
Improved Methods for Solving Traffic Flow

Problems in Dynamic Networks

by

Nathaniel J. Grier

B.S. Civil Engineering, Massachusetts Institute of Technology (2000)

Submitted to the Department of Civil and Environmental Engineering
in partial fulfillment of the requirements for the degree of

Master of Science in Transportation

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2002

© Massachusetts Institute of Technology 2002. All rights reserved.

Author
Department of Civril and EAvironmental Engineering

May 24, 2002

/7 /?

Certified by.............. ...

Associate Professor of Civil
Ismail Chabini

and Environmental Engineering
Thesis Supervisor

Accepted by6 ?..
Oral Buyukozturk

C m an Department Committee on Graduate Studies
MASSACHUSETTS INSTITUTE

OF TECHNOLOGY

JUN 3 2002 1BARKER

LIBRARIES

Improved Methods for Solving Traffic Flow Problems in

Dynamic Networks

by

Nathaniel J. Grier

Submitted to the Department of Civil and Environmental Engineering
on May 24, 2002, in partial fulfillment of the

requirements for the degree of
Master of Science in Transportation

Abstract

Dynamic networks are pervasive, present in many transportation and non-transporta-
tion contexts. We present improved methods for solving two of the primary problems
in dynamic networks: dynamic shortest paths and the Dynamic Network Loading
Problem (DNLP). In each case we also propose a solution algorithm and an imple-
mentation of the algorithm.

We first explore the one-to-all dynamic shortest path problem for discrete time
networks for all departure times. A new framework for the problem is proposed in
which the problem is viewed as series of static reoptimization problems. By posing
the problem in this manner, we are able to reuse the information regarding the short-
est path trees calculated for earlier departure times. The results of computational
tests are provided showing significant savings in computation times over traditional
methods when the percentage of dynamic links is small.

We next present a method for achieving an exact solution to a class of the
continuous-time and space model formulation of the DNLP. The model of a link
is based on that originally proposed by Lighthill and Whitham and Richards. We
characterize the network in terms of the traffic density on the roadway. This allows
for the accurate modeling of disctontinuities in the roadway, including queues, their
dynamics and associated phenomena such as spillback, and temporary events in the
network. The model is first presented for a stretch of highway without on- or off-ramps
and subsequently extended to network topologies with multi-path flow. The densities
at the network entrances are assumed to be stepwise constant and the density-flow
relationships on the arcs are assumed to be concave and piecewise linear. Finally,
we describe an implementation of the solution method and provide the results of its
application to test networks.

Thesis Supervisor: Ismail Chabini
Title: Associate Professor of Civil and Environmental Engineering

Acknowledgments

The author would like to thank Ismail Chabini for his insights and guidance over the

past several years. He would like to thank the members of his research group for their

assistance, motivation and friendship. And to his family he would like to express his

love and thanks for their support and unwavering confidence in his ability to succeed.

And lastly, he would like to thank Ariana Sutton, without whom, none of this would

have been possible. Words could never express all that I owe to you.

5

6

Contents

1 Introduction 17

1.1 Motivation for the Research . 18

1.2 Objectives of the Thesis . 19

1.3 Thesis O utline . 20

2 A New Approach to Compute Minimum Time Path Trees in FIFO

Time Dependent Networks 21

2.1 N otation . 23

2.2 Theory of Reoptimization . 24

2.2.1 Previous W ork . 24

2.2.2 The Reoptimization Problem: A Basic Solution 25

2.3 Reoptimization in Dynamic Networks 27

2.4 The Dynamic Reoptimization Algorithm 30

2.4.1 Algorithm Description . 30

2.4.2 An Exam ple . 33

2.5 Computational Results . 35

2.6 Conclusions . 45

3 A Continuous Space and Time Representation of Dynamic Road

Traffic Flows Consistent with Hydrodynamic Traffic Theory 47

3.1 Description of the Approach . 50

3.1.1 Blocks of Constant Density 50

3.1.2 Boundary Propagation . 51

7

3.2 Modeling Roadway Discontinuities 53

3.2.1 Bottlenecks . 54

3.2.2 Incidents . 55

3.2.3 Expansions . 57

3.3 The Network Model with Known Turn Percentages 58

3.3.1 Network Structure . 59

3.3.2 A Note on Notation . 60

3.3.3 Modeling Diverges with Known Turn Percentages 61

3.3.4 Modeling Merges . 64

3.4 The Network Model with Multi-Path Flow 66

3.4.1 Modeling Multi-Path Flow . 67

3.4.2 The Diverge in a Network with Multi-Path Flow 68

3.4.3 The Merge in a Network with Multi-Path Flow 69

3.5 Algorithm Description . 70

3.5.1 Pseudocode Implementation 70

3.5.2 JavaTI Implementation . 78

3.6 Loading Examples . 80

3.6.1 Stretch of Highway . 80

3.6.2 A Network Example . 81

3.7 Conclusions . 84

4 Conclusions and Future Directions of Research 87

A A Static Shortest Paths Reoptimization Algorithm 91

B Network Loading Algorithm Implementation Details 93

B .1 C lass List . 93

B.2 Class Hierarchy . 97

C Examples Tested with DNLP Solution Implementation 101

C.1 Example Networks . 101

C.2 Example Network File . 104

8

References

9

107

10

List of Figures

2-1 Pseudocode for the dynamic shortest paths reoptimization algorithm. 32

2-2 Pseudocode for the UPDATE-PROJECTIONS called by the DYNAMIC-REOPT-

IMIZATION algorithm . 32

2-3 A sample network used to demonstrate the fundamentals of the dy-

namic shortest path reoptimization algorithm. Link travel times are

given in Table 2.1. 33

2-4 The total running time (reoptimization time plus initialization time)

of algorithm DR as a function of problem size is shown for multiple

percentages of dynamic links. Also shown is the running time for the

modified Dijkstra's algorithm (SSP). We note the essentially linear in-

crease in running time with problem size for both algorithms. 37

2-5 The graph depicts a close-up of the running times shown in Fig. 2-4. 37

2-6 In the above graph we show the total time spent in the reoptimization

routine as a function of problem size and the percentage of the links in

the network which are dynamic. For comparison we show the amount

of time spent running the iterative Dijkstra's algorithm. One sees that

even with the unoptimized implementation used in these tests, the

reoptimizer is faster than the iterative Dijkstra's algorithm for all but

the most dynamic networks. 38

2-7 In the above graph we show the amount of time spent in finding the

first change which affects SPT(1) for each arc. The growth in running

time with respect to problem size is approximately linear. 39

11

2-8 The dependence of the running time of the algorithm DR on the number

of arcs in the test network is show above, using a network with 3000

arcs. In this network 15% of the links are dynamic. 40

2-9 In the above graph we show the dependence of the algorithm DR on the

number of arcs in the network, using a network with 1000 nodes. In

this network 15% of the links are dynamic. 41

2-10 The above graph illustrates the variability in runtime of algorithm DR

as a function of the time horizon, using a network with 1000 nodes and

3000 arcs. In this network 15% of the links are dynamic. 42

2-11 The run times of the four test algorithms are shown as a function of

network size. In all cases 10 percent of the links were dynamic, the

network had a time horizon T of 200, and contained three times as

m any links as nodes. 44

2-12 The run times of the four algorithms are shown with respect to the

time horizon. In all cases the network consisted of 600 nodes and 1800

arcs, 10 percent of which were dynamic. 45

3-1 Determination of the boundary speed between upstream state U and

downstream state D. Parts (a) and (b) of the figure represent the

condition where the downstream density is above the critical density

while the upstream is in free flow condition. Parts (c) and (d) depict

the reversed situation; note the creation of the new state M between

state U and state D . 53

3-2 Two density flow diagrams which illustrate the treatment of a bottleneck. 55

3-3 The space-time diagram representing an incident is shown on the right.

On the left is the corresponding density-flow diagram. 56

3-4 Two density flow diagrams which illustrate the treatment of an expan-

sion in the roadway capacity . 57

12

3-5 In part (a) we show an allowable merge (above) and diverge (below).

In part (b) we show samples of disallowed junctions (left) together with

a proposed transformation into an allowable representation (right). . 60

3-6 The pseudocode description of the DNLP solution algorithm. 71

3-7 The space-time diagram resulting from the example output and the

fundamental diagram for the arcs. 80

3-8 Output from the example. In the lines concerning the creation of new

blocks, a unique identifier of each density block is output [its address in

memory]. Also note that DSDB refers to the downstream density block.

In addition, x refers to the one dimensional position along the arc, t

refers to the time at which the event occurs and A# refers to the arc

number on which the event occurred. 82

3-9 A diagram of the test network, including arc numbers. Arcs 0 through

4 represent the highway, 9 and 10 on- and off-ramps, respsectively, and

the remainder are arterial links. 83

3-10 The network loading at t = 0.062 hours or just under 4 minutes. The

traffic has almost reached the edge of the network. 84

3-11 The network loading at t = 0.20 hours or 12 minutes. We see that the

queue due to the bottleneck has grown substantially. 84

3-12 The network loading at t = 0.433 hours or 26 minutes. The queue has

now almost disappeared. 84

3-13 The network loading at t = 0.500 hours or 30 minutes. The network

has just returned to steady-state conditions. 85

13

14

List of Tables

2.1 Travel times on the network shown in Figure 2-3 as a function of time.

In order to emphasize the changes in travel time, the table only includes

entries for changed travel times; all travel times are assumed constant

until the next entry in the table. 34

C.1 A summary of the examples used in testing the DNLP implementation. 102

C.2 A summary of the arc types used in the examples, including all relevant

characteristics. 104

C.3 A summary of the density-flow relations used in the examples, includ-

ing all relevant characteristics. Note that the underlying units in the

first example differ from the remaining relations. 105

C.4 A summary of the events used in the testing of the networks. Note that

the Duration and Delay columns apply to cyclic events: duration refers

to the duration of the blockage and delay to the amount of time which

passes after the blockage is removed before it reappears (therefore the

sum of the two is equal to the period or cycle time of the event). As

these only apply to cyclic events, these columns are blank in non-cyclic

events. 105

15

16

Chapter 1

Introduction

Dynamic networks are present in nearly all areas of transportation. This is particu-

larly true in highway networks where the traffic conditions are constantly changing.

Many areas of transportation rely on models to predict the state of a highway network

under time-dependent conditions. Practitioners from the transportation planner to

real-time traffic manager rely on efficient methods to predict the future state of the

network.

One of the primary problems in a dynamic network is the determination of shortest

paths. Because the state of the network is constantly changing, the shortest path be-

tween a given origin and destination must be calculated as a function of the departure

time from the origin. This information is used not only for pre-trip planning (based

on the assumption that the traveler is seeking the shortest path), but increasingly

today in a real-time context of route-guidance while en-route to the destination.

A second major problem in dynamic networks is the Dynamic Network Loading

Problem (DNLP). This problem seeks to provide information on the link dynamics -

particularly link travel times - given a set of time-dependent origin-destination de-

mands. Such a model can be used to predict how a traffic network will respond to

an incident or how traffic flow will evolve over the course of a day based on historical

data. By accurately modeling the queuing in a network, the DNLP is also important

to vehicle emissions models. The DNLP is at the heart of the Dynamic Traffic As-

signment problem, which seeks to assign origin-destination demand to a particular set

17

of paths in the network, usually a set of the shortest paths. In this thesis we explore

both the dynamic shortest paths problem and the DNLP, and propose advances to

each.

1.1 Motivation for the Research

In the case of the dynamic shortest paths problem, previous algorithms often attempt

to solve the problem at hand without much thought of reusing the knowledge of the

problem obtained during the solution, specifically shortest path information. While

some algorithms have sought to use this information, it is normally only used to

provide bounds on the length of the shortest path rather than incorporate it directly

into subsequent solutions. As it is common for a network to have a substantial

percentage of links where the travel time is constant or nearly so, we would like to be

able to calculate a shortest path once, and then only recalculate it if the travel times

along the arcs in the path change.

At the same time, because we use dynamic shortest paths algorithms in real-time

situations, we rarely know the travel times along all the arcs in the network for all

future times. Instead, we might be able to predict when an arc's travel time will next

change, but no further. In this thesis we describe an algorithm which addresses both

of these issues.

Previous discrete DNLP models approximate the behavior of the network. Time,

and often space, are broken up into a finite number of intervals and behavior of the

network is estimated at this level. While the accuracy of these models can be improved

by increasing the resolution of the discretization, this increases the computational

power needed to solve them. Not only do they suffer from this accuracy-computation

trade-off, the approximations inherent in discrete models often result in additional

errors because of their inability to truly model the dynamics of the traffic. A model

which is continuous in space and time, however, can allow us to develop an exact

solution to the problem. In addition to providing an exact solution, such models may

actually perform less work than a discrete solution method. Just as the arcs may be

18

static in the dynamic shortest paths problem, it is often the case that the input data

to the DNLP is constant over a time interval. Rather than explicitly calculate the

network state at every point in time and every discrete location in space, we need

only concern ourselves with those points at which the state changes.

While a few DNLP solution methods exist which treat space and time as contin-

uous, they are limited in their scope, not modeling all aspects of traffic flow. While

some do not model queues and their spillback, others are limited to network topolo-

gies consisting of a stretch of highway. Moreover, to be of use, a solution method to

the DNLP must be implementable in order to solve the complex problems which are

not practical to carry out by hand.

The primary motivation for the new DNLP model of this thesis, then, is to bridge

an existing gap between realism and theory. Historically DNLP models have been

forced to make a trade-off between these two aspects of the models. Macroscopic

traffic theory relied on the volume-delay function to calculate link travel times. While

such functions are relatively accurate when a link is uncongested, they are not when

the traffic becomes congested and queues develop. On the other hand, practitioners

who study the dynamics of flows on highways have long known that a relationship

exists between the density of traffic, and the flow and the speed of vehicles on the

roadway. Yet the complexity of these relationships is such that the exact solution

techniques have been abandoned in favor of approximations. Thus by presenting

a continuous time and space solution method to the DNLP which builds upon the

observed properties of highway dynamics, we aim to bridge the gap between the model

realism to capture the dynamic aspect of highway traffic and their tractability from

a computational standpoint.

1.2 Objectives of the Thesis

The objectives of this thesis are to:

e present a framework for viewing the one-to-all dynamic shortest (minimum-

time) path problem which improves upon existing algorithms when the network

19

contains a small percentage of links with dynamic travel times.

" develop a method which provides an exact solution to the continuous time and

space model formulation of the Dynamic Network Loading Problem, based on

the hydrodynamic theory of traffic flow, assuming that the input densities are

stepwise and the link density-flow relationships are concave and piecewise linear.

" implement these methods and test them in order to verify their correctness.

1.3 Thesis Outline

The goal of this thesis is to formulate and implement improved methods for solving

problems in dynamic networks. We focus on two of the primary problems in dynamic

traffic networks: dynamic shortest paths and the Dynamic Network Loading Problem.

In Chapter 2 we address the one-to-all dynamic shortest paths problem. We focus

on the variant of the problem where only a small percentage of the links in the network

have dynamic travel times. After providing a brief overview of reoptimization in static

networks, we describe how the dynamic shortest paths problem can be viewed as a

series of static reoptimization problems by introducing the concept of the projection.

We walk through an example using this solution method, followed by comparison of

the computational efficiency of a sample implementation to existing solution methods.

In Chapter 3 we present a space and time continuous model which provides an

exact solution to the Dynamic Network Loading Problem, given certain input data.

We discuss the advantages of this model over other well-studied methods. The model

is first described for a stretch of highway, followed by a discussion of how network

topologies are modeled. We provide an extensive description of an algorithm based on

this method and an implementation of this algorithm. We end by providing numerical

results from a sample network loading.

We conclude in Chapter 4 by discussing the strengths and weaknesses of the

algorithms presented in Chapters 2 and 3 and presenting some directions for future

research.

20

Chapter 2

A New Approach to Compute

Minimum Time Path Trees in

FIFO Time Dependent Networks

The problem of shortest paths in dynamic networks has been studied extensively

in recent years and several solution algorithms have been proposed. In transporta-

tion, shortest path problems lie at the heart of the route guidance dynamic traffic

assignment (DTA) problems. The shortest path problem also arises in many other

application fields including telecommunications. As these networks are dynamic in

nature, we desire algorithms which can operate on dynamic networks. There are

many sub problems of the minimum time path problem. The solution of the one to

all shortest path problem for all departure times via an iterative Dijkstra's method

is a celebrated result [17, 22, 1]. In this chapter we shall focus on the one to all

minimum time path problem for all departure times in FIFO networks.

The First-in-First-Out (FIFO) property for an arc holds if and only if an individual

leaving the source node cannot arrive at the end node earlier by departing later. For

the network to be FIFO, this property must hold for all departure times on all arcs.

If the network is FIFO, it follows that the arrival times at each destination node must

be monotonically increasing.

When considering dynamic networks, one of the first observations is that, in prac-

21

tice, many dynamic networks are not fully dynamic. That is, not all the links have

time-dependent travel times, and for those that do, a significant amount of time may

elapse between changes in their travel time. Recent developments in continuous-time

solutions to the dynamic shortest paths problem can reduce the computational time

needed to solve this problem [8]. Chabini et. al. [7] proposes an algorithm which

uses previous results as bounds in order to speed up the computation for subsequent

departure times. Yet despite these potential gains, most of the work in the liter-

ature investigating the direct reuse of shortest path trees has been limited to the

investigation of static shortest paths.

The study of static shortest paths reoptimization aims to find a new shortest path

tree following a change in the network, using a previous shortest path tree as the

basis for such calculations. Reoptimization algorithms traditionally have focused on

changes to a single arc travel time, though some work has been done to find efficient

methods of finding a new optimal tree given several simultaneous changes in link

travel times [29, 19].

