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ABSTRACT

It is widely recognized that historical structures represent a cultural heritage which
should be preserved and transmitted to future generations. In several countries, and
particularly, in the Mediterranean area, where a large number of important monuments
are exposed to seismic hazard, there is a growing interest for the problem of
strengthening such structures in order to reduce their seismic vulnerability, while
preserving their original architectural integrity. However the seismic vulnerability
assessment of historical block structures is still a challenging task.

In this work, after having explored the potentials and limitations of the Discrete Element
Method for this type of problem, a new joint model for the quasistatic analysis of block
structures is proposed. It accounts for (a) the non coplanarity of the contact surfaces,
and (b) friction softening. The new model allowed a more accurate prediction of the in-
plane failure load and corresponding failure mechanism of opus quadratum walls (walls
made of regular squared blocks without mortar). In particular it predicts the
development of progressive internal displacements, and the formation of localized
sliding band as observed in the experimental models. Such results confirm that even
apparently negligible joint imperfections should not be ignored since they may cause
significant modifications in the response of a block structure subjected to gravity and
lateral loading.
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1. INTRODUCTION

1.1 DEFINITION OF PROBLEM

It is widely recognized that historical structures represent a cultural heritage which

should be preserved and transmitted to future generations. In several countries, and

particularly, in the Mediterranean area, where a large number of important monuments

are exposed to seismic hazard, there is a growing interest in the problem of strengthening

such structures in order to reduce their seismic vulnerability (see for example the

Proceedings of the US-Italy Workshop on Guidelines for Seismic Evaluation and

Rehabilitation of Unreinforced Masonry Buildings [Abrams D.P., 1994], and the recent

guidelines for evaluating the seismic vulnerability of historical masonry buildings in

[Applied Technology Council, 1999]). In designing these interventions, a constraint,

which is often undervalued, is the requirements of preserving, whenever it is possible, the

architectural and structural integrity of the original construction. Consequently, the

interventions should be respectful of the traditional construction techniques and strictly

kept to the minimum necessary to ensure the required level of safety [Giuffre, A., 1994].

To this respect, two problems unavoidably arise: (a) firstly, the modem engineer

having lost the empirical knowledge of traditional building techniques, is unprepared to

understand the intentions of the ancient builders, and therefore difficulties may arise in

understanding the presence, or the absence, of those structural provisions which may be

beneficial to an acceptable mechanical response; (b) secondly the methods of structural

analysis which have been developed for modem constructions - essentially based on

continuum mechanics - are generally inadequate for studying the response of inherently

discontinuous structures such as the majority of the historical constructions. The

consequence of this lack of knowledge is a tendency to replace, rather than improve, the

original structure with a great loss in the cultural value associated to the integrity of the

monument.

13



In this work an attempt is made to overcome the two problems mentioned above

by proposing an innovative method of analysis which may be used for both (a) improving

the basic understanding of block structure behavior under earthquake action, and, (b)

assessing the seismic vulnerability of specific monuments.

1.2 FOCUS OF THE RESEARCH

In the following we will consider mainly those structures where the blocks or

bricks interact among themselves only through frictional contacts, therefore masonry

walls with mortar are beyond the scope of this work. In addition, given the low stress

level generally found in historical structures, material failure of the single units is

disregarded, while emphasis is placed on the failure mechanisms due to loss of

equilibrium induced by large rotations and displacements of the units.

It is recognized that this problem is still a challenging task: the opening and

closure of the joints, and the sliding and rotation of the single blocks determine a

complex nonlinear response which is not fully described by existing analysis methods.

Finite elements models with both smeared and localized cracks have been developed for

masonry ([Kelly,T.,1996], [Mamaghani,1999]). However, since they are primarily based

on continuum formulations, their numerical effectiveness strongly decreases when the

system approaches failure and a large number of openings, closures, and sliding take

place. Limit analysis has also been used to study the stability of block structures

([Livesley, 1992], [Baggio, 2000]): it accounts for separations of blocks and Coulomb

friction, but, in addition to the numerical problems which are often encountered when the

number of element increases, it is restricted to static equilibrium problems. The dynamic

behavior of a single block sliding and rocking on its foundation has been the object of

several researches (see for a review of recent studies [Sinopoli, 1998]), however very

limited work is available on the dynamic response of multiple block systems and

furthermore it is mainly restricted to predefined structural typologies such as the multi-

block column or the trilite ([Manos, 1994], [Wilson, 1999]).

14



The objective of this work is to provide a more general and realistic modeling of

the seismic behavior of complex block structures. The Discrete Element Method (DEM),

which has been developed in the field of rock mechanics, and employed in various

problems of dynamic interaction of multiple bodies, appears appropriate for overcoming

the previously mentioned limitations. In the first part of the study, the DEM is evaluated

by comparing the numerical simulations with a series of experimental tests on small scale

model of block structures. Subsequently, in order to overcome certain observed

discrepancies between experimental and numerical results, a new joint model for the DE

analysis of historical block structures will be developed.

1.3 OVERVIEW

In chapter 2 a brief review of some significant examples of historical

constructions is presented. Despite the great variety of building techniques, depending

from the geographical location and historical period, the use of stone blocks for important

constructions has been extensive, as documented in a series of figures illustrating the

various types of masonry and block structures. In chapters 3 and 4 a critical review of

the analysis methods currently used for the study of the static and dynamic response to

seismic actions of block structures is presented.

Chapters 5 and 6 are devoted to the exploration of the potential and limitations of

the current DEM to, respectively, the quasistatic and dynamic analysis of historical block

structures subjected to seismic actions. Subsequently, in chapter 7, a new DE joint model

will be proposed for overcoming the observed limitations.

More specifically, chapter 5, focuses on the performance of the DEM for the

prediction of the mechanical response of opus quadratum walls (regular masonry of

15



squared stone with no mortar)', subjected to slowly increasing in-plane lateral forces

simulating the seismic actions.

First, as described in section 5.2, a series of experimental tests on 3 small scale

wall models have been performed in order to obtain data (not available in the literature)

on the in-plane failure of opus quadratum walls subjected to quasistatic loading. Tests on

the friction behavior of the specific type of stone blocks used in the wall models

(including the dependency of the friction coefficient with: (a) the normal contact force,

(b) the degradation of the contact surfaces, and (c) the sliding velocity), were also

performed with the objective of evaluating the friction parameters to be used in the DE

simulations.

Subsequently, in section 5.3, the DE analysis of opus quadratum walls subjected

to quasistatic in-plane lateral forces is presented. After a series of DE analyses were

executed for evaluating the sensitivity of the response with respect to various model

parameters, the DE simulations of the experimental tests on the 3 small scale wall models

(illustrated in section 5.2) were performed. The DE predictions compared well with

"exact" limit analysis results. However a number of discrepancies were observed with

respect to the experimental data. It appeared that such differences could be attributed to

the presence of geometrical imperfections in the experimental model which are not

considered either in the limit analysis or in the DE model.

For the dynamic case, which is discussed in chapter 6, the main additional

difficulty with respect to the quasistatic case lies in the appropriate prediction of the

energy loss at the impact among blocks. In reality, energy dissipation is associated to

friction and internal material damping, and a realistic prediction of such phenomena even

for the simplest case of 2 impacting blocks would require a very complex numerical

model. For a block system of realistic size, such an approach becomes practically

impossible. An attempt has been made, in the context of the DEM, to model the internal

material damping with a lumped viscous element acting at the interface between the

1 A survey of historical structures including opus quadratum walls is illustrated in Chapter 2.
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blocks, and retaining a simple representation of the block interior. For the case of

rocking of a slender block on a rigid base, an empirical expression for the parameter of

the viscous element has been obtained by minimizing errors of predicted restitution ratios

with respect to "exact" values obtained with the Housner model. Good agreement with

experimental results has been found for a range of slenderness ratios (from 2 to 5). Using

the same parameter, acceptable agreement with experimental results has also been found

for the case of harmonic base shaking of the single block. For a case of a multibody arch

structure subjected to ground shaking, the same viscous parameter obtained for the case

of a single block has been assumed. A reasonable agreement was found with

experimental results, however it was noted that for this particular case the system

response was dominated by the rocking of the two columns, which, as previously

reported, is well described by this model.

Based on the evaluation of the applicability of the DEM to the study of block

structures presented in chapters 5 and 6, it appears that the quasistatic approach is

promising even if a number of discrepancies in the response prediction have been

observed and need to be resolved. In the more complex dynamic case a strong

assumption is made in the representation of the damping at impact, and while it may be

acceptable for single block structures or for certain types of multibody systems,
additional work is needed for defining a more general interface dissipation mechanism.

Since the problems identified in the quasistatic analyses will have an impact also on the

dynamic case it was decided to approach them.

Based on various experimental observations it appeared that the microrotations

due to the non coplanarity of the contacts may play an important role in explaining the

observed discrepancies. Consequently the development of a new joint model for the DE

analysis of historical block structures was undertaken. In chapter 7 the formulation,

implementation and verification of the model are described. A series of DEM analyses

of various block structures were carried out, and the results demonstrate that a substantial

improvement of the DEM predictions is possible with the proposed joint model.

17
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Chapter 2. A SURVEY OF HISTORICAL STRUCTURES

2.1 MASONRY WALLS

2.2 BLOCK STRUCTURES

19



2. A SURVEY OF HISTORICAL STRUCTURES

The objective of this survey is to illustrate the relevance and variety of the

monumental structures in which the main interaction mechanism among their

components is essentially friction. As already noted the types of masonry with mortar are

not addressed by the proposed DEM procedure and are reported here only for

completeness. First, various types of masonry walls are presented, and later some

significant example of block structures are illustrated.

2.1 MASONRY WALLS

A study, however brief, of ancient masonries immediately brings out the great

variety of construction techniques, owing both to the evolution in time of the

technologies for working materials, and to the various geographic contexts considered. It

is however possible, and very convenient for the purposes of clarity of explanation, to

classify them chronologically and, then, typologically.

20



THE ARCHAIC AND CLASSICAL PERIOD

The various masonry typologies of this period, even if there are variations, may be

grouped into three main categories, which differ from each other substantially:

- masonry structures composed of large stone blocks;

- masonry structures having an opus caementicium core;

- masonry mixed structures.

MASONRY STRUCTURES COMPOSED OF LARGE STONE BLOCKS

These may be classified into structures having polygonal blocks, and structures

built of squared stones.

Polygonal-block structures (opus siliceum).

This kind of masonry is certainly to be considered among the most widespread

construction techniques in continental Greece, expecially in Attica, the Peloponnese, and

Acharnaia, from the 5th through the 3rd centuries BC. It can also be often traced in the

pre-Roman Italic culture between the end of the 6th and the 1st centuries BC, used

mainly to build city walls. The blocks used, of considerable size, are cut more or less

carefully and are set without the use of mortar. It is just the accuracy of the working,

which improved as time passed, that makes it possible to classify the various kinds of

polygonal-block structures.

21



- Formless masses. This kind of masonry (6th century BC) displays crude masses set run-

of-the-mine fashion, with interstices of considerable size, closed rather approximately

using small-size stones (Figure 2-1).

- Irregular polygons. In this kind of masonry (5th-4th centuries BC) the blocks are only

roughly hewn, the outside face is not worked, and the resulting cracks are carefully

closed with stone chips (Figure 2-2).

- Regular polygons. In this kind of masonry (4th through last part of the 2nd century BC)

the blocks are cut with great precision, so that the connections perfectly meet. The

outside surface of the blocks is smoothed (Figure 2-3).

- Trapezium-style. In this kind of masonry (3rd through 1st centuries BC) the parallelism

of the two sides of the blocks produces the tendency to form more or less obvious

horizontal lays (Figure 2-4).
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Squared-block structures (opus quadratum).

This typology differs from the preceding in that the blocks are worked to form

regular parallopipeds, so that they are assembled to form horizontal courses. As for the

polygonal structures, the connection between the blocks is made dry, i.e. without mortar.

The main areas in which opus quadratum is to be found are Greece and Magna Graecia,

where it was used for monumental architecture and, after the 5th century, for city walls

(Figure 2-5), and Etruria, where, starting from archaic times, tuff was in widespread use

as the raw material (Figure 2-6). With the Hellenistic age the squared-block structure

was introduced into Roman monumental architecture (Figure 2-7, Figure 2-8, Figure 2-9).

It has been observed, apropos the polygonal-block structure, that the evolution of the

technique coincided with an ever more accurate working of the stones: from this

standpoint it is therefore legitimate to see in the squared blocks a natural development of

the polygonal stones, subjected to a gradual process of regularization that generated not

just perfect stability for the individual elements, but also a very different esthetic

harmony. The aspect of the opus quadratum masonry varies considerably depending on

the arrangement of the stones, which may be set headwise -- the so-called diatoni -- or

along their lengths, orthostats. There may be courses made up of diatoni and orthostats

alternating according to a certain scheme, or courses of diatoni only with superposed

orthostats only (Figure 2-10).
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Cori, wall [Marta R., 1987].

Figure 2-2. Amelia, wall [Marta R., 1987].

Figure 2-3. Palestrina, Sanctuary of Fortune [Marta R., 1987].

24

qqp

Figure 2-1.



Figure 2-4. Poggio Mirteto, villa [Marta R., 1987]

Figure 2-5. Selimunte, wall [Marta R., 1987].

Figure 2-6. Fiesole, wall [Marta R., 1987].
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Figure 2-7 - Rome (Viminale), the "Servian" Figure 2-8 - Rome, Appian gate
walls [Adam J.P., 1984]. [Adam J.P., 1984].

Figure 2-9 - Rome, forum of Augustus [Adam J.P., 1984].

diatono by length comerStone
-- diatono by height

diatono by head

by head

.4tarrel

by length
slash/ alternate corner chain

Figure 2-10 - Opus quadratum, arrangement of the stones [Adam J.P., 1984].
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In structures of Roman age, six main periods may be identified, depending on the

materials used and on the dimensions of the blocks.

- Period I, from 754 to 390 BC: the blocks are in cappellaccio and are set in alternating

courses of diatoni and orthostats. The height of each course is around 29 cm (Figure 2-

11).

- Period II, from 390 to 210 BC: the main materials are tuff and black scoria, and porous

yellow tuff; course height reaches 61 cm (Figure 2-12).

- Period III, from 210 to 121 BC: the 59 cm high blocks are of peperino (volcanic) stone,

of sperone stone, and of tuff from the Anio river (Figure 2-13).

- Period IV, from 121 to 36 BC: this sees the union of opus quadratum and opus

caementicium, together with the introduction of travertine marble (Figure 2-14).

- Period V, from 36 BC to 41 AD: the most-used material is Lunae marble. The blocks

are used either as the cladding for concrete walls, or by themselves (Figure 2-15).

- Period VI, from 41 to 68 AD: the prevalent use of rustic travertine is observed (Figure

2-16).

After the end of the first century AD the use of opus quadratum was limited exclusively

to the construction of bearing structures.
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Figure 2-11 - Rome, base of Temple of
Juppiter [Marta R., 1987].

Figure 2-12 - Civita Castellana, via
Flaminia [Marta R., 1987].

Figure 2-13 - Rome, Tullianum, lower
room [Marta R., 1987].

Figure 2-15 - Rome, wall of forum of
Augustus [Marta R., 1987].

Figure 2-14 - Rome, Temple of Portunno

[Marta R., 1987].

Figure 2-16 - Rome, Templum Divi
Claudi [Marta R., 1987].
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MASONRY STR UCTURES WITH AN OPUS CA EMENTICIUM CORE

This category of masonry structure includes various typologies, all featuring a

central core, built of concrete, enclosed between two facings. The type was commonly

called the "sack wall".

The concrete was made up of stone fragments, the caementa, with a binder of lime

and sand (or preferably pozzolana) mortar. The caementa comprises stones and stone

fragments. The mortar was made up of three parts of pozzolana and one of slaked lime,

or else of two parts of river sand and one of slaked lime (Figure 2-17).

The masonry technique calling for an opus caementicium core was developed

around the end of the 3rd century BC in Latium and in the Campania region, and its

economy brought about its very rapid dissemination throughout the whole Roman world.

Depending on the type of face, generally built of elements of small size bonded with

mortar, numerous variations of this kind of structure can be distinguished: opus

incertum, opus quasi reticulatum, opus reticulatum, opus vittatum and opus testaceum.

29



Opus incertum.

The facing is made up of stone elements of irregular shape and size (Figure 2-18);

in its most ancient form it was made up of the opus caementicium wall itself, left fair

face. Chronologically it appeared in Rome starting from the 2nd century BC.

Opus quasi reticulatum and Opus reticulatum.

Opus reticulatum is nothing else than the final stage of transformation and

regularization of opus incertum, through the intermediate phase of opus quasi

reticulatum. In this latter the blocks of stone, called cubilia, display various forms, the

inclination being toward irregular laying and large amounts of mortar (Figure 2-19). The

adoption of pyramidal blocks of tuff, all equal, set with the base to form the facade and in

regular courses with the sides inclined at 45 degrees to the horizontal, forms the passage

to opus reticulatum, which was the most widespread technique in Rome for around one

century, starting from 55 BC (Figure 2-20).

Opus vittatum

This involves the laying of simple quadrangular stone blocks of small size in

horizontal courses all of the same depth (Figure 2-21). This masonry technique did not

start its spread into Rome and its immediate suburbs until the 2nd century AD. Its use

was interrupted during the Antonine age, but it reappeared under Maxentius (307-312).

In Gaul this technique was in very widespread use.
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limit of the pour surface lining: t=0.2-O.5

opus signinum-
coping: t=2.8 cm.

gray mortar:
._t=1.2-1.8 cm.

light mortar with
a few tile sherds

earty mortar with
limestone nodules

opus incertum,
lava and limestone

+ 51 -

cm.
earthy mortar with lime nodules

lime mortar

i -f

- brick facing

4- .- '--4- __

Figure 2-17 - Pompeii, street of Sepulchres [Adam J.P., 1984].

Figure 2-18 - Palestrina, Sanctuary of Fortuna Primigenia [Adam J.P., 1984].

Figure 2-20 - Rome, mausoleum of
Augustus [Marta R., 1987].
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Figure 2-19 Sepino city walls
[Marta R. 1987].
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Opus testaceum.

In this case the face of the opus caementicium was formed of fired bricks (Figure

2-22). The brick was in extremely widespread use in the Roman world owing to its

economy and to the simplicity of its laying relative to stone materials, for example. This

technique appeared around the middle of the 1st century BC with the use of bricks

presenting a depth that continually decreased down to the start of the 3rd century, it then

growing again down to Constantine. The brick curtain walls were clad with plaster and

this made it possible to tolerate slight non-uniformities in the sizes and colors of the

bricks. The fair-face masonry walls, however, were built with more care, using lower-

depth bricks having more regular dimensions. Very rarely in Roman building

construction were crude bricks used to build walls wholly of brick, that is, without the

opus caementicium core, they being called opus latericium. The remains of such are

found in constructions dating to the first century of the empire, especially in structures

featuring military architecture.
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MIXED STRUCTURE MASONRY

These may be classified into checkerboard, frame and grating.

Checkerboard structures

In the masonry structures described to this point the blocks displayed dimensional

uniformity within the various typologies: that is, elements exclusively of large size were

used in the polygonal and squared-stone structures, and elements of small size were used

in the structures having an opus caementicium core. The special feature of the

checkerboard structures consists instead just in the joint use of stones of strongly

differing dimensions. Their arrangement called for the alternation of large squared

blocks with, as filler, stones of small size (Figure 2-23). The large blocks always bear one

on the other, acting as the bearing elements. The stone filler could be removed without

jeopardizing the building's stability in any way.

Frame structures (Opus africanum)

The area in which this typology was most widespread, as the name indicates, was

North Africa, and examples of it have been found in Sicily too, where it was imported by

the Carthaginians. In this case too, as in the checkerboard structures, there is a mingling

of elements of very different dimensions. The idea of the frame is suggested by the

arrangement of the larger stone blocks, which form vertical supports in which stones of

vertical and horizontal development alternate (Figure 2-24). These supports form the

bearing elements of the wall, connected together by horizontal files of smaller stones.
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Finally, this is a technique that calls for the separation of the functions, identifying, that

is, within the whole of the wall a bearing frame and a curtain filler.

Grating structures (Opus craticium)

This is certainly the mixed-structure typology in most widespread use, even if its

archaeological vestiges are few, just because of the perishableness of the materials used.

The basic idea is still that of the frame structure, with the difference that in this case the

framing is of wood (a material easily found in Italy at the time, unlike Africa). The

filling was stones and cement, the whole then being plastered (Figure 2-25, Figure 2-26).

Characteristics of the walls in opus craticium were the possibility of obtaining low

thicknesses (20 cm) and lightness, to the detriment, however, of its strength, which was

low.

THE MEDIAEVAL PERIOD

During this period the masonries can also be classified to facilitate their

recognition. The main typologies that can be traced follow closely in the footsteps of

those analyzed for the Roman period, confirming a more or less accentuated continuity in

construction techniques'. The categories analyzed are as follows:

- masonry structures composed of blocks;

- masonry structures of cement concrete;

- masonry special structures.

In the analysis of mediaeval masonry, owing to the many typological variations to be found, the
attention has been focussed on Rome and Latium.
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Figure 2-23 - Velia, wall Figure 2-24 - Douggia (Tunisia)

[Adam J.P., 1984]. [Adam J.P., 1984].

Slow floongjoistrafters13?re
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Figure 2-25 - Frame structure [Adam J.P., 1984].

Figure 2-26 - Herculaneum, College of Augustali [Adam J.P., 1984].
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STRUCTURES MADE UP OF BLOCKS

Stone masonry

This substantially derives from the reuse of the large blocks used in the previous

classical Roman construction. The reference model is opus quadratum, but the masonry

system resulting almost never displays either regularity or expertness in the arrangement

of the blocks. Irregularities are found both in the dimensions of the materials used and in

the techniques of working and laying them. On the wall face there are visible cavities

filled with cement mortar, bricks, stones, etc. (Figure 2-27).

Brick masonry

The masonry derives from the classical Roman opus testaceum and the masonry

walls are made using bricks coming from stores or from occasional reserve supplies. One

consequence of this practice is that the material available is non-uniform in dimensions

and color, so that glaring increases in the depth of the mortar beds are required. The

passing of the centuries saw an ever more accentuated deterioration in the materials and,

most especially, in their laying, assigned to workmen who were ever less qualified. In

particular in the 8th, 9th and 10th centuries that obvious deterioration is noted that takes

the form of out-of-plumbs, swellings and undulations visible on the surfaces. The mortar

depths are quite variable (Figure 2-28, Figure 2-29).
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Striped-work masonry

This is characterized by the alternation of courses of bricks and of parallopipedal

blocks of tuff or similar stone. Its origin may be traced to the Roman opus vittatum and

its use was limited relative to brick-only masonry. The number of courses of brick and

stone varies and depends on the availability of the materials. The masonry systems built

display a workmanship that varies depending on the capabilities of the workmen. In most

cases there is an alternation of one or two courses of bricks and one or two of tuff, but in

some cases it reaches four or five courses (Figure 2-30).

Masonry with tuff blocks ("tuffelli')

Masonry facings built of tuff blocks were seen in Rome as far back as the

Republic. During the period of the empire this facing displayed an elegant weave, owing

to the proper squaring of the elements and therefore to the regularity of the mortar beds.

During the mediaeval period, then, the tufelli masonry was not an innovation; at first the

tufelli were well cut and the mortar joints were finished with flush plastering (Figure 2-

31). As times became harder economically speaking there was a deterioration in

technique: the tufelli became less well finished and the mortar beds, without flush

plastering, had less care taken with their depths (Figure 2-32). At the start of the 15th

century these walls were made up with pieces that were vaguely squared and of various

dimensions, utilizing, together with tuff, salvaged materials and brick fragments. The

frequent use of tufelli can be explained by noting a number of factors:
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Figure 2-27 - Rome, Latina gate
[Marta R. 1989].

Figure 2-29 - Rome, B. of S. Francesca
R. [Marta R. 1989].

Figure 2-31 - Rome, Bas. of St. Lorenzo
[Marta R. 1989].

Figure 2-28 - Rome, B. of St. Nereo, St.
Achilleo [Marta R. 1989].
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Figure 2-30 - Rome, B. of S. John at the
Latina gate [Marta R. 1989].

Figure 2-32 - Rome, Bas. of St. Pancrazio
[Marta R. 1989].
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- the progressive exhaustion of the supplies of brick;

- the ease of finding tuff deposits (especially in some areas of Latium);

- tuffs easy workability and good mechanical strength;

- its imitation of the generic brick in size, aspect, texture and color.

The tufello usually presents as its proportion between depth and length the value of 1:2.

This ratio in some cases grows to reach 1:3: The length runs between 5 and -37 cm, and

the depth between 3 and 12.5 cm. As time passed tuff blocks were set whose dimensions

tended ever to increase.

CEMENT CONCRETE STRUCTURES

This construction technique too draws its origins from a structure used in the

Roman world: opus caementicium. The concrete used during mediaeval times is

composed of fragments of tuff, marble, travertine, bricks, flint, etc., held together by a

lime and pozzolana mortar. The concrete masonry does not constitute, except in rare

cases, a definite structure to itself, since the facies is characterized by cladding elements

that give rise to well connoted masonry systems. For the construction of the core the

concrete masonry was formed by laying down abundant mortar beds and then drowning

in them, with care, rock fragments, travertine, brick etc. This stratification, on being

finished, formed the sturdy and economical skeleton, which was then clad with a brick or

tuff or stone lining (Figure 2-33, Figure 2-34).
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SPECIAL STRUCTURES

This name has been given to a number of mediaeval masonry typologies that

appear in wholly singular fashion; they are mentioned below.

Irregular masonry

This typology is occasionally seen in mediaeval construction technique and the

arrangement of the elements varies case by case and often within the same masonry

system. It appeared during the middle of the mediaeval period, during the 9th century.

The masonry is made up irregularly both as regards the materials and the course

alignments. Cases are seen of the use of special materials such as fragments of column

drums, sculptural decorations, pieces of trabeations, inscriptions; and all this without

being concerned to follow any compositionnal design whatever (Figure 2-35).

Dry masonry

Depending on the material available, through the whole of the mediaeval period

the model of the polygonal-stone structure of Roman times acting as containment or as

the bounds delimiting agricultural lands was imitated. The walls were executed without

mortar, of any stone that was found, and accurately set to make the pieces fit together,

without forming horizontal courses. It is a masonry that relies, statically speaking, on the

stabilizing force of its weight.
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Herringbone masonry

This appears episodically in a few religious constructions (Figure 2-36). It is

found, then, almost as a construction intercalation, without ever rising to the dignity of a

true autonomous typology, built in imitation of Byzantine structures or as a memory of

the Roman opus spicatum.

Stone frame masonry

This follows the opus africanum of Roman construction technique, at the time

imported from the Carthaginian area and applied rather seldom. It is a masonry made up

of large stone blocks set both vertically and horizontally, with the vacant spaces between

the blocks filled with small material to complete the masonry core (Figure 2-37).
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Figure 2-33 - Rome, Bas. of St. Clemente
[Marta R. 1989].

Figure 2-34 - Velletri, villa of the Ottavi
[Marta R. 1989].

Rome, Bas. of St. Stefano
Rotondo [Marta R. 1989].

Figure 2-36 - Rome, Bas. of St. Stefano
Rotondo. [Marta R. 1989].

;z.-

Figure 2-37 -Rome, Bas. of St. Lawrence outside the walls [Marta R. 1989].
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2.1 BLOCK STRUCTURES

MEGALITHIC WORKS

The use of stone as a construction material goes back to the most remote periods

of prehistory. The first appearances of man's construction activities are megalithic

constructions made of natural masses of enormous size. These works are given various

names, arising from the genius of the language of the country in which they are found

(e.g. dolmen, cromiech, menhir, etc.). The oldest go back to the New Stone Age.

THE SARDINIANNURAGHI

When bronze appeared construction stones no longer had to be worked by

breaking or spalling, but could be worked in forms more suited to construction.

Belonging to the first period of this age are the Sardinian Nuraghi, enormous towers built

of stone blocks, some of which rudely worked and arranged in horizontal courses the one

overhanging the one below, so as to form a kind of dome.
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EGYPTIAN WORKS

In the second millennium BC the Egyptian civilization was thoroughly acquainted

with the art of stone working, as the monolithic obelisks and the works built of huge

overlapping stone blocks bear witness to.

Examples of these works are:

- the obelisk built in Heliopolis by Sesostris I (circa 1950 BC) (Figure 2-38);

- the great banquet hall built at Karnak by Tuthmose III (circa 1450 BC) (Figure

2-39);

- the temple of Amun built in Karnak by Tuthmose III (circa 1450 BC) (Figure 2-

40);

- the temple of Amenophis III at Luxor (circa 1350 BC) (Figure 2-41).
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Figure 2-38.

Figure 2-39.

Eliopoli, the obelisk of Seostris I (circa 1950 BC).

Karnak, the great banquet hall built by Tuthmose III (circa 1450 BC).
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Figure 2-40.

Figure 2-41. L

Karnak, the temple of Amun built by Tuthmose III (circa 1450 BC).

uxor, the temple of Amenophis III, detail of columnade (circa 1350 BC).
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THE WORKS OF CRETE AND MYCENAE

In the period running from 2000 to 1400 BC important large stone works were

built in Crete and Mycenae. In particular, Cretan architecture is characterized by

residential constructions having more than one storey and open to the landscape; the

Mycenaean architecture instead features imposing walls built of huge cyclopean blocks,

at times barely squared, within which have been cut pedestrian corridors (Figure 2-42 and

Figure 2-43), and royal palaces and tombs roofed by domes similar to the nuraghi but

using stones worked with greater precision (see as an example the tomb called The

Treasure of Atreus of Mycenae, shown in Figure 2-44).
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Figure 2-44. Micenae, inside of the royal tomb called Treasure ofAtreus.
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THE GREEK WORKS

Greek architecture adopted the cut stone at first for those works for which

considerable strength was needed (fortifications, bearing walls, substructures, etc.), and

then for all architectural works of the monumental type, in particular for temples, which

were the constructions of most interest. Some examples of Greek temples are the

Parthenon, built in Athens in 450 BC (Figure 2-45) and the Treasure of the-Athenians,

built at Delphi in 490 BC (Figure 2-46). The stone blocks forming the temple structures

were worked with great precision and very carefully set in place. Observe for example

the arrangement of the blocks forming the trabeation of the temple of Aphaia at Egina

(Figure 2-47). To obtain blocks that precisiely fit, the contact surfaces of the block faces

were often limited to the outermost margins, worked with extreme exactness, the

innermost part being recessed and left rustic. To give the structure more stability, the

stones were often tied together by metal cramps (Figure 2-48). Cut stones were used in

the form of parallelopipedal blocks, generally of moderate size and set in horizontal

courses, except for those cases in which the proportions of the building or the use

assignment of the item demanded monlolithic stones of considerable size. During the

Hellenistic age the arch and the vault definitively entered the repertoire of the Greek

architect; see for example the vaulted accessway to the stadium of Olympia (Figure 2-

49), and the arch of the Agora gate at Pirene (Figure 2-50).
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Figure 2-45. Athens, view and plant of the Parthenon temple (450 BC).
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Figure 2-46. Delphi, the Treasure of the Athenians (490 BC).

Egina, particular of the
trabeation of the temple of
Aphaia.

Figure 2-48. Typical scheme of the
disposition of the blocks in a
Greek trabeation.
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Figure 2-49. Olympia, the vaulted accessway to the stadium (circa 300 BC).

F1 iure 2-50 Se i LJ J

Figure 2-50. Scheme of the Agora Gate at Pirene.
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ANCIENT ROMAN WORKS

Most Roman constructions were composed of brick-and-cement-mortar structural

members; but stone block constructions are numerous too. In particular, most

monumental works were built of stone blocks, such as temples, obelisks, tombs, city

gates, and commemorative arches. Some of these works, especially the temples, were a

more or less faithful reproduction of Greek constructions. Examples of Roman temples

are:

- the temple of Fortuna Virilis, also called the Rectangular Temple, built in Rome

in 70 BC (Figure 2-5 1);

- the temple of Castor and Pollux, built in Rome in 484 BC, and then rebuilt by

Tiberius in 6 AD (Figure 2-52);

- the temple of Vesta, also called the Round Temple, built in Rome in 80-100 BC

(Figure 2-53).

A famous example of an obelisk is Trajan's column, built in Rome in 113 AD

(Figure 2-54), while examples of monumental tombs (not very widespread in Italy) are

the Roman-Libyan tower tombs at El Mselleten (Figure 2-55).

In all Roman installations the city gates were built of stone blocks: see for

example Porta Maggiore, built in Rome in 52 AD (Figure 2-56); while commemorative

arches were mostly built in towns of major importance.

