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ABSTRACT

The Drosophila protein NANOS acts during three developmental stages: embryogenesis,
germ cell migration and oogenesis. In the early embryo NANOS is required to regulate
the translation of the maternal transcript hunchback. Translational regulation of
hunchback also requires the RNA binding protein PUMILIO. PUMILIO and NANOS
also act together in the primordial germ cells where their functions are required for
normal migration through the embryo. The exact molecular process in which they are
involved and the genes they might regulate in the germ cells are not known, In addition,
NANOS is required in ovaries for the differentiation of the germ line stem cell progeny,
the cystoblast. The partner and target of NANOS in this process is not known.

The NANOS protein contains two zinc fingers in its C-terminal region which are
necessary for its function in embryogenesis. The molecular and genetic analysis of 68
new alleles isolated in a selective genetic screen has allowed us to identify amino acids
critical for NANOS function. This analysis demonstrates the functional relevance of the
zinc fingers in all aspects of NANOS function. Furthermore, a region C-terminal to the
zinc fingers has been shown to constitute a novel functional domain within the NANOS
protein. The "tail domain" of NANOS is required for abdominal formation and germ cell
migration but not for oogenesis.

A yeast two-hybrid screen has been performed to identify proteins that interact with
NANOS. This screen showed that NANOS is able to interact with itself through its N
terminal region. Additionally, NANOS interacts with the translation elongation factor ly.
This interaction is mediated by the tail domain of NANOS and might be relevant to the
translational repression function of NANOS. Finally it has been shown through the two-
hybrid screen and immunoprecipitation experiments that NANOS directly interacts with
the RNA binding protein and translational regulator BRUNO. Both NANOS and
BRUNO affect the differentiation of the cystoblast during early oogenesis. In addition,
NANOS and BRUNO together can regulate the translation of a reporter gene targeted for
BRUNO binding. Therefore we suggest that BRUNO is the partner of NANOS during
the development of the germ line cystoblast and that they both regulate the translation of
a yet unknown maternal transcript.

Thesis supervisor: Ruth Lehmann

Title: Professor of Cell Biology



Whosoever would undertake some atrocious enterprise should act as if it were already

accomplished, should impose upon himself a future as irrevocable as the past.

-Jorge Luis Borges, "The Garden of Forking Paths"
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CHAPTER 1

Introduction
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Regulation of gene expression is a universal phenomenon required for the

functioning of all organisms. Genes need to be turned off and on during different stages

of the cell cycle, during the response to stress factors and during the development of an

organism. Additionally, certain genes need to be expressed in a specific region of a cell.

Regulation of transcription is the most common and best understood method of achieving

differential gene expression. Nonetheless, many situations exist in which abundant

amounts of transcripts for genes that need to be regulated are already present. In this

case, turn-over or modification of the transcript is an efficient method of regulation.

Transcripts can also be localized to different cells or cell regions in order to achieve

differential expression. A third method of post-transcriptional regulation is the control of

the translation process. Translational regulation is a widely used mechanism during the

earliest stages of development and oogenesis and it is also seen during other processes

such as cell growth. In addition, the modification of proteins can control their function at

different times and places. This thesis will study the regulation of translation during the

development of the fruit fly Drosophila melanogaster. This introduction will review

what it is known about the mechanisms of translation and its regulation during

development.
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mRNA FEATURES REQUIRED IN TRANSLATION

A key step in translation is the binding of the mRNA to the ribosomes. The

ribosome can either enter through the 5' end of the message and "scan" the RNA in order

to find the initiation codon or enter in the middle of the RNA at or upstream of the

initiator codon. The "scanning" method of translation is the most common and the most

relevant to the system described in this thesis. Several RNA features are important for

efficient "scanning" and translation of eukaryotic mRNA: the presence and accessibility

of a m7GpppN cap, a poly(A) tail, an unstructured 5' untranslated region (5'UTR), the

initiation codon and the context surrounding it.

