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ABSTRACT

An exploration with two main goals is presented:

1. Modeling a self-contained "intelligent building," the Mars Arctic Research Station (MARS)
habitation unit, and interaction with its users. The modeling effort seeks representation of
invisible aspects of the interactions between the station and its users rather than visible
forms.

2. Examination of how (or if) the modeling process contributes to understanding of the
interactions between human beings and the structures and technological features of their
habitations... particularly when something goes wrong.

The modeling language and associated software chosen for study in this exploration is the
Business Redesign Agent-based Holistic Modeling System (Brahms), developed by a team of
researchers and computer scientists now involved with the joint NASA/Mars Society MARS
project.

The issues and factors relevant to any attempt at modeling human behavior in interaction with
habitable environments are specified. Brahms is described as a potential human-environment-
modeling framework and language, and separately as a software system. The process of
developing a Brahms model of the MARS habitat and a comprehensive analysis of that process
are presented. Recommendations for similar future work with Brahms, as a modeling framework
and language, and separately as a software system, are provided.

Thesis Supervisor: Steven Lerman
Title: Class of 1922 Professor of Civil and Environmental Engineering
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1. Introduction and Context

Scheduled for early summer this year .
c ...... . ...

(2000), an unusual construction project shall ...

begin within a large impact crater, Haughton

Crater, on Devon Island in the Canadian Arctic

(Lee 1999). A relatively small habitable

structure will be built-or deployed-in the

crater, to house would-be explorers of another

world. The planned structure and the activities

of its inhabitants highlight a collaboration

between the Mars Society', a non-profit Figure1.1 - Haughton Crater

organization which advocates exploration of

the planet Mars, and the U.S. National Aeronautics and Space Administration (NASA) 2. The

joint project is called the Mars Arctic Research Station (MARS) 3 . Documented in this thesis is

another kind of exploration, with two immediate goals:

1. Modeling a self-contained "intelligent building," the MARS Station, and its interaction

with its users. The modeling effort sought to represent invisible aspects of the

interactions between the station and its users, rather than depictions of the station's

physical form and appearance.

2. Examination of how (or if) the MARS station modeling process contributes to

understanding of the interactions between human beings and the structures and

technological features of their habitations... particularly when something goes wrong.

1.1 General Context

Certain buildings on the surface of the earth share important characteristics with specialized

life-supporting transport systems such as submarines, airplanes, ocean or space ships, and space

stations. Hospitals, jails, schools for the disabled, nursing homes, mid-ocean oil drilling

1 http://w.marssociety.org/
2 http://wv.nasa.gov/ and http://www.arctic-mars.org/
3 httpJ/honme.marssociety.org/arctic/ C 2000 The Mars Society & NASA. Used with permission.
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platforms and polar science or exploration stations share these characteristics of interest with

such transport systems:

* These are habitable environments serving as comprehensive life-support machines for

short or long terms; the inhabitants are dependent upon the structure and its

associated equipment and personnel for basic life-support, to some extent or totally.

" The inhabitants are not free to leave on momentary notice.

The association is odd, because the operators/inhabitants of submarines and space ships are

able-bodied and trained personnel, while the inhabitants of hospitals, jails, and schools are

unusually vulnerable due to ill health, childhood, or imposed restriction. However, in each of

these environments, whether the vulnerability is due to the attributes of the external environment,

or due to the attributes of the inhabitants, human lives depend upon the structure-the life-

support machine-and its associated equipment and personnel, to perform life-support functions

at all times, without failure.

1.1.1 Problem

Envisioning a future in which all of today's building stock has been replaced by newer

buildings, it is certain that each of those newer buildings will include computer technology is

part of the basic infrastructure performing life-support functions. At present microprocessor-

controlled systems are becoming ubiquitous in all parts of the typical building: the heating

ventilation and air conditioning (HVAC) systems, fire and other safety systems, elevators, locks

and other access control systems, all are rapidly being transformed into computer operated

devices. The trend will accelerate, as the development of computer technology accelerates.

While a large building is in fact already a complex machine, in the envisioned future, the

building machine will also be capable of much greater "self-directed" or "adaptive" activity than

is typical for buildings today. The term "intelligent building" has been applied since the mid

1980's to buildings that really are rather not. (Caffrey 1988, Beck 1993) Yet since computing

power is promised to show up in our clothing and rooms, making them "smart clothes" and

"smart rooms" (Pentland 1996, 1998),4 clearly, computer systems will drive the buildings of the

4 http://sandy.www.media.init.edu/people/sandy/
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future to "do" more than today's buildings do. It is also clear that they will be critically involved

in all of the systems that support human life. Similarly, transport vehicles such as space stations,

do now and will continue to incorporate computer technology, including in systems directly

supporting the lives of the human inhabitants.

1.1.2 Why is this interesting?

The question is not whether failures will occur in the computer system, or any other

particular sub-system of the life-support machine, because failures will occur. The interesting

question is, when a failure occurs, how will the human beings and these "intelligent" systems

interact? For that matter, during normal operations of complex, "intelligent," life-supporting

habitable structures, how will human beings and these systems interact?

In the motion picture 2001: A Space Odyssey, a computer named Hal is depicted as

possessing the power to deliberately end the lives of human beings, albeit while the machine was

operating in a severely malfunctioning state after human beings had lied to it. One year before

the date of the scenario portrayed in the film, computers are much more ubiquitous than the

filmmakers anticipated. Rather than one large computer in any given setting, today there are

dozens, hundreds or thousands, many behind the walls and imbedded within hidden systems in

buildings. None of the computers in use today outside of research environments can, as did Hal:

" recognize and exhibit emotions, Picard (1999)
" deliberate,
* exercise self-survival maneuvers for which they are not programmed,
* handle arbitrary events for which they are not programmed,
* process natural human speech in real time,
* speak naturally,
" see as do humans or animals,
" hear as do humans or animals,
" react coherently to anything for which they were not programmed.

"Intelligent rooms" such as Hal provided in the film have been the subject of intensive

research (Coen 1998, 1999; Pentland 1998), yet the state-of-the-art in this research area does not

provide the flexibility, versatility or comprehensive human-like intelligence of Hal.

However, today's hordes of small, limited, inflexible computer systems are rapidly moving

into life-support roles similar to Hal's. While it is unreasonable to expect behavior like Hal's
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from real computers today, it is reasonable-perhaps essential-to expect that engineers should

eligineer preventative measures for disastrous human/computer/environment interaction

scenarios similar to that portrayed in the film.

1.2 Human Context

Illuminating the problem requires some information about human beings, data acquired in

decades of research effort in the field of environmental psychology, also called

human/environment relations, and the more general fields of psychology and education.

Important and relevant constructs from such literature regarding human beings include situation

awareness, learning, error, cognitive processing, working memory limitations, work practice,

decision-making, situated cognition, and more. These are not absent from this discussion

because they are unimportant, but because detailing them all is not the focus here. Two

important human factor constructs are sufficient to illustrate why the human-machine or human-

environment interaction in failure situations is interesting and important to understand: stress,

and control.

1.2.1 Human Factors

1.2.1.1 Stress

While everyone experiences stress in everyday life, the concept is typically discussed

imprecisely. To understand the impact of stress on human interactions with complex systems,

some level of precision for the term is required. Webster defines stress as "a physical, chemical,

or emotional factor (as trauma, histamine, or fear) to which an individual fails to make a

satisfactory adaptation, and which causes physiologic tensions that may be a contributory cause

of disease". Cohen et al (1986), use the term stress "to refer to the study of situations in which

the demands on individuals tax or exceed their adaptive capabilities." (emphasis added) The

contribution of prolonged stress to disease is well-documented; the most relevant aspects here

are the clear indications that 1) stress causes physiologic, often deleterious, changes in

individuals, and 2) stress, as a condition, occurs when an individual fails to adapt to impinging

stress factors.
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The adaptive response to stressors is the subject of significant research. Evidence indicates

that the adaptive process, also called the coping process, entails costs, which are "deleterious

effects of an encounter with a stressor." (Cohen el al, 1986) While a stressor may cause direct

negative effects on an individual, the evidence indicates that additional damaging effects occur

indirectly from the process of coping with the stressor.

The profound effect of stress on the performance of human beings in various settings,

especially complex and demanding settings, is well established. While stress is most often

viewed as a negative condition, a minimum level of physiologic tension is essential for optimal

performance in certain settings, since lack of tension can result in loss of vigilance and attention.

Hutchins (1996) documents aspects of stress as they effect military operations involving

management of "complex, multi-task situations" and technologies.

1.2.1.2 Control

Human or personal control is a variable of perception, the sense of persons that their actions

potentially can influence their environment. (Cohen et al 1986) A large literature exists on the

importance of control in human behavior, as control seems to be a deep-seated aspect of human

functioning. (Ibid.) The human capacity for coping with environmental stressors is affected by

personal control. While the literature on this subject is complex, because the details of the

effects are complex, it is sufficient here to note that in general, people are better able to cope

with stressors if they perceive that they have greater control. It is well established that both

stress and lack of control affect the physical well-being of human beings, in addition to affecting

such managerial work-place concerns as productivity, performance and job satisfaction.

To illustrate the role of human control in buildings, note that windows in older buildings,

before the introduction of modem heating, ventilation and air-conditioning (HVAC) systems

were always operable. Few modem office, commercial or industrial buildings since the 1950's

permitted occupants to open the windows. The engineering rationale for non-operable windows

is obvious: one can not design an efficient HVAC system if the engineering characteristics of the

inflows and outflows to the system are not known at all times. Operable windows necessarily

introduce large variability in crucial indoor-air inflow and outflow characteristics such as

temperature, humidity and ventilation volume.
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Yet the very concept of a "sick" building is a modem concept, the problem arising with the

advent of modern HVAC systems and sealed windows, especially since building ventilation

standards were drastically reduced after the 1973 energy crisis. (Hedge, 1992, b) Studies have

shown that a building can be considered "sick," with many or even the majority of its occupants

experiencing problems they consider related to the building, but with no identifiable physical

causal factors. After over a decade of research seeking to identify the environmental causes of

"sick building syndrome" in many buildings labeled in this way, it is now clear that

psychological variables are essential to understanding the phenomenon. (Hedge a at, 1990. 1993,
1995) Thus with respect to windows in buildings, it appears that in modem buildings efficiency

was gained through engineering control over the indoor air environment by sealing the windows.

However, human control was lost, which operates to diminish human comfort and health, even

when all mechanical systems are functioning as best as can be designed by engineers.

1.2.1.3 Failure As A Human Stressor

It seems obvious that: 1) When something goes wrong, people get upset, 2) When something

major goes wrong, people panic. Adults acquire this common-sense knowledge through decades

of life-experience. A failure condition in a complex, life-critical, technological system, is

obviously a stressor for individuals who know of the condition or are responsible in some way

for operation of the system. Evidence from the human environment literature indicates that the

degrees of stress perceived by the human beings involved in a complex system are likely to be

proportional to their perception of the importance of the failing system, that is, proportional to

the perceived threat to life safety. (Cohen el al 1986) A variety of reaction behaviors to a failure

condition and its accompanying stress is expected, depending on such factors as knowledge,

training, "common sense" and individual psychological characteristics. This is of course why

astronauts, submariners and pilots are superbly trained. Aside from enabling them to accomplish

the tasks expected of them in normal operational modes, intensive training is expected to reduce

the variability of reaction behaviors to failure modes.

Computers, however, have no equivalent to common sense, and all the knowledge imbedded

in them must, at present, be programmed into them in one way or another. "Training" of neural

nets, for example, is really a type of programming. To get back to the interesting question posed
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initially, we can re-phrase it as follows: When failure occurs, how will the human beings-who

have changed their physiological state, since the failure acts as a stressor-and the computer

systems-which can not change their state unless programmed in some way to do so-interact?

Is there an inherent threat to life safety lurking in the idea that failure conditions can be

exacerbated and driven further toward failure by computer systems that have no "awareness" of

the emotional and psycho-physiological stressed status of the humans with which they interact?

Addressing these and similar questions demands greater attention to parameters of human

beings -e.g. socio-biological research - than has been common for information technology

systems in buildings. In part, this is because installation of information technology systems in

buildings has so far been almost entirely limited to "showcase" office-building projects. All

extreme failure conditions in such buildings are handled by first evacuating the structure, and

then dealing with the building as a broken machine, devoid of people.

When most of today's stock of habitable space is replaced by structures chock-full of

complex imbedded information systems, some structures will not be so readily evacuated:

hospitals, nursing homes, jails, pre-schools, mid-ocean drilling platforms, all spaces occupied by

vulnerable populations. Addressing this problem-the interaction of vulnerable human beings

and complex imbedded information technology systems providing life-support functions in

habitable spaces-is the goal of the research discussed in this thesis.

1.3 Infrastructure Context: "Intelligent" Buildings

So-called "intelligent" buildings are not new. The first building project explicitly labeled

"intelligent," CityPlace Center in Hartford Connecticut, was completed in 1983 (Gannes 1984).

