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ABSTRACT

Construction processes inherently involve complex interactions among variables including, but
not limited to, physical attributes, logistics, resource availability, budget restrictions, and
management techniques. Labor productivity, a key variable in the profitability of a project, is
influenced by complex and competing factors such as skill level, fatigue, motivation, and
schedule pressure. Contractors continue to struggle with a fragmented industry where
competitive pricing and labor productivity are defining factor in their competitive advantage.
Competitive pricing for materials is readily achievable for major contractors. Increased and
reliable labor productivity is essential for a contractor's competitive advantage. The current
management tools for the industry are inflexible when planning and controlling work on a fast-
track project where information is knowingly incomplete, both in final design and construction
means and methods. Actual events and conditions are more challenging than anticipated, which
demands pulling together resources more rapidly to execute with precision and ensure the project
is still delivered on-time and within the budget. Dynamic Planning and Control Methodology
(DPM) is intended to make a marked difference in the success of the project. DPM is a
demonstrated research objective, which can lead to this competitive advantage. This thesis will
outline the prior research efforts, the relative position of DPM in the existing research
environment, the fundamentals of DPM, and the challenges and results of its implementation on
an active large-scale infrastructure project.
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EXECUTIVE SUMMARY

Dynamic planning and control methodology (DPM) integrates the principles of System

Dynamics modeling techniques with Robust Design as well as Axiomatic Design, Dependency

Structure Matrix, Theory of Constraints, Concurrent Engineering, CPM, PDM, PERT, GERT,

and SLAM to analyze and quantify the effect of numerous dynamic interactions within product

development, manufacturing, and construction processes [Pefna-Mora and Park, 2001].

The current management tools for the construction industry are inflexible when planning

and controlling work on a fast-track project where information is knowingly incomplete, both in

final design and construction means and methods. This uncertainty may turn out to be benign in

the overall execution of the project, but where actual conditions are more challenging than

anticipated, this requires the team to pull together its resources more rapidly and execute with

precision to ensure the project is still delivered on-time and within the budget. This is where

DPM is intended to make a marked difference in the success of the project.

Today, expectations for marked improvement and delivering a product faster and better

continue to drive markets, the construction industry is no exception. Those in the industry

8



providing design, construction and consulting services that embrace the tools that can make them

more cost-effective and efficient have much to gain in this large, world-wide industry.

Utilization of DPM will be a distinguished competitive advantage.

This research is focused on the application of DPM on fast-track project being delivered

under a Design-Build-Operate (DBO) contract with a fixed budget of $385 million. The Route 3

North Transportation Improvement Project is expected to span 42 months and entails widening a

major transportation artery between Boston and the State of New Hampshire from four lanes to

six lanes plus widen or relocate the existing bridges to accommodate eight lanes, should future

traffic demand necessitate further roadway reconstruction.

Chapter 1 describes the research background including motivations, objectives and

expected benefits from the use of DPM. In Chapter 2, the dynamics of construction processes

are highlighted. Then, Chapter 3 presents the evolution of prior research efforts in related

applications. Chapter 4 introduces the component methodologies utilized by DPM from prior

research efforts and industry standards. Chapter 5 presents the fundamental concepts of DPM

including the system architecture of DPM and the generic system dynamics models for the

construction process, which distinguish DPM from other research approaches. Chapter 6 lays

out the case study and the results generated from the implementation of DPM. Chapter 7

highlights the current efforts by the research team to transition this research into commercial

application. Finally, Chapter 8 discusses where further research and development efforts could

be directed.
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CHAPTER 1

RESEARCH BACKGROUND

Planning consists of determining all items of work or activities necessary for completion of

a contract, their interrelationships, and order of performance. Scheduling involves the translation

of the plan into a timetable by assignment of time estimates or durations for the accomplishment

of each activity [Bhandari, 1977]. Controlling is the process of making events conform to

schedules by coordinating the action of all parts of the organization according to the plan

established for attaining the objective [Moder et al., 1983].

Construction processes inherently involve complex interactions among variables including

but not limited to physical attributes, logistics, resource availability, budget restrictions, and

management techniques. During project execution, these variables control and are controlled by

the other closely related variables which change as the system moves through time. Imbalanced

interactions among the variables can cause inefficiencies and uncertainties in the project

execution [Paulson and Koo, 1987], which can deteriorate planned construction sequences and

increase total project costs. Moreover, as construction projects continue to increase in size, the

planning and control of the projects become more difficult as a result of increased complexity

and uncertainty; the larger and more complex the project, the more difficult it is for the project

manager to coordinate all the resources to reach the common goal. In addition, today's business

environment in the construction industry is getting more competitive, making "time-to-market"

together with cost reductions an important program management objective. As a result, the
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industry seeks a more efficient planning and control method to supplement, enhance or replace

the traditional methods.

As outlined by Peer (1977), there exist four distinct categories of schedule activities in

planning construction sequences:

1. Preparatory activities that are not an integrated part of the main production

process on site. Some of these have to be completed before production on site can

be started, and the rest must be completed in accordance with on-site progress.

This includes all approval and planning procedures and supplies.

2. Main repetitive activities that form continuous production lines to be performed

by specialized crews throughout the project in a fixed technological sequence, e.g.,

masonry and formwork.

3. Interlinked activities that can be a single activity or a continuous production line,

but only its earliest start and latest finish are connected with two of the main

production lines. This connection defines a maximum allowed time interval for

performing these types of activities. As long as it is not being exceeded, their

duration have no influence on the total construction time.

4. External activities that are not integrated into the main production process but are

part of the project.

1.1 OBJECTIVES OF THE RESEARCH

The research aimed to implement Dynamic Planning and Control Methodology (DPM) on

an active large-scale infrastructure project. DPM's simulation-based dynamic approach to

planning and control was specifically called out in the winning bidder's contract proposal

submittal and utilized during the project initiation phase.

Using the DPM model developed [Pefia-Mora and Park, 2001], this research will be the

implementation of the model on an active project to calibrate the current assumptions and

11



functions. Notwithstanding the previous research, the implementation of this model will

necessitate reevaluation of the feedback loops and addition of new dynamic elements, as well as

the elimination of elements currently within the model. Implementation will be performed in

two phases: application of model variables with parameters and calibration. Initially, project-

specific information will be assembled within the model. This phase includes interviewing key

project personnel such as the bid estimator, project manager, project scheduler, general

superintendent, lead design engineer, and lead procurement engineer to input early assumptions,

estimates, and risk assessments. During the calibration phase, status update meetings with the

management team will be essential to accurately update the model, adjust for impacts and

changes which occurred during the past period, and revise the 'to-go' plan as necessary. This

research will be executed in coordination with the project team, but will avoid interference with

their daily operations.

Model implementation will require quantification of dynamic variables, identification of

correlations among the variables, and accurate projections of potential dynamic environments.

Specifically, the distinction between physical progress and process durations from non-

productive or risk-associated factors will more accurately allocate the given time to meet the

project completion date. Where efficiencies and potential risks are revealed, these observations

could benefit the team's approach to project completion.

During the interview process with project participants, the research team will capture

subjective information by eliciting qualitative estimates of the degree of influence common

occurrences present. It is believed that qualitative estimates are practical since the impact of

uncertainties is easier to express in linguistic terms [Chang, 1987]. While there are no

institutional restrictions on the degrees of influence, this research will simplify the degrees to

five levels: high, medium, average, low, and no influence.

This research will also highlight the realities and challenges of implementing this

methodology into the construction industry. In particular, the research will document the events

leading from the development of the methodology, to the disclosure of the
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technology, to filing a provisional patent on the technology and an outlook for future successes.

This segment of the research will highlight the transition of the methodology from academic

research to practical application and market penetration into the construction industry.

1.2 BENEFITS OF THE RESEARCH

The dynamic planning and control methodology (DPM) provides a robust plan to absorb

both potential and unforeseen impacts to the project cost and/or project schedule [Pefta-Mora and

Park, 2001]. Applied during the initial planning process and exercised during project execution,

DPM facilitates on-time project delivery within an established budget for large-scale

infrastructure projects by enhancing planning, monitoring and control capabilities. DPM is not

intended to foresee the future or assure with absolute certainty the outcome of events, but rather

establish an executable plan flexible enough to absorb the impact of uncertainties and

complexities that are inevitably forthcoming.

DPM is intended to improve upon the current management tools used to plan efficient

operations, track and maintain planned productivity, and manage schedule and cost impacts.

DPM offers a significant advancement in planning and controlling processes and work activities

that are subject to multiple and unanticipated changes. During the planning process, DPM

identifies opportunities to plan work activities and optimize work sequences subject to limited

and variable resources. During project execution, the action plan remains dynamic and offers

flexibility in the execution of the contract. When change events do occur during execution their

effect on the overall system can be better managed and the appropriate contingency plan may be

implemented. Importantly, DPM offers management the tool it needs for quick decision-making

and rapid response to changed conditions in the most cost-efficient and productive means

available. Lastly, the actual performance experienced will be retained which will provide the

means for continuous improvement, thereby closing the feedback loop.
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With the adoption of DPM, the management team will have a tool adaptable to changing

circumstances that includes past resource experiences, which is continuously updated with

current and relevant experiences. DPM can be integrated with a firm's existing estimating and

costing system thereby expanding the knowledge base for future applications.

1.3 DPM IMPLEMENTATION CHALLENGES

The main thesis objective addresses the challenges of implementing this dynamic

management tool to an active construction project, more specifically the Route 3 North

Transportation Improvement Project north of Boston, Massachusetts. This thesis will share the

techniques selected and utilized to extract model variables and inputs, the utilization of the data

collected within the model simulation, and the significance of the model outputs for continuous

project planning and control.

Each project manager plans the project execution based on personal past experiences,

organizational ability, intuition, and common sense. A corporate identity is developed and

sustained by the aggregate performance of each project manager whose personal technique may

or may not be similar to those of fellow co-workers. A project's success will be heavily

influenced by the chosen managerial technique and its adaptability to continuously changing

conditions.

As stated by Bhandari (1977), to keep proper tabs and stay on top of managerial issues, one

must have:

1. The ability to get quick and reliable answers to computational and statistical

questions, including those of forecasting with rapidly changing inputs.

2. The ability to recover or retrieve information, often in new combinations or

contents, that has already been produced but is now filed away.

3. The ability to amass and interpret the greatest number of relevant facts and

relationships upon which to base administrative decisions.
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4. The ability to foresee the consequences of current or impending decisions and

policies on future behavior of the system so devised.

The management of construction processes is particularly complex given the combination

of both fixed and dynamic resources, inherent time delays for procurement, and "ramp-up" that

are typically variable and often unpredictable, as well as limitations from human characteristics

including cognitive and temperamental.

In contrast to the manufacturing industry, there currently exists little opportunity for

scalability in the construction industry since most projects are "one of a kind" products - each

project has its own site and distinct layout with customized logistical processes. As a result,

there is only a narrow basis for a fundamental approach to production control and effective use

of information technology. Adding to the complexity of construction management is the

multitude of project participants - there are lead designers and their specialty engineers (e.g.

structural engineer, HVAC engineer) and there are lead constructors and their specialty

contractors (e.g. vendors, suppliers, installers) for the various functional elements of the project

such as the structural steel, masonry, painting, and landscaping to name a few. With an increase

in the number of project participants comes an undisputed increase in the amount of information

being circulated. These and other factors contribute to the extreme fragmentation of the

construction industry, which has plagued purposeful integration and process improvements

[Brandon et. al., 1998].

1.4 DPM IMPLEMENTATION BENEFITS

Notwithstanding the challenges stated above there is ample room for vast process

improvements in the industry. While other construction industry research objectives are focused

on process improvements through enhanced process and product visualization and enhanced

means of communication, this research addresses enhancements to process execution utilizing

knowledge-based expert systems to leverage corporate knowledge.
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The advantage of DPM is the dynamic planning and control methodology that provides a

robust plan to absorb both potential and unforeseen impacts. The practical benefit of DPM is

enhanced when adopted in combination with the five fundamental principles of "Rules of

Engagement" [Helmes et al., 1999]. These five fundamental principles are:

1. Reasonableness of the approach. The schedule that both parties commit to must

represent a logical plan for completing the work. This includes reasonable

durations for activities, reasonable logic ties, and reasonable allocations of

resources. Without a reasonable approach, decisions may be fundamentally

flawed and conflicts between parties become more likely.

2. Goodfaith. Both sides must proceed in a spirit of trust and fair play. Each party

must assume that the other will execute its responsibilities in accordance with

contract obligations and the objectives of the project, and hold themselves to the

same standard. This spirit helps prevent disputes and keeps the focus on the

completion of the project.

3. Sense of urgency. Both parties must commit to executing their respective

functions with all due speed. With appropriate prioritization and coordination, the

work can proceed according to the plan laid out. Neither party should delay just

because extra time appears to be available or because sufficient resources are not

at hand, provided these resources were foreseeable at the outset of the project.

4. Discipline. Both owner and contractor must exercise discipline in maintaining

and statusing the schedule on a regular basis. This includes evaluating changes

and their impact on the current schedule, consistent with the amount of change

occurring. The parties must also make decisions in the timeliest fashion possible.

The fact that certain decisions cannot yet be made should not serve as an excuse

to avoid decisions about how to proceed until those decisions are made. Delayed

decision making threatens project completion.

5. Communication. Because no project proceeds completely according to the initial

plan, both parties need a commitment to regular communication about project

conditions, problems, and solutions. This communication
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must be open, non-adversarial, and cooperative in spirit, consistent with each

party's understanding of the contract.

It is unreasonable to expect no impacts or changes once a project commences. More

realistically, the initial plan is challenged from the start and continuously through the project

duration. For the schedule to serve as an effective tool it must represent a reasonable and current

plan to accomplish the work while sustaining sufficient flexibility to address potential execution

challenges. As the project proceeds, unexpected progress, delays, and technical conditions

challenge the plan and adjustments are required to keep the schedule accurate. If appropriate, the

current plan requires logic network modifications to properly represent how the work is actually

being performed and how the work remaining is expected to be performed. If the project

schedule does not reflect past project performance, it may misrepresent the contemporaneous to-

go completion plan [Helmes et al., 1999].

When planning for a potential schedule impact often the estimated duration. is unknown

and the parties are reluctant to assign a specific duration to the changed event. Notwithstanding

cost disputes, it is important to input a schedule fragnet utilizing the best information available

when the issue arises to reflect changed or extra work conditions. Just as the original baseline

schedule was estimated from the information available and known at the time, this approach

must be following in the determination of the change impacts. The change impact must be

mutually approached with reasonableness of expectation and prudence. Inserting the schedule

fragnet and evaluating the revised schedule, management has the necessary information to decide

what actions need to follow as a result of the change. Timely decision-making following the

changed event is absolutely crucial; delayed decisions compound the impact of the initial event

[Helmes et al., 1999].
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CHAPTER 2

CONSTRUCTION PROCESS
DYNAMICS

Construction is inherently dynamic and involves multiple feedback processes, which

produce self-correcting or self-reinforcing side effects of decisions [Sterman, 1992]. These

feedback processes can become more dynamic and complex under time and resource constraints.

This chapter will discuss the common process dynamics such as variable productivity rates,

the effect of worker fatigue and process feedback effects. In addition, this chapter will introduce

the concept of a system dynamics modeling environment and its ability to capture and process

dynamic relationships and present them through graphical means.

2.1 PRODUCTIVITY ISSUES

As discussed in the Modification Impact Evaluation Guide (July 1979) developed by the

U.S. Army Corps of Engineers (USACE), two major impacts upon labor costs are reduced

productivity and pay scale increases. The latter is a factor when changes delay progress such

that work that would have otherwise been completed during a planned construction phase and is

required to be performed at a time when higher wages are in effect. Reduced productivity takes

many forms, but implies a loss from some established normal or anticipated level of productivity.
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Although construction does not lend itself to definitive measurements of labor productivity,

there are methods a contractor can use to quantify anticipated labor costs when preparing a bid.

The most common technique draws heavily on data derived from the contractor's past

experiences, including any indicated trends, present labor pay rates, and anticipated labor rate

increases during the life of the project [USACE, 1979].

That portion of the Contract Price devoted to labor costs indicates the contractor's

anticipated level of labor productivity. Whether or not the anticipated profit is realized is

dependent on the contractor's ability to maintain the planned labor productivity. With effective

management and a little bit of luck, the contractor may achieve labor productivity that exceeds

its expectations. Alternatively, labor inefficiencies may be realized due to many uncontrollable

factors. Labor productivity is optimal when there is good "job rhythm" [USACE, 1979].

Productivity disruption occurs when workers are prematurely moved from one assigned

task to another. Regardless of the competency of the workers involved, some loss in

productivity is inevitable during a period of orientation to the new assignment. This loss is

repeated if workers are later returned to their original job assignment. Learning curves that

graph the relationship between production rate and the repeated performance of the same task

have been developed for various industrial tasks. The basic principle of all learning curve

studies is that efficiency increases as an individual or team repeats an operation over and over;

assembly lines are excellent demonstrations of this principle. However, although construction

work involves the repetition of similar or related tasks, these tasks are seldom identical. Skilled

construction workers are trained to perform a wide variety of tasks related to their specific trade.

Therefore, in construction, it is more appropriate to consider the time required to become

oriented to the task rather than acquiring the skill necessary to perform it. One of the attributes

of the construction worker is the ability to perform the duties of this trade in a variety of

environments. How long it will take the worker to adjust to a new task and environment depends

on how closely related the task is to his experience or how typical it is to the work usually

performed by his craft. The time required for a worker (or crew) to reach full productivity in
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a new assignment is not constant. It will vary with skill, experience, and the difference between

the old and new task. For example, an ironworker is moved from placing reinforcing bars to the

structural steel erection crew. The ironworker is qualified by past training to work on structural

steel, but the vast majority of his experience has been with rebars, and the two tasks are

significantly different. As a second example, the same ironworker is moved from placing

reinforcing bars for Building A to the same work in Building B, which is similar but not identical

to Building A. In this second example, the loss of productivity would be significantly less. In

the pricing of the original bid, the contractor should have factored its own loss of productivity

when moving from one task to another under its planned project execution [USACE, 1979].

The optimum crew size is the minimum number of workers required to perform the task

within the allocated time frame. Optimum crew size for a project or activity represents a balance

between an acceptable rate of progress and the maximum return from the labor dollars invested.

Increasing the crew size above optimum can usually produce a higher rate of progress, but at a

higher unit cost. As more workers are added to the optimum crew, each new worker will

increase crew productivity less than the previously added worker. Carried to the extreme, adding

more workers will contribute nothing to overall crew productivity [USACE, 1979].

Working more hours per day or more days per week than the standard 8-hours, five-days a

week (Monday through Friday) introduces premium pay rates and efficiency losses. Workers

tend to pace themselves for longer shifts and more days per week. Longer shifts will produce

some gain in production, but at a higher unit cost than at a normal hour of work. With overtime

work, some of the labor costs produce no return because of inefficiencies. Occasionally, the

contractor must offer overtime work to attract sufficient manpower. In this case, this additional

cost must be borne by the contractor [USACE, 1979].

The responsibility for motivating the work force and providing a psychological

environment conducive to optimum productivity rests with the contractor. Morale does exert an

influence on productivity, but so many factors interact on morale that their individual effects

defy quantification [USACE, 1979]. Normally, pricing of changed work does not include loss
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of worker morale. The degree to which this may affect productivity, and consequently the cost

of performing the work, would normally be very minor when compared to the other causes of

productivity loss. A contractor would probably find that it would cost more to maintain the

records necessary to document productivity losses from lowered morale than justified by the

amount he might recover. Moreover, the level of morale is a factor in determining the

effectiveness of the contractor in its labor relation responsibilities [USACE, 1979].

In the Modification Impact Evaluation Guide, the USACE presents its derivation of

productivity losses, which are often relied upon and utilized for pricing of changed work. While

these productivity losses are supported by relevant research conducted by the USACE,

challenging these notions and assumptions are justified.

2.2 DESIGN-DRIVEN AND CONSTRUCTION-DRIVEN FEEDBACKS

Construction is inherently dynamic and involves multiple feedback processes that produce

self-correcting or self-reinforcing side effects of decisions (Sterman, 1992). Under a fast-track

environment these dynamics are further exaggerated and more complex. For this reason, fast-

tracking construction usually involves more diversified and dynamic feedback processes than

does sequential construction [Pefia-Mora and Park, 2001].

Overlapping design and construction activities has the potential to yield improved project

performance in comparison to a sequential project process. However, this compression and

overlapping approach introduces concurrencies that may prove detrimental to the project

performance if not properly managed. Where the goal of the overlapping approach is to shorten

the project duration and reduce project costs, poor management of this approach may actually

yield a delayed project at an increased cost.