In this chapter, we propose an algorithm which utilizes the classical notion of

reoptimization to reduce the computational time necessary to solve the one to all

shortest path problem in discrete-time dynamic networks for all departure times. The

field of reoptimization has undergone many advances in recent years. To this end, we

propose a framework via which a dynamic shortest path problem can be transformed

into a series of static reoptimization problems. The framework is such that any such

algorithm may be used, allowing the problem of dynamic reoptimization to benefit

from advances in the study of static reoptimization.

This chapter is organized as follows. In Section 2.1 we summarize the notation

we use in the chapter. We then provide a brief background on the theory of static

reoptimization in Section 2.2. In Section 2.3 we describe how the dynamic shortest

path problem may be viewed as a series of static shortest paths reoptimizations. This

is followed by a description of a solution algorithm and an example solution in Section

2.4. Finally, we give the results of some basic computational testing in Section 2.5

22

2.1 Notation

In our discussion we will use the following notation. Let G = (N, A) be a graph,

where N is the set of nodes and A the set of arcs. Let the number of nodes in G

be n = INI and the number of arcs m = JAI. We associate with each arc (ij) a

travel time dij(t), where t denotes the time of entrance onto the link. The travel

time from the origin node q to a node i departing the origin at time t is denoted

by di(t) and the arrival time at node i when departing the origin at time t by ai(t);

thus t + di(t) = a (t). For a node i, let A(i) = {(i, j) : Vj E N, (i, j) E A} and

A(i) ={(j, i) : Vj E N, (j, i) E A}. Let the set of nodes whose shortest path includes

node i be indicated by R(i); in terms of the shortest path tree, R(i) is identical to the

subtree rooted at node i. We utilize the concept of the reduced cost of an arc (i, j) at

time t, with respect to travel time, such that ci (t) = di(t) + dij (ai (t)) - dj (t); while

the "reduced travel time" is a more accurate description, we will use "reduced cost"

as we feel it is more intuitive for most readers.

In the following discussion, we make use of a time horizon T, the time after which

we are no longer interested in changes in the network so that arc travel times are

assumed static. Furthermore, we take the first time for which the shortest path tree

is known to to be 0 without loss of generality. For each arc (i, j) the number of

times that the arc changes travel time between to = 0 and T is referred to by Kij.

We denote the time of each such change by Bi(k), with Bij(0) = 0, V(i, j) E A.

Thus by dij(Bij(k)) we refer to the travel time along arc (i, j), departing i at the

time of the kth change in travel time along the arc; for notational simplicity we may

also refer to this travel time as simply d(Bij(k)). Note that the travel time on arc

(i, j) is assumed constant for the interval [Bi3 (k), Bi3 (k + 1)). Additionally, we will

sometimes refer to the kth change on arc (i, j) as kij. We will also sometimes refer to

the act of reoptimizing the shortest path tree with respect to a change in travel time

as "processing a change". Finally, we will introduce additional notation, as necessary,

to refer to concepts developed in the following discussion.

23

2.2 Theory of Reoptimization

By reoptimization we refer to the calculation of new shortest paths following the

change in a characteristic of the network. Normally this refers to a change in travel

time or cost, but the algorithm discussed in this chapter is valid for topological changes

as well. These change are simply reflected as changes in cost and travel time: the

removal of an arc can be modeled by setting its travel time to infinity. From this point

on, though, when referring to a change in the network, we mean simply a change in

travel time.

Reoptimization seeks to reuse information about the network and its shortest

paths in order to efficiently calculate the new shortest path tree. This is usually

accomplished by reoptimizing with respect to the shortest path tree which was optimal

prior to the change(s) in the network, referred to herein as the "base" tree. One can

seek to reoptimize with respect to a single change in the network or several at a time.

2.2.1 Previous Work

While the idea of reusing previously computed shortest paths is not new, most of

the previous work in the area has focused on efficient methods to solve subproblems

of the general reoptimization problem. Gallo [20], for instance, has proposed an

efficient method for recalculating the shortest path tree when the origin node has

changed or the cost of one arc is reduced. Another subproblem of the shortest path

reoptimization has been addressed by Fujishige and his suggestion for an efficient

algorithm to update the shortest path tree when the set of arcs incident to a common

node is given new costs, lower than those previous [19]. Other research into the reuse

of known information to more efficiently solve the shortest path problem has focused

on the utilization of previous results as lower and upper bounds for the new shortest

path lengths. Glenn [21], for example, recently introduced a new method for reusing

known shortest paths to find improved travel time bounds in dynamic networks .

While the method efficiently reuses previous results, it does not directly incorporate

this information into subsequent shortest path trees.

24

There has also been a renewed interest in a more general treatment of the reopti-

mization problem, such as that of Pallottino and Scutella [29]. They propose a generic

algorithm for reoptimizing shortest paths in a static network. Their work draws on the

earlier work by Fujishige and Gallo [19, 20]. To the best of our knowledge, however,

there has been no research on the reoptimization of dynamic networks.

2.2.2 The Reoptimization Problem: A Basic Solution

Before discussing the treatment of reoptimization in a dynamic network, we provide

here a brief description of one such reoptimization algorithm for shortest paths in

static networks. As our solution to the dynamic shortest path problem relies on the

use of a static reoptimization algorithm, it is important that the reader be familiar

with the static problem.

We process such changes one at a time, reoptimizing the shortest path tree after

updating the arc's travel time on an arc. The algorithm classifies each change with

respect to two parameters: 1) whether the changed arc was in the shortest path tree

prior to its change in travel time; and 2) the new reduced cost for the arc, where the

reduced cost is in terms of travel time (See Section 2.1 for more on notation). By

defining the change in terms of these two parameters, we identify four categories of

changes.

In the case that the arc is not in the tree and its new reduced cost is non-negative,

clearly the shortest path tree does not change and no additional work to reoptimize

the tree is necessary.

If the reduced cost of an arc (k, 1) becomes negative, by the Bellman-Ford optimal-

ity conditions, the arc must now be in the shortest path tree. (See, for instance, [2]

for further discussion of these optimality conditions.) This is for both the categories

in which the arc was previously in the shortest path tree and that in which it was

not; for both categories the reoptimization procedure is the same. The first step is to

add the arc to the shortest path tree, if necessary. Next, the minimum travel times

di(.) to the nodes in R(l) must be updated. Finally, one must recalculate the reduced

costs in this subtree, updating the shortest path tree beneath this node as necessary.

25

Methods for reoptimizing this subtree have been proposed in [28, 27, 29] and are the

subject of ongoing research.

The fourth category occurs when the travel time along an arc (k, 1) in the shortest-

path tree increases. In this case, the travel times to the nodes in R(l) must be updated

as must the reduced costs for each arc in this subtree. The optimality of the current

shortest paths to all nodes in R(i) is unknown: given the increased travel time on

(k, 1), the nodes in R(i) might now be reached earlier by using a path which does not

utilize (k, 1). In order to recalculate the optimal shortest path tree, it is necessary

to examine the new reduced costs of a greater number of arcs than for the previous

categories of changes as the arcs connecting the optimal tree to the subtree must also

be examined. The process of reoptimization can be the similar to that used for the

case when an arc travel time decreases.1 While the use of a similar procedure simplifies

the implementation of a static reoptimization algorithm, it is not the most efficient

manner of reoptimization for this type of change (See [28, 27, 29] for instance).

The method for the treatment of the four cases described above provides a means

of finding the new optimal shortest path tree following a change in travel time in

the network. Because the shortest path tree is optimal following the processing of

each such change, a set of changes to the network may be processed in any order and

will ultimately yield the new optimal static shortest path tree. We note that this

observation is key and shall return to it in later discussion. Although the treatment

above was general, we do not wish to belabor the point of static reoptimization

as the methods for such are numerous and complex. For further illustration, we

refer the reader to Appendix A for a psuedocode implementation of a simple static

reoptimization algorithm which was developed as part of this research.

'For example, in the case when an arc travel time decreases, one starts at the root of the affected

subtree, rehanging as necessary. In this case, one rehangs not from the root of the subtree but from

any of the nodes in the optimal tree which connect to the subtree.

26

2.3 Reoptimization in Dynamic Networks

In a dynamic network there are several shortest path trees, each corresponding to a

departure from the origin at some time t, which we denote by SPT(t). Given the

tree for time t, subsequent changes in arc travel times may be such that SPT(t + 1)

is disjoint from that at time t or identical. In networks with a small proportion

of dynamic links, one would expect the subsequent shortest path trees to be quite

similar.

Given the shortest path tree of the previous time index t, the key, then, is to

determine which changes in arc travel times will affect a departure at time t + 1. To

aid us in this process we introduce the concept of a projection.

Definition 1 We define the projection, pij(k) of the kth change on arc (i, j) as the
earliest departure time t such that ai(t) is later than the time at which this change
occurs Bij(k):

pij (k) = min t.
ai (t);> Bij (k)

In words, the projection allows us to identify the first departure time to experience a

change in the travel time along an arc (assuming that only shortest paths are used).

By utilizing the idea of the projection, we can transform the dynamic shortest path

problem into a series of static reoptimization problems: we can identify a series of

changes affecting a single base tree, with one such tree for each departure time. To

do so we must first answer two questions: 1) what shortest path tree is reoptimized

when processing a change (or which is the 'base' tree and how can it be determined);

and 2) for a given departure time, which changes should be processed. We find the

answer to our first question by realizing that if there were no changes in the network

affecting a departure at time t + 1, then SPT(t + 1) must be identical to SPT(t).

It follows, then, that SPT(t) should be used as the initial optimal tree for changes

affecting departures at time t + 1.

To answer the second question, we see that by Definition 1, in order to determine

the shortest path tree for a given departure time t + 1, the reoptimization need only

consider those changes whose projections are equal to the current departure time

27

t + 1. This conclusion is only valid, however, if we reoptimize in increasing order

of departure time, using SPT(t) as the initial shortest path tree for departure time

t + 1.

The projection, then, allows us to transform the dynamic reoptimization problem

into a series of static reoptimization problems. Given an initial shortest path tree,

we have an idealized algorithm for the dynamic reoptimization problem which we

summarize below.

Idealized Dynamic Reoptimization (G, q, T)

SPT(O) +- SSP(G, q, 0)
for t from 1 to T

SPT(t) = SPT(t - 1)
for each k on each arc (i, j) such that pij(k) = t

STATIC-REOPTIMIZATION(G, SPT(t), ki3)

In the above description, G denotes the network, q the source node and T the time

horizon. We use SSP(G, q, 0) to refer to an algorithm to determine the one-to-all short-

est paths in G departing from q at time 0. Similarly we refer to STATIC-REOPTIMI-

ZATION, a static shortest path reoptimization algorithm, an example of which is pre-

sented in the Appendix; this function's arguments are the network, the shortest path

tree to reoptimize and the change in the network. As noted previously, we assume that

arc travel times are known for a departure from the origin at to. After determining

SPT(0), the algorithm calculates SPT(t), in order of increasing t, by reoptimizing

SPT(t - 1) to account for all changes in the network for which their projection is

equal to t.

We note that the only unknown in the above algorithm are the projections. The

concept of the approximate projection, defined below, will be used to operationalize

the idealized dynamic reoptimization algorithm.

Definition 2 We define the approximate projection of the kth change on arc (i, j),
relative to a departure from the origin at time t', and denote it by pij(k, t'). It is equal
to Bij(k) - di(t'):

pij (k, t') = Bij (k) - di(t').

28

We note that the while the projection of a change occurring at time Bij(k) is defined

independently of the time of the projection, an approximate projection is a "current

best guess" as to whether a downstream change in the network will be encountered

by the current departure time. Rather than calculate the shortest path length anew

for each departure time, the approximate projection allows us to use information for

earlier departure times to bound the arrival times.

By using the approximate projection for a given change, we aim to obtain increas-

ingly tighter bounds so that ultimately pij (k, t,) = pij (k), assuming pij (k) = t,. The

algorithm makes a series of such approximate projections which are updated after

each change to the shortest path distances. In addition, when stepping from reop-

timizing SPT(t) to SPT(t + 1), these approximate projections are updated based

on the shortest path travel times from the previous tree. By updating the approxi-

mate projection the algorithm will ultimately determine the actual projection, thus

processing only those changes which affect the current departure time, t + 1.

To ensure that the true projection is obtained, one must process the changes in

a specific order, particularly in the case where the network is not strictly FIFO. If

one were to process the changes affecting a given departure time without considering

the arrival times, one would likely process changes which do not affect the current

departure time. This occurs because the set of changes which affect the current de-

parture time is determined from the shortest path tree of the previous departure time.

If we do not process the changes which indicate upstream arc costs have decreased

(and thus the arrival time at some downstream node i remains constant), one would

inaccurately determine that the projection of some change pij(k) = t, when in fact

pij (k) > t. To prevent such premature consideration of changes to the network, one

must process the changes for a given departure time t in order of increasing arrival

time. This is summarized in Proposition 1.

Proposition 1 By considering the changes affecting a departure time t in increasing

order of arrival time ai(t) and updating the approximate projections for every node in

the network as the result of each change, when each change is processed its approxi-

mate projection pij(k, t) is equal to pij(k). In this manner one determines an optimal

29

shortest path tree SPT(t) in a dynamic FIFO network.

Proof The proof is similar to the proof of the correctness of Dijkstra's algorithm; for

space considerations some steps are not included. Denote the current time by t. For

all arcs in A(q), aq(t) = t and the approximate projection of any changes on these arcs

is t + 0 = t = ps(t). Therefore the tree is optimal with respect to this set of changes.

We take as the induction hypothesis that when the set of changes emanating from a

node i is processed di(t) is optimal and therefore pij(k, t) = pij(k) = t. Because node

arrival times are FIFO, all changes which would affect any shortest path between the

origin q and some destination r must have been processed prior to the changes at r

because their shortest path travel times are lower. Because all such changes will have

been processed, d,(t) must then be optimal and thus for any arcs whose kth change

affects departure time t, prj (k, t) = prj (k) = t, V(r, j) E A. Thus we have proved the

induction hypothesis and thereby the Proposition. o

2.4 The Dynamic Reoptimization Algorithm

In this section we provide a description of the dynamic shortest paths reoptimization

algorithm in addition to a pseudocode implementation. The algorithm itself follows

closely the theoretical discussion in Sections 2.2 and 2.3. Following the algorithm

description we provide an example where we use the algorithm to determine the

shortest path trees on a sample network.

2.4.1 Algorithm Description

For the following discussion we introduce the following notation. Let C be the set of

all changes in the dynamic network. This set will be ordered by increasing time of

change for each arc; we denote the next unprocessed change in travel time on arc (i, j)

by Cij. We also store a list of the projections pij(Cij) which we denote P. To prevent

notational overburdening, we omit the redundant subscripts and refer to pki(Cij) as

p(Cij) and will refer to the approximate projection in a similar manner. Let P(t) be

30

the set of all such changes which project onto time t: P(t) = {Cij : p(Cij) = t}.

We now describe the algorithm, the pseudocode for which is given in Fig. 2-1

and which we refer to as DYNAMIC-REOPTIMIZATION. The first step in the algorithm is

to find the initial shortest path tree, SPT(O). Having determined an initial shortest

path tree, we must make the initial projections. Note that we discard all changes

that project to a departure time earlier than our initial departure time as these have

no bearing on the problem at hand.

Following this initial projection of the changes, we begin the process of reopti-

mization. As discussed above, the shortest path tree begins as the tree from the

previous time index. As noted in Proposition 1, we must examine the changes for

which pzj(k) < t in order of increasing ai(t). We explain following Definitions 1

and 2 that the inequality results from discontinuity in the arrival time function.

Having selected an arc with minimum arrival time, we choose the change in travel

time on this arc occurring latest in time such that its projection is less than or

equal to t: k = arg max<k'<Kij:pij(k)<t Bij(k'). We note that for a given arc (i, j), if

ai (t) > T, Vt < T, we cannot ignore the last such change k = arg maxo< k1<K Bij (k')

(we remind the reader that Bij (k) < T Vk). This is for the simple reason that

even though the arc cannot be reached before the network becomes static, all future

departures will experience this final travel time.

Having selected the appropriate change in the network to process, the algorithm

makes use of a subroutine for reoptimizing the shortest path tree in a static network,

denoted as STATIC-REOPTIMIZATION. As described in Section 2.2, any such static

reoptimization algorithm may be used. The procedure STATIC-REOPTIMIZATION is

passed a copy of the current shortest path tree, the change and a copy of the network

G where the arc travel times dij have been set equal to dii(a (t)). The procedure

UPDATE-PROJECTIONS is used to calculate the new approximate projections given the

shortest path tree determined by the reoptimizing subroutine. The pseudocode for

this subroutine is shown in Fig 2-2 .

31

Procedure Dynamic Reoptimization (G, C, q, T)

SPT(O) +- SSP(G, q, 0)
for each arc (i, j) E A

while Cij = 0 AND p(Cij, 0) < 1
C +- C\Cj3

P(p(Ci3 , 0)) +- P(p(Ci,, 0)) U Cij
for t +- 1 to T do

SPT(t) = SPT(t - 1)
while P(t) # 0

ki= arg mink'. eP(t) a2 (t)
P(t) <- P(t \kij
C +- C\Cj
while (pij(k, t) < t AND Cij 0 AND

p(Cij, t) < t) do
kij Cij
C +- C\C

STATIC-REOPTIMIZATION(G, SPT(t), kij)
UPDATE-PROJECTIONS(P, t, d(-))

P(p(Ci, t)) +- P(p(Cij, t)) U Cij

Figure 2-1: Pseudocode for the dynamic shortest paths reoptimization algorithm.