Stone blocks were also used by the Romans to build imposing infrastructures,

such as bridges (Figure 2-57) and acquaducts (Figure 2-58); for the construction of

important public buildings such as the baths (Figure 2-59), theatres (Figure 2-60 and
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Figure 2-61) and amphitheatres (Figure 2-62), and for the construction of high-prestige

private residences (Figure 2-63) and buildings used for manufacturing purposes (Figure

2-64).

Some works were built with mixed structures, and thus only partly of stone

blocks; such is the case of many buildings built with brick and cement mortar structures

and given a stone-block portico in front; one of the most famous works built with this

structure is the Pantheon in Rome (Figure 2-65).
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Figure 2-51. Rome, Boario Forum, temple of Fortuna Virilis, also called the
Rectangular Temple (70 BC).

Figure 2-52. Rome, remains of the temple Figure 2-53. Rome, Boario Forum, temple
of Castor and Pollux (484 of Vesta, also called the
BC and 6 AD). Round Temple (80-100 BC).
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Figure 2-54. Rome, Trajan's column.

(113 AD).
Figure 2-55. E1-Mselleten, Roman-Libyan

tower tombs.

~. ~ A

Figure 2-56. Rome, Porta Maggiore (52 AD).
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Figure 2-57. Prenestina Road, Di Nona Bridge.

Figure 2-58. Rome, Claudio acquaduct (50 AD).

Figure 2-59. Hierapolis, vaulted filgidarium of a bath building.
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Figure 2-60. Meridia, theatre.

Figure 2-61. Sabratha, theatre.

Figure 2-62. E1-Djem, amphitheatre.
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Figure 2-63. Leptis Magna, Severian building of the fountain (circa 200 AD).

Figure 2-64. Brisagane (near T6bessa), oil production building.
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ROMANESQUE CONSTRUCTIONS

During the Romanesque period, which runs from the end of the 8th century

through the middle of the 13th (Middle Ages), the common people's residences

(throughout the territory of old Europe) were constructed mostly of wood and masonry

(as was the case for the preceding centuries as well), while works of greater importance

(churches, castles, city walls) were built of stronger and more lasting materials that could

be found on the spot (only rarely were materials used that came from localities distant

from the construction site, owing to the enormous difficulties involved in their transport).

Thus thousands of constructions were built with bearing structures of stone blocks or

fired brick, many of which have been well conserved through the centuries. The fired

brick constructions are characteristic of areas poor in rocks useable for construction, in

particular the Po Valley Plain and Tuscany (in Italy), and the Low Countries and

Northern Germany's lowlands. Fired bricks differ from stone blocks most especially in

the fact that their crushing strength is lower and, generally, they are smaller in size. In

stone block structures, the largest and smoothest blocks are used for the outside surfaces,

while the more angular blocks and the working residues are in general used as filler, in

addition to the mortar, for the construction of sack wall.

The typical construction of Romanesque architecture is the masonry church, but

there are examples of them, even if their morphological characteristics differ, dating from

the period preceding the Romanesque (the pre-Romanesque period). An example of a

pre-Romanesque church is San Pedro de la nave, of 691, built wholly of stone blocks

(Figure 2-66).
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Many Romanesque works feature structures that thrust horizontally (arches,

vaults, domes), which demand suitable support elements that can counter both the vertical

forces arising from weight and the horizontal forces generated by the arch effect; these

thrusts depend on the size of the structure (its span), on its form (round or pointed) and on

the specific gravity of the material used. The horizontal thrusts are met by counterthrusts

(thrusting structures set beside the main structure), or by the thickness of the bearing

walls or also by suitable local reinforcings (exterior or interior buttresses). One of the first

Romanesque constructions using buttresses and stone-block masonry is the church of

Santa Maria de Naranco, built near Oviedo (northern Spain) between 842 and 848 (Figure

2-67). Examples of Romanesque churches with stone block structures and thrusting roofs

are:

- the church of Sant Pong at Corbera (1074) (in Catalonia, in southwestern

Europe), having a nave alone with a ribbed barrel vault roof;

- the abbey church of Fontevrault (1119) (in Aquitaine, in southwestern Europe),

having a nave only, with a dome roof (Figure 2-68);

- the church of St. Etienne at Nevers (1063-1097) (in Burgundy, in central western

Europe), nave and two aisles, the nave being roofed by a ribbed cylindrical

barrel vault.

- the cathedral of Le Mans (north of the Loire), nave and two aisles, with the nave

roofed by ogival cross-vaults;

- the church of St. Pierre at Moissac (France), central plan, with a ribbed-dome

roof.
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In some regions, for example Italy, Romanesque churches were built with non-

thrusting roofs (wood-beam), supported on vertical bearing walls. Such is the case for

the following examples:

- the church of Santa Maria Maggiore in Tuscania (1206), nave and two aisles;

- the church of San Tommaso at Alemno (11th-12th centuries) (in northern Italy)

central plan (Figure 2-69).

And finally, deserving of mention are the Romanesque churches of central

Europe, mostly built of stone block masonry and characterized by the basilica plan and by

being surmounted by towers. Some examples of these structures are:

- the Abbey church of Notre Dame at Jumieges (in Normandy) (11th century);

- the abbey church of Gendersheim (in Lower Saxony) (1 Ith century);

- the church of St. Pantaleon in Cologne (circa 1100).
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Spain, church of San Pedro de la nave.

Figure 2-67. Oviedo, church of Santa Maria de Naranco (842-848 AD).
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Figure 2.68. Fontevrault (Aquitania), the abbey church (1119 AD).
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Figure 2.70. Alemno (Italy), San Tommaso (1 Ith-l2th centuries).

68



GOTHIC AND RENAISSANCE CONSTRUCTIONS

The monumental works of the Gothic period, characterized by tall and slender

forms, were mostly built of cut stone, and this because it was the only material at the time

capable of the necessary crushing strength.

Afterward, from the Renaissance on, the tendency was more and more to forsake

the use of stone in building structures, it being relegated mainly to the decorative

elements.
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Chapter 3: REVIEW OF STATIC ANALYSIS METHODS FOR BLOCK

STRUCTURES

3.1. RIGID CONTACT MODELS

3.1.1. Limit Analysis and Mathematics Programming

3.1.2. Livesley Model

3.1.3. Lo Bianco-Mazzarella Model

3.2. DEFORMABLE CONTACT MODELS

3.2.1. Gap Elements
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3. STATIC ANALYSIS METHODS FOR BLOCK STRUCTURES

The main difficulty in the numerical modeling of block structures lies in the

mechanical characterization of the contact forces. Current models can be conveniently

classified into rigid contact and deformable contact models. The first exclude the

mechanical characterization of the joints assuming appropriate constraints on the contact

forces and, in the dynamic case, also on the resulting motion after the impact. The

second determine the contact forces assuming that the joints between blocks are

constituted by conveniently chosen deformable elements.

The rigid contact models can be considered as limit analysis problems

characterized by non associated flow rules, due to the presence of friction forces [Drucker

D.C., 1954]. Livesley [Livesley R.K., 1978] provides the first applications, but the roots

of this method can be found in Heyman [Heyman J., 1966, 1969] who applies for the first

time limit analysis methods to block masonry structures assuming, however, associated

flow rules. Livesley's hypotheses are later taken up and modified in [Lo Bianco M.,

1984; 1985], and further extended to the 3D case in [Baggio C., 2000]. It is interesting

to observe, as it will be illustrated in detail in the following, that the Livesley model may

be interpreted as a linear mathematics programming problem, while the one proposed by

Lo Bianco and Mazzarella as a non linear one.

The elastic contact models describe the contact between blocks with the so called

gap elements, that are elements with axial and tangential stiffness, capable of transmitting

compressive and shear stresses respectively (see for example [Mamaghani I., 1999]).
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3.1 RIGID CONTACT MODELS

3.1.1 Limit Analysis and Mathematic Programming

Limit analysis is based on the use of the perfectly plastic model for the description

of the structural behavior and on the use of the limit theorems of plasticity (upper bound

theorem and lower bound theorem). The rigid perfectly plastic model is particularly

suitable for describing the behavior of a rigid block on a plane surface with friction. If r,

and rt are the resultants of the normal and tangential forces between the block and the

base, the states of incipient sliding may be described by a relationship between r, and rt

(the failure or limit curve). Such relationship depends from the morphology of the contact

surfaces and from the mechanical properties of the materials. A generic limit equilibrium

curve in the rj - rt. plane is given in Figure 3-1, in the same figure p. and pt represent the

external loads in the normal and tangential direction respectively.

failure
limit curve

equilibrium

JPn

Pt

rnrt

Figure 3-1. A failure criterion for a rigid block on plane with friction contact.

73

rt j



In general, the solution of the perfectly plastic problem requires that equilibrium,

geometric compatibility, and constitutive relationship are simultaneously satisfied. The
general procedure may be simplified using the lower bound theorem (in the static

approach), which states that:

the set of values of external loads which are in equilibrium with a set of internal

forces (the contact force, in this case) satisfying at any point both equilibrium and

the failure criterion, is a lower bound approximation ofthe failure;

or using the upper bound theorem (kinematic approach), according to which:

the values of external loads determined equating the work of external forces in

any failure mechanism which satisfies kinematic compatibility and the work of the

corresponding internal forces (satisfying the failure criterion) are an upper bound

approximation of the failure.

Expressing the external loads with A p, in which A is a scalar representing the

multiplicative factor of the load vector p, we have the problem to determine the value A,,

for which the structure collapse. If r is the vector of internal forces, d the vector of

displacements and e the vector of strains, we have that the equilibrium equation may be

written as:

Ap=Hr

the kinematic compatibility equations as:

Hd = e.
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and the equation of balance of internal and external work as:

A pT d =(r*)T e.

where (r*) is the value of r during sliding.

Assuming for the failure criterion the following law:

-rI r r"

and expressing, for convenience, the vectors r, d and e as the difference between two

orthogonal vectors with positive non zero components:

r=rl -r2 with: ri 0, r2 0

d= di - d2 with: d, 0, d2 0

e = el - e2 with: ei 0,

and rI r2= 0

and d T d2 = 0

e2 0 and eT e2=0

we have that the lower bound theorem of plasticity may be given by the following

relationships:

Ac = max(A),

Ap - H(r, - r2)= 0, r (ri - r2) ru,

A 0, r, i 0, r2 0
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which may also be written in matrix form as:

LI-P

0

0

A= max(A)

-H 0
H -H 0
I -I r "

-I +I _ r2 _r'I

wr2 o

whose solution is a typical problem of mathematic programming.

Analogously, the upper bound theorem of plasticity may also be expressed from:

Ac=min(A),

HT (d, - d2) = (e, - e2), ZpT(di - d2) = (r*)T (e - e2),

A 2 0, ei 0, e2 0, dI > 0, d2 > 0

where the vector e has an arbitrary length. Again, the corresponding matrix expression

is:

ST
p

HT

Ac~min( 2)

-p T  0 0 ~[I

HT I -I d2 2 0
-H T -I I [ 0

e2

d,

d2

el

-e2_

0
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assuming for the length of vector e, a value which always satisfies: (r*)T (ei - e2) l.

It is recognized that the previously described problems, formulated with the static

and kinematic approach, are two dual problems and it follows that the multipliers

coincide.

The problem has been simplified by assuming a particularly simple failure

criterion. Let us study now the case of contact forces with a generalized Coulomb

friction behavior given by the following relationship:

-rj, - T'r r rou + Tur

Assuming that the external loads are described as the sum of a constant vector pi and a

variable vector AP2:

p=P1 + 2 P2

the two problems of mathematic programming formulated in the preceding paragraph,

with the new position of the constraints, become:

qe = ma

-H

H

(I-T") (-
(-I-T') (I

r 0

_r2_

x(A)

H

-H

I+TU)

+ T')

_- <I- P1 

i L roi
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and:

A)~min( )

T T 0 j]- di [1/P2 -P2 d
-HTI HT > I 0

LH ; i
d2 20

el

e2.

having assumed for the length of vector e, a value for which (r*)T (ei - e2)>l.

In this case, the problems of maximum and minimum are not dual ones, unless the

matrices T" and T' are identically null; such a condition, for a system of reactive forces

with generalized Coulomb friction, exists only if the friction angles are null and the

resistant force tangent to the joint comes entirely from cohesion of the restraint. The

presence of Coulomb friction determines that the problem of limit analysis requires a

non-associated flow rule. A rectangular block is considered subject to two forces N and

F respectively perpendicular and parallel to the supporting surface (Figure 3-2).

The limit criterion in the space of the forces is the following:

F - c - N x tgpo 0

F + c + N x tgpo 0

Fxh-Nxb 0

-Fxh+Nxb0O

N No

Overlapping the space of the displacements (u, v) with the space of the forces (F,

N) it is possible to relate the displacements following a given collapse mechanism with
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the failure domain (Figure 3-3). One finds in fact that in the segments OA and OA' the

mechanism is one of pure rotation with centers of rotation o' and o and the field of

displacements defined by the following relationships:

U A -V OA h
b

C A' Q A' h
U"' = V

b

in the segments AB and A'B' the mechanism is of pure translation and the field of

displacement is the following:

VAB UAB =0,

VA'B=O UA'B' = -u;

in the segment BB' one has joint failure due to crushing and the field of displacement is

the following:

UBB' =

VBB' = Vo.
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Figure 3-2. Rectangular block subjected to a system of centroidal forces.
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Figure 3-3. Failure limit and compatible displacements for a rectangular block, in the

presence of Coulomb friction.
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One has therefore that in the segments AB and A'B' the law of normality is not

respected. For materials with non-associated flaw rule it is possible to identify a reduced

limit domain such that in correspondence with the activation of one of its sides the

normality law would be respected and at the same time there would be a dissipation of

energy equal to the lowest value of the energy that would dissipate following the

activation of the corresponding face of the real domain. In the case in question (figure ),

the reduced domain coincides with the domain that one would obtain by choosing a

friction criterion of the type:

F ±yA

where:

c -b-h

YAb-h- tg(p

The identification of the reduced domain allows, on the basis of the two

Radenkovic theorems for non-standard materials (materials that do not have an associated

flow rule), the determination of a lower or upper approximation of the collapse multiplier.

In fact it is found that the failure load of a body with non-standard material is

upwards-limited by the failure load that the same body would have if the material were

standard and the criterion of resistance were the real one (F() 0); further, the failure

load for a body whose material is not standard is downwards-limited by the failure load

that the body would have if the material were standard and the criterion of resistance

were (G() 0), where G(c-) = 0 is a convex function entirely contained in the yielding

surface F(c-) = 0, such that at each stress state o on F() = 0, there is a corresponding

stress state c' in G(o') =0 and in a' one has that s', is perpendicular to G(u') = 0, and

( d- y - : o >0.

It is therefore possible to find an upper bound and lower bound of the failure load

by solving two linear mathematic programming problems: the first one can be found

solving the problem of maximum; the other may be obtained solving the problem of

minimum, substituting the nonlinear constraints with the constraints resulting from

having used the reduced domain.

81



3.1.2 Livesley Model

In [Livesley R. K., 1975], the author illustrates a numeric procedure for the

evaluation of the collapse multiplier for 2D frames. The procedure utilizes the static

approach. In [Livesley R. K., 1978] he adopts the same procedure for the study of rigid

block structures considering two different cases:

1) independence of the friction forces from the forces (N) acting perpendicular to

the planes of sliding;

2) dependence of friction forces from N.

In order to apply the algorithms developed for the frame case, the block structures

are modeled as nodes with finite dimensions and elements with rigid-plastic behavior: the

nodes represent the blocks, the elements represent the joints. On each element (joint) a

system of equilibrated forces r is applied, and the field of possible displacement is

represented by the vector e such that the work is rT e (Figure 3-4). In the type 1 case,

given that there is duality between the static and the kinematic problem, the correct value

of the collapse multiplier is obtained; in the type 2 case, the author points out that, even

though there is no duality, the multiplier obtained is correct if the field of displacement is

such that the work rT e is null. To say that rTe is null means to exclude the cases in which

the failure implies sliding, admitting that for each single block one can have exclusively a

rotation mode.

In [Livesley R. K., 1992], the author extends the procedure to the calculation of

three-dimensional block structures.
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3.1.3 Lo Bianco-Mazzarella Model

Lo Bianco and Mazzarella take up the Livesley hypothesis and write the

equilibrium and compatibility equation as follows:

r=Ap +A rx (a)

P =PI + AP2 (b) (3-1)
d=Aoe (c)

d, =A e = 0 (d)

where:

p = generalized vector forces;

pi = constant generalized vector forces;

Ap 2 = variable generalized vector forces;

A = load multiplier;

d = generalized nodal vector displacements;

r = generalized vector stress (contact forces);

e = generalized vector of deformations

rx= statically indeterminate forces vector;

dx= non compatibilities vector.

The constraints on the contact forces are formulated as it follows:

f= Tr - ro 0 (3-2)

and dictate that the perpendicular stress at the joint is either null or compression, that the

eccentricity of the perpendicular stress must fall within the section and finally that the

generalized rule of Coulomb must be respected. The relative displacement between the

two joint faces are described as linear combination with non negative coefficients of four

elementary displacements (Figure 3-5):
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,u = unit rotation in negative direction and center on the upper edge of the joint;

p2= unit rotation in positive direction and center on the lower edge of the joint;

u3 = unit positive sliding;

4= unit negative sliding.

The allowable displacements are thus expressed by the following relationship:

e = Mp (3-3)

while since the variable loads are positive one has:

dTp 2 = 1 (3-4)

According to the authors, for structural safety purposes, the only significant

multiplier is the minimum, obtainable by the following non-linear programming problem:

min(X) (a)
T T r

r=A (p1+ Ap2)+ Ar (b)

A 0 (c)

f= Tr - ro 0 (d)

pU 0 (e)

f P = (f) (3-5)

e=Mp (g)

d=Aoe (h)

dx=A e = 0(i)

dTp 2 = 1 (1)
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Putting (3-3) into (3-5h) one obtains:

d=AoMp

which allows the calculation of the displacement vector u.

The authors emphasize how it is possible to find a lower and upper estimate of the

multiplier from the solution of the preceding problem. The first one coincides with the

collapse multiplier of a structure which has the same kinematic laws (e = Mp) of the real

one, but a reduced domain. The evaluation of the lower estimate, however, become

meaningless in the case in which the resistance to sliding is assigned entirely to friction.

In the absence of cohesion, in fact, the reduced limit domain (Figure 3-3) coincides for

each element with the axis of equation F = 0; it follows that the lower estimate is zero.

The upper one coincides with the collapse multiplier of a structure which differs from the

real one only for the kinematic behavior which is of the associated type.

In [Trovalusci P., 1992] the formulation in (3-5) is applied for the identification

of the collapse multiplier of small block masonry structures made with rectangular blocks

(Figure 3-6). The authors highlight that the value of the multipliers obtained

experimentally are lower than the ones obtained with limit analysis, and that the numeric

procedure of minimization has convergence problems even for a limited number of

blocks as in the case of Figure 3-6b, where the mechanism reported is not correct, but

rather refers to an intermediate iteration far from the exact solution. An improved

implementation of (3-5) with extension to the 3D case, and better convergency

performances is given in [Baggio C., 2000].

It should be noticed that the Discrete Element Method, which will be described in

the following, does not show convergence problems, but still predicts failure loads which

are higher than the experimental ones (see Chapter 5). In Chapter 7 a new joint model for

the DEM is proposed in order to overcome such discrepancy, and among the applications

which will be presented, there will be also the case illustrated in Figure 3-6a (21-block

case), in which the failure load has been overestimated by the Limit Analysis method.
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Figure 3-6. Application of the Lo Bianco-Mazzarella model [Trovalusci P., 1993].
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3.2 DEFORMABLE CONTACT MODELS

In block structures, in some cases, the hypothesis of rigid plastic joints can turn

out to be inadequate for the modeling of contact forces. In a masonry wall, for example,

even when the mortar is degraded, the deformability of the joints is much higher than that

of the bricks which may be modeled instead with rigid elements. But even in the absence

of mortar, a rough joint has contact points which may be modeled in terms of

deformability and resistance with constitutive relations which are different from those of

the element itself.

In this second case, the studies performed in the field of rock mechanics have

yielded useful indications: the morphology of a rock fracture is often classifiable based

on its roughness measurable using the JRC (Joint Roughness Coefficient). As it will be

described more in detail in Chapter 5, in stone blocks the JRC is about 2, since the

roughness of the joint is classifiable as type-I [Barton N. R., 1978]. It seems reasonable

to assume that the contact is localized in a discrete number of points with given

mechanical characteristics, such as:

k,= stiffness in a direction perpendicular to the joint surface;

kt= stiffness in a direction tangent to the joint surface;

N* = resistance to compression at the contact point;

F. = resistance to sliding at the contact point.

For a rigid block placed on a horizontal plane (3-7a) and supposing that the

contact points coincide with its corners it is possible to model the contact points with two

deformable elements: one with stiffness ka # 0 and kt = 0, the other with stiffness k. = 0

and kt # 0. The contact element with stiffness k, is characterized by the force

displacement law shown in 3-7b: it has a no tension resistance, and an infite resistant in

compression and has a constant stiffness.
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The contact force increases therefore linearly with the increase of the

displacement u, of the block corner (contact point) in direction n with respect to the

position that it had in the absence of interaction forces. The contact element with stiffness

kt is characterized by the force displacement rule shown in Figure 3-7c: it has an

elastic-plastic behavior whose variable elasticity threshold is a function of the normal

force acting in the contact point. For Coulomb friction the tangential ultimate force is

provided by:

IFu =Ntgp (3-6)

3.2.1. Gap Elements

For the study of the failure load of multi-block structure it is possible to use finite

elements models with the so-called gap elements whose behavior is analogous to the one

previously described in section 3.2. In [Trovalusci P., 1992] a series of FE analysis of

block walls have been performed. The blocks were considered rigid while the joints were

modeled as in section 3.2. The Newton-Raphson algorithm was used for the solution of

the system of non linear equilibrium equations. However, the numerical procedure, as

reported by the author, became particularly unstable when several openings occurred, and

convergence was not easily obtained.

A recent work presented in [Mamaghani I., 1999] falls in this cathegory of

models for block structures.

In addition, it is noted that, since the FEM is not suited for detecting new contact

surfaces during the evolution of the system response, cases in which a local instability is

followed by a global stable configuration are not captured by the FE analysis, whereas the

Discrete Element Method will generally predict the correct solution.
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Figure 3-7. Modeling of a block with elastic contacts.
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4. REVIEW OF DYNAMIC ANALYSIS METHODS FOR BLOCK

STRUCTURES

In the field of block dynamics the first studies date back to the last century, when

in [Milne J., 1881] were presented the first investigations aimed at the estimation of

earthquake intensity based on the study of its effects on columns and obelisks. Systematic

studies of the dynamic behavior of blocks, however, begins with the work by [Housner

G.W., 1963] aimed at the study of seismic behavior of storage tanks. Many studies have

been devoted to this subject, an extended review is contained in [Sinopoli A., 1998].

However the available dynamic models, with the exception of the Discrete Element

Method, tend to be limited by the simplicity (both in the shape and in the number of

elements) of the structures which may be considered.

4.1 RIGID CONTACT MODELS

The dynamic behavior of a block structure is characterized by the presence of

impulsive interaction forces associated to the impact. Impact is a highly dissipative

phenomenon which is generally quantified by the restitution coefficient, defined as it

follows:

e = dt (4-1)
F,. -dt

where fF -dt and F, -dt are respectively the impulses acting during the period of

deformation and of restitution. In the case of frictionless impact, for regular contact

surfaces, it may be assumed that impulses act perpendicularly to the surfaces, and it can

be shown [Beer, 1957] that, in the case of both direct central and oblique impact, and the

case of eccentric impact, (4-1) becomes:
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e = . . (4-2)
(VB -VALn

where A and B indicate the contact points of the bodies, n the direction perpendicular to

the surface of the bodies at the contact points and VAv Bv-, vB the velocities of the

contact points respectively after and before the impact. In the case of impact with friction,

the direction of the acting impulse is not known a priori, and in general it has two

components, one perpendicular and one tangential to the contact surfaces. See [Levi-

Civita, 1927] for a discussion of the problem.

After having defined for a system of bodies the internal impulses, it is possible to

write, for each body and for the system as a whole, the equations of impulsive motion as

it follows:

AQ=JR (4-3)
AK= M

where AQ and AK represent respectively the variations of the quantity of motion and of

the momentum of the quantity of motion, or rather, with obvious meaning of the symbols:

AQ = Q*-Q~

AK = K+ - K-,

R is the resultant of the external impulses, and Mis the corresponding resulting moment.

From (4-3) it is deduced that for a system of bodies, in the absence of external

forces, since the resultant of the external impulses is zero, the quantity of motion and its

momentum is conserved after the impact.
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The equations in (4-3) do not usually suffice for the solution of the problem, that

is the determination of the motion of the single bodies after the impact, since in general

the number of unknowns (acting impulses and velocities of the bodies after the impact) is

greater than the number of available equations and therefore the problem is

indeterminate. From this comes the necessity of introducing, in addition to the geometric

constraints, also mechanical (temporary) constraints during the impact. Such constraints

may be characterized directly if an actual constitutive relation for the joint is assumed, or

indirectly if additional supplementary hypotheses related to the resulting motion of the

body after the impact are introduced.

Such additional hypotheses can be:

a) limitations of the degrees of freedom of the system, such as in [Housner G. W.,

1963]; and

b) quantification of the restitution coefficients, such as in [Ishiyama Y., 1982].

The preceding hypotheses can be seen as a particular case of mechanical

characterization of the joints. It results in fact that a) often coincides with the

introduction of infinitely rigid joints; and b) can be seen as a quantification of the

impulses in the phases of deformation and restitution, which implies the definition of a

constitutive relation for the joint.

In the field of block dynamics, analysis methods are usually classified into those

that consider deformable and rigid contacts. The first group hypothesize a constitutive

relation for the temporary joint; the second hypothesize rigid contacts, without describing

the characteristics of motion during the impact. An alternative approach is represented by

the methods that identify the act of motion after the impact (for the case of bodies with

rigid joints) with a variational approach, by minimizing a functional which in the case of

[Sinopoli A., 1987] is Robin's functional.
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4.1.1. Milne's Studies

Milne (1881) studied the problem of columns overturning when subjected to

seismic activity, pointing out that the period of oscillation of a column depends on the

maximum rotation to which it was subjected and that the initiation of rocking doesn't

necessarily imply overturning since the seismic activity provides the column with

"overturning energy acting in opposite directions".

He has conducted experimental studies, subjecting cylindrical columns to

alternating displacements using a rudimental, but effective vibrating table (Figure 4-1).

The columns had a diameter of 2.5 cm and varied in height from 5 to 8 cm; the

objective of the test was to evaluate for which displacement of the weight (W) there

would be column overturning. With known initial displacement which yields the period

of oscillation T, the maximum oscillation width (S), and the maximum velocity (V) of the

"vibrating table", one can determine the average acceleration (A) and the maximum

acceleration (A) that causes the overturning of the column:

- V V 2
A =4-;

95



4.1.2 Perry Model

Perry (1881) studied the rotation of a column (Figure 4-2), whose center of

rotation coincides with a corner of the base, hypothesizing the friction to be such that

relative translations are avoided.

The author does not address the problem of impact, but defines the equations

which govern motion between one impact and the next.

2 sin(a- 0)
M-il0

where m is the mass of the body, g the acceleration of gravity, r the distance of the

centroid from the center of rotation and io is the gyratory radius around the center of

rotation. The precedent equation for slender blocks becomes:

m-g -r
-10 -6

and its solution is:

O= a+C -e"'' +C 2 -e "I

where: n g r
Ir
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Figure 4-1. Scheme of the shaking table used by Milne.
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Figure 4-2. Scheme of the Perry Model.
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The author, from the precedent expression evaluates the time necessary for angle

o to go from the initial value 0 to an assigned value 0*, hypothesizing two different

initial conditions:

a) O= 6b,

b) 0=0,

0o = 0;

9 = O.

The type-a conditions refer to the case of a block subjected to an initial rotation around its

base edge and it gives (with 0.=0):

- +
= In a +

n (a - 00)

where a = arctg(b/h).

The type-b conditions refer to the case of a block, initially motionless, and subjected to a

given initial angular velocity and the solution is:

n-a-9 n-a+0
0=a-- e- e-

2n 2n

We further have:

t=I -n n-(a- )+ nJ- (a -0) _n-a+
n n-a- 9 n- a -0 n-a-

that for 0 = a becomes:
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I
1 0_+n.a )2

t =--lI .
n k 0 -n-a

Thus if bo <na the block will be subjected to a rocking motion, if bo =na, the

block reaches the unstable position 0 = a for t = oo with zero angular velocity, and finally

if bo >na the block reaches the position 9 =a in a finite period and will later overturn.

Further, for a given value of bo, the time necessary to reach the unstable position

increases with the increase of na and it follows that the probability of toppling

diminishes with the reduction of the slenderness.

Perry examines further the case of a block subjected, during the rocking motion

and in the absence of impact, to an acceleration parallel to the supporting plane, of the

type:

S= a -sin(pt)

In this case he provides the equation for slender blocks:

g- = -(0 - a) +a -sin( pt )
io

and the relative solution:

- a [p-cos(pt)+n-sin(pt) n-sin(pt)-cos(pt) + , _n,
= n 2 2 2 2 +Ce +C2 ' e

2nn--p n2+p J
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4.1.3 The Housner Model

Housner's studies [Housner G. W., 1963] on block dynamics arise from the

necessity to provide an explanation of the dynamic behavior of a certain storage tanks

("Golf Ball Tanks") which, during the 1960 earthquake in Chile, showed an apparently

abnormal behavior. Thus he systematically examines rigid block dynamics, subjected to

both free oscillations and external actions and arrives at the conclusion that, given equal

slenderness, rigid blocks are more stable with increasing height. The preceding

conclusion thus explains the good static behavior of some tall slender storage tanks when

compared to shorter but equally slender ones.

The author takes Perry's model, posing however the problem of the complete

characterization of block motion, studying the effect of the impacts that occur during

rocking. With regard to free oscillations, with initial conditions of type-a of the Perry

model (4.1.2), one finds that it is possible to distinguish four types of motion which act in

succession (Figure 4-3):

1) the block, starting from an initial condition 0=6b and bo = 0, reaches, turning on edge

o, the resting position 0= 0 with angular velocity 91, at time tI; occurring a phenomenon

of impact with consequent dissipation of energy;

2) the block begins a rotation around corner o', with initial angular velocity 2 < 1,

reaching at time t2 the position 01 <90, characterized by a maximum of potential energy;

3) the block initiates a new motion around the corner o', with zero initial angular velocity,

and initial rotation equal to 01, reaching the resting position with angular velocity 2, at

time t3 ;

4) the block rotates around corner o with initial angular velocity 93 < 2, reaching at time

t4 the position 02 <0,, characterized by a maximum of potential energy.
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In the Housner model the following parameters are significant:

relationship between two maximum consecutive rotations,

O*L 02 , in correspondence with the times at which the potential

energy is at its maximum;

g+#2 ) relationship between the angular velocities before and after

01 '2) each impact;

=2-t2 time interval between two consecutive impacts
2

The author determines the above quantities starting with the motion equation:

= - -sin(a-0)

and assuming equality of the moments of the quantity of motion around the comer in

which the impact takes place in the instant immediately before and after the impact.:

i0 -2-r-b.~-.sin(a)=io*.

It in fact results that:

0 2.r 2 .sin2 (a)
C-= -= 1-

0- jo

2=1- n _
aa

On+1

(4-4)

(4-5)
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T 2 1r2n0-= -tanh~' . _ __ (-6)2 n (4

From (4-4) the relationship between kinetic energy before and after impact can be

calculated, which is the restitution coefficient r = &2, which for rectangular blocks (2b x

2h) becomes:

- 2h 2 - b2 2 47r = [4-7)
12(b 2+ h24

Removing the hypotheses of contact at the corners of the block, and hypothesizing

that the point of contact during the impact is placed at the distance 77b from the corner

(Figure 4-4), the value of the restitution coefficient varies according to [Giannini R.,

1985]:

4-2+3rq

r 2 (4-8)
4(h2 + 4 - 3q/

that for r/= 0 coincides with the value given by Housner, while for rl-+l it tends toward

1. The case in which rl-+l is a limit condition in correspondence to which the contact

points between the block and the supporting base coincides which is the case, for

example, if the base is convex.

The principal conclusions deducible from the Housner model are that the

restitution coefficient depends exclusively on the slenderness of the block, and in

particular it increases with increasing slenderness, and also that the time interval between

two consecutive impacts decreases with the number of impacts.
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4.2 DEFORMABLE CONTACT MODELS

Among the deformable contact models one can identify two different approaches.

The first considers elastic contacts as monolateral-type constraints, and it may be

considered an extension to the dynamic case of the gap element model described in the

previous chapter; in this case the modeling of the dissipative effects during impact can be

obtained introducing viscous-type forces. The second approach considers bilateral-type

constraints, and the constitutive relationship is such as to simulate also the gravity force.