This office building was designated "intelligent" because it included a building automation

system (BAS), with timers and sensors to turn out the lights and monitor the temperature in

offices, and a shared tenant telecommunication system, a phone system programmed to chose the

least expensive routes for long-distance calls. Unfortunately, this use of "intelligent" as an

adjective to describe a building created a worldwide misconception that this building had an

electronic "nervous system", with walls that could "see" and "hear", and a "brain" that could

"think", and this misunderstanding of the term intelligent building persists today. CityPlace was
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constructed as a showcase for the suite of building supply and automation products sold by the

parent construction company.

1.3.1 Successful Marketing Tool

As a selling tool, CityPlace Center was remarkably successful, as this timeline of the period

1983-1992 shows:

. 1983: First "intelligent building" (IB) opens: CityPlace, Hartford, Connecticut
(Anonymous, 1992)

. 1984: Over 12 IB projects in the U.S.. 50 agreements to install intelligence
packages in new buildings (Gannes, 1984)

. 1985: Five IB s under construction in Japan (Anonymous, 1992)

. 1986: 71 completed IB's in Japan (Anonymous, 1992)

. 1990: NEC Corp headquarters, Super Tower, "world's largest intelligent edifice"
(Anonymous, 1992)

. 1992: 2,000 lB's constructed in Japan. (Anonymous, 1992) Many others in U.S.,
London, Shanghai, Singapore, Spain, Australia, Hong Kong, etc.

These projects represent the first generation of "advanced" habitable structures built on the

planet. There is evidence that the first generation of such projects have been disappointing to

those who built them and use them, for voices of discontent appeared early:

. 1989: "The vision.. runs far ahead of what is affordable and technologically
feasible." (Herbst)

. 1990: "The intelligent building fever has abated for the time being." (Horitake)

. 1990: "What ever happened to intelligent buildings?" (Carlini)

. 1991: "Intelligent buildings: myth, reality or wishful thinking (Finley &
Akimura).

Several questions naturally develop at this point. What common characteristics are found in

the first generation of "intelligent" buildings? What is their logical character or theoretical basis?

How have these projects been evaluated? How have they performed?

Previous technical design concerns for IB's have been so varied as to invoke the notion from

human psychology of "multiple intelligences", since there are few common characteristics

among the projects designated as intelligent. Small subsets of these projects possess

14



commonalties, typically sharing no more than one of the following technological approaches to

intelligence:

. Structural systems: resist earthquake movements by active mechanical or
hydraulic effort. (Uras & Aktan, 1993. Senders, 1992) or monitor structural
systems and communicate information about cracks, etc. (Robison, 1992; Huston
& Fuhr, 1993).

. Communications and Information Management: integrated systems (Kelly, 1986).

. Materials: self-repairing concrete and "glass nerves" (Lee & Selkowitz, 1993).

. Lighting and HVAC: "smart envelope" consisting of glazing, tints, shading
devices integrated and controlled by computers (Lee & Selkowitz, 1993); chillers
managed by expert systems (Kreider & Wubbena, 1991).

. Noise abatement: sensors monitor external noise and actively control noise
vibration (Johnson, 1994).

. Facility management: incorporate artificial intelligence into work processes
(Weingarten, 1991; Fink. 1991 ;Takahashi & Kateeshock, 1992).

The logical or theoretical concerns for the design of IB's have also been extremely varied,

with no consensus developed about what constitutes or defines "intelligence", nor the key

elements that should guide the design of these projects. Many researchers and authors have

attempted to provide guidance, with the idea of "control" most often represented in some form.

While not stated so explicitly, control is understood in these contexts to be machine control.

This may be due to the number of authors and researchers in the IB field who work for building

control system firms, yet the industry has not adhered to any common set of these ideas as

definitive. Some of these attempts are as follows:

. Japan's Intelligent Building Study Committee: an intelligent building comprises
three logical groupings called "spaces", the intelligent space, the route space, and
the accommodation space. (Tateishi, 1989).

. "Integration as the key to building intelligence." (Geissler, 1989, Mool, 1989)

. "Strategic information systems." (Kujuro & Yasada, 1993)

. Intelligent buildings as the evolution of facility management, (Kujuro & Yasada,
1993) focusing on the unified management of "people" and "things." (Umeno,
1993)

. The intelligent building must "think by itself." (Tateishi, 1989)

. "The heart of the intelligent building is the sensing and control system, the BAS
[Building Automation System]." (Myers, 1997)
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In summary, all previous forms of "intelligence" in buildings, in practice and in theory,
(where there is any theory), appear to be manifestations of classical engineering control systems

methods, incorporating no findings from socio-biological research. Previous evaluation concerns

have been financial performance and marketability (Cross, 1985). It is interesting and important

that IB's have performed poorly on both counts.

1.3.2 Lessons Learned From the First Generation

Obviously intelligent buildings are constructed to be occupied by people, and these

occupants form the reason for the existence of the buildings. Yet the viewpoints of occupants are

not represented in the literature on intelligent buildings during the fifteen year period, 1983-

1998. What do the people occupying these buildings think of them? We do not know. The

designers of the IB's do not refer to occupants as essential criteria in the design process, nor as

essential criteria in the evaluation process.

Yet procedures to evaluate buildings from their occupants' perspectives are well known.

One tool for this purpose is called Post Occupancy Evaluation (POE) (Preiser et al, 1988, 1991).

A POE is more than a "customer satisfaction" survey. It is analogous to the series of structured

questions a physician asks a patient during a medical exam. While phrased in layman's language,

these questions provide specific technical information to the physician. A specific and exhaustive

POE, calculated to provide data on whether and how the engineering design intentions for a

habitable structure arc represented in the experience of its occupants, is possible and feasible. It

seems obvious but is worth saying that data from such systematic investigation of the

relationship between engineering design intentions and occupant experience would usefully

inform the design of the next generation of IB's. (Wener, 1990) In later chapters, the relevance

of POE to the project at hand, the MARS habitation unit, will be discussed.

1.3.3 What Is Needed

In the author's opinion, the research need is that these environments, whether already

constructed or planned, must be examined anew with a human-centered mindset. Serious,

meaningful data about occupants must be gathered, methods to collect such data must be

developed, as well as methods to use the data for understanding occupants' interactions with
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structures and systems. Theories and models of human-computer-building interaction must be

developed and tested.

In short, the community must engineer prevention of the disastrous "2001" human-

computer-life-support interaction scenario. "Systematic evaluation works to the benefit of all

who use buildings or are otherwise involved in their creation and operation." (Baird et al 1996)

Computer simulation, as part of a comprehensive system of systematic evaluation, provide

advantages over traditional experimental methods. (Gulyas et al, 1999). The possibility of

human/building-system interaction simulation has not been previously addressed in the IB

literature. Computer simulations of the interaction of human beings and complex intelligent life-

support environments can and should be performed. This thesis represents a first attempt.

1.4 Computational Context

In addition to substantial research on simulation methods in many fields, relevant prior

computational research include human-computer interaction (HCI), human-centered systems

(HCS), and human-centered computing (HCC). While HCI as a discipline has developed a huge

literature in the past 10-20 years, HCS and HCC are relatively new terms, essentially

synonymous, defining a new approach.

1.4.1 Human-Computer Interaction (HCI)

A broad overview of HCI research must suffice here, for the field produces more papers

each year than any one person can read (Neilsen 1995). HCI focuses on "behaviors exhibited by

humans and computer-based artifacts while they are affecting each other," on "developing

computer-based artifacts," and "testing a separable and controllable aspect of human-artifact

interaction." (Blumenthal 1995). Some HCI researchers argue for purely empirical approaches

to problem-solving in the field, essentially abandoning the Al-based and cognitive theories that

have been the theoretical mainstays of HCI for some time, while others point out that such

approaches can prove pointedly unsuccessful. (Nielsen and Bergman 1995) Bardram and

Bertelsen (1995) note that, "Making better interfaces seems to be a goal shared by most people in

the HCI community, but it seems hard to agree on what constitutes a good interface; and to what

extent a scientific foundation for design is necessary."
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The HCI field has in recent years begun to explore activity theory, a Russian approach to the

issues of human-artifact interaction in social contexts, while not fully embracing the complete

conceptual basis of the activity theory approach. (Blumenthal 1995). Space does not permit a

thorough explanation of activity theory here, a tutorial is provided by Kaptelinin et al (1995).

The large amount of research in the HCI field over the past 20 years appears to have provided the

"shoulders to stand on" for a newer conceptual system, discussed in the next section.

1.4.2 Human-Centered Systems (HCS) & Human-Centered Computing (HCC)

The "human-centered systems" approach was first defined in a workshop sponsored by the

National Science Foundation in February 1997 by researchers in the computing, social,

behavioral, organizational, information, and engineering fields. The stated goal of the workshop

was "to define this emerging multidisciplinary held and articulate research, educational, and

infrastructure needs to support work in this area." Part of the published summary is quoted here:

Motivation: Why Support Human-Centered Systems Research?
The concept of "human-centered systems "... represent a significant shift in

thinking about information technology... that embraces human activity,
technological advances, and the interplay between human activity and
technological systems as inextricably linked and equally important aspects of
analysis, design, and evaluation... Research in human-centered systems advances
basic scientific knowledge in such areas as distributed cognition, speech, and
social systems, in disciplines ranging from linguistics to psychology and computer
science. In an era of unprecedented technological change and growth, basic
scientific research is crucial to design appropriate interventions into complex
human social systems and to analyze and evaluate the affects of such
interventions.

Definition: A system is defined as an agglomeration of interacting
interdependent components which used in combination accomplish an activity
that no one component can perform alone. In this report wefocus primarily on
information, communication, and distributed knowledge systems. A human-
centered system aims to serve human activity. It is one that incorporates
explicitly human (perceptual, motor, cognitive, and social) ramifications as
components of design... (continued)

Human-centered systems employ computing technology as a toolfor the
human user, not as a substitute; the human is the ultimate authority for control
and the technology is employed to expand human capabilities and intellect...

The human-machine interface enables users to acquire information, explore
alternatives, execute plans, and monitor results. Making a high bandWidth
interface that present data rapidly in aform that facilitates human decision
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making is the central challenge. Development of muiltimodal interfaces is... a

central concern of human-centered systems...
It is insufficient to study and model people in isolationfrom technology or

technology disconnected from afield of human activity. Both perspectives are

needed in afundamentally integrated way. An implication of this view is the

centrality offield work to provide real data on real activity in real contexts. A
related issue is metrics: how can we measure what is happening in a distributed

cognitive system in a meaningful way. (Flanagan et al 1997)

........................... ..................... .............. .......... ... .. .................................. ............................. ... . . . . .... . . . . . . .........

It can be readily questioned whether the "significant shift" argued at the beginning of this

passage is real. Have not many researchers and businesses concerned with information

technology systems focused on human beings for many years? Hardware and software systems

explicitly designed with human beings in mind are not new, a short list of such items includes

graphical user interfaces, mice, trackballs, touch pads, touch screens, computer-based learning

systems, computer-aided design, distance collaboration, and so on. Furthermore, the vast "Total

Quality" movement, several decades old, includes such notions as "quality is customer

satisfaction", "voice of the customer", and so on, all of which are clearly focused on human

beings, the "end user." Are Flanagan et al re-hashing long-established definitions, conjuring

something that appears "new" in order to justify funding arguments and the like?

While focusing on the needs of the fabled "end user" is not new, some fields have done a

better job of it than others. The contention here is that in the case of information technology in

habitable spaces, i.e. "intelligent" buildings, there has been little or no systematic focus on

human beings as users and occupants of these structures. Thus in this field, NSF's "new"

approach is indeed new.

1.4.3 NASA and HCC

The National Aeronautics and Space Administration apparently prefers the term "human-

centered computing", and defines HCC as a "research methodology for analyzing, designing

and/or evaluating AI systems and other computer-related technologies within a human

biological, cognitive and social context-" (NASA 1998c) An illuminating comment about the

HCC approach appears on the NASA Ames Research Center web site:
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Computer scientists generally share the public's excitement in having the
latest and greatest technology, whether it be a large laptop screen or a wireless
communicator (such as a celhlar phone). The difference of course, is that
computer scientists not only use the tools they build, they are involved in
inventing new kinds of hardware and software. This process of invention may,
broadly speaking, proceed from two directions; One may start with theoretical
possibilities and see what you can build (such as afaster computer or a software
program that automates routine work). Or you may start with people, study how
they do their work, and understand what tools would help them. Human-centered
computing starts with this second approach-we observe people firsthand, talk to
them, and invite them to collaborate with us in inventing new computer tools.
(Clancey, 1998)

It was explicitly stated on NASA Ames' web site (in 1998) that HCC is a "Major Research

Focus Area" for NASA (1998c). HCC as it applies to the specific context of the MARS

endeavor is discussed on the project's web site5 . A tool arising from NASA's HCC focus is the

modeling and simulation system named "Brahms," discussed extensively in the remainder of this

thesis.

1.4.4 Thesis Outline

In Chapter 2, issues that should be addressed in modeling or simulation efforts of human-

environment interaction are delineated.

In Chapter 3, Brahms is described as a modeling language and as a software system.

In Chapter 4, modeling of the MARS Station using Brahms is described.

In Chapter 5, the modeling and simulation process and its resulting output is analyzed. The

chapter concludes the thesis with recommendations for future work.

