
Architecture for Data Exchange Among
Partially Consistent Data Models

By

Eswar Venkat Ram Prasad Vemulapalli

Submitted to the Department of Civil and Environmental Engineering
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2002

© Massachusetts Institute of Technology, 2002. All Rights Reserved.

S ignature of A uthor ...
Department of Civil and Environmental Engineering

March 21s', 2002

Certified by

Steven Richard Lerman
Professor of Civil and Environmental Engineering

Class of 1922 Distinguished Professor
Director, Centi- for Educational Computing Initiatives

Accepted by
Oral Buyukozturk

MASSACHUSETTS IN n, Department Committee on Graduate Studies
OF TECHNOLOGY

JUN 3 2002 KER

LIBRARIES BARKER

Architecture for Data Exchange Among
Partially Consistent Data Models

Eswar Venkat Ram Prasad Vemulapalli

Submitted to the
Department of Civil and Environmental Engineering

March 21st, 2002

in Partial Fulfillment of the Requirements for the Degree of
Master of Science

Abstract

With recent globalization, more and more organizations are having to exchange data

through various means with the Internet playing a primary role. The Internet is

increasingly being used as a global infrastructure for data exchange between autonomous

participants. One of the biggest challenges facing organizations today is integrating the

multitude of different information systems that have been implemented over the years.

The problem with these kinds of inter-organizational data exchanges is that they involve

a large number of information systems, which do not necessarily share a consistent data

model. They require the ability to exchange semi-structured data.

Current practices to address this problem have been to get the participants involved in the

data exchange to adapt a standard template for their autonomous data stores so that

everyone understands each other. A more conventional approach was to get every

organization to integrate their applications with each other, which is a very resource

consuming exercise.

This thesis discusses the use of XML technologies for mapping information between

partially consistent data models. The role of XML in semi-structured data exchange is

described together with its application as a framework for data exchange. A description

of an XSLT based architecture, which will take the unshared XML schema elements of

these data models and map them, is outlined. A directory service that provides for the

location of a suitable conversion resource such as XML-RPC / SOAP for satisfying the

second stage of the discovery process is also described.

Thesis Supervisor: Steven R. Lerman
Title: Professor, Department of Civil and Environmental Engineering, MIT

Director, Center for Educational Computing Initiatives, MIT

Acknowledgements

First and foremost, I would like to thank my thesis supervisor, Professor Steve Lerman

for his support and the confidence he put in me and in my work during my time in the

Center for Education and Computing Initiatives (CECI) and MIT in general. During the

duration of my thesis, he had been carrying out various roles at MIT such as occupying

the faculty chair to heading CECI. He was also on a sabbatical for a semester. Despite

such busy schedules, which come with his nature of work, he was always there when I

needed him for advice and guidance. Prof. Lerman continued to be everything a graduate

student could hope for in a thesis advisor and much more: supportive, understanding,

challenging and flexible, all when appropriate. I cannot thank him enough.

Judson Harward, the principal scientist at CECI and my research supervisor during my

work on ATIRP. He was tremendously helpful and supportive throughout the project and

played a key role in the team producing a white paper and publishing a conference paper.

I would like to thank Kirky Delong, my research team partner who gave me plenty of

guidance in my research work and without whose help I would not have been able to

make a successful presentation of the paper at the ATIRP conference.

4

I would also like to thank all the staff and RAs in CECI for making the lab a very nice

place to stay and study.

My two and a half years at MIT would not have been the same without the many number

of close friends that I now call family. They are the closest to a family I have here in the

US. Every one of them deserves mention in detail, but I would be remiss for not singling

out a few.

* Anup Mantena, my roommate of two years whose sole acquaintance would

have been enough to term my stay at MIT as truly satisfying and successful.

* Hiran Sammeta, my best friend outside of MIT who has given me a flavor of

what life is beyond the shadows of the Charles River.

* Bharath Krishnan and Anand Ganti with whom I have shared many

memorable experiences one of them being able to join me on a 6000-mile

road trip to Texas and back on a day's notice.

* Debashish Sahoo and Balaji Rao with whom I could speak anything under the

sky without any inhibitions and not regret it later.

" Neeta Kumari Singh, whose friendship I have had for the last three weeks, for

making me feel acquitted with prolonging the masters degree by 6 months if

only to have had the chance to meet her before leaving the east coast.

Last, but not the least, I would like to thank my family. My parents and sister continue to

be everything to me and I could not have asked anything more from them.

5

Table of Contents

1.0 INTRODUCTION... 10

2.0 LITERATURE REVIEW..17

2.1 AUTONOMOUS DATA STORES ... 17

2.2 FUNCTIONAL VIEWS OF XML TECHNOLOGIES... 18

2.2.1 XML as Document Markup for the VVWW.. 18

2.2.2 XML for Semi-Structured Data Exchange ... 21

2.2.3 XML Schema as a Framework for Data Discovery 24

2.2.4 XSL for Data Transformation .. 24

2.3 ExISTING COMMERCIAL PRACTICE ... 26

2.3.1 B iz T a lk.. 2 6

2.3.2 Application Integration Services.. 27

2.4 PROPOSED FRAMEWORK OVERVIEW .. 28

3.0 NETWORK PROTOCOLS ... 30

3.1 PROS AND CONS OF USING SOAP.. 35

4.0 DIRECTORY SERVICES ... 40

4.1 DIRECTORY STRUCTURE ... 46

4.2 JAVA NAMING DIRECTORY INTERFACE (JNDI)... 47

5.0 INFOX ARCHITECTURE ... 50

5.1 PEER TO P EER ... 50

5.2 H U B AND SPOKE ... 51

5.2.1 T racking 52

6

5.2.2 Control .. 52

5.2.3 Filtering / Transformation .. 52

5.2.4 Reduction of Interdependencies .. 53

5.2.5 Forensics ... 53

5.3 PROPOSED A RCHITECTURE.. 53

5.3.1 Security Infrastructure ... 55

5.3.1.1 M essage A uthentication Code... 56

5.3.2 Transport M echanisms... 57

5.3.3 Q uery Engine.. 58

5.3.3.1 Q uery Parser and Translator.. 58

5.3.3.2 Q uery Plan G enerator and Optim izer.. 58

5.3.3.3 Q uery Evaluator .. 58

5.3.3.4 Q uery Scheduler.. 59

5.3.4 Rule Set G eneration Engine ... 59

5.3.4.1 M aplets .. 59

5.3.4.2 Rule Set Generation Engine Im plem entation..................................... 59

5.3.5 D ata Transform ation Engine .. 61

5.3.5.1 M A P Processor... 61

5.3.5.2 M A P Cache ... 61

5.3.5.3 Resource Locator.. 61

5.3.5.4 D ata A ccess API.. 62

5.3.5.5 D ata Transform ation Engine Im plem entation.................................... 62

5.3.5.5.1 M aplets ... 62

5.3.5.5.2 M aplet Im plem entation U sing X SLTs ... 63

5.3.5.6 Sim ple M aplets... 64

5.3.5.7 Com plex M aplets ... 65

5.3.6 Repository for M apping Information .. 65

5.4 CASE SCENARIO ... 67

5.4.1 Problem Statem ent ... 67

5.4.2 InfoX Solution: .. 67

5.5 CONCLUSION ... 70

7

6.0 CO N CLU SIO N .. 72

7.0 BIBLIO G RAPH Y ... 75

8.0 APPEN D IX A .. 77

8

Naming & Directory Service.. 41

LDAP Directory Structure .. 46

JNDI Architecture .. 48

Peer-to-Peer Architecture...51

Hub and Spoke Architecture .. 51

Data Exchange Architecture.. 54

Rule Set Generation Process .. 60

M aplet Lifecycle .. 63

Using XSLT to transform information from one format to another format

63

Data Exchange Flow Diagram - Case Example 69

9

List of Figures

Figure 4-1:

Figure 4-2:

Figure 4-3:

Figure 5-1:

Figure 5-2:

Figure 5-3:

Figure 5-4:

Figure 5-5:

Figure 5-6:

Figure 5-7:

1.0 INTRODUCTION

The globalization of the architecture, engineering and construction industry has added

new dimensions to the construction industry. Wide spectrums of technologies,

particularly the Internet are being used by managers to manage these geographically

distributed projects.

The Internet is one of the fastest growing, most exciting technologies in the 2 1 't century,

with many organizations participating in data exchanges with very large number of

autonomous data stores. With an easy to use graphical Web browser, a project manager

can access a wealth of information free or almost free (except for the fee for connection).

One of the distinguishing characteristics of the Web is the fact that it is accessible at any

time, from any place, to any number of users, with no third party involvement necessary.

It is this unique quality that makes the Web such an ideal tool for the dissemination,

gathering and analysis of information. The potential of Internet is enormous. Consider a

scenario where a user or an organization only needs to update any information on the

Web once to be accessible by all the people who are concerned with that information. For

example, a project manager who is looking at the project schedule on the web browser

will have the confidence that he or she is looking at the latest, up to the minute project

10

schedule, which is impossible with traditional communication channels such as mail, fax,

phone call or even email.

The major problem in realizing the potential of the internet with large and global projects

is the involvement of a large number of information systems. While some of these

information systems or autonomous data stores can be expected to share a consistent

external data model, many will not and yet will still require the ability to exchange semi-

structured data through some channel.

Therefore, an information-sharing and mapping model architecture for the integration of

design and construction product and process information is necessary. There are usually

two kinds of data exchanges: Intra-model and Inter-model. Intra-model data exchange

occurs when similar groups within an organization transfer information between them.

For example, a structural engineering consulting division might exchange information

with the geotechnical consulting division of the same firm. In intra-model data exchange,

the participants are assumed to share a data model and often an underlying software

architecture. Therefore, the problem of data incompatibility in an intra-modal data

exchange is relatively straightforward.

Inter-model exchange on the other hand takes place when unrelated groups within an

organization communicate with each other and exchange data. Here, the participants will

normally not share the same operational data model or software architecture as in the

intra-model data exchange. An example is when a civil engineering construction

company has a consulting division and a construction division, which need to

11

communicate and exchange construction project information to various independent

subcontractors. A typical construction project information may consist of drawings (e.g.