With more uncertainty in the design process, the necessity for assumptions to be made may

be increased [Tighe, 1991]. For example, oversizing of foundations may occur to accommodate
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a wider variety of equipment loading forces. Air handling units might be oversized to

accommodate a wider variety of systems requirements. These oversizing initiatives, while

intending to 'cover all the bases' may yield unnecessary costs to the project. Furthermore, as the

final design is not established at the start of the construction phase, further design changes will

likely impact the construction phase. Design changes that lead to construction changes may lead

to schedule delays and cost overruns. The frequency and magnitude of design changes will play

a significant role in the overall project success.

In planning a fast-track project, the schedule is likely to have little project float to utilize;

impacts from design changes to the construction will likely compress a construction schedule.

Figure 1 and 2 illustrate the complexity and interrelationship between design and construction

activities; Figure 1 highlights with bold lines typical design-driven feedback loops, while Figure

2 highlights typical construction-driven feedback loops.

Uncertainties Assumptions in
Design

Owners' Requests
on Changes

Overlapping between
Design and Potential Design

Construction Change Impact on
Construction

Oversizing
Construction Processes Design Changes

Overlapping
Construction Work Do e

before Upstream
Completed

Time Pressure Increase in
TimePresure Workforce

P roj ect P roj ect
Costs Duration.

Estimated Project Productivity Construction
Duration

Changes

Delay-*

Figure 1: Design-Driven Feedback Loops in Fast-Tracking [adapted from Park (2001)]
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Figure 2: Construction-Driven Feedback Loops in Fast-Tracking [adapted from Park
(2001)]
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CHAPTER 3

EVOLUTION OF THE CURRENT
WORK

To date, research efforts on the simulation-based planning and control have been made to

overcome problems that cannot be addressed in network-based planning methods. The research

results have demonstrated a key advantage of simulation approach is its ability to identify

potential conflicts before physical execution, substantially enhancing the effectiveness of

planning and control [Martinez and Ioannou, 1997]. However, despite its potential advantages

over network-based methods, only few of the existing simulation tools have proven their

applicability to real construction processes. In this chapter, the previous researches on the

simulation-based planning and control are reviewed together with their application examples.

Then, Dynamic Planning and Control Methodology (DPM) is introduced as an alternative to

network-based methods and compared to the previous research efforts.

3.1 HISTORY OF SCHEDULING SOFTWARE DEVELOPMENT

Prior to 1957 bar charts and S-curves were the primary planning and scheduling tools

available for use by project management personnel. These tools were capable of comparing

work over time through graphical means. At this time, planning and scheduling was considered
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more as an art than a science1 . However, this changed dramatically in 1958 as two independent

research efforts developed network-based scheduling techniques. The Dupont Company and

Univac undertook the first research effort jointly; it resulted in the development of the CPM

scheduling technique. The initial research was focused toward developing a time-cost trade-offs

optimization algorithm and resulted in the network theory, which remains basically unchanged

today. The U.S. Navy and its advisors for the Polaris submarine program undertook the second

research effort; it resulted in the development of PERT scheduling technique.

While these two network techniques were developed independently and without the

knowledge of the other effort, their results were surprisingly similar. The primary difference is

that CPM is deterministic while PERT is probabilistic in its approach to time durations of

schedule activities. When these techniques were unveiled in 1959, the hardware developed at the

time was proprietary and data was batch loaded into mainframe computers. CPM and PERT

were only conceptually developed and applied to a few test projects.

Throughout the 1960's, implementation of network-based planning and scheduling

software was ever increasing. Dupont and the chemical industry continued to develop and utilize

the CPM technique while several federal agencies, including U.S. Army Corps of Engineers

(USACE), Veterans' Administration (VA), General Services Administration (GSA), and

National Aeronautics and Space Administration (NASA), began to specify network-based

techniques on their projects. There was considerable competition among the advocates of CPM

and PERT during this time period, but by 1965 these terms were generally interchangeable. For

the most part, the chemical and construction industries were proponents of the CPM technique

while R&D, defense, and aerospace were typically applying the PERT technique.

A key development that helped launch the proliferation of network-based programs was

the introduction of the IBM 360 computer in 1967. The IBM 360 computer revolutionized the

By Webster's dictionary definition, an art is "the conscience use of skill and creative imagination" while

science is "something that may be studied or learned like systematized knowledge" [www.m-w.corn, 2000].
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mainframe computer market by standardizing computer architecture. This development

encouraged software to be written, which could be used on various computer models.

Standardized computer architecture ultimately lead to the development of the commercial

software packages and computer "time-sharing." The second and related event was the

"unbundling" of software packages. Thus, the IBM 360 and the "unbundling" of IBM software

packages provided greater accessibility to computers for network-based software.

During the early 1970's, CPM techniques were applied to a widening variety of diverse

projects. The introduction of the construction management concept, especially on public sector

projects, contributed heayily to the broadening use of CPM techniques. Embodied in the

construction management concept was the use of fast-tracking (overlapping of design and

construction activities) and multiple prime contract in lieu of one general construction contractor.

Coordination of the intricate interrelationships resulting from fast-tracking and multiple prime

contract requirements resulted in expanded usage of CPM techniques.

A second major factor in the expanding use of CPM techniques was the introduction of

commercially available CPM software computer packages. Early vendors of CPM software

systems included McAuto, Premis, and Project/2 for use on mainframe computers. However,

since the project personnel were dependent on the computer specialist to run the data through a

batch method, this method was cumbersome and inefficient. In addition, given the high capital

cost of the mainframe computers, "time-sharing" was prevalent which contributed to the delay in

obtaining contemporaneous feedback.

In addition to untimely response, there existed several other factors, which contributed to

the inefficiencies of the techniques at this time. The mainframe computer reports were

voluminous and difficult to interpret by the project personnel. Computer software programmers

typically lacked construction industry experience and therefore failed to provide practical

features in the software programs. To address the second issue, user groups were formed to

provide relevant feedback to the software vendors. This effort was successful for continued

improvement, upgrade, and user acceptability.
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In 1974, Engineering News-Record (ENR) reported a survey of CPM use by a sample of

the large construction companies. This survey reported that:

1. Not all large construction companies were using network methods

2. The primary use of CPM is project planning rather than control

3. Only a small percentage of user firms felt that they were very successful in

achieving the numerous benefits attributed to the use of these procedures

Major concerns reported by top management of the sampled firms included "construction

personnel not really using it" and "requires excessive work to implement" related to the

difficulties of interfacing with the computer. CPM was not universally accepted and users were

encountering significant implementation challenges during this time period.

With the introduction of Vax and Prime mini computers, there was a breakthrough in the

use of CPM techniques. First the cost of these computers was only a fraction of the large main

frame computers. Consequently, computers could be purchased that were totally dedicated to the

planning and scheduling function. Secondly, these computers could reside at the construction

site rather than at a remote location. This enhanced the ability to access the computer directly.

In 1977, Artemis introduced the first project management software system for the mini computer.

Other enhancement developments included the introduction of plotters and database capabilities.

Electronic data processing applications were rapidly advancing.

Enhancements to CPM software included the ability to create graphical presentations of the

schedule data, time-scaled network diagrams, and bar charts directly from the software program.

Informed users were integrating CPM scheduling techniques with schedule hierarchy, punchlists,

procurement tracking systems, cost reporting procedures, quantity-tracking curves, and other

project management tools. Appropriately, CPM was recognized as one of many available

management tools.
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The introduction of microcomputers in the 1980's revolutionized the usability and

acceptance of the CPM technique. These microcomputers provided the computing power of

earlier main frames at a fraction of their costs. Hardware and software costs were drastically

reduced such that personnel training costs became much more significant than the hardware and

software costs. Importantly, microcomputers were "user friendly." Additionally,

microcomputers were used as "stand alone" computers or as terminals in a computer network,

which allowed the sharing of information between the jobsite and home office. Flexible

software proliferated and enhanced graphic plotting capabilities quickly followed.

Table 1 identifies the then current hardware and software applications for several time

periods, beginning with pre-1960. This matrix helps to follow the evolution of network-based

planning and scheduling programs.

Hardware (HW)

Software Programs

Processing Mode

Applications

Table 1: Evolution of CPM

Pre-1960

IBM 1620

IBM 1401

CPM/PERT

R&D and Testing

No Commercial Market since
HW not Std.

Batch

Test Projects

Planning and Scheduling Programs

1960-1965 1965-1970

IBM 1130 (1965)

GE 225

Miniaturization of Tubes

Precedence Diagramming

Resource Planning

Early Commercial
Availability

HW Vendors give away
Packages

Batch

Process

Defense

IBM 360 (1967)

Time Sharing

Development of In-House
Systems

Enhancements

Unbundling of Software

Large Batch

Time-Share Service Bureaus

Defense

Aerospace

School/Hospital

Infrastructure
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1975-1980

Hardware (HW)

Software Programs

Processing Mode

Applications

Hardware (HW)

Software Programs

Processing Mode

Applications

IBM 360

Time Sharing

Early Minis (PDP 8, PDP 11)

Introduction of Commercial
Project Management Software
(Due to IBM 360
Development)

Large Batch

Tabular Reports

Specialists

User Groups

Diverse

1985-1990

Minis (Vax, Prime)

Plotters

Commercial Packages replace
Customized Packages

Informed Users

Beginning Interactive

Graphics

Diverse

1990-1995

Personal Computers

Large Selection of
Commercially Available
Packages

Inexpensive

Diverse

Personal Computers

Large Selection of
Commercially Available
Packages

Inexpensive

Diverse

Micros (IBM-XT, IBM-AT)

Large Selection of
Commercially Available
Packages

Inexpensive

Interactive with English
Commands

Diverse

1995-2000

Personal Computers

Large Selection of
Commercially Available
Packages

Inexpensive

Diverse

3.2 SIMULATION APPROACHES

CYCLONE [Halpin, 1977] introduced a simulation technique into construction for the first

time and INSIGHT [Paulson, 1983] has extended the modeling capabilities of CYCLONE

together with interactive user interfaces [Peua-Mora and Park, 2001]. Both of them focus on the

analysis of resource idleness resulting from the non-steadiness of construction processes and the

minimization of its impact on the construction performance [Paulson et al., 1987]. Although

both CYCLONE and INSIGHT allow flexible production rates for construction processes and

constrain resources, they do not provide a capability to flexibly control the resource availability

[Pefia-Mora and Park, 2001].
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Carr [1979] developed MUD to evaluate the effectiveness of a schedule network, focusing

on correlations between activity durations and work conditions such as site condition, equipment

efficiency, and weather condition [Pefua-Mora and Park, 2001]. Using MUD as a component,

Padilla and Carr [1991] developed DYNASTRAT, which allows dynamic resource allocation

during the simulation of construction process [Pefia-Mora and Park, 2001]. In evaluating

uncertainties involved in construction, DYNASTRAT recognizes uncertainty as either favorable

or adverse factors [Wang and Demsetz, 2000]. Meanwhile, factor-based simulation tools have

been developed with the introduction of PRODUF [Ahuja and Nandakumar, 1985] and

PLATFORM [Levitt and Kunz, 1985]. PRODUF can generate more objective distributions of

activity durations, while it requires extensive historical data. By applying heuristic rules into

simulation, PLATFORM reduces the amount of input data required for the simulation of activity

durations. However, PLATFORM treats all associated factors as having the same effect on the

construction performance [Wang and Demsetz, 2000], which leads to less reliable performance

projection [Pefia-Mora and Park, 2001].

These simulation-based planning methods have been further refined with STROBOSCOPE

[Martinez, 1996]. STROBOSCOPE recognizes uncertainties involved in construction processes

as a function of dynamic state of construction and describes activity duration and sequencing in

terms of the dynamic information as the construction evolves [Martinez and Ioannou, 1997].

This modeling technique provides more flexibility and power in modeling the dynamic state of

construction, making it possible to model the underlying process-level operations. In particular,

one notable feature of STROBOSCOPE that can characterize and track individual resource units

during simulation run provides more various options for simulating resource utilization processes.

The effectiveness of this functional characteristic is well represented in the Tommelein [1998]'s

pipe installation process model. To verify the usefulness of lean construction techniques in pipe

installation, the model was structured to analyze the impact of coordination planning on resource

management. With different input variables including production resources and duration, the

model effectively simulated changes in pipe-spool buffer size, productivity of construction crew,

and project duration [Tommelein, 1998]. In addition, STROBOSCOPE allows the
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expansion of its usage by providing the add-on function. An example is the STROBOSCOPE

CPM add-on developed by Martinez and Ioannou [1997], which added probabilistic functions to

the traditional CPM method. The applications of STROBOSCOPE, however, are still limited to

a single construction process and to the simulation of physical unit flow in resource utilization

[Pefia-Mora and Park, 2001].

Figure 3 illustrates these simulation approach developments across a recent time horizon.

Further explanation of each simulation approach is provided in the paragraphs that follow.
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Figure 3: Development of Recent Simulation Approaches [adapted from Park (2001)]

3.2.1 CYCLONE

CYCLONE (Cyclic Operations Network) is based on classic network-based techniques for

modeling and analyzing construction operations [Halpin, 1977]. It has the capacity to compare

various construction methodologies and conduct a sensitivity analysis of a selected methodology

to determine the optimal or best resource mix. This approach was developed to focus on

resource utilization on readily identifiable process-oriented operations that were cyclical
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or repetitive. The method focuses on how an operation is accomplished and how the interplay of

resources within a given technology leads to imbalances, which potentially impact productivity

and unit cost. Its intent focuses on how, rather than when, a particular operation is to be

accomplished by examining the basic components of the process under consideration and the

interaction of these components in a dynamic situation. CYCLONE is a well-established, widely

used and simple system that is easy to learn and effective for modeling many simple construction

operations [Martinez, et. al, 1999].

3.2.2 INSIGHT

INSIGHT (Interactive Simulation using Graphics Techniques) is a newly developed

simulation language [Paulson, 1983], which is an event-driven, network-based, discrete

operations simulation program under development at Stanford University. INSIGHT is based on

and an extension of CYCLONE, the work by Professor Halpin of Purdue University, by adding

modeling capability.

3.2.3 STROBOSCOPE

STROBOSCOPE (State and ResOurce Based Simulation of Construction ProcEsses) is a

newly developed simulation language [Martinez, 1996], which executes simulation-relevant

algorithms. It can dynamically access the state of the simulation and properties of the resources

involved in construction operations. It has an add-on, which allows the definition of CPM

networks with stochastic durations and calculation of various statistics about the project and

activities [Wang and Demsetz, 2000]. STROBOSCOPE is a programmable and extensible

simulation system designed for modeling complex construction operations in detail and for the

development of special-purpose simulation tools [Martinez, et. al, 1999]. It is particularly

valuable where the construction processes are repetitive in terms of time (the same tasks

performed over and over) and in terms of space (the same tasks performed in several places, for
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example on multiple levels of a high-rise building). Thus, the construction simulation is not only

cyclical to represent temporal repetitions but also scaleable to represent spatial repetitions

[Ioannou, et. al, 1996].

3.2.4 PROSIDYC

PROSIDYC (PROject Simulation Dragados Y Construcciones) is a system for simulating

construction operations jointly developed by the Planning and Methods Unit of Dragados y

Construcciones, Madrid, Spain and the Division of Construction Engineering & Management at

Purdue University. PROSIDYC is a computer-based system for analyzing construction job-site

production processes. It is used to improve productivity in the field by studying resource

utilization and cycle times and identifying opportunities for production improvement.

PROSIDYC uses the CYCLONE modeling format and uses a set of graphical modeling elements

to develop a network model for the process of interest. The model identifies waiting or delay

states as well as active productive states. The computer program allows the modeler to identify

resources that are under-utilized and bottlenecks in the process.

3.2.5 NETCOR

NETCOR (NETworks under CORrelated uncertainty) is a factor-based model [Wang and

Demsetz, 2000], which incorporates the effect of correlation in network schedules and provides

factor sensitivity information to support schedule risk management. Based on qualitative

estimates of sensitivity of each activity to each factor, uncertainty in an activity's duration

distribution is attributed to factor conditions; uncertainty is considered to have both favorable

and adverse effects that could increase or decrease activity durations. NETCOR utilizes a

grandparent-parent-child structure that systematically breaks down the effects of uncertainty by

factor and condition, to identify factors that have the greatest impact on a project.
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3.2.6 MUD/DYNASTRAT

MUD (Model for Uncertainty Determination) is a simulation-based model [Carr, 1979],

developed to evaluate a project network under uncertainty. MUD simulations recognize

correlations between activity durations and external factors such as site conditions, crew

efficiencies, equipment performance, and weather. MUD simulations are refined as a component

of the DYNASTRAT (DYNAmic STRATegy) model, for dynamically allocating resources

[Padilla and Carr, 1991]. In DYNASTRAT, an activity's duration is the product of work crew

productivity, a weather correction factor (based on historical data), and duration-modifying

factors (independent of calendar dates). Uncertainty is considered to have both favorable and

adverse effects. MUD/DYNASTRAT assumes a positive correlation and adopts a factor-based

approach. In addition, it requires extensive inputs or historical data [Wang and Demsetz, 2000].

3.2.7 PRODUF

PRODUF (Project Duration Forecast) is a factor-based model developed to generate more

objective duration distributions of activities before performing conventional Monte Carlo

simulation procedures [Ahuja and Nankakumar, 1985]. PRODUF captures positive correlation

resulting from shared factors. For most factors, only the adverse effect of uncertainty is

considered. PRODUF assumes a positive correlation and adopts a factor-based approach. In

addition, it requires extensive inputs or historical data [Wang and Demsetz, 2000].

3.2.8 PLATFORM

PLATFORM is a rule-based model to update durations of incomplete activities, based on

durations of completed activities [Levitt and Kunz, 1985]. In PLATFORM risk factors are

assessed to schedule activities. A "knight" risk factor signifies that two or more shared activities
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experience actual durations shorter than planned durations. On the other hand, a "villain" risk

factor signifies that two or more shared activities experience actual durations longer than planned.

Reducing remaining durations of activities identified with "knights" and increasing durations of

activities identified "villains" capture correlation. PLATFORM assumes a positive correlation

and adopts a factor-based approach. In addition, it relies on the performance of completed

activities and treats all factors as having the same effects [Wang and Demsetz, 2000].

3.2.9 CEV

CEV (Conditional Expected Value) elicits correlated coefficients through an interview

process [Ranasinghe and Russell, 1992]. The conditional expected value is dominated by the

elicitation process, and therefore requires quality inputs. Uncertainty is not factor-based, but

nonetheless considers both favorable and adverse effects.

3.2.10 SLAM

SLAM is a Fortran-based computer simulation language for alternative modeling [Pritsker,

1995]. it is a process-oriented simulator and comes with an optional graphical user interface for

constructing graphical models. A general purpose simulation language, it supports multiple

modeling viewpoints in an integrated framework. Discrete events, continuous, and network

modeling perspectives are supported in developing simulation models.

3.3 DIRECT-ELICITATION MODELS

Exact Simulation

To conduct an exact simulation analysis incorporating the effect of correlation, a proper

assessment of the joint probability density function (PDF) for the correlated variables is needed
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[Touran and Wiser, 1992]. The only joint PDF for which a well-organized theory of statistical

inference currently exists is the multivariate normal distribution [Law and Kelton, 1991]. If

variables are assumed to follow a normal distribution, then one only needs the multivariate

normal distribution to generate correlated variables, given that the correlation coefficients among

variables are known [Touran and Wiser, 1992]. Due to the difficulty of quantitatively assessing

the correlation coefficient, qualitative estimates may be adopted [Touran, 1993].

Quantile Simulation

A facility in commercially available Monte Carlo-simulation software may be used to

capture the effect of correlation when the correlation coefficient is known [Chau, 1995]. The

sampling procedure increases the probability of sampling the same quantiles from two PDF's

when the correlation coefficient is positive. Similarly, when the correlation coefficient is

negative, there will be a higher probability of sampling the nth percentile and 100 - nth

percentile from the two PDF's.

MSRN

In the MSRN (Modified Second Random Number) simulation-based model, the value of

the correlation coefficient is again used to influence the selection of random numbers. For

example, Van Tetterode [1971] modified the second random number by a proportion of the

difference between the first and second random numbers.