Procedure Update-Projections (P, t, d)

for each node i E N do
if di(t) has changed

for each node j E A(i) do
if (C $ 0 AND (poId(Ciit) < t OR

te - di(t) < t))
P (Pold(Cii I W +- P (Pold(Cii It)) \Cii
t' = max{t, p(Cii, t)}
P(t') +- P(t') U Cij

Figure 2-2: Pseudocode for the UPDATE-PROJECTIONS called by the DYNAMIC-REOPT-
IMIZATION algorithm.

32

0

1 2

5

3
4

Figure 2-3: A sample network used to demonstrate the fundamentals of the dynamic
shortest path reoptimization algorithm. Link travel times are given in Table 2.1.

2.4.2 An Example

To assist the reader in better understanding the algorithm presented in this chapter,

we provide a small example. The example network is shown in Figure 2-3 accompa-

nied by Table 2.1 which summarizes the costs upon the network. In the following

paragraphs we will walk through the steps the algorithm would take in reoptimizing

this network with respect to the source node of 0.

The first step is to solve the shortest paths problem to determine SPT(O). The

reader can readily verify that using Dijkstra's algorithm on the expanded time-space

network produces a shortest path tree containing the set of arcs {(0,2), (0,1), (1,3),

(1,4), (1,5)}. The distances to the nodes are, by increasing node number {0, 1, 3, 3,

2, 4}.

The second step is to initialize the set of changes. We note that the change on

arc (2,3) occurring at time 2 does not need to be processed since a 2 (0) = 3 > 2 = t,.

Therefore we have P(1) = {k = 1 on arc (0, 5)} and set SPT(1) initially equal to

SPT(0). As 0, 5 = - 1 and (0, 5) is not in SPT(1), we must first remove (1, 5) from

the tree, replacing it with (0, 5). Since there are no outgoing arcs from node 5, the

33

Arc \t 1 1 12 13 14 15 1

(0,2) 3
(0,1) 1 2 1
(0,5) 4 3
(1,2) 2
(1,3) 2 1 2
(1,4) 1 3
(1,5) 3
(2,1) 1
(2,3) 2 1
(3,4) 1
(4,5) 2

Table 2.1: Travel times on the network shown in Figure 2-3 as a function of time.
In order to emphasize the changes in travel time, the table only includes entries for
changed travel times; all travel times are assumed constant until the next entry in
the table.

tree reoptimization is completed once we set d5 (1) = 3 and a5 (1) = 4. At this point

we call UPDATE-PROJECTIONS to recalculate the approximate projections. Because no

arcs emanate from node 5, such a call would exert no computational effort.

An examination of Table 2.1 reveals that the changes of travel time along three arcs

project into P(2) given the initial estimate of arrival times ai(2). Sorted by increasing

arrival time, breaking ties arbitrarily, we have P(2) = {k = 1 on arc (0, 1), k = 1 on

arc (1, 3), k = 1 on arc (1, 4)}. The first change in this list occurs to an arc in the

shortest path tree which experiences an increase in travel time. Because no other arc

would provide an earlier arrival time to node 1 or any of the other nodes in SPT (2),

a1 (2), a3(2) and a4(2) all increase by 1. This increase in arrival times, requires the

recalculation of projections. An examination of Table 2.1 shows, though, that this

increase in arrival time does not add any changes to P(2). It does, however, illustrate

the need for setting the "true" projection as given in Definition 1: the minimum t

such that a2(t) > t,. If we lacked the inequality we would ignore the change for which

k = 1 on both arcs (1, 3) and (1, 4) which would clearly be incorrect. These two

changes, which may be processed in any order, collectively result in the changes of

a3(2) and a4(2) as well as SPT(2).

34

When we begin reoptimization for departures from the origin at t equals 3, the

last two changes in our small network are both in P(3) such that P(3) = {k = 2 on

arc (0, 1), k = 2 on arc (1, 3)}. We must first process the k = 2nd change on arc (0, 1)

as ao(3) < a1 (3). This reduction in travel time results in the decrease of ai(3) by 1

unit. At this point UPDATE-PROJECTIONS is called, setting p1,3(2) = 4. Since there are

no longer any changes for which the current approximate projection is equal to the

current departure time, we must increment the departure time and examine changes

affecting departures at t = 4.

Finally, for t = 4, SPT(4) would be reoptimized to account for the second and

final change on arc (1, 3). As there are no additional changes to the network, no work

would be expended for t = 5, after which point the reoptimization algorithm would

exit.

2.5 Computational Results

Our initial aim in the implementation was to examine the feasibility of the algorithm

presented in the previous section. Therefore, our initial tests relied on a single im-

plementation of the algorithm. The objectives of the computational study were to

analyze the running time as functions of the following parameters:

1. The size of the network for a fixed network density;

2. The percent of links whose travel times changed from one time interval to the
next;

3. The number of nodes;

4. The number of arcs; and

5. The value of the time horizon.

The computational tests are based on a C++ implementation of the algorithm

described in Section 2.4 which, for ease of discussion, we shall refer to as algorithm

DR. Tests were performed on a 733MHz Pentium III machine with 64MB of RAM.

35

All networks were randomly generated. The reported run times were obtained by

averaging the running times of algorithm DR on a given network for each problem

instance. For comparison, we also report the solution time of the repeated application

of Dijkstra's algorithm as modified to find shortest paths in a FIFO dynamic network,

using a heap data structure. For simplicity, we will refer to this algorithm as Repeated

SSP or simply SSP. The algorithm is called once per departure time, using the same

test network as for the reoptimization algorithm (for a description of the algorithm,

see [17, 22]). Finally, we note that for all tests, arc travel times varied between 1 and

50.

Figures 2-4 through 2-7 summarize the running time results of the implementation

of the dynamic shortest paths reoptimization algorithm for networks with a constant

ratio of number of arcs to number of nodes(also called density). We also show the

effect of varying the percentage of link travel times that change between one time

interval and the next. In each of Figures 2-4 through 2-7, we plot the number of

nodes n against the running time in seconds, with m/n = 3 and a time horizon T of

100. In Fig. 2-4, the increase in running time with respect to the increase in number

of nodes in the test network is slightly faster than linear. We note, though, that due

to the small amount of memory on the test machine, much of the slowdown on large

problem sizes is likely due to the increased use of swap space. One also notes that

the running times increase with the percentage of dynamic links in the network, as

is expected. We note that the running times for 10% and 15% dynamic networks are

nearly equivalent. We also note that for the 25% dynamic network, algorithm DR has

a running time nearly equal that of Repeated SSP. This can be better seen in Fig.

2-5.

Fig. 2-6 shows the amount of time spent in the reoptimization subroutine, ex-

cluding time spent in initialization and other "housekeeping" tasks. It is clear that

algorithm DR is faster than Repeated SSP except in cases when the network has a

high proportion of dynamic links. This is quite promising as the implementation used

in these tests was not fully optimized to take advantage of the latest developments in

static shortest paths reoptimization. Again, we see that the running time increases

36

Running Ti

2.00 - -

1.75 -

1.50

51.25-
E
1-1.00 -

E 0.75

0.50

0.25 -

0.00 -
0

me (By % Dynamic Links) vs. Dijkstra's (m = 3n, T = 100)

1000 2000

-0-10%

-0- 15%

--- 25%

100%

-V-SSP

3000
Number of Nodes

Figure 2-4: The total running time (reoptimization time plus initialization time)
of algorithm DR as a function of problem size is shown for multiple percentages of
dynamic links. Also shown is the running time for the modified Dijkstra's algorithm
(SSP). We note the essentially linear increase in running time with problem size for
both algorithms.

Running Time (By % Dynamic Links) vs. Dijkstra's (m = 3n, T = 100)

-/

- /

- /

/

1000
Number of Nodes

Figure 2-5: The graph depicts a close-up of the running times shown in Fig. 2-4.

37

0.4

E 0.3

.S 0.2

0.1

0.0
0

-- 10%

-'- 15%

-a- 25%

-L- SSP

02000 300

I

0

Time Spent Reoptimizing (By % Dynamic Links) vs Dijkstra's
(m =3n, T =100)

0.8

0.6
15'-El- 10%

100%

-- SSP
0.2

0.0
0 1000 2000 3000

Number of Nodes

Figure 2-6: In the above graph we show the total time spent in the reoptimization rou-
tine as a function of problem size and the percentage of the links in the network which
are dynamic. For comparison we show the amount of time spent running the iterative
Dijkstra's algorithm. One sees that even with the unoptimized implementation used
in these tests, the reoptimizer is faster than the iterative Dijkstra's algorithm for all
but the most dynamic networks.

linearly with the problem size which is expected as the reoptimization time is largely

dependent on the number of changes in travel times in the network.

Finally, in Fig. 2-7 the amount of time spent finding the first change to be pro-

cessed for each arc, as a function of problem size, is shown; this is the time spent in the

first f or loop in the algorithm Dynamic Reoptimization. As expected, the increase

is approximately linear in both problem size and proportion of dynamic links in the

network. We note that this time is quite large in comparison to other aspects of the

algorithm. For less dynamic networks, it is on the order of the entire time spent in

the reoptimization subroutine. For very dynamic networks, such as the fully dynamic

network shown, this time is noticeably longer than the time spent in the entire reop-

timization phase. In light of these results, the sample implementation would greatly

38

Time Spent Finding First Change on Each Arc
(By % Dynamic Links) vs Dijkstra's

(m =3n, T= 100)

1.0-

0.8-

-_0-10%

0.6 - -0- 15%

-6 25%

E0.4 -100%
C

-- SSP

0.2

0.0
0 1000 2000 3000

Number of Nodes

Figure 2-7: In the above graph we show the amount of time spent in finding the first
change which affects SPT(1) for each arc. The growth in running time with respect
to problem size is approximately linear.

benefit from ways in which the algorithm might be redesigned in order to reduce this

computation time. By waiting to process the changes until after determining SPT(0),

for instance, this initialization time can be nearly eliminated in FIFO networks.

In Fig. 2-8 and 2-9, the effect of the number of nodes and arcs on computation

time, respectively, is shown. In Fig. 2-8 we see that for increasing number of nodes,

and a constant number of arcs constant (3000 in this case), the running time of

the reoptimization algorithm actually decreases while the running time of Repeated

SSP increases. This can be explained as follows. When updating the shortest path

tree in the reoptimization algorithm, the running time is strongly dependent on the

out degree of the end node of the arc whose travel time has changed. By holding

the number of arcs constant while increasing the number of nodes, we see that the

average out degree will decrease, thus decreasing the amount of work. In the case of

the label-setting algorithm, however, as the number of nodes increases, so does the

39

Reoptimization vs Repeated Dijkstra's as a Function
of Number of Nodes (m = 3000, T = 100)

1000
Number of Nodes, n

0.14

0.12

%0*0.10

E
-0.08
.E

S0.06

0.04

1500

Figure 2-8: The dependence of the running time of the algorithm DR on the number
of arcs in the test network is show above, using a network with 3000 arcs. In this
network 15% of the links are dynamic.

amount of time required to solve the shortest path problem.

Fig. 2-9 relates the number of arcs in the network to the running time of the

algorithm, for a constant number of nodes (1000 for our test). We see that, as

expected, the running time of both algorithms increases with the number of arcs

in the network. The sudden increase in running time at 5000 arcs is unexpected,

although we expect it is due to the increased memory demand and the subsequent

increase in use of the swap space. Except for this increase, the two seem to grow at

approximately the same rate.

In Fig. 2-10 we see the effects of increasing the time horizon T on the running

time of the algorithm. While the modified label-setting algorithm grows linearly, as

expected, the increase in the overall running time is faster than linear. This increase

seems to be evenly split between the reoptimizing subroutine and growth in the

overhead of the data structures. This occurs because as the time horizon increases,

40

Total Reopt
Run Time

Repeated
SSP Time

-N-- Reopt Time

0.02
500

Reoptimization vs Repeated Dijkstra's as a Function
of Number of Arcs (n = 1000, T = 100)

0.16

0.14

0.12

EO.10

0.08

0.06

0.04

0.02

Total Reopt
Run Time

Repeated
SSP Time

--- Reopt Time

3000 4000
Number of Arcs, m

Figure 2-9: In the above graph we show the dependence of
number of arcs in the network, using a network with 1000
15% of the links are dynamic.

the algorithm DR on the
nodes. In this network

41

2000 5000

Reoptimization vs. Repeated Dijkstra's as a Function
of Time Horizon (n=1000, m=3000)

-
- I

10 0 150
Time Horizon (intervals)

200

Total Reopt
Run Time

Repeated
SSP Time

Reopt Time

Reopt Init
Time

250

Figure 2-10: The above graph illustrates the variability in runtime of algorithm DR

as a function of the time horizon, using a network with 1000 nodes and 3000 arcs. In

this network 15% of the links are dynamic.

the number of nodes reached before the network becomes static (for t > T) increases.

Thus we would expect this continued rapid increase until such a time as nearly all

nodes in the network were reachable before the network became static. For larger

values of the time horizon, we would expect a linear increase in the running time, as

the number of changes would increase linearly with the value of the time horizon.

Comparison with Other Algorithms Having completed a basic computational

analysis of the algorithm, we now compare it with other discrete-time dynamic short-

est paths algorithms to evaluate its overall performance. This set of tests aimed not

to be exhaustive; rather we sought simply to measure its overall performance. The

tests were performed on a Linux-based workstation with a Pentium III operating at

933 MhZ and 256 MB of RAM.

The algorithm was compared with a variant of the reoptimization algorithm pre-

42

0.40

0.35

0.30

e 0.25

0.20

a0.15

0.10

0.05

0.00
50

sented in [7], which was described above. Specifically, the heap implementation which

generates tighter bounds was used. While [7] contains algorithms for calculating short-

est paths in both increasing and decreasing order of time, the latter was shown to

be significantly more efficient, and thus this algorithm was used in the analysis of

this section. For ease of discussion we shall refer to this algorithm as CGPS after the

initials of the last names of its authors.

Algorithm DOT, as presented in [5], was used as the second comparison algorithm.

While algorithm DOT solves the all-to-one dynamic shortest paths problem for all

departure times, it is an optimal algorithm and thus serves as a good benchmark.

Finally, for comparison purposes, we recorded the amount of time needed to exe-

cute the algorithm Repeated SSP, as described above, on each test case. For space

considerations, we again refer to it as SSP in the figures.

The algorithms' performance was tested along two axes: network size; and time

horizon, T. Arc travel times ranged between 1 and 20 for this set of tests. We also note

that because the algorithm CGPS operates based on knowing which arcs are static and

which are dynamic, the measure of "percent dynamic" given in the following results

represents the percentage of arcs whose travel times change with time; for all other

arcs the travel time is constant. The reader will note that this is a slightly different

interpretation of "percent dynamic" than was used above, as algorithm DR only cares

about the number of changes which occur at a given time, not which arcs change.

Each of the four algorithms was test on a particular instance of a problem and the

results reported are averaged over five runs. Due to various factors in the implemen-

tation, the results as reported by the implementation of CGPS were a factor higher

than for the implementations of the other algorithms. As the implementation of CGPS

also reported the time required to find the dynamic shortest paths using algorithm

Repeated SSP, its running times were scaled by the ratio of the running times of the

two implementations of Repeated SSP for the particular problem instance. This ratio

ranged between 1.93 and 4.56 with an average value of 3.28. Finally, in the following

tests, the total run-time for algorithm DR, as stated in Fig. 2-1 is reported. This is

done for completeness, though, as was previously noted, this overstates the actual

43

Run Time vs Network Size (T=200, 10% Dynamic, m = 3n)

0.7

S0.3- 0.-5- DR
a0.4--- SSP

0.3 -A-DOT

-*-CGPS
0.2

0.1

0*
200 300 400 500 600

Number of Nodes (n)

Figure 2-11: The run times of the four test algorithms are shown as a function of

network size. In all cases 10 percent of the links were dynamic, the network had a

time horizon T of 200, and contained three times as many links as nodes.

work needed to solve the shortest paths problem by as much as two times.

In Fig. 2-11, the running times of the four algorithms is shown as a function of

network size. In each case the ratio of arcs to nodes in the network, m/n, was kept

constant at three. We see there is a small but steady increase in the running time of

algorithms DOT and Repeated SSP. The runtime for both of the reoptimization-based

algorithms increases as well, though at a faster rate. In all cases algorithm DR took

less time to complete than algorithm CGPS.

Fig. 2-12 shows the performance of the four algorithms as a function of the time

horizon. We note that for low values of the time horizon T, algorithm DR performs

quite well, besting even algorithm DOT. The reasons for its improved performance at

low time horizons was explained above. We see that after a sharp increase for middle

values of T, the rate of increase levels off and appears to be at about the same pace

as algorithm Repeated SSP. We note that algorithm CGPS increases linearly with the

time horizon; it is not clear whether the decrease in run time at time horizon T is

44

Runtime vs Time Horizon (n=600, m=1800, 10% Dynamic)

0.7

0.6

0.5

0.4
E

c0.3

0.2

) 1

- -DR

SSP
DOT

- CGPS

0

50 100 150 200 250

Time horizon (T)

Figure 2-12: The run times of the four algorithms are shown with respect to the time
horizon. In all cases the network consisted of 600 nodes and 1800 arcs, 10 percent of
which were dynamic.

actually a pay-off of the algorithm or the more likely result of an artifact of the data.

2.6 Conclusions

In this chapter we have proposed a new method of solving the discrete time dynamic

shortest paths problem for all departure times. A brief overview of static reoptimiza-

tion was provided, as well as a basic static reoptimization algorithm. We have shown

that, via the concept of the projection, one may view the dynamic shortest paths

problem as a series of static reoptimization problems.