AutoCADTM.), schedules (e.g. Primavera Project PlannerTM.) and databases (e.g. MS

AccessTM or MS SQL ServerTM.) A project planning tool will have to incorporate the

product and process data, which may involve several of these information systems. The

systems deployed for different aspects of the same project may be based on different

algorithms and different data structures.

Inter-model exchange can also take place when two or more organizations communicate

with each other and exchange data. This is the other problem that managers encounter

while planning large-scale projects because these projects may involve as many as 300

different organizations. The complexity of these projects is likely to keep growing. The

project information and the amount of data transaction among project participants tend to

expand substantially. With the possibility of each one of these organizations having a

different data model from the others, the integration of project information becomes a

significant issue for the management of large-scale engineering projects. The

communications across the various sub-disciplines of a large-scale construction project is

inefficient and ineffective due to the inflexibility of the current data exchange. Inter-

model data exchange often involves semi-structured, partially consistent data at best.

Participants must be able to extract partial understanding from messages that depend on

these inconsistent data models. The misinterpretation of documents and drawings can

lead contractors to employ inappropriate construction methods, set up infeasible

schedules, waste resources and misestimate project cost, etc.

12

The problem of inconsistent information can be illustrated by a case in where a simple

confusion over weather measurements were metric or not led to the loss of a multi-

million dollar spacecraft as it approached Mars in 1999. Preliminary investigations into

the incident revealed that engineers at the Lockheed Martin Corporation, which had built

the spacecraft, measured the thrust in pounds while the scientists in NASA thought the

information was in the metric measurement of newtons. The assumed figure in newtons

was incorporated into computer models that were used to calculate the spacecraft's

position and direction. The resulting miscalculation let to the craft being off course by

about 60 miles as it approached Mars. Although the data may have been wrongly

provided, the real issue was that there was no process in place which could detect the

discrepancy and correct it. If there were an automated process which could interface

between the Lockheed Martin units of measurements and the NASA standards, then

conversion of the values as described above would not have been an issue.

This problem of data compatibility between information systems is trivial if the

organizations participating in the data exchange share a consistent data model. However

in order to achieve a consistent shared data model, participants must agree on

1. the categories of data to be exchanged and their names,

2. the semantics of those categories, including controlled vocabulary and

measurement units, as well as,

3. the syntax, protocols, and semantics for queries.

13

A consistent shared data model will lead to efficient data exchange and tightly coupled

operational units, but cooperation cannot begin until the participants complete the entire

architecture outlined above. Existing practices have seen consortiums formed for each

industry. These consortiums outline guidelines for common standards, which each

participant in the group needs to conform to so that they understand each other when data

exchanges take place. However, this requires each participant to adapt their whole

technology infrastructure to these standards, and smaller sized firms with limited

financial resources are usually the first to fail in confirming to them.

While some of the participants in construction projects can be expected to share a

consistent external data model, many will not and yet will still require the ability to

exchange semi-structured data. This alternative approach will implement partial data

exchange using semi-structured, usually tagged, data. The approach has the advantage

that the architecture will put in place a process which will take this partially inconsistent

data and convert it into a standard format which other participants in the data exchange

process will be able to interpret and convert to a format they can understand. It also has

the added advantage of putting in place an incremental data exchange process tailored to

changing requirements and by feedback from the previous stage of the exchange.

The commercially off-the-shelf (COTS) Web standards including XML (Extensible

Markup Language) and related technologies provide an excellent medium for exchanging

semi-structured data and for brokering information exchange between organizations

possessing autonomous data stores. These XML and XML-related standards provide

14

several advantages in dealing with partially consistent data models in a non-intrusive

manner, i.e. without requiring the different units to change their data implementations.

XML is platform and technology independent. It also provides the flexibility required to

express data objects from general data models. At the same time, it requires syntactic

correctness, which in turn is necessary for verifying the correctness of the conversion

schemes between the data models. On another level, XML-Schema's ability to define

data types and structures of XML elements allows the mapping of these properties and

relations from the inconsistent data models to the common realm of XML.

This thesis investigates strategies that exploit both common base schemas mapping of

data types, element/attribute names and directory-based location of resources for data

conversions. The goal is to devise an architecture for exchange between distributed data

stores that will support any number of participants irrespective of their diverse data

models. The architecture will suggest a way that will assist organizations with limited

financial resource to take part in data exchanges with other larger firms without having to

conform to their standards.

In the following chapter, this paper provides some background into some of the

technologies used in the proposed architecture as well as discusses some existing

commercial practices. The literature review suggests that frameworks, based on

principles which minimize the risk of updating a whole organization's technology

infrastructure due to continuously evolving standards and technology have not been

thoroughly looked into. This thesis makes a rudimentary and yet a significant step in

15

proposing a new approach. We call this architecture InfoX architecture. To explain this

architecture, we need to explain two key aspects of the technology used. They are

network protocols and directory services and are explained in Chapter 3 and 4

respectively.

In chapter 5, we discuss the InfoX architecture in details. We also discuss the benefits of

this architecture over other existing commercial models. To ensure that the framework is

not only good in theory, but also implementable, we have addressed issues of

maintainability, scalability, performance and security. The architecture can be extended

in many ways, which are not explored because of limitations of time and expectations

from a master's thesis. Therefore, in chapter 6, we conclude and describe the directions

for future research and development in this area.

16

2.0 LITERATURE REVIEW

2.1 Autonomous Data Stores

The recent meeting of database researchers at Asilomar [Bernstein et al. 1998]

emphasized the importance of the WWW as a federation of a potentially unbounded

number of data stores, with many of these being embedded in "gizmos", that is,

autonomous embedded systems in consumer electronics and the like. Information

exchange in the 2 1s' century will resemble the evolving web with very large numbers of

autonomous data stores, often lacking any human control. While some of these can be

expected to share a consistent external data model, many will not and yet will still require

the ability to exchange semi-structured data through data discovery and negotiation. We

feel this problem is isomorphic to data discovery and exchange on the emerging Semantic

Web [Berners-Lee, 1998.3], an extension of the well-known WWW intended for

machine-to-machine data exchange without a human mediator.

This emerging "business-to-business" architecture evolves from natural organizational

behavior. Organizations instinctively protect their information to maintain security and

autonomy. They do not want potential foes/competitors to anticipate their actions, and at

the same time, they want the freedom to change their own organization and its

17

corresponding data model without elaborate consultation with peer organizations. If

General Motors is reorganizing a division it does not want to wait for Ford to sign off on

the changes, just as the US Army resists external review, even by allies, of the details of

organization, deployment, and readiness. This tendency towards organizational

independence is balanced by the demands of external cooperation. Any such cooperation

with peer organizations requires information exchange. In our information rich world,

efficient information exchange almost always requires the computer-mediated trading of

semi-structured information.

Overcoming the natural desires for security and autonomy that divides the divisions of

the same company require immense effort. The COTS Web standards including XML

(Extensible Markup Language) and related technologies provide an excellent medium for

exchanging semi-structured and for brokering information exchange between

organizations possessing autonomous data stores.

2.2 Functional Views of XML Technologies

2.2.1 XML as Document Markup for the WWW

The original WWW document model as specified by HTML (Hypertext Markup

Language) paid homage to the tradition of tagged markup languages that emerged during

the 1970's and 1980's. As WYSIWYG document editors proliferated with the rise of the

personal computer, a reaction set in that led Brian Kernighan to declare, "The problem

with 'What you see is what you get' is that what you see is all you get." By focusing

18

simply on the appearance of the printed page, these document editors had dropped any

sense of the document's organization. This realization led to systems like TeX and

LaTeX that attempted to separate the appearance of the document from its logical

structure. The goal was to break the document into semantic units like "ChapterTitle" or

"BibliographicalEntry", and then specify how each particular semantic unit should appear

on the printed page.

One problem with this approach is that each field and document type requires its own set

of semantic tags. A dictionary requires different tags from a sales catalog or a technical

manual. The climax of this trend is a meta-language called SGML (Standard Generalized

Markup Language) that was designed to specify field-specific sets of hierarchical

document tags. Each such set of tags formed a document type definition or DTD. True

SGML is little used outside of the publishing industry, but HTML originated as an

SGML tag set for web documents. The rapid evolution of HTML to meet user

requirements and the competition between browser and other tool vendors doomed the

purity of this approach. HTML focused on how a document appeared in a browser rather

than on delineating the internal structure of the document. It evolved to please the web

surfer's eye rather than systematically tagging data for machine-to-machine exchange.

SGML's large and complex feature set has also hindered its limited acceptance. Its

complexity makes SGML a versatile environment, but it also complicates the task of

those who develop SGML implementations and SGML-based toolsets. XML arose out of

an effort by the W3C Consortium:

19

1. to devise a clear separation of content organization and visual presentation for

WWW documents, and

2. to design a simpler version of SGML for the WWW.

HTML in the mean time became a major markup language used widely across the world.

Initially HTML started under-defined with proprietary extensions and incompatibility

abounding at later stages. Attempts were then made to rein in HTML by providing a

DTD, it turned out that several DTDs were needed to manage the variants. Hence, the

XML namespace [1] mechanism was developed in part to allow more control of

proprietary and standard extensions. The current strategy of the W3C Consortium and

vendors is to rewrite the current version of HTML (4.0.1) as an XML DTD. This new,

more rigorous HTML is called XHTML.

XHTML is the reformulation of HTML 4 as an application of XML. The hope is that it

will both extend the life of HTML by putting it on a more extensible and platform-

independent base as well as forming a bridge to the next generation of WWW documents

based on a wide variety of XML DTDs. XHTML 1.0 is the basis for a family of

document types that subset and extend HTML.

