iterative methods, that is

algorithms that generate a sequence of points 21,. .., such that limk..+o f(A4) = f

'Many of the results in this chapter can be generalized to constrained minimization problems
[43], problems where f is strongly convex with respect to different norms [43], and problems where
each coordinate is a higher dimension variable (i.e. the block setting) [45]. However, for simplicity
we focus on the basic coordinate unconstrained problem in the Euclidian norm.

44

while only evaluating the objective function, f, and its gradient Vf, at points. In

other words, other than the global function parameters related to f that we define

in this section, we assume that the algorithms under consideration have no further

knowledge regarding the structure of f. To compare such algorithms, we say that an

iterative method has convergence rate r if f(Zk) - f* < O((1 - r)k) for this method.

Now, we say that f has convexity parameter o with respect to some norm ||-| if

the following holds

V9, E [Rn : f (Y) > f (y) + (Vfs) p - X)+5|| 2(.)yfy~ X)7y X -1 1 (3.1)
2

and we say f strongly convex if - > 0. We refer to the right hand side of (3.1) as

the lower envelope of f at F and for notational convenience when the norm is not

specified explicitly we assume it to be the standard Euclidian norm X|x|I d /

Furthermore, we say f has L-Lipschitz gradient if

V9, Y' E [R" : I|IVf (y) - Vf (9)| 1 5 L I| IY- X J|

The definition is related to an upper bound on f as follows:

Lemma 3.1.1. [41, Thm 2.1.5] For continuously differentiable f : Rn -+ R and

L > 0, it has L-Lipschitz gradient if and only if

V9, E [Rn : f (y) :5 f (g) + (Vf (g), _ g) + L| 11 *12. (.2

We call the right hand side of (3.2) the upper envelope of f at '.

The convexity parameter p and the Lipschitz constant of the gradient L provide

lower and upper bounds on f. They serve as the essential characterization of f for

first-order methods and they are typically the only information about f provided to

both gradient and accelerated gradient descent methods (besides the oracle access to

f and Vf). For twice differentiable f, these values can also be computed by properties

of the Hessian of f by the following well known lemma:

45

Lemma 3.1.2 ([43]). Twice differentiable f : R" -+ R has convexity parameter [and

L-Lipschitz gradient with respect to norm I|-|| if and only if Vi E IR the Hessian of f

at y, V 2 f(') E RXf satisfies

VY E Rn : Pjjg||2:5rr (V2f(:f)) y < L |1|g||2

To analyze coordinate-based iterative methods, that is iterative methods that only

consider one component of the current point or current gradient in each iteration,

we need to define several additional parameters characterizing f. For all i E [n], let

ej E [R denote the standard basis vector for coordinate i, let fi(g) E IRn denote the

partial derivative of f at X along si, i.e. fe() T sfVf(9), and let f () denote the

corresponding vector, i.e fi(x) = fi -ej. We say that f has component-wise Lipschitz

continuous gradient with Lipschitz constants { Li} if

VY E IRn, Vt E IR, Vi E [n] : I fi (X-+ t - e-i) - fi (9)| 1 Li - It| I

and for all a > 0 we let S, E n 1 L ' denote the total component-wise Lipschitz

constant of Vf. Later we will see that S, has a similar role for coordinate descent as

L has for gradient descent.

We give two examples for convex functions induced by linear systems and calculate

their parameters. Note that even though one example can be deduced from the other,

we provide both as the analysis allows us to introduce more notation.

Example 3.1.3. Let f(x) 5 (Ag, 9) - (', b) for symmetric positive definite matrix

A E [RXfl. Since A = AT clearly Vf(9) = Ax' - 6 and V 2f(X) = A. Therefore, by

Lemma 3.1.2, L and o- satisfy

a 11| 2 < x'A' < L ||4||2

Consequently, o- is the the smallest eigenvalue Amin of A and L is the largest eigenvalue

Am.x of A. Furthermore, Vi E [n] we see that fi(:) = Ji (A- - 6) and therefore Li

46

satisfies

Vt E R : At I - Ajjj = JefA(tej)| Lilt.

Since the positive definiteness of A implies that A is positive on diagonal, we have

Li = Aii, and consequently S1 = tr(A) = E7 Aii = E', Ai where Ai are eigenval-

ues of A.

Example 3.1.4. Let f(Y) = A |A-- b||2 for any matrix A. Then the gradient

Vf (Y) = AT (AX - and the hessian V2f(;) - AT A. Hence, - and L satisfy

1-|| 1|2 T 11-11|z |2

and we see that o- is the the smallest eigenvalue Amij of AT A and L is the largest

eigenvalue Am, of AT A. As in the previous example, we therefore have Li = ||ai1| 2

where ai is the i-th column of A and S1 = E ||ar|12 = 2 the Frobenius norm of

A.

3.2 Review of Previous Iterative Methods

In this section, we briefly review several standard iterative first-order method for

smooth convex minimization. This overview is by no means all-inclusive, our goal is

simply to familiarize the reader with numerical techniques we will make heavy use

of later and motivate our presentation of the accelerated coordinate descent method.

For a more comprehensive review, there are multiple good references, e.g. [41], [14].

In Section 3.2.1, we briefly review the standard gradient descent method. In Sec-

tion 3.2.2, we show how to improve gradient descent by motivating and reviewing

Nesterov's accelerated gradient descent method [40] through a more recent presenta-

tion of his via estimate sequences [41]. In Section 3.2.3, we review Nesterov's coordi-

nate gradient descent method [43]. In the next section we combine these concepts to

present a general and efficient accelerated coordinate descent scheme.

47

3.2.1 Gradient Descent

Given an initial point 'o E RI and step sizes hk E R, the gradient descent method

applies the following simple iterative update rule:

Vk > 0 : xk+1 := k - hkVf(xk).

For hk = }, this method simply chooses the minimum point of the upper envelope of

f at Xk:

Xk+1 = argmin f P') + (VfX4k),I- Xk) + ||-k||}

Thus, we see that the gradient descent method is a greedy method that chooses the

minimum point based on the worst case estimate of the function based on the value

of f(xk) and Vf(xk). It is well known that it provides the following guarantee [41,

Cor 2.1.2, Thm 2.1.15]

fXka - 2* min I z - *| .k4 X (3.3)

3.2.2 Accelerated Gradient Descent

To speed up the greedy and memory-less gradient descent method, one could make

better use of the history and pick the next step to be the smallest point in upper

envelope of all points computed. Formally, one could try the following update rule

Xk+1 := arg min mmn f Zt (E k) + (VfG(), -ZA) + 2k - Xk||2
g R 1 tk k=1 2) J

However, this problem is difficult to solve efficiently and requires storing all previous

points. To overcome this problem, Nesterov [40, 41] suggested to use a quadratic

function to estimate the function. Formally, we define an estimate sequence as follows:
2

2Note that our definition deviates slightly from Nesterov's [41, Def 2.2.1] in that we include
condition 3.5.

48

Definition 3.2.1 (Estimate Sequence). A triple of sequences {#k(x), 7,X 'A}O is

called an estimate sequence of f if limkoo 7k = 0 and for any X e D" and k > 0 we

have

Ok (Y) 771 k) f(X') + 77k 00 () (3.4)

and

X~k) In5 min #OkX). (3.5)

An estimate sequence of f is an approximate lower bound of f which is slightly

above f*. This relaxed definition allows us to find a better computable approximation

of f instead of relying on the worst case upper envelope at each step.

A good estimate sequence gives an efficient algorithm [41, Lem 2.2.1] by the fol-

lowing

lim f(zA) - f* < lim ik (0(S*) - f*) =0.
k-+oo k-+oo

Since an estimate sequence is an approximate lower bound, a natural computable

candidate is to use the convex combination of lower envelopes of f at some points.