Given this framework, we propose a new algorithm for solving the dynamic short-

est paths problem. We concluded the chapter by providing the results of a series of

computational tests performed on an implementation of the algorithm. Given the

known limitations of this implementation, as discussed above, the sample results are

quite promising. Given this promise, we would suggest that one area of future research

45

I

would be the effect of improving the static reoptimization algorithm used. Also of

interest is the potential savings from improved data-structures in the implementation.

46

Chapter 3

A Continuous Space and Time

Representation of Dynamic Road

Traffic Flows Consistent with

Hydrodynamic Traffic Theory

The dynamic network loading problem (DNLP) is central to traffic operations and

planning methods. In essence, it is the problem of finding the time-dependent link

travel times, given a set of time-dependent origin-destination path demands in a

network and a static link-performance model for each link. This problem is often

posed within the larger context of Dynamic Traffic Assignment (DTA) [18].

Over the years of traffic research, a number of solution approaches have been

developed to solve the DNLP. Of particular interest are those approaches which are

consistent with the hydrodynamic traffic theory as first proposed by Lighthill and

Whitham [23] and Richards [30]. Established nearly 50 years ago, this theory has

become a cornerstone of analytical macroscopic traffic flow analysis. The theory

provides for a description of the flow with a continuous representation of space and

time.

Despite the appeal of such approaches, their number is surprisingly small. For

47

many years, the literature focused on the use of volume-delay functions to predict

link travel times. While these models are easy to solve, they do not capture im-

portant aspects of traffic flow such as queues, spillback, and forward and backward

propagations of traffic densities.

The best-known solution method consistent with the original LWR theory is the

Cell-Transmission method by Daganzo [12]. In his model, Daganzo discretizes the

network into a number of cells, each of which is small enough that a vehicle could

traverse at most one such cell per unit of time. Using rules derived from the LWR

traffic theory, Daganzo's method determines the flow which advances from one cell to

the next at each clock tick. While the model is easy to understand and implement, its

use of discretization produces only an approximate solution of the model. Daganzo

has analyzed the accuracy of his methods and introduced a revised model to increase

the accuracy of the Cell-Transmission Model [15].

At the same time Daganzo proposed improvements to his model, Cremer et al.

proposed a method of discrete moving cells [10]. In contrast to Daganzo's Cell-

Transmission method and other fixed-cell based models, Cremer et al.'s model sug-

gests the use of movable cells with a fixed number of vehicles in each cell. As the

vehicle speeds change in response to roadway conditions, the cell boundaries would

expand or contract, resulting in a change of density within the cell. While the model

provides an interesting alternative to fixed-cell models, the presentation Cremer et

al.'s model is limited to a stretch of highway and its relation to an exact solution to

the LWR model was not investigated.

Because of the error introduced by discretization, exact solutions to the DNLP are

of particular interest. Although solution methods of continuous time and space traffic

models do exist, they are complex and researchers have been reluctant to attempt

to construct computer implementations of these methods. Yet if they are to be of

any use to practitioners, solution approaches to the DNLP must be implemented

on a computer. Farver proposed a continuous solution approach to the DNLP [18],

and succeeded in its implementation, but the model does not capture queues and

associated phenomena such as spillback, a property of critical importance for realistic

48

traffic modeling but lacking from most analytical DNLP solutions.

Another continuous time and space solution to the DNLP was proposed much

earlier by Newell in a series of papers [24, 25, 26]. Newell proposes a method using

cumulative flows and the network boundary conditions to generate a continuous so-

lution to the LWR model. The method works by successively taking the minimum of

the possible solutions to the cumulative flow diagrams. In [26], Newell extends the

theory to multi-path flow. While the method appears to provide an exact solution

to the LWR model, it has certain limitations. It is not clear that the model would

extend well to a full network due to the model's reliance of prior knowledge of flows

at junctions which, in a network model, would be an output of the model, not an

input. Similarly, the number of iterations necessary to find the minimum solution

envelope on a complex network will likely increase exponentially with relation to the

increase in junctions and other discontinuities in the roadway properties. Perhaps

for these reasons, Newell proposes discretizing the model when creating a computer

implementation with the understanding that work-saving insights which can be made

when solving the problem by hand cannot readily be made in an automated solu-

tion algorithm; insights without which a computer implementation would be overly

complex and computationally intensive.

In [14], a method is sketched out for solving the DNLP in continuous space and

time by hand for a homogeneous stretch of roadway. This method is similar to that

for which we describe an automated process below capable of representing nonho-

mogeneous aspects of highways such as bottlenecks, expansions, incidents, multipath

flows, and merges and diverges.

In this chapter, we propose an approach to solve the DNLP in continuous space

and time which produces piecewise linear travel times. Moreover, the solution is an

exact solution of the LWR hydrodynamic theory if the cumulative path flows are

piecewise linear and the fundamental diagram is piecewise linear concave [16].

The sections within this chapter can be broken into three groups. The first presents

the description of the model for a straight stretch of highway. In Section 3.1 we in-

troduce the model and its underlying principles. Section 3.2 extends the method to

49

cases when there are changes in the roadway parameters such as bottlenecks and ex-

pansions. The second group of sections augments the material in the first to describe

the model on networks with multi-path flow. Section 3.3 describes the model when

the turning proportions are known and given as input to the model. This is followed

in Section 3.4 by a formulation for multi-path flow. The final sections of the chapter

present the algorithm and several samples. Section 3.5 provides the algorithm state-

ment and description of the computer implementation. This is followed by a section

discussing the results of several examples using this implementation.

3.1 Description of the Approach

Among the known methods for solving the DNLP, nearly all are described in terms of

flows on the links as a function of space and time. It is generally accepted, however,

that flows are actually a function of the density of the automobiles on the roadway.

Macroscopic traffic theory implies that the only truly independent variable of traffic

flow is the traffic density. That is, for no other traffic state-variable can a one-to-

one functional relation be developed to describe the remaining state-variables. Rather

than rely on flows, the model we introduce is described by the densities on the roadway

as a function of space and time.

3.1.1 Blocks of Constant Density

On a roadway, it is reasonable to divide the roadway into segments such that through-

out a segment, the density of the vehicles is approximately constant. We propose,

then, to view the roadway as a series of "blocks" of constant density. For the re-

mainder of this section, we will adopt the convention that when referring to a density

block i, density block i + 1 will refer to that block which is immediately downstream

(that is in the direction of the flow of traffic), and density block i - 1 will refer to

that block which is immediately upstream of block i.

We can wholly describe the location of a block by tracking its upstream and

downstream boundaries. We denote the downstream boundary of block i by si(t),

50

a function which gives the 1-dimensional position as a function of time; we denote

the function describing the upstream boundary of block i by ri(t). Note that ri(t) =

We note that si(t') = ri(t'), for at most two values of t'. The first time instant this

equality holds represents the "birth" of the block; blocks can be created by a number

of means which will be addressed later. The second time instant this equality holds

occurs at the "death" of a block. This happens when the upstream and downstream

boundaries cross, at which time the block ceases to exist. The effects of a block death

on the propagation of the density block boundaries are discussed in Subsection 3.1.2.

While we speak of arbitrary boundary functions, the concept is perhaps best

visualized using a time-space diagram. In such a diagram, the boundary functions

define a closed region of time-space. This region is what we refer to as density block

i as within it the traffic density is equal to a certain value ki. Fig. 3-3 depicts an

example of such a space-time diagram.

3.1.2 Boundary Propagation

Because we select the blocks to be of constant density, the description of their propa-

gation through space-time is quite simple. According to the LWR model, the velocity

of the propagation of the boundary between two different traffic densities is exactly

equal to the slope of the line between the two points corresponding to these densities

on the roadway's density-flow relationship [12]. The density-flow relationship (known

as the "fundamental diagram") is a functional relationship between the traffic density

and its corresponding flow in stationary conditions on long highways. In this thesis

and related implementation, we limit ourselves to concave piece-wise linear relation-

ships, a common assumption; for ease of discussion, we only treat triangular diagrams

in the text, though.

By the above conclusion that the velocity of the boundary between two adjacent

blocks is constant and the assumption of a piecewise linear fundamental diagram, all

si(t) are piece-wise linear. Thus the problem of network loading is reduced to one of

finding the intersections of these lines or boundaries. Once these blocks have been

51

created, each intersection, as discussed above, represents the death of a density block.

If at some time t' block i were to cease to exist, we must now recalculate si_1 (t) and

si+i(t) for t > t', based on the fact that blocks i - 1 and i + 1 are now adjacent.

Fig. 3-1 exhibits how the boundary velocity is calculated. In the figure we use U

to represent the upstream state and D to represent the downstream state adjacent to

the block at state U. Note that, for the most part, we use the term "state" to refer

to the state of the traffic at some point, and in our model is synonymous with the

traffic density; we will at times, though, use the term in a more general sense, such

as "the state of the network". In parts (a) and (b) of the figure, we show how the

boundary velocity is calculated when the upstream state is in the free flow regime

(that is k < k,) and the downstream is in the congested regime (k > k,). In part

(a), the flow in state U is less than that in state D, so we would expect the queue

represented by state D to shrink. According to the hydrodynamic theory, the speed

of this value is exactly the slope of the line between the two states (ax/at), which

is positive, indicating the boundary is, in fact, propagating downstream. Similarly

in part (b), where the flow in state U exceeds that in state D, we would expect the

queue to build; this is the case as the calculation shows the boundary propagating

backward.

Parts (c) and (d) of Fig. 3-1 show how we handle the situation where, due to the

death of a block or end of an incident, a congested state U is immediately upstream

of a state with sub-critical density D. As this is an inherently unstable condition,

we treat this situation by introducing an intermediate state M, which represents the

maximum flow on the link. That this behavior parallels actual traffic flow is illustrated

by examining an example in the extreme where the upstream state is a jam density

and the downstream state is void of vehicles (such as after a red stoplight turns green

or the clearing of a serious incident). In this case we would expect the vehicles at the

head of the queue to leave it at the maximum flow rate allowed by the roadway, or

state M. The velocity of the boundary between states U and M is given by Ox 1 /Ot,

and between states M and D by &x2 /&t. Note that the treatment of the states is

52

q q

qmax qmax

D U:

U ax/at -w axlat
D

k k
(a) (b)

eA Lq q

M M
qmax qmax - a- x1/at

aX2a ax1lat x U

D D-W

V -W

k k
(c) k (d) k

Figure 3-1: Determination of the boundary speed between upstream state U and
downstream state D. Parts (a) and (b) of the figure represent the condition where
the downstream density is above the critical density while the upstream is in free flow
condition. Parts (c) and (d) depict the reversed situation; note the creation of the
new state M between state U and state D.

independent of the relative flow rates of states U and D.1

3.2 Modeling Roadway Discontinuities

Given a homogeneous stretch of highway, the solution approach is quite straightfor-

ward: load the network by creating new blocks corresponding to the input densities

and propagate the boundaries until all the blocks have left the network (i.e. reached

their destination). Unfortunately the problem is not always so simple. Roadway ca-

pacity can decrease from one section of the highway to the next, creating a bottleneck,

and can increase at expansions. In a more general model, we also want to be able

to model the effect of an incident on the traffic flow. In the following discussion we

'While we do not treat it here, the theory can be extended to more general piecewise-linear,
concave density-flow relationships, by creating a state at each breakpoint between states D and U
[16]. In this case, the furthest upstream state created would represent the breakpoint closest to the
state U. Traversing the fundamental diagram in a counter-clockwise direction, a state corresponding
to each breakpoint on the diagram would be created downstream of the previous state until a block
at state M had been created. Note that creating the blocks in any other order would result in the
creation of blocks which would die as soon as they were created.

53

address all of these issues.

3.2.1 Bottlenecks

A bottleneck is defined as the point of the highway where the capacity decreases with

respect to the road upstream of this point. While this is normally associated with a

reduction in the number of lanes, it could occur due to any other number of changes

in the fundamental diagram, including degradation of the roadway surface or change

in roadway design (e.g. where an interstate-quality highway becomes a parkway).

The treatment of bottlenecks, as with all discontinuities, relies on the concept of

flow conservation. That is, the flow entering the bottleneck must exactly equal that

leaving it. If we examine Fig. 3-2, we see that two cases exist when a density block

intersects a bottleneck from upstream. If the upstream block has a density less than

kc, which corresponds to a flow less than qmaxbn, then the capacity of the bottleneck is

not exceeded. In this case (which is not shown in the diagram), the state downstream

of the bottleneck would be the same as that upstream.

On the other hand, if the upstream block is at state A as the block intersects

the bottleneck, we would expect a queue to be formed immediately upstream of the

bottleneck. We would expect that the maximum possible flow would leave from the

queue, thus we create a density block at state D immediately downstream of the

bottleneck - assuming that such a block does not already exist. By conservation

of flow, we must create a block immediately upstream of the bottleneck at state U,

which represents the growing queue. A simple check shows that, as expected, the

velocity of the U-D boundary is zero, and the velocity of the boundary between the

blocks at states A and U is negative, indicating the queue is growing upstream of the

bottleneck.

The treatment when a block downstream of the bottleneck crosses it is even sim-

pler. This occurs when a queue has built up downstream of the bottleneck; thus in

most cases, the downstream block will be congested. By the rule of flow conservation,

we would create a block immediately upstream of the bottleneck which would be con-

gested and have the same flow rate as in the density block immediately downstream

54

q
A

qmax,bn --------- ----------- U
Upstream

Downstream

kc,d k

Figure 3-2: Two density flow diagrams which illustrate the treatment of a bottleneck.

of the bottleneck. If, however, the downstream block is uncongested, nothing is done;

this is because its flow rate, by definition of the bottleneck, must be lower than the

capacity of the bottleneck.

While we have illustrated a bottleneck where the free flow speed is the same on

both sides of the bottleneck, it is relatively simple to show that the above treatment

is readily extended to the more general case where this is not so. The only difference

between the two treatments exists when the upstream state does not exceed the

capacity of the bottleneck. In this case, one creates a density block downstream of

the bottleneck with equivalent flow and in the free flow regime of the downstream

flow-density relationship.

3.2.2 Incidents

The treatment of incidents is similar to that of bottlenecks as they are, in essence,

temporary bottlenecks. When the incident occurs, we impose a flow restriction on

the roadway. As with a bottleneck, if the traffic density of the block surrounding the

incident is such that its flow exceeds the capacity of the incident, a queue is formed

upstream of the incident. This is illustrated in Fig. 3-3.

In the case of Fig. 3-3, two states are created: d downstream of the incident and

D upstream of the incident. Once the incident is cleared the condition is inherently

unstable, as there is a queue upstream of free-flow traffic. As discussed above in

55

x
density kB

qA '/ density kd

qma _--- density k,
B -

d:K-- D- ./

densitykD

density k

kd ke kD k *-duration of 4
kB incident

Figure 3-3: The space-time diagram representing an incident is shown on the right.
On the left is the corresponding density-flow diagram.

section 3.1.2, when such an unstable condition arises, we create a new block with

density k, and flow rate qmax. We can see in the figure that after some time the queue

dissipates and the traffic returns to pre-incident conditions (state B).

Note that during the course of an incident the initial queue may clear, only to

have another block intersect the incident whose flow exceeds the capacity of the

incident. In this case we would create new blocks as described above. If a block

intersects the incident location from the downstream side, it is treated similarly to a

bottleneck. If the block is congested, its flow rate must be lower than the capacity

of the bottleneck (otherwise, the boundary velocity would be positive, preventing

the block from intersecting the incident from the downstream side 2). In this case, it

passes through the incident unchanged and this queue continues to build upstream

of the bottleneck.

In the case that the block approaching the incident from downstream is uncon-

gested, the treatment is slightly more complex. As such blocks must be at the critical

density - for otherwise the adjacent blocks would be in an unstable state and a block

at the critical density would be created -, their flow will exceed the capacity of the

incident. Moreover, they will only intersect the incident after a downstream queue

has already spilled back through the incident for otherwise this boundary velocity

2Note that this is not strictly the case for more general, non-triangular fundamental diagrams.
While we do not directly address such a case here, their treatment is readily derived from the above
rules.

56

q Infeasible Region

Downstream

E
U ____- -- __ D

Upstream

k

Figure 3-4: Two density flow diagrams which illustrate the treatment of an expansion
in the roadway capacity.

would be positive and thus the boundary would not be traveling upstream. In this

case, then, we must create a new block at the location of the incident which is uncon-

gested and has a density equivalent to the flow rate capacity of the bottleneck. The

reader will note that this is effectively the same treatment as for an expansion as is

discussed below.

3.2.3 Expansions

The last of the discontinuities on a highway stretch we study is the expansion, or

increase in roadway capacity. When a density block intersects an expansion from the

upstream side, there are two conditions to consider, each of which is illustrated in

Fig. 3-4. In the first case, the approaching traffic is below the critical density of the

upstream roadway, for example state E. This condition persists across the expansion,

by conservation of flow.

Alternately, a queue spilling back due to downstream congestion would approach

the expansion from the downstream side, state D. By conservation of flow, a new

state U would be created immediately upstream of the expansion and continue to

propagate upstream. In Fig. 3-4, we note a region marked as "infeasible"; no density

block in this region could ever pass across the expansion from the upstream side to

the downstream side as otherwise its flow would be greater than the maximum flow

57

at the upstream side of the expansion. Therefore, with one exception, no block in this

region can exist on the arc downstream of the expansion, and thus could never spill

back across it. The lone exception to this rule is when an incident occurs downstream

of the expansion. When it is cleared, a block will be created with density kc,downstream-

If the queue resulting from this incident had moved up beyond the expansion, this

block with density kc,downstream would intersect the expansion. In this case, similar to

that described above for an incident, we create a block at the expansion which has

density kc,upstream; this block is uncongested and has a flow rate equal to the maximum

which can pass through the expansion. Note that by the basic rules of density block

boundary propagation given above, this block will grow in both the upstream and

downstream directions.