5 littp://-vww.arctic-inars.org/SCIENCE/hcc.htiml
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2. Analyzing Human-Environment Interactions

2.1 Analysis and Modeling Issues

As stated in Chapter 1, the research presented in this thesis involves analysis of the

interactions between human beings, built environments and technological features, especially

computer technologies. The research incurs the notable difficulty that three distinct professional

and intellectual disciplines intersect in such analysis. These are: a) the social sciences which

focus on human behaviors and social interactions, b) the architectural and engineering sciences

with focus on the built environment, and c) the computer and information sciences which focus

on control technology and human-computer interfaces. The issues of interest to each of these

disciplines vary enormously when analysis is needed for a particular project.

Figure 2.1 (next page) lists issues that just two scientists of these intersecting disciplines

would consider relevant for most conceivable habitable-space projects. The two scientists are, a)

an environmental psychologist, perhaps a member of the Environmental Design Research

Association 1 and, b) a facilities planning and management researcher, perhaps engaged in

research sponsored by the International Facilities Management Association.2 Of the issues listed

in Figure 2.1, some were discussed in Chapter 1, some will be referred to in the remainder of this

thesis, but space does not permit detailed discussion of each, or why it is included in the figure.

They are all relevant to the problem space at hand, however, for experienced practitioners of

these two professional disciplines.

To help illuminate the issue, consider the MARS project introduced in Chapter 1. Since the

project is entirely scientific, data collection of all types is its mission. Assume that an

interdisciplinary subset of the project's scientists specifically focuses on the human-computer-

environment interaction issues discussed here. They decide beforehand that data should be

collected throughout the habitation period and install appropriate sensors and recording devices

to collect this data. With current research capabilities and technologies, it is possible to collect

significant quantities of data for each of the issues in Figure 2.1.

(known as edra) http://www.telepath.coml/edra/home.html
2 (known as IFMA) http://Nivw.ifina.com/
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Fundamental Physical Constructs:
Agents: Persons, AI Systems.
Habitable Spaces: Buildings, Rooms, Campuses (Design, Construction)
Paths: Corridors, Doors, Streets, Stairs, Walkways, Elevators, Hatches
Controls: Environmental, Personal
Objects: Devices, Appliances

Important Non-Physical Constructs:
Groups & Hierarchies: Human, Objects, Classes
Safety, Errors: Routine, Catastrophic (2 1st Century Life Safety Codes?)
Costs: Capital, Life Cycle, Resale, Energy Usage
Time, Scheduling
Satisfaction, Comfort
Deployment, Construction, Adaptations, Repairs
Maintenance, Reuse, Decommissioning
Ownership: Financial, Space Domains

Some Issues Relevant to the Constructs Above:

Agent:
Person: Emotion (Affect, Pleasure, Fear, Anger, Anxiety, Confusion, Depression)

Stress (Psychological, Physical), Health (Psychological, Physical)
Capabilities (Physical, Learning, Adaptive, Languages)
Beliefs (Self, State, Group Identity, Capability, Control)
Actions (Work. Play, Self Care, Sleep, Movement, Communicate)
Engagement, State

Al System: States, Capabilities, Actions

Spaces:
Size: Height, Width, Length, Area, Volume

Shape: Orthogonal, Spheroid, Complex, Orientation perception

Types: Habitable, Work, Individual, Group, Play (Individual, Group),
Sleep (Individual, Group), Recuperation, Passage, Storage,
Risky (Work, Play, Passage, Storage)

Ownership: Individual, Shared, Ambiguous

Habitability: Temperature, Air Pressure, Air Composition, Volume, Height, Gravitational

Perception, Connections, Adjacencies

Controls:
Objective: Temperature, Air volume, Humidity, Ambient lighting, Task lighting, Entry, Exit
Dominance: Human, Machine

Groups: Members, Shared Ownership, Shared Beliefs, Shared Capability,
Shared States. Shared Actions
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In other words, the team collects sufficient data to perform a comprehensive

interdisciplinary POE (post occupancy evaluation), as described in Chapter 1. The total volume

of data collected would be staggering, of course. In addition, the data is disparate in content, and

parts of it would be meaningful to certain scientists in the team but not to others.

Yet, if the team's goal is to use this data to meaningfully inform the design and use of the

next-generation MARS, they must devise ways to manage the complexity of the interactions in

the data, without losing sight of the important issues, most of which are influenced by multiple

inter-disciplinary factors. If the scientists propose to use simulation as a tool to assist the

analysis (as is proposed in this thesis), they must devise ways to include all or most of these

issues in the simulations, albeit not necessarily all at the same time.

2.1.1 Relevant Modeling Systems

The present research is certainly not the first regarding scenarios where human beings, built

environments, and computer technologies interact. The Architecture-Engineering-Construction

(AEC) industry's literature includes a substantial section regarding so-called "intelligent"

buildings (IB), as discussed in Chapter 1. In this literature for "intelligent" building systems,

human beings and everything about them are with distressing frequency relegated to a simple

diagrammatic "user" symbol, if not omitted altogether from system diagrams and architecture

models. Since authors who work for automated building system and control manufacturers are

very well represented in this literature (Caffrey 1988, Pauers 1988, Mool 1989, Heller 1990,

Webb 1990, Clapp & Blackmun 1992), perhaps this should be viewed as inevitable in the early

decades of a technology-driven phenomenon.

However, even if understandable, the situation is cause for concern as these -automated

"intelligent" systems become ever more ubiquitous, especially as they become untested

controllers of human life. Since the authors referenced above wrote most systematically about

IB's in formal terms, a brief examination of how, or if, they set out to model or otherwise

investigate these buildings follows.

Pauers (1988) posits that "system integration" means IB's, in the title of the referenced

article. He notes how as early as "the 1970's, building fire alarm systems were being tied into

the HVAC (heating-ventilation-air conditioning) and fan control systems," and that the U.S.
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government General Services Administration (GSA) contributed to the advent of system

integration by mandating "automatic control of major building security functions, elevators and

lighting." Pauers' article includes six charts or figures which model in rather disjointed fashion

what he means by "system integration" or "intelligent" building. In a sidebar he notes that,

"There is no intelligence threshold past which a building 'passes or 'fails'. Optimal building

intelligence is the matching of solutions to occupant needs." Except for images of office and

construction workers in the graphical decoration accompanying the article, there is no further

mention or representation of users, occupants or any other human beings, except for the

"customer," i.e., the building owner/developer.

Caffrey, who was at one time chair of the now-defunct Intelligent Building Institute (IBI),

does a bit better with this. In the center of the large system architecture diagram that he labeled

"Characteristics of (IB) elements," there is a one-inch diameter circle, in which are centered the

words "Owner and Occupant Needs." The four rectangles, filled with "Systems, Structure,

Management and Services" characteristics, radiating in cardinal directions from the circle, have

small triangular extensions which all point to the circle. Otherwise, "occupant needs" are

mentioned in a few places in the text with no elaboration.

Mool asserts that "systems integration" improves performance. The single system

architecture diagram in his article, labeled "Levels of Control" does not include any feature

identified with human beings. "Operators" are the only active human beings referred to in the

text of the article, while in one instance "occupants" are referred to as the recipients of intercom

system broadcasts.

Heller, Webb, Clapp & Blackmun did not attempt any systematic modeling of IB's.

However, another batch of engineers did, all of them in Japan (Horitake 1990, Kujuro & Yasuda

1993, Mitsui 1991), or collaborating with Japanese IB researchers (Finley et al 1991).

Interestingly, several of these engineers assert points regarding users and occupants, and

elaborate upon them.

Most assertively of all, Tateishi (1988, 1989) insisted that IB's must "offer a working

environment best suited to the individual needs of the worker-the building as 'servant of the

people'." In the 1989 article his diagram titled, "Intelligent Building: Component Space and Its
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Factors", like Caffrey's, features a large "people" circle, but labeled much more extensively, as

illustrated in Figure 2.2.

Man
(Personal service)

-Environments
-Intellectual productivity

Figure 2.2 - Tateishi's diagrammatic representation of human issues in IB's.

Tateishi goes much further than this in the text, carefully evaluating some relevant occupant

issues, as including two tables focusing on workers. These are labeled "Office Floor Area Per

Worker (Effective Floor Area), and "Number of Workers Per Office Automation Equipment."

Tateishi thus considers human-environment interaction far more than does any other technically

oriented author in this literature. It appears, however, that Japan's engineers, while motivated to

do so, have yet to devise a method, tool or system that enables systematic examination of

"human" issues in IB's. This may explain why researchers and construction firm staff members

in Japan strongly encouraged the author to pursue the research presented in this thesis.

2.2 Introduction to Brahms

Brahms is a high-level artificial intelligence (AI) research language and system which

permits complex simulations of human beings interacting with technological objects and

systems. Brahms has not previously been used to model human and built-environment

interactions. One of the important goals of the research discussed here was to determine if

Brahms is an even remotely suitable tool for such modeling.
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The developers of Brahms explain their goals for the system as follows:

Brahms... is a nulti-agent simulation framework for modeling work practice,
incorporating state-of-the-art methodsfrom artificial intelligence
research and insights about work and learning from the social sciences...
models consist of groups of agents with context-sensitive, interactive
behaviors. Agents are located, mobile, and have knowledge and
changing beliefs. Groups may define job functions, teams, people at a
certain location, or people with certain knowledge and beliefs...

Brahms... enables modeling activities of people during the day-how people
spend their time- emphasizing information processing communication in
different modalities (phone, fax voice mail, face-to-face, databases), and
location-specific interaction (meetings, chance conversations, teamwork).
Thus, Brahms allows modeling a community of practice-a group of
people who participate in some shared, choreographed interaction,
usually inviting collaboration between individuals with different roles
and experience...

Brahms... is primarily designed to be a tool for learning how to design work
systems, as well as a means of embodying what we learn over time...

Brahms models... make social processes visible... provide a holistic
perspective on how work gets done... may he used to... redesign
organizations, facilities, and procedures; design information processing
technology... ; develop an instructional system with role... ; develop
software ('intelligent') agents in Brahm's ... ; provide a researcher
workbench for developing models of organization, problem solving and
learning in social systems... (Clancey et al 1996)

The ambitious goals of the Brahms developers as stated above will be examined more

carefully as they relate specifically to human-environment interaction analysis.

2.3 History of Brahms

Brahms was initiated by a team of researchers associated with the former Nynex Inc.

Science & Technology Division and the Institute for Research on Learning (IRL) 3 of Palo Alto,

CA, USA. It was originally developed "to replace a conventional business process modeling tool

and is directly based on Nynex's and IRL's experience in studies of work practice for the

purpose of systems design" (Clancey et al 1996). Nynex sought a method for reengineering its

business operations, especially those calling for new hardware and software systems, which
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would not result in more problems than they were designed to solve, a common fate of corporate

reengineering efforts. The company postulated that IRL's social-science-based methods held

promise to address complex human issues often overlooked in previous reengineering

approaches.4

After the initial development effort led to encouraging results, Nynex and IRL filed a patent

application5 , which is pending at the time of this writing. However, well before the patent

process was complete, Nynex merged with Bell Atlantic Inc. and the Science & Technology

division was disbanded. Members of the original team who continue to be involved with the

development of Brahms include:

. William Clancey , formerly with IRL, then serving as a consultant to Nynex, now
lead HCC research scientist at the NASA Ames Research Center7.

. Maarten Sierhuis8 , formerly with Nynex Science & Technology, now a research
scientist at the NASA Ames Research Center.

. Ron van Hoof, formerly with Nynex Science & Technology, now a computer
scientist at the NASA Ames Research Center.

Because of these events, Brahms has been an underfunded development project for several

years. At the time of this writing, the software applications that are part of the total Brahms

system most clearly suffered from the history just described, as they are largely incomplete, an

issue that will be detailed in later chapters.

Why Brahms?

The most complete portion of the Brahms system is the computational framework defined in

the language specification (van Hoof 1999), and the philosophy or conceptual model imbedded

in the specified programming language. This is fortunate, since the philosophy and language are

the most important features indicating that Brahms may be an appropriate tool for human-

environment interaction modeling and analysis. The hypothesis that it is indeed appropriate is

discussed in detail in the next chapter.

4 Verbal communication from the Brahms development team.
5 Patent Pending, Attorney Docket Number 07602/003001.
6 http://home.att.net/-wjclancey/

http://ic.arc.nasa.gov/ic/HCC.html
8 http://ic.arc.nasa.gov/ic/maartens.htmil
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3. Brahms (Business Redesign Agent-Based Holistic Modeling System)

3.1 Brahms as a Modeling/Simulation Software System

To use Brahms, an investigator first creates a Brahms model of the scenario of interests.

Such a model is based on the actual behavior of human beings as they interact with artifacts,

other human beings and the physical environment of the scenario. The Brahms system was

developed in the context of business reengineering or workplace analysis, to capture work

practice, the actual behavior of people working. The concept of "work-practice" extends similar

"work-X" concepts commonly used in business and workplace research, such as "work-process",

"-procedure", "-flow", "-tasks".