Since it can be shown that any convex combinations of lower envelopes at eval-

uation points {yk} satisfies (3.4) under some mild condition, additional points {yk}

other than {Xk} can be used to tune the algorithm. Nesterov's accelerated gradient

descent method can be obtained by tuning the the free parameters {Yk} and {k} to

satisfy (3.5). Among all first order methods, this method is optimal up to constants

in terms of number of queries made to f and Vf. The performance of the accelerated

gradient descent method can be characterized as follows: [41]

f~z) f*5 -min 1 - , k+2) |O- *2. (3.6)

3.2.3 Coordinate Descent

The coordinate descent method of Nesterov [43] is a variant of gradient descent in

which only one coordinate of the current iterate is updated at a time. For a fixed

a E R, each iteration k of coordinate descent consists of picking a random a random

49

coordinate ik E [n] where

Pr[ik = j] = Pa(j) where Pa(j) L
Sa

and then performing a gradient descent step on that coordinate:

Xk+1 := (k -k-fikX).
Lik

To analyze this algorithm's convergence rate, we define the norm _ its dual

-* ,and the inner product (., .)i-a which induces this norm as follows:

n n

| III-"Q and ||X-I ZL "'zQ
i=1 i=1

and
n

and we let o-1_, denote the convexity parameter of f with respect to II-I|1_a-

Using the definition of coordinate-wise Lipschitz constant, each step can be shown

to have the following guarantee on expected improvement [43]

fG4) - I [f('k+1)] 1 If(X|_1A Xk 2Sa

and further analysis shows the following convergence guarantee coordinate descent

[43]

E [f(Ak)] - f* < min 2S4 max |1 - I Q)_ (1 1-)~ (f (o) - fXk~ k + 4 (f (g):fsto) Y Sa

3.3 General Accelerated Coordinate Descent

In this section, we present our general and iteration-efficient accelerated coordinate

descent method (ACDM). In particular, we show how to improve the asymptotic con-

50

vergence rate of any coordinate descent based algorithm without paying asymptotic

cost in the running time due to increased cost in querying and updating a coordinate.

We remark that the bulk of the credit for conceiving of such a method belongs to

Nesterov [43] who provided a different proof of convergence for such a method for the

a = 0 case, however we note that changes to the algorithm were necessary to deal

with the a = 1 case used in all of our applications.

The rest of this section is structured as follows. In Section 3.3.1, we introduce and

prove the correctness of general ACDM through what we call (probabilistic) estimation

sequences, in Section 3.3.2, we present the numerical stability results we achieve for

this method, and in Section 3.3.3, we show how to implement this method efficiently.

In Appendix A.2, we include some additional details for the correctness proof and in

Appendix A.3, we provide the details of the numerical stability proof.

3.3.1 ACDM by Probabilistic Estimate Sequences

Following the spirit of the estimate sequence proof of accelerated gradient descent [41],

here we present a proof of ACDM convergence through what we call a (probabilistic)

estimation sequence.

Definition 3.3.1 ((Probabilistic) Estimate Sequence). A triple of sequences denoted,

{'kk), T k, }= 0 , where qx :~ - D and z4 e IR are chosen according to some

probability distribution is called a (probabilistic) estimate sequence of f if limko T k =

0 and for all k > 0 we have

Vg E Rn : E [#Ok) (1) -7k gf (X) + 71kE [0 (Y)] (3.7)

and

E [fG4)] min E [#k(y)] (3.8)

A probabilistic estimation sequence gives a randomized minimization method due

to the following

lim E [f(9)] f* < lim 77k (EOo(x*) -f*) = 0
k-+oo k-*oo

51

Since a probabilistic estimation sequence can be constructed using random partial

derivatives, rather than a full gradient computations, there is hope that in certain

cases probabilistic estimation sequences require less information for fast convergence

and therefore outperform their deterministic counterparts.

Similar to the accelerated gradient descent method, in the following lemma we

first show how to combine a sequence of lower envelopes to satisfy condition (3.7) and

prove that it preserves a particular structure on the current lower bound.

Lemma 3.3.2 ((Probabilistic) Estimate Sequence Construction). Let qo(Y) E R' -+

R and {k, 0 k,ik 1}0 be such that

" Each Yk e I

" Each Ok e (0,1) and _0 tOk = 00

" Each ik E [n] is chosen randomly such that Vi E [n] we have Pr[ik - i] =

Then the pair of sequences {#0(), Ik io defined by

* 77o = 1 and qk+1 = (1 -Ok)k

* #k+1(9) = (1-Ok (() +0k [f (YIk) + ((ik), -- k)1-a - IX| - k -

satisfies condition (3.7). Furthermore, if 00(1) = + || - | 1_ then this process

produces a sequence of quadratic functions of the form qkV() = 24 ± || - Vk

where

(k+1 = (1~Ok)(k +Ok1-a (3.9)

Vk+1 = 1 (1~kkk~-k k Ok k (3.10)
(k+1 1k k V"kkk9I1aYk Lik

+ = (1 - Ok)- k -+ Okf" (k) -,k -+) -

+ k+1 2 - +L

Proof. The proof follows from direct calculations however for completeness and for

later use we provide a proof of an even more general statement in Appendix A.1. E

52

In the following theorem, we show how to choose ?F, ' and 0 to satisfy the con-

dition (3.8) and thereby derive a simple form of the general accelerated coordinate

descent method. We also show that the number of iterations required for ACDM

is) which is strictly better than the number of iterations required for

coordinate descent method, 0 (S-'). Note that while several of the definitions\ l-c.am

specifications in the following theorem statement may at first glance seem unnatural

our proof will show that they are nearly forced in order to achieve certain algorithm

design goals.

Theorem 3.3.3 (Simple ACDM). For all i E [n] let Lf M max(Li, Sa/n) I and let

1k Z 1 LQ. Furthermore, for any Yo c DR and for all k > 0, let

= * = f p 900) = 0 + ~- |_
2 k 2Sn

Then applying Lemma 3.3.2 with these parameters, Li as the coordinate-wise gradient

Lipshitz constants, and choosing 'k and '4 such that

Gkik 1 -Vk > 1 : k(+k -i)+ k-4- =0 and A=1- ~ k(Yk_1)
k+1 Lik

yields a probabilistic estimate sequence. This accelerated coordinate descent method

satisfies

Vk > 0 : E [fz) - f* < 1O - (fz)-f iJ0 -z _C).

(3.11)

Proof. By construction we know that condition (3.7) of probabilistic estimation se-

quences holds. It remains to show that '4 satisfies condition (3.8) and analyze the

convergence rate.' To prove (3.8), we proceed by induction to prove the following

3We introduce this to avoid small sampling probabilities as they cause an issue in achieving the

optimal 6 (: convergence rate. This modification can be avoided by choosing a different

distribution over coordinate updates in compute Xk+1 which makes the algorithm more complicated
and potentially more expensive.

53

statement:

Vk > 0 : EV [(Xk)] : Ek min MY) = Ek [#] .

where Ek indicates the expectation up to iteration k. The base case f(o) #o(So)
is trivial and we proceed by induction assuming that Ek [f(k)] 5 Ek [#*]. By Lemma

(3.3.2) and the inductive hypothesis we get

Ek [#+1 Ek (1 - Ok)f (k) + f N(k)

+k(1 -k)(k (l-a 11k -

6|$(f ik 2

2 Ck+1 D1 cf

k - A -~ Y)1-)

where for notational convenience we drop the expectation in each of the variables.

By convexity f('k) f(') + (Vf('k), 'k - Yk) so applying this and the definitions

of 11-111, and (-, -)1_ we get that #*+1 is lower bounded by

02 P-) 2

f (Yk) - P! +A k(Y
2(k+1 i

+ (1 - Ok) ~
(L e

If (-),ik -- Y0)fK (i)k,
(k+1

Using that Vi E [n], Pr[ik = i] = L we get that Ek+1 [0*+1] is lower bounded by
S.a

g! (fi(+)) 2 1
2(k+1 Ij'

Vf(9k),
Ok Ck (- k)

Vk+1
+Xk -k

From this formula we see that ' was chosen specifically to cancel the second term so

Ek+1 [0+1 >- Ek+1 [f(- k) (fi- (2k)f
Y lk ~2(k+1 Ll+a

f (~k)~
02ki fi,(-)2

2 k+1 Li

and it simply remains to choose 9 k and ' +1 so that Ek+1 [fV(+1]) is smaller than

this quantity.