While the above description of the flow through an expansion has assumed that

the free-flow speed of vehicles upstream and downstream of the expansion is the same,

the treatment when this is not the case is straightforward. As with the bottleneck,

the only change to the modeling of the expansion occurs when an uncongested block

intersects the expansion from the upstream side. In this case, a block is created

downstream which is uncongested; its density is such that its flow is equal to the flow

of vehicles in the block upstream of the expansion.

3.3 The Network Model with Known Turn Per-

centages

While the model presented above, for a stretch of highway, is relatively uncompli-

cated, it is of little use in practical applications involving networks and flows with

several origins and destinations. In the next two sections we expand the model pre-

sented above to model networks with multi-path flows. We begin by discussing the

propagation of density blocks in a networks with given turn percentages. While such

flow rarely exists in reality, it provides a convenient step to the development and

comprehension of a model describing multi-path flow where the turning proportions

58

are an output of the model rather than an input.

3.3.1 Network Structure

While networks may have any topology and link characteristics in theory, attempt-

ing to model all possible aspects of a network unnecessarily complicates the model.

Therefore, in order to simplify the calculations, we make some basic assumptions

about the network structure. The assumptions presented below have essentially no

effect on the generalizablility of the model presented herein, and are not uncommon

in network modeling (similar assumptions are made in [13] for example).

The first assumption we make is that the flow on each arc can be described using

a single fundamental diagram, valid for all points along the arc. This is equivalent

to saying that the roadway characteristics of an arc are homogeneous for the entirety

of its length. This means that every arc, as defined in the abstract network, has

uniform physical characteristics, such as number of lanes and lane width, as well as

flow characteristics, including jam density and maximum flow rate. In the case where

the properties of the roadway on the underlying physical network are heterogeneous,

we simply represent it in the abstract network as a series of connected arcs, each with

the same characteristics as the roadway segment it represents.

The second assumption we make is with regards to the topology of the network.

We assume that all diverges consist of one incoming arc and two outgoing arcs. Simi-

larly, we assume that merges consist only of two incoming arcs and one outgoing arc.

Examples of acceptable and unacceptable junctions are shown in Fig. 3-5. In most

highway networks, this assumption is not limiting as junctions of a higher degree are

rare. In cases where such complex junctions are to be modeled, they can be divided

into a series of allowable merges and/or diverges, each connected by arcs of near-zero

length. As the model adopts a continuous representation of space, the only lower

bound on the length of such connecting links is the resolution of the floating point

arithmetic. Note that the properties of such links are considered an input to the

59

e 1 e 1ee

f f
e e

d nl d ed n

(a) (b)

Figure 3-5: In part (a) we show an allowable merge (above) and diverge (below).
In part (b) we show samples of disallowed junctions (left) together with a proposed
transformation into an allowable representation (right).

model and thus their determination is not addressed here. 3

Finally, as a merely operational point, we prevent a given density block from

passing through a merge or diverge. While it is unlikely that the same density would

exist both upstream and downstream of a junction, it is possible. We model this by

creating a second block with equivalent density on the opposite side of the junction,

thus effectively "disallowing" a block to pass through a junction. The reasons for this

assumption will be more fully described below, in the algorithm statement, as they

are purely operational.

3.3.2 A Note on Notation

Most of the notation used in this and the following subsections is defined below. As

the terms to be defined are context sensitive, we will not attempt to describe them

here. To aid the reader's internalization of the notation, we wish to make a few

explanatory notes. To begin, variables representing the actual state of the network,

as currently determined by the model are given in lower case and normally subscripted

with the arc to which they pertain. Thus kd(x, t) would refer to the density on arc d

3Alternately, if such a determination is not feasible, the model described below could be expanded
to model junctions with a degree higher than three, but as this would complicate the presentation,
it is not done so here.

60

at time t at position x - where x is between 0 (the origin of the arc) and the length of

the arc d (its destination). To reduce the clutter, however, the position will sometime

be omitted in favor of a "relational" indicator. Thus if a discussion pertains to a

particular diverge node, the '+' mark will be used to indicate a position immediately

downstream from the node, while the '-' mark will be used to indicate a position

immediately upstream. Using the previous example, kd- (t) would refer to the density

on arc d at time t immediately upstream of the node being discuss - which is also

the node at the terminus of arc d. We also use lower case to refer to other model

parameters, such as the critical density k, and turn percentages b(t).

We distinguish values which are calculated in one way or another by upper case.

While these values may become the actual state of the network, they are calculated up

until such a time and are so distinguished. For example, we shall use Qd to represent

the density flow relationship on arc d; thus by Qd(kd-(t)) we refer to the value of

flow associated with the specified density, kd- (t). The general exception to this rule

is when we use an uppercase symbol to represent a set, such as the set of all arcs in

the network A.

In our discussions of junctions, we shall commonly refer to the pair of arcs e and

f either exiting a diverge or entering a merge; these bare no significance other than

that they are a sequential pairing. Finally, the reader should note that commonly

used graph notation is defined in Section 2.1, and these definitions are not reproduced

here.

3.3.3 Modeling Diverges with Known Turn Percentages

Given the above limitations on network topology, we now turn our attention to the

modeling of flow at a junction, beginning with the diverge. As mentioned earlier, we

assume for this discussion that for a given diverge node i, the proportion of the flow

from the upstream arc d turning onto arc e, bd,e(t), is known for all t. Similarly, we

assume that the percentage of vehicles turning onto the other arc f, bd,f(t), is known

and that bd,e(t) + bd,f(t) = 1. The nature of the turn percentages b(t) and how they

are calculated is of no consequence to the current discussion.

61

The flow through a diverge is limited by two things: the flows on the arc entering

and leaving the diverge and the roadway characteristics of these arcs. At some time

t, given a flow qd-(t) on arc d immediately upstream of the diverge, we know, by

definition of the turn percentages, that the desired flow onto arc e is bd,e(t)qd- (t);

similarly the flow of vehicles which would like to enter arc f is bd,f(t)qd- (t). In order

to calculate the actual flow rates, however, we must account for the downstream

conditions at time t. If an arc is uncongested, its maximum flow acceptance rate is

equal to the maximum flow on the arc qmax, as defined by its fundamental diagram. If

the flow is congested immediately downstream of the diverge, however, the acceptance

rate is limited to the flow at this point. For example, if arc e is congested immediately

downstream of the diverge, its maximum acceptance rate is Qe(ke+(t)), where Qe

represents the density-flow relation on arc e and ke+ (t) is the (congested) density on

the arc e immediately downstream of the diverge at time t.

In addition to the above considerations, we must impose an additional restriction

on the flow at a diverge to maintain the specified turn percentages. If we allowed each

arc to accept up to its maximum acceptance rate, the percentage of flow leaving the

upstream arc for each downstream arc would be different than specified. Moreover,

we note that allowing such an allocation would violate the FIFO property on arc

d. This is most readily apparent in the case that one of the two outgoing arcs is

completely blocked, but vehicles routed for the other arc are still allowed to progress.

To maintain the proportions, then, we impose the restriction that if the desired flow

onto either downstream arc is greater than its capacity, the other outgoing link is

similarly restricted. Mathematically, we then define the flow rate which can pass the

end of the upstream arc d, Xd, as

Xd(t) = min q- (t), Ue(t) ,f(}
bd,e (t) 7bd,f M)

where Ue and Uf are, respectively, the acceptance capacities of arcs e and f at time t.

As Ue and Uf represent the upper bound on the flow which can enter each link, their

calculation is straightforward. If link is congested, it can only accept flow at the same

62

rate as exists immediately downstream of the junction. If it is uncongested, however,

it can accept flow at up to the maximum possible rate for the arc, qmax. Thus Ue and

Uf are simply as follows:

Ue(t) = qmax,e if ke+ (t) < kc,e

Qe(ke+ (t)) otherwise;

Uf(t) = qmaxf if kf+ (t) < ke,f

Qf(kf+ (t)) otherwise.

While the above description of a diverge is accurate when the flow on arc d is

uncongested, it is incomplete if the flow is congested. If the traffic upstream of the

diverge is congested, and the downstream becomes uncongested, one would expect a

region of maximal flow to be created on the upstream arc d, dissipating the queue.

In this case we introduce a term Ud, representing the exit-flow capacity of the arc d,

and define it to be:

Ud(t) = Qd(kd- (t)) if kd- (t) ke,d

qmax,d otherwise.

Incorporating this term into our previous definition of the flow leaving arc d, we

obtain:

Xd(t) = min Ud (t), .eM U
'bd,e(t)' bd,5()

As discussed earlier, the flows entering arcs e and f, are by definition a fraction of

the total flow which leaves arc d, as dictated by the b(t). Therefore these entrance

flows are simply calculated as follows:

We(t) = bd,e(t) - Xd(t)

Wf(t) = bd,f(t) - Xd(t)

63

Once the flow through the diverge have been calculated, based on the densities of

the blocks both immediately downstream and upstream of the diverge, if necessary,

we create new blocks, corresponding to these flows. For example, if a density block

arrives at a diverge from its upstream side, we would calculate the desired and actual

flows which pass through the diverge to each of the two downstream links. If the

acceptance rate of both links is sufficient to serve the desired flow, we simply create

new blocks on each link, in the uncongested state, with a density corresponding to

this flow. For a link e, then, we would create a density block immediately downstream

of the diverge with density ke+, where

ke+(t) = Q;j'(We(t), uncongested),

and similarly for arc f; note that Q;j1 is the functional inverse of Qe. If, however, the

acceptance rate of the downstream links is lower than the desired flow rate, a block

in the congested region of the density-flow diagram is created immediately upstream

of the block with density

kd- (t) = Qe-I(Xd(t), congested).

The densities of the blocks created downstream of the diverge are calculated as above,

the only difference being whether these blocks are congested or not: if the downstream

arc was congested, so too will the new block; otherwise the new block will be in the

uncongested regime. As discussed above, if there is a queue upstream of the diverge

and a block in the uncongested regime spills back to the diverge node, it is possible

to create a block upstream of the diverge which is in the uncongested regime.

3.3.4 Modeling Merges

The principles behind modeling a merge are similar to those presented above for the

modeling of a diverge. We introduce the concept of the merge priority, as suggested

in [13]. The priority of a link is a reflection of the proportion of the downstream

64

capacity it is allocated. The assignment of priorities could be based on physical

reasons - whether a merge is of two highways, or simply an on-ramp - or other

"ccontrol" reasons, such as to simulate a signalized intersection. These priorities reflect

the proportion of the total downstream flow that comes from a given upstream arc,

assuming that both upstream arcs exceed their allotment of the downstream flow. As

with the turn proportions, we assume that for every merge with upstream arcs e and

f and downstream arc m, the priorities, pe,rn(t) and pf,rn(t) are known for all t and

sum to 1.

The calculations of the flows through the merge are accomplished as follows. The

desired flow rates leaving arcs e and f are given by:

Ue (t) = Qe(ke-(t)) if ke-(t) kc,e

qmax,e otherwise

U {(t) = Qf(kf- (t)) if kf- (t) kef

qmaxf otherwise,

and the acceptance rate of the downstream arc is given by

Um(t) = qmax,m if km+ (t) < kc,m

Qe(km+(t)) otherwise.

The reader will note that these are the same formulas that regulate the sending

and receiving capacities of a link at a diverge. If Ue + Uf < U, all the desired flow

passes through the merge and the priorities are ignored. If, as will often be the case,

the desired flow exceeds the capacity of the merge, the priorities are used to assign

flow. The one exception, however, is to allow the unused portion of any "assigned"

flow to be used by the other link. An example of such a situation would be an on-

ramp with a stop or yield sign, thus effectively giving it a priority of 0. Without

this last provision, the queue might build up indefinitely; instead we know in the real

world that as many vehicles as could merge into the highway would do so, effectively

65

allocating the unused portion of the merge capacity to the on-ramp.

These three criteria form a simple linear program, the solution to which, as dis-

cussed in [13], is simply the middle point of the three possible values. Thus, we obtain

that the exit flows from arcs e and f are given by:

Xe(t) mid {Ue(t), pe,m(t) Um(t), Um(t) - Uf(t)}

Xf (t) mid {Uf (t), pf,m(t) Um(t), Um(t) - Ue (t)}

Note that the calculated entrance flow rate on to arc m is simply the sum of these

two exit flow rates: Wm(t) = Ue(t) + Uf(t).

Once the actual flows passing through the merge have been determined, the cre-

ation of new density blocks is straight forward. If the exit flow from an upstream

arc is less than the desired flow rate - Xe(t) < Ue(t) for example - the block created

upstream of the merge will be congested; otherwise it is in the uncongested regime.

Similarly, if the block controlling the downstream acceptance rate is congested, so too

would any new block created downstream of the merge; otherwise it will be uncon-

gested. Note that above formulas and rules are equally applicable if the downstream

block backs up to the merge and results in a queue spilling back on to the upstream

arcs.

3.4 The Network Model with Multi-Path Flow

Having presented the way in which junctions are modeled when the turn percentages

are known, we now turn to the way in which we model multi-path flow. For our

discussion we shall refer to a path from node r to node s by p,, and the set of all

such paths from s to r by Prs. We shall refer to the ith path in Pr, by pi , and the

jth arc on this path by p'.

66

3.4.1 Modeling Multi-Path Flow

Unlike a discrete model where the path information can be tagged with the individual

vehicle, multi-path flow in continuous space and time is somewhat more complex as

we must be able to define to the path flow rates as continuous function of space

and time for all points in the network. We accomplish this by taking the standard

discrete model of "packets" and defining it at a differential scale. We define ajrs(x, t)

to be the proportion of the total flow on arc j on path pi at point (x, t). Thus

Zrs EiEPrs a,,rs(x, t) = 1 for all points (X, t) on j and all j in A.

Model Input

The data needed for the model is equivalent to that provided to a discrete model.

Simply, one must define the proportion of the flow at the network boundaries that is

on each path, where the input flow is a function of the provided input densities. In

other words, the model requires as input

a,,s(0, t) V j E {j : j E p0}; i{ i :1 p C E Prs}; r, s E N.

Proportions in the Network

As these proportions represent the mixture of flow for an infinitesimally small segment

of the roadway, it is trivial to show that they propagate with the same speed as traffic

on the roadway. That is for some arc j = (U, v), ajr,(0, t) = ajr,(Lj, au,(t)) where

Lj is the length of arc j and au (t) is the arrival time at node v having departed

node u at time t (and traveling along arc (u, v)). Therefore we can "propagate" the

proportions through the network using this relation, as the proportion of flow on each

path at the exit of an arc is simply the same as when it entered the arc. Furthermore

when the node at the end of an arc is not a merge or diverge, we know that the

proportions at the beginning of the downstream arc are equal to those at the end of

the upstream arc. We now address how these proportions affect the flow at junctions,

and how the proportions are calculated on the downstream side of a junction.

67

3.4.2 The Diverge in a Network with Multi-Path Flow

The reader will recall that when describing the determination of flows through a di-

verge in the discussion above, the means of calculation of the b(t) was inconsequential

to the modeling of the diverge. Because all that has changed is the manner in which

the b(t) are calculated, it should be apparent that the modeling of a diverge is un-

changed. That is because the b(t) are simply functions of the proportions, the values

of which we have already shown how to calculate.

The only additional step, then, in calculating the flow through a diverge, is the

calculation of the turning percentages from the proportions. For a diverge from arc

d to arcs e and f, the turning percentages bd,e(t), bd,f(t) are simply:

bd,e(t) = ,rs(Ld, t)
r,s pi :eEpis

bd,f (t) = Cei,,s (Ld, 7).
r,s pi:f~pi

The remainder of the calculations are identical to those described above. We note

that because the flow on an arc is inherently FIFO in our model, and the modeling

of the diverge is independent of the calculation of the turn percentages, the flows

through the diverge are inherently FIFO. This is in contrast to discrete models where

destination information is associated with individual vehicles (or packets thereof)

where the vehicles are stored in buckets of finite size. In these models great care must

be taken to ensure that the arc upstream of the diverge verifies the FIFO condition.

The only additional calculation which must be performed when modeling a diverge

under multi-path flow is that of the proportions immediately downstream of the

diverge on each of the arcs. As the proportion is simply the proportion of flow on a

given path, the recalculation is simply a scaling of the proportions based on the ratio

68

of the flows upstream and downstream of the diverge:

a,,z(O, t) =Xdl,,(Ld, t) X V i, r, s : Pi E Ps, r, s E N
We (t)

aC,rs (0, t) = a,rs(Ld, t) WV i, r, s : pCs E PS, r, S E N.

Note that if there is no flow on a given path - that is a,,(L, t) = 0 -, the pro-

portion is defined as 0 on the downstream arc. By extension, if there is no flow on

a downstream arc, the proportion for all paths on that arc will be 0. Similarly, the

proportions for those paths which do not include an arc are defined to be 0 and as

such need not be calculated.

3.4.3 The Merge in a Network with Multi-Path Flow

Just as the modeling of the diverge is similar in multi-path flow as for otherwise known

turn percentages, so too is the modeling of the merge. The underlying principles of

traffic flow the same. While we assume that the merge priorities are exogenously

determined, it would have no affect on the modeling of the merge should one want

to make the priorities a function of the flow. It has been proposed, for instance, that

merge priorities are better modeled as functions of the total flow on each link of the

merge, than a fixed priority [6]. Just as the turn percentages for the diverge were

calculated above as a function of the flow, so too could the merge priorities - all

without affect on the method of determining the flows through a merge.

The only additional step necessary when calculating flows at a merge under multi-

path flow is the calculation of the path flow proportions downstream of the merge.