Factored Simulation

A stochastic network model dealing with correlated durations was developed by Woolery

and Crandall [1983]. In this model, activity duration consists of a time distribution for the

activity duration under optimal conditions and a series of time distributions for various factors

that may lengthen the activity duration. For a given activity, these factors are assumed to be

independent. For example, delays as a result of labor or material shortage are independent of

weather conditions. However, the effect of one factor on multiple activities may be assumed to

be correlated, either perfectly or partially. The use of a base duration modified by a series of

factor-related distributions is a logical way to evaluate the effect of uncertainty. However,
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since the base duration is considered optimal, uncertainty is only treated as an adverse effect.

Factored Simulation assumes a positive correlation and adopts a factor-based approach [Wang

and Demsetz, 2000].

3.4 DYNAMIC PLANNING AND CONTROL METHODOLOGY

In fact, significant advances in the simulation approach have been achieved through the

past researches. However, only few of the current simulation-based methods have the flexibility

and reliability necessary to be used as an alternative to network-based methods [Pefia-Mora and

Park, 2001]. For this reason, despite their potential advantages over network-based methods,

they have not been yet widely accepted by the industry. For a simulation-based method to be

accepted as an alternative to network-based methods, it needs to be as flexible and applicable as

network-based methods are, as well as having capabilities to realize its potential advantages over

network planning methods [Pefia-Mora and Park, 2001].

Table 2 compares DPM's methods against traditional network-based methods. As opposed

to the previous simulation approach, DPM adopts the user-defined modeling approach [Pefia-

Mora and Park, 2001]. The user-defined modeling approach makes it possible to significantly

increase the applicability of simulation approach in project management, while keeping the

required simulation capabilities. Following Table 2, Figure 4 graphically represents the

advantages of DPM over network-based methods and the existing simulation techniques.
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Table 2: Comparison of DPM with Network-based Methods [adapted from Park (2001)]

- Duration

- Precedence

Relationships

(FS only)

Duration

Precedence

Relationships (FS,

FF, SF, SS)

Lead/Lag

- Duration

- Precedence

Relationships

- Duration

Probability

- Path Probability

- Duration

- Precedence

Relationships
- Duration

Probability
- Path Probability

- Probabilistic

Branching

Duration

Relationships (Internal & External Dependencies)

Construction Characteristics

Resource (Labor, Material, Equipment)

Other Influences Profiles (e.g., Changes, Cash Flow, Safety,
Environment, Seasonal Effects)

Output - Estimated - Estimated - Probabilistic - Probabilistic - Performance Curves (Time, Costs, Quality, Safety,
Completion Completion Estimate of estimate of Environment)

- Criticality - Criticality Completion completion - Criticality
- Float - Splitting - Criticality - Policy alternatives - Profile Probability

- Float - Path Probability under "what-if' - Policy alternatives under "what-if' conditions
- Float conditions - Policy Guidelines (Labor Control, Overlapping Degree)

Type Linear & Non-linearLinear

External . . . Entire Duration of ActivitiesStart & Finish of Activities

Internal Considered in the form of internal constraints caused by physical
Not Considered constraints, resource availability, production rate, etc.

Resource Utilization Resource Leveling and Allocation Resource Availability and Utilization Rate considered

Varied
Progress Fixed (depending on construction characteristics, productivity, schedule

pressure, fatigue, etc.)

Problem Solving Analyzing cost-benefits tradeoffs of policies and tracing theCapablem y M y .g .t ocauses of simulation results (e.g., resource bottleneck,Capability Mainly using criticality on time productivity decrease, financial constraints)
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2 Ahuja and Nandakumar (85)
3 Levitt and Kunz (85)
4 Paulson et al. (87)
5 Bernold (89)
6 Halpin et al. (90)
7 Padilla and Carr (91)
8 Ibbs et al. (95)
9 Martinez and Ioannou (97a)
10 Martinez and Ioannou (97b)
I : Tommelein (98)

6 512 Ng et al. (98)
4 13 Pena-Mora and Park (01)

14 DPM (01)

High

Flexibility
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Figure 4: Comparison of Simulation Techniques (Dimensionless) [adapted from Park (2001)]
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CHAPTER 4

METHODOLOGY COMPONENTS

This chapter will outline the base components that are incorporated into the DPM

methodology. The proposed methodology integrates System Dynamics modeling techniques

with Robust Design as well as Axiomatic Design, Dependency Structure Matrix, Theory of

Constraints, Concurrent Engineering, PDM, CPM, PERT, GERT and SLAM to analyze and

quantify the effect of the numerous dynamic interactions within construction processes. The

following paragraphs provide a brief overview of these techniques.

4.1 SYSTEM DYNAMICS MODELING

A system dynamics modeling environment has a graphical user interface to allow a model

developer to define a model through graphical inputs. The data and other information regarding

the model are stored within a database structure that efficiently organizes the data. A second

non-graphical editor is provided as a separate and distinct tool for editing the equations and other

information representative of a model. This modeling environment allows the definition of a

plurality of groups, with each group consisting of a data set representing a complete flow

diagram and capable of being coupled to another group defining a portion of the model on the

same layer of the model. Users have the ability to create customized user interfaces for their

models without requiring programming experience. Users also have access to features that make

it easy to create and save scenarios and models.
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Sterman [1992] suggests that no mental model can adequately assess the impact of

exogenous factors and allocate responsibility for delay and disruption. He further suggests that

computer-modeling techniques are preferred to mental models for the following reasons:

" Computer models are explicit, and their assumptions are open for review

" Infallibly compute the logical consequences of the modeler's assumptions

" Ability to interrelate many factors simultaneously

" Can be simulated under controlled conditions, allowing analysis where the real

world constrains its feasibility

System dynamics models are treated as formal models to replace mental models. A mental

model is typically the understanding and intuition of the construction process derived from years

of experience and observations in the field [Pefna-Mora and Li, 1999]. However, the mental

model is insufficient to analyze complex systems and in particular to analyze impacts and

changes to this system. To this end, system dynamics modeling techniques will be instrumental

in determining an effective overlapping strategy. More importantly, an effective overlapping

strategy can be developed in a controlled environment.

The foremost utilization of the system dynamics model is to represent the

interdependencies among the different project components. Such interdependencies often

complicate the problem since a subtle change in one part of the system can trigger an effect on

other parts of the system. This change can be severely detrimental to the overall system if it

leads to delays to other tasks that find themselves dependent on the completion of the deferred

activity. System dynamics is capable of tracing the interdependencies and in turn the causal

impacts of changes [Pefia-Mora and Li, 1999]. The system dynamics model enhances the user's

understand when in a multi-loop environment the loop dominance can shift from one loop to

another, for example, when the loop dominance shifts from balancing to reinforcing. Figure 5

illustrates a sample of variables that are involved in both balancing and reinforcing loops; the

blue loop is a balancing loop, while the red loop is a reinforcing loop.
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Figure 5: Balancing and Reinforcing Loops [adapted from Park (2001)]

4.2 ROBUST DESIGN

Robust Design is an engineering methodology for improving productivity during the early

stages of design development to generate high-quality products quickly and at low cost. A

fundamental principle is to improve product quality by minimizing the effect of the causes of

variation without eliminating the causes. Through a process of parameter design, product

performance is minimally sensitive to causes of variation. Its application to the dynamic

planning methodology is to reduce the sensitivity of construction processes to hard-to-control

variations.

4.3 AXIOMATIC DESIGN

Axiomatic Design was developed by Professor N. P. Suh at MIT to fulfill the need to unify

and generalize available knowledge in the design field [Suh, 1990]. The concept of axiomatic

design provides a systematic approach to gather and process design information (customer needs,

functional requirements, design parameters, and process variables) to aid in product development

and 'do things right the first time.' The basic assumption of axiomatic design is that there exists
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a fundamental set of principles that determine a good design practice. During the design process,

the best product is selected from various alternatives, considering factors such as value added,

cost, accuracy, delivery time, and consumer preference [Suh, 1990]. Axiomatic design enables

project managers to evaluate the scenario advantages based on a series of relevant criterions.

The two design axioms below are the fundamental rules to implement the axiomatic design

process, which are utilized by DPM.

Axiom #1: The Independence Axiom

Maintain the independence of functional requirements.

Axiom #2: The Information Axiom

Minimize the information content of the design.

One important function of axiomatic design is the ability to map out the interdependencies

among various design and construction tasks. It is able to systematically make the inherent

complexities explicit [Suh, 1990]. Axiomatic Design breaks a complex design process into

manageable work packages that possess the ability to work independently from one another.

This concept will be adapted to develop an effective and efficient construction planning process

by evaluating various work methodologies. Its application will address the problems that arise

from the fragmented approach to design and construction planning, and a non-homogeneous

decision-making process within each organization [Pefia-Mora and Li, 1999].

DP DP' DP'
1 2 3 1 2 3 1 2 3

X 0 0 X 0 0 1

FR2 0 X 0 FR2 X _ 0 FR2H

3 0 0 X 3 X X X 3X X

Uncoupled design Decoupled design Coupled design

p 2

3

Figure 6: Examples of Dependency Matrices

43



Its application to the dynamic planning methodology is to rigorously define the objective

of each planning step independently. Once the objective is clearly defined, an appropriate

solution can be formulated to achieve the particular project objective [Peffa-Mora and Li, 1999].

The two axioms are applied to ensure the objective is framed correctly in a solution-neutral

environment, and the corresponding solution is the most effective for project implementation

[Pefna-Mora and Li, 1999].

4.4 DEPENDENCY STRUCTURE MATRIX

The Dependency Structure Matrix is a mathematical interpretation representing the

interactions between two domains. The relationships among design parameters can be mapped

for clarity and analysis. The elements of the design matrix are determined by taking the partial

derivatives of design parameters. The overall effect of the dependency matrix can be calculated

by summing the partial derivatives. This mapping process must satisfy Axiom #1 (The

Independence Axiom). In an acceptable design, the mapping is such that each functional

requirement can be satisfied without affecting other functional requirements [Albano, 1997].

The Independence Axiom defines three categories of dependence matrix [Suh, 1990],

namely uncoupled design, decoupled design, and coupled design. The Information Axiom states

that "among all designs that satisfy the functional independence (Axiom #1), the best design is

the one with the least information content" [Suh, 1990].

The best possible design is the uncoupled design, where each functional requirement is

satisfied independently by a corresponding design parameter. Hence, the design tasks can be

performed in parallel and be completed within the shortest duration. The second-best design is

the decoupled design. In this design configuration, the performance of each design task depends

on the finalized information transfer from its upstream task. Therefore, the design must be

carried out in series. Although a decoupled design requires a longer time frame than an
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uncoupled design, it is still possible to perform. The least desirable is the coupled design. In this

scenario, the progress of two or more design tasks is mutually dependent. As a result, the

information feedback is both crucial and difficult. Although the existence of a coupled design is

highly undesirable, the attempt to completely eliminate all coupled relationships can be

physically unrealistic and infeasible.

Dependency Structure Matrix is used to identify feedback and precedence activities to

frame iterations through the entire design process flow. Its goal is to reduce a very large and

complex schedule into comprehensible time periods. This synthesis enables project personnel to

focus on short-term, intermediate goals.

4.5 THEORY OF CONSTRAINTS

Theory of Constraints (TOC) is a portfolio of management philosophies, management

disciplines, and industry-specific 'best-practices' conceived and developed by Dr. Eliyahu M.

Goldratt, usually applied to running and improving an organization. TOC acknowledges and

manages the inter-dependencies within an organization, as well as between organizations, and

their effect on flow through the entire supply chain.

The primary benefit of the TOC approach is its orientation toward the output of the entire

system, rather than a compartmentalized look at components that may have little or no positive

effect on overall performance. Constraints may be physical, such as a machine, person, or

facility, or a policy that inadvertently discourages improved performance. A constraint is any

factor that limits the system from achieving a set goal. Cost reduction is viewed as important,

but not necessarily the most important part. It is viewed in its proper context as a part of a larger

system and strategy to realize a company's goal of turning profits.

TOC consists of problem-solving and management/decision-making tools called the

Thinking Process (TP) or a system-level approach to continuous improvement. Two basic
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constructs that underlie the TP is:

1. Causality: "If.. .Then... Because..."

2. Necessity: "In order to ... I must...Because..."

TOC recognizes that the output of any system that consists of multiple steps, where the

output of one step depends on the output of one or more previous steps will be limited or

constrained by the least productive steps. In other words, the strength of the chain is dependent

on the weakest link. Concentrated efforts to strengthen the weakest link will strengthen the

overall system. According to TOC, this strengthening is achieved by following the Five

Focusing Steps.

TOC challenges the user to define a goal and examine how the goal is served through

actions and performance measures. Tools that aid in the identification and resolution of

bottlenecks include: Goldratt's Five Focusing Steps (described below); Reality Trees;

Evaporating Clouds; The Future Reality Tree; The Prerequisite Tree; The Transition Tree; The

Socratic Method; and Drum-Buffer-Rope. These logical thinking processes provide a contextual

basis from which to apply more commonly known quality tools, such as statistical process

control, design of experiments, quality function deployment, and other structured problem-

solving methods.

Goldratt's Five Focusing Steps are:

1. Identify the system's constraints - Determine what limits the system's

performance.

2. Decide how to exploit the system's constraint - Modify or redesign the task or

activity so work can be performed more effectively and efficiently.

3. Subordinate everything else to step 2 - Make elimination of the inefficiency of

the existing constraint the top priority.

4. Elevate the system's constraint - Break the constraint by increasing its output

capacity through the purchase of additional capacity or implementation of new

information technology.
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5. Once the constraint is broken, repeat step 1, but be aware of inertia to cause a new

constraint - Go back and find the next weakest link which limits the system's

performance.

TOC is applied to logically and systematically zero in on three essential process

improvement issues of what to change, what to change to, and how to cause the change. In order

to understand what to change, the current realities of the system must be understood. Once

understood, a Current Reality Tree (CRT) can be developed to aid in communicating this

revelation. The CRT reveals that most undesirable effects of the current system are the result of

a few core problems. By addressing the root cause of the problem, its effect on the entire

network can be modified.

To answer the question of what to change to, focusing efforts of resolving core problems

could more effectively and efficiently eliminate multiple undesirable effects. Core problems are

typically perpetrated by conflict between opposing requirements or prerequisites of the

requirements. Through the use of Evaporating Clouds and Future Reality Tree, assumptions

underlying the conflict are revealed to aid in finding simple yet meaningful solutions to the

problems. Once the solution to the problem is selected, how to cause the change must be

translated into an implementation plan that considers potential obstacles to the new process. A

Prerequisite Tree (PRT) is useful for methodically planning the implementation effort. The PRT

lists out the obstacles or concerns that could block achievement of the implementation plan.

Specific uses of the TP are the enhancement of vital management skills, such as: win-win

conflict resolution; effective communication; team-building skills; delegation; and empowerment.

By the application of TP to specific functional areas (Sales, Marketing, Logistics, Finance,

Accounting, Engineering, and Project Management) Proven Solutions have been created.
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4.6 CONCURRENT ENGINEERING

Concurrent Engineering was developed to address the necessary information transfer

among a set of parallel activities, considering factors such as activity information certainty and

sensitivity to errors [Pefua-Mora and Li, 1999]. Concurrent Engineering specifically addresses

the information flow for tasks where iterations, overlapping, and integration are expected. Once

the goals of each schedule activity is defined and documented using the principles of axiomatic

design, the concepts of concurrent engineering can be applied to analyze the validity and

effectiveness of critical project activities. This analysis will then be used to develop a dynamic

planning and control framework based on the task production rate, task reliability, and task

sensitivity to upstream error.

4.6.1 Task Production Rate

Execution of work can possess a multitude of production types, from instantaneous to

linear to any number of non-linear relationships. Two examples of non-linear production types

are shown in Figure 7. An example of a fast production rate is a concrete placement activity; an

example of a slow production rate is a carpet flooring activity.

Fast Production

0 255075 100
(percent complete)

Slow Production

100%

..............................

0%/ Time

0 255075 100
(percent complete)

Time

Figure 7: Examples of Production Types
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These examples over-simplify the issue since more commonly, construction activities have

variable production rates given the differences in multiple controlling factors such as availability

of work, labor efficiencies, physical constraints, weather, and policies. Productivity may be

achieved early in the task activity under a certain combination of controlling factors, while in

other instances yield a very different productivity profile. This variability may exist within a

single activity or be amplified when given multiple, seemingly repetitive activities.

4.6.2 Task Reliability

Besides the non-linearity of production rates, consideration must be given to the reliability

of the work being performed. Task reliability is defined as the degree of confidence that the task

will be done correctly and is insusceptible to errors or changes both within the overall system as

well as from an external influence.

4.6.3 Task Sensitivity

Successor activities may or may not be affected by an error or change in its predecessor

activities. Sensitivity is defined as how the task would be changed in light of errors or changes

to upstream predecessor activities.

4.6.4 External Dependency

External or inter-phase dependency is the relationship across project phases or activities.

In the traditional CPM-based methods, this relationship is illustrated by precedence logic

relationships. These traditional methods establish relationships among multiple phases or

activities based on the start and finish or related activities, permitting the use of lead and lags,

but based on time units, rather than progress of work. In contrast, the inter-phase dependency
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permitted by DPM establishes the relationship across phases and activities based on work

complete, which is more dynamic and is applicable throughout the activity duration. Two

examples of external dependencies are illustrated in Figure 8.

Partial Concurrence

I-

C

Cu

Cu
I-

C

Upstream Task Progress

No Concurrence

0

Upstream... Task-Progress

Figure 8: Examples of External Dependency [adapted from Ford and Sterman (1997)]

The graph on the left illustrates where when an upstream activity is 50% complete with its

work, the downstream activity may proceed, but its work progress is proportional to the work

being accomplished by the upstream activity. The graph on the right illustrates where when an

upstream activity is 50% complete, the downstream activity may be start and be completed in its

entirety, while the upstream activity continues to along its progress. Once the downstream

activity is started, there is no further dependency on the upstream activity.

4.6.5 Internal Dependency

Traditional CPM-based methods do not permit consideration for internal dependencies

within one phase or activity. However, project execution is often hampered by procedural or

physical constraints within a single schedule activity. For example, inspection for work quality

is necessary before a work activity such as erection of formwork is considered complete. This
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inspection activity repeatedly affects the formwork work package, and inspection for work

quality procedural activities accompany the majority of construction work processes. Physical

constraints are those that are fundamental to the erection of work, where beam erection must

occur before the beams can be bolted in place. Here's another example of were an inspection

activity inserts itself, the inspection of the field weld. Two examples of internal dependencies

are illustrated in Figure 9.

Progress with Physical Constraint Progress without Physical Constraint

0 0

0 1 01

Work Progress Work Progress

Figure 9: Examples of Internal Dependency [adapted from Ford and Sterman (1997)]

The graph on the left illustrates where physical constraints, such as progress of bolting

beams is dependent on the quantity of beams erected. The graph on the right illustrates where

when given available work, work can progress without physical constraints, provided there are

enough resources for the work to progress.

4.6.6 Overlapping Frameworks

Eppinger [1997] classifies overlapping practices in terms of upstream evolution and

downstream sensitivity, focusing on transferring information that is derived from design
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parameters. Upstream evolution describes the ability of the upstream to provide finalized

information with which a downstream task can proceed. Downstream sensitivity describes the

sensitivity of the downstream to changes in an upstream task. By understanding evolution and

sensitivity for sequential task pairs, an overlapping strategy can be chosen [Eppinger, 1997].

From Eppinger's perspective, poor overlapping does not create shorter project duration because

earlier transfer of preliminary data brings subsequent changes followed by wasteful iteration.

Pefia-Mora and Li [1999] applied this overlapping framework for effective management on

fast-tracked construction projects. This research focused on the transfer of physical production

units compared to Eppinger's framework, which deals with information transfer between

overlapped activities. This research argued that task production rate, upstream production

reliability, and downstream task sensitivity are activity characteristics used to determine effective

overlapping strategies in construction. Figure 10 illustrates the overlapping framework adapted

from Peia-Mora and Li.

4.7 I-J NODE METHOD

I-J Node Method defines work activities along arrows between nodes or events.

Accomplishment of the work activity meets the event, which initiates the next work activity

[Callahan et al., 1992]. One advantage of I-J method is that the first work element must be

completed before its successor work element can begin. The scope of work breakdown can be

very specific, which aids to clearly articulate the interim stages that kick-off or constrain the next

stage of the schedule network.