Both the 5' m7GpppN cap and the poly(A) tail are added to the RNA in the

nucleus. A methylated G is added to the 5' end of the RNA almost immediately after

RNA synthesis starts. Capping involves condensation of the triphosphate group of a GTP

molecule with a diphosphate left at the 5' end of the initial transcript. Polyadenylation of

the nascent RNA is preceded by a site-specific cleavage reaction 30 nucleotides upstream

from a conserved AAUAAA polyadenylation signal. An uninterrupted tract of

polyadenylic acid is then added by the poly(A) polymerase (Wickens, 1990). It has been

seen in various in vitro and in vivo systems that the presence of m7GpppN structure at the

5' end and a poly(A) tail at the 3' end of an mRNA can enhance translation (Gallie,

1991). Nevertheless, dependence on the m7GpppN cap or poly(A) tail differs between

systems and mRNAs.

Efficient translation also requires a 5'UTR devoid of secondary structure. The

length of the 5'UTR can vary between specific RNAs, but mRNAs with very short leader

sequences are translated inefficiently (Kozak, 1991). Finally, translation tends to begin at

the AUG closest to the 5' terminus of the mRNA. The sequences flanking the initiation

codon aid its recognition by the initiation complex. In mammalian cells

GCCACCAUGG is the strongest consensus sequence for initiation, while in an insect

organism such as Drosophila the consensus is CAAAACAUG (Cavener, 1987).
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TRANSLATION MECHANISMS

Translation can be conveniently divided in three main stages: 1) initiation, 2)

elongation and 3) termination (reviewed in Merrick, 1992; Merrick and Hershey, 1996).

Translation initiation

The appropriate initiation of eukaryotic translation requires assembly of a pre-

initiation complex between the 40S ribosomal subunit and the initiation met-tRNA (met-

tRNAj). The pre-initiation complex then needs to bind to the RNA, locate the initiation

codon and recruit the 60S subunit to the initiation complex. The execution of these

processes requires the action of at least 11 initiation factors (elFs) and the expenditure of

energy in the form of ATP and GTP hydrolysis (Figure 1). Inactive 80S ribosomes

remain in equilibrium with free 40S and 60S subunits. The equilibrium is shifted towards

dissociation by the action of three initiation factors. eIF6 binds to the 60S subunit and

inhibits its association to the 40S subunit, which is, in turn, bound by association

inhibitors eIF1A and eIF3. eIF1A also inhibits the dimerization of the 40S subunit and

along with eIF3 promotes RNA binding and the association with the met-tRNAi. Before

it can be recruited to the 40S subunit, the met-tRNAj must form a ternary complex with

eIF2 and GTP. The formation of the ternary complex is one of the most important stages

in translational and therefore is a common target for regulation. For instance,
phosphorylation of eIF2 is a common mechanism for repressing global translation.

The 40S subunit associated with eIF3, eIFlA and the ternary complex can be

found as a 43S intermediate pre-initiation complex. The pre-initiation complex is

recruited to the RNA by eIF4F, which first must bind the m7GpppN cap and unwind any

secondary structure in the 5'UTR. eIF4F is a complex formed by three initiation factors:

eIF4E, eIF4G and eIF4A. eIF4E is the cap-binding protein; eIF4G binds to eIF4E,
eIF4A, and eIF3 acting as a platform for initiation complex formation; and eIF4A is a

DEAD box RNA binding protein that possesses ATPase and bidirectional helicase

activity. eIF4F binds also to eIF4B in order to enhance the RNA helicase activity of

eIF4A. Once the 43S subunit is brought to the RNA, "scanning" begins until the met-

tRNAj binds the start codon. eIF5 recognizes the complex and induces the hydrolysis of

the GTP carried by eIF2. This event reduces the affinity of the initiation factors for the

40S ribosome resulting in their release. eIF2 leaves the complex bound to GDP and is

then recycled back to the GTP form with the action of eIF2B (Figure 1). After the
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dissociation of the initiation factors, the 60S subunit joins the complex to form the 80S

initiation complex and start the translation of the message.