In fact, a block subjected to rotation, with a center coinciding with one of its corners, is

subject to an equilibrating moment M which is a function of the rotation angle:

M()=± P r sin (a - S) (4_9)

(4-9) can be approximated with a continuous softening rule such as:

M* = -a(sign0)(e- (si'gn)o + (sign 1)O
a

which is the sum of two equations, one of which represents the two straight lines passing

through the point at which (4-9) intersect the axes (M, 6), the other is an exponential-type

curve which varies with y which represents initial stiffness of the joint (Figure 4-5a). The

first part of the curve M*(6) (Figure 4-5b), gives the elastic deformations of the block

before it can rotate rigidly. If 9 >a, the block exceeds the position of maximum potential

energy and becomes unstable. The block can therefore be modeled with a one degree of

freedom elastic oscillator (Figure 4-5c) of the softening-type approximating the forces

given by (4-9). The equation which govern the equivalent elastic oscillator motion is:

m*9+c+M* =0,
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where m* is the generalized mass and c 9 are viscous-type forces.

4.2.1. The Angotti -Toni Model

The authors Angotti and Toni [Angotti F., 1982] study the dynamic behavior of a

rigid block with three degrees of freedom resting on a monolateral elastic half space.

(Figure 4-6a). The model is aimed at the study of the interaction between electrical

equipment or low rise buildings and the foundation soil in case of dynamic actions. The

elastic half-space is modeled as a layer of independent no tension vertical springs, with

piecewise linear constitutive relation (Figure 4-6b). The lateral reaction of the foundation

is modeled by independent bilateral springs whose constitutive relation is described in

Figure 4-6c.

In [Angotti F., 1984] the authors introduce into the preceding model viscous

elements for the simulation of the dissipative effects of the soil-structure interaction, and

further study the dynamic behavior of two overlapping blocks (Figure 4-7). The joint

between the two blocks is rigid, and the lower block rests on a monolateral elastic half

space. The motion of the upper block can only be rocking, even if the possibility of total

detachment of the bodies, as final limit condition, is considered. The system is subjected

to a sinusoidal base acceleration, and its response to increasing amplitude of the

oscillation (with all other parameters fixed) is studied. The authors point out how the

time necessary to reach the total detachment of the bodies doesn't always decrease with

increasing amplitude of the base oscillation.
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Figure 4-5. Scheme of equivalent elastic oscillator model.
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Figure 4-6. Block on monolateral elastic soil [Angotti F., 1982].
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Figure 4-7. Overlapping block structure [Angotti F., 1984].
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4.3 THE DISCRETE ELEMENT METHOD

From the previous review of available methods for the study of block dynamics, it

appears that most of them are restricted in their use to simple, predefined structural

configurations, whereas the study of historical structures, viewed as assemblages of

blocks, require the maximum flexibility and generality in defining the structural

configuration. Such flexibility is provided by the DEM, which was initially developed in

the field of rock mechanics, and it is proposed in this work as a powerful numerical

methodology for studying the seismic response of historical block structures.

The DEM, after being applied to the investigation of the stability of fractured

rocks, has later been used for various problems of dynamic interaction of multiple bodies

in fields ranging from constitutive modeling of concrete and granular material to blasting.

In the following only general concepts on the DEM will be presented, while details

concerning its formulation can be found elsewhere (e.g. [Cundall, 1989], and [Williams,

1985]).

In the implementation adopted in this work (both in the program DECICE [Intera

Technologies, 1988], and UDEC [UDEC, 1996]), the element has a quadrilateral shape

and 4 nodes at its corners. It can translate and rotate freely (3 d.o.f in 2D) and it can

deform elastically similarly to a finite element. It is subjected to gravity and boundary

forces coming from the interaction with other elements.

The motion of its centroid is governed by the dynamic equations, while its

deformations are described by linear elasticity. An explicit integration scheme for the

time domain solution of the dynamic equations is adopted.

The interaction between elements is provided by contact elements which are

located in the nodes and become active only when the node gets close to the surface of
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another element. When the contact between a node and a surface is active two interaction

forces are updated at each time step: one normal and another tangential to the contact

surface. The normal force N may be viewed as generated by a no-tension linear spring

with stiffness Kn which deforms according to Un, the normal component of the relative

displacements between node and surface, while the tangential force T, which simulates

the Coulomb friction force, is obtained by an elastoplastic spring with initial stiffness Kt,

which deforms according to the tangential component of the relative displacement Ut,

and whose plastic limit is given by T = N '1 (where rj is the friction coefficient, and N is

the current normal force at the node).

Note that the contact may occur between any node and any surface of two

different elements therefore the number of potential contacts is in the order of n2 (where

n is the number of nodes). Since the time step dt is usually very small, to ensure

stability and accuracy of the solution, and given that at every time step all potential

contacts have to be checked for activation or de-activation, an efficient algorithm for

contact detection is one of the essential features of the DEM (consider that in the case

studies examined in this work n was in the order of 102 and the number of time steps for

each analysis in the order of 10 5 to 106).

The energy dissipation which takes place during the impact is a complex

phenomenon which, in this approach, is simply modeled by a linear viscous element in

parallel with the normal interaction spring. The parameter C defining the viscous

element is chosen proportional to the normal interaction stiffness Kn : C = a Kn. Care

should be used in selecting a , since it determines the range of high frequencies which

are overdamped and therefore cannot be transmitted through a given contact affecting,

consequently, both the numerical stability and the accuracy of the solution. In quasistatic

problems, where loads are applied slowly and a static solution is searched, a viscous

damping proportional to the mass M of the element, and defined by a parameter C = P

M, may be applied to the motion of its centroid in order to expedite solution convergence.

In this case p determines the range of low frequencies which are overdamped. Its
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selection dos not affect numerical stability, but it is critical for solution accuracy since

low frequencies generally govern the system response.

In summary, in a DEM model it is required to define the following critical

interaction parameters: Kn, Kt, ii, a, and/or P. While the friction coefficient q , may be

taken from standard lab tests, the remaining 4 parameters, which represent in a lumped

form the mechanical property of the joint, are not easily measured with direct tests and

should be assigned with care as described in the following chapters.

It can be noticed that a major advantage in using the DEM is the capability of

retaining all the degrees of freedom of each element (for example, it does not restrict the

analysis to pure rocking of the blocks); and of accurately describing the closure and

opening of joints without the need of specifying where they will occur. On the other

hand, the phenomena which accompany the interaction among blocks are described by

simple discrete frictional and impact models. Nevertheless, the DEM proves to be a

valuable tool when the interest is in the prediction of the collapse mechanisms and in the

determination of the global force transfer among blocks, more then in the detailed

characterisation of the local stress and strain fields in the vicinity of the contact.
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5. QUASISTATIC ANALYSIS OF BLOCK STRUCTURES WITH

CURRENT D.E.M.

From the review of the methods currently available for the quasistatic analysis of

seismic response of block structures, presented in Chapter 3, it appears that this problem

is still a challenging task. The opening and closure of the joints, and the sliding and

rotation of the single blocks determine a complex nonlinear response which is not fully

described by the existing analysis methods.

In fact, limit analysis, recently extended to include also the dependence of friction

from the normal load [Livesly,R.,1992, Baggio, C.,2000], in addition to being restricted

to static equilibrium problems, can predict only the initial motion of the system, without

being able to capture a subsequent stabilization of the structure and a possible different

global failure mechanism for higher loads. Also in the context of deformable contact

models, it was noted that, specialized finite elements such as "gap elements", are not

particularly suited for automatically detecting the activation and deactivation of a large

number of contact surfaces during the evolution of the system response

[Mamaghani,I.,1999]. The method of finite elements with the smeared crack approach,

not mentioned in the previous review because not specific to block structures, has also

been used for modeling brick walls [Kelly,T.,1996]. However it is limited by the

impossibility of considering the effects of the layout of the bricks and of the presence of

well defined lines of fracture within the structure.

The Discrete Element Method, as illustrated in the previous section, with the

explicit modeling of discontinuities, and its sophisticated contact detection algorithms,

appears to be capable of overcoming some of the previous limitations. However, the

DEM, developed in the field of rock mechanics, and employed in various problems of

dynamic interaction of multiple bodies, has not been systematically applied yet to the

study of the seismic vulnerability of historical block structures, and this is the purpose of

the current work.
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In this chapter, the DEM will be applied to the quasistatic analysis of block

structures. The next chapter discusses the applicability of the DEM for the dynamic

analysis of block structures. Subsequently, in Chapter 7, a new DE joint model is

proposed for overcoming the observed limitations.

In the following of this chapter we will focus on the seismic behavior of opus

quadratum walls (regular masonry of squared stone with no mortar)', both for the

simplicity of their geometrical layout, and for the historical importance of the

constructions in which they are found.

In section 5.1, some basic observations on how masonry buildings tend to fail

under seismic actions are presented. Based on such considerations the relevance of the

in-plane response of opus quadratum walls is explained, and consequently such type of

behavior will become the focus of most of the rest of this work.

In section 5.2, a series of experimental tests on small scale wall models made of

stone blocks and subjected to in-plane lateral loads (simulating the seismic action) is

illustrated. Such tests were performed mainly for obtaining well documented data to be

used in the evaluation of the DE predictions. Tests for measuring the friction parameters

related to the specific type of stone blocks used in the wall models were also performed

with the objective of measuring the friction coefficient to be used in the analysis, and also

for evaluating other aspects of the friction behavior, not accounted for in the basic

Coulomb friction model (usually adopted in DEM), such as the dependency of the

friction coefficient with: (1) the normal contact force, (2) the degradation of the contact

surfaces, and (3) the sliding velocity.

In section 5.3, the analysis, with current DEM, of opus quadratum walls subjected

to quasistatic in-plane lateral forces is presented. After a series of analyses were

performed for evaluating the sensitivity of the response with respect to certain model

'A survey of historical structures including opus quadratum walls is illustrated in Chapter 2.
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parameters, the DE predictions were compared with limit analysis results and the

experimental data obtained in section 5.2.

Finally the potentials and the limitations of the DE method for the quasistatic

analysis of block structure are highlighted in the conclusion.

It should be mention also that the practical application of current DEM to the

quasistatic analysis of historical structures is further illustrated in the Appendices, where

two pilot studies concerning respectively the out-plane and in-plane behavior of masonry

walls are presented.
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5.1 SEISMIC RESPONSE OF ANCIENT MASONRY BUILDINGS

Preliminary to the experimental and analytical study of the seismic response of

historical structures, it is useful to briefly review the usual failure modes observed in such

type of buildings during past earthquakes. Extended information of this topic may be

found in the preceedings of specialized conferences such as the "US-Italy Workshop on

Guidelines for Seismic Evaluation and Reabilitation of Unreinforced Masonry Buildings"

[Abrams,D.,1994], and the "International Conference on Structural Repair and

Maintenance of Historical Buildings" [Brebbia, C., 1991].

A simple scheme of an historical buildings consists of three elements: roofing,

horizontal and vertical elements. The vertical elements can be classified as walls and

columns and both can be either monolithic or multiblock. They are considered

monolithic if composed of a single block or if the constituent blocks are strongly

connected between each other by well conserved and effective mortar.

The block structures, which are the specific subject of this investigation, are those

in which the elements are not strongly interconnected. Such lack of connection in the

building may occur both at a global level between roofing, horizontal structures and

vertical elements, and at the component level in case of columns or walls composed of

multiple blocks interacting only through frictional contacts. From the post-earthquake

observations it can be stated that the stronger are the connections among the building

elements, the higher is the seismic resistance of the building which tends to behave as a

monolithic box type structure as opposed to a set of disconnected walls and columns. In

this last case the failure occurs according to the so called "first collapse mode", while in

presence of a box type structure the "second collapse mode" may take place [Giuffre, A.,

1994].

It is of interest to notice that in the renowned construction manual of Rondelet

published in France in 1802, reflecting the empirical knowledge on masonry

constructions accumulated over centuries of experience, the importance of the
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slenderness of a masonry wall for its stability with respect to lateral loads was precisely

stated as it follows: "Therefore through observations made on a very large quantity of

buildings of all kinds it is found that a wall will have great stability if its thickness is the

eighth part of its height; that the tenth part gives it medium stability, and the twelfth one

the lowest degree of stability it can have". But even more interesting is the

understanding, by Rondelet, of the influence of the connections between the walls on the

overall strength with respect to lateral loads, as it is reflected by the collapse mechanisms

illustrated in Figure 5-1.

In the first collapse mode the walls, which are not well connected to rest of

structure, tend to fail out of the plane by rotating monolithically around the base as shown

in Figure 5-2. In theory, sliding of the base could also be possible, but the typical

dimensions of the walls (height over thickness) exclude this possibility. The cases

reported in Figure 5-3 and Figure 5-4 clearly refer to mechanisms of the first type. They

regard, respectively, the 1906 Messina earthquake, and the 1990 earthquake that also

occurred in Sicily. If the wall does not interact with other building elements and it

remains monolithic while rotating under the cyclic action of the earthquake, it behaves

similarly to a rigid rectangular block rocking on a rigid base. In such case the response is

governed by the slenderness and height of the wall, and by the dissipation which takes

place during the impacts with the base (as illustrated in Chapter 4). In some cases, the

lack of connection between the building elements may even cause the building to behave

as the 2D model represented in Figure 5-5 constituted by rigid blocks (interacting through

frictional contact only) representing the walls and the floors of a 2-story building. Even

such simple model is not easily studied with traditional analysis methods when the

number of elements increases, as observed in [Angeletti, P., 1994], while it can be readily

analyzed with the DEM as it will be illustrated in the following. In particular, in

Appendix A, we will illustrate the use of the DEM for analyzing a similar scheme

describing the critical section of a typical medieval church subjected to lateral loads.
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In the second collapse mode, which arises when the orthogonal walls are well
connected among themselves, failure may occur due to the forces acting in the plane of
the wall (Figure 5-6). Such wall may collapse by separation of large portions of material
which may rotate monolithically, or it may be subjected to a disgregation due to the
sliding, rotation, and eventually separation of the blocks constituting the wall, or else it

may be interested by a localized, or diffuse, sliding of the blocks without rotation. The
possibility of predicting which one of the previous mechanisms will take place is of

particular interest for the evaluation of the seismic vulnerability of the structure. Such

problem, as we have already noted, is not well studied with currently used analysis

methods, and in this chapter we will illustrate that the DEM is, in fact, quite appropriate

for approaching this category of problems. More specifically, Appendix B will be

dedicated to the study, with DEM, of the factors which may influence the type of in-plane

failure mechanism of an opus quadratum wall. These factors, as it will be discussed later,

involve the slenderness ratio of the blocks, and the loading conditions of the wall.

Before discussing the applications, however, we need to evaluate the

performances of the DEM, and for this purpose it is necessary to obtain well documented

experimental data, not available in the literature, on the behavior of opus quadratum walls

subjected to lateral loads. This type of experimentation is described in the following

section..
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Figure 5-1. Failure modes of a masonry wall according to Rondelet.

Figure 5-2 First collapse mode of a masonry building.
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Figure 5-3. Messina, 1906. Figure 5-4. Carlentini, 1990.

Figure 5-5. "Disconnected" frame.

Figure 5-6. Second collapse mode of a masonry building.
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5.2 EXPERIMENTAL TESTS ON SMALL SCALE WALL MODELS

The purpose of this section is the experimental investigation of the mechanical

response of opus quadratum walls subjected to slowly increasing lateral forces, acting in

the plane of the wall, simulating the seismic action. We consider the opus quadratum

because of its well defined geometrical layout - which simplify the modeling - and also

because it is utilized in the most important ancient constructions. Moreover, as it will be

observed later in Appendix B, it can serve as a qualitative mechanical model for the

evaluation of the behavior of other types of masonry such as the irregular stone masonry.

Three small scale wall models constituted by stone blocks have been tested as reported in

the following section 5.2.1.

Since the objective of the experimentation is that of acquiring data for evaluating

the predictions of the DEM, and given that in this method it is necessary to explicitly

model the friction between the blocks, a series of experimental tests for measuring the

friction parameters of the specific type of blocks used in the wall models have been

performed and will be described in section 5.2.2, where also a brief review of some

analytical model proposed for friction is presented.
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5.2.1 In-plane failure tests of 3 small scale wall models

The in-plane failure behavior of small scale models of opus quadratum walls has

been studied experimentally applying slowly increasing horizontal forces proportional to

the mass of each element. Such forces simulated the earthquake action. This loading

condition was obtained with a simple experimental set-up consisting of a plane with

variable inclination angle (as already adopted in [Ceradini V, 1992]). In order to obtain

in-plane lateral forces the wall was positioned in a plane orthogonal to the axis of

rotation of the base. The objective of the tests was the determination of the failure load

and the corresponding failure mechanism of the brick walls.

The models have been assembled, without mortar, with tuff peperino blocks with

average dimensions of 17.5 x 40 x 80 mm, and an average weight of 120g. Despite the

attention used in accurately cutting the bricks, variations of the order of 10-1 mm were

found. The average friction coefficient of the material was approximately a=0.6, as it

will be illustrated in detail in the next section.

The analogy between the seismic action and the loading condition obtained with

the tilting table is quite clear. In fact, a rigid block of mass m placed on a base subjected

to an acceleration a(t) undergoes an horizontal inertia force m a(t) (in the hypothesis of

no displacement of the block with respect to the base). If the friction angle between the

block and the base is qp, and referring to Figure 5-7-a for the meaning of the symbols, we

have the following two conditions for the stability of the block:

ab
g h (5-6)

- < tg(p)
g

The first is the condition for preventing a collapse by overturning of the block, the second

one for preventing failure by sliding.
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Analogously, if a block is placed on an inclined plane with angle # (see Figure 5-

7-b), the corresponding stability conditions are:

b
tg(# < -

h (5-7)
tg(#) :! tg((p)

Comparing (5-6) with (5-7) it results that the maximum value of tg() for which

the wall on the inclined plane is stable, coincides with the maximum base acceleration,
given in terms of g, for which a block on a horizontal plane would not slide or rotate.

In the following we will refer to the failure load A obtained from the test of a

certain wall on the inclined plane. This means that if at failure the component of the

gravity load normal to the block layers is N, than the one perpendicular to it is AN (see

Figure 5-7-c). In other terms A is the ratio of the parallel and normal components of the

gravity load and it can be determined experimentally by the value of tg(#) at failure.

Three brick walls with increasing number of elements (labeled WALLI, WALL2,

and WALL3), have been tested on the inclined plane. The blocks were positioned with

the longer side orthogonal to the wall, so that the block dimensions, in the plane of the

wall, were: base b=40mm, and height h=17.5mm. All walls had equal base length,

measuring H=400mm, and equivalent to the length of 10 full blocks. The 3 walls had,

respectively, 7, 11, and 23 number of layers. Notice that the bricks of the bottom layer

were fixed to the base plane in all 3 cases, therefore the effective height of the walls

were: 6x17.5=105mm for WALLI, 10x17.5=175mm for WALL2, and 22x17.5=385mm

for WALL3.

The failure configurations and the failure load A obtained with the inclined plane

for the 3 walls are given in Figure 5-8.
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A complex mixed mode of collapse involving the combined rotation and sliding

of several bricks took place in all three cases as shown in figure.

Concerning WALL 1, in addition to the collapse mode shown in figure, other tests

have yielded a partial failure of the wall involving only the right brick of the top 2 layers,

initiated by sliding of the top one (see Figure 7-62b). Such partial failure mode occurred

for the same failure load X=0.5 observed in the mixed mode. This variability in the

experimental response should be attributed mainly to the geometrical imperfections of the

bricks, and the slight variations in the geometrical configuration of the system due to the

manual repositioning of the blocks. Such causes are particular evident in WALLI due to

the limited number of blocks involved in the failure mechanism.

In WALL3 it should be noticed the presence of a localized diagonal band in which

most of the sliding takes place at failure.

It is also important to notice, that in all 3 cases slight displacements of the blocks

were observed starting from approximately 80% of the failure load.

It should be mentioned that other similar tests, to be described in Chapter 7 and in

Appendix B, have been performed on the inclined plane with the same type of blocks, in

order to study certain specific aspects of the mechanical response of a brick wall, such as

the effects of the geometrical imperfections of the blocks, and the influence of the loading

conditions on the in-plane failure load and corresponding collapse mechanisms of the

opus quadratum wall.

Before approaching the Discrete Element modeling of the opus quadratum walls,

the frictional behavior of the specific blocks used in the experimental tests will be

investigated as illustrated in the next section.
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Figure 5-7. (a) Block on a moving base, (b) block on an inclined plane, and (c) block

subjected to a centroidal force.
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WALL1

A = 0.5

WALL2

A 0.47

WVA LL3

Experimental failure configurations of small scale brick walls on inclined

plane.
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5.2.2 Measure of friction parameters

Given the essential importance of friction in the in-plane response of an opus

quadratum wall, we have performed a series of tests in order to characterize the frictional

behavior of the peperino blocks used in the previously described experimental tests.

This has provided data for the calibration of the DE models and a better understanding of

the phenomenon.

It should be reminded that the frictional behavior of a joint is a complex

phenomenon which has been studied extensively, and for which comprehensive

constitutive models have been proposed both in the fields of structural engineering

(Fardis and Buyukozturk, 1979), and rock mechanics (Plesha, 1987), which, among other

aspects, account also for dilatancy and contact surface degradation. In the following we

will restrict our review to some basic analytical models of friction in order to better plan

and understand the experimental tests which are of interest for the specific problem under

investigation.

Analytical Models

In [Coulomb C.A., 1776] it is postulated that two bodies in contact interact

through reciprocally orthogonal forces (F, N). Force F lies in the plane tangential to the

two bodies and can assume, in it, whatever direction. Based on the experiments carried

out by M. Amontonos he further states that there is no relative displacement between the

two bodies if:

IFI 5cIN (5-1)

where c is the friction coefficient. Coulomb's formulation is a phenomenological model,

because it does not specify the mechanical reasons from which eq. (5-1) derives. The

determination of (5-1) on the ground of a mechanical models requires that the
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morphology of the interacting surfaces is known. These rough contact surfaces can be

considered either deformable or rigid.

As an example of the first type of contact models, in [Ruina A. L., 1985] the

interacting surfaces, referred to as joints in the following (see Figure 5-9), contain

intervals of length P (called continuum points), formed by microscopic asperities of

dimension ml, (called asperities of the first order) mixed with other intervals containing

asperities of dimension m2<<ml (called asperities of the second order). The asperities can

fracture, deform or slide and their dimension is negligible with respect to P (so that many

of them are contained in a continuum point). Initially the resisting mechanism of the joint

depends upon the contact forces generated among the first order asperities on one surface

and the second order asperities of the other one. Later, due to the micro displacements

occurred in the first phase, the continuum points of the two joints come in contact up to

when local failures take place. When these occur, the asperities of the second order can

come into contact, thus generating contact intervals whose length is comparable with that

of the joint.

punt* conlinuo asPerito' ordine

P P as rito' II ordine

rottura asperito' del I ordine

Figure 5-9. Morphology of a joint [Ruina A.L., 1985].

127

L.=P



Pcos A

Figure 5-10. Morphology of a rough and rigid joint.

For models in which rigid surfaces are assumed, a schematic description of the

surfaces of a joint can be given with a rough contour (Figure 5-10) whose n asperities,

with triangular section, interact through forces (P) normal to the surfaces. If this is the

case, eq. (5-1) can be deduced through simple conditions of limit equilibrium of

interacting bodies. It results in fact:

F = n P sin(a)

N = n P cos(a)

and therefore:

F
-= tg(a) = c.
N

Note that in this model sliding is accompanied by a normal relative displacement

of the two surfaces which may be associated to the well known phenomenon of dilatancy.

In the previous models the friction coefficient is assumed to be constant, however

this is not always observed experimentally. In fact, among the classical constitutive

relationships for friction the Barton's law [Barton N.R., 1978] postulates, on the basis of

experimental data, that the ratio of the ultimate resistant tangential force and the normal
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one is not constant, but it decreases with increasing normal stress. Barton proposes for the

friction coefficient the following expression:

tg(q') = tg JRC logo ---- + PR
L N

(5-2)

where JRC (Joint Roughness Coefficient) is a nondimensional parameter that

characterizes the roughness of the joint, JCS (Joint Compressive Strength) is the normal

stress that produces the compression failure of the element, ft is the residual friction

angle, i.e. the minimum value that friction coefficient assumes when normal tension 0 N is

maximum (qN = JCS). The author supplies the value of JRC in function of the

morphology of the joint as illustrated in Figure 5-11.

Figure 5-11. Morphology of ajoint in function of JRC [Barton N.R., 1978].
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The models and the laws previously presented, aim exclusively to determine the

limit conditions that guarantee the absence of relative displacement between two bodies.

An analytical solution to the problem regarding the determination of the velocity field of

a body with a base subjected to frictional forces was proposed for the first time by Den

Hartog [Den Hartog J.P., 1931]. More recently Ruina [Ruina A.L., 1983], on the basis

of experimentation and analytical studies, has defined a constitutive relationship

characterized by phenomenological parameters called state variables, whose general

formulation is of the following type:

-r= F(V, N, 01, Q2, ... , Om)

dG, =O Gi(V, qN, 01, 02, ..., Om) (Z1, 2, ...,I M)dt

A simple special case of the previous relationship is given by:

r= F(V, 0) = + 0+ A In (---

-= G(V,9) = 0+BIn(-
dt L( (V. )

where r. represents the tangential frictional stress acting on the block when it slides at a

constant velocity V.; A and B are two empirical positive constants having the dimensions

of a stress and their values depending upon r. and V.; L is an empirical positive constant

with the dimensions of a length and it represents the characteristic distance of relaxation

for the state variable 0.

Figure 5-12. Variation of friction force as a function of velocity [Ji-Cheng G., 1983].
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Figure 5-12 [Ji-Cheng G., 1983] shows the variation of t with time for the case of

an initial velocity VO which is increased an amount AV. The value of frictional resistance

has an immediate increase, and subsequently an exponential relaxation which is function

of the characteristic length L.

The proposed relationship is in good agreement with experimental observations,

which are:

(a) the frictional resistance has a logarithmic dependence upon velocity;

(b) it increases instantaneously with an increase of velocity and subsequently tends

towards the value it would have at steady state:

9T (V, 0) > 0 ( 5-3 )
9v

(c) the steady state frictional resistance is inversely proportional to velocity:

9. (v)0 (5-4)

(d) the characteristic distance of relaxation is independent of velocity.

Equation (5-3) identifies a frictional behavior of viscous type, while (5-4) identifies the

dependence of frictional resistance upon velocity which is in agreement with the

observation that the "static" frictional force is higher than the "dynamic" one.
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Experimental observations

On the basis of the analytical models described in the previous section a series of

tests of the friction properties of the blocks used in the small scale wall model described

in section 5.2.1 were performed. It is recalled that the blocks are made of peperino stone

and measured 17.5 x 40 x 80 mm, with an accuracy of the order of 10-1 mm, and had a

weight of 120 gr. The specific objectives of the tests were to measure the dependence of

the friction coefficient upon three factors:

(1) the value of the normal stress,

(2) possible phenomena of degradation of the contact surfaces,

(3) the sliding velocity.

The tests aimed at goals 1 and 2 were carried out laying two blocks (one on top of

the other) on a horizontal plane. The lower block was fixed while the upper one, which

was free to slide, was connected by a wire with a pulley (Figure 5-13). A container was

connected with the other end of the wire and it was slowly filled with water.

With this simple device it was possible to determine the lowest value F of the

force. parallel to the joint causing the initiation of the sliding motion of the block. F was

evaluated for 20 couples of blocks. Four values of N were considered, and for each

value, F. was evaluated for 5 different couples of blocks. For each pair of blocks only

one test was carried out. Mean value and standard deviation of the measured friction

coefficients for each level of normal stress are given in Table 5-1.
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Normal stress Friction coefficient: F./N = tg(p)

(Kg/cm 2) Mean Standard Deviation

120.6 0.005 0.61 0.00694

2120.32 0.088 0.551 0.00225

4618.76 0.192 0.579 0.006

10521.22 0.441 0.534 0.003

Table 5-1. Friction coefficient of peperino blocks with varying normal stress.

From such data a dependency of the friction coefficient from the normal stress level is

observed. As presented in the previous section, Barton's law (eq. 5-2) accounts for this

type of dependency, and therefore it may be appropriate for generalizing the previous

experimental observations. In fact, based on the previous data, the parameters of

Barton's law are estimated as follows: JRC = 1.96; and R = 23.14. Then, measuring the

compression strength of peperino: JCS= 281.53 Kg/cm2, the relationship between friction

coefficient, and normal stress for the peperino blocks used in the wall models

experiments may be assumed as:

r/ o= tg [1.96x logio (281.53/a) + 23.14] (5-5)

which is plotted in Figure 5-14.
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Figure 5-13. Scheme of the device used for the evaluation of static friction coefficient.
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Figure 5-14. Graph of Barton's law for peperino blocks.
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Further tests have been carried out in order to evaluate the influence of possible

degradation factors: five pairs of blocks were considered; for each pair a sequence of tests

were carried out assigning different values to the normal force N and evaluating the value

of the corresponding friction force F. For each pair of blocks, after a sliding length of 1

cm had taken place, the units were repositioned and were subjected to the subsequent test.

The last test of each sequence was performed with a different procedure: it was repeated

several times trying to achieve, by carefully positioning the blocks, the best possible

interlocking among the two surfaces with the objective of identifying the presence of first

order asperities despite the degradation which the joint had been subjected to.

The results of the five series of tests are presented in Figures 5-15 to 5-19. In each

figure the x axis represents the test number, while the y axis is the normal force, in figure

(a), and the corresponding friction coefficient in figure (b). In Figure 5-20 we report, for

each sequence of test performed on a couple of blocks, the ratio of the friction coefficient

measured in the last (regular) test and in first one. Note how in each set of tests, the ratio,

which may be regarded as a measure of the degradation of the friction surface, is always

less than 1. The lowest value, 0.483, is for the block pair C which was tested with the

highest normal force N.

These tests show a substantial reduction of the friction coefficient after the contact

surfaces have undergone repeated sliding phases (an average reduction of 32% was

observed for the previous 5 series). Such phenomenon may be important in the modeling

of the dynamic response of a block structure subjected to seismic actions when sliding in

alternating directions takes place before failure.
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Figure 5-19. Block pair (E). For each test: (a) value of normal stress; (b) value of

friction coefficient.
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In order to evaluate the dependence of the friction coefficient with the sliding

velocity, we conducted several tests on block pairs with a special device, schematically

illustrated in Figure 5-21. The bottom block is fixed while the top one is free to slide and

is subjected to a certain normal force N. The top block is connected with a spring of

stiffness K to a slider which moves at a constant velocity v. The slider, by moving away

from the block, deforms the spring and applies an increasing horizontal force to the top

block which will initiate moving when such force exceeds the static friction resistance.

As a consequence of the block displacement the spring unloads and the block may keep

moving at the same speed of the slider (allowing the measure of the dynamic frictional

force) or it may find a new static equilibrium position in which it will remain until the

static friction force is exceeded and so on. Such an unstable behavior can be avoided

increasing the stiffness of the spring. It may be demonstrated, in fact, [Rice J.R., 1983]

that the motion of a rigid block connected in series with a spring of stiffness K, moving

with constant velocity, is unsteady if the elastic system is not sufficiently stiff and if the

frictional contact force depends upon velocity (as in the case of the constitutive

relationship proposed by Ruina and previously described). In fact, it exists a critical

value of stiffness Kc such that if K < K the system oscillations will increase whereas if K

> Kc they will decrease, and the system is stable if K>> Kc.

After some preliminary tests we verified that an elastic element with K = 5.5

kg/mm yielded a stable behavior for speed ranging from 0.75 and 3.5 nn/min. We

monitored the block displacements and the elastic force acting on the block. Although

results were influenced by undesired vibrations of the motor of the slider which could not

be completely eliminated, it is interesting to notice the various types of responses which

have occurred. Some examples are given in Figure 5-22, where for the case (a) the

dynamic friction force (on average) is equal to the initial one, whereas in cases (b) and

(c), after an initial displacement the friction force, as expected, decreases below its initial

value. Finally in case (d) we notice that, while the block is sliding, the friction force has

a sudden increase probably due to an interlocking of the first order asperities of the two

contact surfaces.
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Based on the results of the experimental tests described in this section we can

observe the following:

1. A small scattering of the values of the friction coefficient for "new" surfaces (with a

variation coefficient of less than 2% for normal stress a < 0.441 kg/cm2), and a high

scattering (up to 21%) for the "degraded" ones.

2. A noticeable variability of friction coefficient (p with normal stress a (e.g. from 0.61

to 0.53 for normal stress ranging from 0.005 to 0.441 kg/cm2). Such variability can

be described by Barton's law whose parameters have been identified from the

experimental results.

3. A remarkable variability of the friction coefficient with the level of degradation of

the contact surfaces as observed from a 32% average reduction of the friction

coefficient after a series of 13 sliding tests with various normal forces.

4. A reduction of the dynamic with respect to the static friction coefficient as indicated

in the responses reported in Figure 5-22.