Given a complex schedule network with many interdependent activities, the I-J method

could require a vast quantity of nodes and arrows. The advantage of DPM over I-J method is

that the interdependency is defined and retained in algorithms, rather than defined for each and

every relationship between activities. This advantage substantially reduces the quantity of

individual activity relationships.
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4.8 CRITICAL PATH METHOD

Critical Path Method (CPM) plans the work sequence based on predetermined variables

and activity durations. Schedule activities identified by CPM as critical path activities cannot be

delayed; if they are delayed the project completion time will be lengthened. CPM also identifies

activities with calculated slack time or float time, whereby the activity can be somewhat delayed

without lengthening the project completion time [Meredith et al., 1995]. A significant failure of

deterministic durations is that it neglects uncertainties and variability in production efficiencies

within the schedule activities. Another key limitation of CPM is the inability to loop back to a

previous activity. If an activity is performed multiple times, each repetitive event must be

represented as its own activity.

DPM also utilizes the concept of critical path, but expands the perspective of criticality to a

'critical band' of activities. The 'critical band' of activities is more in tune with the realities of

project management. In addition, the backward loops in DPM reduce the number of schedule

activities.

4.9 PRECEDENCE DIAGRAMMING METHOD

Precedence Diagramming Method (PDM) is distinguished by the use of boxes that capture

activity information including by not limiting to activity duration, activity description, lead/lag

relationships to predecessor and successor activities, and calculated float values. Arrows

connecting the boxes define the logical relationship among the activities [Callahan et al., 1992].

This differs from the I-J method where the arrows between nodes define the activity.

In the I-J method, the predecessor activity is required to finish before its successor activity

can begin, or restricted to finish-to-start relationships. In PDM, four logical relationships are
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possible: finish-to-start, start-to-start, finish-to-finish, and start-to-finish. This variability allows

more schedule flexibility and overlapping of work among related activities [Callahan et al.,

1992]. This schedule flexibility commonly allows fewer schedule activities than in an I-J

network.

One problem with the use of PDM is that it can be unclear what part of the predecessor

activity is related to the successor activity [Callahan et al., 1992]. It can also be unclear what

event or portion of the activity progress kicks off or constrains the follow-on activity. Activity

lead/lag is a singular number without sufficient definition of the scope of work it represents.

Without this clarity, the intent of the relationship could be misunderstood by those other than the

author or could be forgotten by the author.

DPM is similar to PDM in that it utilizes the schedule activity information "in the boxes."

In DPM, these boxes are characterized as "smart cells." The advantage of DPM over PDM is

that the intent of the schedule activity relationships throughout the network is defined, retained,

and easily recalled by DPM users. An additional advantage of DPM over PDM is that the inter-

dependence within and between the activities is maintained through defined algorithms; work

elements that require to be completed concurrently and dependent on each other for successful

completion are clearly identified and articulated in the schedule network.

4.10 PROGRAM EVALUATION AND REVIEW TECHNIQUE

Program Evaluation and Review Technique (PERT) incorporates probabilities into the

schedule activity durations. Pessimistic, most-likely and optimistic durations are determined and

evaluated to calculate values of expected time, mean, standard deviation and variance for the

schedule activity. There are two fundamental aspects of PERT: beta distribution of schedule

durations and the central limit theorem. The central limit theorem purports that project duration

tends to be normally distributed and that activity durations are independent.
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Disadvantages of PERT include time-consuming schedule iterations, validity of the beta

distribution of activity durations, validity of the central limit theorem for activity durations,

identification of a single critical path based on the largest variance, and the inability to include

alternative critical path probabilities in the original model.

Schedule activity duration variability is incorporated into DPM. The advantage that DPM

offers over PERT is variability beyond schedule activity durations.

4.11 GRAPHICAL EVALUATION AND REVIEW TECHNIQUE

Actual site conditions heavily influence the execution of a construction project. Graphical

Evaluation and Review Technique (GERT) is particularly useful to accommodate the different

scenarios that may be encountered. GERT combines signal flow graph theory, probabilistic

networks, PERT/CPM, and decision trees in a single framework [Meredith et al., 1995]. GERT

models 'what-if scheduling scenarios by incorporating probabilistic branching and loop

structures. Through a graphical interface, GERT portrays alternate network paths and

dependencies. Estimated probabilities are assigned to alternative paths based on user judgment

and experience. Probabilistic branching allows one of several successor activities to be realized,

while allowing flexibility in alternative outcomes. In GERT, looping back to earlier events is

possible and acceptable. In addition, GERT incorporates activity duration variability and

multiple terminate nodes. Incorporating all of these factors, the GERT network diagram yields a

range of estimated completion dates.

GERT is typically applied to anticipate the uncertainties in the project schedule so that an

appropriate amount of contingencies can be assigned to activities for these unforeseen conditions.

If the scheduler does not consider uncertainties, the project schedule may be overly aggressive or

optimistic. However, explicitly accounting for each and every uncertainty is unnecessary and

unrealistic, yielding an overly conservative project schedule. GERT is useful in defining the

appropriate amount of contingency based in the probability of occurrence.
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A strong correlation exists between the GERT network diagramming and the concept of

concurrent engineering. The activity characteristics used to define the overlapping framework in

concurrent engineering can be converted to become the probabilities used in the GERT diagram.

Consequently, the implications of the overlapping framework on the resulting project schedule

can be represented numerically in the GERT network diagram [Pefia-Mora and Li, 1999].

The distinction between GERT and DPM is the use of activity buffers from a pool of

schedule buffers. This schedule buffer pool differs from the conventional calculation of project

float. Where project float is calculated based on deterministic durations, the schedule buffer pool

is the aggregate of available schedule float. In addition, activity buffers are distinguished from

free float since this float is specified for the particular schedule activity, for use exclusive of its

particular schedule activity.

4.12 QUEUE-GRAPHICAL EVALUATION AND REVIEW TECHNIQUE

Queue-Graphical Evaluation and Review Technique (Q-GERT) introduces queues to the

GERT methodology. Its advantages over GERT include ability to manage multiple projects and

multiple teams, decrease time duration of repeated activities, decrease probability of repeating

activities, and offers alteration of planned activities.

Again, DPM has an advantage over Q-GERT through its use of activity buffers from a pool

of schedule buffers.
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CHAPTER 5

FUNDAMENTALS OF DPM

This chapter will highlight the fundamental aspects of DPM. The advantage of DPM is the-

ability to absorb unforeseen changes and minimize cost overruns and project delays. The system

is dynamic through its interaction with feedback loops, where a change in one variable affects

other variables over time, which in turn affects the original variable, and so forth.

All of the prior research efforts in network-based and simulation-based approaches have

contributed to enhancing planning and control capabilities to some extents. However, despite the

increased capabilities and advanced commercial software packages, the network-based

scheduling methods still lack the mechanism to efficiently formulate and evaluate construction

plans under uncertainties and constraints, which are required to deal with a high degree of

complexities involved in today's construction projects [Pefia-Mora and Park, 2001]. Since the

network-based methods assume that the attributes of activities such as duration and production

rate are known at the beginning of construction and do not change during construction, they

cannot represent actual construction processes realistically, which results in frequent updates to

reflect the actual performance into scheduling [Martinez and Ioannou, 1997]. Regarding this,

many researchers [Halpin, 1973; Paulson, 1983; Bernold, 1989; Martinez, 1996] argue that

problems the network-based scheduling methods have can be overcome by adopting the

simulation approach, which can describe and capture the dynamic state of construction, and

provide an analytic tool to evaluate construction plans and find possible problems with a

diagnostic capability. Also, their research results including CYCLONE [Halpin, 1977],
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INSIGHT [Paulson, 1983], and STROBOSCOPE [Martinez, 1996] have demonstrated that the

simulation approach can be more effective in dealing with the dynamic state of construction

processes than the network-based methods and that its ability to simulate construction plans prior

to physical execution can substantially enhance the effectiveness of planning [Martinez and

Ioannou, 1997].

Due to its advantageous features, the simulation-based scheduling method has currently

emerged as an alternative to the network-based method [Pefia-Mora and Park, 2001]. However,

despite its potential advantages over the network-based method, very few of the existing

simulation tools have overcome their practical limitations and have proven their applicability to

real construction processes. Their application is still limited to a specific construction process

due to the lack of flexibility in modeling and only those who have a lot of modeling experience

and knowledge can use them. In addition, excluding human factors from modeling makes

simulation results less realistic since many dynamic feedbacks inherent within the construction

processes are closely related to human factors e.g. the effect of workers' fatigue and schedule

pressure on productivity. All of these things necessitate the development of a more flexible and

applicable simulation-based tool for the planning and control of construction projects [Pefia-

Mora and Park, 2001].

5.1 DEFINITIONS

Production Type: The pattern of an activity work progress. In the case of Fast Production,

productivity is initially high but decreases as construction progresses due to increased work

complexity. In contrast, the productivity of Slow Production is initially low but increases as

construction progresses due to learning effect.

Reliability: The degree of work quality and robustness against uncertainties. A Reliable activity

produces less changes, while an Unreliable activity generates more changes.

Sensitivity: The degree of how much an activity is sensitive to changes made internally (Internal
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Sensitivity) or externally (External Sensitivity). A Sensitive activity is more vulnerable to changes

than an Insensitive activity.

Changes: changes refer to work state, processes, or methods that deviate from the original plan

or specification

Unintended Changes: Changes resulting from work quality, work conditions or scope changes,

which can cause managerial changes, rework, or hidden changes, depending on managers'

willingness to adopt the change option and quality management thoroughness.

Managerial changes: Changes made by a managerial decision to avoid the direct impact of

rework

Hidden Changes: Unintended changes that have been inspected and monitored but not found.

Hidden changes are released to the downstream work together with work done correctly.

Quality Management: Actions taken to improve quality through monitoring or to control quality

through inspection, including quality assurance by contractors and quality control by owners'

representatives

Quality Management Thoroughness: Thoroughness in doing quality management. In the model

structures, it refers to the fraction of discovered changes in total changes that have occurred,

while (1- Quality Management Thoroughness) represents the fraction of hidden changes in total

changes that have occurred.

5.2 CONSTRUCTION CHANGES, INTENTIONAL AND UNINTENTIONAL

Changes comprise the single major source of delays and cost overruns for projects of any

kind [Lee et al., 1997]. A key asset of DPM is the reduction of sensitivity of activities to

variations they may experience from their related predecessors and successors. This feature,

together with the ability to formulate and evaluate construction plans ahead of time, helps
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dampen the effect of hard-to-control variations, while keeping control efforts to a minimum.

This will be especially beneficial for large-scale projects, which involve a high degree of

uncertainties. Consequently, the successful development of DPM would help ensure that large-

scale infrastructure projects can be delivered on-time within the established budget by enhancing

the planning and control capabilities of project management. It would also help increase the

applicability of the simulation-based scheduling to construction projects by providing a reliable

and flexible simulation methodology. There are two general categories of changes, intentional

and unintentional illustrated in Figure 11. Figure 12 provides working examples from the

construction process to illustrate intentional and unintentional changes.

5.3 GENERIC MODEL STRUCTURE

DPM constraints neither the type of construction project nor the type of project delivery

method. Developed with generic parameters, DPM characterizes a specific construction project

and its associated level of project management at either higher-level milestone management or

lower-level process management. Figure 13 illustrates the generic model structure.

ReprocessRequeston
WorkReleasedRate.

ReprocessRequeston
WorknotReleasedRate.

InitialWork
IntroduceRate

WAwaingQuabity
PendingWork WorkRelease

ReleaseRate. WorkRate Rate

UPChange RequestFor
AccomodateRate InformationRate

WorkPendingduetoUP WorkAwaitingRFIReply
Change UPAction

RequestRate.

Figure 13: Generic Model Structure [adapted from Park (2001)]
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5.4 RELATIVE POSITION OF DPM

DPM is distinguished from other planning methods by its ability to represent reality and

deal with dynamic complexities. In addition, DPM is distinguished as a user-defined simulation

from a modeler-defined simulation, which permits additional flexibility and customization to

make the tool more applicable to serve the needs of the user. Figure 14 illustrates where DPM is

positioned relative to CPM-based tools and modeler-defined simulations.

Network-based Tools

A

Modeler-defined
Simulation

Reality in Representation
Ability to Deal with Dynamic Complexities

Figure 14: Relative Position of DPM [adapted from Park (2001)]
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2
Table 3: Functions of DPM [adapted from Park (2001)]

o e
1 DuPont Inc and UNIVAC Division of Remington Rand, 1958
2 US Navy and Booz-Allen Hamilton and Lockheed Co., 1958
3 Pritsker, 1966
4 Craig, 1964
5 Halpin, 1977
6 Carr, 1979
7 Paulson, 1983

8 Levitt & Kunz, 1985
9 Ahuja & Nadakumar, 1985

10 Padillar & Carr, 1991
11 Ranasinghe & Russell, 1992
12 Pritsker, 1994
13 Martinez, 1996

14 Wang and Densetz, 2000
15 Eppinger, 1994
16 Alarcon & Bastias, 1998
17 Pena-Mora & Li, 2000
18 Goldratt, 1997
19 Pena-Mora & Park, 2001
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Table 3 arrays the current network-based systems, simulation-based systems and

concurrent engineering methods against DPM for a functionality comparison. The functions

highlighted are network scheduling, path probability, branching probability and loops,

precedence relationships with lead/lag time, capability to deal with uncertainty, considering

feedbacks, considering activity characteristics, considering human reactions, dynamic resource

allocation and leveling, strategic planning, buffering, flexibility in project size and content, and

not requiring modeling or programming efforts.

5.5 CRITICAL BAND ACTIVITIES

As Meredith points out, critical tasks in practice constitute less than 10 percent of all

project activities [Meredith et al., 1995]. DPM aims to effectively model dynamic variables on

the 'critical band' of design and construction activities and the impact of those variables on the

project performance in terms of time and costs as well as quality and safety. Variables

considered in the dynamic modeling include: time and resource constraints; human factors such

as staff experience; fatigue and schedule pressure; owner participation; institutional, physical and

process constraints; site logistics; inherent risks as well as activity duration and precedence

relationships. In addition, variables with significant time delays that should not be overlooked

include problem discovery time, policy implementation behavior as well as policy reaction time.

Major advantages of the model is that it can account for engineering, procurement, and

construction activities; traditional design-bid-build or fast-tracked project delivery methods;

management performance; schedule demands and the sense of urgency; and variable production

rates. Some of the types of input needed by the model includes, but is not limited to: bid

estimate/control budget; project activity durations; definition of 'critical band' criterion for

schedule activities; logical constraints; staff experience; resource and time constraints; risk

assessments; engineering requirements; and testing and commissioning requirements.
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5.6 RELIABILITY BUFFERING

Reliability Buffers developed by Pefta-Mora and Park [2001] to counter the subjective and

unnecessary application of contingency buffers to schedule durations when scheduling work.

Certain construction processes require technical buffers, such as fixed cure duration for concrete.

However, management in planning its work may include a time contingency, which is intended

of guaranteeing schedule performance by including schedule duration beyond what is technically

required to accomplish the task. Management intends to ensure the overall schedule is met and

avoid schedule disruptions in downstream activities. This practice of applying a time

contingency, however, may lead to inappropriate allocation of resources and miscommunication

on the urgency of completing the task, and as a result be inefficient to control the work [Pefia-

Mora and Park, 2001].

For example, three schedule activities 'A', 'B', and 'C' are each planned for a duration of

15 days with an intentional application of 5 days for time contingency and both 'A' and 'B' have

a Finish-to-Start logic relationship to 'C'. Figure 15 is an illustration of this plan using bar

graphs.

30 days
10 days 5 days 15 days

Activity 'A' .l

.................................. .* N ote
Activity 'B' I " "h

.... .............................. : Scheduled Duration

F.............FS : Contingency Buffer
F S -.. ----------......- ...--- ...- ..- ...---

Activity 'C'

Figure 15: Planning Work using Contingency Buffers [adapted from Park (2001)]
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If Activity 'A' finishes in 10 days and does not use its contingency buffer, but Activity 'B'

does, Activity 'C' must unnecessarily wait five extra days to start. Figure 16 illustrates the

actual work task completion.

30 days
10 days 5 days 15 days

I I
............. ................. Unused Contingency Buffer

Used Contingency Buffer
............... N ote

F.....e : Scheduled Duration

m : Actual Duration
FS

Activity 'C' : Contingency Buffer

Figure 16: Impact of Contingency Buffer on Actual Work [adapted from Park (2001)]

This is an illustration of the ineffective use of contingency buffers for planning and

controlling work. In contrast, Reliability Buffer aggressively protects the project schedule

performance by pooling, re-sizing, re-locating, and re-characterizing the time contingency buffer.

The individual contingency buffers from each schedule activity is removed and pooled for

advantageous use. This pool can regulate the appropriate level of schedule pressure. Through

the use of simulation applications, this methodology can be applied based on the characteristics

of work activities and throughout the process steps. Figure 17 illustrates the removal of

individual contingency buffers into the pool, which is available for all remaining work activities

as needed. In addition, the reliability buffer is applied at the start of the downstream activity,

which deters the use of the reliability buffer as a safety net to finish the activity, but rather starts

the downstream activity sooner than without the reliability buffer.
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Figure 17: Reliability Buffer Pooling and Application [adapted from Park (2001)]
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This application of reliability buffers is continuous throughout the project execution and as

the progress of work tasks are completed either early, on-time, or delayed. The simulation

environment allows the reliability buffers to be continuously updated and dynamic. Figure 18

illustrates an example of the dynamic buffering that can occur during work progress.
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Figure 18: Example of Dynamic Buffering [adapted from Park (2001)]
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Table 4 summarizes the patterns of buffer location and size variability depending on the

precedence relationships and the simulation result of the upstream work duration and

characteristics. For each schedule update, the remaining construction performance is updated

based on actual work performed. The simulation applies the appropriate buffer sizes and

locations and shifts work to be completed based what is advantageous for the downstream work

based on its upstream work, minimizing the impact of upstream schedule disruptions [Pefia-Mora

and Park, 2001]. As a result, buffer sizes and locations are continuously changed throughout the

project execution. In addition, the precedence logic relationships may be modified according to

buffer size and location changes, for example, where the initial precedence relationship is a

finish-to-start.
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Table 4: Buffer Location and Precedence Relationship Change Patterns [adapted from Park (2001)]

vwMtut LagsfLad "ihLkd Mth Lzgs _ _ _ _
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5.7 DPM SYSTEM ARCHITECTURE

Based on input variables and control actions initially supplied from the user, DPM

forecasts project performance profiles. The same basis used in the bid estimate preparation, such

as calculated unit price, will be transferred as initial model input, customized to the type of

project as well as the means and methods of its execution. As the project evolves, DPM captures

the as-built information to replace the estimated values with actual values with the goal to more

accurately forecast project completion. DPM has the potential to not only create immediate

performance benefits but also capture historical data, which will prove useful in assessing and

quantifying impacts as well as improving bid and estimate performance. Figure 19 illustrates the

system architecture that supports the DPM modeling environment.

5.8 SMART CELL

Model inputs are entered into the DPM simulation through the utilization of generic smart

cells, which is itself an adaptation from the Design Structure Matrix (DSM) developed by

Eppinger. Figure 20-a and 20-b illustrate the generic framework of the smart cell technology for

an activity and for a relationships, respectively.
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Figure 19: System Architecture of DPM [adapted from Park (2001)]
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Figure 20-b: Generic Smart Cell for Relationship [adapted from Park (2001)]
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5.9 WEB-BASED APPLICATION

DPM has the ability to be provided within a web-based planning and control environment,

whereby a user can simulate DPM results with an active Java applet [Pefia-Mora and Park,

2001]. The applet requests simulations of the data residing in the main server through a Java

Remote Method Invocation (RMI). RMI simulates the source data and the simulation results are

saved in the DPM database through Java Data Base Connectivity (JDBC).

Client

User machine

RMI

4 JDBC

MainServer

Project Data

Figure 21: Web-based Production Diagram [adapted from Park (2001)]
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For the web implementation of DPM, three main tools, Java programming language,

Vensim, and RMI are extensively used. Java language makes DPM platform-independent.

Furthermore, the utilization of Micro-Java supports hand-held devices without the limit by the

operating system [Pefia-Mora and Dwivedi, 2000]. In addition, Vensim, which is a powerful

System Dynamics modeling tool, provides a simulation engine and analytical tools. Lastly, Java

RMI is used to increase distributed computing capabilities. RMI allows Java objects running on

the same or separate computers to communicate with one another via remote method calls. Such

method calls appear the same as those operating on object in the same program [Deitel and

Deitel, 1999].

Meanwhile, Figure 22 more specifically shows how distributed systems exchange data

among them. User input can be transferred to DPM through Java RMI. Thereafter,

Vensim.class calls venjava.dll, and in turn venjava.dll loads the Vensim DLL file. Through

these processes, the DPM models are simulated. Once simulated, DPM shows the results

through Java applet and save them in Oracle database through JDBC.