People recognized was that there was a missing layer required which would enable mix-

and-match selection of components even within a namespace. From this realization came

the XHTML Modularization project at the W3C. XHTML Modularization makes it

convenient to create specialized versions of XHTML: subsets with tailored content

20

models and extensions in other namespaces. The purpose of modularization is to allow

someone, perhaps not an expert in DTDs or Schemas, to restrict and extend their own

version of HTML. Using modules means they will not leave something out by accident,

as well as that there are placeholders for extensions and restrictions that are convenient

and visible to others. Therefore, modularization does not actually alter the expressive

power of DTDs or W3C XML Schema. Instead, it provides an abstract model and

practical conventions for how to organize a DTD or Schema.

As the abstract to the Recommendation Modularization of XHTML puts it,

'This Recommendation specifies an abstract modularization of XHTML and an

implementation of the abstraction using XML Document Type Definitions (DTDs). This

modularization provide a means for subsetting and extending XHTML, a feature needed

for extending XHTML's reach onto emerging platforms.'

XHTML Modularization may become one of the most important new technologies of

2001.

2.2.2 XML for Semi-Structured Data Exchange

The previous section concentrated on the role of XML in providing support for human-

readable documents on the WWW. But XML will probably exert greater influence as the

enabling technology for a quantum leap in automated information exchange between

networked computers on the WWW. This is currently the focus of great commercial

interest. A whole new class of business-to-business XML-based applications has arisen to

21

expedite inter-company information exchange without human intervention, thus

establishing the model for the Semantic Web.

XML provides a hierarchical tagging structure that can be used to communicate data

from multiple data models. It is well adapted for the robust transfer of data between

relational databases, but its tree-based hierarchical structure also makes it appropriate for

the communication of object-oriented data. Consider the following brief example of an

XML description of a concrete mixing truck including its position and fuel remaining:

<CM-Truck id=4591 >

<position>

<lat>39.30.42</lat>

<lon>-76.9.42</lon>

</position>

<fuel>238.7</fuel>

</CM-Truck>

The use of a DTD for data exchange allows the receiving XML parser to validate the

information as to form, but the content may still be corrupt or nonsensical. That is, it

might well fail standard database integrity constraints when the data is parsed. Therefore,

the translation of XML formatted data to and from a host's internal data model is non-

trivial. In an effort to simplify this task, the W3C and vendors have together developed

standard APIs to govern the parsing of XML data. The simplest and earliest standard API

22

is known as the SAX (Simple API for XML) API. SAX compliant parsers call a standard

event driven API as an XML document is parsed. There are separate callbacks for the

recognition of various XML syntactic units. Other parsers attempt to process an entire

XML document producing an in-memory tree of nodes representing the various syntactic

units of the document and their relationship to each other. The Document Object Model

(DOM), a W3C standard, describes a second standard API for accessing this in memory

tree and editing it. It is important to note, however, that the DOM standard does not cover

the details of parsing or writing a DOM tree back out into an XML document stream.

More recently, Sun Microsystems has announced (but not released) a special XML parser

code-named Adelard for the exchange of information from Java to XML and vice versa.

In Adelard, the object-oriented data model is specified in an extension of XML called

XML Schema (see below). The Adelard compiler then generates code to parse XML data

in the data model, to validate it (to the degree that the validation criteria can be expressed

in XML Schema), and then to create instances of Java objects to represent the parsed

XML entities. The corresponding Java classes contain methods to marshal their instances

into appropriate XML code. Since XML Schema allows the specification (and validation)

of object type as well as range checking and other simple integrity checks, Adelard's

automated "data binding" will facilitate the validation of data in machine-to-machine

exchanges [2]. Of course, a programmer can extend the validation in the Adelard-

generated code via arbitrary hand-coded methods. This Adelard-based approach called

data binding should offer significant advantages in the application of XML to semi-

structured data exchange.

23

2.2.3 XML Schema as a Framework for Data Discovery

As mentioned above, XML Schema is an extension of the XML standard that allows a

variant of the DTD called a schema to define object-oriented data types using inheritance

and certain validation criteria. The inheritance mechanism of XML Schema allows an

organization to adopt standard schema definitions and adapt them for the particular data

model(s) they use. If they then publish these schemas, the inheritance relationships can be

used to recover part of the semantics of their data model. This approach possesses serious

limitations in that the equivalence of fields (elements and attributes in XML) and data

types ultimately depends on a matching or mapping of tag names.

2.2.4 XSL for Data Transformation

The Extensible Stylesheet Language (XSL) is a language for expressing style sheets. An

XSL style sheet is a file that describes how to display an XML document of a given type.

It includes both a transformation language, Extensible Stylesheet Language

Transformation (XSLT) and a formatting language, each of these being an XML

application. The transformation language provides elements that define rules for how one

XML document is transformed into another XML document. The transformed XML

document may use the markup and DTD of the original document or it may use a

completely different set of elements. In particular, it may use the elements defined by the

second part of XSL, the formatting objects.

Its ability to move data from one XML representation to another makes XSL an

important component of XML-based electronic commerce, electronic data interchange,

metadata exchange, and any application that needs to convert between different XML

24

representations of the same data. These uses are also united by their lack of concern with

rendering data on a display for humans to read. They are purely about moving data from

one computer system or program to another.

There are three primary ways to transform XML documents into other formats with an

XSLT style sheet:

* The XML document and associated style sheet are both served to the client, which

then transforms the document as specified by the style sheet and presents it to the

user.

* The server applies an XSLT style sheet to an XML document to transform it to

some other format and sends the transformed document to the client.

* A third program transforms the original XML document into some other format

before the document is placed on the server. Both server and client only deal with

the transformed document.

Each of these three approaches uses different software, although they all use the same

XML documents and XSLT style sheets. An ordinary Web server sending XML

documents to Internet Explorerrm is an example of the first approach. A servlet-

compatible Web server using the IBM alphaWorks' XML Enabler is an example of the

second approach. A human using Michael Kay's command line SAXON program2 to

transform XML documents to HTML documents, then placing the HTML documents on

'http://www.alphaworks.ibm.com/tech/xmlenabler

2 http://users.iclway.co.uk/mhkay/saxon/

25

a Web server is an example of the third approach. However, these all use the same XSLT

language.

While converting information from an XML document to another format, data contained

in these XML documents can be processed in various ways to obtain the required form.

For example, functions calls could be made within the style sheet to make conversions to

data. For example, temperature data may need to be expressed as Fahrenheit rather than

degree Celsius.

2.3 Existing Commercial Practice

2.3.1 Biz Talk

One of the Microsoft products, Biz Talk Server, is a set of system software and

development tools that use XML to solve two of the most intransigent problems

corporations and governments face today: integrating internal applications by tying

together their data streams and process logic, and integrating applications with supply

chain partners to support ambitious e-business efforts (B2B). At its heart, the BizTalk

server is a document hub. Its features include of data interchange, security, remote

location data polling, document type mapping, rules-based business document routing,

document interchange management, and document tracking and analysis. It employs

XML as its internal data format.

All inbound documents are parsed and stored as XML, regardless of their format (EDI,

delimited text, and so forth). Outbound documents are serialized from XML into the

26

format appropriate for the receiver. BizTalk knows how to parse inbound and outbound

data by following schemas that are shared by data-trading partners. BizTalk.Org, a

consortium of user organizations and vendors, keeps available a range of schemas for

various industries applications.

BizTalk server completes this process using a pair of function sets: Orchestration and

Messaging. Orchestration handles all the business functions. It lets you create processes

graphically and connect them to code capable of carrying them out. Messaging is a set of

facilities that performs basic data integration functions such as data description and field

mapping from one application to another. To make this process work, one needs to tell

the system the data definitions of files you plan to use (fields, datatypes tec.); how to map

fields from one data set to the other; and how to process data flows using which

communications channels to which destinations and which, if any, imposed conditions.

2.3.2 Application Integration Services

One of the more conventional methods is System Integration of two separate

organizations. Many system integration firms use their own process to achieve this goal.

This is usually called Enterprise Application Integration (EAI). The main purpose of EAI

is to replace independently maintained interfaces with a disciplined integration approach

that is supported by EAI technology. Because of integration architecture, systems may be

incrementally added to the infrastructure without invalidating other connections to the

collaborating systems. This can allow for the growth of the integration system. The EAI

process involves consulting firms to come in, evaluate and work on this process. This is

usually very labor intensive, and hence can be quite expensive for the organization. In

27

addition, for future customization work, they do have to depend on labor-intensive

processes because of the lack of standards in this process.

There are also numerous tools provided by companies such as Web Methods, TIBCO,

IBM, iPlanet that can accelerate this process of Business Integration. These tools form

the middle layer when organizations try to exchange processes and data.

Even to use these tools, companies have to depend on the services of the business

integrators to attain their goal. Since all the business integrators have proprietary

technology, the customers will always have to depend on them. Also, these middleware

tools force organizations to follow standards that are set by the system integration

companies.

2.4 Proposed Framework Overview

This thesis investigates a framework that exploits both common base schemas in an

inheritance hierarchy and directory-based location of webservices, which will provide

information on data conversions. The goal is to devise an architecture for information

exchange between distributed data stores that will support less resourced organizations to

successfully take part in a collaboration. A pattern for data sharing that evolves through

the following stages is proposed:

1. Two organizations recognize their need to exchange information. Both start a

process to identify common or mapable elements in their public data models.

These elements are then mapped to semantically equivalent elements in a

common data model. An example of semantic equivalence is when for

instance, an organization may use a field named position to designate what

28

another would call location. Directory services could be used to do provide

for this mapping.

2. Both organizations then commence distributed queries to net-based directories

to establish webservices, which will provide conversions for the fields in their

public data models to a common data model format. This is called data

equivalence. For example, organizations may record the same concepts using

different but mutually convertible data types. This may be as simple as the

confusion between newtons and foot-pounds that doomed a recent NASA

Mars mission or may involve a more complex data conversion, say from

latitude and longitude to Universal Transverse Mercator coordinates (UTMs).

Though the mapping search establishes a semantic equivalence, in order to use it,

however, the two elements must employ identical data types or we must also find a

conversion path from one data type to the other. This leads to establishing data

equivalence.