As with the diverge, this is simply a rescaling of the upstream proportions:

Xe W) Xf (t)
a0,rs(0, t) = ars(Le, t) .) + a,rs(Lf, t) - V i, r, s : p E Prs, r, s E N.

Note that while the downstream proportion is the sum of the scaled upstream pro-

portions, one of these terms will always be 0 as a given path pi will include arc e or

f, but not both (assuming non-cyclic paths). Also, as with the diverge, if there is no

69

flow on an arc and for paths which do not utilize an arc, the proportions are 0.

3.5 Algorithm Description

Thus far in the paper we have presented the framework and background for our new

approach to solving the DNLP. We now present the algorithm by which we actually

solve the problem. We first give a pseudocode description of the algorithm followed

by a description of the algorithm as implemented, and two examples solved using this

implementation.

3.5.1 Pseudocode Implementation

Prior to presenting the algorithm we summarize the assumptions we have made in the

prior discussion of this chapter. We assume the link fundamental diagrams are piece-

wise linear and concave. We assume that the network input densities are stepwise

constant. Finally, for ease of presentation, we assume in the following algorithm that

the network is initially empty; this has no effect on the generalizability of the model

as we only omit the routines to validate the initial densities and calculate initial

boundary velocities. For simplicity, we also assume that density-flow relationship of

a given link is constant along that link.

The model we present below can be viewed as an event-based simulation. Events

are generated for any of the following: block deaths; block intersection with the end

of an arc (i.e. bottlenecks, expansions and junctions); transient events that modify

the roadway characteristics for a limited time period (i.e. incidents); and proportion

events (i.e. when a change in the path proportions intersects the end of an arc). As

the events are generated they are time-stamped and added to a time-sorted list Q and

then processed in order of increasing time at which they occur. In order to ensure

that the effects of a change in input density are properly accounted for, a reference is

maintained as to the next such change (referred to as tnext in the description below).

All events are processed up to this time, at which point new blocks are generated at

the network entrances, as necessary. To allow for the evaluation to last only a given

70

Procedure CTDNLP(tend, G, z, L)

for each I E L
Q=Q U l

for each i C AE
B = B U create-block(zi(O), 0)
Q Q U add-proportion-event(zi(0, 0)

tnext = get-next-change(z, a)
for each b E B

Q = Q U get-next-event(b, tnext)
while tnext < tend

for each q C Q(tnext)
process-event(q, G, B)
Q = Q\q

for each i C AE
B = B U create-block(zi(text), tnext)
Q = Q U add-proportion-event(a (O, 0)

tnext = get-next-change(z, a)
for each b E B

Q = Q U get-next-event(b, tnext)

for each q E Q(tend)
process-event(q, G, B)
Q = Q\q

Figure 3-6: The pseudocode description of the DNLP solution algorithm.

duration, the loading is stopped when some maximum time tend is reached or when

the network becomes and remains static.

In the description given in Fig. 3-6 we utilize the following additional notation.

Let AE refer to the set of arcs that are entrances to the network. Let z refer to the

time-dependent network input densities, with zi(t) referring to the input density on

arc i at time t. We refer to the set of transient events (e.g. incidents) by L; for

simplicity of presentation we assume that this list is known prior to the loading. Let

the set B refer to the set of active density blocks; that is, those blocks which have

not died.

In Fig. 3-6 we make use of several functions which we now describe. create-block

takes the information about the input density and creates a new density block if

71

warranted. That is, if zi(t) differs from the current density at the beginning of arc

i, a new block is created with density z2(t). The function get-next-change simply

examines the list of input densities and flow proportions, and returns the next time at

which either input data changes. The actual calculations this function performs are

dependent on the data structure used to store the input densities and proportions.

The remaining functions are somewhat more complex and described below. Note

that because of the way the proportion events are processed, the function need only

worry about changes in input density, so long as the add-proportion-event function

queues up all such events which occur prior to the next change in input density.

get-next-event

The function getnext event returns the next event, if any, for the specified density

block given tnext. It returns the earliest occurring event if there are several events

which might occur. In order to eliminate redundancy in the algorithm, all event-

checking is done with respect to a density blocks downstream boundary. We remind

the reader that as a block's upstream boundary is one and the same as its upstream

block's downstream boundary, this has no effect on the correctness of the model.

Events are examined in the following order and only the first encountered is returned:

1. death of the downstream density block. As described earlier, this occurs when

the downstream density of this block b crosses the downstream boundary of

block b + 1. This event is only generated if it occurs prior to tnext.

2. death of this density block. This check is only performed when this function is

called from the process-event function. Otherwise it is unnecessary as when

checking for events on all density blocks, the check will be performed when

calling get.next-event on this block's upstream block.

3. intersection of this block's downstream boundary with a temporary event.

4. intersection of this block's downstream boundary with the end of the arc it is

currently on. Note that if the velocity of this boundary is negative, this will be

72

with the arc's origin, rather than its terminus.

Note that we keep a reference to the next scheduled event for each block b. If there

is already an event scheduled for block b, the time at which it is scheduled to occur is

compared with the time at which the new event would occur. If the new event would

occur before the next scheduled event, this new event replaces the old event, in the

event queue. If the time of the new event is later than that of the existing event,

though, the new event is not added and the search for the next event proceeds to the

next item in the above list of checks. If no new events are found to occur before the

scheduled event, the event list remains unchanged and the function terminates. Note

that as long as a density block is still active, at least one event (intersection with the

end of the current arc) will always be found.

process-event

The function process-event, does just that: process an event. Its action depends on

the type of event and the state of the network. We generally distinguish the following

types of events:

1. density block death events;

2. the intersection of a density block's downstream boundary and an end of the

arc it is on;

3. the beginning of a transient event, such as an accident;

4. the end of a transient event;

5. the intersection of a density block's downstream boundary with a transient

event;

6. proportion events.

The actual work that is done to process each event depends on the event type. In

general, however, this function is responsible for updating boundary velocities; creat-

ing new blocks; the calculation of flows upstream and downstream of junctions; the

73

propagation of proportion events; and the determination of new events. Note that

not all events added to the queue are processed. This is the case because other, in-

tervening events could have occurred since the event was initially added to the event

queue, such as the appearance of a transient event. While the steps necessary to pro-

cess the events have been described in earlier sections, these steps can be complicated

and somewhat cumbersome, so we summarize below what work is performed in the

processing of each type of event.

Density Block Deaths After checking that no interceding events have occurred

- which would indicate that this event should no longer be processed-, the block in

question is marked as inactive and removed from the list of active blocks B. We

then check to see if the two newly adjacent blocks are an unstable condition and if

so, correct the situation by creating one or more new blocks as described in Section

3.1.2. Finally we call get.next-event on the block whose downstream block just

died as well as on any newly created blocks.

Arc End Events The checks which must be done when a density block intersects

the end of an arc are probably the most complex of all the events. First, it must

be determined whether the node at the arc's end is a merge, diverge, or simply a

continuation node. In all cases, it must also be determined whether the boundary

of the block b is traveling downstream or upstream as this affects the nature of the

checks which must be made. If the boundary is propagating forward and encounters

a continuation node we must check if this node is a bottleneck or an expansion

(or neither), and treat the changes as discussed in Sections 3.2.1 and 3.2.3. If the

boundary is moving upstream, the treatment is the same, although there is often less

work necessary. In both cases, we may be required to inactivate a block or create

a block. Finally, assuming the block in question was not inactivated, we must call

get.next-event on this block, and any newly created blocks.

In the case of merges and diverges, we treat the blocks as described in Sections

3.4.2 and 3.4.3. As mentioned in those sections, nearly all such events will result

74

in the creation of two or more new density blocks adjacent to the junction. Note

that any density blocks which are created upstream of a junction must be denoted as

"blocked" at their downstream boundary so that the event calculating functions do

not try to calculate this boundary's velocity based on that which would otherwise be

determined by the equations given in Section 3.1.2. (This should not seem surprising

as in a junction there is no one-to-one pairing of upstream and downstream density

blocks from which to calculate a boundary velocity.) Just as these new density blocks

are created in a "blocked" state, their creation will likely "release" blocks which would

had previously been blocked (that is had their downstream boundary adjacent to a

junction). Once we have created new blocks on either side of the junction, we call

get-nextevent for all the newly created blocks as well as any which were previously

blocked.

We note that it is quite likely that a block death will exactly coincide with a

block's intersection with a node. Therefore, to ensure the correct processing, it is

important that the process-event function recognize when this has occurred and

correctly perform all work associated with the actual event. This also underscores

the need to ensure that prior to processing an event, a check is performed that the

event is still valid.

Beginning of a Transient Event The processing of the beginning of a transient

event is relatively simple. One must simply identify the density block in which the

event occurred and, as described in Section 3.2.2, create new density blocks if the

flow which can pass the event is lower than the flow in the current density block (as

determined by Qj(kb(x, t)), where the incident has occurred at point (x, t) on arc

j). Finally, the function should invoke get-nextevent on both the block which

contained the event as well as the block currently upstream of this block, in addition

to any newly created density blocks.

End of a Transient Event The end of a transient event is relatively simple as

well. After removing the event from the list of active events, one simply checks if the

75

removal of the flow restriction has created an unstable condition and, if so, introduce

a block at the critical density and maximum flow for the arc, as discussed in Section

3.2.2. In most cases, if there is a queue present, the clearing of the incident will result

in an unstable condition; the exception is when a downstream queue has grown such

that it has passed upstream of the incident. If a block is created, it is necessary to

call get-nextevent on both it and the block now immediately upstream of it.

Intersection with a Transient Event As discussed above and in Section 3.2.2,

the work required to process such an event is relatively minimal. If the downstream

boundary of the block which intersects the transient event is propagating downstream,

we simply need check if the flow in this block exceeds the capacity of the transient

event. If so, we create a congested block upstream of the event and an uncongested

block, with equal flow rate, downstream of the event. If the flow is less than the

event's capacity, nothing must be done. If the boundary is traveling upstream, the

work is similar, although in most cases this will also imply the death of the block

which was immediately downstream of the event. Because the block which is now

immediately downstream of the temporary event is in most cases congested, there is

no more work other than calling get _next-event on the block upstream of the event.

Because the congested block must be allowing less flow to pass than the event, it will

continue to propagate upstream of the event and "straddle" it. The one exception is

when the upstream-propagating block is at the critical density for the arc in which

case its treatment is slightly more complex, but identical to that described in Section

3.2.2.

Proportion Events Proportion events are slightly different than the other events

previously discussed. They are initially generated when the proportion of the input

flow on each path changes at the network boundaries. When this discontinuity in

the proportions reaches the end of an arc, such an event occurs to indicate that the

ae~rs(0, t) should be updated for the downstream are 1. At a continuation, there is no

special processing which must occur. In fact, it is really only necessary to generate

76

such events when a discontinuity in the proportions reaches a junction (that is a

merge or a diverge). In the case of a merge, as was discussed above in Section 3.4.3,

the proportions downstream of the merge are easily calculated and have no affect

on the flow through the merge. In the case of the diverge, however, a change in the

path proportions will most likely result in a change in the turn percentages bd,e(t) and

bd,f (t). If there is a change, the flows passing through the merge, and the creation of

any density blocks, are calculated as in Section 3.4.2.

While the processing of proportion events is relatively simple, as discussed above,

the calculation of the actual time such events occur is not as straightforward. These

discontinuities in the proportions propagate at the same rate as a vehicle which en-

tered the network at the same time as the discontinuity. As we cannot know the

arrival time of this discontinuity at the end of the arc a (t) when it enters at time t

- as this is the output of the network loading -, we must make a series of approx-

imations for the arrival time at the end of the arc (or junction, if we take the less

intensive approach). We accomplish this as follows: when we process a proportion

event, or when the change in path proportions first enters the network, we calculate

the minimum travel time to the end of the arc (or next downstream junction), and

set the event to occur at this time. Note that this minimum travel time is simply the

length of the arc divided by the speed at which vehicles travel in free-flow conditions.

When the event is processed, we first check if the discontinuity could has actually

arrived at the specified node, given the current knowledge of travel times on the net-

work. If it has, the event is processed as described above. If it could not have reached

the specified node, we calculate a new estimated arrival time. This is done simply

by finding the position of the discontinuity at the current time and then calculating

the minimum possible travel time from this position to the destination node. The

event is subsequently added to the event queue and rechecked at this new time. It

is important to note that if we calculate the time at which these events should be

processed in this manner, an event will never be processed before or after it occurs,

but only at the precise moment it happens.

77

3.5.2 JavaTM Implementation

As it is important that a DNLP solution algorithm be implementable to be of any

practical use, the algorithm described in Fig. 3-6 was implemented in JavaTM. Java was

chosen because of its object-oriented nature and extensive application programming

interface (API). This API was important in allowing the development of an animation

of the algorithm. The program was written and compiled against Sun® Microsystem's

Java 1.3 and JAXP extentions v1.O and 1.1.4

The implementation is object-oriented. We utilize density block objects as the

primary component of the implementation as the objects encapsulate most of the

abstract notions of the blocks' interactions. As the implementation is an event-based

simulation, we utilize event objects which encapsulate all the relevant information of

the event. This information, together with the underlying network representation,

including density-flow relations, is passed to the loading engine which is responsible

for the actual creation and processing of events. The loading proceeds according to

the algorithm described in Fig 3-6, and terminates when the simulation time reaches

the specified end time.

As the density block objects maintain an internal copy of their space-time history,

and a list of the processed events is maintained, we are able to recreate the state of the

network at any point in time after the loading has finished. This time-history recorded

in the density block objects is used to construct the link travel time functions once

the loading has completed. As travel time information is needed during the loading

to correctly process the proportion events, we found it useful to maintain a secondary

time-history of the network indexed by arc, rather than density block.

Animation Algorithm

While not strictly part of the dynamic network loading problem, one of the main

objectives in the development of this DNLP implementation was the creation of a

4The JAXP extension provides XML capability to the standard Java libraries. While JAXP was
originally distributed as an extension to standard Java, it is now incorporated as part of default
JRE and SDK as of v. 1.4.

78

graphical viewer to display the output of the network loading. The method used is

a compromise between animation computation time and storage space. To display

the network state at a given time, we simply loop over all blocks which were created

during the course of the loading. If the block was active, we compute its upstream and

downstream boundaries at the specified time and color the arc segment (or multiple

arcs, depending on the density block's coverage) according to a user-defined coloring

scheme.

Algorithm Efficiency

While the runtime of this algorithm was not of primary concern and thus no tests were

performed, the performance on small networks is quite good, averaging well under

a second, even on older test machines. The program was tested on a Pentium III

running at 733 MHz running the Linux 2.2 and 2.4 series kernels and on a Pentium

II operating at 400 MHz running Windows 2000. Both machines had 256MB of

RAM. Note that for demonstration purposes the application was also tested over a

port-forwarded X-Windows connection and the GUI displayed correctly although the

redraw was somewhat slow. As mentioned previously, the results of the loading are

output in such a way as to allow for arbitrarily detailed time-dependent graphical

results with this modest number of "events". Therefore one can choose to animate

the results in any number of ways, or examine specific instances in time.

Other Uses

A promising output of the implementation has been its use as a learning tool to better

understand traffic flows, particularly involving an incident. We have had the oppor-

tunity to present the tool in a number of educational settings and have found that

such simple examples have deepened the participants' understanding of the dynamics

of traffic flow and the behavior of queues.

79

x

5--

4--

3 -k 0 =O km= 3 0 lArc 2

2 kD 6-
2 ku=1 5 0 Arc l

S- - - - -- - - - - -k V= 6- - - -- -
I kA=24 -Arc 0

SI I I I I I I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 t

(a)

q

30 M

20 A

D - _- - U
I I I I I . 16 'k

kD 20 km40 60 80 100 120 140 k6
kA (b)

Figure 3-7: The space-time diagram resulting from the example output and the fun-
damental diagram for the arcs.

3.6 Loading Examples

To illustrate the algorithm, we describe below two examples. The first example details

the workings of the algorithms on a straight stretch of highway. The second example

examines the loading of a network. We note that the lack of travel time plots in these

examples is not an oversight of the author, but rather due to a technical complication

with the implementation which was not resolved prior to this thesis' publication.

3.6.1 Stretch of Highway

For this example, we consider a stretch of roadway, divided into three equal length

arcs, each with a density-flow relationship as depicted in Fig. 3-7(b). This example

is based on that discussed in [11]. While the units are arbitrary, the numbers used

in the example roughly correspond to the characteristics of an average highway as

measured in Imperial units: flow in vehicles per minute, distance in miles and density

in vehicles per mile; thus the vehicles would travel at a free flow speed of 81kph

(50mph).

As assumed above, we begin with an initially empty network. At time t = 0, we

80

set the entrance density to be 24. As the network is empty, this boundary propagates

at free flow speed, as shown in Fig. 3-7(a). At time t = 2, an incident occurs 0.2

units along the second arc. This incident allows just 5 vehicles per unit time to pass

through, resulting in the formation of a queue behind the accident. This queue has a

density of 150, while downstream of the accident, the density is just 6. Note that the

queue propagates upstream at the same rate as the slope of the line AU. At t = 3.68

the queue spills back on to the first arc in the network. Finally at t = 4 the incident

is cleared and a block is created with critical density and maximum flow. Thus the

queue begins to dissipate from the downstream end at a rate equal to the slope of the

segment MU. The queue eventually dissipates at t = 9, at which point the roadway

begins to return to pre-incident conditions. Finally at t = 12.76 the entire network

is in the steady-state condition with just one density block with density 24.

To aid in the understanding of the example, we also include the textual output

from the sample implementation in Fig. 3-8. The output consists of three main types

of output lines. Every time a density block is created a line beginning with newDB

is output which includes information about the new block. When an event is added

to the event queue, information about the type of event being added, the time at

which it will occur is output and the block affected is output. Finally, when each

event is processed, a line beginning with Event is output indicating the type of event

and relevant information. In addition, when a density block reaches the end of the

network, a comment is output; in the implementation these blocks exist in a special

state: they are still active but they are no longer propagating forward.