The previous observations have some implications on the DE modeling:

- since the blocks used in the models were "new", the random variability of the friction

coefficient can be neglected;

- the variation of the friction coefficient due to the variation of the normal stress found

inside the wall models is quite small and it is not expected to influence the system

response;

- the reduction of the friction coefficient due to the degradation of the contact surfaces

clearly does not affect the quasistatic test, but should be considered in a dynamic

simulation; and finally
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- the reduction of the dynamic vs. static friction coefficient should not affect the

determination of the quasistatic failure load and initial failure mechanism, however if

the evolution of the failure mode is of interest, then such reduction should be

considered (see the friction softening mechanism proposed in the new non coplanar

joint model shown in Figure 7-10).

In conclusion, after having acquired (in section 5.2.1) data on the experimental in-

plane failure of 3 opus quadratum walls models, and (in section 5.2.2) data on the friction

parameters of the specific blocks used in the wall experiments, we can now proceed, as it

will be illustrated in the next section, to the DE modeling of such tests with the objective

of evaluating the numerical predictions which can be obtained with current DEM.
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5.3 D.E.M. MODELING OF THE QUASISTATIC BEHAVIOR OF

BLOCK STRUCTURES

The effectiveness of the Discrete Element Method for the study of the quasistatic

response of brick walls has been investigated through a series of numerical simulations of

the experimental tests of the 3 small scale wall models reported in section 5.2.1.

The presentation is structured in the following four sections regarding:

(1) the modeling and analysis procedure used in the DE simulations;

(2) the validation of the DE results of a 21-block wall 2 with respect to limit

analysis;

(3) a parametric study for evaluating the sensitivity of the solution with respect to

model parameters, and improving the efficiency of the analysis; and finally

(4) the comparison of the numerical and experimental results for WALL1,

WALL2 and WALL3.

5.3.1. Modeling

It should be noticed that, in the 3 wall models described in section 5.2.1, the stress

level at failure was always very low with respect to strength of the block material

(peperino stone), and therefore the corresponding material deformations were negligible

both in the interior and in the joint area. In fact, the collapse did not occur due to material

failure but to the loss of equilibrium accompanied by sliding and rotation of the blocks

which behaved essentially as rigid blocks. As a consequence, a simple linear elastic

behavior or even a rigid body model can be acceptable for the material modeling of the

blocks.

2 The 21-brick wall represents a model of the portion of WALLI where failure takes place
(see Figure 5-10).
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In the following, each brick has been modeled with a plane stress elastic element.

The material parameters have been chosen as follows:

(1) The experimental values of the elastic moduli E and v, and of the mass density

of the peperino bricks have been used;

(2) The stiffness of the interaction springs have been selected such that the

displacements due to the elastic joints were of the same order of magnitude,

but smaller than the displacements caused by the elastic deformations of the

elements. The normal and tangential interaction stiffnesses have been chosen

equal.

(3) Based on the considerations illustrated in the previous section, the friction

behavior has been described by the Coulomb model.

The simulation of the loading corresponding to the inclined plane experiments has

been performed according to the standard DE procedure:

(1) An instantaneous gravity load is applied without damping and the lower

frequency Fv of the vibrations induced by the vertical forces is measured.

(2) The analysis is repeated applying the gravity load and a mass damping

corresponding to 30% of the critical damping of the measured frequency Fv

and the simulation is carried on up to t=t0 , when the residual vibrations are

damped out.

(3) At time t-to a horizontal force - proportional to the brick weight and small

with respect to the failure force - is applied instantaneously to each element in

order to determine the lower frequency Fh of the vibrations caused by the

horizontal forces.
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(4) Then the quasistatic application of the horizontal forces begins. The analysis is

restarted from time t=t0 with the application of slowly increasing horizontal

forces varying in time according to a function made of linear ramps and flat

sections. The ratio between the horizontal and vertical forces at any given

time is equal for all the elements. The ramp duration is generally greater or

equal to 1/ Fh, and the flat section is at least twice the ramp duration for

allowing the system response to stabilize. A mass damping corresponding to

10 - 30% of the critical damping of the frequency Fh is applied. Due to the

high non linearity of the system, other frequencies may arise during the

loading, and care has to be used in order to reduce any residual vibrations

without overdamping the response.

After each load increase - if the failure load has not been reached - the system

undergoes small displacements and deformations until it finds a new configuration of

static equilibrium. Conversely, when the failure load has been reached or exceeded, the

system cannot find a new static equilibrium configuration for small displacements and it

is affected by large displacements, describing the kinematics of the failure mechanism.
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5.3.2 Validation of the analysis procedure

In order to validate the previously described DE analysis procedure, a series of

numerical tests have been performed on a 21-brick wall representing WALL1, and the

responses, in terms of failure loads X and failure mechanisms, have been compared with

the results of limit analysis which provides exact results in the hypothesis of rigid blocks

and perfect Coulomb friction.

The analysis has been repeated for six values of the friction coefficient a (from

0.5 to 1.0) in order to obtain a variety of different (and representative) friction

mechanisms. In Figure 5-23 the predicted DE failure mechanisms are presented for four

values of a (the results for a = 0.5 and 1.0 are not shown since they are similar to those

obtained respectively for a = 0.6 and 0.75).

For low friction coefficients, such as a 0.6, failure occurs in a purely diffuse

sliding mode when the lateral load X exceeds the value of the friction coefficient;

rotations take place later, when sufficiently large displacements have developed.

For high friction coefficients, a > 0.75, the system separates in two portions and

the system fails in a purely rotating mode.

For intermediate cases both rotations and sliding occur and a complex mixed

mode of failure takes place.
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a = 0.60

a =0.65 A = 0.638

a=0.70 A =0.644

Lk=0.75 A =0.648

Figure 5-23. Failure mechanism and failure loads X of a 21-brick wall subjected to
gravity and increasing horizontal forces for various friction coefficients x.
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The outcomes of the numerical tests are summarized in Table 5-3. The DE
predictions appear to be successfully validated with respect to the "exact" results, which

are obtained from a limit analysis study [Baggio,C., 1993] of the same 21-brick wall.

The previously mention study perfectly confirms also the failure mechanisms predicted

by the DE analysis.

Failure modes

coefficients c.

and predicted vs. "exact" failure loads X for various friction
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a Failure A A

mode predicted exact

0.50 sliding .5 .5

0.60 sliding .6 .6

0.65 mixed .638 .64

0.70 mixed .644 n/a

0.75 rotating .648 .646

1.00 rotating .648 .646

Table 5-3.



5.3.3 Parametric study of model sensitivity

The numerical efficiency of the discrete element method is limited by the size of

the time step required for a stable and accurate solution. Since the required time step is a

fraction of the smallest period of the structure it has been attempted to increase such

period by increasing the masses and decreasing the stiffness of the system. The

justifications for modifying the real material parameters of the structure are: (1) the

quasistatic application of the load determines negligible inertial effects, and (2) the

deformations which occur before failure are small and unimportant. It is therefore

reasonable to increase the masses and decrease the stiffness if care is taken not to

introduce noticeable inertial effects or considerable deformations.

A parametric study has been performed to verify the sensitivity of the response of

the brick wall to these parameters. The following cases have been tested on the 21-brick

wall:

(1) Simultaneous reduction of E, K., Kt (Young's modulus of bricks, normal and

tangential stiffness of interaction springs respectively) by a factor of 102 and 104.

(2) Increase of masses by a factor of 102 and 104.

(3) Combined reduction of E, K., Kt by a factor of 102 and increase of masses by a

factor of 102.

All of the above extreme cases have failure loads which are close (within 2%) to

the values obtained for the exact material parameters, and a considerable gain in

efficiency is observed. For example, for case (3) the time step has increased of a factor of

100. This has not changed noticeably the CPU time required for determining the failure

load since the response time of the system before failure has increased of the same factor.
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However, the CPU time required to obtain the response after failure, which is mainly a

rigid body motion, has substantially decreased.

Another model parameter which has been studied is the ratio between the normal

and tangential stiffness K. / Kt . In this case, the concern was the sensitivity of the

solution to this parameter which was not determined experimentally.

In addition to the original analysis where K, was equal to Kt, three additional

cases have been studied: Kn / Kt = 102, 10~1, and 10-2. All results were similar to those of

the original analysis, showing that the solution is rather insensitive to this parameter.

However when K. / Kt < 1 more care has to be taken in the analysis in order to damp out

undesired vibrations during the quasistatic loading.
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5.3.4 Discrete Element simulation of the experimental tests

After the calibration and validation of the analysis procedure, the experimental

tests performed on the 3 wall models (illustrated in Figure 5-8), have been simulated

according to the DE procedure described in the previous section. The friction coefficient

has been set to the experimental value 0.6 (corresponding to the low normal stress level

found in the 3 wall models). The results, in terms of failure loads, are summarized in

Table 5-4.

For WALL1 we notice a substantial overestimation of the failure load, in fact,

while the experimental one was kexp=0. 5 , the numerical model failed at XDE=O. 6 , with a

20% overestimation. Also the predicted failure mechanism shown in Figure 5-23 (for

x=0.6) is not in perfect agreement with the experimental result (shown in Figure 5-8).

DE analysis predicted a failure which initiated with a diffuse sliding, while in the

experimental case it occurred with a mixed sliding and rotating mechanism (similar to the

one obtained with DE for cx=0.65).

WALL3 has been modeled with a system of 220 elements, the stiffness has been

reduced of a factor of 102 and the mass has been increased of a factor of 102 in order to

expedite the solution. The failure mechanism obtained from the DE analysis is displayed

in Figure 5-24. If we compare such failure mode with the experimental one shown in

Figure 5-10, we can observe a reasonably good agreement. The DE analysis is capable of

predicting the complex kinematics involving the sliding and rotation of many blocks,

which would be impossible with analysis methods based on continuum mechanics.

However, we notice that in the experimental case the portion affected by sliding appears

to be localized in a narrower area than the one predicted by the DE analysis. In addition

the failure load is also substantially overestimated: XDE=O.4 7 vs. %exp=0.35. A similar

result is obtained for WALL2 with a predicted failure load of XDE=0. 56 vs. the

experimental one Xexp=0. 4 7 .
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Finally, we also mention that in the experimental tests, starting from

approximately 80% of the failure load, slight internal displacements were observed, while

in the DE analyses the wall remained practically undeformed up to failure.

Table 5-4. Experimental and analytical failure loads X.
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Model WALL1 WALL2 WALL3

Experimental 0.50 0.47 0.35

DE analysis 0.60 0.56 0.47

Overestimation 20% 19% 34%



Figure 5-24. Failure mechanism of a 220-brick wall.
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5.4 CONCLUSION

The objective of this chapter has been the evaluation of current Discrete Element

Method for the numerical simulation of the mechanical response of brick walls subjected

to in-plane quasistatic lateral loading.

Preliminary to the numerical analysis, a series of experimental tests on 3 small

scale wall models, made of peperino stone, have been performed in order to acquire

benchmark data for assessing the numerical predictions. Various aspects of the friction

behavior of the peperino blocks (such as the dependency of friction from: normal stress,

surface degradation, and sliding velocity) have also been tested to measure the friction

coefficient to be used in the DE models, and also for evaluating the appropriateness of the

simple Coulomb friction model for this case.

Subsequently, the DE modeling and loading procedure for the quasistatic in-plane

loading of a brick wall has been illustrated in detail, and successfully validated with

respect to limit analysis results for a 21-brick wall. A parametric study has shown that a

careful selection of certain material parameters can increase the efficiency of the solution

without loosing the required accuracy, and that the results of the proposed analysis

procedure are relatively insensitive to the ratio of the normal and tangential interaction

stiffnesses.

The DEM simulations of the experimental tests on the 3 wall models have shown

how the complexities of the highly nonlinear behavior of the brick wall near failure, such

as the opening and closures of joints, and the sliding and rotations of the elements, are

handled well with this approach.

However, certain discrepancies between the experimental and the DE results were

noticed. In particular a systematic overestimation of the failure load was observed. This

occurred despite the fact that the DE results had been successfully validated by the limit

analysis for the 21-brick wall. Thus, it seems that possible numerical inaccuracies are
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sufficiently small, and also that the fundamental assumptions of this method - including

the elastic pointwise contact - are reasonably adequate for an effective modeling of the

mechanical behavior of an "idealized" wall with regular geometry. Therefore, it seems

that the irregularities of the experimental model, such as the variability of the geometrical

dimensions, the non perfect coplanarity of the contact surfaces, and the rounded corners,

are responsible for the reduction of the failure load.

Based on this observation, an attempt has been made to employ the DEM for

investigating the effects of carefully defined imperfections on the response of the brick

wall. As an example, the effect of small plausible geometrical imperfections has been

studied on the 21-brick wall model by reducing the heights of the two elements indicated

with (a) and (b) in Figure 5-25. The reduction of 1 mm of the height of element (a) has

lowered the failure load from 0.6 to 0.51 (close to the experimental value Xexp=0.5). The

reduction of 0.5 mm of the height of element (b) has lowered the failure load from 0.6 to

0.54. A mixed mode failure mechanism, shown in Figure 5-25, occured for both cases.

Figure 5-25. Failure mechanism of a 21-brick wall with geometrical imperfections.
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The previous results are an indication that small geometrical imperfections play an

important role in the failure response of the opus quadratum wall. However we are still

faced with the uncertainty of defining the type, the number, the location, and the size of

such imperfections.

We can conclude that the current DEM is promising for the modeling of the

seismic response of historical block structures. However it appears that more work is

necessary to formulate a rational and general approach to the modeling of the geometrical

imperfections which constitute an inherent feature of block structures. This formulation

is considered in Chapter 7 where a new joint model accounting for the non coplanar

contact between blocks will be presented.
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Chapter 6: DYNAMIC ANALYSIS OF BLOCK STRUCTURES WITH

CURRENT D.E.M.

6.1. SINGLE BLOCK D.E.M. MODELING

6.2. MULTIPLE BLOCK D.E.M. MODELING

6.2.1. Harmonic Oscillations

6.2.2. Seismic Oscillations

6.2.2.1. Shaking Table Tests

6.2.2.2. Numerical Simulations

6.3. CONCLUSION
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6. DYNAMIC ANALYSIS OF BLOCK STRUCTURES WITH

CURRENT D.E.M.

In the previous chapter the seismic action has been modeled with equivalent static

forces because of the complexity of the response of a block structure. However the

ultimate objective of a seismic vulnerability study is a dynamic analysis. In this chapter

we will explore, for a single block structure, and for a system of a limited number of

blocks, the potential and limitations of a fully dynamic analysis of such typology of

structures with the DEM.

In Chapter 4 it was noted how the difficulty in using the DEM, especially for a

dynamic problem, lies in the determination of the interaction parameters: Kn, Kt (the

normal and tangential interaction stiffniess), T (the friction coefficient), and a the

proportionality parameter defining the viscous damping factor C (C=aKn) of a linear

viscous element acting in parallel with Kn for the modeling of the energy dissipation

which takes place during the impact. The parameter selection and the modeling

procedure will be discussed first for the single block case, and later for a multi-block

system.

Differently from other studies which have applied dynamic DE analysis to

historical buildings (e.g. [Sincraian,G.,1999], [Brookes,C.L.,1998]), the numerical

modeling which will be illustrated in the following, has been supported by a series of

experimental tests involving the study of the rocking of single blocks with various

slenderness ratios, and the investigation, with shaking table tests, of the response of a

small scale model of an 8-block arch structure subjected to simulated earthquake

accelerograms. The arch structure, has been selected for this study, because it shows how

the DEM may handle much more complex cases than the ones usually found in the

literature (single block or multiblock column, and the trilite), and, at the same time, it is

an idealized model of several monuments of considerable architectural and historical
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value such as, for example, the ancient Roman arch of Trajan found in Leptis Magna in

North Africa (Figure 6.1).

Figure 6-1. Leptis Magna (North Africa), arch of Trajan (109-110 AD).
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6.1 SINGLE BLOCK DEM MODELLING

The following procedure was applied to the modeling of free rocking oscillations

of a single block of mass M:

1. The interaction stiffnesses (Kn = Kt) are equal to y Ke , where Ke is the vertical

elastic stiffness of the block, and y is an empirical factor which should be small for

improving numerical efficiency, and large enough for determining only negligible

elastic displacements (with respect to the size of the block).

2. The friction coefficient 9 is equal to the average experimental value.

3. The stiffness damping parameter a is determined such that the "block reference

frequency o" is subjected to a certain fraction 4 of the critical damping. The block

reference frequency o is the natural frequency of a 1 d.o.f. oscillator with mass M

and stiffness Kn.

In order to determine the optimal critical damping fraction j the following

experimental tests were performed. A series of 4 marble blocks with aspect ratios b/h =
2, 2.9, 3.6, and 5 were subjected to free rocking oscillations and their average restitution

ratios were determined. Then the same tests were simulated with the DEM according to

the previous procedure, with y ~ 10-2 and with various values of 0 = 0.15, 0.35, 0.45,

and 0.75. By minimizing the differences between the numerical and experimental

restitution ratios, it was determined that the optimal value is 4 = 0.35 (for such value the

maximum difference of the restitution ratios did not exceed 5%).
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6.2 MULTIPLE BLOCK D.E.M. MODELLING

The previously described modeling procedure was extended to the case of

multiple block structures in the numerical and experimental study of the seismic response

of an 8-block arch structure (Figure 6-3). An experimental model of the arch was made

with peperino blocks (the same type of material used in the wall models studied in the

previous Chapter). As a preliminary analysis one of the two columns was studied

according to the procedure described in the previous section. A critical damping fraction

of = 0.35 at the block reference frequency o = 180 Hz, yielded a predicted average

restitution ratio (ri = 0.55) in free rocking oscillations which was only 10% higher then

the experimental one (r2 = 0.5). This result could be fiurther improved by increasing the

damping fraction, however for the subsequent analyses the previous value (4= 0.35) was

used.

6.2.1 Harmonic Oscillations

The second step was the study, both experimental and with the DEM, of the

response of the single column to harmonic ground motion. The previous interaction

parameters have been used. Both experimental and numerical results confirm that

rocking does not occur until the peak ground acceleration a - normalized with respect to

4g - (where X is the normalized static lateral failure load, and g is the acceleration of

gravity) does not exceeds 1. For the cases tested experimentally, when a > 1, the column

responds with a periodic non symmetrical rocking motion. In the case of a=1.02 and

ground shaking frequency f = 10.5 Hz. the average predicted rotation amplitude was

0.008 rads which compares reasonably well with the experimental value of 0.007 rads.
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The next step was the modeling of the response of the entire 8-block arch

structure subjected to harmonic ground motion. ;Since the column is expected to provide

a major contribution to the frequency content of the global response, the previously

determined column interaction parameters have been used throughout the multi-block

structure. The system response is generally periodic with the same frequency of the

ground motion, and it involves both sliding and rocking of blocks. Typical experimental

and numerical oscillation modes compare quite well as shown Figure 6-3. A quantitative

comparison of rotation amplitudes was not possible since, due to geometrical

imperfections of the experimental model, column rocking in the experimental tests

initiated for peak ground acceleration a < 1. Several numerical tests were performed with

various ground shaking frequencies f = 2.5, 5, and 10 Hz. The duration of each

simulation was 5 sec. At the lowest frequency, f= 2.5 Hz, the system collapsed even for

the low value of a = 1.1, while at higher frequencies (f = 5 and 10 Hz), failure was not

reached even for a= 2.0.

Harmonic shaking, which has been studied here for comparing experimental and

numerical results of a dynamic multi-block problem, does not provide, however,

conclusive information on the seismic response of the system. To this purpose an

extensive series of experimental and numerical analyses, which will be described in the

next section, has been undertaken in order to demonstrate how an estimate of the seismic

vulnerability of the arch can be obtained with the proposed DEM procedure.
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Figure 6-2. Geometric dimensions of the arch model.

7

Figure 6-3. Experimental and numerical oscillation modes of an arch structure subjected

to harmonic shaking
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6.2.2. Seismic Oscillations

The object of the investigation is the same arch model studied in the previous

section. The experimental tests consisted of applying simulated earthquake motions to

the model, and were performed using the shaking table of the National Laboratory of

Civil Engineering in Lisbon. Subsequently, a series of numerical simulations based on

DEM, were performed in order to obtain the seismic vulnerability curve of the arch

structure.

6.2.2.1 Shaking Table Tests

The geometry of the stone model is illustrated in Figure 6-2. The shaking table

size is very large with respect to the model: it measures 3.26 by 2.26 meters, and it has a

weight of 30 kN. The table has a steel structure with an horizontal displacement degree

of freedom activated by an hydraulic system controlled by a self-tuning algorithm using

the displacement as the control variable. The instrumentation consisted of 5 displacement

and 3 acceleration transducers placed as indicated in Figure 6-4 and in Figure 6-6.
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Figure 6-4. General scheme showing the measure channels.
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MEASURED
CHANNELS VARIABLES TRANSDUCER

Displacement of the
1 shaking table LVDT

2 Displacement at the top of LVDT
column 8

3 Displacement at the top of LVDT
column 1

4 Displacement at the bottom of LVDT
column 8

5 Displacement at the bottom of LVDT
column 1

6 Acceleration at the top of Piez. Accelerometer
column 8

7 Acceleration at the top of Piez. Accelerometer
column 1

8 Acceleration of the shaking Piez. Accelerometer
table
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Figure 6-5. Power and response spectra used in the shaking table tests.
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(a)

(b)

Figure 6-6. (a) Instrumented arch model on shaking table; (b) Displaced arch

configuration after a test.
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The seismic input was obtained by generating 3 independent base time-histories

with a duration of 8 sec. whose power spectrum corresponds to the response spectrum for

soil type B in Eurocode 8 (Figure 6-5). Three series of accelerograms where generated

by scaling the base time histories by appropriate factors. Due to the type of control

algorithm and system tolerances, recorded accelerograms generated with the same base

function and scaling factor were not exactly the same. Another element of randomness

was the hand replacement of the structure after each test which inevitably introduced

slight changes in the initial conditions of each test. The 3 series of tests gave the results

shown in Table 6-1, Table 6-2, and Table 6-3.

Test No. Peak accel. (cm/sec2) Collapse

1 155 no

2 163 no

3 175 no

4 155 no

5 305 no

6 355 no

7 515 no

8 640 no

9 770 no

10 1035 yes

11 1000 yes

Table 6-1. Test results for Base Time-History 1
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Test No. Peak accel. (cm/sec2) Collapse

12 240 no

13 590 no

14 815 no

15 970 no

Table 6-2. Test results for Base Time-History 2

The third series was performed to estimate the peak failure acceleration

distribution by increasing the scaling (by small increments) until collapse occurred and

then decreasing it until the arch was able to resist the shaking.

Test No. Peak accel. (cm/sec2) Collapse

16 758 no

17 819 no

18 944 no

19 917 yes

20 935 yes

21 926 yes

22 880 yes

23 889 no

24 894 no

25 893 no

26 937 yes

27 887 no

28 940 no

29 972 yes

30 927 no

31 935 yes

Table 6-3. Test results for Base Time-History 3.
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Some results are presented in Figure 6-7. The time-history of base displacements

and accelerations for the third series of tests are shown in Figure 6-7 (a) and (b)

respectively (test No. 26). Figures 6-7c and 6-7d show the displacements of the top of

the left and right columns respectively (test No. 26) for the case where the arch fails. The

behavior of the columns before failure is characterized by low frequency large amplitude

oscillations. A half cycle with large period and amplitude occurs when the arch falls

down. The right column undergoes a permanent displacement of approximately 5 mm

due to outward sliding. In Figure 6-7 (e) and (f), the top columns displacements for the

non collapse case are plotted (test No. 25). Note the low frequency large amplitude

oscillations and the large residual displacement in the left column due to its outward tilt

(associated to the lowering of the arch) in the final configuration as it can also be seen in

Figure 6-7 (b).

6.2.2.2 Numerical Simulations

The same stiffness and damping interaction parameters used for the study of the

harmonic oscillations of the arch were adopted here. A series of twenty different

earthquake accelerograms with a duration of 20 sec have been simulated using the

SIMQKE program. They have been derived from the response spectrum of the EC8

Seismic Code corresponding to soil type B.

Each accelerogram has been scaled several times such that its peak acceleration a

ranged from 1.15 to 1.40 with 0.05 intervals (acceleration is normalized with respect to

Xg = 0.325 * 981 (cm/sec2 ) which is the minimum constant acceleration causing the arch

failure). A DEM analysis has been performed for every scaled version of the 20

accelerograms, and for each one the lowest peak ground acceleration which caused

failure was determined. Results are reported in Figure 6-8 in the form of cumulative

density function of the lowest failure peak ground acceleration amax which constitutes the

vulnerability curve of the arch.
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Figure 6-8. DEM estimate of the seismic vulnerability of the 8-node arch using 20

simulated accelerograms with a duration of 20 sec.

In Figure 6-9 the comparison of the numerical and experimental failure

mechanism of the arch subjected to one of the simulated accelerograms is presented.

The shaking table results (Table 6.3)1 show that in the range 2.76 < a < 2.95 there

is an overlapping of the survival and collapse cases, the average being aexp = 2.85. In

the discrete element analyses the analogous range is 1.15 < a < 1.40 with average anum =

1.27. The great difference between the two values is due, in the first place, to the longer

duration of the accelerograms used in DE analysis (20 sec), with respect to the duration

of those used in the lab tests (8 sec). In fact the progressive damage accumulation which

takes place during the longer accelerograms, determines substantially lower failure

accelerations than for the shorter earthquakes. However, also for the harmonic

oscillations case, the experimental model failed for a lower peak acceleration than the

numerical one. This tendency is similar to the one observed in the previous chapter for

the quasistatic case, and it may again be explained by the presence of geometric

imperfections in the experimental model which are not accounted for in the current DEM

analysis.

1 Note that the peack acceleration givenin Table 6-3 is normalized with respect to Xg = 0.325 * 981
(cm/sec 2) which is the minimum constant acceleration causing the arch failure.
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Figure 6-9. Comparison of numerical and experimental failure mechanisms of an arch

subjected to seismic ground motion.
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It is of interest to observe that, comparing the system configurations

corresponding to quasi-static lateral loading (Figure 6-10), harmonic shaking (Figure 6-

11), and a simulated earthquake ground motion (Figure 6-12), it appears that the DEM is

capable of capturing these remarkably complex and differentiated responses. In the

quasi-static application of a lateral load, the failure is reached when the ratio X of

horizontal and vertical load is 0.325. Both the predicted failure load and collapse

mechanism are in very good agreement with the experimental observations. The failure

mode involves the rocking of one column, with the formation of one sliding surface and

several hinges. The harmonic shaking at 5 Hz with amax = 1.5 does not cause failure,

and the system response reaches a steady oscillation mode after the 4 central blocks have

progressively sledded down and the columns have tilted outward. In the simulated

earthquake motion the response is fairly complex and it varies with the type and

amplitude of the accelerogram, however, it usually involves the sliding down of the

central blocks, the outward tilting of the columns, and impacting between blocks with

wide joints openings and closures before failure, which occurred for 1.2 amax 5 1.4. In

particular the response due to the accelerogram n.3 is illustrated in Figure 6-12 and

Figure 6-13, where the configurations near failure, and the time history of the rotation of

the right hand column are given.
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%num= 0.325 %,p = 0.324

Figure 6-10. Predicted failure mode, and numerical vs. experimental failure loads X due
to quasi-static lateral loading.

frequency: f = 5 Hz peak ground acceleration: amax = 1.5 (normalised with respeetto X g)

Figure 6-11. Predicted steady state oscillation mode due to harmonic ground shaking.

t = 16.84 se t = 17.00 see t = 17.16 see t = 17.32 sec t = 17.48 sec

peak ground acceleration: ana = 1.3 (normalised with respect to X g)

Figure 6-12. Predicted failure mode due to a simulated earthquake
(accelerogram n. 3).

6 (rad)

ground motion

4 8 12
time (sec)

Figure 6-13. Predicted time history of rotation 0 of right hand column of the 8-node
arch due to simulated earthquake ground motion (accelerogram n. 3 with
duration of 20 seconds).
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6.3 CONCLUSION

A series of laboratory tests for the investigation of the dynamic behavior of block
structures were performed. They included the study of the response of:

(1) single blocks with aspect ratios from 2 to 5 subjected to free rocking;

(2) a single block subjected to harmonic shaking with various shaking frequencies

and amplitudes;

(3) a multi-block arch structure subjected to harmonic shaking with various

shaking frequencies and amplitudes;

(4) a multi-block arch structure subjected to a series of simulated earthquake

accelerograms applied with shaking table.

The DE model was calibrated using the free rocking experimental results, and
then verified by comparing the numerical predictions with the experimental results for the

harmonic oscillations of a single block (section 6.2.1).

For the 8-block arch structure subjected to harmonic oscillations, the experimental

failure acceleration was lower than the numerical one. This difference is probably due to

the geometric imperfections of the experimental model which are not accounted for in the

DE model. In addition, it was shown how a seismic vulnerability analysis of the 8-block

arch structure can be performed based on the proposed DEM analysis procedure.

It may be concluded that the Discrete Element Method - coupled with simple

laboratory tests for the calibration of the block interaction parameters - may be a

promising tool for predicting the highly nonlinear dynamic response of multi-block

structures characterized by sliding, rocking, and impacting between blocks. However,
more work is necessary for accounting for the geometrical imperfections, and developing

a more general model for the energy dissipation associated to the impact.
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7. A NEW JOINT MODEL FOR DE ANALYSIS OF HISTORICAL

STRUCTURES

It is recalled that the general objective of this research is the improvement of the

seismic vulnerability assessment of historical structures using the Discrete Element

Method. The types of structures which have been addressed are those constituted by

blocks which interact mainly through frictional contacts. They can be either masonry

structures without mortar', such as ancient opus quadratum constructions, or megalithic

structures made by few large blocks such as Egyptian, Greek and Roman columns,

trilites, and temples. These structures are characterized by low stress levels, and, under

seismic actions, they generally collapse by overall loss of equilibrium rather than by

material failure. In other words, the response of block structures to strong ground

motion is often governed by sliding, rotations, and separation between blocks. The

prediction of this highly non linear mechanical behavior still constitutes a challenging

task. Currently used analysis methods such as Finite Elements, Limit Analysis, or special

purpose dynamic analysis procedures, as discussed in the previous chapters, are generally

recognized as either inadequate or not sufficiently general for the prediction of the

mechanical response of complex and inherently discontinuous block structures to seismic

actions.

In this work, the approach adopted for modeling historical structures is based on

abandoning equivalent continuum schemes in favor of a representation of such structures

as a system of distinct elements. As illustrated in the previous chapters, the application of

the DEM to this area has yielded very promising results. However certain discrepancies

with respect to the experimental results have been observed. The new developments

presented in this chapter are aimed at overcoming the observed limitations, and

consequently extending the applicability of the DEM to the seismic vulnerability of

historical structures.

' The case of historical masonry structures with ineffective mortar are also in the scope of this study.
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7.1 CRITICAL EVALUATION OF CURRENT DEM RESULTS

Before presenting the formulation of the new constitutive model, the previous

work performed in the present study, employing current DEM, is briefly summarized and

evaluated.

The seismic load was modeled both as a system of quasistatic lateral forces

applied to the centroid of the elements, and also as a fully dynamic action caused by the

ground shaking. Full details of such analyses were given in the previous chapters.

Within the context of the standard DEM, the strength and deformation

characteristics of the joint were represented in a lumped form at the contact nodes. In the

normal direction, a linear compression behavior with zero tensile strength has been

assumed. In the tangential direction, an elastoplastic model with yield strength equal to

Coulomb friction was selected.

For the quasistatic case, the objective has been the determination of the lateral

failure loads and associated failure mechanisms of opus quadratum walls2 subjected to

gravity and slowly increasing lateral load. The work included the verification of the

accuracy of the model predictions with respect to limit analysis for a series of

representative cases, and a study of the sensitivity of the solution with respect to essential

parameters of the DEM model. Both provided good results. When compared with

experimental tests, the numerical predictions of the failure mode were in reasonable

agreement.

However, several differences between the DEM results and the experimental

response were observed 3:

2 Opus quadratum is the classical masonry typology made by regular squared blocks interacting only
through friction.
3 see Chapter 5 for details on experimental and numerical tests.
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(1) the numerical predictions systematically overestimated the actual experimental

failure load;

(2) at failure, the sliding and rotations among blocks were generally localized in

relatively narrow diagonal bands, on the contrary the numerical model predicted

sliding and rotations over a wider area of the wall4 ;

(3) micro-sliding progressively developed starting from 80% of the failure load, while

in the numerical model the wall remained practically undeformed up to failure;

(4) for the case of long and short walls with long blocks (where collapse occurred by

sliding only) the failure load was 10% lower than the friction coefficient, whereas

the numerical model did not predict this apparent shear strength reduction; and

(5) in the case of the in-plane loading of the 21-block wall the failure mode was

incorrectly predicted as pure sliding while in fact it was a mixed sliding and

rotating mode.