However before any attempt is made to describe the proposed framework for any data

exchange in detail, it is important to look at the network protocols and directory services

which play key roles in the architecture. These are therefore described in the next two

chapters.

29

3.0 NETWORK PROTOCOLS

When an organization wants to engage in an interaction of some kind with another

individual or organization, there are two things that need to get sorted out up-front:

1) What is the structure and syntax of the language we are going to speak (i.e.,

what messages and data are we going to exchange, and how?);

2) What are the underlying semantics behind this language (i.e., in a real-world

sense, what does it mean to give a value of 58 with a label of "GE" attached to

it?)

This need for structure and semantics arises whether the interaction is between two

people, a person and a computing device, or two computing devices. The context that has

the most interest for researchers is the interaction between two computing devices, where

money is involved in the conversation.

Until very recently, online interactions were typically done in one of two ways. A digital

exchange can occur in a direct, tightly coupled connection, where the structure and

syntax of the messages are encoded into object interfaces and the parties engage in

remote method calls (over CORBA/IIOP, RMI, DCOM, etc.). Alternatively, the

connection can be more loosely coupled, defined in terms of GET/PUT arguments on

30

well-defined URLs (e.g., validate a credit card transaction by making a request in the

form of POST arguments to a particular SSL-enabled URL).

Data exchanges are handled within these contexts in various ways: as method arguments;

as URL arguments; as structured data streams generated from either of these sources; or

sometimes even as out-of-band direct database transactions. The semantics of these

exchanges can be local and customized, or in rare cases, there may be well-known, high-

level APIs in play, such as an e-commerce component library or widely published and

well-documented EDI (Electronic Data Interchange)-based protocols.

XML, arose to address the need for a common, flexible context for defining the structure

and syntax of messages and data. This was really a return to the SGML roots of HTML,

which by 1996 had many presentation-specific details incorporated into its syntax. In an

XML context, Document Type Definition (DTDs) and XML schemas provide a well-

defined format for specifying (and, more importantly, sharing) the structure and syntax of

an exchange. The semantics and rules of the exchange are agreed upon as part of the

ancillary elements of the DTD/schema documentation. For example, "a 'Position' tag will

contain data representing the location of a concrete mix truck within five minutes of the

time the tag was generated at the source," or, conversely, "when asked for a location, a

compliant AcmeXML participant will respond with a well-formed 'Position' tag."

It is only natural to think of using XML in an online-messaging or remote-method

context, and that is what happened next. XML-RPC (Remote Procedure Call) came

around 1998 as a way to encode remote method calls and responses in an XML-based

31

format, and as a way to transmit these remote method payloads over HTTP. Simple

Object Access Protocol (SOAP) evolved out of the same work that created XML-RPC.

The interesting thing about this effort is that it is really a move back to the days before

distributed object protocols were developed. The RPC protocol is a scheme for encoding

remote procedure calls into a standard representation, then serializing these calls onto the

wire and transmitting them to a remote RPC peer, where they are deserialized, processed,

and results are similarly encoded and returned. Distributed object protocols came about

as a way to dissolve the interface between RPC capabilities and object-oriented

environments like Java and C++. Once the up-front work is done to define a remote

object and implement its methods, remote method calls are made in the code by calling

methods on remote object "stubs," which are obtained from a remote service. No more

complications with RPC encodings of method arguments and responses: The distributed

object system handles all this when a method call is made on a remote object stub.

SOAP simply uses XML as an encoding scheme for sending request and response

parameters with the help of HTTP as a transport. It consists of a small number of

abstractions like the SOAP method, which simply is an HTTP request, and response

complying with the SOAP encoding rules. XML-RPC and SOAP roll the clock back to

RPC, then move it forward again using XML as the encoding context instead of object

interfaces. Then they specify a way to deliver XML-encoded data and RPCs over HTTP.

The idea here is to encapsulate the services at a different level and export an XML face to

the world, rather than object interfaces.

32

Stepping back for a moment, it is worth asking why we need a protocol like SOAP at all.

Given that a web service involves exchanging information encoded in XML, there is

nothing to stop two parties from agreeing on a given XML vocabulary and structure,

effectively defining their own protocol. However, this means that each pair of endpoints

essentially defines an ad hoc protocol. Therefore, given n endpoints the potential number

of protocols is n(n-1)/2. While implementing any single protocol may be a reasonably

simple task, when n is of a significant size the implementation burden becomes quite

significant. Having a standard protocol, rather than many ad hoc protocols, eases the

implementation burden by bringing uniformity to certain aspects of communication. This

ease of implementation leads, in turn, to processing facilities being built into other

software, for example, server products, client products, toolkits, and operating systems.

This frees the implementer of a web service (or clients of the service) to concentrate on

the pieces specific to that service, rather than on the generic pieces that all web services

require.

XML Web Services are being hailed by the industry as the enabler for freeing

information from the confines of HTML. Using SOAP, data can be encoded in XML and

transmitted using any number of Internet protocols. So long as both the sender and the

receiver can agree upon the message format-that is, the protocol that SOAP defines-

information can easily be exchanged in a platform-independent manner. An organization

Web service can receive a SOAP payload from a remote service, and the platform details

of the source are entirely irrelevant. Anything can generate XML, from Perl scripts to

C++ code to J2EE application servers. So, as of the 1.1 version of the SOAP

33

specification, anyone and anything can participate in a SOAP conversation, with a

relatively low barrier to entry.

The following request is an example of a SOAP message embedded in a HTTP request.

The complete code is shown in Appendix A.

Organization A is requesting the namespace identification of Organization B.

Host: 209.110.197.12 /1 address of computerfrom where the request is made.

SOAPMethodName: "URL"#getidentification

// declaring the name offunction which will be used in the SOAP message body.

<se:Body>

<m:getidentification xmlns:m="URL">

<org>OrgB</org> //requests the namespace identification of Org. B

</m:getidentification>

</se:Body>

Following is the response message from OrgB, containing the HTTP message with the

SOAP message as the payload.

HTTP/ 1.1 200 OK //response is successful

<se:Body>

<m:getidentificationResponse xmlns:m="URL">

<result>url//xxxx</result> // the namespace of Organization B is returned

</m:getidentificationResponse>

</se:Body>

The following SOAP message is sent to Org B requesting for the details of the object

Destroyer

34

SOAPMethodName: "URL"#getobjectdetails /function name that is being used

<se:Body>

<m:getobjectdetails xmlns:m="URL">

<objID>5678</objID> II requests details of object# 5678

</m:getobjectdetails>

</se:Body>

Following is the response message from OrgB, containing the HTTP message with the

SOAP message giving the name and schema identification of the object destroyer.

<se:Body>

<m:getobjectdetailsResponse xmlns:m="URL">

<objname>url//xxxx</objname> // returns the object name

<schema>yyyyy</schema> //returns the schema name it belongs to

</m:getobjectdetailsResponse>

</se:Body>

Some SOAP servers will map RequestURIs to class names, dispatching the call to either

static methods or to instances of the class that live for the duration of a request. Other

SOAP servers will map Request-URIs to objects that are kept live over time, often using

the query string to encode a key.

3.1 Pros and Cons of using SOAP

One of the major aspects that has led to SOAP gaining popularity is its simplicity in

accomplishing remote object/component/service communications (hence its name). It

formalizes the vocabulary definition in a form that is now familiar, popular, and

accessible (XML). If one knows XML, it is easy to figure out the basics of SOAP

35

encoding quickly. In these regards, SOAP has an edge on the predominant remote object

protocols (RMI, IIOP, DCOM). RMI is very straightforward if one knows Java, but it

requires Java running on both ends of the connection. Hence, it puts additional platform

restrictions on the participants. CORBA decouples the protocol from the runtime

environment but its framework is relatively complex, and there is a learning curve to

invest in before adapting enterprise-wide CORBA systems. Microsoft COM/DCOM also

has platform restrictions.

However, the real dividing line is how the vocabulary is defined between the parties. In

the case of RMI, CORBA, and DCOM, how to speak to a remote service is encoded in

the object interfaces that it exports, along with the semantics defined behind these

interfaces. So one has to know and understand the Java, IDL, or MIDL definitions for

these interfaces in order to interact with them. With SOAP, one still needs to know the

interface to your service (What requests do you respond to? What data types can you

understand and recognize?), but the interface can be given to the others in the form of

XML.

As the saying goes, nothing is perfect. One should be aware that SOAP has its fair share

of imperfections. The SOAP specification contains no mention of security facilities. One

of the advantages of SOAP is that it runs over HTTP, which eliminates firewall problems.

No enterprise will want to open up a channel to make direct, unprotected method calls on

their Web services. Some will build custom security measures on top of SOAP, to ensure

36

that authentication, authorization, and accountability are preserved. This tosses a great

deal of the interoperability of SOAP out the window.

Others will fill this security gap at the network level, sniffing HTTP traffic passing

through their firewalls, and restricting SOAP payloads to privileged IP addresses and

ports. However, this leads to a trade off of portability due to the network administration

overhead. If and when SOAP payload filters become common services from firewall

vendors, this overhead will go away. But this only makes sense if SOAP traffic is well

defined and detectable.

However, this leads to another issue. The current version of the SOAP specification (1.1)

does not specify a default encoding for the message body. There is an encoding defined

in the specification, but it is not required that one use this encoding to be compliant; any

custom encoding that is chosen can be specified in the encodingStyle attribute of the

message or of individual elements in the message. The default encoding spelled out in the

spec may become a de facto standard by SOAP implementations, but the standard needs

to be made it explicit so that SOAP interoperability can be well-defined and testable.

As vendor activity heats up around this, there is every possibility that vendors will start to

use the "SOAP compliant" label rather loosely. If they do indeed start to use custom

encoding styles, the adoption of SOAP will suffer from lack of interoperability. This may

sound like the mistakes made with CORBA in its early days by not specifying a standard

wire protocol. CORBA suffered for this lack of interoperability, and SOAP may run the

same risk by leaving this hole unfilled.