We see that the output from the implementation is identical to that if we were

to solve the problem by hand. While this example is relatively simple, the imple-

mentation has been tested on more complicated scenarios and it produces the correct

result.

3.6.2 A Network Example

We now turn to a network example in order to illustrate the DNLP on a more com-

plicated network based on the network used in [3]. The test network involves a 7km

81

We make initial blocks.

newDB: DensityBlock@779885 DSDB: DensityBlock@3e4lec k: 24.0

MaxTime: 21;NumTransEventBegins: 1;NumTransEventEnds: 1

Event.ARCEND: (t, A#)1.5 , 0
Added EOA event: 3.0 3 DB: DensityBlock@779885

Event.TRANSIENTBEGIN: (t) 2.0

We enter TRANSIENT.POINT

newDB: DensityBlockQ3e76c7 DSDB: DensityBlockQ779885 k: 6.0

newDB: DensityBlock@682406 DSDB: DensityBlock@3e76c7 k: 150.0

newDB: DensityBlock@15126e DSDB: DensityBlockQ682406 k: 24.0

Added EOA event: 3.26 3 DB: DensityBlock@3e76c7

Added EOA event: 3.68 3 DB: DensityBlock@15126e

Event.ARCEND: (t, A#)3.0 , 1
Added EDA event: 4.5 4 DB: DensityBlockQ779885

Event.ARCEND: (t, A#)3.26 , 1
Added EDA event: 4.76 4 DB: DensityBlock@3e76c7

Event.ARCEND: (t, A#)3.68 , 1

Added EOA event: 14.18 14 DB: DensityBlock@15126e

Event.TRANSIENTEND: (t) 4.0

newDB: DensityBlock@6d2380 DSDB: DensityBlock@3e76c7 k: 30.0

Added EOA event: 5.26 5 DB: DensityBlock@6d2380

Added EOA event: 5.2 5 DB: DensityBlock@682406

Event.ARCEND: (t, A#)4.5 , 2
We reached end of the Network.

Event.ARCEND: (t, A#)4.76 , 2
We reached end of the Network.

Event.ARCEND: (t, A#)5.2 , 1
Added DBD Event: 9.000000000000002 DensityBlock@15126e

Event.ARCEND: (t, A#)5.26 , 1

Added EDA event: 6.76 6 DB: DensityBlock@6d2380

Event.ARCEND: (t, A#)6.76 , 2

We reached end of the Network.

Event.DBDEATH: (x,t)0.6166666666666665 , 9.000000000000002
Added EOA event: 9.760000000000002 9 DB: DensityBlock@15126e

Event.ARCEND: (t, A#)9.760000000000002 , 0
Added EOA event: 11.260000000000002 11 DB: DensityBlock@15126e

Event.ARCEND: (t, A#)11.260000000000002 , 1

Added EDA event: 12.760000000000002 12 DB: DensityBlock@15126e

Event.ARCEND: (t, A#)12.760000000000002 , 2
We reached end of the Network.

Figure 3-8: Output from the example. In the lines concerning the creation of new
blocks, a unique identifier of each density block is output [its address in memory].

Also note that DSDB refers to the downstream density block. In addition, x refers to
the one dimensional position along the arc, t refers to the time at which the event

occurs and A# refers to the are number on which the event occurred.

82

0 _ 1 2 3 _ 4

12 9 10 13

5 6 7

8 11

Figure 3-9: A diagram of the test network, including arc numbers. Arcs 0 through 4
represent the highway, 9 and 10 on- and off-ramps, respsectively, and the remainder
are arterial links.

stretch of two-lane freeway with a parallel arterial route. The network is shown in

Fig. 3-9, where the two intersections have been converted into an "expanded" form

via the addition of arcs 12 and 13. In order to accomate the merging and turning

traffic, the freeway widens to three lanes for 0.5km as represented by arcs 1 and 3.

All arterials and ramps are one lane. Freeflow speed on the highway is 110kph, 80kph

on the ramps (arcs 9 and 10) and 60kph on the arterials (all other arcs). For more

detailed properties of the arcs, the reader is referred to entries 2 through 4 in Table

C.3.

The network was loaded from all three origin nodes. The highway had a to-

tal inflow of 3300 vph corresponding to an input density of 30 vehicles/km (or 15

veh/km/lane). This flow was divided such that 2400 vph or 72.7 percent remained on

the highway; the remaining flow was split evenly between vehicles destined for arcs

7 and 11. The arterials were loaded with identical flow rates: 600vph or an input

density of 10 veh/km. The destination of the flow on link 5 was evenly split between

links 4 and 7, while all of the flow entering at link 8 was destined for link 4. Thirty

minutes into the loading, at t = 0.33, demand on links 5 and 8 dries up and no more

vehicles enter the network from these origins. The network loading is stopped after

an hour of simulated time. The loading was performed on a Pentium II 400 running

on Windows 2000 and took 1.37 seconds to complete.

In Fig. 3-10 through 3-13, we show the state of the network at key points in time.

Because the demand from arc 1 to arc 2 is greater than the capacity of arc 2, a queue

builds up at this bottleneck. This slowly propagates upstream until it is dissipated

83

Figure 3-10: The network loading at t = 0.062 hours
traffic has almost reached the edge of the network.

I

I

or just under 4 minutes. The

X

I

Figure 3-11: The network loading at t = 0.20 hours or 12 minutes. We see that the
queue due to the bottleneck has grown substantially.

by the lack of demand from the non-highway origins. Finally, the network returns

to steady-state conditions after 30 mins at which point the loading terminates as no

events remain in the queue.

3.7 Conclusions

In this chapter we have presented a new algorithm for solving the continuous time and

space DNLP which generates an exact solution. Moreover, this solution is consistent

I I
Figure 3-12: The network loading at t = 0.433 hours or 26 minutes. The queue has
now almost disappeared.

84

Figure 3-13: The network loading at t = 0.500 hours or 30 minutes. The network has
just returned to steady-state conditions.

with the original LWR hydrodynamic theory.

Such a DNLP solution method holds potential in a number of areas. By providing

a continuous, exact solution it provides both detailed results and the means by which

to measure other solution methods. More importantly, however, it provides the po-

tential to better understand network effects of traffic flow and lead to the development

of better traffic management tools.

85

86

Chapter 4

Conclusions and Future Directions

of Research

Dynamic networks are important to a number of application areas in transportation,

from planning to safety to real-time guidance. In each context the requirements differ.

In some cases shortest paths are central. Others may focus on the Dynamic Network

Loading Problem (DNLP). While still others may combine shortest paths and the

DNLP to solve the Dynamic Traffic Assignment (DTA) problem.

Summary of Contributions

We have presented a new method for solving the one-to-all dynamic shortest path

problem, framing it as a series of static reoptimization problems. As background, we

provided a brief history of static reoptimization, and a sample algorithm. We then

showed how the dynamic shortest path problem can be viewed as a series of such

problems by introducing the concept of the projection. Basic computational tests

show that for networks with a small percentage of dynamic arcs, this algorithm holds

much promise and with additional improvements to the implementation may prove

superior to traditional methods.

In the second part of the thesis, we introduce a new framework for viewing the

DNLP where density is the key state variable. Within this framework we proposed a

87

model in which the roadway is characterized by a set of dynamic blocks of constant

density. We explain how these blocks behave at discontinuities within the network.

Furthermore, we show that extension to multi-path flow is simply an overlay to the

underlying model and does not materially affect the way in which the network is

viewed. An algorithm using this solution method was presented and tested on a

small network.

Future Research Directions

Dynamic Shortest Paths The strongest point of the dynamic shortest paths al-

gorithm is its potential savings over traditional methods of solving the one-to-all

problem. In large networks where a large percentage of the data is static, the com-

putational savings are significant. Moreover, by introducing a means to transform

the dynamic problem into a series of static problems, the thesis has provided a new

framework in which to view the problem which will hopefully lead to yet superior

algorithms.

While we were able to test the algorithm against traditional one-to-all dynamic

shortest paths algorithms, we were not able to compare it exhaustively with more

recently developed algorithms, including some which utilize reoptimization in a dif-

ferent context. Such a comparison would allow for a better understanding of the

reoptimization problem. An important analysis would be the comparison of such

algorithms with the one described herein as a function of input data. As they utilize

reoptimization in different ways, it is likely that each would dominate in a particular

class of problems. As was also mentioned above, the static reoptimization algorithm

used in the implementation was somewhat simplistic. We feel that the use of a more

advanced algorithm would greatly improve the computational efficiency of the algo-

rithm. Another potential avenue for future research would be in the underlying data

structures used in the problem other than a traditional heap. Recently, for example,

an "error-prone" heap has been proposed, but one in which the error rate is known

and controlled [9]. It would be interesting to examine whether the runtime savings

associated with such a data structure would outweigh the extra work which would

88

need to be done to correct errors in the order in which the changes are processed.

Dynamic Network Loading Problem The DNLP model presented in this thesis

models continuous space and time and provides an exact solution for a network with

multi-path flow. It is based on the original LWR hydrodynamic model for a link an

its output is consistent with that model. All aspects of network flow are modeled,

including queuing, spillback and incidents. While the model was tested on small

networks, it is not clear how it will perform computationally on larger networks.

In a highly dynamic network, there may be several density blocks on an arc, each

continually generating events as it propagates through the network. While the work

done to process some of the events is relatively minimal, many require a number of

calculations and often result in the creation of one or more blocks. Without further

testing we cannot know whether the rate of growth of such events and the time

required to process them would become excessive for many applications.

One area of future research is the testing of the DNLP algorithm on networks in

which the input data are relatively constant. Just as we suggest that highly dynamic

input data might slow down our described solution method, it is likely that it would

greatly benefit from data in which there are few changes to the inputs. Similarly,

because the algorithm is event-driven, it is likely that it would benefit from networks

with long links and fewer nodes. The events which occur on the arcs generally take

less effort to process than those at the nodes. Also, the proposed algorithm currently

is interrupted whenever there is a change in the input densities. It is possible that

some of the penalties of highly dynamic input data could be reduced by "aligning"

these data such that multiple changes occurred at the same time, thus reducing much

of the overhead penalty.

Another area for future research is the full incorporation of the proposed DNLP

algorithm into existing or new DTA solution methods. Such a development would

allow the comparison of existing solution methods to the method described in this

thesis which provides an exact solution. While this DNLP solution method could be

directly incorporated into existing DTA solution methods, it holds the potential to

89

expand the definition of traditional analytical DTA solution approaches to something

more akin to stochastic simulation models. As discussed previously, the turning

proportions at a diverge are simply an overlay to the model. Thus it would be

interesting to investigate a variant of this solution modeling multi-class flow; that

is flow in which the vehicles have an origin and destination, but determine their

path during the course of the loading based on real-time information of the network

conditions. These turning decisions could either be done by a static method (i.e.

always take the current shortest path) or a stochastic means. As macroscopic models

traditionally do not allow for deviation from a path during the course of the loading,

this could open an entirely new avenue of research.

90

Appendix A

A Static Shortest Paths

Reoptimization Algorithm

As part of the dynamic reoptimization algorithm we also investigated existing al-

gorithms for reoptimization of static shortest paths. To aid in the understanding

of the dynamic shortest path reoptimization algorithm we give below a pseudocode

implementation of an algorithm for reoptimizing shortest paths in a static network.

While the implementation does not reflect the most recent developments in static

reoptimization, we feel that it is sufficient and does not complicate the point. The

procedure's arguments are the network G, the previous shortest path tree SPT, and

the change in travel time kij. In the following description we use the notation SPT

to refer to the set of nodes in the in the subtree of the shortest path tree rooted at

node i, inclusive. In addition, we refer to the predecessor of a node i in the shortest

path to node i by pred(i).

91

Static-Reoptimization (G, SPT, kij)

di +-d(Bi2 (k))
-ijj dij + dz - dj

S -SPT
Q <-0
If (i,j) c SPT

If Zig < 0
For each e E S

de= de + Zij

While S =, 0 do
e <- arg mine/es del

S <- S\e
For each f E A(e) do

If def + de - df < 0
df +- def + d,
SPT +- SPT\(pred(f f U (e, f)
S <- S U f

Else If Zij = 0

return
Else

For each e c S do
de de + Zij

Q Q U B(e)
While Q : 0 do

e - arg mine/ E Qdel
Q -Q\e
For each f E A(e) do

If def + de - df < 0
df +- def + de

SPT +- SPT\(pred(f f U (e, f)
Q +- Q U f

Else
If Zig > 0

return

Else
SPT +- SPT\(pred(j),j) U (i,j)

For each e E S
de = de + Zij

While S 4 0 do
e +- arg mine/ES de/
S <- S\e

For each f C A(e) do

If def + de - df < 0
df - def + de
SPT +- SPT\(pred(f), f U (e, f)
S <- S U f

92

Appendix B

Network Loading Algorithm

Implementation Details

B.1 Class List

We provide the list of classes used in the implementation, as organized by package.

The ctDNLP package consists of the classes involved in the network loading and the

display of the results. The remaining packages were developed as part of an general

network API. For a more detailed description of this API, including documentation

and source code, the reader is referred to the research group's web site, currently

located at http: //dijkstra .mit . edu.

ctDNLP Package

This package consists of the classes used in the DNLP and those used to display the
results. The are listed below alphabetically by class name.

ctDNLP.BadEventTimeException.java

ctDNLP .CTDensityColorPanelComponent . java
ctDNLP.CTDensityNetworkPanel.java

ctDNLP.CTNetworkDisplayPanelPicker.java

ctDNLP.CTNetworkLoader.java

ctDNLP.CTNetworkLoading.java
ctDNLP.DensityBlock.java
ctDNLP.DensityTableModel.java

93

ctDNLP.Event.java

ctDNLP.EventGroup.java

ctDNLP.EventTableModel.java

ctDNLP.LoadingEngine.java

ctDNLP.MergeDBTracker.java

ctDNLP.NetworkViewer.java

ctDNLP.RunLoadingDialog.java

ctDNLP.SetDensityDialog.java

ctDNLP.SetEventsDialog.java

ctDNLP.UndefinedRelationshipException.java

edu.mit.acts.GUI Package

This package includes classes of a general "all-purpose" nature, useful for GUI-based
applications.

edu.mit.acts.GUI.AboutWindow.java

edu.mit.acts.GUI.HelpFrame.java

edu.mit.acts.GUI.SmartInternalFrame.java

edu.mit.acts.GUI.TrackableWindow.java

edu.mit.acts.GUI.WindowTracker.java

edu.mit.acts.GUI.WindowTrackerMenu.java

edu.mit.acts.GUI.WindowTrackingAdapter.java

edu.mit.acts.GUI.WindowTrackingListener.java

edu.mit.acts.io Package

This package includes some classes used to redirect program I/O.

edu.mit.acts.io.BucketWriter.java

edu.mit.acts.io.PrintStreamWriter.java

edu.mit.acts.io.TextAreaWriter.java

edu.mit.acts.net Package

This package includes the core network functionality such as a Node, Arc, Path and

Network.

edu.mit.acts.net.Arc.java
edu.mit.acts.net.ConstantMergePriority.java

edu.mit.acts.net.ConstantTravelTimeFunction.java
edu.mit.acts.net.ContinuousTravelTimeFunction.java

edu.mit.acts.net.DensityFlowRelation.java

edu.mit.acts.net.Diverge.java

edu.mit.acts.net.DivergeProportion.java

edu.mit.acts.net.Junction.java

edu.mit.acts.net.Merge.java

94

edu.mit.acts.net.MergePriority.java

edu.mit.acts.net.Network.java

edu.mit.acts.net.NetworkLoading.java

edu.mit.acts.net.NetworkParameters.java

edu.mit.acts.net.Node.java

edu.mit.acts.net.Path.java

edu.mit.acts.net.TravelTimeFunction.java

edu.mit.acts.netGUI Package

This package consists of classes used for the creation of network-based GUI applica-
tions. It includes basic functionality for displaying a network and its loading as well.
Note that many of the items listed below are interfaces, not classes.

edu.mit.acts.netGUI.AbstractNetworkLoader.java

edu.mit.acts.netGUI.ColorPanel.java

edu.mit.acts.netGUI.DrawingPrefs.java

edu.mit.acts.netGUI.FileReaderDirector.java

edu.mit.acts.netGUI.FileWriterDirector.java

edu.mit.acts.netGUI.InternalNetworkDisplayFrame.java

edu.mit.acts.netGUI.NetLoadingListener.java

edu.mit.acts.netGUI.NetworkDisplayPanel.java

edu.mit.acts.netGUI.NetworkDisplayPanelPicker.java

edu.mit.acts.netGUI.NetworkFileReader.java

edu.mit.acts.netGUI.NetworkFileWriter.java

edu.mit.acts.netGUI.NetworkLoader.java

edu.mit.acts.netGUI.NetworkMonitor.java

edu.mit.acts.netGUI.NewWindowDialog.java

edu.mit.acts.netGUI.SaveNetworkDialog.java

edu.mit.acts.netGUI.SetDisplayParamsDialog.java

edu.mit.acts.netGUI.ColorPanels Package

Default coloring models for network and network loadings.

edu.mit.acts.netGUI.ColorPanels.ArcNumberColorPanelComponent.java
edu.mit.acts.netGUI.ColorPanels.ColorPanelComponent.java
edu.mit.acts.netGUI.ColorPanels.FlowColorPanelComponent.java

edu.mit.acts.netGUI.FileFilters Package

Classes used to filter files based on the underlying data format.

edu.mit.acts.netGUI.FileFilters.NFFFileFilter.java

edu.mit.acts.netGUI.FileFilters.XMLFileFilter.java

edu.mit.acts.netGUI.FileFilters.YiyiFileFilter.java

95

edu.mit.acts.netGUL.NetworkDisplayPanels Package

Default network display panels.

edu.mit.acts.netGUI.NetworkDisplayPanels.ArcNumberNetworkPanel.java

edu.mit . acts .netGUI . NetworkDisplayPanels . BareNetworkPanel . java

edu.mit.acts.netGUI.NetworkFileReaders Package

Classes used to parse a file describing a network and its attributes.

edu.mit.acts.netGUI.NetworkFileReaders.NFFNetworkFileReader.java

edu.mit.acts.netGUI.NetworkFileReaders.XMLNetworkFileReader.java

edu.mit.acts.netGUI.NetworkFileReaders.YiyiNetworkFileReader.java

edu.mit.acts.netGUI.NetworkFileWriters Package

Classes used to write out a network representation and the results of a network loading
to a file.

edu.mit.acts.netGUI.NetworkFileWriters.XMLNetworkFileWriter.java

edu.mit.acts.util Package

A package consisting of various utility classes, most of which are data structures.
Many of these lie at the heart of the ability to model the DNLP in continuous space
and time.

edu.mit.acts.util.KeyedObject.java
edu.mit.acts.util.LinearFunction.java
edu.mit.acts.util.Math2.java
edu.mit.acts.util.NoRemoveIterator.java

edu.mit.acts.util.NoRemoveListIterator.java

edu.mit.acts.util.PolynomialFunction.java

edu.mit . acts .util. RangedArrayList . java
edu.mit.acts.util.StepFunctionLinear.java

edu.mit.acts.util.TimeHistoryList.java

edu.mit.acts.xml Package

A package consisting of helper classes used for reading and writing objects to XML.

edu.mit.acts.xml.ObjectCreationListener.java

edu.mit.acts.xml.XMLCompatible.java
edu.mit.acts.xml.XMLFactory.java
edu.mit.acts.xml.XMLObjectCreationWrapper.java

96

B.2 Class Hierarchy

In this subsection we give the class hierarchy, with respect to the Java API and the

classes which were developed as part of this implementation. Note that we only

give the hierarchies for the three primary components of the implementation, the

ctDNLP package the edu.mit.acts.net package and edu.mit.acts.util package.