Input

Vensim dll
Oracle JDBC RMI

Datbas Java--Database In,output Venjava.dfl

Output

Figure 22: Scheme of Data Exchange in DPM Systems [adapted from Park (2001)]
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In addition, by allowing data importing from Primavera, which is one of the most widely

used project management software, DPM further increases its applicability. As conceptualized

in Figure 23, DPM accesses and controls the SQL Server of Primavera Enterprise through JDBC

driver. Meanwhile, Java RMI is used to connect the SQL server, considering that the Primavera

SQL database can be located in remote places.

Primavera Enterprise
Primavera Database

strategor.mit.edu

RMI, JDBC,
JDriver

DPM Databse
gpms.mit.edu

VPM Ulient side
Java Application

star.mit.edu

Figure 23: Data Exchange with Primavera [adapted from Park (2001)]
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Figure 24: DPM Working on the Web [adapted from Park (2001)]
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CHAPTER 6

CASE STUDY: ROUTE 3N

This chapter will present the case study in implementation of DPM on an active large-scale

infrastructure project. The realities and challenges of introducing an innovative concept to a

mature industry, the process steps to elicit the key information from project personnel, the means

to execute this information retrieval, and the population of this information into the DPM system

will be discussed and summarized.

6.1 PROJECT OVERVIEW

In August 2000, the Massachusetts Highway Department (MHD) awarded a $385 million

Design-Build-Operate (DBO) contract to Modem Continental Companies, Inc. (MCC) for

roadway improvements along State Route 3 from its intersection with State Route 128 in

Burlington, MA north to its terminus at the State of New Hampshire border. Figures 25-A and

25-B illustrate the project location and boundary.

The design and construction phase is expected to span 42 months with beneficial

occupancy of the entire roadway achieved in February 2004. Along the 21-mile stretch, the

MCC team will widen the existing state roadway from four lanes to six lanes plus widen the

existing seventeen bridges along the route to accommodate eight lanes should future traffic

demand necessitate further reconstruction. In addition, thirteen bridge overpasses along Route 3

will require modifications, such as bridge abutment relocation, to accommodate the wider Route
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3 roadway beneath. Of these thirteen overpass bridges, all but two will be reconstructed in a new

alignment, either north or south of the existing bridge, to allow maintenance of traffic flow

during construction. Subsequently, roadway and interchanges adjacent to these overpass bridges

will require modifications to complete the overall intent of the project.

averh

U

Figure 25-A: Map of Project Area

Courtesy of Massachusetts Turnpike Authority, 1999 (NTS)
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Figure 25-B: Map of Project Boundary
Courtesy of EOEA No. 56682 (NTS)

The project consists of a number of major types of work to be executed. The bulleted list

below highlights the major components:

* Modifications of overpass bridges, including the setback of bridge abutments and

bridge realignments to maintain local access during construction. In addition,

several overpass bridges will be widened to accommodate traffic demands.

* Widening of existing bridges along Route 3 to accommodate four northbound and

four southbound lanes, plus approximate roadway shoulders to comply with

safety standards. This contract will only stripe the bridges for three northbound

2 Commonwealth of Massachusetts Executive Office of Environmental Affairs, Environmental Assessment/Draft

Environmental Impact Report, April 1997.
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and three southbound lanes. The additional shoulderwidth will offer the motorists

a wider clear zone for better highway visibility and greater degree of safety.

* Modification to the roadway drainage system as a result of increased runoff

volume from increased roadway surface and roadway realignments.

* Widening, paving, and striping the roadway for three northbound and three

southbound continuous traffic lanes, plus the adjacent on- and off-ramps and

collector/distributor lanes, as applicable.

Figure 26 below identifies the location of the 30 bridges, which will undergo modification

during the execution of the contract.
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* Overpass Bridge Location (13)

* Underpass Bridge Location (17)

Figure 26: Location of To-be-Modified Bridges
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As this project is intended to be a transportation improvement program, the scope of work

to be executed includes common environmental mitigation efforts as well as new inter-modal

transportation opportunities. The following list of bullets summarize these additional work

elements to be completed:

" Establishment of eighteen areas within the project boundary to function as

compensatory floodwater storage/wetland habitat as a mitigation measure for the

disruption of wetland habitats at various locations along the roadway corridor.

Where feasible, travel lane improvements occur within the existing median and

retaining walls will be erected to minimize the impact on more valuable wetlands

beyond the outer roadway shoulders.

* Erection of noise abatement barriers adjacent to noise sensitive receptors.

" Development of "Park & Ride" lots to encourage consolidation of single-

occupancy vehicles into high-occupancy vehicles.

During the construction phase, MCC is required to design a traffic management plan such

that the traffic operation throughout the corridor can be maintained at levels similar to pre-

construction conditions. This effort is intended to minimize any further traffic diversions into

the adjacent residential areas to avoid possible traffic delays on Route 3 as a result of on-going

construction. Prior to the widening of Route 3, each of the overpass bridges will be rebuilt. One

of the primary reasons for the relocation of all but two overpass bridges is to maintain traffic

flow on the existing bridges and then switch traffic to the new bridge prior to demolition of the

existing bridge. This construction sequence will minimize disruptions to the day-to-day

commuter schedule. To facilitate construction and subsequent removal of existing overpass

bridges, traffic on Route 3 will need to be interrupted for short periods to allow necessary

construction activities to occur. This portion of the construction effort will likely occur during

off-peak hours to minimize traffic disruption and diversion. Following replacement of the

overpass bridges, reconstruction of Route 3 will commence.
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Along with the staged construction sequence described above, the length of the corridor is

divided into three construction segments. Starting from the south moving north, Section One is

between Route 128 in Burlington and Route 129 in Billerica, Section Two is between Route 129

and the Drum Hill Rotary in Chelmsford, and Section Three is between the Drum Hill Rotary

and the New Hampshire state line. During the entire construction period, MHD will post signs

along Route 3 to encourage the use of existing public transportation systems in the area.

6.1.1 Project Objectives

Following the 30-year operation phase by the contractor, ownership of the roadway will

transfer back to the Commonwealth of Massachusetts. MHD will be responsible for operation

and maintenance of the roadway thereafter.

At the present time, Route 3 is a median-divided, four-lane limited access facility. It is the

only limited access highway servicing the transportation needs of the entire Northern Middlesex

Council of Governments (NMCOG) region to the north and a portion of the Metropolitan Area

Planning Council (MAPC) region to the south. While other roadway alternatives within the

vicinity exist (Interstate Route 95, Interstate Route 93, and Interstate Route 495), Route 3 is the

only limited access facility with only two travel lanes in each direction. Operating under

unacceptable Level of Service (LOS) E or F, as it currently does, represent traffic demands that

are at or over the capacity of the highway facility. This type of heavy congestion in turn results

in lost time, increased fuel consumption, increased safety problems, and heightened levels of

driver frustrations. Based on the traffic patterns observed, the vehicular congestion is clearly

related to work-related traffic during commuter travel times. Further, these traffic patterns

indicate a direct correlation to increased commuter diversions onto parallel routes, such as Route

3A to the east and Route 4 to the west. These diversions cause substantial impacts to mobility

within the area communities, lowering their quality of life and producing elevated volumes of

traffic in residential areas. The last year of upgrades to the highway facility was performed in
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1967 with the extension of the roadway from the Drum Hill Rotary to the State of New

Hampshire state line. Given that roadways are typically designed to accommodate traffic

demands 20 years in the future, Route 3 is a facility at or very near its originally anticipated

design life.

During the intervening years since its completion, the economic development of this entire

region has been inextricably tied to Route 3 and the access to employment and other destinations

it provides. Land use along the corridor is varied. Development densities are most intense south

of Interstate Route 495, with industrial and office development abutting the Route 3 right-of-way.

While developments north of Interstate Route 495 are currently sparse, land use projections

estimate that the majority of new developments will occur in this northern section. It is a prime

goal for MHD that any roadway improvements support the continued maximization of the large

public and private investments already committed to the region. By achieving this goal, this

project will support both existing developments in and around the surrounding communities, and

future developments that will most likely expand along the corridor. Because no new

interchanges along Route 3 will be constructed, no lands currently without access will gain

access and thus, there should be no imputes for location specific changes in zoning or land use.

Upon completion of the project, the citizens of the Commonwealth of Massachusetts as

well as the motorists traveling between the State of New Hampshire and eastern Massachusetts

will benefit from a safer and less congested roadway facility. The overall purpose of the project

is to:

1) Improve capacity and/or capacity utilization along Route 3 such that overall

corridor travel time (vehicle hours of travel) is reduced and, in so doing, travel

demand can be met. By meeting as much of this demand as feasible, drivers will

be attracted back to Route 3 and away from parallel routes to the maximum

degree possible.

2) Improve vehicular safety along Route 3 by upgrading substandard conditions at

interchanges and other points along Route 3, such that accidents and delays are

reduced.
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In addition to roadway improvements, construction of new "Park & Ride" facilities

adjacent to the interchanges at Route 113 in the north and Route 62 in the south will occur.

These facilities are intended to increase carpooling opportunities to decrease the traffic volume

on the roadway.

6.1.2 Project Developer

The MCC team is responsible for the overall design, coordination, and construction of the

roadway prior to an operational period for a term not to exceed 30 years. The MCC team

structure is summarized in the table below:

Table 5: MCC Team Entities and Responsibilities

Team Entity Team Responsibility

Modem Continental Companies, Inc. Program Coordinator and Constructor

URS Corporation Program Designer

Vanesse Hangen Brustlin, Inc. Traffic Management Advisor

Cambridge Systematics, Inc. Transportation Planning & Management Advisor

Keville Enterprises, Inc. Quality Assurance Manager

Roy Jorgensen Associates, Inc. Operations & Management Manager

The Smart Associates Environmental Compliance Advisor

Environmental Consultants, Inc. Environmental Compliance Advisor

Judith Nitsch Engineering, Inc. Land Surveyor

Regan Communications Community Outreach

Colt Communications Community Outreach

Salomon Smith Barney Financial Advisor

Raymond James & Associates, Inc. Financial Advisor

Hinckley, Allen & Snyder Legal Advisor
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The following organizational chart clarifies each entity's major area of project

management responsibility:

Project Executive
Construction

Quality Assurance

Project Management Project Administration

ncin~g - -Community Relations --ae t L

H Safety
Project Fina

Design Management]
Construction
Management

Environmental
Compliance

Project Owner

FII MCC Team

Figure 27: MCC Team Management Organizational Chart

6.1.3 Project Financing

To finance the design and construction of the project, the MCC Team will issue tax exempt

bonds on behalf of the Commonwealth. The Massachusetts Legislature will reimburse the MCC

Team through annual, periodic payments subject to appropriation. The lump sum contract

obligates the MCC Team to perform all work necessary to obtain project completion within the

time specified for the agreed price, subject only to certain specified limited exceptions. The

exceptions are particularly restrictive to structure the project budget and financing appropriately

and reduce the potential for cost overruns.
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6.2 MODEL IMPLEMENTATION PHASE

The matrix illustrated in Figure 28 summaries the milestone completion dates provided by

the MCC Team in its preliminary baseline schedule.

Activity Early Early Total
Description Start Finish Float

Key 2 - MDEP Issue Chap 91 Waterway License 30APR01 109

MHD ROW Complete - Mitigation Sites 22OCT01 597

Key - Phase 1 of Segment 3 Complete 01OCT02 0

Key - Phase 1 of Segment 1 Complete 07NOV02 0

Key - Phase 1 of Segment 2 Complete 20NOV02 0

Key - Segment 3 Construction Complete 05DEC03 75

Key - Segment 1 Construction Complete 08DEC03 72

Key - Segment 2 Construction Complete 18FEB04 0

Milestone 2 - Substantial Completion 2/18/04 18FEB04 0

Milestone 1 - Final Acceptance Deadline 5/18/04 18MAY04 0

Figure 28: Route 3N Project Milestone Schedule Matrix - Start Date View

The MCC team has indicated that activities that calculate 90 workdays of float or less are

considered within the 'critical band' of activities. MCC has defined this threshold criterion as

the timeframe necessary to make appropriate procurement and logistical modifications.

From the standpoint of environmental approvals, multiple and interrelated permit

requirements must be met in accordance with the standards established by the local conservation

commissions, the Massachusetts Department of Environmental Protection (MA DEP) and the

U.S. Army Corps of Engineers (ACOE). Two additional oversight agencies play an active role

in the issuance of permits: Secretary of the Executive Office of Transportation and Construction

(EOTC), an executive office of the Commonwealth of Massachusetts, and the Federal Highway
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Administration (FHWA). The MCC Team is responsible for obtaining all environmental permits

subsequent to the Secretary's Certificate and the FHWA Record of Decision. The necessary

permits include a project-wide Variance from the Wetlands Protection Act, two Chapter 91

licenses, Section 401, Section 404 and NPDES permits. In addition, the Team will be

responsible for filing notices of project changes with MEPA, as necessary.

6.2.1 Project Design Process

The development agreement entered by all parties requires three mandatory design

submittals to MHD: (i) 35% design submittal, 65% design submittal, and 100% design submittal;

(ii) type study and sketch plan for all bridges and retaining walls; and (iii) final design submittal

for all bridges and retaining walls. Each submittal will include, as applicable, reference to

clearance provided for a potential (future) fourth general purpose lane, relevant roadway

drainage provisions, and relevant traffic maintenance/management provisions. During the design

development phase, the Owner's role will consist of oversight to ensure compliance with

established design criteria and within the approved quality control/quality assurance plan.

"Over-the-shoulder" reviews by MHD will be tolerated and encouraged to expedite the process.

35% Design Submittal: This submittal is intended to identify the limits of the work, the

horizontal and vertical geometrics, and the bridge clearances. Prior to the 35% design submittal,

the MCC team must obtain written approval of all design exceptions from the Commonwealth,

and if applicable from the FHWA.

65% Design Submittal: This submittal will include the developer's interpretation of the

MHD highway design standards. This submittal will be accompanied by detailed construction

drawings and specifications, including traffic maintenance plans and completed drainage design.

Comments from MHD during the 35% design submittal review expect to be incorporated by this

submittal.
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100% Design Submittal: This submittal shall consist of detailed, complete and checked

drawings, reports, and specifications necessary for construction. MHD's approval of this

submittal will be designated as "Approved for Construction."

Type Study: As specified in the MHD Bridge Manual, the type study report will be

submitted corridor-wide for review and approval for the selection of particular structure types.

Cost analysis between the types is not necessary. Pertaining to the retaining walls, the most

appropriate style for a specific site condition shall be included.

Sketch Plan: As specified in the MHD Bridge Manual, the sketch plan submittal will

follow the type study report for review and approval by MHD. Submitted for each individual

bridge, final bridge design shall not commence prior to MHD approval of the sketch plan.

Final Design Submittal: The intent of this submittal is to ensure consistency between the

design submittals specific to this project with the standard format used by MHD.

The pavement design criterion is a 20-year design life and at turnover of the project to the

Commonwealth, the pavement must have a remaining life of 10 years. Under these

circumstances, MCC expects to repave the roadway 20 years after construction is complete.

Based on an initial assessment of the baseline schedule prepared by the MCC Team the

conceptual design development work sequence, which includes initial plan, review, comment

and approval cycles, is depicted in Figure 29.
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Sketch Plan Development

MHD Review Sketch Plan

Sketch Plan Comment Resolution Meeting

MHD Review 100% Design Plan

100% Design Plan Comment
Resolution Meeting

MHD Approve
Final Design Plans

Not to Scale

Figure 29: Conceptual Design Development Work Sequence

6.2.2 Bid Estimate Review

In reviewing the bid estimate prepared by the MCC Team, 61% of the total project costs

are resident within four bid items. These items are listed in descending estimated cost value:

Bridge Structures, Roadway Pavement Structures, Earthwork, and Design Services. Careful

attention is necessary in the review of the Bridge Structures bid item. The cost of the Drum Hill

Rotary Bridge modification from an existing rotary configuration with two bridges that span over

Route 3 to one single-point diamond interchange bridge is NOT included within the Bridge

Structures bid item, but is a separate bid item entitled Drum Hill Rotary ATC.

The bid is broken down into six cost categories: Labor, Permanent Materials, Construction

Materials/Expenses, Equipment Ownership, Equipment Operation, and Subcontract. The four

bid items listed above account for 58% of the Labor Costs, 84% of the Permanent Material Costs,

14% of the Construction Material/Expenses, 75% of the Equipment Ownership Costs, 78% of

the Equipment Operation Costs, and 68% of the Subcontract Costs. Excluding the estimated
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manhours for Design Services, the three remaining bid items account for 78% of the total

estimated manhours.

The three most costly bridges, which exceed an estimate of $4 million are: Concord River

Bridge (underpass), Route 1-495 Bridge (overpass), and Temporary Bridges at 1-495 (overpass).

The tables below summarize the types of bridges, their respective locations, and their

approximate estimated costs in US$:
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Table 6: Overpass Bridges by Segment, includes Estimated Costs for Bridge Structures

Cumulative
Bid Item Description Total Cost

Segment 1
Old Billerica Rd/Rte 3 $2 million

Manning Rd/Rte 3 1 million

Concord Rd/Rte 3 2 million

Treble Cove Rd/Rte 3 3 million

Rangeway Rd/Rte 3 1 million

Route 129/Rte 3 3 million

Segment 2
Lowell Conn/Rte 3 2 million

Riverneck Rd/Rte 3 1 million

Route I-495/Rte 3 4 million

Temp Bridge at 1-495 4 million

Steadman St/Rte 3 2 million

Segment 3
Route 113 (Kendall Rd)/Rte 3 3 million

Locust Ave/Rte 3 1 million

Table 7: Underpass Bridges by Segment, includes Estimated Costs for Bridge Structures

Cumulative
Bid Item Description Total Cost
Segment 1
Route 3/Rte 62 (Burlington Rd) $2 million
Route 3/Shawsheen River 3 million
Route 3/Concord River 4 million
Route 3/Farm Rd 1 million
Segment 2
Route 3/River Meadow Brook 3 million
Route 3/Route 110 (Chelmsford St) 3 million
Route 3/Parkhurst Rd 2 million
Segment 3
Route 3/Richardson Rd 2 million
Route 3/Stony Brook 2 million
Route 3/B&M Railroad 2 million
Route 3/Moor's Canal 2 million
Route 3/Main St 2 million
Route 3/Route 40 (Groton Rd) 2 million
Route 3/Ledge Rd 1 million
Route 3/Dunstable Rd 3 million
Route 3/Westford Rd 2 million
Route 3/SB Connector 2 million
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6.3 INITIAL CASE STUDIES FOR MODEL VALIDATION

Due to the repetitive nature of the scope of work within this project, representatives of the

two general bridge types (overpass and underpass) have been selected for model validation. The

Shawsheen River Bridge has been selected as the underpass case study and the Treble Cove

Road Bridge as the overpass case study. These bridges are not the first bridges scheduled for

modification; seven bridges are scheduled to commence modification on March 12, 2001: Route

129 (overpass), Route 113 (overpass), Moor's Canal (underpass), Main St. (underpass), Route 40

(underpass), Ledge Rd. (underpass), and Dunstable St. (underpass) Bridges. The site locations of

the two case study bridges relative to the overall project are identified in Figure 30.
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Overpass Bridge Location
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Figure 30: Site Locations of Initial Case Study Bridges
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6.3.1 Shawsheen River Bridge - Underpass Bridge Case Study

The existing underpass bridge is located in Bedford, MA. Figure 31 is a project photo

taken by the MCC Team of the existing bridge.

Figure 31: Photo of Existing Shawsheen River Bridge [compliments of the MCC Team]

The scope of work is representative of the seventeen underpass bridge widening

modifications within this contract. For this particular bridge, approximately 800 feet of retaining

wall both north and south of the bridge will be placed along the interior Route 3 median. Figure

32 is a snapshot of the design drawing in plan view.
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PROPOSED

I

RETAINING WALL BEDFORD

PROPOSED BRIDGE WIDENING PROPOSED RETAINING WALL -

Figure 32: Plan View of Shawsheen River Bridge Modification (NTS)

Figure 33 is a schedule fragnet from the P3 schedule specific to the Shawsheen River

Bridge modification. The overall fragnet planned duration from design development activities

through construction spans the time period between November 20, 2000 and December 8, 2003.

As the schedule fragnet indicates, MCC design development activities are predecessor

activities to MCC on-location construction activities. While several procurement activities have

float values outside the 'critical band', the majority of design and construction activities reside

within this 'critical band'.