For the dynamic case the main additional difficulty with respect to the quasistatic

case lies in the appropriate prediction of the energy loss at the interfaces between blocks.

Energy dissipation is associated to friction and internal material damping, and a realistic

prediction of such phenomena even for the simplest case of 2 impacting blocks would

require a very complex numerical model. For a block system of realistic size, such

approach becomes practically impossible. An attempt has been made, in the context of

the DEM, to model the internal material damping with a lumped viscous element acting

at the interface between the blocks, and retaining a simple representation of the block

interior. For the case of rocking of a slender block on a rigid base, an empirical

expression for the parameter of the viscous element has been obtained by minimizing

errors of predicted restitution ratios with respect to "exact" values obtained with the

Housner model. Good agreement with experimental results has been found for a range of

slenderness ratios (from 2 to 5). Using the same parameter, acceptable agreement with

experimental results has also been found for the case of harmonic base shaking of the

single block. For a case of a multibody arch structure subjected to ground shaking, the

same viscous parameter obtained for the case of a single block has been assumed. A

4 see as an example WALL3 in Chapter 5
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reasonable agreement was found with experimental results. However it was noted that

for this particular case the system response was dominated by the rocking of the two

columns, which, as previously reported, is well described by this model.

From the work performed it appears that the quasistatic approach is promising

even though a number of discrepancies in the response prediction were observed and

need to be resolved. In the more complex dynamic case, a simplifying assumption is

made in the representation of the damping at impact, and while it may be acceptable for

single block structures or for certain types of multibody systems a more general interface

dissipation mechanism needs to be defined. Since the problems identified in the

quasistatic analyses will have an impact also on the dynamic case, it was decided to

approach them first.
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7.2 FORMULATION OF A NON COPLANAR JOINT MODEL

In order to propose an improved DE model which may overcome the observed

limitations, it is necessary to understand the causes of such discrepancies. Several

aspects needs to be considered: the randomness of the friction coefficient, the variability

of the friction coefficient with normal load, the softening behavior of the joint in the

tangential direction, and possible relative microrotations of blocks at the joints due to

either the deformability of the asperities, or to the non coplanarity of the contact surfaces.

The frictional behavior of a joint is a complex phenomenon which has been

studied extensively (as already illustrated in Chapter 5). Comprehensive constitutive

models have been proposed both in the fields of reinforced concrete (Fardis and

Buyukozturk, 1979), and rock mechanics (Plesha, 1987), which, among other aspects,

account also for dilatancy and contact surface degradation which are not considered in the

current DE model. However, based on the observations of the failure of small scale walls

subjected to out-of-plane loading, in which no sliding takes place, it appears that the

microrotations at the joints play an important role and should be investigated further.

In fact, the out-of-plane failure mode of a brick wall had not been previously

investigated in this study because of its apparent simplicity when compared to the in-

plane failure of the same wall. However, the same ease of interpretation has yielded

some interesting observations with regard to the identification of the causes of the

previously mentioned limitations of the current DEM.
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7.2.1 Experimental observations of out-of-plane wall failure.

Experiments on small scale models of walls subjected to out-of-plane lateral

forces have been reported in (Ceradini, V. 1992). The walls were built with peperino

blocks5 with dimensions of 17.5 x 40 x 80 mm, weight of 120 g, and average friction

coefficient of 0.6. The blocks had been cut very carefully with an accuracy of the order

of 10- mm. Increasing lateral forces were generated using a tilting table. Out-of-plane

lateral forces were obtained by placing the wall in a plane parallel to the axis of rotation

of the tilting table. Defining a as the angle of the base plane with respect to the

horizontal plane, the gravity force F acting on each block had components Fn and Fp,

respectively normal and parallel to the wall

F =Fsinca and Fp=Fcosca (7-1)

A normalized measure X of the lateral forces acting on the wall is given by:

F
A= -tga (7-2)

F,

Figure 7-1 shows the 14-layer wall tested in (Ceradini, V. 1992). In the loading

plane, the dimensions were: b = 40 mm, and h = 245 mm. The wall failed by rigid

body rotation around its base corner at a failure load %exp = 0.132. The exact failure load

of a rectangular rigid body with same base and height which is given by XIig = b/h =

0.163. Note that the failure load XDE obtained with DE analysis using the current joint

model is XDE = Xrig = 0. 163.
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It appeared that the experimental failure load was only 81% of the predicted

failure load:

Cxp = 0.81 (7-3)
ADE

The cause of the overestimation of the failure load predicted with DEM is quite

clear. In the experiment, before failure, the wall appeared slightly bent' in the direction

of the horizontal forces, and consequently the projection of the wall centroid on its base

had moved closer to the corner around which the rotation takes place at failure (Figure 7-

1c). As a consequence the stabilizing moment was reduced, and therefore failure became

possible for a lower value of lateral forces. Such deformation before failure is not

predicted with the DE model, where instead the wall behaves essentially as a rigid body.

The apparent bending of the wall takes place gradually with the increase of lateral

load X. In Figure 7-2 the dashed curve O-C shows an indicative relationship between the

lateral displacement of the wall centroid 8g and the lateral load X. The curve starts in 0

and increases monotonically up to a point C with coordinates: 5g*; Xexp, which

corresponds to the failure configuration.

In general, for any rectangular wall with base b and height h, that fails by

overturning - after some internal displacements had taken place, the following

relationship between the lateral centroid displacement at failure, 8g*, and the failure load

Xexp can be obtained using simple equilibrium considerations:

2 *
Aexp 1 l--JA9' (7-4)
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where Xig = b/c, is the rigid body failure load.

The line A-B in Figure 7-2 represents the above relationship.

Note that if the apparent bending of the column at failure is small, point C tends to

A, and the column behaves as a rigid body with a failure load close to Xng. If the bending

is more pronounced, 8g* tends to b/2 and the resulting failure load tends to zero. The

conditions under which this limit situation takes place - due to microrotations at the joints

- is discussed in section 7.4.2.1.
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Figure 7-1. Out-of-plane loading of a 14-layer wall. The lateral load causes an apparent
bending due to microrotations at the joints. (a) view in the plane
perpendicular to lateral forces; (b) view in the plane parallel to lateral
forces; (c) lateral displacement 8G of wall centroid.

Xrig=b/h A
xC

exp ,- exp =( - 2 8g/ b) Xrig

O B

5g b/2 8g

Figure 7-2. The curve O-C is an indicative relationship between lateral load X, and
centroid lateral displacement 8g for the 14-layer wall up to failure. The
segment A-B delimitates the curve X(5g ) for any rectangular wall.
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7.2.2 Interpretation of experimental results

The observed apparent bending could not be attributed to internal strain because

of the very low stress level' with respect to the compressive strength of the stone block,

but rather to the accumulation of microrotations at the joints, and again, for the same

reason, it appears more likely that such microrotations were due to the noncoplanarities

of contact surfaces as opposed to deformations of the joints.

In fact, due to the irregularities of the surfaces of the blocks, only a few points

along the joint can be in contact, as illustrated in Figure 7-3. In 2D, a stable contact

between two blocks generally requires two contact points, and also requires that the

resultant Na of the active forces acting on each block intersects the joint in a point P

which lies between the 2 contact points. When the resultant of the active forces Na ,

shifts from a point P included in the interval delimited by the contact points B and C, to a

point P' in the adjacent interval C-D, the block goes through an unstable phase where the

contact occurs only in C and a rotation AO takes place due to the unbalanced moment M

= e Na ( e is the eccentricity of Na and is measured by the distance between C and P')8.

Therefore, in the out-of-plane loading of the 14-layer wall described in the

previous section, we can assume that the observed apparent bending before failure, was

due to the small rotations occurred at the joints related to the non perfect planarity of the

contact surfaces. As the horizontal load increases the resultant of the active forces Na

moves from the center of the joint in the direction of the lateral load. This shift is higher

for the bottom blocks which will tend to rotate first. A rotation at a joint will cause the

rigid body rotation of the entire portion of the wall above such joint. This rotation will

determine a further shift of Na in all joints, and this in turn may determine further

rotations and so on until either a new stable configuration is obtained, or failure is

reached.

7 not exceeding 0.674 psi for the 14-layer wall.
8 note that, in the expression of the unbalanced moment, Na represents the component of the resultant of the
active forces normal to the joint.
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Such behavior, quite evident in the out-of-plane case, is expected to have a lower,

but still significant impact also in the in-plane case, and possibly explain some of the

previously mentioned discrepancies observed using the current DE model. In the

following a joint model which account for the non coplanarity of the contact surfaces

between blocks is presented.
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Figure 7-3.

(a)

Effect of irregular contact: relative microrotation AO of two contacting
blocks due to a shift of the resultant of the active forces Na.
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Figure 7-4. Convex polygon on a flat surface as the representation of the contact
between two irregular surfaces.
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7.2.3 The non coplanar joint model

In the following we will first consider the normal behavior of the joint which is

directly related to the microrotations of the blocks. Subsequently, a modified friction

softening tangential constitutive relation for addressing the problem of sliding

localization will be presented.

Concerning the non coplanarity of the joint, in the first place, it is necessary to

simplify the geometric representation of the two irregular surfaces at a joint without

modifying the kinematics of the system.

It is observed that along a generic joint of length 1 there are in general n+1

possible contact points Pi, which define n possible stable contacts ci between any two

consecutive contact points Pi and Pi+1 positioned at a distance li one from the other. For

changing contact from ci to ci+1 a slight relative rotation Ti among the two blocks has to

take place.

Consider the convex polygon with n sides of length li, in which each side si forms

an angle 9i'= 180 - pi with the following side si+i. For the purpose of describing the

possible relative microrotations of two adjacent blocks it is clearly possible to replace the

complex profiles of the asperities of the two surfaces in contact (Figure 7-4a) with the

previously defined convex polygonal base in contact with a flat surface9 (Figure 7-4b).

In the following we will refer to this geometrical representation of the joint, and

particular attention will be given to the definition of the polygonal base.

The parameters which define such polygon are the lengths li and the angles (i

which can be considered as random variables. The distribution of such variables could

be derived directly from experimental measures of surface roughness, or indirectly from

the measurement of global parameters (such as the failure load X*, or the maximum

9 The only negligeable difference is that the centers of rotation in the polygonal contact are aligned along
the flat surface, while in the real case they may be slightly up or down with respect to such surface.
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centroid lateral displacement 8g*) of the response of a simple block assemblage subjected

to lateral loads.

Let us look more carefully to the behavior of the joint, represented now by the

previously defined polygon, when a rotation takes place due to a shift of the resultant of

the active forces Na. In the following we consider separately the forces normal and

tangential to the contact surface. The normal forces are directly related to the

microrotations and will be addressed first.

Initially, the position P of the projection of the resultant of the active forces Na

along the joint will determine which of the n possible contacts will be activated. In fact,

it is quite clear that the contact will be at the two consecutive points Pi and Pi+1 which

include P as shown for example in Figure 7-5a. In the same figure also the reactive

forces Ni and Ni+1 and their resultant Nr are indicated. Since the system is in equilibrium:

Nr= - Na , and they are applied to the same point.

When Na moves from P in the interval [Pi, Pi+1], to P' in [Pi+1, Pi+2], the system

goes through an unstable phase in which the blocks are in contact only in Pi1+, and the

unbalanced moment M = e Na will cause the block rotation AO as shown in Figure 7-5b.

In this phase while Na is applied to P', the reactive force Nr is still applied in Pi.1 .

Finally when the rotation AO is equal to <pi a new stable contact at points Pi1+i and

Pi+2 is re-established. The resultants of the active and reactive forces, Na and Nr

respectively, are again applied in the same point P' (Figure 7-5c).

Clearly in the current DE planar joint model, when there is a shift of the resultant

of the active forces Na, (from P to P' as indicated in Figures 7-6a and 7-6b), the reactive

forces F1 and F2, which are generated by the two normal stiffness K, and K2 located at the

two ends of the joint, will tend to equilibrate the active forces. As a consequence Na and

N, will always be aligned causing no unbalanced moment and no relative rotation.
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Figure 7-5. Forces acting on a block during a shift of the resultant of the active forces
Na from P to P'. A microrotation AO = pi takes place.
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Current DE model: forces acting on a block during a shift of the resultant of
the active forces Na from P to P'. No microrotation takes place.
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Figure 7-7. Scheme of proposed modifications to DE joint model to account for
microrotations.
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Based on the previous considerations, in order to account for the relative joint

rotations the following modifications to the current DE joint model are proposed. The

location of the point P (the intersection of the projection of the resultant Na of the active

forces and the joint) is monitored during the analysis, and when it moves from a position

P in the interval [Pi, Pi+1] to a position P' in the adjacent one [Pi+i, Pi+2], a microrotation of

the joint is allowed by:

(a) softening the normal stiffiess Kn on the side of the direction of the movement

of Na; and

(b) applying two opposite unbalanced moments of intensity M = le Nal to the two

blocks.

The normal stiffness Kn is set to a value a close to zero until a relative rotation

AO = <pi has been achieved. Subsequently the eccentricity e is reset to zero, and K is

reassigned to its original value (see Figure 7-7).

More in detail, referring to Figure 7-8, where the subscripts "n" and "t" indicates

the normal and tangential directions with respect to the contact surface, the following

quantities are defined:

" Kni and Kti are the interaction stiffness at the node i;

* Fni and Fti are the contact forces at the node i;

* Un and Uti are the relative displacements of the 2 blocks at the node i;

* e (Fin, 0, j, <pi, li) is the eccentricity of the contact forces, and e # 0 when an

unstable contact is detected; more specifically e = 0 if the resultant of the

active forces Na is applied inside the current contact side of the reference

polygon, or otherwise it is the distance between the current contact side and

Na; e is taken positive in the direction from node 1 to node 2.

0 0 is the current angle between the two blocks;

* j is the joint index indicating on which base or corner (of the reference

polygonal base) the contact is currently taking place.
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Figure 7-8. Interaction elements,
model.

Fni,

Figure 7-9.

and corresponding contact forces in the DE joint

AU= L tg p

Kne

1
Uni

Modified joint behavior in the normal direction to allow microrotation (p:
Fni and Uni are the force and the displacement in the normal direction at
node i; Kne is the normal elastic stiffhess of the joint; L is the joint length.

Fn tg4

Fn (Ptg#)

AU1 AU 2

Figure 7-10. Modified joint behavior in the tangential direction to allow for friction
softening: Fti and Uti are the force and the displacement in the tangential
direction at node i; Ke is the tangential elastic stiffhess of the joint; tg4 is
the friction coefficient; P, Au,, Au 2 are the parameters of the friction
softening model.
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The incremental constitutive relationship for the proposed joint model assumes

the following form:

dFn1  Kni 0 0 0 1dUni
dF1 0 Kt 0 0 dUt1  (7-5)
dFjj 0 0 Kn 0 dU
dFe _ 0 0 0 Ka _JdUJ

where the normal interaction elements control the development of microrotations:

Kni= Kne if Uni > 0 and e(Fin, 0, j, Ti, li) = 0; (7-6)

Kni = a; Kn2 = Kne if Uni > 0 and e(Fin, 0, j, pi, li) < 0; (7-7)

Kni = Kne; Kn2 = a if Uni > 0 and e(Fin, 0, j, <pi, li) > 0; (7-8)

K= 0 if Uni < 0 (lost contact) (7-9)

and the tangential interaction elements have been modified to account for the

friction softening behavior illustrated in Figure 7-10 and described in the following.

Kti = Kte if Uni > 0 and Fti Fni tg(O); (7-10)

Ki = 0 if Uni > 0 and Fti > Fni tg(O) and 0 < Us < AUI; (7-12)

Ki = - Fni (-P) tg(O) / AU 2 if Uni> 0

and Fti > Fni tg(O) and AU1 < Us < AU 2  (7-13)

Kti = 0 if Uni > 0 and Fti > Fni tg(O) and Us > AU1 + AU 2  (7-14)

Kti = 0 if Uni <0 (lost contact); (7-15)

In the previous expressions:

" Kne and Kte are the normal and tangential elastic stiffness of the joint;

* a is a value close to zero (e.g. 10- Kne) to which the normal stiffness is

assigned when an unstable contact is detected (that is e # 0);

" tg(4) is the friction coefficient for the two blocks;

P f, AU 1, AU 2 are the parameters of the friction softening (as indicated in

Figure 7-10), and Us is the sliding distance.
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It is observed that the microrotations allowed by the proposed model are around

the limiting points of the joint while in reality they take place around a point in the

interior of the joint. However a slight approximation in the location of the center of

rotation should not significantly affect the overall response of the system. In fact, the

essential feature which we are trying to describe with the proposed modifications to the

model, is that relative rigid body rotations of given magnitude take place between

contacting blocks when certain conditions are met. The rational is that even if the

magnitude of such rotations is small, if they take place in the lower part of the wall, they

can result in non negligible horizontal displacements of the upper part of the same wall,

with a reduction of the resulting failure load. This effect should not be affected by the

slight approximation in the horizontal location of the relative center of rotation between

the blocks.

In addition to accounting for the non coplanarity of the contact surfaces, another

factor which could be important in explaining the localization of sliding, in the in-plane

response of walls, and which is not considered in the current DE model, is the reduction

of the friction coefficient when sliding has initiated (as described by eq. 7-10 to 7-15). It

is well known, in fact, that the "static" frictional force is higher than the "dynamic" one.

A complete description of such phenomenon is quite complex since the friction force

depends upon many variables including: velocity, normal force, sliding distance, and

material parameters. However it is thought that, considering that the current DE model

uses a constant friction coefficient, even a simple description of such phenomenon may

contribute to overcome the observed discrepancies between the DE predictions and the

experimental response. Another consideration in favor of a simple frictional model

relates to the difficulty in obtaining accurate estimates of the many parameters which are

required in more complex frictional models for materials used in historical structures.

In the adopted model the friction coefficient tg() is gradually reduced to 0 tg()

as indicated in Figure 7-10 (and described by eq. 7-13). The reduction initiates at a

sliding distance U, = AU 1. Then the friction coefficient varies linearly for an additional
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distance AU 2, and subsequently is kept constant for any further displacement. The 3

parameters of the model: P, AUI, and AU 2 have to be obtained experimentally.

In the next section the implementation of the proposed model is presented.
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7.3 IMPLEMENTATION AND VERIFICATION

The proposed joint model has been implemented in the Discrete Element program

UDEC using the dedicated programming language FISH (UDEC, 1996).

7.3.1 Definition of Polygonal joint reference base

Since the main objective of the new model is the simulation of the response of a

block with a convex polygonal base - representing the non coplanarity of the contact, the

first step in building its constitutive relation consists in defining the geometry of such

reference polygonal base.

To this purpose it has been assumed that the polygon is always inscribed in a

circumference of given radius r. The number n of sides and their lengths li (with i = 1 to

n) complete the definition of the reference base. Instead of directly assigning r, it has

been chosen to specify the maximum joint aperture d (see Figure 7-11) which has a more

direct physical meaninglo. Therefore for any joint of length L, the following (n+l)

parameters have to be defined:

" the number of sides n,

* the lengths of n-I bases": li with i=1 to n-1, and

" the maximum joint aperture d.

If a regular polygon is assumed then the geometrical parameters to be assigned

for each contact are only two: n and d.

'0 The exact definition of d, which may be viewed as a measure of the magnitude of the imperfection of the
contact, is the distance between a straight line ri joining the ends of the polygon and the straight line r2

tangent to the polygon and parallel to rl.
" The length of the nth base is obtained as In = L - Y(i=1,n.1) li , where L is the length of the joint.
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Figure 7-11. Definition of polygonal reference base underlying new DE joint model.
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In order to account for the inherent randomness of irregularities of the contacts,

the possibility of generating different reference polygons for each contact has been

implemented. Their parameters may have a deterministic or a stochastic definition. In

the last case, each parameter is assigned a uniform distribution between two prescribed

limiting values:

" number of sides: nmin, ni,

" length of each base: lmin, Imax

* max joint aperture: dmin, dma

Based on the previous data the angles of rotation Ti (required to change contact

from a base i to the adjacent one i+l) are computed. Thus the geometrical parameters li

and (pi required by the constitutive model are available.

7.3.2 Modified DE solution algorithm

An important aspect in the implementation of the joint constitutive model relates

to the difference between the standard DE contact model which is oriented towards point

contacts (corner-edge), and the new model which instead considers an extended linear

joint between two edges of adjacent blocks. In other words in the standard DE model an

edge-to-edge contact between two blocks is represented as two independent contacts

which behave independently, instead, in the new joint model the behavior of the two

contacts is a function of the state of the linear joint. This has required, the computation -

at each time step - of the following variables which are associated to the state of the joint:

e the joint index j indicating on which base or corner (of the reference

polygonal base) the contact is currently taking place'1,

* the relative angle of rotation 9 of the two blocks,

" the resultant Nr (in the direction normal to the joint) of the two contact

forces (F.1, Fa2) at the two nodes delimiting the joint,

12 If a stable contact is taking place the joint index indicates the corresponding base, otherwise it indicates
the corner around which a rotation is occurring.
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* the position of Nr along the joint (given as distance d from the first contact

of the joint),

0 the eccentricity e of the force N, with respect to the current stable base

inside the joint,

* the unbalanced moment M= Nr e.

The determination of the lateral failure load requires first the application of the

gravity forces (with a standard DE procedure), and then the incremental application of the

lateral load k.

After each increment of lateral load AX is applied to the system, the standard DE

time stepping is performed with the objective of determining a new static equilibrium

configuration. If no equilibrium is possible the current lateral load is the failure load,

otherwise a new increment AX is applied. The difference with respect to the standard DE

solution process is that checks have to be performed at every joint, and at every time step,
in order to verify if a new unstable contact is detected, or if a previously unstable contact

has become stable; in such cases the modifications to the stiffness elements, and to the

forces acting on the blocks, as described in the formulation of the constitutive model,

have to be accomplished.

A detailed scheme of the modified solution process for the new joint model is

presented in Figure 7-12. The steps required by the standard DE algorithm are indicated

in the same figure with a dashed line in order to clearly show the changes associated to

the new model.

In the following sections after the verification tests, some applications to the in-

plane failure of the opus quadratum walls (for which experimental results are available)

will be performed in order to evaluate the actual improvement in the numerical

predictions achieved with the new joint model.
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Apply gravity with standard DE procedure

Apply an increment of lateral load AX

Perform DE time stepping
trying to reach static equilibrium

If equilibrium has been reached: -

-4 If no equilibrium has been reached the current lateral load X
is the failure load and the solution process is ended.

Figure 7-12. Solution process for determination of lateral failure load X with new joint
model (solid lines). Standard DE algorithm is indicated with dashed lines.
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Check if a new unstable contact h has been detected.
This requires, for each jointj, the computation of:
* Naj: the resultant of the two normal contact forces Fnlj and F j;
" ej (eccentricity): the distance of Naj with respect to the current contact base.

- If ej=O it means that Naj falls inside the current contact base and no new
unstable contact is detected for jointj;

- if ej 0 a new unstable contact h=j is detected: if ej <0 Naj falls between
node 1 and the current contact base; if ej >0 Naj falls between node 2 and
the current contact base.

If before reaching equilibrium a previous unstable contact at joint w has become
stable; that is if the relative rotation between the two blocks at joint w has
reached the value Aew = p i (where p i, is the angle between the previous stable
contact side i of the reference polygon and the adjacent one):
* reset the modified normal stiffnes to its original value: K.j= Kne;
* eliminate the unbalanced moments Mw at joint w;
* set all velocities to zero (this is allowed only in the quasistatic method and

improves numerical efficiency)

If no new unstable contact is detected.

If a new unstable contact h is detected:
" modify stiffness ofjoint h: K.i = a if eh < 0; or K, = a if eh > 0;
* apply unbalanced moments +Mh = Nah eh and - Mh to the two blocks

in contact at joint h.



7.3.3 Verification analyses

In order to verify the behavior of the proposed joint model, a quasistatic analysis

of a single rigid block subjected to gravity and a slowly increasing lateral force is

performed. For such case the exact results are easily computed and therefore the

evaluation of the proposed model is straightforward First, the case of a monotonic

loading up to failure is studied, subsequently the case of a cyclic loading is presented.

The block has a squared shape, with b = h = 1 m. The joint interaction elastic

stiffness Kne and Kte have been assigned to an arbitrary high value (5 106 N/m) such that

displacements due to elastic joint deformations are negligible with respect to those due to

microrotations. A reference polygonal base with 5 sides of equal length, and a maximum

joint aperture d = 0.01-h = 1 cm, has been assumed (see Figure 7-13 and Table 7-1).

The corresponding geometric parameters of the joint model are li=b/5=0.2m and

Ti=0.0166 rad.
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Figure 7-13. Reference polygonal base for verification test.
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The objective of the first test is the study of the response of the block when

subjected to a constant vertical force, Fy = 10 N, simulating gravity, and an increasing

horizontal force Fx, simulating the seismic load, up to failure (both Fy, and F, being

applied to the block centroid). In particular it is of interest to verify: the formation of

microrotations, the levels of lateral force which cause such microrotations, the associated

displacements, and the failure load. The exact values of the previous quantities can be

computed as illustrated in the following.

If the previously described block had a perfectly planar base, its normalized lateral

failure load 1 would be:

4p1 = F, / Fy = b / h = 1, corresponding to a lateral force: Fx= k pX Fy = 10 N

For the block with the 5-sided polygonal base, assuming that after the application

of gravity the contact occurred on the central base, the increasing lateral load will

determine a first rotation <pi at a load level k = Xi, followed by a second rotation pi at a

load level k = k2, and finally the overturning of the block at a load level k = k 3. It is

easy to demonstrate that:

k, = (b/5 ) / h = 0.200; corresponding to Fx = k I Fy = 2.00 N

k2= [3 b/5 - h tg(<pi)] / h = 0.583; corresponding to Fx= k 2 Fy = 5.83 N

k3 = [ b - h tg(2 pI) ] /h = 0.966; corresponding to Fx= k 3 ; Fy = 9.66 N
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The top horizontal displacements of the block due to the 2 microrotations can also

be easily computed as :

AU, = h tg(p1 ) = 1.67 cm and AU 2 = h tg(2Tp) = 3.33 cm

In order to verify the prediction of X , X2 , X3 , and AU 1, AU 2 a DE analysis

using the new joint model has been performed. First a vertical force Fy = 10 N has been

applied to the block centroid, then the horizontal force (also applied to the block centroid)

has been gradually increased with load steps equal to AF. = 0.2 N up to Fx = 9.60 N, and

subsequently AFx = 0.01 N up to failure.

Microrotations took place at Fx = 2.2 N, and Fx = 6.0 N, while failure occurred at

Fx = 9.66 N. The 3 values kinc, X2nc , X3nc predicted with the non coplanar joint model

are included in the following intervals and compare well with the exact values:

0.200 < kn < 0.220,

0.580 < k2 nc < 0.600,

0.965 < 3 nc < 0.966,

(exact value X, = 0.200);

(exact value X, = 0.583);

(exact value X, = 0.966);

Also the horizontal top displacements associated to the microrotations have been

accurately predicted:

AUInc = 1.66 cm

AU2nc = 3.30 cm

(exact value AU, = 1.67 cm) and

(exact value AU 2 = 3.33 cm)
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Block data:

Base:
Height:
Mass density:
Contact elastic interaction stiffness:
Friction coefficient:

Reference polygon parameters:

Number of sides:
Lengths of each side:
Maximum joint aperture:
Angle between 2 adjacent sides:

b = 1 m,
h = 1 m,
M =2 kg / m2

Kne = Ke = 5 106 N/M
f =1

n =5
li= 0.2 m
d = 1 cm

<p1 = 0.0166 rad

Loading:

Centroidal Vertical forces: Fy= 10 N
Centroidal Horizontal forces:
- loading sequence:

AF.=0.20 N from F,=0.0 N to Fx=9.6 N
AFx=0.01N from Fx=9.6N to Fx=9.66 N

- key values of horizontal forces:
Fx = 2.0, 2.2, 5.8, 6.0, 9.65, 9.66 N

Table 7-1. Summary of data for first verification test.

In the following a series of figures document in detail the system response

predicted by the non coplanar joint model.

To fully document the two microrotations and the initiation of the overturning it

is useful to show the status of the system immediately before and after the instability

has occurred, therefore a total of 6 states of the system have been presented. They

correspond to the following levels of lateral load: Fx = 2.0 N, 2.2 N, 5.8 N, 6.0 N,

9.65 N, 9.66 N. For each of them 3 figures are provided: (a) the global view of the
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system, where a slight change in the configuration may be noted, (b) the magnified

view of the contact area, where the amplitude of the base displacements can be

quantified, and (c) the time history of the horizontal displacement of the top right

corner up to specified level of lateral load (Figures 7-17 to 7-34). The same type of

plots are also provided for documenting the initial response of the system to the vertical

force Fy = 10.0 N (in Figures 7-14, to 7-16).

Note that each figure reports also the values of the lateral force F. acting on the

block, the simulation time, and the cycle number, corresponding to the time in which

the figure was generated during the solution process'3 .

Finally in order to verify the response of the system to non monotonic loading

an analysis of the same block with the same parameters, but subjected to one full cycle

of lateral forces has been performed. The lateral force has been varied quasistatically

between the following values: F,= 0 N; +8 N; 0 N; -8 N; 0 N. A series of 8 phases of

instability, each one followed by a stable configuration, corresponding to 2 clockwise,
4 counterclockwise, and finally 2 clockwise microrotations have been correctly

predicted. The load levels corresponding to such microrotations, and their magnitudes,

have also been exactly predicted as documented in Figures 7-35 to 7-3 7.

After having verified the behavior of the new joint model, in the next section a

series of calibration tests will be performed in order to select the appropriate values of

the joint parameters which will be used in the application studies presented in section

7.5.

13 F. is given in the title, the simulation time, and the cycle number are given in the top of the left panel of
the figure. In addition, for the time history, the left panel contains also the maximum and minimum values
of the quantities represented on each Cartesian axis.
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F1 = 0.2 N Fy = -10 N

Figure 7-14. Configuration of the system after application of gravity force (Fy = -10 N).

Figure 7-15. Magnified view of contact area after application
(Fy= - 10 N).

of gravity force
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Figure 7-16. Time history of vertical displacement of top right corner after application
of gravity force (Fy = -10 N). Negligible displacements (10- m) are
caused by the joint elastic deformability in the vertical direction. Note
vertical oscillations of the block before steady state is reached.
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F,= 2.0 N Fy= -10 N

Figure 7-17. Global view of the system after application
Fy= -10 N. No microrotation has taken place.

of forces: F, = 2.0 N,

Figure 7-18. Magnified view of contact area after application
Fy= -10 N. No microrotation has taken place.

of forces: F, = 2.0 N,
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Figure 7-19. Time history of horizontal displacement of top right corner after
application of forces: Fx = 2.0 N, Fy = -10 N. It can be observed the
response to the first 10 load steps AFx = 0.20 N. The total displacement is
negligible (of the order of 10-7 m), and it is due only to elastic
deformations of the joint.
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F = 2.2 N

Figure 7-20.

Fy= -10 N

Global view of the system after application of
Fy = -10 N. A first microrotation can be observed.

forces F, = 2.2 N,

Figure 7-21. Magnified view of contact area after application of forces
Fy = -10 N. A first microrotation has taken place.
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Job Title X Displaem..nt - F 2.20409+
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Figure 7-22. Time history of horizontal displacement of top right corner after
application of forces F. = 2.2 N, Fy = -10 N. A local instability has taken
place, and then a new stable configuration is achieved.

213

XLGO-62

1.99 [in]
1.69

1. 49

1.20

1.0

.90

.49

.290

t [sec]
1.29 1.69 2.00

i



Fx= 5.8 N Fy= -10 N

Figure 7-23.
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Global view of the system after application of forces
Fy= -10 N. No additional microrotation has taken place.

Figure 7-24. Magnified view of contact area after application of forces Fx = 5.8 N,
Fy= -10 N. No additional rigid body microrotation has taken place.
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Figure 7-25. Time history of horizontal
application of forces F. = 5.8
stable configuration.

displacement of top right corner after
N, Fy = -10 N. The system remains in a
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F1 =6.0 N Fy = -10 N

Job Title Global view of System - Fx= 6.00+e+M
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Figure 7-26.

Figure 7-27.

Global view of the system after application of forces
Fy= -10 N. A second microrotation can be seen.
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Magnified view of contact area after application of
Fy= -10 N. A second microrotation has taken place.
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Figure 7-28. Time history of horizontal displacement
application of forces F.= 6.0 N, Fy = -10 N.

of top right corner after
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F1 = 9.65 N Fy = -10 N

Figure 7-29. Global view of the system after application of forces Fx = 9.65 N,
Fy= -10 N. No additional rigid body microrotation has taken place.

Figure 7-30. Magnified view of contact area after application of forces Fx = 9.65 N,
Fy= -10 N. No additional rigid body microrotation has taken place.
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Figure 7-31. Time history of horizontal displacement
application of forces Fx = 9.65 N, Fy = -10
configuration.

of top right corner after
N. The system is in a stable

219

Job Title X Displacement - F= 9.6566.496
From. File load.dat

UDEC 3.80 XL3 -0Z
3.50.