Work practice includes informal or apparently incidental actions and interactions-such as

workers routinely conveying information to each other during coffee breaks- which are usually

ignored in most methods of workplace analysis. That such details contribute significantly to the

"practical knowledge" constituting the "practice" of any professional or other worker, is one of

the central tenets of the intellectual and philosophical discipline out of which the Brahms system

arises.' To enable capture and analysis of such informal or incidental behaviors along with the

formal behaviors typically called "work", Brahms was deliberately designed to be quite general

(Sierhuis 1999); it is purported to enable modeling of any conceivable human, animal or artifact

behavior.

The Brahms developers consciously incorporated the methods and language of social

sciences such as anthropology into the Brahms framework, thus they use the term "ethnography"

for the process of collecting data for a scientific investigation of a workplace or other social

scenario. While it will not be examined here in detail, ethnography is discussed by Clancey

(1999) specifically in relation to the MARS project2. In short, ethnography consists of

investigation of activities, places and concepts:

. What people do where, when, with whom, and why

. The flow and intricacies (the "choreography") of human interaction

Inference from verbal communication with the Brahms team.
2 http://home.att.net/-vjclanccy/HCC atHMP-99_MarsSociety_.pdf
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. Understanding total systems, including facilities, artifacts, tools, organizations,

people, personal identities, spaces, and locations 3

Note that ethnography has been traditionally used in observational and descriptive sciences

such as anthropology, but its use has been increasing in settings where the primary motivation is

change, such as corporate reengineering efforts, or "business anthropology." (Clancey 1999)

3.1.1 Input: a Brahms Model

The process of developing a Brahms model begins just as does any other modeling effort,

with gathering data. The model builder must choose the scenario, the boundaries and the

constructs of interest, and acquire the data necessary for the investigation. A model-any

model-is created to explore an issue, test a hypothesis, or to pursue an objective of some other

sort. Whatever the issue or objective, the model builder chooses the important items or features

to include, and then must map them to constructs included in the framework in use, here the

Brahms framework.

3.1.1.1 Developing a Brahms Model: Data Acquisition

The first action in the process of developing a Brahms model of a workplace scenario may

be interviews with each participant in the scenario; the investigator asks each person to describe

how they perform their work. The questions asked and the level of detail required in the data

collection process will depend upon the overall goals of the investigation. After being encoded,

each person's responses can be collected and edited to form a story, which represents the

person's description of how s/he performs work.

To develop the required structure of a Brahms model from such stories, the investigator

identifies key Brahms constructs in each story. Figure 3.1 (next page) shows, on the left side, a

small portion of someone's story of their work. The worker in this case is a repair specialist who

works on telephone circuits. The figure represents the investigator's notes after processing data

collected in previous interviews. The investigator highlighted words in the story that can be

associated with Brahms constructs. For example, "I," "Bill," "my first-liner"-words referring

3 http://att.hoine.net/-WJCPublications/Mars99ConfSlides
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to persons operating in the scenario-are marked as potential "Agents". People are always

modeled as agents in the Brahms system. Non-living physical objects are usually modeled as

some type of object, although certain complex physical systems-for example robots-may be

modeled as agents. In the English language, nouns are used to represent persons and objects, the

latter of which may be a) physical items or b) concepts. Since these two notions are modeled

somewhat differently in Brahms, nouns within the story are identified separately as "Agents,"

"Objects (Things)," and "Objects (Concepts)."

DISCOVERING STRUCTURE WITHIN A STORY

usually look in CIMAP first to see if there are any

tickets for me to do. My first-iner

the assignments in the morning, so there are usually jobs
t OBJECTS (CONCEPTS)

to do. So I the ticket fme

INFO SOURCESSometimes the circuit's workin so I'd have to (PAPER, SYSTEMS)

a new assignment. OK, so after I

my tools and start, iring, the DSX. .11111]

Figure 3.1 - Discovering Structure vithin a Story

Likewise, the investigator has identified verbs in the story, and associated them with

"Actions." Features of the story that indicate sources of information for the participants in the

scenario are identified as "Info Sources." Features of the story that indicate the status or states of

a system, agent, object or the environment are identified as "Status/State."

3.1.1.2 Acquiring Additional Data for the Developing Model

After identifying the basic Brahms constructs in the story, the investigator then seeks

additional information by asking questions. Again, the questions asked and the level of detail

required will depend upon the goals of the investigation. Sufficient data must be acquired to

enable exploration of the work process or other scenario at a level of detail appropriate to the

overall goals. Figure 3.2 (next page) shows on the left, elements of the same story snippet from
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Figure 3.1, sorted by the Brahms constructs to which they have already been mapped by the

investigator, and on the right, the additional questions deemed appropriate to ask at this point.

An alert reader may notice that the "Actions" construct appearing in Figure 3.1 is not listed

in Figure 3.2. This is because in the Brahms system, actions are identified with the formal

concepts "Activity" and "Workframe." These constructs essentially "drive" a simulation based

on a Brahms model, that is, the a simulation run moves forward in time as a result of how

activities and workframes are defined and modeled. Thus the investigator in this case would

have gone further to break down the story in the dimension of "Actions", defining them in

additional charts, not shown here, similar to Figure 3.2.

EXPLORING THE WORK PROCESS THROUGH
QUESTIONS

I AGET~j My fIr*Iiner Bill

OBJECTS (THINGS) the frame the DSX. ..y tools

INFO SOURCES
(PAPER, SYSTEMS) CIMAP

OBJECTS (CONCEPTS) jobs tickets assignments

a new assignment. circuit's

STATS$ISTATE workdng,

Figure 3.2 - Exploring the Work Process through Questions
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Who is Bill?
What does he do?
Where is your first-liner
located?

What's the difference between a 'frame" and
a 'DSX"?
Who calls it a "frame"?
Who calls it a "DSX'?

What tools are used?

How do you access CIMAP?
What kind of information do you get?
Who puts that information in there?
Who else might use CIMAP?
Can you get that information from other people

What is a "job"?
What information is on a 'ticket"?
What's the difference between an 'assignment'
first-liner makes and "a new assignment" for the

What does it mean for a circuit to be 'working'?
How does the circuit get in that state?
How do you know it's 'working'?

4 Figures 3.1, 3.2. 3.3 taken from imbedded charts in the Brahms G2 Engine. Used with permission.



3.1.1.3 Moving Towards a Model

In Figure 3.3 the investigator has further structured the repair specialist's story snippet,

separating and listing the Brahms constructs represented in the story, preparatory to modeling

this scenario. This process will be examined in detail in Chapter 4 for the specific case of the

MARS project model.
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Figure 3.3 - Moving Towards a Model

3.1.1.4 Brahms code

The next stage in developing a Brahms model is to write code in the Brahms language. A

"wizard" designed to expedite this process exists in the Brahms software system. It and the other

components and processes of the system are examined in detail in further sections of this chapter

and the next. Figure 3.4 (next page) shows an example of input code for a Brahms model. In

this case, the model is a representation of an aspect of the Space Shuttle.5 Brahms code looks

like this whether written by hand with a text editor or developed with the wizard system.

Programmers will notice that this code looks much like C++ or Java code, except for the

specialized construct keywords not found in those languages.

5 Code example transferred with permission from a machine controlled by Maarten Sierhuis.

33



//@ 1999 NASA & Maarten Sierhuis. All rights reserved.

import Brahms.Base.BaseGroup;
import Brahms.Base.BaseClass;

group InterfaceSystem memberof BaseGroup
attributes:

private Building getTemperature;

agent SpeechRecognizer memberof InterfaceSystem I
initialbeliefs:

(the getTemperature of current = LowerDeck);
(the getTemperature of current = MidDeck);
(the getTemperature of current = UpperDeck);

activities:
communicate GetTemperature(Building deck, SpaceShuttleRobot robot)

maxduration: 5;
with: robot;
about:

send(the getTemperature of current = deck);
when: end;

workframes:
workframe AskForTheTempOfDeck {

repeat: false;
variables:

collectall(Building) X;
when (knownval(the getTemperature of current = X))
do {

GetTemperature(X, PSA);

group SpaceShuttleRobot memberof BaseGroup
relations:

private Building communicatedTemperatureOf;

activities:
compositeactivity GetDeckTemperature(InterfaceSystem Y)

activities:
move GoToDeck(Building deck, int pri) {

priority: pri;
location: deck;

primitive activity DetectTemperature(int maxd, int pri) {
priority: pri;
max-duration: maxd;

(clipped)

Figure 3.4 - Portion of Brahms Sample Code File "SpaceShuttle. b"
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The code shown in Figure 3.4, while no more than a snippet, yet exhibits several Brahms

language features that will be recognizable by or conceptually familiar to a C++ or Java

programmer:

The notion of importing libraries or packages is evident:

Import Brahms . Base. BaseGroup;

import Brahms.Base.BaseClass;

The general form for specifying the creation of data constructs and the inheritance relationships

of such objects are noticeably similar. Where in Java and C++ one may specify a "class"

data object and what other class/es it inherits from (or is otherwise related to), in Brahms one

may similarly specify data objects, such as a "group," an "agent" and various others not

shown in this code example:

group InterfaceSystem memberof BaseGroup I

attributes:

private Building getTemperature;

}
agent SpeechRecognizer memberof InterfaceSystem {

initial beliefs:
(the getTemperature of current = LowerDeck);

(the getTemperature of current = MidDeck);
(the getTemperature of current = UpperDeck);

Other portions of this Brahms code snippet resemble Java or C++ "methods", that is, code that

specifies the active behavior of data objects:

activities:

communicate GetTemperature(Building deck, SpaceShuttleRobot robot)

max duration: 5;
with: robot;

about:
send(the getTemperature of current = deck);

when: end;

workframes:
workframe AskForTheTempOfDeck

repeat: false;

variables:

collectall(Building) X;

when (knownval(the getTemperature of current = X))

do I
GetTemperature(X, PSA);

In the next chapter, the process of moving from the general ideas of a system to be modeled,

toward code such as this, will be discussed further.
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3.1.2 Components and Process

The current Brahms software system consists of three major components, presented here in

the order they must be used to process a model: first the "Brahms Builder", then the "G2

Engine", and finally the "Agent Viewer."

3.1.2.1 Brahms Builder

Brahms Builder is a Java application that compiles code such as shown in Figure 3.4; it

"builds" a model from such code. Since the current "Engine" (see section 3.1.2.2, next) requires

its input to be written in the proprietary G2 language, in files called "knowledge bases" (with

extension ".kb"), the Brahms Builder converts the code representation of the model into G2

".kb" files. The Builder checks the code for compliance with the Brahms language specification,

so that if a code segment compiles, it is likely to run within the G2 Engine environment.

In addition, within the Builder, the "New" command invokes the "Model Wizard" software

component. This Wizard, when developed further, should enable someone writing Brahms code

to do so more easily than is possible now.

3.1.2.2 The G2 Engine

To the Brahms user, the G2 Engine is a "black box." The user follows instructions provided

to process a Brahms model within the G2 environment ("a simulation run"). The user then

issues commands to export the simulation results. G2 emits a large text file in response. While

G2 includes a rich set of features for developing, implementing, modeling, simulating, and

displaying complex industrial systems (for example, G2 is used to run entire chemical processing

plants, and the scheduling system of the Panama Canal), its use within the Brahms framework is

as a simulation engine. G2's robust and well-tested artificial intelligence (AI) features

apparently enabled Brahms to be prototyped and implemented quickly, with minimal

"reinventing the wheel." However, for reasons that are not clear to the author of this thesis, the

Brahms development team considers G2 inappropriate for the stage of development that Brahms

has reached.6 It is worth noting that since G2 is an expensive proprietary product, complete

6 Maartcn Sicrbuis vcrbal communication Dccmbcr 1999.
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dependence upon it could inhibit the use of Brahms as a research tool, since any robust research

effort is likely to require purchase of multiple G2 licenses.

Figures 3.5 and 3.6 are screen shots of the Engine running in G2. Very few of the windows

and menus visible in these views are necessary to perform a simulation run.
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Figures 3.5 and 3.6 - Brahms within G2
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3.1.2.3 Agent Viewer

Agent Viewer is the final component in the current tripartite Brahms system. Like Brahms

Builder, it is a Java application, the input for which is the text file created by the G2 Engine. The

user first issues a command to "create a new model" within Agent Viewer, specifying location of

the input text file. This creates an empty Microsoft Access database, which Agent Viewer then

automatically populates with data from the text file ("parsing the file"). Once this process is

complete, the user may use Agent Viewer to examine the agents, objects and other constructs

defined in the model, and the interactions occurring among them in the simulation run.

3.1.3 Output

Brahms output consists of, a) visualizations in Agent Viewer and, b) the Microsoft Access

database created in Agent Viewer by parsing the G2 text output.

3.1.3.1 Agent Viewer as Output

Figure 3.7 (next page) shows Agent Viewer in use to "visualize" the output of a Brahms

simulation run. The left windowpane shows the Brahms language constructs in the model, listed

hierarchically. The user may select agents and other constructs from the left windowpane, with

the result that a time-line visualization of the selected agents and objects appears in the right

windowpane. Vertical lines with terminal dots show connections and interactions between

agents, objects and other constructs. The right windowpane is interactive: selecting one of the

displayed text fields, lines, dots and other displayed items, reveals popup explanations, menus,

text entry boxes, options, or additional windows. Menu items permit the user to examine the

time line at several scales, from full-day intervals to 5-second intervals.