To meet condition (3.8), we simply need to choose { 9 k} % so = . Using

54

Ek+1 f *k) -

(V-k - Yk)) +

If 2 n- 2n , we have

Ek+l fk(k)2]

To compute Xk+1, we use the fact that applying Lemma 3.1.1 to the formula f(ik --

tfi(k)) yields

1~ Li. 2 fi (k) 2
f (- K X- ik) f (.Yk) ~

(Li Li 2 Li 2Li

and therefore for 'k+1 as defined we have

Recalling that (k+1 = (1 - Ok)(k + OkUl1_c we see that choosing (o = a, implies

(k = ai-a for all k and therefore choosing 9 k = completes the proof that
V2S. n

the chosen parameters produce a probabilistic estimate sequence. Furthermore, we

see that this choice implies that rk = (i - n. Therefore, by the definition

of a probabilistic estimate sequence and the fact that S, 2S,, equation (3.11)

follows. E

3.3.2 Numerical Stability

In the previous section, we provided a simple proof how to achieve an ACDM with a

convergence rate of O(). While sufficient for many purposes, the algorithm does

not achieve the ideal dependence on initial error for certain regimes. For consistency

with [43] we perform the change of variables

VkOdef 6 k~k f~k~(Ok)C(k def 5a~k

(k + Ok01-a (k+1 Ck+1

and by better tuning 0 k we derive the following algorithm.

55

Accelerated Coordinate Descent Method

1. Define Li = max(L , (S,,/n)1/c) and SQ = E

2. Define v = o, ao =Abo = 2

3. For k > 0 iterate:

3a. Find ak, Ntkera such that 7k (1 k= (= /
3 .2n b 2n S. bk b

3b. yk = akvk +(1 - ak)4.

3c. Choose ik according to P,(i) = L,/SQ.

3d. = -Vk+1 = A 'a + (1- !k)Pk - fkf (in)
Xk k k

3e. bk+1 = and ak+1 =ykbk+1.

In Appendix A.2 and A.3, we give a proof of convergence of this method in the

unit-cost RAM model by studying the following potential function [43] for suitable

constants ak, bk E R,

ak (!E [f(z)] - f*) + bkE [* - ,]

The following theorem states that error in vector updates does not grow too fast and

Lemma A.2.1 further states that errors in the coefficients a, /, and -Y also does not

grow too fast. Hence, O(log n) bits of precision is sufficient to implement ACDM

with the following convergence guarantees. Below we state this result formally and

we refer the reader to Appendix A.3 for the proof.

Theorem 3.3.4 (Numerical Stability of ACDM). Suppose that in each iteration of

ACDM step 3d has additive error s, i.e. there exists '1,k, 62,k E Rn with ||-,kI e

and ||2,kI1-Q < e such that step 3 is

-1 k 1 V k'k V+Xk+1 := Yk - ~5fk('k) + 1,k and 'k+1 := Okik + (1 - Ok)9k - -- :~-f) +: 62,k-
Lik Lik

a2
If E < and k > al-, then we have the convergence guarantee

O1-aE [1|k+1 -- S 1 + (E [f (k+1)] -*) 6k (3.12)

56

where

6k c 24kSe 2 + 32-1 (-) (xo - x1_-a + (f(xo)) - f

and the additional convergence guarantee that 1 |V f(<kf_, < 2000Oa6k.

This theorem provides useful estimates for the error f(' +1) - f*, the residual

I|vk+1 - _cI and the norm of gradient IIVf(gk)G__. Note how the estimate de-

pends on the initial error f(Xo) - f* mildly as compared to Theorem 3.3.3. We use

this fact in creating an efficient SDD solver in Section 3.4.3.

3.3.3 Efficient Iteration

In both Nesterov's paper [43] and later work [45] the original ACDM proposed by

Nesterov was not recommend since a naive implementation takes O(n) time to update

the vector Vk, and therefore is likely slower than accelerated gradient descent. This

implementation issue is a potential serious problem under the assumption that the

oracle to compute gradient can only accept a single vector as input. However, if

we make the mild assumption that we can compute Vf(tz + sy) for s, t E DR and

y, y E R in the same asymptotic runtime as it takes to compute Vf(s) (i.e. we do

not need to compute the sum explicitly), then we can implement ACDM without

additional asymptotic computational costs per iteration as compared to the cost of

the coordinate descent method performing an update on the given coordinate. In the

following lemma, we prove this fact and show that the technique can be executed in

the unit-cost RAM model without additional asymptotic costs. Note that the method

we propose does introduce potential numerical problems which we argue are minimal.

Lemma 3.3.5 (Efficient Iterations). For Sc, = O(poly(n)) and o-1 _, = Q(poly())

each iteration of ACDM can be implemented in 0(1) time plus the time to make one

oracle call of the form fi,(t' + s) for s, t E IR and C, R E ", using at most an

additional O(log n) bits of precision so long as the number of iterations of ACDM is

o Sazflog(n)).

57

Proof. By the specification of the ACDM algorithm, we have

yk+1 = ak+1Vk+1 + (1 - Ck+1)Xk+1

k
= ek+l1 I.k-k + (1 - A)Yk + ~ fk ()) + (1- ak+1)Lik

1 -k))
Yk -- :fAk ())

Li

= k+10kVk + (Cek+1(l - Ok) + (1 - ak+1)) Yk~ - k ~k k
wik

we see that each update step of ACDM can be rewritten as

:=Ak k Sk
k+1/

Vk+1)

where

Ak = (
VJCk+11k

1C+14k

k ()T
and sk = kSk 1-ak+ --ak+ I' T O

Lk 1ki(A

Therefore to implement ACDM in each iteration we can just maintain vectors ', E

R' and matrix Bk E R2x2 such that = . With this representation

nd by our oracle assumption,

-B-1k

Bk (9)

each update step is Bk+1 () AAkBk () - Sk a
we can implement the following equivalent update step

Bk+1 := AkBk and
IV'

VT

in time 0(1) plus the time needed for one oracle call.

To complete the lemma, we simply need to show that this scheme is numerically

stable. Note that

det(Ak) = k(1 - ak+10k) - ak+10k(l - Ok) = Ok(1 - ak+1)

58

Now by Lemma A.2.1, we know that ak < 32max {k, for k > l and we know

that #3 1 for all k. Therefore, letting x and recalling that we

assumed that the total number of iterations is O(,-i log n) we get

det(Bk) (1 -)(bogn) (1 - 3 2)O(K-1 1ogn) Ki (-
k=2

= (poly e 321og r Q (po()

Hence, O(log n) bits of precision suffice to implement this method. E

3.4 Faster Linear System Solvers

In this section, we show how ACDM can be used to achieve asymptotic runtimes that

outperform various state-of-the-art methods for solving linear systems in a variety

of settings. In Section 3.4.1, we show how to use coordinate descent to outperform

conjugate gradient under minor assumptions regarding the eigenvalues of the matrix

under consideration, in Section 3.4.2, we show how to improve the convergence rate

of randomized Kaczmarz type methods, and in Section 3.4.3, we show how to use the

ideas to achieve the current fastest known numerically stable solver for symmetric

diagonally dominant (SDD) systems of equations.

3.4.1 Comparison to Conjugate Gradient Method

Here we compare the performance of ACDM to conjugate gradient (CG) and show

that under mild assumptions about the linear system being solved ACDM achieves a

better asymptotic running time.

For symmetric positive definite (SPD) matrix A E tRXn and vector b E [R, we

solve the linear system of equations AZ = b via the following equivalence uncon-

strained quadratic minimization problem:

min f(Z) - (AZZ) - (,Z) . (3.13)
ER" 2

59

Let m denote the number of nonzero entries in A, let nnzi denote the number of

nonzero entries in the ith row of A. To make the analysis simpler, we assume that

the nonzero entries is somewhat uniform, namely Vi E [n] we have nnzi = O(m). This

assumption is trivially met for dense matrices, finite difference matrices, etc. Letting

0 < A, K ... K An denote the eigenvalues of A, we get the following running time

guarantee for ACDM.

Theorem 3.4.1 (ACDM on SPD Systems). Assume A is a SPD matrix with the

property that nnzi = O(') for all i e [n]. Let the numerical rank r(A) = En A2/A,.

ACDM applied to (3.13) with a = 14 produces an approximate solution in

6 M r(A) log 1

time with e error in A norm in expectation.