Cycle 166723[n
Time. 1.6E so see
history plot 3.9
-3.32E-13(bist 2> 3.30E-82
Us.
6.OE.SWtimw> .6S

2.50

1.50

.58

t_[sec]
.66 .48 .89 1.29



F = 9.66 N Fy = -10 N

Figure 7-32. Global view of the system after application of forces Fx = 9.66 N,
Fy= -10 N. Global failure by overturning is taking place. Note the
reduction (from X = 1.0 to X = 0.966) of failure load due to non coplanar
joint.
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Figure 7-33. Magnified view of contact area after application of forces
Fy= -10 N. Global failure by overturning is taking place.
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Figure 7-34. Time history of horizontal displacement of top right corner after
application of forces F. = 9.66 N, Fy = -10 N. Displacement keeps
increasing and no further stable configuration is possible.
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Figure 7-35. Cyclic loading: time history of horizontal displacement of top right corner
during quasistatic application of a complete cycle of lateral force between
the following values: F, = 0 N; +8 N; 0 N; -8 N; 0 N. Note 8 phases of
instability, each one followed by a stable configuration, corresponding to 2
clockwise, 4 counterclockwise, and finally 2 clockwise microrotations.
The 8 different stable configurations (corresponding to the points indicated
by triangles) are shown in following two figures.
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Figure 7-36. Cyclic loading: magnified view of contact area. Stable configurations at
Fx= 2.5 N; 8.0 N; 5.0 N; 1.5 N.
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Figure 7-37. Cyclic loading: magnified view of contact area. Stable configurations at
Fx= -2.5 N; -8.0 N; -5.0 N; 0.0 N.
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7.4 SENSITIVITY ANALYSIS AND CALIBRATION

The development of the non coplanar joint model had been stimulated by certain

observed discrepancies between the results of a series of experimental tests and the

numerical predictions of DE analyses using the current planar joint model. It is now

necessary to perform the same DE analyses with the new joint model in order to evaluate

the improvements in the numerical predictions, but first it is needed to select a joint

reference surface which is representative of the irregularities of the blocks used in the

experimental tests, in other words it is necessary to calibrate the joint model.

Since in the experimental tests (consisting in the in-plane loading of various small

scale models of opus quadratum walls) only one type of block has been used', it has to be

defined just one polygonal reference surface to be used in all analyses.

It is proposed to select the appropriate parameters of the joint reference surface on

the base of the experimental results of the out-of-plane test of a 14-layer wall presented in

section 7.2.1 (see Figures 7-1, and 7-2). In fact, in this test it was used the same type of

blocks which had been employed in the in-plane experiments. It seems, also, appropriate

to use the out-of-plane results for calibrating the joint model since in such case the effect

of the non coplanarity is particularly pronounced.

After having studied the sensitivity of the out-of-plane response of the 14-layer

wall with respect to the geometrical parameters of the joint, and having calibrated such

parameters on the base of the experimental results, a study of the sensitivity of the out-of

plane lateral failure load of the wall with respect to the number of layers is also

performed.

1Peperino blocks with dimensions of 17.5 x 40 x 80 mm (cutting accuracy of approximately 0.1 mm),
weight of 120 g, friction coefficient of 0.6.
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7.4.1 Sensitivity with respect to joint geometry

In the following we illustrate a series of DE analyses which have been performed

with the objective of determining the influence of the shape of the polygonal reference

surface and of the size of the joint irregularity on the lateral failure load X of a 14-layer

wall subjected to out-of-plane loading. As shown in Figure 7-lb, such behavior may be

studied with a 2D model constituted by a column of 14 blocks2.

The system was subjected to gravity and quasistatic increasing lateral load up to

failure. The detailed features of the response, including plots of the system configuration

at various levels of lateral load, and the time histories of the applied lateral forces, and of

the resulting lateral displacement will be given in section 7.5 dedicated to the

presentation of the applications of the new joint model. Here only the features regarding

the sensitivity study will be discussed.

It is recalled that the parameters required for the definition of the reference surface

are:

n: number of sides;

li: length of each side (i = 1, n);

d: maximum joint aperture.

Based on the previous data the program computes the value of the radius of the

circumference in which the polygon is inscribed, and subsequently the angles of rotation

9i required to move from each base (i) to the subsequent one (i+1), as illustrated in

section 7.3.1.

2 This is the reason why in the following we will refer indifferently to a 14-layer wall (loaded outside its

plane) or a 14-block column.
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A L d n=3; L=2%

B dn=3; L=10%

C L d n=3; L=20%
(PI

D L d n=3; L=33%

E P2 n=5; L=20%

\/(P

Figure 7-38. Shapes of reference polygon used for parametric analysis: n is the number
of sides; L is the length of the central base as a percentage of the joint
length; d is the maximum joint aperture.

The shape of the contact surface profile is defined by the values of n and li, while

d may be viewed as the size (or intensity) of the joint irregularity. In the following, 5

shapes, illustrated in Figure 7-38, have been considered.

The number of sides which have been examined were: n=3 and n=5, the length of

the central side has been varied from L=2% to L=33% of the contact length, and the joint

opening ranged from d=0.34% to d=0.69% of the block height. The results of the 20
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analyses (5 shapes, and 4 values of joint aperture), in terms of failure load X, and lateral

displacement of the top of the column before failure, 6 top, are summarized in Table 7-2.

Note that the failure loads X are normalized with respect to the failure load Xpi obtained

with the planar joint model (that is neglecting the imperfections of the joint)3. It is

recalled that the normalized experimental failure load is eX = 0.81, while the

experimental top displacement is 8top-ep = 11.5 mm.

SHAPE CASE Max joint Failure Top lateral
aperture load displacement

d (%) X top (mm)
0,34 0,91 4.9

A N=3 0,46 0,88 6.6
L=2% 0,57 0,84 8.1

0,69 0,80 10.2
0,34 0,89 6.2

B N=3 0,46 0,85 8.0
L=10% 0,57 0,81 9.7

0,69 0,79 11.4

DN30,3408 .0,57 0,75 13.2
0,69 0,77 12.6
0,34 0,84 8.3

D N=3 0,46 0,79 11.0
L=33% 0,57 0,75 13.2

0,69 0,70 15.5
0,34 0,86 7.3

E N=5 0,46 0,79 11.0
L=20% 0,57 0,72 14.6

0,69 0,67 17.1

Table 7-2. Failure loads X and top lateral displacements 5top before failure in 20 out-
of-plane DE analyses with non coplanar joint model of a 14-layer wall.
Analyses were performed with 5 shapes of reference polygon and 4 values
of maximum joint aperture d for each shape (d is given as a percentage of
block height). In bold is indicated the case which better approximates the
experimental response: Xexp = 0.81; 8tp,.p = 11.5 mm.

X = b/H = 0.163, as obtained also with DE analysis in section 7.5.1 where 0.162< Xpi <
0.164.
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Figure 7-39.

0,55 0,6

of block height)

0,65 0,7

-E- Shape A
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-a-Shape D

- -Shape E

0,75

Failure loads X versus maximum joint aperture d obtained in 20 out-of-
plane DE analyses with non coplanar joint model of a 14-layer wall. Each
line indicates the type of shape used in the analyses for the reference
polygon. X is normalized with respect to the failure load obtained with the
planar joint model. Normalized experimental failure load is: Xexp= 0.81.

It is noted, in the first place, that the failure load predicted by the non coplanar

joint model is always lower than the one obtained without accounting for contact

imperfections, and this tendency agrees with the experimental results.

Second, in the numerical predictions, a lateral top displacement is always

observed before failure4 as expected from the lab experiments (t.xpp = 11.5 mm), while

with the planar joint model the system did not show any significant one.

The relationship between failure load X, and joint aperture d is presented in Figure

7-39. Three observations can be made:

. X decreases with increasing joint opening d

4 In both experimental and numerical tests the wall failed by rigid body overturning of the entire wall.
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0 X decreases with increasing L, which corresponds to steeper angles of the

lateral sides of the polygonal reference surface

* X does not have a monotonic tendency with respect to n (number of

sides). In fact if we consider the last two cases (D and E), where n=3, and n=5

respectively, and in which for both cases the polygon had sides of equal length

(L=20%), we can observe that:

for d > 0.46 X decreases with n,

for d < 0.46 ? increases with n, and

for d = 0.46 X does not change with n.

This behavior is explained by the fact that, for case E, with small joint openings

failure is obtained with several blocks resting on the second base, while with higher

values of d the first rotation of the lower block causes the higher blocks to move directly

to the third base and therefore causing large lateral displacements and lower global

stability.

With regard to the sensitivity of the failure load % with respect to the selected

geometrical parameters (d, n, L) we can observe the following:

1. a high sensitivity with respect to variations of the joint opening d since a

Ad = 0.35% of the block height (0.06 mm) causes a AX = 10 to 20%

2. a low sensitivity with respect to the number of sides n since going from

n=3 to n=5, the variation of failure load AX is from 0 to 5%

3. a moderate sensitivity with respect to the length L since a variation of L

from 2 to 20% determines a variation of failure load AX = 5%

In addition, Figure 7-40 shows an essentially linear relationship between

maximum top lateral displacements 8top and failure loads X for all of the 20 cases

previously described regardless the type of shape of the reference polygon. It is also

noted that there are cases in which 2 (or more) different couples of shape type and

maximum joint aperture d yield the same value of the failure load X. This is the case, for
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Figure 7-40. Relationship between maximum top lateral displacements 3 top and failure
loads X in 20 out-of-plane DE analyses with non coplanar joint model of a
14-layer wall. Analyses were performed with 5 shapes of reference
polygon and 4 values of max joint aperture for each shape (0.34%, 0.46%,
0.57%, 0.69% of block height).

example, of shape A with d=0.69% and shape C with d=0.57%, which both give a failure

load X = 0.80. The corresponding values of the top lateral displacement for such cases

are very similar: 8top = 10.2 mm and 10.5 mm. It is also recalled that the maximum

lateral displacement 8g of the centroid of the wall before failure, which is a function of X

(see equation 7-4), must be identical for the two cases. If both 5g and 8top are very close

for the two cases it appears that, not only the failure load, but also the deformed failure

configuration of both walls were essentially the same even if two different type of shapes

were assumed for the reference polygon. Therefore, in this series of tests, we are

observing a low sensitivity of the system response with respect to the shape of the

reference polygon of the non coplanar joint model.
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Finally, the calibration of the joint model has been performed by minimizing the

distance in the X-8t0p plane, between experimental and numerical results. As shown in

Figure 7-40, the point which minimize such distance is the one associated to shape C

(n=3; L=20%) and d = 0.57%. These values have been used in all of the following

analyses.

Table 7-3. Summary of experimental and
14-layer wall.

numerical results in out-of-plane test of a

In conclusion, from the data summarized in Table 7-3 we can observe: (a) the

good agreement between the results predicted by the non coplanar model with the

calibrated parameters, and the experimental results; and (b) the substantial improvement

of such results with respect to those obtained with the planar joint model. Obviously

these results have to be confirmed on cases which were not used to calibrate the model as

it will be shown in section 7.5.
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Failure Top lateral displacement
Case load before failure

X stop (mm)

Experimental values 0.81 11.5

Non coplanar model 0.80 10.5
(with calibrated parameters)

Planar joint model (no imperfections) 1.00 0.0



7.4.2 Sensitivity with respect to number of blocks

In the previous section we studied the effect of varying the geometrical

parameters of the joint on the out-of-plane response of a wall with a fixed number of

joints along its height. It is also of interest to evaluate the effect of the number of joints

assuming fixed parameters for the geometrical irregularities 5 . Two series of analyses

have been performed: the first with constant block height h, while the second with

constant wall height H.

In the first series of quasistatic DE analyses the slenderness r = h/b of the block

has been assumed equal to the one of the blocks used for the experimental tests: r=0.44

(corresponding to b=40mm and h=17.5mm). Four cases have been considered with n= 1,

5, 10, 20. For each case the percentage reduction 4 of the lateral failure load obtained

with the non coplanar joint model with respect to the one obtained with the planar joint

model is provided in Table 7-4.

n. of blocks
% reduction of
failure load C

Al 1 0.91

BI 5 3.09

C1 10 10.31

20 39.62

Table 7-4. Percentage reduction Q (due to joint irregularity) of out-of-plane failure
load in walls with blocks with constant height and increasing number of
joints (from 1 to 20).

5 Such parameters have been assigned to the calibrated values obtained in the previous section.
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is defined as:
A = ' C

/1P1
(7-16)

where Xi is the failure load obtained with the planar DE model,

and X., is the failure load obtained with the new non coplanar model.

It can be observed that for this value of slenderness ratio (r=0.44) the effect of

joint imperfections is negligible for 1 to 5 blocks ( <5%), noticeable for about 10 blocks

(4 =10%) and significant for n=20 (4=39%).

In the previous series of tests, it is noted that 4 is a function of both n and H (the

total height of the column). Since such quantities were increasing simultaneously, their

effects could not be separated. In order to distinguish them a second series of tests with

walls with constant height H=20h, and base b=40mm (as in the previous series) was

performed. Three new cases with n=1, 5, and 10 were studied. The results in terms of

percentage reduction of failure load are shown in Table 7-5.

B2 C2 D2

CASE n. of blocks
% reduction of
failure load C

A2 1 6.37

B2 5 13.37

C2 10 22.12

D2=D1 20 39.62
____________________________________________ I _______________ I ____________________

Percentage reduction ( (due to joint irregularity) of out-of-plane failure
load in walls with constant height and increasing number n of joints (n
varies from 1 to 20).
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In Figure 7-41, showing ( as a function of the number of blocks n for both series

of tests, it can be observed that ( has a linear dependency with n for the case of constant

column height (H=const), while in the case of constant block height (h=const), the

simultaneous increase of number of blocks and column height determines, as expected, a

higher order dependency of 4 with n.

Figure 7-41. Percentage reduction (due to joint irregularity) of out-of-plane failure
load as a function of the number of joints n. Case of blocks with constant
height (h=const), and case of walls with constant height (H=const).
Curves are obtained by interpolation of DE results.
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7.4.2.1 Instability of a block column due to contact non coplanarity

In the previous series of tests we observed a remarkable reduction of the lateral

failure load, due to imperfections, as the number of blocks increased up to n = 20. It is of

interest to investigate what happens when the number of layers increases further. For

such problem we can attempt to obtain an explicit expression of C as a function of n and

of the geometry of the wall.

If we make the simplifying assumption that the irregular contact can be modeled

with a polygon with only 2 sides, as illustrated in Figure 7-42 when L tends to zero, it

appears that a slight lateral force will cause the closure of all joints, and this configuration

will remain unchanged until collapse.

L=0 d

b

Figure 7-42. Joint profile assumed for the explicit expression of the failure load
reduction C.

Knowing the configuration of the system at collapse we can compute the

corresponding horizontal displacement of the wall centroid g., and then with Eq. 7-4 the

lateral failure load X.,:

nc -2 (7-17)
b b 1

Substituting the previous expression in the definition of C (Eq. 7-16) we obtain:

259 (7-18)
b
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The horizontal displacement of the wall centroid 8g can be computed from the

horizontal displacements 8i of the centroid of each block i according to:

Cg= " n (7-19)

with i=1 for the lower block and i=n for the top one.

Assuming small rotations, the displacement 8i is given by the sum of the

displacements 8i, of the centroid of block i due to the rotations <pj of each joint j located

below block i:

i=(= S,, (7-20)

If h ij is the distance between joint j and the centroid of block i, we have:

3,' =hgpj (7-21)
where

h,= i -+ h (7-22)

h being the height of a block.

Substituting back from 7-22 to 7-18 we obtain the expression of the reduction of

failure load C due to the non coplanarity of the joints:

= 2i- +- 1 (7-23)
4=1 _ '=i

which, assuming equal rotations pj = p, and introducing the block aspect ratio r = h / b,
yields the following expression:

,r p -+-+- (7-24)
(3 2 6)

237



We can also obtain as a function of the wall aspect ratio R = H/b, where H is

the height of the wall, by substituting r = R/n in 7-24:

4, = R(P -+-+
(3 2 6n)

(7-25)

The previous expressions have been obtained for the case of a joint profile as in

Figure 7-42, however for the case of L = 0.2 b , which corresponds to the shape adopted

for the DE analyses previously described in this section, they constitute a good

approximation. In fact, by replacing in 7-24 and 7-25 the values of r, R, and (P used in

the DE analyses we obtain values of 4 very close to those obtained with the DEM, as

shown in Figure 7-43, where triangles and circles represent DE results for the two series

of tests, and the curves represent the previous expressions.

1

0,9

0,8

0,7

0,6

( 0,5

0,4

0,3

0,2

0,1

0

0 10 20 30 40 50 60

n

Figure 7-43. Plots of approximate expressions of failure load reduction as a function of
number of joints n: 4r for the case of constant block aspect ratio r, and 4R

for the case of constant wall aspect ratio R. Markers indicate results of DE
analyses illustrated in the previous section for n=1, 5, 10, 20 blocks.

238

nmaxTr /* nmaxR

- r9 (n2/3+n/2+1I6)

R= Rp (n/3+1/2+1/6n)

Data:

p = 0.00625 rad
r = 0.4375 for Cr
R = 8.75 for CR



From the previous expressions we can observe that the failure load reduction 4

increases with the number of blocks n, and for a given value of n = nma, assumes a unit

value: C( nma) = 1, and the corresponding failure load is reduced to zero 6. This means

that given a specific type of blocks characterized by a certain aspect ratio r and joint

imperfection p, there is a limit to the height of a column which can be built using such

blocks. We can say that when this limit is reached the column becomes unstable even in

absence of lateral force since any slight vibration or construction imperfection causes the

column to collapse.

Assigning C r (n) = 1, in Eq. 7-24, and solving for n we obtain:

1 1 3
nmax,r + - (7-26)3 16 r p

analogously, Eq. 7-25 yields:

3 3 13
nmax,R 6 - + -+ J (I - R p) (7-27)2R p 4 16 2R(p2

The maximum number of blocks nm. for which the column is stable in absence of

lateral load, as obtained from the previous expressions, is plotted (in logarithmic scale) as

a function of (r-c) in Figure 7-44, and as a function of (R-9) in Figure 7-45. Note that in

such functions n. decreases very rapidly with increasing joint rotation c. As an

example the values of nm. for the two series of DE tests have been indicated on the plots.

Note that, as shown in Figure 7-44, for the case of the blocks used in the experiments,

(h=17.5 mm; b=40mm; p=6.25 10 3rad), despite an apparently insignificant joint

imperfection (joint aperture d = 0.1 mm), it appears to be impossible to build a stable

column with more than just 32 blocks.

This is an additional confirmation that microrotations at the joints due to non

coplanarity of the contacts play an important role in the stability of block structures and

cannot be neglected.

6 This is the case when point C tends to B in Figure 7-2.
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Case h =const (Tab.7-4)
h =17.5 mm
b =40 mm
p =0. 1/16=6.25 10-3rad

0,0001 0,001 0.002734 0,01 0,1

Figure 7-44.

1000 -

100

53.3

10

1

re)

Maximum number, nm., of blocks for a stable column with non coplanar
contacts and in absence of lateral forces. nm2 is given as a function of the
product of the block aspect ratio r4h/b, and the joint rotation p.

Case H =const (Tab.7-5)
H = 350mm
b =40mm

__- - -__ --- - - -+- -.-- -- - =0.1/16=6.25 lO3rad

---- I----

0,001 0,01 Ry 0.05469 0,1

Figure 7-45. Maximum number, nam, of blocks for a stable column with non coplanar
contacts and in absence of lateral forces. nm. is given as a function of the
product of the column aspect ratio R=H/b, and the joint rotation p.
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7.5 APPLICATIONS

At the beginning of this chapter, based on the work previously presented, it was

recognized that the Discrete Element Method is an innovative and promising approach to

the study of the seismic response of structures constituted by assemblages of blocks

interacting only through frictional contacts. It was noted however that certain

discrepancies existed between the experimental findings and the DE results (obtained

with the existing joint model) relating to the behavior of walls subjected to in-plane

quasistatic loading (see section 7.1). In the attempt to improve such predictions a new

joint model, accounting for the non coplanarity of the contact surfaces, has been

proposed, as illustrated in the previous sections (7.2, 7.3 and 7.4). It is now important to

evaluate the performances of such model in those cases in which the mentioned

discrepancies had been observed. This is the purpose of the DE analyses of the 3 opus

quadratum walls (with respectively 21, 110, and 231 blocks) which will be presented in

sections 7.5.2, 7.5.3, and 7.5.4.

Another objective of this section is that of using the 14-block case, briefly

presented in a previous section devoted to the model calibration, as an example to

illustrate the details of the DE response of a block structure, and in particular to compare

and contrast the differences in the system behavior obtained with and without the

adoption of the non coplanar joint model.

It is recalled that in all these applications, due to the relatively low stress level and

high material stiffness, the deformations are negligible. This allowed to model the

interior of the blocks as rigid bodies, and the deformability of the joints with arbitrarily

high values of the contact elastic stiffnesses Kne and Kte. Their values have been

assigned by satisfying the need to obtain negligible elastic joint deformations, and, at the

same time, to avoid computational inefficiencies.
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In Table 7-6 the calibrated parameters for the new joint model, as obtained from

the sensitivity study on the 14-block case, and the block data used in the applications

presented in the following of this chapter are summarized.

Block data:

Base:
Height:
Mass density:
Contact elastic interaction stiffness:
Friction coefficient:

b = 40 mm,
h= 17.5 mm,
M = 1 kg / mm 2

Kne = Ke 106 108 N/m
f = 0.6

Calibrated reference Dolvgon Darameters:

Number of sides:
Lengths of each side:
Maximum joint aperture:
Angle between 2 adjacent sides:

n =3
11= 16 mm; 12 = 8 mm; 13 = 16 mm
d =0.1 mm
pi = d/li = 0.00625 rad

Table 7-6. Summary of data used for the modeling of the blocks with the calibrated
non coplanar joint model in the 14 block-case, and in the 3 opus
quadratum walls.
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7.5.1 14-block case

In section 7.4.1 the results of a sensitivity study with respect to the geometrical

parameters of the joint model were presented. The study consisted in the evaluation of

the influence of such parameters on the response of a column of 14 blocks subjected to

gravity and slowly increasing lateral loads. For the purpose of the sensitivity study, and

model calibration, only the failure load X and the top lateral displacement at failure 5,p,

had been reported for each of the 20 cases which were considered (see Table 7-2). We

will present here, also as an example for all other analyses, the details of the DE response

with the help of the following 16 figures (form 7-46 to 7-61).

7.5.1.1 14-block case with planar joint model

To better appreciate the features of the system response which have been

introduced by the new joint model, it is first presented the behavior obtained without

accounting for the joint imperfections, that is by employing the existing planar joint

model. The details of the analysis for this case are illustrated in the following figures

showing: (a) the system configuration before and after failure (Figure 7-46 and 7-48); (b)

the time history of the top lateral displacement 8t0p(t) for various time intervals (from

Figure 7-49 to 7-5 1); and (c) the force-displacement relationship X-5op (Figure 7-47).

Note that each figure reports also the values of the lateral force Fx acting on each block,

the simulation time, and the cycle number, corresponding to the time in which the figure

was generated during the solution process .

1 More specifically, the lateral force F. (which is provided in the title of each figure) is related to X by the
relation: F, =IOX. The simulation time, and the cycle number are given in the top of the left panel of the
figure. In addition, if the figure represents an x-y plot, the left panel contains also the maximum and
minimum values of the quantities represented on each Cartesian axis.
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We can summarize the essential results obtained with such model in:

1. Absence of any appreciable top lateral displacement 6 top before failure as opposed

to the experimental response (8top=0.0l73mm vs. 6 top.exp=l 1.5mm)

2. Correct prediction of the failure mode (rigid body overturning)

3. Overestimation of the failure load (X = 0.163 vs. kex,= 0.132)

Such results can be illustrated with the help of the figures in the following.

Regarding the first point, observing the system configuration just before failure

(Figure 7-46), corresponding to an applied lateral load k= 0.162, we can observe that the

column appears undeformed. The maximum value of the time history of the top lateral

displacement 8top (Figure 7-50), confirms that only a negligible top lateral displacement,

8top = 0.0173 mm, takes place before failure due to the elastic deformations of the joints2.

The linearity of the response is clearly illustrated in the force-displacement, k-Stp,

relationship shown in Figure 7-47.

2 The predicted maximum top lateral displacement is less than 10- H, H being the height of the column.
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Job Title Global view of Susteoo - Fx= 1.629e+W4
Fr~om File loaa.dat

x199+2

UDEC 3.00

Cgoie 46878
TIe 2.634E+91 see

block plot

.259

-. 258

1.758 [MIn-. 588 .258 1.8a"
x18+2

Figure 7-46. 14-block case, no imperfections: system
lateral load (Q =0.162; t=26 sec).

configuration with maximum

Figure 7-47. 14-block case, no imperfections: top horizontal displacement 5top vs.
horizontal lateral load X up to maximum force before failure (from X=O, to
X=O. 162).
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With respect to the second point (failure mode) we can observe in Figure 7-48 that

the system fails by rotation of the entire column around its base corner without any

rotation or sliding occurring at the intermediate joints. This is in agreement with the

experimental response.

UDEC 3.00

C 6. 11301
Tin .465E+01 see

bloek plot

Ja, Titl: Clobal view of Susten - Fx= 1.6400e+00
From. 711 loaddat

x10e+2

2.250

1.750

1.250

.750

.250

-. 250

1.750 IM]-. 500 .250 1.00

Figure 7-48. 14-block case, no imperfections: initiation of
(X=0.164; t=65 sec).

Concerning the third point (failure load), we illustrate here in detail (as an

example for all other analyses), how the failure load is recognized by monitoring the time

history of 8 top for each new increment of lateral load.

First, in Figure 7-49 the time history of the top lateral displacements for the initial

loadsteps (up to 3.1sec of simulation) is presented. Note that after each load step

AX=0.004, which is applied instantaneously, it takes a certain amount of time for the

system to reach a new stable configuration, corresponding to a constant value of 5top.

Subsequently, the failure load is clearly detected by comparing Figure 7-50 and 7-51.

The first one shows that the system has reached a stable configuration for a lateral load

X=0.162, and a simulation time t=2.63 sec, while Figure 7-51 shows that, with a lateral
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load X=O.164, and after more than 3.8 sec of additional simulation time, the top lateral

displacement has increased of 3 orders of magnitude and is clearly diverging. Therefore,

having used a final increment of lateral load AX=0.02, we can conclude that the analysis

with the planar joint model has predicted a failure load 0.162 < kp <0.164.

As already mentioned, such value is higher (+20%) than the experimental one,

Xexp = 0.132, however it is interesting to observe that the DE prediction is correct if no

microrotations at the joints are assumed. In fact in this case, if b and H are respectively

the base and the height of the column, the exact failure load, assuming a failure mode of

rigid rotation of the entire column, is simply Xrig = b/H = 40/245 = 0.163.

UDEC 3.86

C~ole 53160..
Ti.e3.100E*S0 see
)iist ra plot
*.6E.66<hist 2> 1.45E-03

6 6E+0U<tie> 3.99E06

JoU Title zX Dispiceement C~loak n.14) - 7x- 1.2360e-SI
]p.m. File :loaddat

1.68

1.46

1.26

1.66

.66

.66

.40

.29

.66
.6N 1.e 2.M6 3.0

Figure 7-49. 14-block case, no imperfections: time history of top horizontal
displacement 8top during initial loadsteps (from X =0, to X =0.012).
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Job Title X Displacement (Block n.14) - Fx= 1.6299+9
Facom File lcaA.,dat

UDEC 3. 99

Cud.e 46879
Time 2.6343*9 sec

histoog plot
G.9E*99(bist 2> 1.73E-92
U E.
9.G9E*99(tim.)> 2.63EG

xd9-02

1.8T

±

±

OtopLMMJ
.60

.49
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.6-
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.99 1.99 2.00 3. 9
X19..91

Figure 7-50. 14-block case, no imperfections: time history of top horizontal
displacement 8top during incremental application of lateral load (from X=0
to X=O. 162). Final constant value of 8top indicates that the system has
reached a stable configuration for ) = 0.162.
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Figure 7-51. 14-block case, no imperfections: time history of top horizontal
displacement Stop during incremental application of lateral load (from )=O
to X=0.164). Diverging response indicates initiation of failure mechanism
for X =0.164.
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7.5.1.2 14-block case with non coplanar joint model

In this section the details of the response obtained in the modeling of the 14-block

column subjected to gravity and quasistatic lateral load with the new non coplanar joint

model are presented. It is recalled that for the purpose of a sensitivity study several

analyses had been performed with different values of the joint parameters. The results of

those analyses were summarized in Table 7-2, where the failure load X, and the top lateral

displacement before failure 5top were reported for each of the 20 cases3 . Since the

essential features of the response were the same for all cases, only one will be presented

here. In particular we will refer to the case corresponding to the Shape E (see Figure 7-

38) with a reference polygon with 5 sides, a central base measuring 0.2b, (where b is the

joint length), and a maximum joint aperture d=0.l mm (or 0.57% of the block height).

Note that this is not the case which best approximates the experimental values of X and

8top, but it is suitable for the purpose of illustrating the features of the new joint model.

Similarly to the case of the planar joint model presented in the previous section,

the details of the analysis are illustrated by4: (a) the system configuration at various levels

of lateral load (Figure 7-52 and 7-55); (b) the time history of the top lateral displacement

8twp(t) for various time intervals (from Figure 7-56 to 7-58); and (c) the force-

displacement relationship X-8tp also reported for various time intervals (Figure 7-59 to

7-61).

3 Note that the failure load X reported in Table 7-2 is normalized with respect to the failure load Xp = 0.163
obtained with the planar joint model.
4 Note that each figure reports also the values of the lateral load X, the simulation time, and the cycle
number, corresponding to the time in which the figure was generated during the solution process. More
specifically, X can be obtained from the value of Fx=IOX (the lateral force acting on a single block) which
is provided in the title of each figure. The simulation time, and the cycle number are given in the top of the
left panel of the figure. If the figure represents an x-y plot, the left panel contains also the maximum and
minimum values of the quantities represented on each Cartesian axis.
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The main features in the system response due to the new joint model are:

1. The progressive formation of microrotations at the joints associated to the

increase of lateral load, which cause an apparent bending of the column before

failure (6 top=1 4 .6 mm as opposed to a negligible displacement with the planar

model)

2. A substantially reduced failure load knc with respect to the one obtained with

the planar joint model (Xnc=0.117 as opposed to k =0.163).

Such characteristics of the system response are in agreement with the

experimental behavior and were, in fact, the intended objectives in the development of

the new joint model. It is noted that the failure mode - consisting in a rotation around the

base corner with no sliding or joint opening - is also correctly predicted.

More in detail with the help of the figures, we can observe that up to a lateral load

X=0.032 (27% of failure load) the column is practically undeformed (Figure 7-52) with a

negligible top lateral displacement 8top= 0.113mm (see 8top(t) in Figure 7-56 up to

t=25sec), but when X=0.040 (34% of failure load), and t=99sec, a noticeable apparent

deformation can be seen in Figure 7-53 due to the formation of microrotations at the

joints which yield a 8tp = 8.2 mm (see 8tp(t) in Figure 7-57 for t =99sec ). Subsequently,

when the lateral load assumes its maximum value X=0. 116, for t=270sec, (Figure 7-54),

the top lateral displacement reaches the value of 6top = 14.6 mm (see 8tp(t) in Figure 7-57

for t=270sec).
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Job Title Global view of SUstesm - Fx= 3.2900e-91
l-oom File load.dat
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Figure 7-52.

Figure 7-53.

14-block case, with imperfections: system configuration with low level of

lateral load (X=0.032; 27% of failure load; t=25 sec). No microrotations.
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14-block case, with imperfections: system configuration corresponding to
intermediate lateral loading (X =0.040; 34% of failure load; t=99 sec).
Apparent bending due to microrotations.
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Figure 7-54. 14-block case, with imperfections: system
maximum lateral load before failure (X
bending due to microrotations.

configuration corresponding to
=0.116; t=270 sec). Apparent
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Figure 7-55. 14-block case, with
0.118; t = 316 sec).

imperfections: initiation of failure mechanism (X =
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From the time history of the top lateral displacement 8t0p(t) we can observe an

initial linear elastic phase up to 27% of the maximum lateral load (Figure 7-56),

characterized by negligible displacements due to the elasticity of the joints, followed by a

nonlinear phase due to the microrotations showed in Figure 7-57, where horizontal

segments indicate stable configurations. The value of the failure load (0.11 6<k< 0.118)

is obtained by comparing the stable configuration at X = 0.116 corresponding to a

constant value of 8 top showed in Figure 7-57, and the unstable configuration at X = 0.118

corresponding to a diverging value of 8top as showed in Figure 7-58.
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Figure 7-56. 14-block case, with imperfections: time history of top horizontal
displacement 8top during initial load steps (from X =0, to k =0.032). Linear
response, no microrotations.
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Figure 7-57. 14-block case, with imperfections: time history
displacement 8 tp up to maximum lateral load (from
Nonlinear response due to microrotations.

of top horizontal
, =0, to X =0.116).