Through these interactive features, Agent Viewer allows an investigator to examine all of

the output data of a Brahms simulation run as recorded in the database. Agent Viewer is very

flexible, enabling "drilling down" into the data to any level of detail, using one or more of the

interactive features. It is thus best used interactively. Capturing all of its features with screen

shots while examining anything more than an extremely simple Brahms model would require

dozens of figures similar to Figure 3.5.
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3.1.3.2 The Brahms Output Database

The Brahms output database consists of 41 data tables and 43 queries, populated by the

events occurring during the simulation run. The database is the repository of a large amount of

data, transformed from its raw state into a highly structured format. A complete analysis of the

database, which is fully relational, will not be included here in part because of the incomplete

patent application process.

The Brahms system shows promise of accomplishing at least one of the goals of human-

environment interaction analysis noted in Chapter 2: managing large amounts of complex and

disparate data, intersecting portions of which are of interest to investigators from multiple

disciplines.

Since the Brahms Agent Viewer application creates output visualizations entirely from the

database generated by the Engine, it is conceivable that the Brahms system may be extended by

using the same database for other purposes. This possibility will be discussed further in a later

chapter.

3.1.4 Uses of Brahms Output

Since any investigation seeks to answer questions of some sort, it is useful to conceive of at

least one question that Brahms output may help answer. There are many candidates in the

human-environment interaction arena; for simplicity's sake, one of the human factors discussed

in Chapter 1 will serve to illustrate the point: stress.

Question: What features of a habitable space affect human beings differently in ordinary

"day to day" circumstances, from how the same space affects human beings in extraordinarily

stressful (i.e. life-threatening) circumstances?

Brahms output value: First, assume that all of the important factors of both human beings

and the habitable space were successfully modeled in Brahms. This assumption will be tested

and discussed later in this thesis. Agent Viewer and the simulation data it visualizes could

conceivably allow true experiments to enable the determination of answers to the question. It is

difficult to imagine how one could conduct true experiments to investigate this issue with human

subjects. True experiments require random assignment to treatment and control groups, careful
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control of all known variables (often resulting in "double blind" procedures, etc.), statistically

significant numbers of subjects in each group, and so on. The simple matter of ethics precludes

crucial aspects of true experimentation. Brahms output-if the language and its software

implementations were tested and validated-could fill a gap in this field by enabling research

that is largely impossible now. It is not difficult to envision a Brahms model of a habitation unit

run with varying human stress conditions, controlling for all other appropriate variables, and then

examining these different runs in the Agent Viewer or another application that uses the output

database.

3.2 Brahms as a Modeling/Simulation Language

3.2.1 Current Status vs. Anticipated Developments

As noted in Chapter 1, the most complete portion of the Brahms system is the computational

framework defined in the language specification (van Hoof 1999), and the modeling philosophy

imbedded in the specified programming language. The language is still evolving, and new

specifications are published frequently. Certain desirable modeling capabilities consistent with

the philosophy are planned 7 but not implemented in the version of language specification used

here. Only the anticipated features that are especially relevant to human-environment interaction

will be discussed in the sections and chapters to follow.

3.2.2 Brahms Philosophy

The philosophical framework in which Brahms was developed specifically intends to

perform modeling within "a theory of human social systems." (Sierhuis 1999) A clear

distinction-which the developers present as crucial-is drawn between animate "intentional"

objects and inanimate "unintentional" objects. Even though physical objects and systems in the

real world can at times, (if they are programmed to appear so), "act" as though they have

intentions, the Brahms philosophical stance is that only living systems such as human beings and

animals are intentional. The developers note that while Brahms is an Agent-Oriented Language

(AOL) rooted in the artificial intelligence (AI) tradition of "strong agency", most other AOL

7 Development intentions were conveyed to the author verbally by several members of the Brahms team.
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systems define all strong agents as intentional agents. (Sierhuis 1999) Since in Brahms the

concept of "strong/intentional agent" is reserved for animate agents, another concept is required

for inanimate objects. In Brahms, the formal concept of "Object" is used for all inanimate

objects or systems, even if such systems can mimic the intentionality of animate objects such as

human beings. Note that when coding a Brahms model one may choose to define a robot, for

example, as an "Agent" rather than an "Object", the intention of the developers is that this would

be a special circumstance used only when clearly warranted.

3.2.3 How the Philosophy is Implemented in the Language

3.2.3. 1 Agents

As noted previously, people are always modeled as agents in the Brahms system. Agents

within the system can "do" most of what actual human beings can do. Examples follow:

. Act - modeled as "activities", "action"

. Know - modeled as "beliefs" (which can change dynamically)

. Think - "thoughtframes", "conclude"

. Detect facts - "detect", "detectables"

. Perform routines - "workframes"

. Associate in various ways - "groups", "relations"

. Interact with physical items - "object"

. Wear or posses things - "contain"

. Conceive - "conceptual class" and "conceptual-object"

. Move - activity "move"

. Be somewhere - "area" (world, city, building, etc.), "location"

. Go somewhere - "path", "destination", "distance"

. Communicate - "communicate", "broadcast"

. Get paid - "cost"
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Take time to do things - "time", "max-duration", "min-duration"

. Set priorities - "priority"

. Create - "create_object"

The list above is not meant to be exhaustive, but illustrative. The concept of an "Agent",

representing human beings, is defined as "the most central element in a Brahms model."

(Sierhuis 1999) The daily activities of actual individuals may be modeled, as well as the

activities of abstracted groups of individuals, this is the "Group" concept. The participation or

membership of agents within various types and hierarchies of groups can change dynamically.

3.2.3.2 Objects

As noted earlier, in the Brahms system inanimate things are expected to be modeled as some

type of object. Objects can "do" most of what agents can do, including possessing

"thoughtframes," which are representations of inference processes, even though one might

suppose that objects can not think. The most notable difference is that objects can be part or

members of "conceptual objects", which represent the notion that people often conceive of a

group of independent objects as part of a single "thing." For example, "an order" in many

business settings can not be represented by a single artifact, while what constitutes an order

changes frequently. During work hours an order may be represented by a single piece of paper

one moment, but by two pieces of paper the next moment (i.e. one worker faxes "the order" to

another), and by a record in a database in the moment after that. At night or over the weekend

when the staff is not working, an order may be represented by several pieces of paper or regions

of magnetic media located on several different desks, not necessarily in the same building or

even on the same continent. An order could even exist as a belief entirely within the mind of one

or more workers.

In addition to this notion, objects differ from agents in that they can be defined as resources,

but agents are not described in this way.
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3.2.4 Differences from other Systems

Brahms is similar in some ways to other programming, modeling or simulation systems, but

it also differs from the other well-known systems. These differences are discussed briefly below.

Object-Oriented Programming (OOP): Brahms incorporates many of the concepts

used in OOP, such as objects and object instances, classes, inheritance and

multiple inheritance, abstraction, attributes, association, aggregation, constraints.

(Rumbaugh el a/ 1991) Indeed, a Brahms model builder who does not possess a

thorough grasp of OOP concepts and techniques will have difficulty learning or

using the Brahms language. However, in C++ and other general-purpose OOP

languages, notions or constructs such as "agent" are not included in the language,

nor are the capabilities and techniques of Al built into implementations of the

language. For example, if a C++ programmer wished to invoke inference

methods such as forward-chaining and backward-chaining, or neural network

methods, in the system under development, s/he must include code for each of

these techniques in the material submitted to the C++ compiler. In Brahms, these

computational techniques are an inherent part of the "Engine" so that the model

builder need not be concerned with directly implementing these well-established

software technologies.

. Business Process Modeling (BPM): Brahms incorporates or can be readily used to

model concepts with a functional perspective such as typically found in BPM,

including organizations, roles, product flow, orders, schedules, processes, etc.

Typically in these systems the notion of "work practice" is not acknowledged or

implemented; the notions of ambiguity, change, exceptions, redundancy and

improvisation are de-emphasized or ignored; and social interaction is over-

simplified. (Clancey el al 1996, 1997, 1998) Brahms goes far beyond these

systems by providing a general method for modeling many kinds of social

systems and interactions.

. Cognitive Process Models (CPM): Brahms incorporates the knowledge

perspective of CPM, including flow and storage of information, error detection,

and problem solving, but does not attempt to model reasoning or calculation
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internal to an agent or object. Inferences are modeled only to the extent required

to represent agent or object behavioral triggers. Thus Brahms models are "not as

detailed as models of cognitive skills." (Clancey et al 1996, 1997, 1998)

Architectural-Engineering-Construction (AEC) Modeling: Architects and other

professionals concerned with the design of built environments are usually most

familiar with models developed with computer aided drawing (CAD) systems, or

3D graphical "rendering" systems. These models represent the physical form,

appearance and construction methods of buildings and other structures. The

modeling tools typically used by engineers for design of the built environment,

such as finite element analysis (FEA), or those used by planners and managers of

the built environment, such as computer aided facility management (CAFM),

similarly focus on technical aspects important in those fields. Clearly, while

Brahms models or simulations could be visualized or animated within the context

of these systems, a Brahms model is designed to investigate behavior and

interactions, especially those involving human beings, rather than form or strictly

physical attributes such as strength or cost.
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4. Modeling the MARS in Brahms

Scientific exploration and research are expected to provide new knowledge about new

systems, yet they very often also provide new knowledge about familiar systems. The thrust to

explore the planet Mars exemplifies this. Mars exploration will provide new knowledge about a

new system, since it will probably be the first planet beyond the Earth that humanity will visit.

(Zubrin 1996) Mars exploration will also provide new knowledge about a familiar system, the

Earth itself In similar manner, the scheduled MARS habitation project in Haughton Crater will

provide new knowledge about the habitation unit itself and its fitness for its intended purpose.

The author expects that it will also provide knowledge about familiar systems, that is, complex

life-support environments that serve vulnerable populations on Earth, such as hospitals. This is a

significant motivation for the research discussed here.

At the time of this writing, NASA and the Mars Society have not completed the full set of

specifications, construction drawings and other design documents for the MARS habitation unit.

However, preliminary descriptions and renderings of its layout and appearance are available on

the Mars Society web site, as shown below. (Mars Society 1999) These renderings and

descriptions, along with Zubrin's book (1996) and documents provided by NASA (1999), were

used to guide the development of scenarios-stories-that were further developed into the

Brahms models discussed in the remainder of this thesis.

4.1 The Mars Arctic Research Station (MARS)

Figures 4.1, 4.2, 4.3 - renderings of the MARS facility (Mars Society 1999)
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ARS Technical Specs
September 12, 1999.
7he core element (?f the ARS Project is the habitat unit. Measuring

approximately 8.4 miefres (27fl) in diameter, the habitat unit will provide 2 floors
of fiving space for tip to 6 people ala lime. The habitat is designed as a multi-
fiinctionjacility incorporating living and sleeping quarters, work spaces, clean-
room laboratories, an exercise area, galley and a sick bay.

7 he two decks of the unit will be linked by a central shaft and ladder, which
will also connect to the main airlock in the lower deck. The lower deck of the unit
will also provide storage facilities.

Supporling the main habitat unit will be an inflatable greenhouse and a
garage / workshop for storing A TVs and rovers. Both the greenhouse and the
garage will be linked to the habitat unit by airlock tunnels. Power will be
supplied by solar panels arranged a short distance from the habitat unit This in
itself will be an interesting test - the panels will receive less sunlight that] they
would if they were silualed on the Martian equator, the theory being that if they
can prvide sufficient power for operations in the Arctic, they will be suitable for
use on AMars. (Uars Society 1999)

4.2 Modeling Scenario Assumptions

The following assumptions further guided scenario development:

" Location is a habitation unit like that described above, commonly called a hab or the Hab,

somewhere on the planet Mars.

" Time is local planetary time: One Mars hour = 1.03 Earth hour.

" The crew consists of four persons: two scientists, and two engineers (Zubrin 1996).

The following names will represent these four:

Scientist one: "Geo"19, a geologist. (Name pronounced "joe"1)

Scientist two: "Bi", a biogeochemist. (Name pronounced "bee,")

Engineer one: "Eug", a pilot and mechanic. (Name pronounced "yoqj")

Engineer two: "Skip", a mechanic and mission commander

For purposes of this scenario development, Geo and Skip are female, Bi and Eug are male.
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4.3 Human/Environment Interaction Scenario: Routine Day

Skip relates:

0700: My alarm clock wakes me up. I hit snooze once to catch forty more winks, as usual.

After the first buzz, I know that Eug is now also awake. Geo may also have been awakened by

the soft buzz of the clock but Bi probably was not. We all have alarm clocks built into our bunks,

but I am the only one who uses mine routinely. The Hab is so small, my clock usually serves for

all who can normally awaken with a quiet sound rather than a loud blast. Bi sleeps later

because he needs a loud blast or enough time for his own sleep patterns to wake him. On a

routine day such as we are expecting, Bi can sleep until his body or his experiments demand his

attention.