Proof. The running time of ACDM with a = 1 depends on o and S1. From Example

3.1.3, the total component-wise Lipschitz constant S1 is the trace of A, which is E Ai

and the convexity parameter o-o is A1, therefore by Theorem 3.3.4 the convergence

rate of ACDM is V as desired. Furthermore, the running time of each step

depends on the running time of the oracle, i.e. computing fi(x) = (Ax) , which by

our assumption on nnzi takes time 0 (a). LI

To compare with conjugate gradient, we know that one crude bound for the rate

of convergence of conjugate gradient isO (. Hence the total running time of

CG to produce an epsilon approximate solution is 0 (m log). Therefore, with

this bound ACDM is always faster or matches the running time since the numerical

rank of A is always less than or equals to n. Thus, we see that when the numerical

rank of A is o(n), ACDM will likely ' have a faster asymptotic running time.

To be more fair in our comparison to conjugate gradient, we note that in [54]

tighter bound on the performance of CG was derived and they showed that in fact

4Here we only consider the a = 1 case for easier comparison with conjugate gradient.
'The running time of CG may be asymptotic faster when the eigenvalues form clusters.

60

CG has a running time of 0 nnz 1/3 implying that ACDM is faster

than CG when J:' Ai < n A, and it is usually satisfied. In the extreme cases that

the condition is false, CG will need to run for O(n) iterations at which point an exact

answer could be computed.

3.4.2 Accelerating Randomized Kaczmarz

The Kaczmarz method [24] is an iterative algorithm to solve AS = b for any full row

rank matrix A E [R<"n. Letting di E [R denote the i-th row of the matrix A, we know

that the solution of AS = b is the intersection of the hyperplanes H 5 {.: (= ,I) =

bi}. The Kaczmarz method simply iteratively picks one of these hyperplanes and

projects onto it by the following formula:

Sk+1 =pror H k where proj. + bik - (a , k

X~k k I |aik 11

There are many schemes that can be chosen to pick the hyperplane ik, many of

which are difficult to analyze and compare, but in a breakthrough result, Strohmer

and Vershynin in 2008 analyzed the randomized schemes which sample the hyperplane

with probability proportional to ||ai 12. They proved the following

Theorem 3.4.2 (Strohmer and Vershynin [55]). The Kaczmarz method samples row

i with probability proportionally to ||ar||1 at each iteration and yields the following

Vk > 0 : E [||zk - f*||] (1 - r,(A>- 2)k ||o -

where * E DR' is such that A9* = b, i,(A) e ||A- 1 |1 2 . |AflF is the relative condition

number of A, A 1 is the left inverse of A, ||A-1 12 is the smallest non-zero spectral

value of A and |IA||2 E a? is the Frobenius norm of A

Here we show show to cast this algorithm as an instance of coordinate descent and

obtain an improved convergence rate by applying ACDM. We remark that accelerated

Kaczmarz will sample rows with a slightly different probability distribution. As long

61

as this does not increase the expected computational cost of an iteration, it will yield

an algorithm with a faster asymptotic running time.

Theorem 3.4.3 (Accelerated Kaczmarz). The ACDM method samples row i with

probability proportionally tomax { a 111} and performs extra 0(1) work at each

iteration. It yields the following

Vk>O : El - * <3 1- O
_ 2k - 2)

Proof. To cast Strohmer and Vershynin's randomized Kaczmarz algorithm in the

framework of coordinate descent, we consider minimizing the objective function of

theorem theorem directly, i.e. mingsEn 2 - 2*f|. Since A has full row rank, we

write Y = AT" and consider the equivalent problem mingERm 1 j A- - y*11 . Ex-

panding the objective function and using AS* = b, we get

IAg Y 2*| I|A Y 2 2(b, y) +Ilg*|| .

Therefore, we attempt solve the following equivalent problem using accelerated coor-

dinate descent.

min f(y) where fIA -1A 2 - (b,)
9EA- 2

From Example 3.1.4, we know that the i-th direction component-wise Lipschitz con-

stant is Li = I|a;l12 where ai is the i-th row of A and we know that Vf(y) = AA T'- b.

Therefore, each step of the coordinate descent method consists of the following 6

-+1 A AA

Recalling that we had performed the transformation F= A y we see that the corre-

'We ignore the thresholding here for illustration purpose.

62

sponding step in I is

= Xk 1 (-p - = ±bik - (dik)Xk)~
Xk+1 =a~ 2 . Xk I(A- + ~ ak

ai| i/C Iaik 112

Therefore, the randomized coordinate descent method applied this way yields pre-

cisely the randomized Kaczmarz method of Strohmer and Vershynin.

However, to apply the ACDM method and provide complete theoretical guarantees

we need to address the problem that f as we have constructed it is not strongly convex.

This is clear by the fact that the null space of AT may be non trivial.

To remedy this problem we let Z C Rm denote the null space of AT, i.e. Z d{E

Rtm |AT, = 0}, and we define the semi-norm 11-|1z on Rm by |l|zi 'infZEz IIy + zil.

Now it is not hard to see that f is strongly convex under this seminorm with convexity

parameter c-zw = 1A-' 2. Furthermore, one can prove similarly to the proof of

Lemma 3.3.2 and Theorem 3.3.3 that the algorithm in this theorem achieves the

desired convergence rate.

To see this, we let P E Rmxm denote the orthogonal projection onto the image

of A we note that Ilg|lzi = FPTP. Therefore we can apply the general form of

Lemma 3.3.2 proved in Appendix A.1 to derive a similar estimate sequence result

for this norm. Unfortunately, the resulting estimate sequence requires working with

Ptfi,(uk). However, the proof of Theorem 3.3.3 still works using the same algorithm

because of the facts that PtVf(Y) = Vf(1),

V ER, V E Z : f (+ Y) =f (y) and Vf (+ z) = V(g)

and | ; -|Z|z. This gives the same convergence guarantee with O-_ replaced

with 1|A-11- 2 , Sc = A2 and 11- = ||'l1zi. The desired convergence rate follows

from the strong convexity of f.

To justify the cost of each iteration, note that although the iterations work on

the ' variable, we can apply AT on all iterations and just do the operations on X

variables which is more efficient. El

63

3.4.3 Faster SDD Solvers in the Unit-cost RAM Model

Here we show how to cast the SimpleSolver algorithm of Chapter 2 as an instance of

coordinate descent, and by applying ACDM we obtain an algorithm for solving SDD

systems that has an asymptotic running time of 0 (m log3/2 nVlog log n log(,- log in))

in the unit-cost RAM model. More precisely we prove the following.

Theorem 3.4.4. By applying ACDM to Simp IeSo Iver, we can produce i3 E RI such

that 116- Lt <;e L I L in time 0(m log3/ 2 n/og log 1n log(' log n)) .

Proof. Recall that instead of computing Y directly, we can instead focus on the fol-

lowing electric flow problem 8

min ((f where (f) = 2 r ref(e)2
BTf=g 2 R eEE

Now to turn this into an unconstrained minimization problem we first let fo be feasible

flow, i.e. a vector such that BTfO = _. With this, the problem can be simplified to

- 2

min- fo+ A .
BTe-=o 2 1

However, from Section 2.2 we know that { E RE BTd = O} is simply the set of

circulations of the graph, i.e. cycle space, and for spanning tree T the set of tree

cycles for the off tree edges, i.e. { - e E E \ T} form a basis. Therefore, using this

basis we see that we can simplify the problem further to

1. 2 de
min fo + C7 where C .[ce] ce2 - E IRExE\T

gE[RE\T 2 R

Now, for every off-tree edge, i.e. e E E \ T, there is only one cycle ce that passes

through it. So, if we let RE\T E [RE\TxE\T be the diagonal matrix for the resistances
7Although not the focus of this section, we remark that this procedure produces an e-approximate

electric flow in time 0 (m log3 /2 n.'o-g1lognlog(e')) in the unit-cost RAM model. Furthermore,
by the definition of ACDM, we see that the operators produced by this algorithm are linear and by
similar analysis as in [30] the algorithm can be used to produce a linear approximation to Lt.

8To make the analysis cleaner we scale the objective function by .. This has no substantial effect
on our ability to compute approximate voltages from approximate solutions.