UDZC 3.60

Ti* 3.1663+2 see

hiletoogY plot
E.wr,+Ie(hist 2> 3.99E+91

U .
G.60E.66(tlmw> 3.16Z+02

Job Title : Displacement C(look n.14) - Fx= 1.1680e066
F:am File loadda&t

xe+01

3.5:

.so-

3.66.66 1.66 2.66
x6e*+62

Figure 7-58. 14-block case, with imperfections: time history of top horizontal
displacement 8top up to failure load with initiation of failure mechanism
(from X =0, to X =0.118).
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The highly nonlinear response of the system due to the accumulation of

microrotations at the joints is even more evident in the force-displacement (X-5top)

relationship, where stable configurations are associated to vertical segments. The initial

linear elastic phase is showed in Figure 7-59 (up to X=0.032 or 27% of maximum lateral

load). Subsequently, in Figure 7-60 the horizontal segments indicate increasing

displacements associated to constant lateral loads. Clearly such levels of lateral loads are

those which caused the formation of one or more microrotations. Finally the failure load

is recognized in the increasing displacement occurring for a constant lateral load X=0. 118

shown in Figure 7-61.

Figure 7-59. 14-block case, with imperfections: top displacement vs. lateral load in the
initial loading phase (from X =0, to X =0.032). No microrotations take
place, the system behaves linearly.
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Figure 7-60. 14-block case, with imperfections: top displacement
maximum lateral load (from X =0, to k =0.116).
nonlinearly due to accumulation of microrotations.

vs. lateral load up to
The system behaves

Figure 7-61. 14-block case, with imperfections: top displacement vs. lateral load up to
failure load with initiation of failure mechanism (from k =0, to k =0.118).
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7.5.2 21-block case

In this section we will illustrate the results obtained from the DE modeling of the

in-plane loading test of a 21-block wall adopting the new non coplanar joint model. The

joint parameters calibrated on the 14-block case (as described in the section 7.4) will be

used in the following analysis.

In Chapter 5 we described the experimental observations and the DE analyses

with the planar joint model related to the same 21-block wall. It is recalled that the

experimental tests yielded a failure load Xexp=0.5 and either a mixed sliding-rotating

failure mode or a partial rotating failure mode involving only the 2 top left blocks as

illustrated in Figure 7-62a, and 7-62b. This variability was explained by a high sensitivity

of the system behavior with respect to the geometric imperfections of the experimental

model, and the accuracy in repositioning the blocks5 .

The DE analysis with the planar joint model predicted, instead, a diffuse sliding

failure mode at a failure load X=0.6 (which was equal to the friction coefficient a=0.6) as

shown in Figure 7-63a. In addition no displacement was observed before failure as

opposed to the experimental case were some internal displacements were observed

starting from 80% of the ultimate lateral load. Rotating or mixed sliding-rotating failure

modes were obtained with the DE planar model by adopting higher values of the friction

coefficient: a=0.65, and a=0.75 (see Figure 7-63b and 7-63c). As shown in Chapter 5,

limit analysis confirmed that the results predicted by the DE planar model were exact

assuming that the system had no geometric imperfections.

5 In Figure 7-62a, it is reported a wall with 7 instead of 6 layers, however it should be noticed that the

bottom layer was fixed to the test plane (and therefore it behaved as a 6-layer wall). In addition it was

found experimentally that, in this case, the length of the base of the wall did not influence the failure

response of the system if it was longer or equal to the length of 3 blocks. Therefore the wall in Fig. 7-62a

had the same failure behavior of a 21-block wall.
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kXp=0.5
aex=0.6

partial rotating mode

(a) (b)

Figure 7-62. Experimental failure modes and failure loads Xex, for the 6-layer opus
quadratum wall: (a) mixed sliding-rotating mode; (b) partial rotating
mode. Experimental friction coefficient: aexp=0.6.

X=0.60
a=a.,=0.6
sliding mode

(a)

X=0.638
a=0.65
mixed mode

(b)

X=0.648
a=0.75
rotating mode

(c)

Figure 7-63. DE results with planar joint model: failure modes and failure loads X for
the 6-layer opus quadratum wall with various friction coefficients a.
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In summary the planar joint model, for the 21-block case, had shown the

following limitations:

- a 20% overestimation of the failure load,

- a misprediction of a diffuse sliding failure mode,

- a misprediction of a sudden collapse as opposed to a progressive failure.

The results obtained with the new joint model are illustrated in Figure 7-64 were a

sequence of system configurations at various levels-of lateral load X are presented.

X=0.41 X=0.42

I A |

X=0.47

X048 X=0.541 X=0.54

Figure 7-64. 21-block case with imperfections: progressive failure under increasing
lateral load. Initiation of microrotations for lateral load k=0.42,
development of fracture lines for )=0.48, and failure for k=0.54.

First it is noted that the process of development of microrotations at the joints

initiates for ) = 0.42. It initially interests the two top right blocks and progressively

extends to about half of the wall. When k is increased from 0.47 to 0.48 a pronounced

rotation of the 6 top right blocks is observed and a new fracture line along the diagonal of
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the wall is also noticed. The system eventually fails due to the sliding and rotation of the

2 top right blocks for X = 0.54.

Based on such results we can observe that with the new model:

- the overestimation of the failure load is reduced from 20% to less than 8%

- one of the two experimental failure modes (the one in Figure 7-62b) is

correctly predicted

- the process of progressive failure is also correctly predicted.

In addition we noticed that the pronounced rotation of the 6 top right blocks,

which was predicted for X = 0.48, appears to be the initiation of the experimental failure

mode shown in Figure 7-62a which involves the rotation of the same group of blocks, and

is obtained for a similar value of lateral load X = 0.50. The reason why in the

experimental modeling the system does not find a configuration of equilibrium after such

rotation may be related to the dynamic effects of the impact which are not addressed in

the quasistatic simulation.

Finally it is reported that by increasing the size of the joint irregularity, by

assigning the maximum joint aperture d=0.2mm (instead of the calibrated value of

d=0.mm used in the previous analysis), we obtain a failure load X = 0.50 which

coincides with the experimental one, while the rotation of the 6 blocks still occur at k =

0.48. Therefore the residual difference between predicted and experimental failure load

may be associated to a high sensitivity of the failure load with respect to the joint

irregularity due to the small number of block involved in the failure mechanism.
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7.5.3 110-block case

This case refers to a wall constituted by the same peperino blocks, with

dimensions of 17.5 x 40 x 80 mm, used in the previous cases, with the difference that the

longer side of the block is now parallel (instead of perpendicular) to the plane of the wall.

In the 2D representation the base of the block is now 80 mm instead of 40 mm long (as in

the other cases) while the height is the same (17.5mm). The dimensions of the wall are:

B = 400 mm, and H = 350 mm, and it is constituted by 20 layers of 5 full blocks each, for

a total of 110 blocks including the half blocks at the edges.

Figure 7-65. Experimental failure mode of a 110-block wall subjected to in plane
loading. Failure occurs for a lateral load X=0.55.
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The wall was tested on an inclined table to simulate an increasing lateral load

(Ceradini, V. 1992). The failure occurred for a lateral load X = 0.55, after that some

small internal displacements had occurred at lower values of lateral load. Failure

initiated by sliding of the top right blocks (see Figure 7-65) and gradually extended to the

rest of the wall without increase of lateral load.

More precisely, after 10 repetitions of the same test, the average failure load was

X = 0.555, and the standard deviation a = 0.0137 (or 2.5%). Apparently, this result is in

contrast with the value of the friction coefficient which, as already reported, has an

average value f=0.6, and a standard deviation of 0.0069 (or 1.2%). In fact, a failure

mechanism of pure sliding should take place when X = f.

The DE analysis, with the planar joint model, confirmed this expectation, and

predicted a failure load k = 0.6 with a diffuse sliding mechanism occurring

simultaneously between all layers, and with no displacements before failure. Therefore

the differences between the DE predictions with the planar joint model, and the

experimental results were:

- a failure to predict internal displacements before collapse,

- a failure to predict the initiation of the sliding in the top layer, and

- an overestimation of the failure load.

The results obtained with the new joint model are illustrated in Figure 7-66, where

a series of system configurations for various levels of lateral load ? are presented.
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It is observed that failure occurs for a lateral load X = 0.55, due to the sliding of

the top right block which involves also the rotation of the half block of the second layer.

Internal displacements due to the formation of microrotations are visible also at lower

values of lateral load as shown in Figure 7-66 in the configuration corresponding to X =

0.52.

X-0.52

X-0.55

X-0.55

I I Izzr
I I I I
I I I I

Figure 7-66. 110-block case with imperfections: at lateral load X=0.52 initiation of
internal displacements due to microrotations; at lateral load X=0.55 failure
mechanism takes place due to accumulation of microrotations.
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This result can be explained with the formation and accumulation of

microrotations (in particular in the blocks along the free edge on the right side) which

cause the top right block to rotate slightly. Such inclined configuration allowed the

initiation of sliding for a lateral load A = 0.55 which is lower than the friction coefficient

f=0.6.

An hypothesis to explain the fact that in the numerical prediction only the 2 top

right blocks slide (at the correct value of lateral load X = 0.55), may be that in reality

such motion causes vibrations (not captured by the DE model) which could induce sliding

in the adjacent blocks which are very close to the sliding condition.

In conclusion it appears quite clearly that also for the 110-block wall the new joint

model has improved the DE predictions. In fact we can observe that:

- as opposed to the planar model prediction, a process of increasing internal

displacements before failure is predicted,

- the new model predicts a sliding process initiating from the top layer, and

- the failure load X, which was previously overestimated (Xpi = 0.60), is now in

agreement with the experimental results: X= Xexp = 0.55.
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7.5.4 231-block case

In this section the results obtained from the DE modeling of the in-plane loading

test of a 231-block wall adopting the new non coplanar joint model will be illustrated. In

Chapter 5 we described the experimental observations and the DE analyses with the

planar joint model related to the same case, which was indicated as WALL3. It is recalled

that the experimental model of the wall was built with the same peperino blocks used in

the previous cases, therefore, also the values of the joint parameters adopted for the DE

analysis were the same used in the previous cases, which were obtained from the

calibration on the 14-block case (see section 7.4). The blocks, in the plane of the wall,

measured 40 x 17.5 mm, and the dimensions of the wall were: base B = 400 mm, and

height H = 385 mm. The wall was constituted by 22 layers of 10 full blocks each, for a

total of 231 blocks including the half blocks at the edges6 . The experimental failure

mode obtained with the tilting table is shown in Figure 7-67.

X=0.35

Figure 7-67. 231-block case: experimental failure mode and failure load X.

6 Note that in Chapter 5 WALL3 was modeled with 21 instead of 22 brick layers. However, in this section
all analyses, with and without contact imperfections, refer to a wall with 22 layers. Note, also, that in the
experimental model the first of the 23 layers is fixed to the testing table, and therefore it behaves as a 22

layer wall.
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The wall failed at X = 0.35 after small internal displacements had taken place at

lower levels of lateral loads. It appears as if the right portion of the wall, for a width of

approximately 2 or 3 full blocks along the free edge, behaved as a column which tends to

separate itself from the rest of the wall through a complex mechanism involving sliding

and rotation of many blocks.

The failure load obtained with the DE analysis using the planar joint model was X

= 0.46. The corresponding failure mode is represented in Figure 7-68 and it appears to be

in reasonable agreement with the experimental one. Such failure occurred without prior

displacements of the blocks at lower levels of lateral loads.

In comparing these results with the experimental response we can observed that:

- the DE failure load is substantially higher than the experimental one (23%),

- the DE response does not predict internal displacements before failure, and

- the area where sliding take place at failure is wider in the numerical

prediction.

X=0.46

Figure 7-68. 231-block case, DE prediction with no imperfections: failure mode and
failure load X.
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The results obtained with the new non coplanar joint model are reported in Figure

7-69 where the system configuration at various levels of lateral load are presented. The

failure load is obtained for 0.37 < X < 0.38, while some internal displacements are

observed for lower values of lateral load.

It appears that the new model allowed:

- a better estimation of the failure load with a residual difference of 7% with

respect to the 23% overestimation of theplanar model ,

- the prediction of a process of progressive internal displacements as opposed to

a sudden failure, and

- a narrower area of internal sliding at failure.

It is noted however that experimental failure mode exhibits an even narrower

failure band. As already mentioned this phenomenon of localization of the sliding band

may be related to the friction softening behavior of the joint, which was not accounted for

in the previous analyses, but will be addressed in the next section.

X=0.34 X=0.38

I I I I I L
I ~ ~ _ I "f- I t-I r r

I I I I I I I I I

I I I I [ I I I
I I I I It I I I I I

I V~i ~U
T~ I FTT I II TJ

I I I I fli liIil~
I 1 1 11 T T1 L 1

I I I I I L I

Figure 7-69. 231-block case, DE prediction with imperfections: system configurations
at various levels of lateral load X.
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7.5.5. Assessment of friction softening

In the formulation of the new joint model, as illustrated in section 7.2.3 (see

equations 7-13, 7-14, and Figure 7-10), a modification of the behavior in the tangential

direction was introduced in order to allow for the reduction of the friction force after

some sliding distance had taken place. In the 231-block case, where a localization of the

sliding band is observed in the experimental response, it may be interesting to observe the

effect of friction softening on the width of such sliding area.

First a simple sliding test of a single block on a fixed base is performed in order to

verify that the expected softening behavior is obtained (see Figure 7-70). The friction

softening parameters for such test are the following:

S= 0.6 (friction coefficient)

AU, = 0.0225 b = 0.9 mm

AU 1 + AU 2 = 0.025 b= 1.0 mm

P = 0.8

where b = 40 mm is the block base.

The tests consists in the application of the gravity force followed by an increasing

lateral load up to the initiation of sliding. In Figure 7-71 the plot of the friction force vs.

sliding distance, shows that the expected reduction of the friction force is obtained after a

sliding distance Us = AU, + AU 2 had occurred.
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Figure 7-70. Sliding test of a single block on a fixed base
system configuration.

with friction softening:

Figure 7-71. Sliding test of a single block on a fixed base with friction softening:
friction force versus sliding distance.
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In order to assess the effect of friction softening on the localization of the sliding

band on the in-plane failure response of opus quadratum walls, the analysis of the 231-

block wall has been repeated, accounting for both geometric imperfections, as in section

7.5.4, and friction softening. Two values of the friction reduction parameter P have been

considered: P = 0.9 and P = 0.8. As expected no variation of the failure load was

observed, but an increasingly narrower sliding band was obtained as the friction softening

effect became more pronounced.

A comparison of the failure modes obtained with and without friction softening

and with and without geometric imperfections is presented in Figure 7-72. Case (a) is

obtained with the planar joint model and no friction softening; case (b) with the non

coplanar model and no friction softening; while case (c) and (d) are obtained with the

non coplanar model and friction reduction parameter P = 0.9 and P = 0.8 respectively.

For the purpose of comparison, the horizontal displacement of the top right corner of the

wall is the same (40 mm) for each configuration shown in figure. For qualitatively

compare the extent of the sliding areas for the various cases a count of the vertical joints

which appeared opened in the top 5 layers was performed as reported in Table 7.7. Based

on these results it can be concluded that the width of the sliding band decreases with the

accounting of the joint imperfections, but, as expected, is particularly sensitive to the

introduction of the friction softening behavior. In particular for P = 0.8 (Figure 7-72d)

we observe a failure mode which is in very good agreement with the experimental one

shown in Figure 7-67.

CASE a b c d
Imperfections NO YES YES YES

Frict. softening NO NO YES (p = 0.9) YES (p 0.8)
layer 1 6 5 3 3
layer 2 5 5 5 2
layer 3 5 4 4 2
layer 4 5 4 3 2
layer 5 4 3 4 3

Top 5 layers 25 21 19 12

Table 7-7. 231-block case: number of opened vertical joints at failure for a top right
block displacement of 40mm. Cases a, b, c, d refer to Figure 7-72.
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Figure 7-72. 231-block case: comparison of 4 failure modes for evaluating the effects of
joint imperfections and friction softening. The horizontal displacement of
the top right corner of the wall is the same (40 mm) for each configuration.
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7.6 CONCLUSION

In the previous chapters the application of the Discrete Element Method to the

study of the seismic vulnerability of historical structures has been proposed and verified.

It was observed that for masonry structures without mortar, such as opus quadratum

constructions, or structures made by few large blocks such as the megalithic

constructions, the DEM allows a more realistic modeling than competing methods based

on equivalent continuum models. However, certain discrepancies were observed when

comparing the DE predictions with experimental results, as summarized in section 7.1.

Referring to the study of walls subjected to quasistatic in-plane loading the main

observed limitations of the DEM were: (a) a systematic overestimation of the maximum

lateral load; (b) the failure to predict progressive internal displacements before collapse;

(c) the failure to predict a localization of sliding in narrow diagonal bands.

Based on the observation of the experimental response of walls subjected to out-

of-plane loading (as described in sections 7.2.1 and 7.2.2) it appeared that, as the lateral

load increased, small relative rotations between blocks were occurring at the joints due to

geometric irregularities of the contact surfaces. An hypothesis was made that such

behavior, not accounted for in existing DE formulations, would play an important role in

overcoming the observed discrepancies.

Consequently, a new joint model was developed for including the possibility of

relative microrotations between blocks due to contact non coplanarity. It is reminded

that in the DEM a linear joint is represented by two contact points placed at its ends, and

that at each contact point there are two interaction stiffness elements K, and Kt, in the

normal and tangential direction respectively, which represent in a lumped form the

material behavior of the joint. The essential concept of the new joint formulation

(described in detail in sections 7.2 and 7.3) consists in allowing microrotations to take

place by assigning a plastic behavior to one of the two normal stiffness K when the

conditions for rotation are met. This formulation is similar, in a sense, to the standard DE

modeling of Coulomb friction, where relative tangential displacements are obtained by
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assigning a plastic behavior to the tangential stiffness Kt when the conditions for sliding

are met.

For calibrating the parameters of the non coplanar joint model for a given type of

blocks, a simple procedure was proposed. It requires the availability of the experimental

failure load X and the maximum top displacement Stop of a column constituted by such

blocks when subjected to gravity and slowly increasing lateral load. After performing a

series of DE simulations with various values of joint parameters, such parameters are

selected by minimizing the distance between numerical and experimental results in the

X - 6 tOp plane. For calibrating the new joint model for the applications considered in this

study, the experimental results related to a 14-block column have been used as described

in section 7.4.1 and illustrated in Figure 7-40.

In order to evaluate the effectiveness of the proposed non coplanar joint model,

three opus quadratum walls, for which experimental results were available, have been

studied with the new model. The results obtained with both the planar and non coplanar

joint model, as well as the experimental data, are summarized in Table 7-8.

21-block case 110-block case 231-block case

XeXP 0.50 0.55 0.35

0.54 0.55 0.38

0.60 0.60 0.46

knc~isp0.78knc 0.95?,n 0.89 kne

Experimental partial mode or sliding from top layer mixed (Fig.7-67)

failure mode mixed mode (Fig.7-62) down (Fig.7-65) localized sliding band

Failure mode with partial mode (Fig.7-64) sliding top layer mixed (Fig.7-72d)
non coplanar joint (initial mixed at X=0.48) followed by localized sliding bandnon diffuse sliding (Fig.7-66)

Failure mode with diffuse sliding (Fig.7-63a) diffuse sliding mixed (Fig.7-68)
planar joint ______________________ broad sliding band

Table 7-8. Summary of experimental and numerical results for 3 opus quadratum

walls subjected to in-plane loading. Xexp is the experimental failure load,

Xn, kp, are the failure loads obtained with the new non coplanar and the
planar joint models respectively. knc,disp is the load level corresponding to

the initiation of internal displacements due to microrotations.
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Such results confirns that the non coplanar joint model effectively contributes to

overcome the observed limitations of the planar joint model. In fact the following

comments can be made:

1. The failure load X,, obtained with the new model is more accurate than the

one obtained with the planar joint model in all three cases, with a failure load

reduction of 10% in the 21-block case, 8% in the 110-block case and 17% in

the 231-block case;

2. The new joint model correctly predicts a process of progressive internal

displacements before failure (initiating at load levels Xnc,disp given in Table 7-

8) which was observed experimentally and was not described by the planar

joint model;

3. The failure modes obtained with the new model for the 21-block case and the

110-block case are in better agreement with the experimental results than

those obtained with the planar joint model;

4. The new joint model, due to microrotations and friction softening, correctly

predicts, in the 231-block case, the formation of a localized sliding band as

opposed to the broad sliding area obtained with the planar joint model.

In conclusion, it is important to underlie the remarkable sensitivity of the system

response with respect to the size of the joint imperfections. In fact, for the walls studied

in this chapter, the reduction of the failure load, due to a maximum joint aperture 7 of only

0.1 mm, was quite significant, ranging from 8% to 20%. But the effect of joint

imperfections became particularly substantial when we considered the case of a column

with many blocks (section 7.4.2.1). For such case, the closed form expression which was

derived for the failure load reduction (eq. 7-24), showed that, even with a relatively small

imperfection, the lateral failure load rapidly goes to zero as the number of blocks

increases. Such result further confirmed that even apparently negligible joint

7 For the definition of maximum joint aperture see section 7.3.1 and Figure 7-11.
8 As an example, for the type of blocks used in the experimental models studied in this chapter, (b=40mm;
h=17.5mm; maximum joint aperture d=0.mm) - according to eq. 7-24 - a column of only 33 (or more)
blocks is unstable even with a negligible lateral load (see section 7.4.2.1 for more details).
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imperfections should not be ignored since they may cause significant modifications in the

response of a block structure subjected to gravity and lateral loading.

Finally, among other aspects which require further work for improving the DE

analysis of block structures, we should remind: the definition of a procedure, based on

experimental tests, for the calibration of the friction softening parameters; and the

extension of the non coplanar joint model to the three-dimensional case.

275



276



8. CONCLUSION

A review of current analysis methods for both the static and dynamic analysis of

block structures has shown various limitations:

" Limit analysis [Baggio, C., 2000], in addition to being restricted to static

equilibrium problems, can predict only the initial motion of the system,

without being able to capture a subsequent stabilization of the structure and a

possible different global failure mechanism for higher loads.

* Deformable contact models, such as specialized finite elements ("gap

elements"), are not particularly suited for automatically detecting the

activation and deactivation of a large number of contact surfaces during the

evolution of the system response [Mamaghani,I.,1999].

" The method of finite elements with the smeared crack approach is limited by

the impossibility of considering the effects of the layout of the bricks and of

the presence of well defined lines of fracture within the structure.

" Specialized analytical formulations for predicting the dynamic behavior of

multi-block systems are mainly restricted to predefined structural typologies

such as the multi-block column or the trilite ([Manos, 1994], [Wilson, 1999]).

The Discrete Element Method, originally developed in the field of rock

mechanics, appeared as a good candidate for overcoming some of the limitations of

currently used methods, and its applicability to the seismic vulnerability assessment of

historical block structures was investigated by performing a series of experimental and

numerical tests both on the quasistatic and the dynamic response of block structures. For

the quasistatic case (illustrated in Chapter 5) the objective has been the determination of

the lateral failure loads and associated failure mechanisms of opus quadratum walls

subjected to gravity and slowly increasing lateral load. It was concluded that DEM

predictions are in good agreement with limit analysis results.
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Based on this results two pilot studies (presented in the Appendices) have been

performed with the quasistatic DE analysis, addressing, respectively, the out-of-plane and

the in-plane behavior of opus quadratum walls.

In Appendix A the DEM has been applied to the study of the seismic vulnerability

of a medieval church. Since such construction represents a class of numerous similar

historical buildings it is expected that the approach adopted in this study may be useful

for future similar investigations. With this application it has been demonstrated how the

DEM can effectively account for structural details (such as the type of connections

between a wooden beam and a masonry wall, or the out-of-plumb of a wall, or the exact

number and size of the elements of a column) which may significantly affect the failure

load of the system, and therefore how DEM may contribute to a more realistic modeling

of a specific historical structure.

In Appendix B, it was illustrated how the DEM may also be employed for

improving the understanding of the complex in-plane behavior of the opus quadratum

wall. We focused our attention on the causes which may determine an undesired failure

of the wall constituted by diffuse sliding and rotations of the blocks (as in Figure B-le) as

opposed to a collapse due to the monolithic rotation of a large portion of the wall (as in

Figure B-2c) which is associated to a higher value of the lateral strength of the wall.

Three aspects have been investigated: the aspect ratio (b/h) of the bricks, the loading

condition, and the presence of an horizontal connection along the top portion of the wall.

A parametric study which included 3 values of the aspect ratio (b/h=1.0; 2.3; 4.6), and 4

loading conditions, has been performed both numerically and experimentally. The

following qualitative conclusions have been drawn:

1. The wall subjected to self weight only, fails - under increasing lateral load - by

disgregation and cannot sustain the rigid body failure load unless it posses a

high value of the aspect ratio (e.g b/h = 4.6 which indicates a good

interlocking and therefore a good construction quality);
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2. The presence of additional vertical load (due to floors, other walls or roof)

tends to increase the wall capability of behaving as the rigid body model, and

only poor quality walls (characterized by brick aspect ratio b/h = 1) still fail

by disgregation;

3. The presence of an horizontal connection along the top portion of the wall (for

example a rod acting in the plane of the wall) facilitates the rigid body

response, which has been achieved even in the case of poor interlocking

among bricks (b/h=1).

The two above mentioned studies have demonstrated the potentials of the DEM

for both assessing the seismic vulnerability of specific historical building, and

investigating fundamental aspects of the behavior of historical block structures, which

cannot be addressed by other methods of analysis. In fact in comparing the numerical

and experimental results, a good capability of DEM in predicting complex failure modes

involving rotation and sliding of many blocks was observed. However, several

discrepancies between the DEM results and the experimental response were observed:

1. The numerical predictions systematically overestimated the actual

experimental failure load;

2. At failure, the sliding and rotations among blocks were generally localized in

relatively narrow diagonal bands, on the contrary the numerical model

predicted sliding and rotations over a wider area of the wall;

3. Micro-sliding progressively developed starting from 80% of the failure load,

while in the numerical model the wall remained practically undeformed up to

failure;

4. For the case of long and short walls with long blocks (where collapse occurred

by sliding only) the failure load was 10% lower than the friction coefficient,

whereas the numerical model did not predict this apparent shear strength

reduction; and
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5. In the case of the in-plane loading of the 21-block wall the failure mode was

incorrectly predicted as pure sliding while in fact it was a mixed sliding and

rotating mode.

For the dynamic case (illustrated in Chapter 6) an attempt has been made, in the

context of the DEM, to model the internal material damping with a lumped viscous

element acting at the interface between the blocks, and retaining a simple representation

of the block interior. For the case of rocking of a slender block on a rigid base an

empirical expression for the parameter of the viscous element has been obtained by

minimizing errors of predicted restitution ratios with respect to "exact" values obtained

with the Housner model. Good agreement with experimental results has been found for a

range of slenderness ratios (from 2 to 5). Using the same parameter, acceptable

agreement with experimental results has also been found for the case of harmonic base

shaking of the single block. For a case of a multibody arch structure subjected to ground

shaking the same viscous parameter obtained for the case of a single block has been

assumed. A reasonable agreement was found with experimental results, however it was

noted that for this particular case the system response was dominated by the rocking of

the two columns, which, as previously reported, is well described by this model.

Based on the previous observations it appeared that the quasistatic approach was

promising even if a number of discrepancies in the response prediction needed to be

resolved. Since the problems identified in the quasistatic analyses will have an impact

also on the dynamic case it was decided to approach them first.

As illustrated in Chapter 7, based on the observation of the experimental response

of walls subjected to out-of-plane loading (as described in sections 7.2.1 and 7.2.2) it was

recognized that, as the lateral load increased, small relative rotations between blocks were

occurring at the joints due to geometric irregularities of the contact surfaces. An

hypothesis was made that such behavior, not accounted for in existing DE formulations,

would play an important role in overcoming the observed discrepancies.
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Consequently, a new non coplanar joint model was developed for including the

possibility of relative microrotations between blocks due to contact non coplanarity and

for accounting for friction softening. In section 7.3 the implementation and verification

are illustrated.

For calibrating the parameters of the non coplanar joint model for a given type of

blocks, a simple procedure was proposed. It requires the availability of the experimental

failure load X and the maximum top displacement -top of a column constituted by such

blocks when subjected to gravity and slowly increasing lateral load. The calibrated joint

parameters are obtained by minimizing the distance between numerical and experimental

results in the X - 8tp plane. For calibrating the new joint model for the applications

considered in this study, the experimental results related to a 14-block column have been

used as described in section 7.4.1 and illustrated in Figure 7-40.

In order to evaluate the effectiveness of the proposed non coplanar joint model,

three opus quadratum walls (with respectively 21, 110, and 231 blocks), for which

experimental results were available, have been studied with the new model. By

comparing the results obtained with both the planar and non coplanar joint model, as well

as the experimental data (see Table 7-8) it is confirmed that the non coplanar joint model

effectively contributes to overcome the observed limitations of the planar joint model. To

this respect the following comments can be made:

1. The failure load X.. obtained with the new model is more accurate than the one

obtained with the planar joint model in all three cases, with an overestimation which

is reduced from 20% to 8% in the 21-block case, from 9% to 0% in the 110-block

case and from 31% to 8% in the 231-block case;

2. The new joint model correctly predicts a process of progressive internal

displacements before failure which was observed experimentally and was not

described by the planar joint model;
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3. The failure modes obtained with the new model for the 21-block case and the 110-

block case are in better agreement with the experimental results than those obtained

with the planar joint model;

4. The new joint model, due to microrotations and friction softening, correctly predicts,

in the 231-block case, the formation of a localized sliding band as opposed to the

broad sliding area obtained with the planar joint model.

In conclusion, it is important to underlie the remarkable sensitivity of the system

response with respect to the size of the joint imperfections. In fact, for the 3 walls studied

in chapter 7, the reduction of the failure load, due to a maximum joint aperture' of only

0.1 mm, was quite significant (up to 20%). But the effect of joint imperfections became

particularly substantial when we considered the case of a column with many blocks

(section 7.4.2.1). For such case, the closed form expression which was derived for the

failure load reduction (eq. 7-24), showed that, even with a relatively small imperfection,

the lateral failure load rapidly goes to zero as the number of blocks increases 2

determining a condition of intrinsic instability of the system. Such result further

confirmed that even apparently negligible joint imperfections should not be ignored since

they may cause significant modifications in the response of a block structure subjected to

gravity and lateral loading.

For the definition of maximum joint aperture see section 7.3.1 and Figure 7-11.
2As an example, for the type of blocks used in the experimental models studied chapter 7, (b=40mm;
h=17.5mm; maximum joint aperture d=0.Imm) - according to eq. 7-24 - a column of only 33 (or more)
blocks is unstable even with a negligible lateral load (see section 7.4.2.1 for more details).
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9. RECOMMENDATIONS

Among other aspects which require further work for improving the DE analysis

of block structures, we should remind:

" the investigation of the effects of the random variability of the model

parameters on the system response;

* the definition of a procedure, based on experimental tests, for the calibration

of the friction softening parameters;

" the refinement of the friction behavior of the model by accounting for the joint

length, dilatancy, surface degradation, and the relative velocity of the blocks

for the case of dynamic simulations; and

" the extension of the non coplanar joint model to the three-dimensional case.

Finally, it is recalled that in the dynamic modeling with DEM (chapter 6) a strong

assumption was made in the representation of the damping at impact, and while it may be

acceptable for single block structures or for certain types of multibody systems,

additional work is needed for defining a more general interface dissipation mechanism.

283



284



Appendix A: OUT-OF-PLANE BEHAVIOR OF HISTORICAL MASONRY
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A5. CONCLUSIONS
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Al. BACKGROUND

In the appendixes it will be illustrated how the DEM may be effectively applied to

the study of the seismic vulnerability of historical structures constituted of blocks, or of

masonry without (or with ineffective) mortar. As previously illustrated, in a masonry

construction subjected to lateral forces, the walls may fail out of the plane (due to their

slenderness and/or poor connection to the rest of the structure) or in the plane of the wall

if the previous failure mode is prevented'. In this section, the application of the DEM to

the study of the out-of-plane failure of the main walls of a masonry church will be

illustrated, while the case of in-plane failure of historical masonry walls will be addressed

in Appendix B. The scope of the analyses will be limited to the determination of the

lateral failure mechanism and corresponding failure loads in two dimensional DE

models, with planar joints, and with quasistatic application of the lateral forces.