Before falling asleep for my last forty winks, I hear Eug climbing out of his bunk as usual.

He will be outside by the time the second buzz wakes me for good. Geo may be up and around

by the time I climb out of my bunk, or she may be sleeping a bit longer. All depends on what

yesterday was like, and how we set our alarms. Geo uses her voice alarm system more often

than the rest of us, programming reminders that are spoken to her as she awakens, so softly that

the rest of us can not hear then. She does not need a routine daily schedule, as I do, to feel

productive. Her days thus appear to have no routine, but I know she uses the technologies built

into the Hab to develop a personal rhythm for each day that enhances her overall productivity. I

use the same technologies to enhance the sense of a habitual routine, because that enhances my

overall personal productivity. I know that when we look at detailed post-event re-creations of

our respective statistically "normal" days, there is actually very little difference between how

routine or varying hers or mine are. But we each feel more comfortable, since we each feel that

we, not the Hab or Mission Control, are in control of our lives.

I prefer to "take my shower," which is really a high-tech mist-bath system, at night before

going to sleep. Upon awakening, I change in my bunk from light nightclothes into in-Hab day

clothes, and only then go to "John's bunk " the Hab bathroom. Eug does his personal care

routine early every morning while everyone else is in bunk. Geo does hers a little later, while Bi

does his at night even later than I do.

0708: Second alarm, snooze over. I change, head for the bathroom for body functions and

toothbrushing. The bathroon recognizes me when I enter, because I wear an electronic ID, as
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all human extra-Earth explorers must, ever since the very first human trip to Mars. At first I

wore it imbedded in a pendant on a chain fixed around my neck, but now prefer to wear it

imbedded in a nosering in my left nostril. Geo wears it imbedded in an earring; Eug imbedded

in an old-fashioned GI-style "dog-tag" necklace; we do not know where Bi wears it, and prefer

not to ask. We do know that if he took it off; not only would it be immediately painful, as the

tools to remove it painlessly are only found on Earth, the Hab and rover computers would all

"have a cow ", i.e. alarms would sound andflash.

As I enter, the bathroom:

- locks all power toothbrush heads and towels but mine;

" adjusts to my preferences: water temperature, drying air temperature, flow rates, mist

density and scent for lavatory, mist-shower and toilet;

" sets toothpaste flouride content and powered toothbrush speed to those the mission

dentist otn Earth prescribed;

e sets tip the urine, stool, and blood tests that the mission doctor on Earth ordered to be

rut today;

- orders me via a blinking light to stick my finger in a small hole for a tiny prick and blood

draw;

" plays the music I like at the moment for bathroom music;

" accepts my dirty clothes into a bin that will wash and diy them, then place them in my

labeled drawer outside the bathroont for later retrieval.

When I leave the bathroom, it automatically sprays clean all interior surfaces, dries itself

and resets back to its ready mode. When are we going to get bathrooms like this back on Earth,

I wonder?

0715: Refreshed, I look out the nearest porthole to check if anything looks different out there

today. Nope, still Mars, red dust and rocks, seventh heaven for Geo and all other geologists.

Eug is in the lower level, I calt hear hinl doing the hfe-support systems and equipment check that

he does a couple of times a day at least. I head for my favorite place to start the day's activities,
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the flighl deck, now the in-Hab mis sion command center, conference room, place for many ad-

hoc activities, ackiow.'ledged by all as primarily "my" office.

Interruption!

It is clear from the first fifteen minutes of the scenario development above, that if the

complete story of a full day-even a routine day- in a combined workplace and habitation unit

used by four people were described at this level of detail, the story alone would fill a book the

size of a rather lengthy novel. Yet Brahms can apparently be used to model every aspect of the

story developed thus far. Rather than continue with the story, it is advantageous to skip to the

next stage in developing a Brahms model from a story.

4.3.1 Discovering Structure within the 15-Minute Story

The 15-minute story above is presented again in Figure 4.4 (next page), analyzed and broken

down into the following general Brahms constructs: agents, objects (things), objects (concepts),

information sources, actions and status/state. Note that an important Brahms construct not

mentioned in the diagrams in Chapter 3 is area. Brahms does include "area definitions" and

"area," enabling description and modeling of cities, buildings, rooms and other spaces. Since

such spatial forms and issues are central to human-environment interaction, area is included in

Figure 4.4. Note that certain items appear to be appropriately described by more than one

Brahms construct. A "bunk," for example, may be considered as both an object and an area. At

this stage, such items will be duplicated in each of the applicable categories. Brahms enables

constructs to be related to or contain each other, thus the working assumption at this stage is that

setting up such relations or associations can resolve ambiguities or duplications in the model

under development.

It is clear from Figure 4.4 that the detailed story of a routine 15-minute period, even in a

rather simple work environment, can be broken down into myriad instances of constructs

available in the Brahms language. Obviously, this could easily lead to a sort of "explosion":

greatly increasing computational effort for diminishing results. To prevent this, the Brahms

model builder must sort the raw list of constructs imbedded in the scenario of interest, using

some criteria of fitness for the problem space or hypothesis.
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Agents, Groups: |"Geo" (female); "Bi" (male); "Eug" (male); "Skip" (female);
Mission Control, doctor, dentist, explorer, human, geologist,
biogeochemist, pilot, mechanic, mission commander, rest of us

Objects (Things): Habitat, alarm, clock, bunk, human body, experiment, voice alarm
system, technologies, shower, clothing, bathroom, nightclothes,
dayclothes, electronic ID, pendant, nosering, earring, necklace, pendant,
chain, toothbrush, toothpaste, towel, toilet, lavatory, computer, rover,
dust, rock, light, finger, hole, blood, urine, feces, bin, drawer, porthole,
surface, life-support system, tool, label

Objects "forty winks", sound, snooze, sleep, pattern, routine, outside, day, today,
(Concepts): yesterday, tomorrow, reminders, schedule, productivity, re-creations,

personal rhythm, habitual, comfortable, in control, personal care,
everyone else, activity, life-support system, medical test, experiment,
temperature, flow rate, density, scent, music, ownership, preference,
expectation, attention, interior, exterior, trip, automatic, manual

Information sounds, prior knowledge, reminders, speech, routine, schedule, "detailed
Sources: - post-event re-creations", electronic ID, blinking light, porthole, label
Actions: sleep, awaken, hit, climb, move, use, program, hear, speak, look,

enhance, feel, change, do, go, recognize, care, enter, wear, sound, flash,
lock, order, accept, play, sets up, adjust, spray, wash, clean, dry, reset,
get, wonder, draw blood, check, test, start, leave, remove, serve, demand,
set, look, know, take, function, fix, find, light, stick, place

Status/State: asleep, awake, comfortable, in-control, night, day, morning, early, late,
in-bunk, small, large, completed, wearing, in pain, clean, ready, dirty,
clean, normal, powered, warm, hot, cold, refreshed, stale, imbedded, in,
out, soft, loud, off, on, automatic, manual

Area: Mars, Earth, Mission Control, Habitat, bunk, bathroom, place, office,
command center, conference room, flight deck, outside

Figure 4.4 - General Brahms Constructs in the 15-Minute Story

As noted in Chapter 3, a model-any model-is created to explore an issue, test a

hypothesis, or to pursue an objective of some other sort. Whatever the issue or objective, the

model builder must choose the important constructs to include, at risk of producing a

meaningless model, and also must choose the constructs to exclude, at risk of model explosion.

4.3.2 Moving Towards a Model

The hypothesis and construct criterion of fitness for the Brahms model presented in this

thesis are as follows.
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4.3.2.1 Hypothesis

Part 1:

A Brahms model of human beings interacting with a complex habitable environment

encourages the developer to model human beings as powerful, active, intelligent agents rather

than passive participants in the processes and activities involved in the modeling effort. It was

noted in Chapter 2 that in the literature for "intelligent" building and systems, human beings and

everything about them are with distressing frequency relegated to a simple diagrammatic "user"

symbol, if not omitted altogether from the model development process. This suggests a method

for testing Part I of the hypothesis: If this part of the hypothesis is supported, developing a

model of a built environment that includes any human presence, by defining the human presence

in the model with a single diagrammatic "user" symbol, should be very difficult or impossible in

the Brahms system.

Part 2:

A Brahms model of human beings interacting with a habitable environment enables the

developer to represent complexities found in real-world human-environment interaction

scenarios. A method for testing this part of the hypothesis: If this part of the hypothesis is

supported, a Brahms model of a built environment will represent human behavior at multiple

levels of detail; the functioning of systems, machines and objects at multiple levels of detail; the

functioning of cities, buildings, rooms, areas, spaces and paths at multiple levels of detail; and

multiple interactions between all of the items just specified.

4.3.2.2 Criteria of Fitness for Story Constructs

Since time and space constraints do not permit modeling all of the items listed in Figure 4.4,

certain items were chosen. The selection criterion follows:

Each construct must contribute to the specific objective of human-environment interaction

modeling. For example, the "electronic ID" was considered relevant and thus mapped to the

Brahms concept "Objects (physical)", since the story presumes that it provides a communication

link between its wearer and various built-in systems of the habitation unit. Whether the ID
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object is imbedded in a necklace, nosering, or earring was considered irrelevant to the human-

environment interaction modeling of this scenario. In like manner, each Brahms construct from

the story selected for the model had to meet this criterion.

Note that the items listed in the left column of Figure 4.4 are "informal" high-level Brahms

constructs only. They are not formal concepts in the language, which includes many more

constructs than shown in the figure. Additional formal Brahms concepts were necessary to

realize a complete model. Van Hoof (1999) provides the formal concepts and features of the

language.

4.4 The MARS Project Brahms Model Code

A portion of the code for the Brahms model developed for this thesis is presented in

Appendix B. Each main model file is named for and defines a formal Brahms concept or a

related set of concepts.

The following main files constitute the model:

MarsModel. b - This file defines the overarching structure of the model, similar to the "Main"
function in a C program.

MarsGeography. b - All of the area and path specifications for this model.

Agents . b - Definitions of the Agents in the model.

Groups . b - Definitions of Groups (of agents) in the model.

Objects .b - Definitions of Objects and Conceptual Objects in the model. (Additional files
exist named "Obj ect s2 . b", etc.)

Activities . b - Definitions of Activities which are not specified within the specific context
of agents, groups or objects.

These files are concatenated into a single document for publication here, but maintained as

separate files for compilation and simulation runs. Not all of the code developed as part of this

investigation is included in the Appendix; the reason for the omission will be discussed in the

next chapter.
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5. Analysis, Conclusions and Recommendations

5.1 Using Brahms as a Human-Environment Modeling/Simulation
Conceptual Framework and Language

As a conceptual framework for the type of analytic research referred to in this thesis,

Brahms is a superbly promising tool.

Part I of the hypothesis presented in Chapter 4 is definitely supported: it would

indeed be very difficult to develop a Brahms model of a built environment scenario in

which all human beings and everything about them are represented by no more than a

simple symbol labeled "user." It would be possible to develop such a model. One could

certainly model objects of all types in a workplace or other scenario, invoking some sort

of ghost-like non-agent entities that interact with the objects emphasized in the model.

Since Brahms provides a rich toolset for modeling human behavior, yet sidesteps the

"explosion" difficulties encountered when attempting to model the complex internal

cognitive processes of human beings, a ready critique of such a modeling effort would

be: "Why?" What would be the point of developing such a model? If human

involvement in the system of interest is not expected, some other modeling and

simulation tool is likely to be more appropriate than Brahms.

Brahms does not cripple modeling of well-developed "adaptive" or "intelligent"

systems or buildings to provide this robust ability to model human behavior. The

investigator of an interaction scenario who uses Brahms to assist in the investigation has

access to the same rich toolset to model intelligent systems of all types, including

inanimate objects such as computers. In addition, such systems, modeled as objects, can

be aggregated to multiple levels of complexity through use of the formally defined

"conceptual object" and "conceptual class" concepts. Thus an "intelligent room" as

currently investigated at MIT by Coen (1997, 1998, 1999) or a "smart house" (Larson

1999), could be readily modeled in Brahms as the complex, adaptive, feature-rich

systems they are. In addition, however, Brahms provides a formal language that enables

analysis and testing of those environments with human beings included as significant

agents in the scenarios portrayed.
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Brahms shows further promise for human-environment interaction investigators

specifically. Spatial issues are often severely neglected in modeling systems that are not

specifically developed for architects, interior designers or facility managers. Even social

scientists often neglect spatial issues and other aspects of real built environments. To

professionals in the AEC industry, it is well understood that non-professionals take their

physical surroundings so much for granted, that they scarcely "see" any of its features.

For example, many people would be hard-pressed to correctly and precisely identify the

color of the countertops in their kitchens at home, or the material used for the baseboards

in their office.

Brahms is not without some shortcomings in this regard, these will be discussed in

the section on recommendations.

In essence, Brahms, like many significant scientific tools developed in the past,

shows promise for making the invisible, visible. In this case, the invisible, the variables

of the world that we do not know how to "see" very well, is human behavior, social

interaction and human interaction with artifacts and the environment. Brahms, as a

conceptual framework and modeling language, seems to make a significant step toward

changing this.