For visual clarity, the above schedule fragnet has been condensed into several hammocks,

as illustrated in Figure 34.
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Figure 33: Shawsheen River Bridge Schedule Fragnet - Start Date View
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20032000 2001 2002

Figure 34: Shawsheen River Bridge Schedule Hammock Activities

Several schedule activities have calculated float values less than or equal to 5 workdays,

which should be characterized as on the critical path. These schedule activities are:

" Rte 3 NB & SB Bridge - Demo Slow Lane over Shawsheen

" Bridge Abutment Activities, as summarized in the following matrix:

NB North SB North NB South SB South
Abutment Abutment Abutment Abutment

Install
SOE______ _

Install
Bracing V VV V

Excavate _ I7

For our initial model inputs, the schedule fragnet for Shawsheen River Bridge was isolated

from the rest of the project schedule. What remained within the schedule fragnet are the

interdependent activity ties placed by the project scheduler for the execution of the scope of

work. Table 8 captures these interdependent activities ties, which originated from the as-planned

P3 project schedule.
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Schedule Activities 1Q2 4 10 21 4 1I2I3i 401I 12 2 Q

Overall Bridge Fragnet

20NOVOO - 08DEC03

Design Activities

20NOVOO -13MAR01

Shop Drawing Activities

14MAR01 -19JUN01

Procurement Activities

25APRO1 -100CT01

Construction Activities

01MAYO1 - 08DEC03
I I I I I I I I I
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Table 8: Shawsheen River Bridge Schedule Fragnet Activity Relationships

Rel Lag Non-Driving Predecessors Rel Lag Driving Predecessors PRIMARY ACTIVITY
I* * BRIDGE RELOCATION

NONE NONE Rte 3 NB Bridge Demo F/Lane over Shawsheen
NONE FS 0 Rte 3 NB Bridge Demo F/Lane over Shawsheen Rte 3 SB Bridge Demo F/Lane over Shawsheen
NONE FS 0 Shawsheen Rvr Brdg Final Plans MHD Approve Shawsheen PHI Design SOE Plans

FS 0 Shawsheen Rvr Brdg Final Plans MHD Approve FS 0 Shawsheen PHI Design SOE Plans Shawsheen PH2 Design SOE Plans
NONE FS 0 Shawsheen Rvr Brdg Final Plans MHD Approve Shawsheen PHI Sub/Appr Rebar
NONE FS 0 Shawsheen Rvr Brdg Final Plans MHD Approve Shawsheen PHI Sub/Appr BPads
NONE FS 0 Shawsheen Rvr Brdg Final Plans MHD Approve Shawsheen PHI Sub/Appr Struct Steel
NONE FS 0 Shawsheen Rvr Brdg Final Plans MHD Approve Shawsheen PH2 Sub/Appr Rebar
NONE FS 0 Shawsheen Rvr Brdg Final Plans MHD Approve Shawsheen PH2 Sub/Appr BPads
NONE FS 0 Shawsheen Rvr Brdg Final Plans MHD Approve Shawsheen PH2 Sub/Appr Struct Steel
NONE FS 0 Shawsheen PHI Design SOE Plans Shawsheen PH1 Sub/Appr SOE Plans

FS 0 Shawsheen PH2 Design SOE Plans FS 0 IShawsheen PHI Sub/Appr SOE Plans Shawsheen PH2 Sub/Appr SOE Plans
NONE FS 0 Shawsheen PHI Sub/Appr SOE Plans Shawsheen PHI Fab/Del Sheeting & Bracing

FS 0 Rte 3 SB Bridge Demo F/Lane over Shawsheen FS 0 Shawsheen PHI Fab/Del Sheeting & Bracing Rte 3 NB NAbut at Shawsheen Install SOE
NONE FS 0 Shawsheen PHI Sub/Appr Rebar Shawsheen PHI Fab/Del Rebar
NONE FS 0 Shawsheen PH2 Sub/Appr Rebar Shawsheen PH2 Fab/Del Rebar
NONE :FS 0 Rte 3 NB NAbut at Shawsheen Install SOE Rte 3 NB NAbut at Shawsheen Install Bracing

NONE ST T Rte 3 NB NAbut at Shawsheen Install Bracing Rte 3 NB NAbut at Shawsheen Excavate
NONE FS 0 Rte 3 NB NAbut at Shawsheen Install Bracing Rte 3 SB NAbut at Shawsheen Install SOE
NONE SS 2 Rte 3 SB NAbut at Shawsheen Install SOE Rte 3 SB NAbut at Shawsheen Install Bracing

FS 0 Rte 3 NB NAbut at Shawsheen Excavate ST I Rte 3 SB NAbut at Shawsheen Install Bracing Rte 3 SB NAbut at Shawsheen Excavate
NONE FST 0 Rte 3 SB NAbut at Shawsheen Install Bracing Rte 3 NB SAbut at Shawsheen Install SOE
NONE SS 2 Rte 3 NB SAbut at Shawsheen Install SOE Rte 3 NB SAbut at Shawsheen Install Bracing

FS 0 Rte 3 SB NA ut at Shawsheen Excavate SS I Rte 3 NB SAbut at Shawsheen Install Bracing Rte 3 NB SAbut at Shawsheen Excavate
NONE FS 0 Rte 3 NB SAbut at Shawsheen Install Bracing Rte 3 SB SAbut at Shawsheen Install SOE
NONE SS 2 Rte 3 SB SAbut at Shawsheen Install SOE Rte 3 SB SAbut at Shawsheen Install Bracing

FS 0 Rte 3 NB SAbut at Shawsheen Excavate SS I Rte 3 SB SAbut at Shawsheen Install Bracing Rte 3 SB SAbut at Shawsheen Excavate
FTS 0 Shawsheen PHI Fab/Del Rebar FS 0 Rte 3 SB NAbut at Shawsheen Excavate Rte 3 NB NAbut Constr F/Lane over Shaws een

NONE FS 0 Rte 3 NB NAbut Constr F/Lane over Shawsheen Rte 3 SB NAbut Constr F/Lane over Shawsheen
FS 0 Shawsheen PH2 Sub/Appr SOE Plans FS 0 Shawsheen PHI Fab/Del Sheeting & Bracing Shawsheen PH2 Fab/Del Sheeting & Bracing
FS 0 Rte 3 SB SAbut at Shawsheen Excavate FS 0 Rte 3 SB NAbut Constr F/Lane over Shawsheen Rte 3 NB SAbut Constr F/Lane over Shawsheen

NONE FS 0 Shawsheen PHI Sub/Appr BPads Shawsheen PHI Fab/Del BPads
NONE FS 0 Shawsheen PHI Sub/Appr Struct Steel Shawsheen PHI Fab/Del Struct Steel
NONE FS 0 Shawsheen PH2 Sub/Appr BPads Shawsheen PH2 Fab/Del BPads
NONE FS 0 Shawsheen PH2 Sub/Appr Struct Steel Shawsheen PH2 Fab/Del Struct Steel
NONE FS 0 Rte 3 NB SAbut Constr F/Lane over Shawsheen Rte 3 SB SAbut Constr F/Lane over Shawsheen

FS 0 Shawsheen PHI Fab/Del BPads FS 0 Rte 3 SB SAbut Constr F/Lane over Shawsheen Rte 3 NB Bridge Constr F/Lane over Shawsheen
FS 0 Shawsheen PHI Fab/Del Struct Steel
FS 0 Rte 3 SB NAbut Constr F/Lane over Shawsheen FS 0 Rte 3 NB Bridge Constr F/Lane over Shawsheen Rte 3 SB Bridge Constr F/Lane over Shawsheen

NONE FS 0 Re 3 SB Bridge Constr F/Lane over Shawsheen Rte 3 SB Bndge Shift Traffic to F/Lane
NONE FS 0 Rte 3 SB Bridge Constr F/Lane over Shawsheen Rte 3 NB Bridge Shift Traffic to F/Lane
NONE FS 0 Rte 3 NB Bridge Shift Traffic to F/Lane Rte 3 NB Bridge Demo S/Lane over Shawsheen

FS 0 Rte 3 SB Bridge Shift Traffic to F/Lane FS 0 Rte 3 NB Bridge Demo S/Lane over Shawsheen Rie 3 SB Bridge Demo S/Lane over Shawsheen
FS 0 Shawsheen PH2 Fab/Del Sheeting & Bracing FS 0 Rte 3 SB Bridge Demo S/Lane over Shawsheen Rte 3 NB NAbut at Shawsheen Install SOE

NONE SS 2 Rte 3 NB NAbut at Shawsheen Install SOE Rte 3 NB NAbut at Shawsheen Install Bracing

NONE I Rte 3 NB NAbut at Shawsheen Install Bracing Re 3 NB NAbut at Shawsheen Excavate
NONE S 0 Rte 3 NB NAbut at Shawsheen Install Bracing Rte 3 SB NAbut at Shawsheen Install SOE
NONE S 2 Rte 3 SB NAbut at Shawsheen Install SOE Rte 3 SB NAbut at Shawsheen Install Bracing

FS 0 Rte 3 NB NA but at Shawsheen Excavate SS I Rte 3 SB NAbut at Shawsheen Install Bracing Rte 3 SB NAbut at Shawsheen Excavate
NONE FS 0 Rte 3 SB NAbut at Shawsheen Install Bracing Rte 3 NB SAbut at Shawsheen Install SOE
NONE SS 2 Rte 3 NB SAbut at Shawsheen Install SOE Rte 3 NB SAbut at Shawsheen Install Bracing

FS 0 Rte 3 SB NAbut at Shawsheen Excavate SS I Rte 3 NB SAbut at Shawsheen Install Bracing Rte 3 NB SAbut at Shawsheen Excavate
NONE FS 0 Rte 3 NB SAbut at Shawsheen Install Bracing Rte 3 SB SAbut at Shawsheen Install SOE
NONE SS 2 Rte 3 SB SAbut at Shawsheen Install SOE Rte 3 SB SAbut at Shawsheen Install Bracing

FS 0 Rte 3 NB SAbut at Shawsheen Excavate SS I Rte 3 SB SAbut at Shawsheen Install Bracing Rte 3 SB SAbut at Shawsheen Excavate
FS 0 Shawsheen PH2 Fab/Del Rebar FT 0 Rte 3 SB NAbut at Shawsheen Excavate Rte 3 NB NAbut Constr S/Lane over Shawsheen

NONE FS 0 Rte 3 NB NAbut Constr S/Lane over Shawsheen Rte 3 SB NAbut Constr S/Lane over Shawsheen
FS 0 Rte 3 SB SAbut at Shawsheen Excavate FS 0 Rie 3 SB NAbut Constr S/Lane over Shawsheen Rte 3 NB SAbut Constr S/Lane over Shawsheen

NONE FS 0 Rte 3 NB SAbut Constr S/Lane over Shawsheen Rte 3 SB SAbut Constr S/Lane over Shawsheen
FS 0 Shawsheen PH2 Fab/Del BPads FTS 0 Rte 3 SB SAbut Constr S/Lane over Shawsheen Rte 3 NB Bridge Constr S/Lane over Shawsheen
FS 0 Shawsheen PH2 Fab/Del Struct Steel

NONE FS T Rte 3 NB Bridge Constr S/Lane over Shawsheen Rte 3 NB Brdg over Shawsheen Open All Lanes
FS 0 Rte 3 SB NAbut Constr S/Lane over Shawsheen FS 0 Rte 3 NB Bridge Constr S/Lane over Shawsheen Rte 3 SB Bridge Constr S/Lane over Shawsheen

NONE FS 0 Rte 3 SB Bridge Constr S/Lane over Shawsheen Rte 3 SB Brdg over Shawsheen Open All Lanes
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The cost of this bridge in the bid estimate is approximately $3 million with more than half

in the Permanent Materials cost category.

6.3.2 Treble Cove Bridge - Overpass Bridge Case Study

The existing overpass bridge is located in Billerica with Route 3 on- and off-ramps located

to the north of the overpass bridge. Figure 35 is a project photo taken by the MCC Team of the

existing bridge.

Figure 35: Photo of Existing Treble Cove Bridge [compliments of the MCC Team]
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The scope of work is representative of the ten overpass bridge relocations within this

contract. This particular bridge will not only be relocated to the north of the existing bridge, but

widened as well. Figure 36 is a snapshot of the design drawing in plan view.

PROPOSED BRIDGE RELOCATION AND

408

PROPOSED RETAINING WALL

Figure 36: Plan View of Treble Cove Road Bridge Relocation (NTS)

BILLERICA

If

Figure 37 is a schedule fragnet specific to the Treble Cove Road Bridge relocation. The

overall fragnet planned duration from right-of-way activities through construction spans the time

period between August 30, 2000 and July 2, 2003.

As the schedule fragnet indicates, MHD right-of-way activities are predecessor activities to

MCC design development that are predecessor activities to MCC on-location construction

activities. While the MHD right-of-way activities have float values outside the 'critical band',

the design and construction activities reside within this 'critical band'.
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Activity Orig Early Early Total
Description Our Start Finish Float

rOW- -MRHreiwS1Ti#eCow r 103riA00 132R0EPOO W
W - MHD I 0A NI Trebli Cm Rd 10 3AUG0 13EPOO 3 7

PFW- Legaloeflo0 Tulle Co Pd ; I11EP03 2EPC0 3r

Row-LegalDeom NTrebleCam PC] 5 ICEPW sEPC 3 7
r~oW-.aprabaI P Trebe m 10 21SEP03 0100TD 347

ROW- AMralalN6 TTebl Cow Rd 10 21$EPD 0400T0 3c

POW- MalD Aqrdp ErebleCow Pd IS 0&:-C000 30C103 3r,
ROW- M HDAqI APi44MrNB TebICO Rd 1U O-CTOD 3012TW 3c

Trebl COW RdBrt e UmlETetPit 32030300 20CT03 103
POW- laidArqs1 ProtITie CoceRd 027C03 AMAR01 3r

ROW - maidAA ul Pio NI Trele Cow Rd W 270CT03 07MAR01 W

Trelek Cow Rd (kj Olet Plait 21 FE60t 27MAR01 I
Trfir Cow Rd P11 Al01A Plait 1H1 Rlew A 20MAR01 OAPROI 82
TINAl Ccw Rd 6lrj I00% PIsR t2 20MAR0I 31MAY01 tO

wUAPRv 112AP01 I 2
Trebb Co Rd K 100% Plas MHD Revle OlJtt0l 11JUN51 57

Trebe Cow Rd rtKkj 103% PaitC RM 4 12JUN01 rWUNOi r7

TIeA Cow Rd 5IM Flal Plabs MHD ApIM 6 20JUN01 27JUN01 r

TICbU C* Rd IkleJ# DelJi 3CE Pait 10 3JUN01 120JUL 51
Trebl CoM Rdtrkkeje 0vAMprl Pak 30 20JUN01 000001 r,

Trebe Cow Rd i6f kkje CSIXAWICtu'tteel 0 32JUN01 0UG01 r

Treble Cow Rd irkeje Seh;lvAr Rebar 30 MJUNOI 0AUG01 
TreAl.o7w Rd rleje ZebAppiCOE Plit 30 13UULI 12UG01 51
Trebe Cow Ad Brkkje RD+ Rera 60 100G01 0111001I
Treb COW Rd Brkolee fArDel PatA 10 IAUG01 21JANC r

Trebe COW RdBrkte Ft eitscO$l 13 10AUG01 2JAN0 r

TielA ow Rd brkget faIeIheeti brace 1S 21AUGO ':x.CTOI 51
Trebb Cow Pd lirkej EbtbtcOpIlrloie 10 0TO I 21OCT0j 1
Treb Cow Rd irkte Eit lbi Oel)E 10 3X-CT0 I3NOVU I 9

Treb Cow Rd Irkele k tb 1epAb::ee r0 W 0TO I .13NOV I 49
Tirle Cow d BRrler ElitErcar 10 021,Q1 1N0'4 I 9

Trebl Cow Rd rleeWAboglsomIDfE 10 I9NbYOl 27NOv01
T~rl Cow Rdl rktte'ALeb Emala* 10 19NOV1 00N40 19
Tieb Cow RdhiKkjeCebr Pel~ikIuI0E 10 20NOVI 1 01 49
TiebblCow Rdli I lkeeCe br PbI Erma 10 03DE01 140201

05DED 01 12DEC01 1 10
Tiebr Cow Rd5l Kkje CLi tictNeeVAit IS 27DC01 17JAN0 a,
Tiebb Cow Rd5rlje CoitICteNew-2 P*r 15 118JAN T FESE1 A
Trlbb Cow Rd Vrkkje No%3eA b Retbsose I 05APR02 05APR 0

TIrl Cow Rdlrl eoosticegetsoe 25 OWARC2 09MAT C.
TrebA Cow Rd Ireleje elTeepoie Cirle 00 05MAv2 2AUG02 1
Treb Cow Rd51"ko Rekcz*Ga Mee IS 10MAr02 30MAYD2 0
Trebe CC Rdirkej Reboa*b lbr Lse 10 31MAr02 0JUN02 0
TWArl Cow Rd t kkje iIIIllTelelboie 0 IS 21JUN2 12JULC 0
Tebe Cow Rdirkkje Prealje Treble CowRd 10 10ULCC 26JUL 2

Treble Cow Rd rrkkje Rialkji RN 3N 0 2anp0 20WUL02 23AUG02 a
TiteI Cow Rd irkeje Realti RN 3C4 Panps 3 AUG02 2EP2 0
Teb- Cow Rd brlkje SItTlawt New Brk13 I 22EPG12 2EP0C 0
Treble OW Rd rkkjte Demo E1tibg CU Cpai 10 21SEP02 02OCT0 2 1
Treb Co Ped rkkje Desmo etig EAbOI 0 5JUO3 IUN03 30

0I 2002

OW M D Survey S B Tre re Cove Rd
OW NE) Survey NB Treble Cove Rd
OW- liegal Dez S Treile Cove lMd

'OW - Legal Dese NE Trelple Cove Rd
ROW-pprisa S TreeCovet d

ROW- praisa NB Trete Cove Ed
7ROW- MHD Appr Apprpls SE Trpble Covo Rd
7RNO . MHD Apr Apprils NB Treble Coot Rd

Treble Cove Rd Bridg Utillty Test Pit
-yROW- Lard_ ...u...Pro...Treb.eCo.e Rd

E7 ROW - Lahd Acqudn Proc NB Treble: Cove Rd
Treble tove Rd brdg Skel h Plans:

6 Treble|Cove Rd Brdg Sk tch Planf MHD Rqoiew
ZZ Tteble Code Rd Br g 100% Pians

Treble Cove Rd Brdo Ukgth Plans CRM
& reble Cqve Rd Brdg 100% Plans MHD Reoie

Treble Cove Rd 8dg 100% Plans CR1M
Treble Cove Rd Brdg Finai Plans MIHD Appr >v

A7 Treble Cove Rd Bridge Design S9E Plans
Sede Cove RdBr d E.SA/ BPa;df

Trele Cove Rd Bridoe Sub/Appr Struct SleeI
Z Treble Cove Rd Bridge Sub/Appr Rebar
a Treble Cove Rd Bridge Sub/Jppr SUE Plans

aldU Treble Cove Rd Bridge Fab/Del Rebar
Treble Cove Rd Brid Fab/Del BPads

MEM33 Tretile Cove Rd Bridgi Fab/Del Strucrt Steel
Treble Cove Rd Bridgi Fab/Del Sheet & Erace

:Zg Treble Cove ltd Bridgq EAbut Splup Worzone

S Trebie Cove Rd Bridbe EAbut )nstall S E
i Rd BrTide WAbid etu ... kko.nR ... .

LVTrtble Cov Rd Bridge EAbut;Excavatel
N Tdeble Code Rd Bridge WAbt Install 0E

V eble Co e Rd Bridge WAbeIt Excav e

57freble Cqve Rd Bidge Certer Pier Install SOE
A reble C oe Rd Etidce Cerlter Pier Ixcavate

Treble tove Rd bridge Construct New EAbut
Treble Cove RM Bridge Construct New W1but

Treble CoveIRd Bridge Construct New Ctr Pier
Treble Cove Rd Bridge Notify BA or Relocation

. Ur~e Cgov Rd Rn1e srrls up etruour
IME 7 Tteble Cove Rd Bridge Bell Telephone Cable
Treble Coce Rd Bri Ige Relsoate Gas Line

Treble Cove Rd qridge Relocate Weter Line
LS Treblt Cove Rd Bridge hstall Telephone SB

a TrVbove otd Bridg Reallgntreble Cave Rd
Treble Cool Rd Bridge Realign Rte 3 "B Ramp:

Treble Cove Rd Bh dge Relign Rte a SB Rar-lps

Treble Cove Rd Bridge Shift Traff to New ridge
Treble Cove Rd Bridge Demo Existing Ctr Span &

iTree Cove ltd BridgDemo E.i...g.E..... .