37

SOAP is simple, accessible, and very portable but there are various trade-offs involved in

its use. SOAP is very simple compared to RMI, CORBA, and DCOM because it does not

deal with certain ancillary but important aspects of remote object systems. There is a lack

of security provisions. In addition, the specification itself explicitly excludes distributed

garbage collection, objects-by-reference, and remote activation as being not part of the

core SOAP specification. The SOAP model also does not include any provisions for

object lifecycles, session/state management, or distributed transactions. There are ways to

add custom header entries to a SOAP message to address some of these issues (the SOAP

specification includes examples that show custom transaction-oriented header fields), but

these custom services layered on top of the standard SOAP model also severely limit

interoperability.

If SOAP is expanded to include all of these services, it would bloat significantly, and

would get much more complicated. Rather, it needs to expand to include the strictly

necessary elements, like security and perhaps distributed transactions. Moreover, for the

other issues, like component lifecycles and session management, the SOAP specification

could be amended to include the underlying assumptions about the models in use by

SOAP agents. In other words, define the high-level contracts that SOAP participants need

to satisfy with their underlying implementations and leave vendors and developers the

freedom to continue to use the tools that they want, as long as they honor the specified

contracts. SOAP needs to stay as simple as possible, and it does this by limiting its target

domain to messaging situations where its simplified runtime model is sufficient. The

upshot of all this is that SOAP offers industry support for a new suite of design and

38

implementation patterns, and a way to quickly establish interactions between online

services.

39

4.0 DIRECTORY SERVICES

The most familiar kinds of directories are the ones we use in our everyday lives such as

the yellow pages or TV guide. These are called offline directories. The directories in the

computer and networking world are similar in many ways but with some important

differences. These directories are called online directories and are different in the

following ways. Online directories are

Dynamic: They are up-to-date with information and are timely maintained by

administrators. Sometimes, administrative procedures are put in place to update

the directory automatically so that whenever there is a change, it is reflected

immediately to users.

Flexible: They can easily be extended with new types of information with

minimum additional cost. They are typically designed to be extended without a

need for a redesign. Another way they are flexible is by supporting several kinds

of data organization simultaneously therefore providing more advanced types of

searches.

Secure: Directories centralize information, allowing access to that information to

be controlled. Clients accessing the directory can be identified through a process

called authentication. The directory can use the identity established in conjunction

40

with access control lists (ACLs) and other information to make decisions about

which clients have access to what information in the directory.

Personalized: By identifying users who access the directory and profiling

information about them, directory services can easily provide personalized views

of the directory to different users. The personalization could be based on interests

explicitly declared or could be based on the client's previous interactions with the

service.

A directory service provides a way to manage the storage and distribution of shared

information. Directory services are simple databases and hence provide search and filter

functionality. Instead of locating an entry only by name, these directory services allow

locating entries based on a set of search criteria. Naming services and directory service

provide name to object mapping, and directory services provide information objects and

tools for searching for them.

Client EntryAr-

Na e

Name Name

Entry., Entrr

Directory Service

Figure 4-1: Naming & Directory Service

41

Directory services, long overlooked, are becoming critical components of an

organization's overall information systems infrastructure. As information systems and

networks continue to evolve and grow, applications and users are becoming more

dependent upon access to some type of directory information. Activities associated with

the movement of people throughout an organization affect many different systems and

databases, each with its own directory and administration interface, resulting in

inconsistency in information.

Early network directories were most often developed specifically for a particular

application. In these proprietary directories, system developers had little or no incentive

to work with any other system. But systems users, in an effort to rationalize their ever-

increasing workload, sought ways to share access to and maintenance of directory

databases with more than one application. This dilemma engendered the concept of the

directory as a collection of open systems that cooperate to hold a logical database of

information. In this view, users of the directory, including people and computer

programs, would be able to read or modify the information or parts of it, as long as they

had the authorization to do so.

This idea grew into the definition of X.500 [3]. Although the X.500 standard coverage

was comprehensive, implementers have criticized it as being too complex and therefore

too difficult to implement. Lightweight Directory Access Protocol (LDAP) offers much

of the same basic functionality as X.500 and can be used to query data from proprietary

directories as well as from an open X.500 service. Although LDAP started as a simplified

42

component of the X.500 Directory, it is evolving into a complete directory service. It has

matured and has added features not found in X.500 and moved into areas not addressed

by the older spec, like APIs and data formats.

Unfortunately, most organizations today are in a state of directory chaos, with multiple

islands of single purpose directories all separately maintained. As directories continued to

expand within an organization, additional problems arose. Enterprises often found

themselves with multiple occurrences of each type of directory, with no easy, cost-

effective way to achieve directory integration. In addition, the movement of people

between locations and departments required the need to access, change and maintain the

affected directories, often increasing the overall workload across an organization and

resulting in duplicated effort.

Finally, since directory services were typically implemented on an application-by

application basis, there was no single organizational entity responsible for maintaining an

enterprise's directory services. Instead, directory services were splintered among multiple

support groups, causing not only technological integration issues, but also inconsistent

directory information, and the political issues associated with who owns the enterprise's

directory services.

Organizations are beginning to tackle the problem of integrating these disparate directory

services into an enterprise-wide service. For many organizations, the current best-case

scenario is to consolidate all of their disparate directories into one of each type of

43

directory. This is a first step towards the ultimate goal- a single, all-purpose directory

service that supports all systems, applications, and devices across the enterprise.

Recent advances in directory services technology have enabled organizations to begin

devising an overall direction for creating an integrated, enterprise-wide directory service.

The widespread adoption of the Lightweight Directory Access Protocol (LDAP) by

vendors is providing a cornerstone for this integration. An integrated directory service

provides the opportunity to reduce the number of directories to manage and maintain,

minimize the data entry points for duplicate information and provide a single point for the

administration of configuration information with a device or user.

Using LDAP, an enterprise can develop a single, logical directory service. This does not

necessarily imply a single, physical directory server. Instead, the directory service will

most likely be comprised of physically distributed directory servers that each supports a

specific domain. However, the difference between this and the chaos that currently exists

is that distributed directory servers will be able to query one another for information

about users and devices using LDAP. The net result is a collection of directories that

function like a single, integrated directory service that can be administrated easily and

centrally.

The current specification of LDAP comprises of features and functions for defining

directory-related tasks like storage and retrieval. The information model is inherited

almost unchanged from X.500 directories and is organized according to collections of

44

attributes and values known as entries. The model is extensible with the ability to add any

kind of new information to a directory. LDAP schemas define the actual data elements

that can be stored in a particular server and how they relate to real world objects. The

collections of values and attributes representing objects such as organizations,

departments and groups are defined in the standard, and individual servers can also define

new schema elements. The LDAP naming model is hierarchical with the individual

names being composed of attributes and values from corresponding entries, while the

LDAP functioning model determines how clients access and update information in an

LDAP directory and how the data can be manipulated. It offers some basic functional

operations such as add, delete, modify, search, compare and modify DN (distinguished

name). Add, delete, and modify operations govern changes to directory entries, while

search locates specific users or services in a directory tree. The compare operation allows

client applications to test the accuracy of specific information using entries in the LDAP

directory, while the modify DN operation makes it possible to change the name of an

entry.

LDAP protocol specifies the interaction between clients and servers and determines how

LDAP requests and responses are formed. The application program interface (API)

details how the client applications access the directory, providing a standard set of

function calls and definitions.

45

4.1 Directory Structure

An LDAP directory is structured as simple tree hierarchy, which conforms to the LDAP

schema and naming models. The naming model is needed to give a unique name for any

entry into the directory, allowing reference to any entry unambiguously. In LDAP,

distinguished names (DNs) are used to refer to entries.

dc= xyzop

dc=abccorp

ci = Johnamith
enbabslensen

LDAP achem4a2ad nDrtinq moye

constructe as tableslistingEatrbte folloe nd by pecii aus

din:triabuesn d2xzop dc!-- i au 2clo mVl
cn oawrbe VleiVle2 au au

rd y Vattu t" midu value* ala

attribute 2 Value I Valu* 2 Value 3 V"lu N
attribute 3Value IValue 2 Value 3 Value N

LOAP =Lightweight directary accesw protocol

Figure 4-2: LDAP Directory Structure

The topmost (root) node is typically the domain name component (dc) for a company,

state, or organization. Below that are entries for organizational units, like branch offices

and departments, followed by common name (cn) entries for individuals. All entries are

constructed as tables listing attributes followed by specific values.

46

4.2 Java Naming Directory Interface (JNDI)

JNDI is an API (Application Interface) specified in JavaTM that provides naming and

directory functionality to applications written in Java. It is designed especially for Java by

using Java's object model. Using JNDI, Java applications can store and retrieve named

Java objects of any type. In addition, JNDI provides methods for performing standard

directory operations, such as associating attributes with objects and searching for objects

using their attributes.

JNDI is also defined independent of any specific naming or directory service

implementation. It enables Java applications to access different, possibly multiple,

naming and directory services using a common API. Different naming and directory

service providers can be plugged in seamlessly behind this common API. This allows

Java applications to take advantage of information in a variety of existing naming and

directory services, such as LDAP, NDS (Novell Directory Services) [4], DNS (Domain

Name Service) [5], and NIS (Network Information Service) [6], and allows Java

applications to coexist with legacy applications and systems.

Using JNDI as a tool, the Java application developer can build new, powerful and

portable applications that not only take advantage of Java's object model but are also well

integrated with the environment in which they are deployed.

The computing environment of an enterprise typically consists of several naming

facilities often representing different parts of a composite namespace. For e.g. an Internet

Domain System may be used as the top level naming facility for different organizations

within an enterprise. The organizations themselves may use a directory service such as

47

LDAP or NDS or NIS. From a user's perspective there is one namespace consisting of

composite names.

The JNDI architecture consists of an API (Application Programming Interface) and an

SPI (Service Provider Interface). Java applications use this API to access a variety of

naming and directory services. The JNDI SPI provides the means by which different

naming/directory service providers can develop and hook up their respective

implementations so that the corresponding services are accessible from applications that

use JNDI.