64

of the off tree edges we have that for any g E E \ T

91C T RCg QC T RE\TC'= S re(e)2 (minr 11- 2
eEE\T \e E E\T)

Therefore, the convexity parameter of 11 + C 2 2 is at least mineEE\T re. However,

this could be wasteful if the resistances vary, so rescalethe space, Q = R1/2 -, to get

the following problem:9

1 - 2
min g() where g(+) = - fo + CR-1/2

9ERE\T 2 R

By the reasoning above, the convexity parameter of g with respect to the Euclidian

norm is 1 and we bound the e-th direction component-wise Lipschitz constant by

31T /CT 1/ 6eTRi Re
Ve E E \ T : Le =eR-1/ 2 CTRCR-/ 2 le _- re -st (e) + 1

Therefore we see that

=1 = Re = r(T) = O(m + st (T))
00 eEE\T re

Thereby justifying our naming of r as "tree condition number."

Finally, applying the coordinate descent method to g and letting ek E E\T denote

the off-tree edge i.e., coordinate, picked in iteration k, we get

-+1 k e4) (Definition of Update Step)
Lek

=4 - L (R-1/2CTR(fO + CR-1/2)) - lle (Computation of Vg(g))
ek ek

L 1/2 5 eek (fo + CR'-/2 g)(e) -lek (Definition of C and R)
Lekre e

=Yk- L 1/ re(jo + CR-1/ 2)(e) - 13e (Definition of Cek)
1/2 : rrefek rek eE'k

9 To avoid confusion between a flow vector and the objective function in just this section we use
g instead of f to denote the objective function.

65

Recalling ' = R-1 /2 g and the derivation of Le, we can write this equivalently as

k+1 := Zk e E e (O + Cg)(e) 1 Le.K e aek

Noting that the f with BTf = X corresponding to ' is f = fo + C , we write the

update equivalently as

fk+1 := Ak re ek e
f R e e k

.

which is precisely the cycle update of SimpleSolver. Thus we see that SimpleSolver

is an instantiation of coordinate descent where the data structure is used to make

sure that calls to 'ek and updates to e, can be implemented in O(log n). Therefore,

by applying ACDM we can obtain a faster algorithm. Note that to apply ACDM

efficiently computations of 'e, need to be performed on the sum of two vectors without

explicitly summing. However, since here Vg is linear, we can just call the oracle on the

two vectors separately and use two separate data structure for updating coordinates.

While the above insight suffices to compute electric flows a little more work needs

to be done to compute the desired voltages. However, by Lemma 2.6.2 we know that

it suffices to show that ||Vg()11' < ef*. Note that

/ 2

2Vg() = IIR-1/2CTR(fo + CR~1/ 2) = r(e')re,
2eE E\T re e'6e

and therefore if we choose go = 0. Then, we see that

1190 - 9*12 = ||9* 11= R'/ 2 9* 2 2f*III i2 iii2 2\

and using Lemma 2.6.1 we have that

1 g*
Sa2 W0) - g*) :! a <9g

66

Therefore so long as we choose our spanning tree using Theorem 2.2.13 we have

\ = O(log n log log n) and after k = O(m-/log n log log n log l9') iterations of

ACDM, by Theorem 3.3.4, we have that

2k-1

||Vg(,)||2 < 6 f*-
j=k

Therefore, if we stop ACDM at random iteration between k and 2k - 1, we have that

E IVg(')112 < -g* as desired. Therefore, in time O(m log31 2 n loglognlog(e 1 logrn))

we can compute the desired V.

67

68

Appendix A

Additional ACDM Proofs

Here we present additional proofs needed to complete the analysis Chapter 3.

A.1 Probabilistic Estimate Sequence Form

Here we prove a stronger variant of Lemma 3.3.2 that is useful for Section 3.4.2.

Throughout this section we let A E Rf"l denote a symmetric positive semidefinite

matrix, we let I|I|lA = v'rAX be the induced norm, we let (V, YA f Z'A' be

the inner product which induces this norm, and we let At denote the Moore-penrose

pseudoinverse of A. Taking A to be the diagonal matrix with Ari = L 1j- and

applying the following lemma yields Lemma 3.3.2 as an immediate corollary.

Lemma A.1.1 (General (Probabilistic) Estimate Sequence Construction). Let A be

a positive semidefine matrix such that f is strongly convex with respect to the norm

|-A X with convexity parameter o-A. Furthermore let 0('), { Ok, ik }%% be such that

" #o :OR -+ R is an arbitrary function

" Each Yk e Rn,

* Each Ok E (0, 1) and (_o Ok = 00,

" Each ik E [n] is chosen randomly with probability Pi.

Then the pair of sequences {k(X),q k}gO defined by

* 77 = 1 and 7 k+1 = (1 - 0k)7k,

69

* 0k+1(X) =(1 -- Ok) k),+k [f(Yk) + Y((),. -- k) + 2 II- kA

satisfies condition (3.7). Furthermore, if 00(X) = 0+ ||j -- ||, then this process

produces a sequence of quadratic functions of the form #k(X) - q4 k -- VkIA

where

(k+1 = (1-Ok)(k+OkaA,

Vk+1 = . [1 - Ok)(kVk + OkCAYk - kAt k,
(k+1 I Pik ikY

+1= - Ok)#k + Okf(Yk) - 2 At

k 1 2 Ok)k A Ik ~~ + (Yk) ,Vk - Yk)A)

Proof. 1 First prove by induction on k that E[(Y)] (1 - rk)f(Y) + 77k E[o(Y)].

The base case, k = 0, follows trivially from qo = 1. Assuming it holds for some k,

explicitly writing out the expectation over ik yields for all F E Rn, E[#k+1(9)] is given

by the following

E K . ((1 --- k#x~z) -- 0 [f () +p~((ik)z--) + t -X .Pi (I O) k O [(k ik2 A1jY
.ik

Applying the inductive hypothesis, we get that [[qk+1(C)] is equal to the following.

(1- Ok) [(1 - 7k)f(y) +77k E [0 (g)]]+Ok E [f(c) + (Vf(ik), --- Yk) + 2 I - YII.

By strong convexity and the definition of %+I, we then have that

E[#k+l(')] (1 - Ok)(1 - 77k)f(') + Okf () + (1 - Ok)?rkEE [#o(z)]

= (1 - 2?k+1)f(Y) + %m+j E [o (9)] .

Next, we prove the form of Ok again by induction on k. Suppose that Ok = #qk +

Ck - ,1. Now, we prove the form of Ok+,. By the update rule and the inductive

'Note that our proof was heavily influenced by the proof in [41] for estimate sequences.

70

hypothesis, we see that

V* E fR : V2qk+1(') = (1 - 0k)V2k(y) + OkOAA = [(1 -Ok)k+OkUAA

Consequently, 0k+1(V) = k+1 + ' Y - V-k+1I for Ok+1 as desired and k*s and

Vk+1 yet to be determined.

To compute ik+1, we note that Vqk(') = kA(- k). Therefore by update rule

Vk+1() = (1 - Ok)(kA(X -) + ±k + OkLAA(X - Yk)
Pik

k+,A ~- (1 - Ok)(kAkk + Okf - &kLAYk
Pik

Therefore, we have that Vk+1 must satisfy

Ck+1Ax - Ck+lAvk+1 = (k+1A -~ (1 - Ok)(kA~k + fk (uk) - OAA'k-
Pik

So, applying At to each side yields the desired formula for 'k+1-

Finally, to compute 0*4, we note that, by the form of 0k+1 () and the update

rule for creating 1k+1 (), looking at k+1 (ak) yields

k+1 + 2IYk Vk+1 A Ok)k(Yk) +Okf(Yk)

=(1 -Ok) #k -- 112 + Gkf(Yk).

Now, by value of Vk+1, we see that

k+1 IIV k+1 - Ykfl = (1 - Ok) (kVk + (9 kT'A - (k+1)Yk -
Ak) 2

Pik A

- Ok)Ck(Vk - Yk) - Ok At ' (k) 2
Pik W A

- _1 2 2(1 - Ok)k4k (At-(ik)

At' (k 2
A

71

= (1

,ik-Yk)A

+ ||IIk

= (1-O)2(2j

Combining these two formulas and noting that

(k Ck+1 1 2 2 (1 - Ok)k _ k(1 - Ok) Ck CA
(1-64 O 2(1-00) (' = [Ck+l - (I - Ok)(k] '-

2 2 (k+1 2 Ck+ +1k+1 2

yields the desired form of #*+i and completes the proof. L

A.2 Bounding ACDM Coefficients

In the following lemma we prove bounds on ak, /k, yk, ak and bk required for Theorem

3.3.4 and Lemma 3.3.5.