Also, several layers of nesting are omitted for the GUI classes; this is indicated by

ctDNLP Package

Class Hierarchy
0 class java.lang.Object

" class edu.mit. acts.netGUI.AbstractNetworkLoader (implements
edu.mit.acts.netGUI.NetworkLoader)

- class ctDNLP.CTNetworkLoader (implements java.lang.Runnable)

" class javax.swing.table.AbstractTableModel (implements java.io.Serializable,
javax.swing.table.TableModel)

- class ctDNLP.DensityTableModel

- class ctDNLP.EventTableModel

" class j ava.awt.Component (implements j ava.awt.image.ImageObserver,
java.awt.MenuContainer, java.io.Serializable)

- class javax.swing. JPanel (implements javax.accessibility.Accessible)

* class edu.mit.acts.netGUI.ColorPanels. ColorPanelComponent
- class ctDNLP.CTDensityColorPanelComponent

* class edu.mit.acts.netGUI. NetworkDisplayPanel (implements
j avax.swing.Scrollable)

- class ctDNLP.CTDensityNetworkPanel

* class ctDNLP.NetworkViewer.AboutPanel

- class javax.swing. JDialog (implements javax.accessibility.Accessible,
j avax.swing.RootPaneContainer, j avax.swing.WindowConstants)

* class ctDNLP.RunLoadingDialog

* class ctDNLP.SetDensityDialog

* class ctDNLP.SetEventsDialog

97

" class ctDNLP.DensityBlock

* class ctDNLP.Event (implements java.lang. Comparable)

" class ctDNLP.Event.Transient

" class ctDNLP.EventGroup

" class ctDNLP. EventGroup. EventGroupItem

" class ctDNLP. EventGroup.TransientEvent Group

" class ctDNLP.EventGroup.TransientEventGroup.EventItem

" class ctDNLP.LoadingEngine (implements edu.mit. acts.net.DivergeProportion)

" class ctDNLP.MergeDBTracker

* class edu.mit. acts.netGUI. NetworkDisplayPanelPicker

- class ctDNLP.CTNetworkDisplayPanelPicker

" class edu.mit. acts.net.NetworkLoading (implements
edu.mit.acts.xml.XMLCompatible)

- class ctDNLP.CTNetworkLoading

" class ctDNLP.NetworkViewer

" class java.lang.Throwable (implements java.io. Serializable)

- class java.lang.Exception

* class ctDNLP.BadEventTimeException

* class ctDNLP.UndefinedRelationshipException

edu.mit.acts.net Package

Class Hierarchy

e class java.lang.Object

- class edu.mit. acts.net.Arc (implements edu.mit. acts.xml.XMLCompatible)

- class edu.mit. acts.net. ConstantMergePriority (implements
edu.mit.acts.net.MergePriority)

- class edu.mit.acts.net.DensityFlowRelation (implements
edu.mit.acts.xml.XMLCompatible)

- class edu.mit.acts.net.Junction

* class edu.mit.acts.net.Diverge

* class edu.mit.acts.net.Merge

98

- class edu.mit.acts. net.Network (implements
edu.mit.acts.xml.XML Compatible)

- class edu.mit. acts.net.Network.ArcIterator (implements java.util.Iterator)
- class edu.mit. acts.net.Network.Nodelterator (implements java.util.Iterator)
- class edu.mit.acts.net.NetworkLoading (implements

edu.mit.acts.xml.XMLCompatible)

- class edu.mit.acts.net.NetworkParameters (implements
edu.mit.acts.xml.XMLCompatible)

- class edu.mit.acts.net.Node (implements
edu.mit.acts.xml.XMLCompatible)

- class edu.mit. acts.net. Path (implements java.lang.Cloneable,
edu.mit.acts.xml.XMLCompatible)

- class edu.mit.acts.net.TravelTimeFunction (implements
edu.mit.acts.xml.XMLCompatible)

* class edu.mit.acts.net.ConstantTravelTimeFunction

* class edu.mit.acts.net.ContinuousTravelTimeFunction

Interface Hierarchy

" interface edu.mit.acts.net.DivergeProportion

" interface edu.mit.acts.net.MergePriority

edu.mit.acts.util Package

Class Hierarchy

* class java.lang.Object

- class java.util.AbstractCollection (implements java.util. Collection)

* class java.util.AbstractList (implements java.util.List)
class java.util.ArrayList (implements java.lang.Cloneable,
java.util.List, java.io.Serializable)

o class edu.mit.acts.util.RangedArrayList

- class edu.mit.acts.util.KeyedObject (implements java.lang.Comparable)

* class edu.mit.acts.util.KeyedObject.Double

* class edu.mit.acts.util. KeyedObject.Integer

- class edu.mit.acts.util.Math2

- class edu.mit.acts.util.NoRemoveIterator (implements java.util.Iterator)
* class edu.mit. acts.util. NoRemoveListIterator (implements

j ava.util.ListIterator)

99

- class edu. mit.acts.util. PolynomialFunction (implements
java.lang.Cloneable)

* class edu.mit. acts.util.LinearFunction

- class edu. mit.acts.util. StepFunctionLinear (implements
java.lang.Cloneable)

- class edu. mit.acts.util.TimeHistoryList

100

Appendix C

Examples Tested with DNLP

Solution Implementation

The process of testing and debugging the DNLP implementation (described in Chap-

ter 3) was long and involved the use of many small networks, with contrived condi-

tions. While these test cases are too numerous to warrant insertion in the algorithm

description, they may be of interest to future researchers or implementors.

C.1 Example Networks

Table C.1 summarizes each test, providing information on the network shape, and

any temporary events which occurred. As most of the arcs used in the tests were

similar, if not identical, we summarize the arc types used in Table C.2. The only

exception is for the test network used in the example; the characteristics of these arcs

are described in the text, in Section 3.6; the arc types of this network is also denoted

by a * in Table C.1. The summary of the arc types is followed by a summary of

the density-flow relations used in the examples in Table C.3. While we only describe

triangular and trapezoidal fundamental diagrams, the implementation was designed

for general convex, piecewise linear diagrams. Finally, the types of events used are

summarized in Table C.4. As mentioned in Section 3.6, the values given below are

largely based on those appearing in other works, including [11].

101

Table C.1: A summary of the examples used in testing
the DNLP implementation.

Ex.
Num Graphic

Arc
Types

Entrance
Densities

Event
1

Event
2

Stretch of Highway
1 1 24
2 1 24 1
3 1 24
4 ,_ _ _, 1 24 2
5 ,_,_, 1 24 3
6 _ _ _ _ _ 1 24 6

Basic Merges

0

7 2-1 10,10 _______

8 1 10,10 1

0

10 1 10,10 1 5
Basic Diverges____

0

2
11 120

continued on next page

102

continued from previous page

Ex. Arc Entrance Event Event
Num Graphic Types Densities 1 2

0

2
12 1 20 1

0

2
13 1 20 2

3 0

14 2 1 20

3 0

15 2 1 20 4

3 0

2 1[0,5):20;
16 21 [5,20):15

Network Examples

o 5
20: Po- 0 .5 ,

17 21
0 .5 p=.,

o 5

2 >420: po=O.7 ,
18 1 p=0.3

20: 0,5):
1 po=0. 7 , pi=0.3 ;

< 22 >4 [10,20):
19 1 Po0 2 5 , pi= 0 .5

20 1 20

21 1 20

continued on next page

103

Num. Length Density-Flow Relationship
1 1.25 1
2 1.0 1
* See Section 3.6

Table C.2: A summary of the arc types
characteristics.

used in the examples, including all relevant

continued from previous page

Ex. Arc Entrance Event Event

Num Graphic Types Densities 1 2

22 1 20

[0,10):20;
23 1 [10,20):0

[0,10):20;
24 1 [10,20):0

25 * 20

ko = 30,
26 * k5 = 10

C.2 Example Network File

As was alluded to in the discussion of the DNLP algorithm implementation, XML

was used to store the network files.1 This allowed for a flexible file format and the

potential to include results in the same file, if desired, thus allowing easy distribution

of example files. We include below the sample input of the basic diverge network,

consisting of just three arcs, all with identical properties. Note that Cost tags are

included below for completeness only; they are not used by this algorithm.

'Note that the dynamic shortest paths implementation relies on a different file format which is
not presented here.

104

1 (010),
(30, 25),
(180,70)

2 (0,0),
(36.36, 4000),
(57.754, 4000),
(220, 0)

3 (010),
(54.54, 6000),
(86.631, 6000),
(330,70)

4 (010),
(25, 2000),
(41.666,12000),
(110,0)

5 (0,0),
(30,1800),
(60, 1800),

______(125,0)

Table C.3:
all relevant

A summary of the density-flow relations used in the examples, including
characteristics. Note that the underlying units in the first example differ

from the remaining relations.

Num. Arc X Q maX to tI Duration I Delay
1 0 0.8 5 2 4
2 1 0.8 5 2 4
3 1 0.2 5 2 4
4 0 0.2 5 6 7.5
5 2 0.8 5 2 4
6 1 0.2 5 2 4 0.5 0.5

Table C.4: A summary of the events used in the testing of the networks. Note that the
Duration and Delay columns apply to cyclic events: duration refers to the duration
of the blockage and delay to the amount of time which passes after the blockage is
removed before it reappears (therefore the sum of the two is equal to the period or
cycle time of the event). As these only apply to cyclic events, these columns are blank
in non-cyclic events.

105

Num. Graphic Breakpoints

<Network nodes="4" arcs="3">

<Node ID="O" x="50" y="50"></Node>
<Node ID="1" x="250" y="50"></Node>
<Node ID="2" x="450" y="25"></Node>
<Node ID="3" x="450" y="75"></Node>
<Arc head="1" tail="O">

<Cost>5</Cost>

<Length>1.25</Length>

<DensityFlowRelation number="3">

<Breakpoint>0,0</Breakpoint>

<Breakpoint>30,25</Breakpoint>

<Breakpoint>180,0</Breakpoint>

</DensityFlowRelation>

</Arc>
<Arc head="2" tail="1">

<DensityFlowRelation number="3">

<Breakpoint>0,0</Breakpoint>

<Breakpoint>30,25</Breakpoint>

<Breakpoint>180,0</Breakpoint>

</DensityFlowRelation>

<Cost>4</Cost>
<Length>1.25</Length>

</Arc>

<Arc head="3" tail="1">

<DensityFlowRelation number="3">

<Breakpoint>0,0</Breakpoint>

<Breakpoint>30,25</Breakpoint>

<Breakpoint>180,0</Breakpoint>
</DensityFlowRelation>

<Cost>10</Cost>
<Length>1.25</Length>

</Arc>
<Path>

0,1

</Path>

<Path>

0,2

</Path>

</Network>

106

References

[1] B. H. Ahn and J. Y. Shin. Vehicle routing with time windows and time-varying

congestion. J. Opl. Res. Soc., 42:393-400, 1991.

[2] R. Ahuja, T. Magnanti, and J. Orlin. Network Flows. Prentice Hall, 1993.

[3] A Astarita, K. Er-Rafia, M. Florian, M Mahut, and S. Velan. A comparison of

three methods for dynamic network loading. Transportation Research Record,

2001.

[4] A. Ceder, editor. Transportation and Traffic Theory, Jerusalem, Israel, July

1999. Pergamon. Proceedings of the 14th ISTTT.

[5] I. Chabini. Discrete dynamic shortest path problems in transportation applica-

tions: Complexity and algorithms with optimal run time. Transportation Re-

search Record, pages 170-175, 1998.

[6] I. Chabini. Personal Communication, January 2001.

[7] I. Chabini, A. Glenn, S. Pallottino, and M. G. Scutellh. Reoptimization of

dynamic shortest paths with respect to leaving times: algorithms and computa-

tional results. presented at the Annual Meeting of the Transportation Research

Board, Washington D.C., January 2002.

[8] I. Chabini and V. Yadappanavar. Algorithms for single-origin minimum time

path problems in networks with piece-wise linear time-dependent link travel time

functions. Transp. Res. Rec., 2002. Accepted for publication.

107

[9] B. Chazelle. The soft heap: An approximate priority queue with optimal error

rate. Journal of the ACM, 47(6):1012-1027, November 2000.

[10] M. Cremer, D. Stdcker, and P. Unbehaun. Macroscopic modelling of traffic flow

by an approach of moving segments. In Ceder [4], pages 517-532. Proceedings

of the 14th ISTTT.

[11] C. Daganzo. The cell-transmission model. Part I: A simple dynamic represen-

tation of highway traffic. Technical Report UCB-ITS-PRR-93-7, University of

California, Berkeley, 1993.

[12] C. Daganzo. The cell-transmission model: A dynamic representation of highway

traffic consistent with hydrodynamic theory. Transp. Res., 28B(4):269-287, 1994.

[13] C. Daganzo. The cell-transmission model, part II: Network traffic. Transp. Res.,

29B(2):79-93, 1995.

[14] C. Daganzo. Fundamentals of Transportation and Traffic Operations. Pergamon,

1997.

[15] C. Daganzo. The lagged cell-transmission model. In Ceder [4], pages 81-104.

Proceedings of the 14th ISTTT.

[16] C. Daganzo. Personal communications with I. Chabini subsequently relayed to

the author, 2000-2001.

[17] S. E. Dreyfus. An appraisal of some shortest path algorithms. Journal of Math-

ematical Analysis and Applications, 14:492-498, 1969.

[18] J. Farver. Continuous time algorithms for a variant of the dynamic traffic as-

signment problem. Master's thesis, Massachusetts Institute of Technology, 2001.

[19] S. Fujishige. A note on the problem of updating shortest paths. Networks,

11:317-319, 1981.

[20] G. Gallo. Reoptimization procedures in shortest path problems. Rivista di

Matematica per le Scienze Economiche e Sociali, 3:3-13, 1980.

108

[21] A. Glenn. Algorithms for the shortest path problem with time windows and

shortest path reoptimization in time-dependent networks. Master's thesis, Mas-

sachusetts Institute of Technology, 2001.

[22] D. E. Kaufman and R. L. Smith. Fastest paths in time-depenent networks for

intelligent-vehicle-highway systems applications. IVHS Journal, 1:1-11, 1993.

[23] M. J. Lighthill and J. B. Whitham. On kinematic waves. I: Flow movement in

long rivers; II: A theory of traffic flow on long, crowded roads. Proc. of the Royal

Soc. of London, 229A:281-345, 1955.

[24] G. Newell. A simplified theory of kinematic waves in highway traffic. Transp.

Res., 27B(4):281-287, August 1993.

[25] G. Newell. A simplified theory of kinematic waves in highway traffic, Part II:

Queueing at freeway bottlenecks. Transp. Res., 27B(4):289-303, August 1993.

[26] G. Newell. A simplified theory of kinematic waves in highway traffic, Part III:

Multi-destination flows. Transp. Res., 27B(4):305-313, August 1993.

[27] S. Nguyen, S. Pallottino, and M. G. Scutella. A new dual algorithm for shortest

path reoptimization. In Transportation and Network Analysis - Current Trends.

Kluwer, 2001.

[28] S. Pallottino and M. G. Scutella. Dual algorithms for the shortest path tree

problem. Networks, 29:125-133, 1997.

[29] S. Pallottino and M. G. Scutella. A new algorithm for reoptimizing shortest

paths when the arc costs change. Draft paper, 2001.

[30] P. I. Richards. Shock waves on the highway. Operations Res., 4:42-51, 1956.

109