Java Application

JNDI

JNDI API

JNDI SPI

I LDAPJND-COA JNetware

Figure 4-3: JNDI Architecture

In addition, because JNDI allows specification of names that span multiple namespaces,

if one service provider implementation needs to interact with another in order to complete

an operation, the SPI provides methods that allow different provider implementations to

cooperate to complete client JNDI operations. This allows the user to navigate across

several directory and naming services while working with seemingly only one logical

namespace [7].

48

The next chapter describes the data exchange framework, which utilizes LDAP to locate

web services that provide data conversion facilities.

49

5.0 InfoX ARCHITECTURE

Our goal is to design a Data Exchange architecture with the following attributes in mind.

" Scalability
" Performance
" Security
" Manageability.

Important issues to be decided on include how inter-system communication takes place

and where the processing is done. We have at the least two common architectures

available to evaluate.

5.1 Peer to Peer

A peer-to-peer architecture as depicted in Figure 5.1, is a truly distributed system.

Examples include Sun's JXTA [8] implemented in Java and various implementations of

the Gnutella [9] protocol. The primary advantage of such a system is the absence of a

single point of failure. This advantage comes with an associated weakness, namely the

absence of a central control point. From a pure security point of view, we would like to

maintain a central checkpoint for all data exchange and control. Peer-to-Peer is still an

evolving technology and has not yet fully matured. Although there are partially

implemented peer-to-peer architectures such as Napster, it is still a long way before the

infrastructure becomes fully available for implementing it in its pure form.

50

Peer to Peer Architecture

Works ion Wo tation

Peer Peer

Workstation
Peer

Figure 5-1: Peer-to-Peer Architecture

5.2 Hub and Spoke.

The alternative to the first approach is a truly centralized system as depicted in Figure 5.2

below. We envision a large number of organizations using this system to exchange

information, Hence the system needs to be scalable, safe and easily managed.

Hub and Spoke Architecute

Organization A

Organization H Organization B

Organzatin G nfoXOrganization C

_frganization F Organization D

Organization E

Figure 5-2: Hub and Spoke Architecture

51

A Hub and Spoke kind of architecture meets most of the requirements highlighted at the

beginning of this chapter to a satisfactory level. Although a large number of organizations

will participate in the exchange, the order of magnitude will be in tens of thousands as

opposed to millions and therefore will meet scalability requirements. Since most of the

information goes through a common server, there can be better controls established to

provide the security required for data exchange between organizations. This architecture

has the following added advantages, which cater for some of the other requirements such

as manageability.

5.2.1 Tracking

The architecture provides a centralized location for logging and tracking. Carrying out

reporting does not involve visiting the tracking databases of multiple machines - a

coherent view is available from a single database.

5.2.2 Control

An emergency shutdown of the system can be accomplished quickly by bringing down

just the hub. This can be useful in the event of a concentrated network attack or a fast

spreading virus.

5.2.3 Filtering / Transformation

The architecture provides the basis for filtering or transforming files that travel through

the hub. For example, if a hub-resident business process wishes to prevent a file from

being forwarded on, it can do so. It might carry out such filtering based on keywords,

type, virus checks, or other criteria.

52

5.2.4 Reduction of Interdependencies

Problems involving the availability of subsystems are not an issue in this kind of

architecture. Any problem that arises can be easily isolated and that part of the system

can be decoupled from the remaining system so that a failure in one system does not

impede the operation of others.

5.2.5 Forensics

Rather than having to scrutinize every possible peer-to-peer pathway in the event of

difficulties, operators have fewer possibilities to inspect.

5.3 Proposed Architecture

The proposed software architecture consists of five major modules as seen in Figure 5.3.

" Security Infrastructure

" Transport (Communication) Layer

" Query Engine

" Rule Set Generation Engine

" Data Transformation Engine

The security infrastraucture allows for proper authentication between client organizations

to exchange data through InfoX server. The transportation layer accommodates various

protocols and is responsible for delivery of data between the various modules on the

client side and the InfoX server. The query engine module is responsible for sending and

analyzing requests between the client and the InfoX architecuture. The rule set generation

engine provides the guidelines on how the data transformation engine can transform data

53

from one data type to another. These five modules are further described in detail in the

following sections.

Client

(Data Acces

Legacy Query Engine

s Layer

Data Transformation E ngine

Map Cache

Map Processor

Resource Locator

Transport Layer

InfoX

Authentication

Data Access Layer

Q uery E ngine Rule Set Generator E ngine
.......................

Query Parser And
Translator Rule Set Cache

Query Plan Generator

Rule Set Generator

Query Scheduler

K Qury valutorResource LocatorQuery Evaluator

Figure 5-3: Data Exchange Architecture

54

5.3.1 Security Infrastructure

The data that will be exchanged through this system could be highly confidential and

sensitive. Therefore, security may be of paramount importance to protect and ensure the

integrity of the data being exchanged. The security system that will be used not only has

to provide the best possible security but also has to scale to handle the huge volume of

data that will be passing through the system. So it is crucial to choose the right kind of

security infrastructure that should be used for this system.

All communication between different organizations that will be using this system will use

the Transmission Control Protocol/Internet Protocol (TCP/IP) as the underlying protocol.

TCP/IP allows information to be sent from one computer to another through a variety of

intermediate computers and separate networks before it reaches its destination.

The flexibility TCP/IP offers makes it an ideal choice for the protocol to be used for all

communications. TCP/IP is also the de-facto protocol that is used for all internet

communications. So no additional infrastructure is necessary for the system to work. At

the same time, the fact that TCP/IP allows information to pass through intermediate

computers makes it possible for a third party to interfere with communications in the

following ways:

. Eavesdropping. Information remains intact, but its privacy is compromised. For

example, someone could learn your credit card number, record a sensitive

conversation, or intercept classified information.

55

. Tampering. Information in transit is changed or replaced and then sent on to the

recipient. For example, someone could alter an order for goods or change a

person's resume.

. Impersonation. Information passes to a person who poses as the intended

recipient. Impersonation can take two forms:

o Spoofing. A person can pretend to be someone else. For example, a

person can pretend to have the email address f oo@example . com, or a

computer can identify itself as a site called www. example.com when it is

not. This type of impersonation is known as spoofing.

o Misrepresentation. A person or organization can misrepresent itself. For

example, suppose the site www. example. com pretends to be a furniture

store when it is really just a site that takes credit-card payments but never

sends any goods.

A set of well-established techniques and standards known as public-key cryptography

[10] provides a solution to all the above issues. Compared with symmetric-key

encryption, public-key encryption requires more computation and is therefore not always

appropriate for large amounts of data. However, it's possible to use public-key encryption

to send a symmetric key, which can then be used to encrypt additional data.

5.3.1.1 Message Authentication Code
A message authentication code (MAC) corresponds to a short and quickly

generated/verified non-transferable signature on a document. Since it cannot be

transferred (i.e., verified by a participant other than the one it was intended for) it cannot

be used for contracts or receipts (if these need to be saved in case of a conflict.) but can

56

be used for participants to make sure that the message they obtain is from the person they

expect. Since they are very efficient, this makes them very useful for individual, small

messages in interactive protocols. Here, all of these messages can later be signed if a

receipt is needed. MACs require that the sender and the receiver of the authenticated

message both know a (symmetric) secret that is used both for generating and verifying

the MAC. This secret can be produced by one of the participants, and sent over in an

encrypted form to the other, using a public key encryption method. MAC's can be

implemented using stream ciphers, e.g., RC5 [11].

5.3.2 Transport Mechanisms

Because of the practical limitations and the infrastructure that is already in place at

different organizations it becomes necessary to support a wide range of transport

mechanisms.

The communication (application level) protocols that we have identified are:

" SMTP

" A custom protocol using TCP/IP

" SOAP

" FTP

" HTTP

" XML/RPC

" Corba

Currently SOAP is evolving to be the defacto standard and is soon replacing other

communication transport mechanisms. SOAP is an open standard with a growing body of

57

developers and vendors supporting it. As more vendors offer SOAP products and

services, the advantages of using SOAP will become more pronounced. As outlined in

chapter 3, there are many advantages that SOAP brings to the data exchange transport

mechanism.

5.3.3 Query Engine

The Query engine presents a common, homogeneous language interface to access

information present in the distributed system. It is the responsibility of the query engine

to abstract out all the peculiarities and dissimilarities of the different systems and present

a common interface to all the systems. It makes sense of and executes queries that come

its way.

The different modules within the Query Engine are.

5.3.3.1 Query Parser and Translator
It is the duty of the Query Parser to translate all the requests for information that are sent

to into an internal format (binary format that can be executed).

5.3.3.2 Query Plan Generator and Optimizer
The execution plan detailing the steps that have to be followed to generate the result is

created by this module. In this process of generating the plan, it also optimizes the route

that has to be followed to extract the information.

5.3.3.3 Query Evaluator
Once the optimized plan has been generated, it is the responsibility of this module to

actually execute it and generate the result. Once the query has been executed and the

required information extracted the binary information is converted back into an external

format, which everyone understands.

58

5.3.3.4 Query Scheduler
Since this is a distributed system and also since the request for information could be

made in an asynchronous manner an efficient scheduling algorithm is necessary. A

scheduling system also ensures that critical requests for information are serviced first.

5.3.4 Rule Set Generation Engine

The rule set generation engine is the most crucial component in the whole system. It

generates the rules according to which data is transformed in the system. This makes it

possible for the different systems to talk to each other.

5.3.4.1 Maplets
The term maplet, which is uniquely defined for our architecture, is in its most general

form, a binary executable, run in the Data Transformation Engine. The Rule Set Engine

decides the maplets, which are necessary to perform the different transformations. A

comprehensive description of maplets can be found in the section dealing with the data

transformation engine.

5.3.4.2 Rule Set Generation Engine Implementation
This engine analyzes the sample response format (an XML document) for a query result.