Figure 37: Treble Cove Road Bridge Schedule Fragnet - Start Date View
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For visual clarity, the above schedule fragnet has been condensed into several hammocks,

as shown in Figure 38.

Figure 38: Treble Cove Road Bridge Schedule Hammock Activities

Several schedule activities have calculated float values less than or equal to 5 workdays,

which should be characterized as on the critical path. These schedule activities are:

" Construct Superstructure * Realign Treble Cove Road
* Relocate Gas Line * Realign Rte 3 NB & SB Ramps
" Relocate Water Line * Shift Traffic to New Bridge
" Install Telephone Ductbank * Demo Existing Center Span

For our initial model inputs, the schedule fragnet for Treble Cove Road Bridge was

isolated from the rest of the project schedule. What remained within the schedule fragnet are the

interdependent activity ties placed by the project scheduler for the execution of the scope of

work. Table 9 captures these interdependent activities ties, which originated from the as-planned

P3 project schedule.
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Schedule Activities 1Q 2 13Q 4Q 1Q 2Q sQ 40 IQ 2Q13Q Q IQ12QI

Overall Bridge Fragnet
30AUGOO - 02JUL03

ROW Activities (MHD)

30AUG00 - 07MAR01

a a aa II I I I I I

Design Activities

27FEB01 - 27JUN01

Shop Drawing Activities

28JUN01 - 23AUG01
a a I I

Procurement Activities

10AUG01 - 29JAN02

Construction Activities

160CT01 - 02JUL03
a a a a a i a a a I I I

2000 2001 2002 2003
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Table 9: Treble Cove Road Bridge Schedule Fragnet Activity Relationships

Rel Lag Non-Driving Predecessors Rel Lag Driving Predecessors PRIMARY ACTIVITY
I F- BRIDGE RELOCATION

NONE NONE Treble Cove Rd Bridge Utility Test Pit
NONE NONE Treble Cove Rd Bridge EAbut Setup Workzone
NONE NONE Treble Cove Rd Bridge Demo Existing EAbut
NONE FS 0 Treble Cove Rd Bridge EAbut Setup Workzone Treble Cove Rd Bridge WAbut Setup Workzone

NONE FS 0 Treble Cove Rd Bridge Demo Existing EAbut Treble Cove Rd Bridge Demo Existing WAbut
NONE FS 0 Treble Cove Rd Brdg Final Plans MHD Approve Treble Cove Rd Bridge Design SOE Plans

NONE FS 0 Treble Cove Rd Brdg Final Plans MHD Approve Treble Cove Rd Bridge Sub/Appr Rebar

NONE FS 0 Treble Cove Rd Brdg Final Plans MHD Approve Treble Cove Rd Bridge Sub/Appr BPads

NONE FS 0 Treble Cove Rd Brdg Final Plans MHD Approve Treble Cove Rd Bridge Sub/Appr Struct Steel

NONE FS 0 Treble Cove Rd Brdg Final Plans MHD Approve Treble Cove Rd Bridge Sub/Appr SOE Plans

NONE FS 0 Treble Cove Rd Bridge Sub/Appr SOE Plans Treble Cove Rd Bridge Fab/Del Sheet & Brace
NONE FS 0 Treble Cove Rd Bridge Sub/Appr Rebar Treble Cove Rd Bridge Fab/Del Rebar

FS 0 Treble Cove Rd Bridge EAbut Setup Workzone FS 0 Treble Cove Rd Bridge Fab/Del Sheet & Brace Treble Cove Rd Bridge EAbut Install SOE

NONE SS 3 Treble Cove Rd Bridge EAbut Install SOE Treble Cove Rd Bridge EAbut Excavate

FS 0 Treble Cove Rd Bridge WAbut Setup Workzone FS 0 Treble Cove Rd Bridge EAbut Install SOE Treble Cove Rd Bridge WAbut Install SOE

NONE SS 3 Treble Cove Rd Bridge WAbut Install SOE Treble Cove Rd Bridge WAbut Excavate
FS 0 Treble Cove Rd Bridge EAbut Excavate

FS 0 Treble Cove Rd Bridge EAbut Install SOE FS 0 Treble Cove Rd Bridge EAbut Excavate Treble Cove Rd Bridge Construct New EAbut

FS 0 Treble Cove Rd Bridge Fab/Del Rebar
NONE FS 0 Treble Cove Rd Bridge WAbut Install SOE Treble Cove Rd Bridge Center Pier Install SOE
NONE SS 3 Treble Cove Rd Bridge Center Pier Install SOE Treble Cove Rd Bridge Center Pier Excavate

FS 0 Treble Cove Rd Bridge WAbut Excavate
FS 0 Treble Cove Rd Bridge WAbut Install SOE FS 0 Treble Cove Rd Bridge Construct New EAbut Treble Cove Rd Bridge Construct New WAbut

FS 0 Treble Cove Rd Bridge WAbut Excavate
FS 0 Treble Cove Rd Bridge Center Pier Install SOE FS 0 Treble Cove Rd Bridge Construct New WAbut Treble Cove Rd Bridge Construct New Ctr Pier
FS 0 Treble Cove Rd Bridge Center Pier Excavate I

NONE FS 0 Treble Cove Rd Bridge Sub/Appr BPads Treble Cove Rd Bridge Fab/Del BPads

NONE FS 0 Treble Cove Rd Bridge Sub/Appr Struct Steel Treble Cove Rd Bridge Fab/Del Struct Steel

FS 0 Treble Cove Rd Bridge Construct New EAbut FS 0 Treble Cove Rd Bridge Fall/Del BPads Treble Cove Rd Bridge Construct Superstructure

FS 0 Treble Cove Rd Bridge Construct New WAbut FS 0 Treble Cove Rd Bridge Fab/Del Struct Steel
FS 0 Treble Cove Rd Bridge Construct New Ctr Pier
FS 0 Treble Cove Rd Brdg Final Plans MHD Approve SS 0 Treble Cove Rd Bridge Construct Superstructure Treble Cove Rd Bridge Notify BA for Relocation

FS 0 Treble Cove Rd Bridge Utility Test Pit FS 0 Treble Cove Rd Bridge Construct Superstructure Treble Cove Rd Bridge Relocate Gas Line

NONE FS 0 Treble Cove Rd Bridge Relocate Gas Line Treble Cove Rd Bridge Relocate Water Line

FS 0 Treble Cove Rd Bridge Construct Superstructure FS 0 Treble Cove Rd Bridge Relocate Water Line Treble Cove Rd Bridge Install Telephone DB

FS 0 ROW - Land Acqustn Proc SB Treble Cove Rd FS 0 Treble Cove Rd Bridge Install Telephone DB Treble Cove Rd Bridge Realign Treble Cove Rd
FS 0 ROW - Land Acqustn Proc NB Treble Cove Rd
FS 0 Treble Cove Rd Bridge Construct Superstructure
FS 0 Treble Cove Rd Bridge Relocate Water Line

NONE FS 0 Treble Cove Rd Bridge Realign Treble Cove Rd Treble Cove Rd Bridge Realign Rte 3 NB Ramps
FF 15 Treble Cove Rd Bridge Install Telephone DB FS 20 Treble Cove Rd Bridge Notify BA for Relocation Treble Cove Rd Bridge Bell Telephone Cable
FS 0 Treble Cove Rd Bridge Realign Treble Cove Rd FS 0 Treble Cove Rd Bridge Realign Rte 3 NB Ramps Treble Cove Rd Bridge Realign Rte 3 SB Ramps

FS 0 Treble Cove Rd Bridge Construct Superstructure FS 0 Treble Cove Rd Bridge Realign Rte 3 SB Ramps Treble Cove Rd Bridge Shift Traff to New Bridge

FS 0 Treble Cove Rd Bridge Bell Telephone Cable
NONE FS 0 Treble Cove Rd Bridge Shift Traff to New Bridge Treble Cove Rd Bridge Demo Existing Ctr Span
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For DPM model input variables and parameters, the schedule activities were assessed to

distinguish their production rate types, the reliability of the production results, and the sensitivity

of the interdependent schedule activities. From this assessment, a preliminary overlapping

framework was developed based on the characteristic of the activity interdependency. This

information was then transferred to the current DPM model and simulation runs were conducted

and compared to the non-simulated results, in particular, the duration of time to complete the

work.

Since the simulation results can be no better than the data entered, the next step in the

research is to understand the process between estimated productivities used to develop the bid

price, how this translates to the as-planned schedule, and the thought process in applying

contingencies for unforeseen circumstances throughout this process. The research may uncover

fatal flaws in the transfer of information upon which the project team relies or that the multiple

process iterations produce a tool modified greatly from the original plan.

The cost of this bridge in the bid estimate is slightly more than the Shawsheen River

Bridge with a higher percentage of the overall cost in the Permanent Materials cost category.

6.4 TREBLE COVE BRIDGE MODEL INPUT ELICITATION EXERCISE

Figure 39 presents the initial questionnaire prepared as a framework for eliciting model

inputs in a systematic manner. Prior to our initial questionnaire presentation, a mock trial was

preformed to better understand how the audience might react to the questionnaire format. From

the questionnaire, the following matrix, Table 10, summarizes and illustrates the range of

answers elicited when the questionnaire was used as a framework, but the test subject was given

the liberty of answering the questionnaire as it seemed fit. At the conclusion of this exercise, the

questionnaire was modified in an attempt to better frame the desired elicitations. The revised

questionnaire, presented at the January 26, 2001 meeting with MCC, is presented in Figure 40.
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DPM MODEL INPUT ELICITATION QUESTIONNAIRE

Qi: How susceptible is this activity to change, both owner-initiated and changed field
conditions? If a change occurs, how far will this ripple through the schedule?

Q2: What is the degree of confidence that this schedule activity will be done correctly the first
time? What is the mechanism to verify its accuracy? Name factors that could contribute
to poor workmanship?

Q3: If its predecessor activity was changed from the original plan, how will this activity be
affected?

Q4: If its predecessor activity was done incorrectly, how will this activity be affected?

Q5: Name factors that would create high productivity; Name factors that would create low
productivity. What factors are most likely to be encountered?

Q6: Are the results/benefits of this activity observed instantaneously, near the start of the
activity, near the end of the activity?

Q7: Would an additional labor crew double the expected productivity? Do you expect labor
shortage problems?

Q8: Given a changed field condition, will redesign be necessary? Will an owner-directive be
necessary? What kind of documentation of the change is necessary? Could work progress
in the field uninhibited by the change? Will a corrective action plan be drafted and
reviewed? Will traffic management plans need revision? Will community notification be
necessary? Could change require revised equipment and labor resource needs? Could
additional procurement be necessary?

GENERAL QUESTIONS

QA: How much liberty is given to the MCC Team to control work and impacts without owner
involvement? What could the weak link be to rapid decision-making?

QB: What is the expected level of cooperation with local utility companies? How flexible is
the procedure for utility relocations, if changes in the field are encountered? If utility
redesign becomes necessary, what will the utility companies require?

QC: What known schedule contingencies are in place?

QD: Discuss ideal staggering/staging of work. When does the overlap of work become
impossible?

Figure 39: Original Model Input Elicitation Questionnaire
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Table 10: Sample Questionnaire Elicitations Responses to Questions for Installation of Support of Excavation (SOE)

Expected to Address Actually Addressed
Original Question Production Reliability Sensitivity Sample Answers Production Reliability Sensitivity

Type Type
Qi: How susceptible is this Activity susceptible to delay/impacts if unexpected boulders/obstructions

activity to change, both (likely) or unknown active utilities (unlikely) encountered while driving
owner-initiated and changed SOE. Successor activity (excavate) cannot start until SOE activity complete.
field conditions? If a Ripple contained to this activity. Given impenetratable obstructions, damage
change occurs, how far will to sheet piling may occur. Additional probe drilling may be required.
this ripple through the Additional grouting (to stop water penetration) or jack hammering (for
schedule? obstruction removal) may be necessary.

Q2: What is the degree of Would listen for telltale signs when obstructions were hit and when to stop
confidence that this driving the piling. Wouldn't necessarily rely on design calculations; field
schedule activity will be personnel would more likely go with own experience and gut feel than what
done correctly the first the engineer had designed. Under ideal soil conditions (with minimal
time? What is the obstructions) expect activity to be performed efficiently and without the
mechanism to verify its necessity for removing partially driven sheet pile, replacing new sheet pile,
accuracy? Name factors and re-driving. Would be concerned if pile driving near old masonry
that could contribute to poor structures; structural integrity could be compromised by driving or vibrating
workmanship? activity. Accuracy verified by field survey. Potential poor workmanship if

SOE is made of poor quality material, recycled from previous job,
mishandled during offloading (crimping edges with choker) or flying the
piling to its location, or damaged by hitting obstructions.

Q3: If its predecessor activity Several unexpected changes in a predecessor activity could occur:
was changed from the unexpected utility relocation, violation of environmental impact statement,
original plan, how will this violation of OSHA regulation, or roadway drainage revisions could delay the
activity be affected? start of this activity. An unexpected utility line hit would kick off a series of

unexpected activities: contract work stopped, confirm leak, repair leak, and
rethink coordination of utility with SOE and more importantly with bridge
abutment. If utility runs adjacent to one abutment, this abutment location
might need to be moved; could require revision to bridge girder length and
procurement. If utility runs between the two abutments, second abutment
could need revision.
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Expected to Address Actually Addressed
Original Question Production Reliability Sensitivity Sample Answers Production Reliability SensitivityType TypeQ4: If its predecessor activity SOE could be modified to accommodate errors by using different sheet pilewas done incorrectly, how size, changing the overall dimension, or changing SOE style (pile and laggingwill this activity be vs. sheet pile, or a hybrid mix-and-match). If pile and lagging option isaffected? exercised, lagging construction between the piles would run concurrently

with and making inefficient its successor activity, excavation, since
additional hand excavation might be necessary. If abutment formwork
intended to be supported by or field welded to SOE, SOE redesign may
require formwork attachment modifications as well. Don't expect that SOE
redesign will require PE stamp of approval; redesign can be performed on the
fly in the field. After driving complete, do not expect to need additional
surveying unless benchmarks for subsequent work are on the SOE, field
surveys will be required to monitor the benchmarks and verify that they are
not moving. If after installation moving vehicle or other large object strikes
SOE, field survey to verify integrity may be necessary.

Q5: Name factors that would High productivity - Sand/clay soil properties, no large obstructions,
create high productivity; minimum 4 foot offset from adjacent structures or physical constraints. LowName factors that would productivity - thick clay or gravel soil properties, boulders or large
create low productivity. impenetratable obstructions, less than 4 foot offset from adjacent structures orWhat factors are most likely physical constraints or a necessity to demolish an existing structure in theto be encountered? desired location of the SOE. Likely conditions are highly variable.

Q6: Are the results/benefits of SOE is only valuable when fully driven and able to support the design loads;this activity observed at the end of the activity.
instantaneously, near the
start of the activity, near the
end of the activity?

Q7: Would an additional labor No; productivity dictated more by the pile driving machinery and the givencrew double the expected soil conditions rather than by labor crew size. Yes; hard to find good laborproductivity? Do you pool.
expect labor shortage
problems?



Expected to Address Actually Addressed

Original Question Production Reliability Sensitivity Sample Answers Production Reliability Sensitivity
Type Type

Q8: Given a changed field Given large obstructions, redesign/modifications may be necessary, no
condition, will redesign be owner-directive required, all within MCC's risk/responsibility, corrective
necessary? Will an owner- action plan waived since work done on the fly. SOE modification required
directive be necessary? before any further work can proceed, impact on traffic management plan only
What kind of documentation if traffic shift delayed, no community notification necessary, no change out of
of the change is necessary? equipment expected, no labor crew change necessary, procurement of
Could work progress in the additional SOE material may be necessary.
field uninhibited by the
change? Will a corrective
action plan be drafted and
reviewed? Will traffic
management plans need
revision? Will community
notification be necessary?
Could change require
revised equipment and labor
resource needs? Could
additional procurement be
necessary?

QA: How much liberty is given
to the MCC Team to control
work and impacts without
owner involvement? What
could the weak link be to
rapid decision-making?

QB: What is the expected level
of cooperation with local
utility companies? How
flexible is the procedure for
utility relocations, if
changes in the field are
encountered? If utility
redesign becomes
necessary, what will the
utility companies require?

QC: What known schedule
contingencies are in place?

QD: Discuss ideal
staggering/staging of work.
When does overlap of work
become impossible?
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DPM MODEL INPUT ELICITATION QUESTIONNAIRE
(as of 26JAN01)

PREDECESSOR-RELATED QUESTIONS

Qi: What are task predecessors? Any related utility work?

Q2: What are necessary material deliveries? What are related shop drawing submittal
approvals?

Q3: What if a predecessor activity was changed from the original plan, how will this activity
be affected?

Q4: If its predecessor activity was done incorrectly, how will this activity be affected?

TASK SPECIFIC QUESTIONS

Q5: What are the labor and equipment needs? Are they readily available?

Q6: Is the task production instantaneously, completed near the start of the activity, completed
near the end of the activity, or generally linear?

Q7: Name factors that would create high productivity; Name factors that would create low
productivity. What factors are most likely to be encountered? What are the potential
weather impacts and their likely impact to the schedule?

Q8: Would an additional labor crew double the expected productivity? Do you expect labor
shortage problems?

Q9: What is the degree of confidence that this schedule activity will be done correctly the first
time? Name factors that could contribute to poor workmanship.

Q10: How susceptible is this activity to change, both owner-initiated and due to changed field
conditions? If a change occurs, how far will this change ripple through the schedule?

Q11: Given a changed field condition, will redesign be necessary? Will an owner-directive be
necessary? What kind of documentation of the change is necessary? Could work
progress in the field uninhibited by the change? Will a corrective action plan be drafted
and reviewed? Will traffic management plans need revision? Will community
notification be necessary? Could change require revised equipment and labor resource
needs? Could additional procurement be necessary?

Figure 40: Model Input Questionnaire used during January 26, 2001 Meeting
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During this meeting several functional bridge activities were discussed and summarized in

Figure 41. Figure 42 clarifies the model input values.

PRIMARY
ACTIVITY

Bid-Based

Duration
Production

Type Reliability Sensitivity Buffering

Bridge Abutment
Formwork
Erection

236 CH S-0.25 0.6 0.75 NA

Bridge Abutment S - 0.25 0.8 0.75 NA
contract

Rebar Installation

Bridge Abutment Not
Formwork Available
Closure

Bridge Abutment 12 CH - 1.0 0.8 0.75 NAConcrete
Placement

Bridge Abutment Not - 0.5 0.8 0 NAFormwork Available
Striping 1_ _1

Figure 41: Treble Cove Bridge Model Inputs - Meeting #1
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DPM MODEL INPUT GUIDE

l a: Production Type is based on a 5-point scaling system (1.0, 0.75, 0.50, 0.25, 0.0)

lb: In general, a fast production type is rated as 0.75, linear is 0.5, slow is 0.25, instantaneous
is 1.0, and job support or maintenance type activities over a fixed duration is 0.0

1c: If any activity completes in one shift, production type defaults to instantaneous

2a: Reliability is based on a 7-point scaling system (1.0, 0.8, 0.6, 0.5, 0.4, 0.2, 0.0)

2b: In general, highly reliable is rated 0.8, fairly reliable is 0.6, "flip-of-the-coin" is 0.5, fairly
unreliable is 0.4, highly unreliable is 0.2, "as-sure-as-a-rocke-blast" or "as-sure-as-a-
chemical-reaction" is 1.0, and "luck-of-the-lottery" is 0.0

3a: Sensitivity is based on a 5-point scaling system (1.0, 0.75, 0.50, 0.25, 0.0)

3b: In general, highly sensitive is rated as 0.75, sensitive is 0.5, insensitive is 0.25, absolutely
sensitive is 1.0, and absolutely insensitive is 0.0

4: The extreme values of the scaling system (1.0 and 0.0) are more appropriately valued at
0.95 and 0.05, respectively

5: Durations are based on days, derived from bid-based crew hours

6: Durations need to be able to factor in: Weather, Environment (business relationships,
locale, site specifics), Variable Productivity (optimistic, pessimistic, most likely)

Figure 42: Model Input Guide

In preparation for the follow-up meeting to complete the elicitation of model inputs for the

Treble Cove Bridge, the questionnaire was re-modified in an attempt to better frame the desired

elicitations. The revised questionnaire, presented at the February 16, 2001 meeting with MCC, is

presented in Figure 43.
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DPM MODEL INPUT ELICITATION QUESTIONNAIRE
(as of 16FEB01)

Qi: What is the expected production rate for this activity: slow and steady with a particular
inflection point when the rate will change, generally linear, quick out of the gate with
production tailing off at the end, or instantaneous? Given a non-linear production rate,
what key events modify the production rate?