Lemma A.2.1 (ACDM Coefficients). In A CDM yk is increasing to and #k is

decreasing to 1- . Furthermore, for all k > 1 we have a(32 max

and for all k > 0 we have

1k+1 rc N k+1

as > S" + A I~~ - - A "1~" , (A. 1)ak 2n1_ 2 2Scn 2 2Sn

bk > +~)k+1 1 J+ . (A.2)-k 2 2, n) 2 2 cn (.2

Proof. We begin by estimating 7k. Using that -y, = ak+1/bk+1 and defining _

ao/bo = 1/(4n) we know that 7k+1 - k_ = (i ~+1a1-) 2 and therefore -

2 (i _ T±+'i- - 2) for all k > 0. Consequently, -y, is increasing

to - and since /k = 1 - " we have that /k is decreasing to 1 - .

Furthermore since 2 5cn > or,, we have that all /k E (0, 1), bk bk+1, and ak 5 ak+1-

Using these insights we can now estimate the growth of coefficients ak and bk. As

in [43] the growth can be estimated by a recursive relation between ak and bk. For

bk, our definitions imply

b = 3kb + = 1- 0-C, b 2 = ,, ak+1 b 2
r sk+1 ak+b 1 k\+1 b k+1(b

Therefore since bk bk+1 we have -ak+bk+l b 2 1 - bK 2bk+l (bk+1 - bk) and

72

consequently
0 11-C,

bk+1 bk +2~ ak+1
2Sc,

(A.3)

To bound ak, the definitions imply - 2 1 = - = k = a .Therefore
bk+ 1 2bk 2 k -) a sereftry

since ak :! ak+1 we have 1 ak±1 bk+l= a 2+1 - a~ 2 2 ak+1 (ak+1 - ak) and consequently

1
(A.4)

1
ak+1 ak + -bk+l ak ± -bk

4n 4n

Using (A.4) and (A.3) we can prove the growth rates (A.1) and (A.2) by induction.

All that remains is to prove the upper bound on ak. Note that "k = 2
yk - 1 and

hence ak 2 Yk 1 Therefore, we wish to find a lower bound of -yk, which in

turn can be found by a upper bound of fk. Recalling that bk+1 = - we see that

kb = o.._ < b2. Therefore, by our lower bound on bk and the fact that bo = 2,,80"',8k-1 -

we see that when k < 2 2S"-, we have

-- <22/k (

<2 2/k (2+

exp 0-
\ 8

2) k2Sn)

~ 1 k(k -
8Sn

~ a (k
ln

)-2/1))

- 1)) < 1 -

k -2/1 0 1cr\\k'\ 2/kC

1--
2 2San/

= + ~- k(k -
16Sahn

~~1 (k - 1).
16,kn

Using /k = 1 - ' , we get -yk min (-1
16 (, I

2_. . Therefore si
- "7VY/,1 > nyk - I for all k we have that ak < 1 < 16 max k 1

the result follows immediately.

ice - - 1 =

and
E

73

A3

-2/k

1))

A.3 Numerical Stability of ACDM

Proof of Theorem 3.3.4. Following the structure in [43] we begin by defining T(X) -

- -f (Y) for all I e Vk and r Uk - -_ for all k > 0. Expanding i' yields

k 62 kIkrk+1 k H2+IOkVk+(3)k - -z-fiA(,)A
Lik

< (+ ||62,kI|_ +(1+ t)||k + (1-Ok)Yk - f;(Y k) -f| | _tJ Lik

+t) Y fik (k)2

+2 - (1 + t) (f; (Yk), - OkVk - (1 - AMk)j

1 + 1E2 + t + o | 4 + ((f (k) - _Pp)11

+2 7k(1 + t) (f (-f (Tjk(ik))
kxA

+t) f(Y-O) (A.5)-- 0 + ak -

where t is yet to be determined.

Using standard properties of f, we bound the error induced by E1,k as follows:

f(Tik(Yk)) = f (k+1 - 61,k)

> f(k+) - V,k, Vf(Xk+l))

(Assumption of Step 3d)

(Convexity of f)

- f(k+1) - ('i,k, Vf(Xk+ 1) - Vf(X))

> f(k+) - 181,kl1-,| IVf(Xk+1) - Vf(*) |*_-

> f (k+i) -- I514+1 - I i-a

e1-a (f (k+i) - f*) -

(Vf(Y*) = 6)

(Cauchy Schwarz)

(Lemma 2 of [43])

(A.6)

74

+ t 2 + 1V)| k + 11-S i - ia+(

Taking the expectation of both sides of (A.5) in ik and using (A.6) and L4 > - yield

(I + 1) 62 - + (I + t)(1 -) -- 11 _

+ t) (f(Yk) - Eil, [f(k+1)1 + '
c 1-C

(Eik [f('+1)] - f

+2(l + t) 7k A~n, -- A Ok(l ak) Xzk -- A
a \f a*--*+ k v -)

+ e2 (I+ t)krk +(+)(I - 0k01A -_a

+t) f(f)-E If (k+1)] + 'ia (Eik
O'1-Ce

+2(1 + t) - f* - f) - C1aIk - *|| _

+ i(l - ak) (f (X - f (Yk)))

Now since we defined coefficients so the following hold

1 - Yk l-a
S!

and 2 - -k __ -k 3k(l- ak)
2n 2nak

we see that the terms for 1k -- _ S_ and f(') cancel and we obtain

Eik [rk+1] 1+

fQzk+1)] - (Eik
0,1-a

-4(1+t) n [

+2(1+ t) 7kf* +
01 x

Multiplying both sides by +1 and recalling the following

_2++}r2

72 -Yk k

k

0ykk(1 a)
2mcak

75

+4 ' (1
Sa)

+4 (1
So

[f (X'k+1Y) - f*)

[f (k+1)] - f*))

b = 1 b 2 a2+1 = 72 b

Ok(1 -ak)f (A))
Cek

Eik [k+l1

2+162 + (1+ t)C b 2r2 - 4(1 + t) -n2 k72k

ri-a (E ikf('k+1)

Dropping the expectation in each variable we have that in expectation to iteration k

! - bk+1(rk+1) + (1n

1+ b2+16 2
1)2

+ t) 1- 6S"

+ (1+ t) b r

4a+1 (f(k+l) - f*)

k+ 4ak(f(k) f*)

de 2,,§ f2 [r]S f* ehv
Letting t _.~ and writing rk = S_ Eik- [r2] ik [f (X+)] ehv

bl+1iZ+1 + 4ak+1kk+1 < S
n2

< Sa 2
n2

(1+

(1

I)b2+1E2 + (1 + t) (b 2 + 4a 2kt k 2 kk

k+1

+ t (1 + t)k+l-j 2

1)j=1

+4(1 ± t)k+1 (+
1 00

2n&')

Now, we claim the following inequalities:

(1 + t)k+l-jb is increasing

IV' 2 f'lO..-k > 2 k1

a2 V2 2n + +1n

76

we get

kab2+1Ej (r 2+1)n k 1)(

a 21 f*))

(A.7)

(1)

(2).

(3)

- a 2* - (f(,) -_

.

Using the claims above and (A.7), we get

Ei 2a1a||k+ - c,- + 4(f (' +1) - f*)

= 2n1_,k+1 + 4k+I

b2

S f+1 + 4 0k+1
k+1

< SQ 2
n (1

6g,6 2 (k + 1)

+)

32no 1-

Sa (1

+4(1+ t)k+1 (2
± 2

ak+1) k+1
+ 2ESQ

01a) (1

+1 00
2nS ,

2

By the assumption that 2 § < inequality (3.12) follows from the followingOE-a 2 -2S--n

Fik (2o1.QIci3 +1 _ :?I _,+ 4(f ('+1) -f*)

< 12kSa62 + 32- 1 _,

< 24kSae2 + 32o1 _-

(1 1

1

r -_
kl-

1-a
SQ~h

- 1 -_ -X* 11

11o - X _ll + ±

2S-

1

(f(xO) - f*))

(f(xo) - f*))

Now, we prove the claims.