Depending on the namespace of the XML document that has to be transformed and by

looking at the root node of the document, the rule set engine queries the directory for the

appropriate maplet to do the transformation. If a matching maplet is found then it is

added to the rule set. On the other hand, if a matching maplet is not found, it then looks at

the next level of nodes and tries to find a maplet to transform these nodes, this process is

repeated until the last individual element of the XML document is reached. The actual

XML document generated as the response to the query will consist of repetitions of the

59

above data elements. By repeatedly applying the rule set, the whole document can be

transformed. The Rule Set Generator engine thus builds the rule-set required to transform

the data to the common format.

Rule Set Generation Process

Rule set generation engine The root node of the Query the Directory for
receives a new response document and the XML a suitable maplet that

format for which a rule set Namespace of the can transform that
has to be built. document are extracted. node.

For each of the child nodes,,

Extract all the S hould a Maplet be used
child nodes. No to transform this node

Yes

Return completed Add Maplet to
Rule Set Rule Set

Figure 5-4: Rule Set Generation Process

The rule set generator engine has to build two rule sets. Let the query originate from

client A. Let client B provide the answer. One rule set transforms the query results from

B to the common data format. Another rule set transforms the data from the common

format to a format that client A understands. The rule set generator engine just builds the

rule sets. The actual processing of the information takes place on the client side. This

keeps the system scalable, as the rule set generator engine does not waste its resources in

running continuous transformations, but just plays a supervisory role.

60

5.3.5 Data Transformation Engine

Data transformation engine does the actual transformation of data according to the rule

sets built by the rule set generator. Here we use the concept of Data Map. A Map contains

information on how to convert data in one format into another format. An example of a

Map could be a XSLT sheet that transforms an XML document into another XML

document. The components of the engine are

* MAP Processor

" MAP Cache

" Resource Locator

" Data Access API

5.3.5.1 MAP Processor
This is the module which actually transforms data across different Models.

5.3.5.2 MAP Cache
The Map processor uses different Maps to do the data transformations. The maps that are

used can be loaded as required. But before they can be used, they have to be compiled,

which is time consuming. Since the system has to be designed for high volumes, caching

all these objects in memory can have tremendous performance boosts.

5.3.5.3 Resource Locator
During the process of applying the MAPS to the data a number of resources have to be

used and different services also may have to be utilized. So the MAP processor uses the

resource locator to access the different resources that have to be used in the process of

data transformation.

61

5.3.5.4 Data Access API
This layer provides a uniform and consistent way of accessing data from disparate data

sources. The different data sources could involve Relational Databases, LDAP compliant

Directory Services or Legacy Data Stores.

5.3.5.5 Data Transformation Engine Implementation

5.3.5.5.1 Maplets
A maplet is defined as a component of the system, which offers Data Transformation

Service from one data model to another data model. Enforcing a common scheme on all

the data transformation services provides a simple and consistent mechanism, which

allows new collaborative applications to be developed and deployed. It also makes the

management of these services very easy for the collaboration server.

A maplet lifecycle involves the following processes (Figure 5.5):

" The maplet is loaded into the Data Transformation engine and initialized.

" The maplet is used by the Data Transformation engine to handle one or more than

one data transformation requests.

" When not in use, the maplet can be cached for future use.

" Maplet is unregistered from the Data Transformation Engine and is stopped.

" Typically, each Maplet will have its own set of resources using which it can

provide the Data transformation services. Depending on the demand for a

particular transformation service, the data transformation can have more than one

instance of the maplet active at any given time.

62

Maplet Lifecycle

LOAD
Data Transformation Engine 4 - - - - - - - - - - - Maplet -

Client

Maplet Handle Data
Transformations

Data Transformation Engine Client

UNLOAD
Data Transformation Engine - - - - - - - - - - - - -- Maplet - - - - - - - - - - - - - - - - -

Figure 5-5: Maplet Lifecycle

5.3.5.5.2 Maplet Implementation Using XSLTs
XSLT presents a very elegant, extensible and convenient way of creating Maplets. All the

data transformation rules and processing can be expressed in an XSLT. So every maplet

will have an XSLT associated with it. For any XML input the maplet receives, it applies

the XSLT on it and returns the new XML document that was produced from it.

Using XSLTs to transform information from one format to another format.

XSLT

XML Document (This contains the XML Document
(Contains Data in Format A) information and instructions Contains Data in Format)on how to convert data from/(cnasDtanFomtB

Format A to Format B)

Figure 5-6: Using XSLT to transform information from one format to another format

63

The data transformation from one model to another can also involve complex processing.

For example, in one data model temperature could be measured in Kelvin and in another

model, the temperature could be measured in Fahrenheit. To transform temperature data

across these data models, one has to convert data from Kelvin to Fahrenheit. This is an

atomic transformation ie transformation of the leaf node data type. This functionality

could be provided as a Web Service over by the internet by one or more organizations.

As part of the transformation, it might be necessary to utilize the services of one or more

of the Web Services.

Every organization's data model can be split into certain atomic entities. There could be

more complex entities, which consist of one or more than one atomic entity. So any

transformation that we do on the data model is comprised of transformation operations on

the atomic entities. The process of data transformation would have been much simpler if

there was a one to one mapping between these atomic entities across different data

models. But this is hardly every the case. An atomic entity in one data model could be

mapped to more than one atomic entity in another data model. To handle these cases we

have two different kinds of maplets.

5.3.5.6 Simple Maplets
A simple maplet handles data transformations of the atomic entities in a data model. So

for every atomic entity in a data model there will be a corresponding Simple Maplet,

which transforms it into another Data Model.

64

5.3.5.7 Complex Maplets
A complex maplet deals with the transformation of more than one atomic entity. In doing

so it could use more than one simple maplet or do it all by itself.

Example:

Consider the data model for a product order. The atomic entities in an Order are Product,

Shipping Address and Billing Address. Therefore, a maplet, which transforms an Order

across different data models, is a complex maplet and in doing the transformation, it

could use the simple maplets for Product and Address.

5.3.6 Repository for Mapping Information

Since we will be dealing with an enormous amounts of information that will be used in

the process of applying these maps, how we store the mapping information is of

paramount importance. The first and obvious choice is to use a relational database

management system (RDBMS). Another serious contender to this choice is a Directory.

In the following table, we evaluate the pro and cons of these choices.

65

Directory Relational Database

Data that is read frequently but updated Data that is updated frequently. Examples:
much less frequently. Examples: names, transactions, account balances, shopping
addresses, phone numbers, passwords, cart contents.
interest profiles.

Data that lends itself to hierarchical Data that has complex relationships.
organization. Examples: names in an Examples: sales orders, work orders.
enterprise organization, customers in
geographical regions.

Data that is general-purpose, and tends to Data that is of use solely to a specific
be used in many disparate systems or that application. Example: salary data in the
may turn out to be useful to future HR system; transactions and balances
applications. Examples: names, addresses, specific to a particular system.
phone numbers, passwords, interest

profiles, locations, reporting structure.

Data that is required at a variety of sites. Data that is needed for a particular program
Example: User profile information for a executed at a particular site. Example: site
user who moves between computers. specific configuration information.

Data that is required for quick read access Data that can be obtained sufficiently
and where network considerations inhibit rapidly from a centralized data store.
access to a central data store. Example: Example: Really dependent on the network
data required at remote offices that are bandwidth, database retrieval performance
connected via a slow link. and ability to bi-directionally replicate

database data.

Data that can tolerate a latency in accuracy. Data that requires real-time update for
Example: Credit limit accuracy. Example: Current credit

extended to date.

After considering the pros and cons of Databases and a Directory Server for storing the

mapping information, it turns out that the Directory is a better way of storing the mapping

information. There are many reasons for this but the primary one being that a directory is

optimized for read only (due to less frequency updates) whereas the database is optimized

for both read and write. This will save a significant amount of overhead thus allowing

quick read access. In addition, directories can easily be exposed to the internet without

much security risk while it is difficult to expose a whole database to the internet.

The following information is stored in the Directory.

1. Authentication Information.

2. Maplet Information, i.e., which maplet to use for data transformation from one

model to another model.

3. A directory of all the web services that are being offered by different

organizations/systems that can be used in the data transformation process.

66

In the previous chapter, significant detail has been provided on directory services

such as LDAP, which InfoX hopes to use extensively to obtain the required data

conversions sources.

5.4 Case Scenario

5.4.1 Problem Statement

An example scenario in a hypothetical business situation is described below.

We have three companies in this scenario. Company X makes a widget W that is sold all

over the country. A maintains a database where it tracks the number of widgets it supplies

to its distributors, superstores Y and Z. X would like to change its advertising policy for

the widget by targeting states where sales of W is less than its competitor made by

another company. For this, it needs regional sales data for its widget. Unfortunately, it

does not have this information, but superstores Y and Z surely will. X decides to ask Y

and Z for the relevant data. Y and Z maintain their own sales data. Y stores point of sales

data, i.e., number of widgets sold per zip code. Z is a much bigger chain and partitions

out sales data according to states where it has franchisees. Y and Z are competitors, so

while they agree to give X the data it needs, they would like their data to be kept secret

from each other.

5.4.2 InfoX Solution:

The InfoX Architecture Engine works as follows (see Figure 5.7 for the flow chart)

1. Client X would make a query request to InfoX Engine

67

2. The Query Engine of InfoX will parse the query, generate a plan, and evaluate it.

Here, the query engine will identify the data source (client Y) from which it needs

to obtain the requested information.

3. Client Y will receive the query request.

4. The query engine of Client Y will execute the query and send feedback to InfoX

on the response format of the query request.

5. InfoX Rule Set Generator analyses this feed back and begins to generate rule sets

which are explained below:

* Rule set Y takes Client Y's data and transforms it to the common data

format. A special maplet which is obtained from a webservice located

through a directory service is used to transform the zip codes to their

respective states. The common data format encapsulates number widgets

sold per zip code.

0 Rule set X is generated by the rule set generator to transform data from the

common format to the format required by Client X's data store.

6. The rule set Y is then applied by the Data Transformation engine of Client Y to

the results obtained by the query engine in step 4 above. The InfoX rule set

generator engine will set up the necessary infrastructure needed for securing this

transaction. The data transfer is then monitored as client Y processes the data into

the common format and sends it across to X for it to decode. The outcome will

create the data in a common data format on which, Client X data transformation

engine can now apply the rule set X on and convert it into a Client X required

format.