5.2 Using Brahms as a Modeling/Simulation Software System

5.2.1 Current Status vs. Anticipated Developments

It is important to consider the implications of the history provided in Chapter 2, and

the fact that Brahms is both a software system designed as a tool for research; and a

research project itself. As a research project, Brahms is the subject of a forthcoming

Ph.D. dissertation by Maarten Sierhuis', co-developer and project scientist at the NASA

Ames Research Center. As a software system, Brahms is still under development, with

the current development effort limited by various issues to a very small team, consisting

of Sierhuis, Ron Van Hoof, and Bharathi Raghavan, all of NASA.

1 Three unpublished chaptcrs were providcd to the author.
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The most noticeable "feature" for the first-time user of the current Brahms software

system is its incomplete state. The current implementation consists of three pieces, as

previously discussed:

* "Builder", which serves as something like a precompiler or translator for the

"engine",

* The G2 "engine", soon to be replaced by a Java engine. As noted before, G2 is a

commercial Al system more often used for large-scale, real-time industrial

control and modeling systems.

* Agent Viewer, another Java application, which provides translation and

visualization of the output.

A Brahms model is thus converted from one language to another several times in its

journey from input to output.

The only engine available at the time of this writing, the G2 engine, does not support

all of the features and concepts defined in the current language specification. The

Brahms team states2 that a new implementation of the engine in the Java development

environment is expected within one month of the date of this writing. For this reason,

there are no plans to improve or enhance the current G2 engine.

These facts mean that at present:

* There is little documentation other than the language specification (van Hoof

1999), and no user manual. The most complete instructions for traversing the

complete Brahms system from input to output were transmitted to the author of

this thesis in a single email; evidently, no other start-to-finish document exists.

Portions of Sierhuis' dissertation-in-progress are useful for understanding the

details of the Brahms system and its concepts, but this document understandably

has restricted circulation. Since the G2 engine is expected to be replaced quite

soon, there is understandably little motivation to document the exact deficiencies

of the current engine with respect to the language specification.
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* Little has been publicly published about Brahms, primarily because the patent

process had not advanced sufficiently until quite recently. One journal-published

paper is (Clancey el al 1999), and additional miscellaneous unpublished papers

can be downloaded from several web sites.

* The first "user" of Brahms was Maarten Sierhuis. The author of this thesis was

the second. Libraries, samples and examples are more or less the same items, all

the work of Sierhuis.

As an inevitable consequence of all this, at present Brahms would score quite low on

any reasonable scale for "usability," "user-friendliness" and the like.

5.2.2 The Current Brahms Experience

The author's experience with development of a Brahms model and attempts to run it

through the complete system is briefly documented in this section. Following that,

recommendations for the Brahms development process are presented.

For a beginning user of any complex software system, the first problem is usually,

"How do I get started?" Unless the system is quite similar to other previously used

software applications, a new user seldom has either knowledge of what a software system

is supposed to be able to do, or the commands and procedures for making the purported

capabilities of the system actually execute.

5.2.3 Getting Started - the Model Wizard

In the author's case, it was communicated verbally that a "Model Wizard" existed to

begin the process of implementing a Brahms model. The Wizard is invoked within

Brahms Builder, but appears to be a completely independent application, with an entirely

different "look and feel." It promises the user the ability to create the formal Brahms

concepts of a model without any manual coding. The Wizard's primary problem is its

incomplete state. The author's experience with each of the Wizard's three screens

follows.
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1. The Wizard's first screen states: "Create the concepts that you would like to have in

your model. Choose the concept type first." But only one concept is available in the

drop-down list, "Agent." Having created one or more Agents, merely by typing in

names for them, the user may choose 'Next' to move to screen 2.

2. This screen states: "Create the activities for each concept you created in the previous

step. Choose the concept type first. This will display the available concepts. Select a

concept and create activities for that concept by entering a name, duration and priority

for each activity and adding it to the activity list. Then create concepts of that type by

entering a name and adding it to the concept list." At this early stage, the author had

no idea how an "Activity" related to any other concept, such as the Agent(s) just

created. The strategy chosen to move ahead was to create one agent, since that was

the only concept available and also readily understood, and then to create some

actions using the Create Activity screen that she perceived as interesting for the given

scenario. Having done this, moving ahead to the last screen was possible.

3. The last screen states: "Give a name for your model that you are about to generate.

Also give the filename and the location for the file in which to store the model." A

couple of attempts clarified that this means that "the model" may have a different

name from "the file", and that the filename should be typed in WITHOUT the ".b"

extension, which Builder will add. A sample of code generated by the Wizard is

shown in Figure 5.1

Confusingly, the resulting file from the Wizard's hidden work, chosen name.b,

contains far more than code for the Brahms agents created within the Wizard, as can be

seen in the figure. The Wizard added everything after the following line:

} // agent FirstAgent

It is not obvious why the formal concepts and classes added automatically by the Wizard

are essential to every Brahms model, which would be a reasonable assumption since they

are added automatically. The beginning Brahms user, particularly anyone who is not

already thoroughly familiar with C or C++ programming, may not understand why these

additional constructs were added to her/his first model, or what to do with them.
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agent FirstAgent {
activities:

primitiveactivity AnyActivity() {
priority: 50;
max-duration: 100;

} // primitive-activity AnyActivity
workframes:

workframe wfAnyActivity
do {

AnyActivity();
} // do

} // workframe wfAnyActivity
} // agent FirstAgent

agent ANY-AGENT {
} // agent ANY-AGENT

class CClock {
attributes:

public int hour;
public int minute;
public int second;

} // class Cclock

class CDate {
attributes:

public int dayOfMonth;
public int month;
public int dayOfYear;

} // class CDate

object Clock instanceof CClock {
} // object Clock

object Date instanceof CDate {
} // object Date

areadef Building {
} // areadef Building

areadef City (
} // areadef City

areadef World {
} // areadef World

Figure 5.1 - Model Wizard output
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Also quite confusingly, Maarten Sierhuis recommends and follows the practice

himself that a Brahms modeler should separate Agents, Objects, geography definitions

and so on into different "something.b" files. In later stages of the author's process of

attempting to model the 15-Minute story in Chapter 4, use of the Model Wizard was

abandoned altogether, as Sierhuis' practice of separating concepts is definitely

advantageous for anything beyond a trivial model.

5.2.4 Next Stage - Brahms Builder

Brahms Builder seems to be rather more "polished" than the Wizard although it is

difficult to precisely define why. The two interact well in that as soon as the Wizard has

completed its task, the user is presented with the model just created, in Builder. Figure

5.2 shows a screen shot of Builder after Wizard created the code in Figure 5.1, with many

of the clickable menu items opened up before their picture was taken.

The reader may well ask, after looking at Figure 5.2, "What goes in that large gray

area on the right side?" The short, unkind answer is, "Nothing." A far more charitable

explanation is, "That area is reserved for future use." The Brahms team plans to develop

Builder into a full-featured programming environment, the windows and menus are

already set up for the happy day when those goals can be accomplished.
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Figure 5.2 - Builder Displaying Wizard Results

After playing with Builder for a while, the user may be ready to move on.

5.2.5 The G2 Engine and its Output

The next stage in the Brahms modeling process is to invoke the model in the

"Engine." The very name implies that this is the "Big Gun" of the whole system.

Indeed, to get to the point of being able to perform the next step in G2, the user will have

first:

0 Acquired a G2 license (reportedly, approximately $15,000 at normal market

rates, although Gensym Inc. President Bob Moore very kindly provided the

author with a two-year license for educational research purposes at no cost.)
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* Learned how to load and run anything in G2. Again, Gensym kindly provided

the author, at no cost, enrollment in "G2-101", the full-week introductory class

which begins the process of training for the use of G2.

As discussed already, within G2, Brahms appears to use few of the most obvious

available modeling and simulation features that a G2 user learns about in G2-101. The

Brahms engine knows how to load the "something.kb" files that Builder created, and the

user may look at the parts of the engine as developed within G2. Without detailed

knowledge of both G2 and Brahms, few of the visible features provide much, if any,

intellectual illumination regarding the Brahms system. Upon following (undocumented)

instructions to run the simulation, G2 dutifully scrolls screenfuls of text messages within

one of its windows. After that, the user may issue commands to export the text file that

captures the result of all this work by wo/man and machine. As noted previously, this

text file is parsed to create the output database. Interestingly, G2 includes features to link

its system with robust relational database systems, but Brahms, again, does not use these

features.

5.2.6 Agent Viewer and the Database

Agent Viewer, the visualization portion of Brahms output, is a far more complete

software application than either Wizard or Builder. Unfortunately (but not meant

unkindly), it is poorly laid out, difficult to read, and rather non-intuitive. Since this is

actually true for many commercially profitable applications at the moment of first use by

a neophyte, this critique is perhaps actually a complement, given that Brahms is a

research tool meant for use in research settings. At least it does have a user interface

rather more developed than a blinking cursor on a command line, as many software tools

in such settings typically provide.

One could quibble with a minor but confusing feature of Builder and Agent Viewer

as a system, illustrated by Figures 5.3 and 5.4 (next page). Builder refers to "simulation

runs" but apparently does nothing with them, while Agent Viewer does not refer to them

specifically, but is the application that must process them.
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As shown in Figure 5.3, Builder's file menu lists "Open Simulation Run" and "Close

Simulation Run" items-but these are not used to process simulation runs. Agent

Viewer, (the window of which is labeled "Brahms Version 1.2.3"), processes simulation

runs after the user has selected "New" in the File menu-there is no mention of

simulation runs.

After successfully processing a simulation run and permitting twiddling of its many

complex layers, Agent Viewer impresses a user who has had further experience with it.

It appears to make all of the data in the massive output database accessible and

meaningfully related within the Brahms framework.

The Brahms output database, for anyone who has developed applications using

Microsoft Access or another relational database system, inspires definite enthusiasm.

One has no idea exactly what all those tables and queries do, but clearly there is terrific

power implied by so much data, collected and presented in such carefully organized

fashion.

As previously noted, since the Brahms Agent Viewer application creates output

visualizations entirely from the database, it is conceivable that the Brahms system could

be readily extended by using the same database for other purposes. Examples of other

purposes include:
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* different abstractions or visualization formats from that provided by Agent

Viewer

* statistical analysis and reporting

* financial, facility management, personnel management, scheduling, operations,

and many other kinds of reports

* 3D animated visualizations, e.g. IBM Data Explorer.

* stop-motion analysis viewing systems

* Virtual Reality Modeling Language (VRML) input

The database can be viewed as a springboard for many different interesting future

development possibilities.

5.2.7 From Story to Code toward Output?

The author experienced each phase of the Brahms modeling process as described in

the previous sections. Code forming a complete Brahms model was compiled in the

Builder. Builder output was loaded into the G2 Engine, a simulation run executed, text

data exported. Such data was processed with Agent Viewer, creating the database, which

was reviewed, and the same data examined in Agent Viewer. These phases were

experienced with code, model files or simulation runs developed by Maarten Sierhuis.

Unfortunately, the author was unable to experience the complete development

process from start to finish for the MARS project of interest here. A question was

formulated, the same one as in Chapter 3, section 3.14. The representative story was

developed as described in Chapter 4 to inform the structure of a model that perhaps

would begin to provide answers to the question.

Brahms code was created for the MARS project model, part of this code may be

viewed in the Appendix. The code chosen for listing here is the "cleanest" code available

after the study ended. This code was partially created with Builder, but the multi-concept

files created by Builder were segmented and cleaned up to conform to Sierhuis' practice

as noted previously. This strategy, in the author's opinion, will lead to a Brahms model
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of the MARS project in time. However, the complete process described here consumed

much of the time available for the present study before a workable strategy to produce

executable Brahms code became apparent.

Other methods not involving the Wizard-direct code writing with a text editor-

were attempted when it became clear that the Wizard could not produce a complete

model-even a small, simple one-which could be executed in the Engine. These other

attempts began with code from complete models developed by Sierhuis. Selected code

segments were modified in attempts to transform them to represent the MARS habitation

scenario and the questions of interest discussed here. Several attempts were made with

complete working base models, other attempts used files and code segments culled from

several different models. None of these hybrid models would compile, and thus could

not be executed in the Engine. Very slight modifications to the working base code would

render it unable to be compiled. This was probably due to the following factors:

1. The vast differences between the objectives of the attempted new model and the

base model or code segments.

2. The author's inexperience with the Brahms system and time constraints.

3. Documentation deficiencies already noted which made it extremely difficult, if

not impossible, to debug or otherwise track down errors.

4. The development team's time constraints while the author faced deadlines. Due

to responsibilities as NASA employees, the development team was

understandably unable to serve in the user support or helpdesk role.

5.3 Brahms Language Development Recommendations

It is recommended that the team implement in a version of the Brahms language

specification, if not in a software application, the following necessary notions for this

field:

* All "areas" are actually volumes, with definite (and sometimes changeable)

dimensions, shapes and other attributes that are essential information for

understanding human interactions within. The attributes of areas include non-
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physical constructs such as intentions or restrictions of use, safety, comfort,

adjacencies, connections, egress, maintainability and ownership. The last item,

ownership, is of particular interest in environments where stress could be a major

behavioral variable. This is because ownership of space is clearly associated with an

individual's sense of personal control, which mediates the stress response. It is worth

noting here that "sick" buildings have quite often provided no physical evidence that

explains why their occupants perceive them in this way. In some cases, stress

resulting from a social environment is attributed to stress caused by the enclosing

physical environment.