Claim (1): Since ak+1 - '7kbk+1 > 1 bk+1 and (A.3), we have bk+1 + (1 +)bk.

By the assumption t = 2Sa< i-c, we see that (1 + t)k+l-b is increasing.
OI-< 4Sn'

Claim (2): Follows from Lemma A.2.1.

Claim (3): Using Lemma A.2.1 and k > we have

ak SQ
2nS1_Q

2no-1-a :c:

(
(

1 2 2S

k+1

2

(
- (1 -

2

k+1

_
+ 1

2

(1+
1 ~U1Q k+1

2 2SLnJ

To bound the norm of the gradient, we show that if 1_Vf(,k)_ is large for

77

-2(k+1)

(\2 2 j0
\%O+2nS ,

k+1

2Sanl }

2Scn)

2Son)

(I

many steps then f(') decreases substantially. For notational simplicity we omit the

expectation symbol and using (A.6), we have

f(k+1) f(Tik (kA+± (f (k+i) - f *)

f(Yo) - 1 (IIVf(GY)k)lIt) 2 +
Sa

To bound f('), we consider the lower envelops at Ik and obtain

f Y--,) < f (A) -- Tf (Yg), ayk - VW

fI() + akIIVf(kf j AYk -- k Vkf-

< f(A) + akIIVf(Yk)IIa (1k - - + Kk - 2I1-a)

f(k) + akI If(g)I1_ (Vf(9k) - f* + 11- - *||1-a.

Combining with Lemma A.2.1, we have

1 ec ___

fG4'+l) f(X') - -- (Vf(Y'k)11*1c) 2 + e9Q6k+1
Sa 01alQ

+3 IIVf (Yk)H~ I 6k-~ia

Summing up from k to 2k then yields

f(2k) < f (A) -- E 1
2

,;-I.Sa
32

, ni,
5

2k

011-C, j=k+1 j=k

Since f(A) - f(2k) f() -f* < 6 k, we have

=6 k+ + E
01i-Q j-k+i

+2 kk
+32

Fn

78

(f (k+i) - f*) -

Sa

2k-1E
j=k

(I IVf(j) I*I 2

+ 2 2k-i

V ~,j=k Y

1 -2k-i

nSj=k aVj
6k (I

S6k (1

+ ekSQ,

+- ___ 2k-k

k
A 1j

V-j-j I IV f (Y-j) I I *I -C,

Solving this quadratic equation about - (Vf(gk)I_) 2, we get

(I IVf(-)I-a) < 16 + 32)2+ 46(I +

Since 1 + Eksc <2 and k > n by assumptions we have

I 2k-i1ck 1k~ ~

(IVfk))2 16 + 1 (322 + 8) 33Nc ASkF 2 n n

Therefore 1 2kl (IVf(-k)I)2 < 2 0 0 0 k6. as desired. ElSr, =k Ak 1l-n

Lemma A.3.1 (Coefficient Stability in ACDM). Step 3a of ACDM can be computed

by the following formulas

k 1- a k -_ l a

-l/kkl min -1 k + +n,/k

2 2n a 2n Sa 2no-1_,

k -/ k+10 1'-la

Ok+1 k+1

ak+1 k+1 - - k 2k+1 -
2flSa

and can be implemented using O(log n) bits precision to obtain any poly(l) additive

accuracy.

Proof. Since 7k = g we know that 2Y+i - I = Yk+S '1- y 2, and by re-

arranging terms we get that 7+ - S--) 7k+1 -7k = 0. Applying the

quadratic formula and Lemma A.2.1 then yields the formula for yk+i and the other

formulas follow by direct computation.

Now, expanding the formula for yk+1 and using 2Scn > o-, implies that yk k

and therefore the denominator of ak+1 is larger than #k+1. Consequently the equations

of 3 and a depends continuously on 'y. Thus, it is suffices to show that O(log n) bits

precision suffice to compute -yk. To prove this, we define f : R" -+ DR denote the

79

quadratic formula so that with full precision 7k+1 - f (7k). Direct calculation yields

J12 -a 1) ya-
,Se + 27

f I(-/) -. -. +
Sa

2 7

Since 0 < S -s-_ we have that 0 f'() 1 - - < l and therefore, f
is a contraction mapping. Consequently, if the calculation of -Y has up to e additive

error, k steps of calculation can accumulate up to ke/(1 - max f'(-y)) additive error.

Hence, O(logn) bits of precision suffice. 0

80

Bibliography

[1] Ittai Abraham, Yair Bartal, and Ofer Neiman. Nearly tight low stretch spanning
trees. CoRR, abs/0808.2017, 2008.

[2] Ittai Abraham and Ofer Neiman. Using petal-decompositions to build a low
stretch spanning tree. In Proceedings of the 44th symposium on Theory of Com-
puting, STOC '12, pages 395-406, New York, NY, USA, 2012. ACM.

[3] Noga Alon, Richard M. Karp, David Peleg, and Douglas West. A graph-theoretic
game and its application to the k-server problem. SIAM J. Comput., 24:78-
100, February 1995.

[4] Heinz H. Bauschke and Jonathan M. Borwein. On projection algorithms for
solving convex feasibility problems. SIAM Rev., 38(3):367-426, September 1996.

[5] Amir Beck and Marc Teboulle. A Fast Iterative Shrinkage-Thresholding Algo-
rithm for Linear Inverse Problems. SIAM Journal on Imaging Sciences, 2(1):183-
202, January 2009.

[6] Stephen Becker, J Bobin, and EJ Candes. NESTA: a fast and accurate first-order
method for sparse recovery. SIAM Journal on Imaging Sciences, 4(1):1-39, 2011.

[7] M. Bern, J. Gilbert, B. Hendrickson, N. Nguyen, and S. Toledo. Support-graph
preconditioners. SIAM Journal on Matrix Analysis and Applications, 27(4):930-
951, 2006.

[8] D. Bienstock and G. Iyengar. Solving fractional packing problems in oast(1/esp)
iterations. In Proceedings of the thirty-sixth annual ACM symposium on Theory
of computing, STOC '04, pages 146-155, New York, NY, USA, 2004. ACM.

[9] Guy E. Blelloch, Ioannis Koutis, Gary L. Miller, and Kanat Tangwongsan. Hi-
erarchical diagonal blocking and precision reduction applied to combinatorial
multigrid. In SC, pages 1-12, 2010.

[10] Bela Bollobas. Modern Graph Theory. Springer, 1998.

[11] E.G. Boman, D. Chen, B. Hendrickson, and S. Toledo. Maximum-weight-basis
preconditioners. Numerical linear algebra with applications, 11(8-9):695-721,
2004.

81

[12] E.G. Boman, B. Hendrickson, and S. Vavasis. Solving elliptic finite element
systems in near-linear time with support preconditioners. SIAM Journal on
Numerical Analysis, 46(6):3264-3284, 2008.

[13] Erik G. Boman and Bruce Hendrickson. Support theory for preconditioning.
SIAM J. Matrix Anal. Appl., 25:694-717, March 2003.

[14] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, New York, NY, USA, 2004.

[15] William L. Briggs, Van Emden Henson, and Steve F. McCormick. A multi-
grid tutorial: second edition. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2000.

[16] Paul Christiano, Jonathan A Kelner, Aleksander Madry, Daniel A Spielman, and
Shang-Hua Teng. Electrical flows, laplacian systems, and faster approximation
of maximum flow in undirected graphs. In Proceedings of the 43rd annual ACM
symposium on Theory of computing, pages 273-282. ACM, 2011.

[17] Samuel I. Daitch and Daniel A. Spielman. Faster approximate lossy general-
ized flow via interior point algorithms. In Proceedings of the 40th Annual ACM
Symposium on Theory of Computing, pages 451-460, 2008.

[18] Michael Elkin, Yuval Emek, Daniel A. Spielman, and Shang-Hua Teng. Lower-
stretch spanning trees. In Proceedings of the thirty-seventh annual ACM sympo-
sium on Theory of computing, STOC '05, pages 494-503, 2005.

[19] T Goldstein, BRENDAN ODonoghue, and Simon Setzer. Fast alternating direc-
tion optimization methods. CAM report, pages 12-35, 2012.

[20] Keith D. Gremban, Gary L. Miller, and Marco Zagha. Performance evaluation
of a new parallel preconditioner. In IPPS, pages 65-69, 1995.