The determination of the out-of-plane failure load of a single wall which collapses

by rigid body overturning is a simple task. However, if we consider the response to

lateral loads of the entire structural system, constituted by the main walls (which are

supposed to fail by out-of-plane overturning), and by the horizontal connecting elements

like roofs and floors, then the failure mode2 (and its associated failure load) is not easily

predictable. Many different failure modes may take place depending from a variety of

aspects including (a) the type of the interconnections, (b) the friction coefficients between

These are the so called "first collapse mode", and "second collapse mode" respectively which were
described in more detail in a previous section.
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the various materials, and (c) the geometrical details, all of which can be accounted for

with the DEM as it will be illustrated in the following study of a typical medieval church.

The church selected for this study is Santa Maria Maggiore in Tuscania3 (Figure

A-1), which is situated in a moderately seismic active area. The reason for this choice is

related to the architectural importance of the construction, and to the fact that many

medieval churches posses similar layout, structural typology, and materials, and therefore

it is hoped that certain aspects of this study may be of guidance in the evaluation of the

seismic vulnerability of this typology of important historical constructions.
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2 see as an example the predicted failure mode shown in Figure A-15a

3 The church, consecrated in 1206, is a monument of Romanesque age that is of primary importance in

Italy's architectural history.



Figure A-1. Axonometric view of the church of S. M. Maggiore.
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A2. THE OUT-OF-PLANE MODEL

Due to the practical difficulty in analyzing a 3D model of the entire construction,

it is suggested that simpler 2D models of the structure are developed (if possible) with the

objective of describing the most critical failure modes of the system. In this case it

appears that the construction is most vulnerable when it is subjected to lateral forces

acting in the transverse direction (orthogonal to the nave), causing an out-of-plane failure

of the main longitudinal walls. Several reasons have led to this hypothesis:

(a) the significant height and slenderness of the main walls;

(b) the considerable distance between the structural elements resisting to

transverse forces (front wall and transept); and

(c) the poor structural connections between such elements and the longitudinal

walls.

It is worthwhile to illustrate, in particular, the last point which is also the most

critical. To this purpose it is necessary to briefly recall the history of the construction

whose main phases, illustrated in the schematic layouts of Figures A-2, A-3 and A-4

have contributed to generate the weaknesses mentioned above. It should be noticed that

practically all historical constructions are the results of several modifications occurred

over the centuries, and therefore the study of the history of the construction with the

objective of discovering structural problems in the contemporary configuration is an

essential phase for the vulnerability study of any historical construction.
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Figure A-2. C
t

hurch of S. M. Maggiore, starting core (end of 11th, beginning of
he 12th centuries).

a

Figure A-3. Church of S. M. Maggiore, adoption of basilica plan (second half of
12th century).

BUTTRESSES DEMOLISHED SUBSEQUENTLY (1971)

Figure A-4. Church of S. M. Maggiore, subsequent additions.
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The original church was built between the end of the 1Ith and the start of the 12th

centuries, and it adopted a nave with no aisles system with a three-apse projecting

transept (Figure A-2). Of this first phase the current structure conserves the apse zone

and the head ends of the transept, as is clearly seen from the typology of the masonry

members.

During the second half of the twelfth century the building was almost totally

redone, its plan being modified to form that of a basilica (Figure A-3). The aisles were

added and these incorporate the projecting transept. The church was also lengthened

with the addition of the first two arch spans.

During subsequent centuries it was redone a number of times, the most obvious of

these efforts involving the first two spans (starting from the facade), which differ from

the others both in their construction technique and in their decoration. The reason for this

could be found in a collapse that occurred after an earthquake. Other interventions which

occurred over the centuries have involved the modification of the transept roof and the

raising of the aisle roofs, the addition of the body of the sacristy in the apse area and the

addition of the chapel in the left aisle and of the numerous outside buttresses, added after

structural impairments had been detected (Figure A-4).

Due to the various interventions mentioned above, and to the damages from past

earthquakes it can be recognized that the central portion of the longitudinal walls, as
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already anticipated, are not well connected with the rest of the structure. In fact we can

observe:

(a) a total lack of connection (scarfing) between the blocks of the two distinct

portions of the tall walls of the nave at the height of the transept (Figure A-5)

which were constructed in different phases;

(b) a lack of scarfing on the same crosswise alignment, between the outside walls of

the aisles and the transept headends also built at different times (Figure A-5);

(c) vertical cracks in the masonry of both longitudinal central walls at the second

column (starting from the facade) (Figure A-6), due to the different

characteristics, both in the dimensions of the blocks and in the care taken in their

workings, of the first two spans of masonry walls (probably rebuilt as a

consequence of a past earthquake, as already noted).

Based on the previous considerations it appears that the central portion of the church

is not effectively connected to the facade nor to the transept, therefore, in order to

describe its most critical failure mechanism (when subjected to lateral forces), it is

reasonable to consider a planar model representing a transverse "slice" of the church as

indicated in Figure A-7.

It is of interest to note other details of the construction which influence its

vulnerability to lateral forces, and which it was possible to include in the DE model. The

first one is the out-of-plumb of the lateral wall on the left side of the church which is

clearly seen in Figure A-8. It extends for about 10 meters and it has a maximum

magnitude of 20 centimeters. The second one is related to the change in the connection
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between the roofs of the lateral aisles and the central tall walls which was operated during

a restoration in 1954 as shown in Figure A-9. The roofs were lowered (to bring them

back to their original height), and the wooden beams, which before were inserted well

inside the masonry, after the intervention were simply supported by small brackets,

causing a drastic reduction of the horizontal forces which can be transferred from the roof

to the wall. Another change operated in 1954 was the elimination of the lateral

battresses.

It was found interesting to model both the configurations before and after the 1954

restoration, also to illustrate how the DEM may describe the effect of structural details,

such as the ones mentioned above, on the failure mechanism and corresponding failure

load. In Figure A-10 and A-11 the two DE models are shown.
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Figure A-5. Transept-nave discontinuity.
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Figure A-6. Vertical cracks in the nave walls.
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Figure A-7. Axonometric view of a transversal "slice" of the church of S. M.
Maggiore, subjected to out-of-plane failure under lateral loads. and its
corresponding Discrete Elements model with indication of distribution of
weights and materials.
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Figure A-8. Church of S. M. Maggiore, out-of-plumb of external left wall.
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Figure A-9. Church of S. M. Maggiore, modification to the joint between the roof
beams and the nave walls in 1954 restoration.
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Figure A-10. Church of S. M. Maggiore, DE model of current configuration.
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Figure A-11. Church of S. M. Maggiore, DE model of pre-1954 configuration.
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A3. NUMERICAL ANALYSES

Two distinct configurations of the church of S. Maria Maggiore - as previously

mentioned - have been taken into consideration: one regarding the current configuration

(model A), and the other regarding the situation existing before 1954 (model B)4.

Model A (Figure A- 10) is constituted by 48 elastic elements with four nodes, plus

one rigid base element with 12 nodes, which is fixed in its initial position. Model B

(Figure A- 11) has one additional element representing the outside buttress, which before

1954 was still in existence.

The choice of adopting a simple elastic constitutive relationship for the material as

opposed to a more complex one, it is quite inessential because, for this typology of

structure, collapse is likely to occur for loss of equilibrium (at a relatively low stress

level) rather than for internal material failure of the elements which may therefore be

essentially treated as rigid bodies.

A substantial difference between the two configurations involves the morphology

of the joint between the aisle roofs and the nave wall (as illustrated by Figure A-9), which

was accounted for in the 2 DE models (compare Figures A-10 and A-11). Furthermore,

in model A the out-of-plumb of the lateral wall on the left side was also taken into

consideration (Figure A-10).
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Where necessary, several elements were assembled to form "macroelements"

which behave as single discrete elements with complex shapes; in Figures A-10, and

A-II the gray areas identifies the macroelements created.

In the DE model, the columns dividing the nave from the aisles have the same

number of elements observed in reality. The walls instead have been modeled with a few

blocks along their height in order to- save computational resources, but at the same time to

allow rotation to take place at various locations inside the wall (in addition to the most

probable case of rotation around its base). Near the joint between the nave wall and the

aisle roofs the height of the blocks was taken identical to that of the real tuff blocks in

order to capture possible complex failure mechanisms involving block displacements in

this area. Clearly, it would be possible to model each block of every portion of the walls

as a separate DE element at the only cost of employing additional computational

resources in the analyses, however, also based on the results which have been obtained,

the level of detail which has been adopted here seems adequate for the scope of the study.

The materials are travertine for the right column (two drums), peperino stone for

the left column (eight drums), chestnut wood for the roof members, and tuff for the

masonry members. Table A-1 shows the elastic moduli and the densities used in the

analysis as obtained from values reported in the literature.

4 The DE program used was DECICE, developed by Intera Technologies.
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Table A-1. Materials parameters.
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Figure A-12. Church of S. M. Maggiore: materials and distribution of weights in the
Discrete Element model.
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Material Elastic modulus (kg/cm2 ) Density (kg/cm')

Tuff masonry 27,000 1700

Peperino stone 279,000 2112

Travertine marble 586,000 2420

Chestnut wood 110,000 650

MATERIALS
L chestnut wood
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The blocks interact through a Coulomb friction mechanism; the friction

coefficients used, also obtained from the literature, are: 0.45 for wood, 0.6 for the other

materials, and 0.4 for the interaction between wood and other materials. Cohesion

between the blocks was not introduced since the mortar was either absent or totally

deteriorated.

The normal and tangential interaction stiffness between the blocks was chosen

high (6x10 5 t/m), for the purpose of limiting the deformation in the joint relative to that

inside the element. Considering, for example, one of the central walls it is observed that

the contribution of the joints deformability to the vertical displacement of the top of the

wall is less than 10%.

In order to illustrate in detail the typical loading procedure and corresponding

system response we refer in the remaining of this section to the case of model A (current

configuration) in which sliding between roof and walls was prevented with an high

friction coefficient (see Figure A-15 b) as it will be explained in more detail in the next

section.

According to the procedure illustrated in previous sections, the system was first

subjected to gravity loads and to viscous forces, proportional to their mass, acting for the

time necessary to damp the vibrations of the system. A damping of 0.3 of critical

damping for a frequency of 20 Hz was used, this being the lowest frequency of the

system subjected to gravity only. The response during this phase is given in Figure A-13,
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in which it may be observed that the vertical oscillations of the top of the wall (element n.

24) disappear after 0.18 seconds of simulation.

Subsequently, each element was subjected to a stepwise increasing horizontal

force up to the failure of the system. Again, at each step vibrations were damped out by

viscous forces proportional to their masses. If Ni is the vertical gravity force acting on

the centroid of element i, the lateral force applied at the same element is Fi = XNi, where

) is a function of time X = X(t) common to all elements. It is, therefore, convenient to

refer to X as a normalized lateral load.

In Figure A-14, the dashed line indicates the increase with time of the lateral

forces, X(t), while the continuous one shows the response of the structure in terms of

horizontal displacements, Ax(t), measured at the top of the wall (element n. 24). The

first ramp brought the horizontal forces to 5% of the gravity load, causing a horizontal

displacement of 0.54 cm of the top of the wall. The lateral forces were subsequently

increased in smaller ramps until failure was reached for a failure load X included in the

range: 5.6 % to 5.7 %. Note that the last stable configuration (with k = 5.6%) showed

only a minimal top displacement of 0.83 cm which is less than 0,06 % of the height of

the wall.
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Figure A-13. (a) Detail of the top of the left central wall (element no 24): dashed line
indicates configuration after application of gravity load (note that
displacements are magnified).
(b) Time history of vertical displacement of element n0 24 during the
application of gravity load.
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Figure A-14. (a) Detail of the top of the left central wall (element n0 24): dashed line
indicates the configuration after application of lateral loads before failure
(Note that displacements are magnified).
(b) The solid line indicates the time history of horizontal displacement AX
of element n0 24 caused by the application of lateral load X. The dashed
line indicates the time history of the applied lateral load ,.
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A4. DISCUSSION OF RESULTS

The failure load X for the case of the current configuration (model A) with the

friction coefficient previously defined was found to lie between 3.7% and 3.8%. The

failure mechanism is shown in Figure A- 1 5a, while the failure loads for the various cases

are presented in Table A-4. It can be observed a monolithic behavior of the central

walls which rigidly rotate around the second element (from the bottom) of the columns

(note that the first element has a larger base). It can also be observed how the friction

coefficient between masonry and wood (c=0.4) was not adequate to prevent sliding of the

aisle roof beams. As a consequence the roof of the left aisle slides over the lateral wall,

while the right one disconnects from the support at the central wall. The certainly

positive cooperation between the central and side walls thus fails, and the result of this is

that the system failure load (X = 3.8%) is only slightly higher than that (Q = 3.05%) of

the individual high walls, considered as monolithic. Monolithic failure loads of

individual walls (obtained from simple equilibrium considerations) are given in Tables

A-2, and A-3.

It is therefore evident that the wall-roof connections (currently relying upon the

rather uncertain wood-masonry friction coefficient) sensibly conditions the system

behavior, and in a retrofitting intervention should certainly be improved.
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Figure A-15. Collapse mechanisms, and failure loads k, for model A (current
configuration) with two values of wood-masonry friction coefficient c:
(a) c = 0.4; (b) c = 10.
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Such considerations have suggested a second analysis, still using model A, but

considering a fictitious high friction coefficient (c = 10), which would certainly be able to

prevent the sliding that took place in the previous case, and simulating the effect of a

retrofitting intervention aimed at creating a perfect lateral continuity between roof beams

and walls.

The results show that with such modification the system behaves, at least in the

first phase of the collapse, as an assembly of seven rigid bodies connected by hinges as

illustrated in Figure A-i 5b. The collapse mechanism is substantially that of a one degree

of freedom system, and the failure load increases up to X = 5.6% - 5.7%. This is clearly

due to the cooperation of the side walls which have an individual monolithic failure load

of 6.2% and 13.9% respectively (the lower value corresponding to the out-of-plumb one).

A confirmation of the DE results is obtained by considering the one degree of

freedom system (constituted by 7 bodies connected by hinges) and computing the

corresponding failure load with the principle of virtual work which yielded a value of X=

5.5%, very close to the one obtained with the DE model.

It is also interesting to compare the previous results, referring to the current

configuration, (model A) with those related to the configuration before the 1954 restoring

(model B). The failure mechanism, for the last case, is illustrated in Figure A-16, where

two differences may be observed. First, the effect of the buttress that, reaching up to the
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roof, blocks the possible sliding of the beam' and prevents a large portion of the central

wall from rotating. Second, the fact that, due to the better connection between the roof

beams and the central walls (see Figures A-9, A- 10 and A-11), even with a wood-

masonry friction coefficient of 0.4, the right roof beam does not disconnect from the

wall, and causes the right lateral wall to participate in the failure mechanism. These

differences have the effect of sensibly raising the failure load of the structure, which in

this case is X = 7.3% - 7.4% (compared to X = 3.7% - 3.8% of the current configuration).

5 It is to be noted that this buttress was about nine meters long and thus covered a significant part
of the church's left outside wall.

309



A =a0.074 t = 10.09 sec.

t =10.75 sec.

t =11.41 sec.

Figure A-16. Collapse mechanisms, and failure loads X, for model B (pre-1954
configuration).
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A5. CONCLUSIONS

In this section the practical application of DEM, as an innovative analysis method

for the study of the seismic vulnerability of a medieval church, has been presented.

Since such construction represents a class of numerous similar historical buildings it is

hoped that the approach adopted in this study may be useful for future similar

investigations.

The objective of the study has been the investigation of the response of the

structure when subjected to lateral forces acting in the direction perpendicular to the main

longitudinal walls, and therefore determining an out-of-plane failure of such walls. Care

has been taken to illustrated when, - on the base of the structural features, the history of

the construction, and the survey of damages occurred in past earthquakes - this simple

two-dimensional out-of-plane model of the masonry construction may be employed.

Finally it has been demonstrated how the DEM can effectively account for

structural details (such as the type of connections between a wooden beam and a masonry

wall, or the out-of-plumb of a wall, or the exact number and size of the elements of a

column) which may significantly affect the failure load of the system, and therefore how

DEM may contribute to a more realistic modeling of historical buildings.

After having applied the DEM to the study of the out-of-plane behavior of

historical masonry walls, in the next section (Appendix B), it will be illustrated how the
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DEM may also be effectively employed for improving the understanding of fundamental

aspects of the more complex in-plane behavior of this structural typology.

Walls A B C D

X% 6.2 3.05 3.4 13.9

Table A-2. Model A (current configuration): failure loads of individual walls
rotating as simple rigid bodies (see wall labels in Figure A-10)

Walls A B C

X% 16.5 3.2 11.5

Table A-3. Model B (pre-1954 configuration): failure loads of individual walls
rotating as simple rigid bodies (see wall labels in Figure A-1 1)

DEM failure loads of various
S. M. Maggiore.

models of the church of
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Models Failure load

M%

Model A - Current configuration 3.73.8

Model A - Current configuration 5.6+5.7
(with higher friction)

Model B - Pre-1954 configuration 7.3+7.4

Table A-4.
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B. IN-PLANE BEHAVIOR OF HISTORICAL MASONRY WALLS

In this section we illustrate the application of the DEM to the study of the in-plane

failure of the opus quadratum wall' (a wall made of regular squared blocks without

mortar). More specifically we focused our attention on the causes which may determine

an undesired failure of the wall constituted by diffuse sliding and rotations of the blocks

(as in Figure B-le) as opposed to a collapse due to the monolithic rotation of a large

portion of the wall (as in Figure B-2c) which is associated to a higher value of the lateral

strength of the wall. Furthermore, it is suggested that the results obtained from the

parametric study of the opus quadratum wall may be - qualitatively - extended to the

more complex case of the irregular stone wall.

This study is proposed for both the interest of the specific problem, and for

illustrating how the DEM can be employed for gaining a better understanding of a variety

of fundamental aspects of the seismic response of historical constructions which cannot

be approached with conventional analysis methods.

B1. BACKGROUND

The first concern in the seismic retrofitting of historical masonry buildings is to

provide an adequate connection between orthogonal walls in order to prevent the out-of-

plane overturning of the walls when struck by a lateral seismic force. However, when

adequate provisions are taken to prevent the previous collapse mode, the seismic

1See Chapter 2, page 2-4, for a description of the opus quadratum wall.
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vulnerability of the building depends on the in-plane behavior of the walls parallel to the

direction of the earthquake. Numerous studies - both analytical, such as [Mann, W.,

1982; Page, A., 1981, 1982, 1983], and experimental as in [Anthoine, A., 1991; Ganz,

H.,1989; Hamid, A., 1981] - have been devoted to this subject. Most of the methods

currently used for the assessment of the in-plane strength of a masonry wall are based on

the hypothesis of a continuous medium and consists, at various levels of detail, in (a)

evaluating the stress state inside the wall, and (b) applying a material failure criteria

usually based either on maximum shear stress or maximum principal tensile stress. This

approach, while reasonable for the case of regular brick masonry with effective mortar, it

appears inappropriate for the irregular stone masonry without, or with scarcely effective

mortar as found in many Italian historical urban centers (Figure B-4).

From the observation of the damages suffered in past earthquakes it appears that a

certain class of buildings found in several small historical urban centers in Italy do not

collapse due to extensive material failure, but rather for loss of equilibrium and

overturning of entire walls or large portions of them. For such rigid body behavior, a

lateral failure load - for any given collapse mechanism - can be easily determined based

only on system geometry and equilibrium considerations. If this rigid body behavior

could be assumed, the vulnerability assessment, based on the comparison between the

lowest failure load and a given seismic action for the site, would therefore be extremely

simplified and would not require a stress analysis and material modeling. It is clearly

very important to identify the conditions under which the previous hypothesis may be

valid. To this respect some work has already been conducted concerning the out-of-plane
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behavior [Ceradini, V., 1992], however, for the in-plane behavior whether and under

which circumstances the collapse may take place through overturning of large portions of

the walls without substantial diffuse internal failure is still to be clarified and it will be

part of the objective of this study.

B2. EXPERIMENTAL INVESTIGATION

The main objective of the experimental program has been the investigation of the

influence of the type of arrangement of the bricks, and of the load distribution on the in-

plane lateral failure load and corresponding failure mechanism of a regular brick wall

without mortar. It was of particular interest to find out the conditions under which an

assemblage of bricks, kept together by friction only, could fail - under lateral load - by

separating into two monolithic parts instead of disgregating in many bricks sliding and

rotating one respect to the other.

It has been used the experimental technique of the inclined plane previously

presented (see Chapter 2). The same small scale bricks measuring 17.5 x 40 x 80 mm

made of peperino have been assembled to build walls measuring 40 x 59.5 cm. The

average value of the friction coefficient was 0.6. Two wall patterns have been tested:

1) with stretchers only (Figure B-1)

2) with headers only (Figure B-2).

In the first case the ratio of base over height of the brick (in the plane of the wall) was 4.6

and the wall was constituted by 187 bricks, in the second one the ratio was 2.3 and the
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number of bricks was 357. The base over height ratio of the bricks is an important

parameter since it determines the amount of overlapping and the degree of interlocking

among bricks which provide both the capability of resisting horizontal forces (through

friction) and the possibility of establishing a monolithic behavior under lateral loads.

Four load conditions have been considered:

(A) self weight only (Figure B-la),

(B) distributed vertical load on the upper base of the wall, applied with 5

separate loads (Figure B-lb),

(C) like (B), but applied with 5 loads acting on a connecting beam

(Figure B-2c),

(D) like (C), but with a single off center load (Figure B-2d).

In condition (B) the load was applied on 5 steel bricks attached with mortar on the

top course, for cases (C) and (D) the loads were applied on a metal beam also attached

with mortar to the top course. Case (B) is representative of the typical situation of a wall

carrying the load of the floor through wood beams inserted in the masonry, whereas the

metal beam attached to the bricks used in cases (C) and (D) simulates an horizontal

connection along the top portion of the wall (for example with a steel rod acting in the
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plane of the wall) which could be adopted to prevent the separation of the bricks of the

top course.

The test has been repeated with 3 different vertical loads of 250, 500, and 750 kg.

By gradually inclining the testing table horizontal forces have been generated

proportional to the masses of the wall and of the top loads. The failure load was

determined by measuring the inclination angle which determined the collapse of the wall.

The small reduction of the vertical load component due to the rotation did not affect the

results because of its negligible effect on the friction coefficient.

A total of ten different walls have been tested. The collapse mechanisms of

representative cases are shown in Figure B-l to Figure B-3, and the results - compared

with the numerical analysis - are discussed in a following section.
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Distribuited load
without top beam

ILI

Test 4 - XEXP.0 3 3

(a)
Test 6 - XEXP=0. 2 9

(b)

Test 4 - mu~=O.37
(e)

Figure B-1. Collapse mechanisms and failure loads X for experimental and numerical
models made with bricks with b/h = 2.3: cases of self weight and
distributed load without top beam.
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Distribuited load
without top beam

Test 9 - k)=0.30
(c)

Test 8 - %mu=0.33

(g)

Eccentric load

Test 12 - %x=0.44
(d)

li t

Test 10 - XNLr=0. 50

(h)

Figure B-2. Collapse mechanisms and failure loads X for experimental and numerical
models made with bricks with b/h = 2.3: cases of distributed load with
top beam, and eccentric load.
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Distribuited load
without top beam

L -n--

Tet I L Ep04

(a) -

Test 1 - NuM=0. 54

(c)

(b)

L r

Test 2 - 0L29=.33
(d)

Collapse mechanisms and failure loads X for experimental and numerical
models made with bricks with b/h = 4.6.

321

Self weight

Figure B-3.



B3. NUMERICAL ANALYSIS

A conventional DEM procedure (without the irregular joint model) has been

adopted for a detailed mechanical modeling and analysis of the previously described

physical tests. Besides all experimental cases an additional brick ratio b/h = 1 has been

analyzed. After some preliminary analyses, it was noticed that the intensity of the top

load did not significantly affect the results, therefore, only one load intensity (250 kg) has

been considered for each case in the numerical analyses2.

Since the deformation of the single brick is negligible at the load level of the test,

rigid elements have been selected, and the joints among bricks, according to the DEM,

were modeled with a no tension normal spring and an elastoplastic tangential spring

simulating a Coulomb's friction mechanism. The criterion for assigning the values of the

interaction stiffness has been that of limiting the maximum horizontal displacement of the

top course at failure to 0.5% of the height of the wall; it has been found that further

increase of the stiffness would require more computing time with negligible increase in

accuracy.

The friction coefficient value was set to 0.6 except in one case as it will be

indicated later.

The external loads applied on the top course were simulated with the weight of

elements with appropriate density with centroids located in the same position of the

points of application of the weight in the physical experiment. The effect of the mortar

2 This is explained by two facts: (a) the friction coefficient does not vary significantly in the range of loads
which has been considered; (b) the weight of the wall is small with respect to the top load.
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between the connecting beam and the bricks was simulated with a high friction

coefficient. The loading sequence closely followed the experimental one: first gravity

and then horizontal forces proportional to the mass of each element were applied step-by-

step to the system up to failure. After each load step - before failure - static equilibrium

was reached using an appropriate damping mechanism in order to stabilize any residual

vibrations.

As it will be discussed in the next section, the analyses performed, in addition to

providing a better insight on the interpretation of some experimental results, have given a

further verification of the accuracy and reliability of the DEM simulation for masonry

walls for systems with a significant number of elements (up to 357) and for various type

of boundary conditions.

In addition to the discrete element analysis, a simple rigid body model of the wall

has been studied to determine a failure load krig , for each test case. The basic

assumption of the model is that, under increasing lateral loads, the wall fails by

separating into two monolithic portions along a line passing through the center of

rotation, and, inclined of an angle cc with respect to the base, where cc is arctg(2h/b)

(with h and b the brick height and base). Note that, except for the self-weight load

condition, the failure load krig is very close to that of the entire wall rotating rigidly. In

the following section results from the rigid body model are compared with those obtained

from both the physical experiments and the discrete element analysis.
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B4. DISCUSSION OF RESULTS

Failure loads X are presented, for walls with brick ratio b/h = 4.6, and b/h =2.3,

in Table B-1 and Table B-2 respectively. Results are organized by load condition, and

load intensity. For each test the failure loads obtained from the discrete element model,

)num, the experimental model, Xexp, and the rigid body model, krig, are presented.

The ratio Xexp/XnuM, with an average value of 0.89, indicates a reasonable agreement

between experimental and numerical results except for a systematic overestimation of the

failure load. As previously discussed the difference between the two sets of values is

essentially due to the geometrical irregularities of the physical model, which have not

been included in this discrete element analysis. The collapse mechanisms obtained

experimentally and numerically are represented in Figure B-1, Figure B-2 and Figure B-

3. Finally, in Figure B-4 the numerical results regarding two walls with brick ratio b/h =

1 are reported.

Considering the cases with brick ratio b/h = 2.3, the following comments can be

made. In test 4, we notice that, if the wall is not loaded, it fails by disgregation and a

large portion of the wall is interested by diffuse brick sliding and rotations (Figure B-1 a,

B-1 e). This failure mode, although the experimental fractures appear more localized, is

indicated by both the physical (Figure B-1 a) and the numerical model (Figure B-1 e). It

appears that the wall cannot sustain the rigid body failure load Xrig = 0.49 since an

"internal failure" occurs earlier at Xnum = 0.37.
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In test 6 it can be observed that by applying a distributed vertical load (without

connecting beam), which is approximately 6 times the weight of the wall, the

experimental collapse mechanism becomes closer to that of the rigid body model (Figure

B-1 b).

Test Load Load Xnum Xexp krig Xexp/Xnum

number condition intensity (kg)

1 A 0 0.52+0.54 0.48 0.54 0.88

2 B 250 0.32 0.34 0.28 0.33 0.88

3 500 0.29

Table B-1. Failure loads of walls with bricks ratio b/h = 4.6: discrete element model
Xnum, experimental model Xexp, rigid body model Xrig.

The numerical mechanism (Figure B-1 f) is still affected by internal sliding, but

since the failure load Xnum = 0.32 is very close to the rigid body one, Xrig = 0.33, it

may be considered a borderline case between the two types of collapse. In test 8, and 9,

preventing the bricks of the top course to separate, determines a pure rigid body failure

mechanism as it can be seen both in the experimental and numerical results (cases c and g

in Figure B-2).
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Table B-2. Failure loads of walls with bricks with b/h = 2.3: discrete element model
Xnum, experimental model Xexp, rigid body model %rig.

In Figure B-3 the results concerning walls with bricks ratio b/h = 4.6 are shown.

In both the self weight load condition and the distributed load without connecting beam

the wall fails in the rigid body mode with knum very close to Xrig. Note the failure of

the bricks (case b in Figure B-3) occurring at the beginning of the collapse mechanism in

the bottom left portion of the wall. Load conditions C and D were not tested since a rigid

body failure mode was certainly expected.
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Test Load Load knum Xexp krig kexp/knum
number condition intensity (kg)

4 A 0 0.37+0.38 0.33 0.49 0.87

5 B 250 0.30+0.33 0.33 0.90

(0.32)

6 500 0.29

7 750 0.27

8 C 250 0.32+0.34 0.33 0.90

9 500 0.30

10 D 250 0.49+0.51 0.57

(tgo= 0.50)

11 0.56+0.58

(tg= 0.65)
12 500 0.44

13 0.39

14 750 0.44



Finally, Figure B-4 shows that the wall with brick ratio b/h = 1 collapses much

earlier ( kum = 0.22 ) than the rigid body failure load when subjected to distributed load

without connecting beam. However, if the top connection is provided (Figure B-4 b), the

wall behaves according to the rigid body model and the failure load raises to Xnum =

Xrig = 0.32.

The eccentric load condition simulates the case of a wall between rigid floors

which, under lateral loads, remain parallel and cause the load resultant to move towards

the edge of the wall as this initiates to rotate. This case, even though it is not typical of

the irregular stone masonry houses of the historical urban centers which are primarily

considered here, it has been included because it resembles a common testing technique of

masonry walls. Due to the eccentricity of the top load, the rigid body failure load raises

to krig = 0.57. In this case the friction coefficient tgP, which was assumed 0.6 for all

other cases, plays an important role, in fact, the discrete element analysis shows that if the

friction coefficient tgp is greater then rig , a pure rigid body rotation failure mode takes

place (with Xnum = rig ), whereas, a value of tgp lower then Xrig determines a pure

distributed sliding failure mode (case h in Figure B-2) with Xnum = tgp (see Table B-2:

test 10 and 11). In the experimental tests it has been found an average value of the failure

load exp=0. 4 3 .

If we assumed a friction coefficient tgep = 0.6, the predicted failure load Xnum

0.57, substantially overestimates the experimental one kexp=0.4 3 . This could be
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explained by the geometrical irregularities of the physical model, as in the other cases,

but also by the presence of higher normal stresses on the horizontal joints of the

compressed diagonal of the wall where a reduction of the friction coefficient3 may have

initiated the collapse mechanism.

3 According to the Barton's law the friction coefficient decreases with increasing normal stress.
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Distribuited load
without top beam

Xmn=O.22
(a)

Distribuited load
with top beam

(b)=0.32
(b)

Collapse mechanisms and failure loads X for numerical models
made with bricks with b/h = 1.
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B5. CONCLUSION

The parametric study which has been conducted has provided some indications on

the tendency of the opus quadratum wall to fail by rigid rotation of a large portion of the

wall as opposed to diffuse sliding and rotation of bricks. Within the limits of the

experimentation which has been performed, the following conclusions can be drawn:

(1) the wall subjected to self weight only fails - under increasing lateral load - by

disgregation and cannot sustain the rigid body failure load krig unless it posses a

very good construction quality (such as in the wall with bricks with b/h = 4.6);

(2) the presence of additional vertical load (due to floors, other walls or roof) tends to

increase the wall capability of behaving as the rigid body model, and only poor

quality walls (with brick ratio b/h = 1) still fail for disgregation;

(3) the presence of an horizontal connection along the top portion of the wall (for

example with a rod acting in the plane of the wall) facilitates the rigid body response,

which has been achieved even in the case of poor interlocking among bricks (b/h=1).

Finally, it is of interest to remind that the opus quadratum has been proposed as a

qualitative model of the irregular stone masonry4, and, as suggested in Figure B-5, an

analogy may be established between the quality of the irregular wall (intended as the

4 The irregular stone masonry without, or with scarcely effective mortar is found in many Italian historical
centers.
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degree of interlocking of the blocks) and the aspect ratio b/h of the bricks of the opus

quadratum. In this light the previous results provide qualitative indications also for the

irregular stone masonry, but additional experimental data and more complex numerical

models are clearly needed for reaching conclusive recommendations in this case.

Nevertheless these results are a first step toward a more realistic modeling of the

historical masonry constructions which only an in-depth understanding of the ancient

construction techniques coupled with an appropriate mechanical modeling of

discontinuous media will allow.
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1.1

Figure B-5. Irregular stone masonry with good (Al), average (BI), and poor
(Cl) interlocking, and their corresponding opus quadratum
models with brick ratio b/h=4, 2, and 1.
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