* All "areas" are actually also objects, in that physical materials of some sort must form

any enclosure. The more complex, adaptive, "intelligent" an enclosed area (or the

collection of enclosed areas called a building), is, the more crucial is information

about objects, controls, and systems installed beneath, above or within the surfaces

that occupants ordinarily perceive as "rooms." Note also that some areas in buildings

(or ships) may be critical for the functions of other areas, but ordinarily inaccessible

to "routine" access or habitation. These include crawl spaces, chases, equipment

rooms, ductwork, etc. Clarification would be welcome about how, or if, "Areas" may

contain or otherwise be associated with "Objects" or "Conceptual Objects."

* In life-support situations, the very air is an object, but one which permeates and/or

flows through all areas and many other objects. In most built-environment cases, it

does so partly controlled and partly uncontrolled. On Earth, "outside" air is usually

scarcely different from "inside" air, but on Mars, the boundary between these is vital

to investigate and understand fully. Some discussion and guidance about this subtle

but important issue would be appreciated.

* "Paths" are also actually objects, with far more necessary-to-understand attributes

than origin, destination and distance. Wayfinding, for example, which may be

loosely defined as the process of developing the "conceptual maps" that human

beings use to find their way as they move about, demands far more information about

paths than Brahms can currently accept or provide. Doors ladders, hatches and stairs,

for another example, are objects that are also always intimately part of some path.
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5.4 Brahms Software Development Process Recommendations

The Brahms software development team, to put it simply, really needs a team, and a

process. The best programmer in the world, (which the author agrees with Clancey that

Ron van Hoof probably is), simply can not develop every line of code for the robust

development and application environment that the Brahms language deserves.

Funding would help, of course. The clear, if unpalatable, choices for the Brahms

team are to either obtain funding for an appropriate software engineering project-

complete with Requirements Analysis and Specification, Design, multiple programmers

doing the coding, Configuration Management, Testing, Validation and Verification, and

Quality Assurance, the "whole nine yards"-to implement the language, or to stop

altogether talking and writing about Brahms as a software system. The present collection

of code makes an excellent prototype or proof-of-concept for such a project.
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Appendix - MARS Project Brahms Model Code

© 2000 Simonetta A. Rodriguez, All Rights Reserved.

/ /************** ********************************** ******

//
//Mars Arctic Research Station Brahms Model Code Segments
//(c)2000 Simonetta A. Rodriguez

//
//
//begin segments

/ /****** ****** ** **** ************** ********* ***************

//Mars Arctic Research Station Brahms Model Component
//

//MarsGeography.b ------------------------------- areas and paths

// only World, City, Building available now, no areadefs possible

import brahms. base. World;
import brahms.base.City;

import brahms . base . Building;

area MarsGeography instanceof World { }

/------------------------------------------------------ on Earth
area Earth instanceof City partof MarsGeography {

display: "Earth";

attributes:
relations:

initial-facts:

}

area MissionControl instanceof Building partof Earth {
display: "Mission Control";
attributes:
relations:
initial-facts:

}

-------------------------------------------- on the planet Mars
area Mars instanceof City partof MarsGeography {

display: "Mars";
attributes:

relations:

initial-facts:

}
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//----------- the landing site and permanent location of this Hab

area HabSite instanceof Building partof Mars {
display: "HabSite";
attributes:
relations:
initial-facts:

}

area RemoteArea instanceof Building partof Mars {
display: "Remote Area";
attributes:
relations:
initial-facts:

}

//----- the habitation unit (main module only, no extensions yet)

area MarsHab instanceof City partof MarsGeo {
display: "MarsHab";
attributes:
relations:
initial-facts:

}

area GroundLevel instanceof Building partof MarsHab {

display: "DnLevel";
attributes:
relations:
initial-facts:

}

area UpperLevel instanceof Building partof MarsHab {

display: "UpLevel";
attributes:
relations:
initial-facts:

}

area Entry instanceof Building partof MarsHab {

display: "Entry";
attributes:
relations:
initial-facts:

}

area GroundLevelRooml instanceof Building partof MarsHab

display: "DnRml";

attributes:
relations:
initial-facts:

}
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area GroundLevelRoom2 instanceof Building partof MarsHab {
display: "DnRm2";
attributes:

relations:

initial-facts:

}

area GroundLevelStoreRooml instanceof Building partof MarsHab {
display: "DnStorel";

attributes:

relations:

initial-facts:

}

area GroundLevelStoreRoom2 instanceof Building partof MarsHab {
display: "DnStorel";

attributes:

relations:

initial-facts:

}

area HatchA instanceof Building partof MarsHab

display: "Hatch A";
attributes:

relations:

initial-facts:

}

area HatchB instanceof Building partof MarsHab {
display: "Hatch B";

attributes:

relations:

initial-facts:

}

area HatchAreaA instanceof Building partof MarsHab {
display: "A area";
attributes:

relations:

initial-facts:

}

area HatchAreaB instanceof Building partof MarsHab {
display: "Barea";
attributes:

relations:
initial-facts:

I

area UpperLevelRooml instanceof Building partof MarsHab {
display: "UpRml";
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attributes:
relations:
initial-facts:

}

area UpperLevelRoom2 instanceof Building partof MarsHab {
display: "UpRm2";
attributes:
relations:
initial-facts:

}

area UpperLevelRoom3 instanceof Building partof MarsHab {
display: "UpRm3";
attributes:
relations:
initial-facts:

}

area Bunkl instanceof Building partof MarsHab {
display: "Bunkl":
attributes:
relations:
initial-facts:

}

area Bunk2 instanceof Building partof MarsHab {
display: "Bunk2":

attributes:
relations:
initial-facts:

}

area Bunk3 instanceof Building partof MarsHab {
display: "Bunk3";
attributes:
relations:
initial-facts:

}

area Bunk4 instanceof Building partof MarsHab {
display: "Bunk4";
attributes:
relations:
initial-facts:

}

area Bathroom instanceof Building partof MarsHab {

display: "Bathroom";
attributes:
relations:
initial-facts:
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}

area Kitchen instanceof Building partof MarsHab {
display: "Kitchen";
attributes:
relations:
initial-facts:

}
area ComdArea instanceof Building partof MarsHab {

display: "Command Area";
attributes:
relations:
initial-facts:

}

---------------------------------------------- Path definitions
//------------------- Path from Earth to Mars
path toMars {

display: "toMars";
areal: Earth;
area2: Mars;
distance: 9999999999999999;

}

/------------------- Path from Mars to Earth
path toEarth {

display: "toEarth";
areal: Mars;
area2: Earth;
distance: 9999999999999999;

}

//------------------- Any Path on Mars outside Hab
path Traverse {

display: "display";
areal: HabArea;
area2: RemoteArea;
distance: 600;

}

//------------------- Paths inside Hab
path HabUp {

display: "HabUp";
areal: GroundLevel;
area2: UpperLevel;
distance: 5;

}
path HabDn {

display: "Hab Dn";
areal: UpperLevel;
area2: GroundLevel;
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distance: 5;

}

/ /*************************************
/ /*************************************************************

//Mars Arctic Research Station Brahms Model Component
//(c)2000 Simonetta A. Rodriguez
//

//Groups.b --------------------- agent functional groupings

import brahms.*;

//--------------------------------------------- Crew
group Crew memberof BaseGroup {

attributes:
public string Name;

initialbeliefs:
(the groupMembership of current = "Crew");
(the agentLocation of current = "MarsHab");

initialfacts:
(current contains IDchip);

} // group Crew

group Pilot memberof Crew {
initialbeliefs:

(the functionMembership of current = "Pilot");
} // group Pilot

group Commander memberof Crew {
initialbeliefs:

(the functionMembership of current = "Commander");
} // group Commander

group Mechanic memberof Crew
initialbeliefs:

(the functionMembership of current = "Mechanic");
} // group Mechanic

group Explorer memberof Crew
initial beliefs:

(the functionMembership of current = "Explorer");
} // group Explorer

group Scientist memberof Crew {
initial beliefs:

(the functionMembership of current = "Scientist");
} // group Scientist
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group Geologist memberof Scientist {
initial beliefs:

(the functionScientific of current = "Geologist");
} // group Geologist

group Biogeochemist memberof Scientist {
initial beliefs:

(the functionScientific of current = "Biogeochemist");
} // group Biogeochemist

//--------------------------------------------- Mission Control
group MissionControl memberof BaseGroup {

initial beliefs:
(the groupMembership of current = "MissionControl");

} // group MissionControl

/ /****************************************

/ /**** **** **** ** **** ** ****** **** ******** ****** ** ******** ****** *

//Mars Arctic Research Station Brahms Model Component
//(c)2000 Simonetta A. Rodriguez
//

//Agents.b -------------------------------------- Crew Agents.

import brahms.*;
import Mars.Groups;
import Mars.MarsGeography;

//----------------------------- agent Bi ("Bee")

agent Bi {memberof Biogeochemist {
display: "Bi";
location: MarsHab;

initial beliefs:
//names of self and other agents
(the name of current = Bi);
(the name of Eug = Eug);
(the name of Geo = Geo);
(the name of Skip = Skip);

initial facts:
(current contains xClothing);
(the CrewID of current = "Bi");
(the Gender of current = "Male");
(the PrimaryExpertise of current = "Biogeochemistry");

} // agent Bi

//Eug.b --------------------- agent Eug ("Yooj")
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agent Eug {memberof Pilot, Mechanic {
display: "Eug";
location: MarsHab;

initialbeliefs:
//names of self and other agents

(the name of current = );
(the name of Bi = Bi);

(the name of Eug = Eug);

(the name of Geo = Geo);

(the name of Skip = Skip);

initialfacts:
(current contains EugClothing);

(the CrewID of current = "Eug");

(the Gender of current = "Male");

(the PrimaryExpertise of current "Pilot");

} // agent Eug

//Geo.b --------------------- agent Geo ("Joe")

agent Geo {memberof Geologist

display: "Geo";

location: MarsHab;

initialbeliefs:
//names of self and other agents

(the name of current = Geo);

(the name of Bi = Bi);

(the name of Eug = Eug);

(the name of Skip = Skip);

initial facts:
(current contains GeoClothing);

(the CrewID of current = "Geo");

(the Gender of current = "Female");

(the PrimaryExpertise of current = "Geology");

} // agent Geo

//Skip.b --------------------- agent. Skip

agent Skip {memberof Mechanic, Commander {
display: "Skip";
location: MarsHab;

initial beliefs:
//names of self and other agents

(the name of current = Skip);

(the name of Bi = Bi);

(the name of Eug = Eug);
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(the name of Geo = Geo);

initial facts:
(current contains SkipClothing);
(the CrewID of current = "Skip");
(the Gender of current = "Female");
(the PrimaryExpertise of current = "Mechanics");

} // agent Skip

/* Question: what will result from Skip's and Eug's dual group
membership? Note that the two initial groups for each carry the
same initialbelief attribute "functionMembership", but with
different values. ToDo: model scenario to test the ambiguity.

//Skip.b -------------------------------- agents at Mission Control.

agent CommOfficer memberof MissionControl {
display: "Earth";
location: Earth;
initial beliefs:

(the functionMembership of current = "CommOfficer");
} // agent CommOfficer

agent Doctor memberof MissionControl {
display: "Doc";
location: Earth;
initial beliefs:

(the functionMembership of current = "Doctor");
} // agent Doctor

agent Dentist memberof MissionControl {
display: "Tooth";
location: Earth;
initial beliefs:

(the functionMembership of current = "Dentist");
} // agent Dentist

/ /*************************************************************

/ /********** ************** *********************

//Mars Arctic Research Station Brahms Model Component
//(c)2000 Simonetta A. Rodriguez
//

//Objects.b --------------------------------- Object definitions.

import brahms.base.*;

object HabObject instanceof BaseClass {
display: "Hab Object"
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location: MarsHab;

attributes:
public symbol groundelevation;
public symbol diameter;
public symbol height;

// does this permanently affiliate the object with the area?

relations:
HabObject MarsHab;

initialfacts:

}

object RoomObject instanceof BaseClass {
display: "Room Object"

location: MarsHab;

relations:

attributes:
public symbol area;
public symbol majordim;

public symbol minordim;
public symbol height;

initial-facts:

}
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/* List of more objects and variations to define:

IDchip
BunkObject - bed within the Bunk area
Clock - alarm, voice

ControlDevice - airtemp, airvolume, airhumidity, lighting, etc.
CommUnit - varieties?

Hatch
ExtDoor
Floor
Ceiling
Ladder
Ramp
Furniture - (somewhat moveable) chair, table
Fitting - (fixed)
Lamp
Rover
Clothing
Tools
Equipment - varieties

Packages - standard groups of objects

//************ *************************************************
/ /************ ******** *****************************************

//end segments
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