[21] Gabor T Herman. Fundamentals of computerized tomography: image reconstruc-
tion from projections. Springer, 2009.

[22] Luqman Hodgkinson and Richard Karp. Algorithms to detect multiprotein mod-
ularity conserved during evolution. In Jianer Chen, Jianxin Wang, and Alexan-
der Zelikovsky, editors, Bioinformatics Research and Applications, volume 6674
of Lecture Notes in Computer Science, pages 111-122. Springer Berlin / Heidel-
berg, 2011.

[23] C. Jordan. Sur les assemblages de lignes. J. Reine Angew Math, 70:185-190,
1869.

[24] Stefan Kaczmarz. Angensherte aufldsung von systemen linearer gleichungen.
Bull. Internat. Acad. Polon.Sci. Lettres A, page 335357, 1937.

82

[25] Carl T Kelley. Iterative methods for optimization, volume 18. Society for Indus-
trial and Applied Mathematics, 1987.

[26] Jonathan Kelner and Petar Maymounkov. Electric routing and concurrent flow
cutting. Theor. Comput. Sci., 412(32):4123-4135, July 2011.

[27] Jonathan A. Kelner and Aleksander Madry. Faster generation of random span-
ning trees. In Proceedings of the 2009 50th Annual IEEE Symposium on Foun-
dations of Computer Science, FOCS '09, pages 13-21, Washington, DC, USA,
2009. IEEE Computer Society.

[28] Jonathan A. Kelner, Gary L. Miller, and Richard Peng. Faster approximate
multicommodity flow using quadratically coupled flows. In Proceedings of the
44th symposium on Theory of Computing, STOC '12, pages 1-18, New York,
NY, USA, 2012. ACM.

[29] Jonathan A Kelner, Lorenzo Orecchia, Yin Tat Lee, and Aaron Sidford. An
almost-linear-time algorithm for approximate max flow in undirected graphs,
and its multicommodity generalizations. arXiv preprint arXiv:1304.2338, 2013.

[30] Jonathan A. Kelner, Lorenzo Orecchia, Aaron Sidford, and Zeyuan Allen Zhu.
A Simple, Combinatorial Algorithm for Solving SDD Systems in Nearly-Linear
Time. January 2013.

[31] Ioannis Koutis, Gary L. Miller, and Richard Peng. Approaching optimality for
solving SDD systems. In Proceedings of the 51st Annual Symposium on Founda-
tions of Computer Science, 2010.

[32] Ioannis Koutis, Gary L. Miller, and Richard Peng. A nearly-m log n time solver
for sdd linear systems. In Foundations of Computer Science (FOCS), 2011 IEEE
52nd Annual Symposium on, pages 590 -598, oct. 2011.

[33] loannis Koutis, Gary L. Miller, and David Tolliver. Combinatorial precondition-
ers and multilevel solvers for problems in computer vision and image processing.
Computer Vision and Image Understanding, 115(12):1638-1646, 2011.

[34] Yin Tat Lee, Satish Rao, and Nikhil Srivastava. A New Approach to Computing
Maximum Flows using Electrical Flows. Proceedings of the 45th symposium on
Theory of Computing - STOC '13, 2013.

[35] Yin Tat Lee and Aaron Sidford. Efficient accelerated coordinate descent methods
and faster algorithms for solving linear systems. CoRR, abs/1305.1922, 2013.

[36] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney.
Statistical properties of community structure in large social and information
networks. In Proceedings of the 17th international conference on World Wide
Web, WWW '08, pages 695-704, New York, NY, USA, 2008. ACM.

83

[37] Chung-Shou Liao, Kanghao Lu, Michael Baym, Rohit Singh, and Bonnie Berger.
Isorankn: spectral methods for global alignment of multiple protein networks.
Bioinformatics, 25(12):i253-i258, 2009.

[38] Z. Q. Luo and P. Tseng. On the convergence of the coordinate descent method
for convex differentiable minimization. Journal of Optimization Theory and Ap-
plications, 72(1):7-35, January 1992.

[39] Frank Natterer. The mathematics of computerized tomography. Society for In-
dustrial and Applied Mathematics, Philadelphia, PA, USA, 2001.

[40] Yu. Nesterov. A method for solving a convex programming problem with con-
vergence rate 1/k^2. Doklady AN SSSR, 269:543-547, 1983.

[41] Yu Nesterov. Introductory Lectures on Convex Optimization: A Basic Course,
volume I. 2003.

[42] Yu. Nesterov. Rounding of convex sets and efficient gradient methods for linear
programming problems. Optimization Methods Software, 23(1):109-128, Febru-
ary 2008.

[43] Yu Nesterov. Efficiency of coordinate descent methods on huge-scale optimization
problems. SIAM Journal on Optimization, 22(2):341-362, 2012.

[44] Lorenzo Orecchia, Sushant Sachdeva, and Nisheeth K. Vishnoi. Approximating
the exponential, the lanczos method and an 0(m)-time spectral algorithm for
balanced separator. In Proceedings of the 44th symposium on Theory of Com-
puting, STOC '12, pages 1141-1160, New York, NY, USA, 2012. ACM.

[45] Peter Richtirik and Martin Takie. Iteration Complexity of Randomized Block-
Coordinate Descent Methods for Minimizing a Composite Function. page 33,
July 2011.

[46] Jonah Sherman. Breaking the multicommodity flow barrier for 0 (v/log n)-
approximations to sparsest cut. In Proceedings of the 50th Annual Symposium
on Foundations of Computer Science, 2009.

[47] Daniel Dominic Sleator and Robert Endre Tarjan. A data structure for dynamic
trees. J. Comput. Syst. Sci., 26(3):362-391, 1983.

[48] D.A. Spielman and N. Srivastava. Graph sparsification by effective resistances.
SIAM Journal on Computing, 40(6):1913-1926, 2011.

[49] Daniel A. Spielman. Algorithms, graph theory, and the solution of laplacian
linear equations. In Proceedings of the 39th international colloquium conference
on Automata, Languages, and Programming - Volume Part II, ICALP'12, pages
24-26, Berlin, Heidelberg, 2012. Springer-Verlag.

84

[50] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for
graph partitioning, graph sparsification, and solving linear systems. In Proceed-
ings of the 36th Annual ACM Symposium on Theory of Computing, pages 81-90,
New York, NY, USA, 2004. ACM.

[51] Daniel A. Spielman and Shang-Hua Teng. A local clustering algorithm for mas-
sive graphs and its application to nearly-linear time graph partitioning. CoRR,
abs/0809.3232, 2008.

[52] Daniel A. Spielman and Shang-Hua Teng. Spectral sparsification of graphs.
CoRR, abs/0808.4134, 2008.

[53] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for pre-
conditioning and solving symmetric, diagonally dominant linear systems. CoRR,
abs/cs/0607105v5, 2012.

[54] Daniel A Spielman and Jaeoh Woo. A Note on Preconditioning by Low-Stretch
Spanning Trees. March 2009.

[55] Thomas Strohmer and Roman Vershynin. A randomized kaczmarz algorithm
with exponential convergence. Journal of Fourier Analysis and Applications,
15:262-278, 2009.

[56] Robert Endre Tarjan. Applications of path compression on balanced trees. J.
ACM, 26(4):690-715, October 1979.

[57] Shang-Hua Teng. The laplacian paradigm: Emerging algorithms for massive
graphs. In TAMC, pages 2-14, 2010.

[58] Pravin M. Vaidya. Solving linear equations with symmetric diagonally dominant
matrices by constructing good preconditioners. Unpublished manuscript UIUC
1990. A talk based on the manuscript was presented at the IMA Workshop on
Graph Theory and Sparse Matrix Computation, October 1991, Minneapolis.,
1990.

[59] Nisheeth Vishnoi. Lx = b. Monograph, available at
http://research.microsoft.com/en-us/um/people/nvishno/site/Lxb-Web.pdf.

[60] Konstantin Voevodski, Shang-Hua Teng, and Yu Xia. Finding local communities
in protein networks. BMC Bioinformatics, 10(1):297, 2009.

[61] Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-
winograd. In STOC, pages 887-898, 2012.

[62] W Zangwill. Nonlinear Programming: A Unified Approach. Prentice-Hall, 1969.

85