Q2: What are the key drivers to increase productivity? What are key motivators, de-
motivators?

Q3: What key events/factors affect the ability to complete the task efficiently? What
events/factors contribute to inefficient task completion?

Q4: What is the likelihood that this scope of work will be completed error-free?

Q5: What is the likelihood that this scope of work will be affected by a change initiated by the
designer, by changed field conditions?

Q6: What are some common errors to predecessor scope of work? Can the error be absorbed
in the work in progress? Or, will the error initiate rework in predecessor scope of work or
modification of the work in progress, which will significantly impact the task duration?

Q7: What are some common changes to predecessor scope of work? Can the changes be
absorbed in the work in progress? Or, will the change initiate rework in predecessor
scope of work or modification of the work in progress, which will significantly impact the
task duration?

Q8: How would an error in this scope of work impact successor activities?

Q9: How would a change in this scope of work impact successor activities?

Q10: How would inclement weather impact this scope of work? How much schedule time
could typically be lost to inclement weather?

OVERALL MODEL INPUT PARAMETERS TO KEEP IN MIND

Labor availability, equipment availability, material availability

Figure 43: Model Input Questionnaire used during February 16, 2001 Meeting

During this meeting several functional bridge activities were discussed and summarized in

Figure 44.
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PRIMARY Bid-Based Production
ACTIVITY Duration Type Reliability Sensitivity Buffering

BRIDGE BRIDGE BRIDGE BRIDGE BRIDGE BRIDGE
RELOCATION RELOCATION RELOCATION RELOCATION RELOCATION RELOCATION

bstructure 6 CH L - 0.5 0.8 0.25 NA
Setup Workzone

bstructure 14 CH S - 0.25 0.8 0.25 NA
Install SOE

bstructure 44 CH S - 0.25 0.8 0.5 NA
Excavation

Bridge
Superstructure Subcontract L - 0.5 0.8 0.25 NAFab BPads &
Girders

Bridge Subcontract L - 0.5 0.8 0.5 NASuperstructure
Set Bearing Pads

Bridge
Superstructure 26 CH L - 0.5 0.8 0.5 NASet Bridge
Girders

Bridge
Superstructure 26 CH S - 0.25 0.8 0.5 NABolt-up
Diaphragms

Bridge
Superstructure 593 CH S - 0.25 0.8 0.25 NADeck
Construction

Realign Local 132 CH S - 0.25 0.6 0.5 NA
Road

Exit Bridge 18 CH S - 0.25 0.6 0.75 NA
Structures

Figure 44: Treble Cove Bridge Model Inputs - February 16, 2001 Meeting
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Table 11: Input Data for the Treble Cove Bridge Model [adapted from Park (2001)]

z

044

1 Sketch Plans 33 S HU IS 0
2 Final Plans 66 lss20 S HU S 1
3 ROW Acquisition 130 2 ss3 S R IS 0.25
4 Shop Drawing Submittals 35 2 F R S 1
5 Shop Drawing Review/BPads 30 4 S U IS 0.5
6 Shop Drawing Review/Struct Steel 30 4 S U IS 0.5
7 Shop Drawing Review/Rebar 30 4 S U IS 1
8 Shop Drawing Review/SOB Plans 30 4 S U IS 1
9 Steel Fabrication/Rebar 60 7ss5 S N S 0.75

10 Steel FabricationlBPads 120 5ss5 S N S 0.75
11 Steel Fabrication/Strutural Steel 120 6ss5 S N S 0.75
12 Steel Fabrication/Sheet & Brace 45 8ss5 S N S 0.75
13 Prepare Site for Abutment E/W 33 8 F R IS 0.25
14 Prepare Site for Center Pier 13 12 S R IS 0
15 ConstructAbutmentE/W 30 13fs2 S N S 0.5
16 Construct Center Pier 15 15 S N IS 0
17 Set BPads and Girders 5 10 S N IS 0.5
18 Construct Superstructure 20 17 S N IS 0
19 Bell Telephone Cable 80 17ssO S U IS 0.75
20 Relocate Gas Line 15 18 S U S 0.5
21 Relocate Water Line 15 20 S U S 1
22 Install Telephone DB 15 21 S U S 1
23 Realign Treble Cove Rd 10 22 S R S 1
24 Realign Rte 3 NB Ramps 20 23 F R S 1
25 Realign Rte 3 SB Ramps 20 24 F R S 0.75
26 Demolish Existing Ctr Span 10 25 S R IS 0.75
27 Demolish Existing EAbut 10 26 S R IS 0
28 Demolish Existing WAbut 10 27 S R IS 0

* Note

1. Default Precedence Relationship: FSO
2. Genral Convention for Precedence Relationship: preceding activity- type- lead/lag
3. Production Type: F(Fast), S(Slow)
4. Reliability: R(Reliable), N(Normal), U(Unreliable), HU(Highly Unreliable)
5. Sensitivity: S(Sensitive), N(Normal), IS(Insensitive)
6. Effective Buffering Ratio: The buffering ratio of individual activities

that can create the best schedule for the case project
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6.5 TREBLE COVE BRIDGE MODEL INPUTS TO DPM

The knowledge gained through the meetings with contractor was summarized in matrix

format (see Table 11) prior to insertion to the DPM, specifically through the population of the

smart cells through the web-based portal. Figure 45 is a close-up of the DSM specific for the

Treble Cove Bridge model inputs translated from the Table 11 matrix.

DSM epreentaionCreate Smart Cells forDSM Representation ,*e' Cs r
Possible Rework

Create Smart
- . - Cells

Representing
Precedence

Add Data on Relationships
Reliability & and Sensitivity

- T III to Errors
Production Z
Types

-- - - * Note
1.Assumptions made for some

- of the data
7H 2. R: Reliable, U:Unrellable

3. S: slow production, F:ast

.r . .. + + production

Figure 45: DSM Representation of Treble Cove Model Inputs [adapted from Park (2001)]

6.6 TREBLE COVE BRIDGE MODEL SIMULATION RESULTS

Figure 46 is the graphical layout of the work activities for the Treble Cove Bridge adapted

from the construction schedule developed by the contractor utilizing P3, a common

commercially available scheduling software application. Figure 47 is the construction schedule

generated by DPM using the same source information as P3 supplemented by the information

elicited from the interviews with the contractor.
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Activiy
Description

r M 'n2II J I J I A I S 1 0 1 N 1 0 1 J I F I M I A I M I J I J I A I S 1 0 1 N I 0 I J I F I M I A I M1 Sketch Plans 33 Sketch Pla
2 Final Plans 66 Findl Plails
3 ROW Acquisition 130 ROW Acquisiti n
4 Shop Drawing Submittals 35 Ohop rawipg Sibm it@1s
5 Shop Drawing ReviewJBPads 30 Shop Drewing liewiDPads
6 Shop Drawing Review/Struct 30 Shop Drawing Zview/Struct St eel
6 Shop Drawing Review/SOE 30 Shob DraWing evielw/SOE Plans
7 Shop Drawing Review)Rebar 30 Shcp DrAwing ieWbRebar

10 Steel FabricationJBPads 120 Steel F ibricektionfiSPads
11 Steel Fabrication/Strutural Steel 120 SeeI F brica ion/ rutual Stqel
9 Steel FabricationARebar 60 Oteel abrioationeba r

12 Steel Fabrication/Sheet & 45 Steel Fab ication/Sheet & I )race
13 Prepare Site for Abutment EAW 33 Prepai e Sitd for Abutff ent EM
14 Prepare Site for Center Pier 13 7W Prepai e Site for Centei Pier
15 Construct Abutment ENV 30 Corjstruqt Abu tment EW
16 Construct Center Pier 15 :Construct :entEr Pier
17 Set BPads and Girders 5 et B ads and Girderj
19 Bell Telephone Cable 80 Bel Tele hone Cabi
1s Construct Superstructure 20 onstfuct Skuper 1ructuire
20 Reloc Gas ine 1Relocate Gas Line
21 Relocate Water Line 15 A* Relqcate I VaterLine
22 Install Telephone D 15 1stall Telep hon DOB
23 Realign Treble Cove Rd 10 Re lign Treble Cov Rd
24 Realign Rte 3 NB Ramps 20 Realign Rke 3 H Rarrps
25 Realign Rte 3 SB Ramps 20 

Realign 3 SS Rarrips26 Demolish Existing Ctr Span
Demolish Existing EAbut

10
10

A D molii
Dem

De- - - - - -it

Figure 46: Primavera-Generated Activity Durations [adapted from Park (2001)]
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Figure 47: DPM-Generated Schedule for Treble Cove Bridge [adapted from Park (2001)]
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Figure 48 is a snapshot of a DPM sample simulation graphical output comparing the

change in value of several model variables across the time horizon used in the model. The base

project progress without reliability buffering (blue cumulative line) is provided for comparison

purposes against the project progress curve utilizing reliability buffering (bold red cumulative

line). In addition, the variables for "Remaining Pool Buffer Ratio" and "Workforce Utilization"

have been graphed along with the progress curves. In this snapshot the "Remaining Pool Buffer

Ratio" is the graph that steps down across time and the "Workforce Utilization" has a lot of

variability across time, generally decreasing across time.

Effectiveness of Reliabilitv Buffering

Reliability Buffering for Treble Cove Rd Bridge

1

0.75

0.5

0.25

0
0 30 60 9

ProjectProgress: base
ProjectProgress :mygas
WorkforceUtilizationR
RemainwngPoolBufferRat

0 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 600
Time (Day)

Dmnl

: mym -- @ Dnuil 3 3
0 mygame ---,-- 4-- Dmnn

k~r Ir4LILA .. I Ipl1 .. 4-si-OP 51 --,-~. It 04-b~-4 : * '

Figure 48: Sample Simulation Run Graphical Output [adapted from Park (2001)]

Figure 49 is a snapshot of the DPM results in a tabular format. This format includes the

start time and finish time for each schedule activity along with the summary of the quantity of

reliability buffer and the activity duration.
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liabilit Buffer

Figure 49: Tabular Result of Treble Cove Model Simulation [adapted from Park (2001)]

6.7 SHAWSHEEN RIVER BRIDGE MODEL INPUTS TO DPM

Extrapolating the model inputs from the Treble Cove Model as appropriate, the model

inputs for the Shawsheen River Bridge Model would be as illustrated in Figure 50.

120



PRIMARY Bid-Based Production
ACTIVITY Duration Type Reliability Sensitivity Buffering

Demolition of Fast
Lane on Existing
Bridge

20 CH S - 0.25 0.6 0.75 NA

Bridge 30 CH S - 0.25 0.8 0.5 NA
Substructure
Install SQE

Bridge 28 CH S - 0.25 0.6 0.75 NA
Substructure
Excavation

Bridge
Substructure 153 CH S - 0.25 0.8 0.5 NA
Construct Bridge
Abutments

Bridge
Superstructure 1000 CH L - 0.5 0.8 0.25 NA
Fast Lane
Construction

Traffic Switch to
Newly- 32 CH L - 0.5 0.8 0.25 NA
Constructed Fast
Lane

Demolition of 20 CH S - 0.25 0.6 0.75 NA
Slow Lane on
Existing Bridge

Bridge 30 CH S-0.25 0.8 0.5 NA
Substructure
Install SQE _______ _______ _______ _______ _______

Bridge 28 CH S - 0.25 0.6 0.75 NA
Substructure
Excavation________

Bridge
Substructure 153 CH S - 0.25 0.8 0.5 NA
Construct Bridge
Abutments

Bridge
Superstructure 1000 CH L - 0.5 0.8 0.25 NA
Slow Lane
Construction

Figure 50: Shawsheen River Bridge Model Inputs from Extrapolation
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6.8 SHAWSHEEN RIVER BRIDGE MODEL SIMULATION RESULTS

Simulation results for the Shawsheen River Model were not developed within this thesis.

The author welcomes a follow-up from an eager student to execute the model inputs to generate

the simulation results.
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CHAPTER 7

TRANSITION OF THE
METHODOLOGY FROM
RESEARCH TO PRACTICAL
APPLICATION

This chapter outlines the efforts to date by the research team to transition this research to

practical applications in the construction industry. Why does the research team endeavor to

transition the technology from research to practical applications? It is the firm belief of the

research team that the construction industry lacks the tool that we endeavor to create to properly

control and manage the execution of large-scale projects. It is through our efforts that the

industry will have access to this advanced project management tool that will provide meaningful

decision-supporting results, which in turn will lead to more profitable projects.

7.1 INCORPORATING PROJECT DATA INTO THE MODEL

Over several progress meetings with the case study contractor, the research team has

collected project data resident in existing software systems as well as project data that currently

reside with the individuals tasked to execute the project. This data has been incorporated in the

model as appropriate. These meetings are a litmus paper with respect to the level of effort

needed to extract the project data required by the DPM model. At this time, it does not appear

123



that the existing project management process was compromised by the research teams

involvement to extract the project data.

7.2 MODEL CALIBRATION TO ACTUAL PERFORMANCE

At this point in the research, the model has not yet been calibrated against actual data and

performance. The project data entered is for future construction work that has yet to commence

in actuality. The research team has been provided project data of actual work performed, but the

research team has not yet incorporated this data into the model. Model calibration is

forthcoming. It is anticipated that the calibration will be in two forms: calibration of table

functions and calibration of model algorithms.

At this time the model algorithms weigh the contribution of model variables to a single

model variable in a mathematically specified matter. In other words, several variables contribute

to the behavior of another single variable, but the weighting of the individual contributions to the

model variable has not been fully tested. In order to ensure the model accurately replicates past

performance, calibration of both table functions and model algorithms are still required.

7.3 MODEL CALIBRATION TO ENSURE REASONABLE FORECASTS

Model calibration serves two purposes: first, validation that actual performance can be

replicated and second, that these algorithms can with reasonable expectations accurately and

reliably forecast future performance. Calibration to actual performance increases reliability on

future projections, given reasonable expectations that not every future event can be planned or

anticipated. Given that the model has not yet been calibrated to actual performance, the current

model outputs of performance projections should be evaluated in terms of broad, general

expectations.
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7.4 DISCLOSING THE TECHNOLOGY

At this time the technology developed by the research team has been disclosed for

purposes of filing a technology patent. The disclosure of the technology reveals to entities

outside the research institution of the methodology developed. This is the first step in protecting

the intellectual property created at the institution. This is a prerequisite for filing a patent to

protect the intellectual property created at the research institution from other entities that may

develop similar intellectual property.

7.5 PATENTING THE TECHNOLOGY

The process of patenting the technology involves several steps: disclosing the technology,

researching the database of patents approved to avoid potential infringement of existing

technology, developing claims that distinguish this technology from other existing or non-

existing technologies, and filing a patent, in the case of this technology, with the United States

Patent and Trademark Office. This research team chose to file a provisional patent application

prior to a full patent application in order to protect the intellectual property while the final details

on the technology claims and referenced patents are further and completely developed. In the

case of this technology, a patent attorney has been engaged to provide legal support and advice

and assist in both the provisional and full patent application submittals. It should be noted that

the patent applicant is the Massachusetts Institute of Technology (M.I.T.) and the inventors are

Dr. Feniosky Pefia-Mora and Dr. Moonseo Park.

7.6 ELICTING INTEREST FROM THE CONSTRUCTION INDUSTRY

With the technology protected, the research team sought interest from the construction

industry, the main industry that the research targets. Through informal focus groups, the

research team can reasonably predict that that construction industry has strong interests in
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the potential of the technology being applicable to practical usage by the industry. Several

discussions with various industry entities confirm the research team's belief that this technology

will be well received by the construction industry. The important steps in the implementation

process will be its flexibility, accuracy, and most importantly, ease of use.

7.7 ELICTING INTEREST FROM EXISTING SOFTWARE VENDORS

At this time the research team has provided a general overview of the technology

developed to an existing estimating software developer. This particular vendor has expressed

strong interest in keeping abreast of new developments and when and how the- two systems can

be incorporated. The research team expects to reach out to other existing software vendors,

when the time is appropriate, to illicit further interest in the technology and how to properly

integrate the systems for meaningful results.

7.8 REFINING THE TECHNOLOGY

It is expected that even after model calibration some level of model refinement should be

expected. It is unknown at this time to what extent this effort will entail. It will be clearer after

the model calibration phase is successfully completed.

7.9 PACKAGING THE TECHNOLOGY

The research team intends to direct most of its immediate efforts on the user interface to

the DPM model. Ease of use is a paramount issue to ensure successful implementation and

market penetration of the technology to the construction industry. Our focus will be to create an

interface that is relatively intuitive and that the output results are meaningful. The user will

engage with the DPM model through project management leverage points that again are intuitive.
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7.10 MARKETING THE TECHNOLOGY

Selling the concept and penetrating the market are the final steps in the conversion of the

research efforts to a commercially viable product that a potential customer can purchase. At this

time the marketing strategy has not been fully developed. This effort is expected to be initiated

in earnest when the refining and packaging of the model is further developed.
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CHAPTER 8

CONCLUSIONS

In conclusion, market demands for maximum results at minimum costs are expected to

continuously increase; the construction industry is no exception. Producing a quality product in

the least amount of time for the least amount of money continues to challenge project managers

day-to-day, and project-to-project. Concurrently, orchestrating such a production becomes more

complex as the project dynamics increase and work activities overlap impacting additional work

activities. To keep up with such complex and variable project dynamics, DPM has been

developed to address these conditions head on. A superior alternative to the traditional network-

based approaches as well as the simulation-based approaches developed to date, DPM uses a

user-defined modeling approach, considers dynamic feedbacks among variables, and reduces

sensitivity to changed conditions (both intentional and unintentional). These fundamental

concepts and logics have been materialized by incorporating reliability buffering contents and

concurrent engineering principles into system dynamics models and schedule networking

concepts of CPM, PDM, PERT, GERT, and SLAM. Moreover, DPM is intended to serve as

both an initial planning tool as well as a control tool during project execution.

8.1 POTENTIAL IMPACT

If the construction industry embraces DPM, current industry standards would be shattered.

For example, the concepts of total float, free float, float suppression, and use of project
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float will need modification, and the concept of critical path would be replaced by critical band

activities.

DPM will give project managers the tool to simulate various project scenarios to select

among a number of options to keep in line with various project objectives. DPM can be utilized

as a management tool offering multiple insights to innovative and cost-effective means to get the

job done on-time, within budget, and safely, while building a quality product.

The simulation results generated by DPM offer quantifiable measures in contrast to the

limited empirical analyses used for common benchmark analyses, such as loss of productivity, or

where empirical analyses are not even available. In addition, DPM offers insight to

management's leverage points to ensure effective policies are implemented.

8.2 APPLICABILITY

The previous research efforts to increase the applicability of the simulation approach have

mainly focused on the development of user-friendly graphic representations of simulation

components. For example, SLAM [Pritsker, 1994] and STROBOSCOPE [Martinez, 1996]

provide an integrated simulation environment, in which users can model project development

processes using graphic representations of simulation components. However, the use of those

tools still requires a lot of modeling experience, making it difficult for users (presumably,

construction managers or engineers) without having modeling skills to apply them to

construction [Pefia-Mora and Park (2001)].

DPM will improve upon the current management tools used to plan efficient operations,

track and maintain planned productivity, and manage schedule and cost impacts. DPM will offer

a significant advancement in planning and controlling processes and work activities, which are

subject to multiple changes. During the planning process, DPM will identify opportunities to

plan work activities and optimize work sequences subject to limited and variable resources.
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During project execution, the change events can be tracked to more accurately assess the ripple

effect on the overall system. Importantly, DPM will offer management the ability to adjust for a

change in the "to-go" plan through the most cost-efficient and productive means available.

Lastly, the actual performance will be retained providing the means for continuous improvement,

thereby closing the feedback loop. DPM provides a robust plan to absorb both potential and

unforeseen impacts to the project cost and/or project schedule. DPM facilitates on-time project

delivery within an established budget for large-scale infrastructure projects by enhancing

planning, monitoring and control capabilities. With the adoption of DPM, the management team

will have a tool adaptable to changing circumstances that includes past resource experiences,

continuously updated with current and relevant experiences. DPM can be integrated with a

firm's existing estimating and costing system thereby expanding the knowledge base for future

applications.

8.3 FURTHER DEVELOPMENT

While this thesis addressed the challenges of eliciting project information for input to DPM,

calibration of forecast to actuals was not completed within this thesis submittal. Calibration of

the simulated environment to actual conditions experienced by the contractor is an important

area for further research development.
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