68

Data exchange Flow Diagram - Case Example

Client X InfoX Client Y/Z

Query Process
Query

Determine
Data

Source

Waitfor Rj~eSetA Buld ule uleSetrocess

Query APIPocs

Answer sQtsA&

Rule Set Generator
Engine

sponse Furmat
Analy se

Data

Pro c s s
Wait for R le S., A Build Rule Rule Set ibAnsw er
Answer sets A & B with Rule

set B

roessA rnatoL~ata Monitor

Result!
Conclude

Figure 5-7: Data Exchange Flow Diagram - Case Example

69

Similarly, the process is repeated for Client Z to obtain the required information. Only

now, Rule set Z is easier. Client Z returns number of widgets sold per state instead of by

zip code.

5.5 Conclusion

As was set out at the beginning of this thesis work, the proposed Data Exchange

architecture should have all the important attributes such as scalability, performance,

security and manageability. These attributes were addressed in the following ways:

Scalability: This has been addressed in many ways during the design. For

example, we have designed the rule set generator engine to build only the rule

sets. The actual processing of the information will takes place on the client side to

keep the system scalable, so that the rule set generator engine does not waste its

resources in running continuous transformations. The concept of a common data

format is also of importance. This allows the system to scale. If the transforms

were done directly between clients, we would need 0 (N*N) rule sets to transform

successfully among a total of N clients. The use of the common transform

language cuts this number down to 0 (N).

Security: This has been addressed at various levels of the data exchange process

by using well-established techniques like public-key cryptography.

70

Manageability: By using a truly centralized system, a large number of

organizations can use this hub and spoke architecture system to exchange

information without many interdependencies and hence is easily manageable. In

addition, any changes in common data formats will not lead to an intensive over

haul of the data model on the client side thus making it easy to manage this data

exchange process over long periods during which technology and standards are

bound to evolve.

Performance: We have identified areas within the architecture where performance

issues needed to be addressed. For example, the Map processor uses different

Maps to do the data transformations and need be loaded as required. This can be a

time consuming exercise, as each map may need to be compiled. Since the

system was designed for high volumes, caching all these objects in memory could

give tremendous performance boosts. The same could be said for maplets when

being loaded into the data transformation engine. When not in use the maplet

could be cached for future use to speed up the process.

The next chapter will highlight the issues that were set out at the beginning and how the

proposed architecture has addressed those issues. It also gives a brief insight on the

directions for future research and development of the architecture.

71

6.0 CONCLUSION

With recent globalization trends, organizations increasingly have to exchange

information between each other. The Internet is frequently being used as a global

infrastructure for data exchange between autonomous participants. The complexity of this

exchange process magnifies when an organization has to interface with others for B2B

communication. One of the biggest challenges facing organizations today is integrating

the multitude of different information systems that have been implemented over the

years. The problem with these kinds of inter-organizational data exchanges is that they

involve a large number of information systems, which do not necessarily share a

consistent data model. They require the ability to exchange semi-structured data through

some channel.

One approach is for every organization to conform to a standard, common and consistent

data model. Most of the industry-sponsored initiatives take the approach. Despite a

number failures and partial successes, this architecture will continue to be proposed. The

reason is simple - typically in any asset intensive industry like automobiles, airlines etc.

we see the presence of a few major players and a number of minor players. The major

players have the capability to dictate, enforce and commit resources to such industry-

sponsored initiatives because of the benefits accrued to them. This puts the CIOs of

72

smaller, resource-constrained organizations in a dilemma. CIO's are tasked with

developing a computing and connectivity infrastructure that needs to keep pace with

industry sponsored initiatives in a resource-constrained environment.

Should they integrate their applications with the currently proposed industry standard?

What will happen to investments in integration when the standards change or revise? We

define this risk as standards oriented risk. What happens when newer technologies gain

momentum? We call this technology oriented risk. They need to reintegrate.

Should they choose they do nothing? In this case, they lose out to players that are more

adept. This approach too is very risky and uncertain, because the CIO has chosen not to

deal with standards and technology oriented risk. So what principle should dictate CIO's

integration strategy? Any proposed architecture that reduces the standards risk and

technology risk, and yet solves the problem of B2B communication, is therefore a

potentially a superior architecture from the perspective of the CIO.

This thesis discussed the use of XML technologies for mapping information between

partially consistent data models. The role of XML in semi-structured data exchange [12]

is described together with its application as a framework for data exchange. A description

of an XSLT based architecture, which will take the unshared XML schema elements of

these data models and map them, is outlined. A directory service that provides for the

location of a suitable conversion resource such as XML-RPC / SOAP (a brief overview

of which is included in this thesis) for satisfying the second stage of the discovery

process is also described.

73

The architecture also deals positively with issues such as scalability, manageability,

performance and security, which are, are key components for any practical

implementation to be successful.

However, this thesis is built around an idea. The idea that XML technologies will become

fully evolved, available and flexible with time. Within the architecture described, the

query engine needs to be researched on further. There are many query languages out in

the market but recently, XML query has been gaining popularity and may well be part of

the solution we have been looking for. Chapter 5 dealt with the mapping and data

conversion issues using XSLT and directory services. There was not much emphasis on

the design of the query engine, which consists of the query parser, plan generator,

scheduler and evaluator.

The work presented here, is therefore a long way from a stage when the proposed

architecture could be implemented as it is and produce very robust results. However, it

has laid a foundation for further research and taken a step in the right direction. As I

began to scratch the surface of this project, I quickly learned that there were many areas

that needed detailed research than could possible be included in a single Master's project.

If the work continues, along the lines suggested above and some of these technologies

keep evolving, this architecture will prove extremely valuable to all those organizations

caught up in the globalization frenzy.

74

7.0 BIBLIOGRAPHY

[1] "Namespaces in XML", W3C Recommendation 14 January 1999,

http://www.w3.org/TR/1999/REC-xml-names-19990114/.

[2] Mark Reinhold, "An XML Data Binding Facility for the Java Platform", White

Paper July 1999, http://ava.sun.com/xml/docs/bind.pdf.

[3] Cellucci, Joseph; Hill Russell; Simon. Alan. -- "You Are Here -- New

developments in directory services have managers wondering which way to take

their corporate networks." -- Communications Week. -- November 11, 1996,

issue 637. -- Section: CloseUp - Directory Services,

http://www.techweb.com/se/directlink.cgi?

[4] Novell Homepage, "The NDS Development Environment", White Paper,

http://developer.novell.com/whitepapers/nds1.htm

[5] Nicolai Langfeldt, "The Concise Guide to DNS and BIND", Que, first edition,

November 2000.

[6] Thorsten Kukuk, "The Linux NISI NIS+ HOWTO", White Paper, November

2000, http://www.linux-nis.org/nis-howto/HOWTO/index.html

[7] Richard Monson-Haefel, "The Java Naming and Directory Interface (JNDI): A

More Open and Flexible Model",

http://www.javareport.com/html/features/archive/9802/haefel.shtml

75

[8] Li Gong, "Project JXTA: A Technology Overview", White Paper, April 2001,

http://www.jxta.org/project/www/whitepapers.html

[9] Nelson Minar, "Distributed Systems Topologies: Part]" December 2001,

http://www.openp2p.com/pub/a/p2p/2OO1/12/14/topologiesone.html

[10] Burt Kaliski, "Standard Specifications for Public-Key Cryptography", August

1999, http://grouper.ieee.org/groups/1363/P1363/presentation.html

[11] Johan Borst, "Linear Cryptanalysis of RC5 and RC6", 1999,

http://citeseer.nj.nec.com/248955.html

[12] Eswar Vemulapalli, "The Use of XML Technologies for Mapping Information

between Partially Consistent Data Models" ATRIP Conference, April 2001.

76

8.0 Appendix A

Sample SOAP Code

In this appendix, a complete example of requests and responses written in SOAP

messages are provided.

The following request is an example of a SOAP message embedded in a HTTP request.

Organization A is requesting the namespace identification of Organization B.

POST /Definition HTTP/1.1

Host: 209.110.197.12

Content-Type: text/xml;

Content-Length: 162

SOAPMethodName: "URL"#getidentification

<se:Envelope

xmlns: se="http://schemas.xmlsoap.org/soap/envelope/"

se:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<se:Body>

<m:getidentification xmlns:m="URL">

<org>OrgB</org>

</m:getidentification>

</se:Body>

77

</se:Envelope>

Following is the response message from OrgB, containing the HTTP message with the

SOAP message as the payload.

HTTP/1.1 200 OK

Content-Type: text/xml;

Content-Length: 162

<se:Envelope

xmlns:se="http://schemas.xmlsoap.org/soap/envelope/"

se:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

<se:Body>

<m:getidentificationResponse xmlns:m="URL">

<result>url//xxxx</result>

</m:getidentificationResponse>

</se:Body>

</se:Envelope>

The following SOAP message is sent to Org B requesting for the details of the object

Destroyer

POST /Definition HTTP/1.1

Host: 209.110.197.12

Content-Type: text/xml;

Content-Length: 162

SOAPMethodName: "URL"#getobjectdetails

<se:Envelope

xmlns: se="http://schemas.xmlsoap.org/soap/envelope/"

se:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<se:Body>

78

<m:getobjectdetails xmlns:m="URL">

<objID>5678</objID>

</m:getobjectdetails>

</se:Body>

</se:Envelope>

Following is the response message from OrgB, containing the HTTP message with the

SOAP message giving the schema identification of the object destroyer.

HTTP/1.1 200 OK

Content-Type: text/xml;

Content-Length: 162

<se:Envelope

xmlns:se="http://schemas.xmlsoap.org/soap/envelope/"

se:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

<se:Body>

<m:getobjectdetailsResponse xmlns:m="URL">

<objname>url//xxxx</objname>

<schema>yyyyy</schema>

</m:getobjectdetailsResponse>

</se:Body>

</se:Envelope>

79