Even though this work only deals with the translation mechanisms of eukaryotes,

it is worth mentioning some of the main differences between eukaryotic and prokaryotic

initiation. Transcription and translation are coupled spatially and temporally in

prokaryotes but uncoupled in eukaryotes. This difference might account for the distinct

character of initiation in these two classes. Identification of the initiator codon by the

ribosomes in prokaryotes relies on the absence of secondary structure, which is not as

important in eukaryotes due to the presence of proteins with helicase activity. In

addition, while the recruitment of the ribosome to the mRNA in eukaryotes depends on

interactions with a m7GpppN cap, in prokaryotes initiation involves direct interaction

between ribosomal RNA and the mRNA. Finally, only eukaryotes require the action of a

specific factor, eIF5, to achieve subunit joining.

Translation elongation and termination

Elongation consists of the addition of amino acid residues to the carboxy-terminal

end of the nascent peptide. Most of the knowledge on the mechanisms of elongation

comes from work done on prokaryotes. Nevertheless, eukaryotic homologues for most

elongation factors have been found and the processes are expected to be very similar.

The elongation process requires the ribosome to interact simultaneously with several

tRNAs (reviewed in Merrick, 1992; Wilson and Noller, 1998). Consequently, there are

three tRNA binding sites in the ribosome. The A site is occupied by the aminoacyl-tRNA

(aa-tRNA), the P site is held by the peptidyl-tRNA (pep-tRNA) and the E site is occupied

by the stripped tRNA. At the end of the initiation process, the met-tRNAi is in the P site

of the ribosome. The aa-tRNA carrying the amino acid to be added forms a ternary

complex with elongation factor la (eEFhl) and GTP (Figure 2). This ternary complex

then binds to the A site which induces a hydrolysis reaction by EFlIX. The GDP bound

form of eEFlcL then leaves the ribosome. In order to bind a new aa-tRNA, the eEF1lx

undergoes an exchange reaction where GTP replaces GDP. This nucleotide exchange

reaction is facilitated by eEF 1 y.

Once the A and P sites are occupied, the 60S ribosome catalyzes a reaction

between the aa-tRNA in the A site and pep-tRNA (or the met-tRNA, in the first reaction)

in the P site. This reaction produces a new pep-tRNA and a stripped tRNA. The pep-

tRNA and the stripped tRNA shift their aminoacyl ends from the A and P sites to the P
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and E site while the codon recognition part of both tRNAs remain in the A and P sites.

Actual translocation of both tRNAs and the mRNA requires the binding of eEF2-GTP.

Following GTP hydrolysis, eEF2-GDP is released and the pep-tRNA lies in the P site, the
stripped tRNA is in the E site and the A site is vacant. eEF3 promotes the ejection of the

stripped tRNA. The ribosome is then ready to take another ternary complex and continue
peptide synthesis.

Termination occurs when a stop codon is exposed to the A site. No ternary

complex is available for the stop codon. Instead, release factor eRF1 binds to the A site
and promotes the hydrolysis and release of the pep-tRNA in the P site. In prokaryotes,
RF4 catalyzes the release of the mRNA from the ribosome, but the corresponding

eukaryotic factor has not been isolated.
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THE CAP, THE TAIL AND TRANSLATION INITIATION

Almost all eukaryotic RNAs have a 5' cap structure and a poly(A) tail. The cap
has been associated with diverse functions such as RNA splicing, transport, stabilization,
and translation, while the poly(A) tail has been implicated in RNA stability and
translation. Addition of a cap to an in vitro transcribed RNA stimulates protein synthesis
in vitro and in injected oocytes. The ability of the cap to enhance translation can be
explained by its role in ribosome recruitment (reviewed in Sachs, et al., 1997). As
mentioned earlier, eIF4F is required for efficient initiation. This initiation factor prepares
the RNA for ribosome binding by eliminating secondary structure through its subunit
eIF4A. In addition, a second component of eIF4F, eIF4G, is responsible for recruiting
the ribosome by directly binding to eIF3 in the 43S preinitiation complex. In order to
perform these functions efficiently eIF4F must bind the RNA. RNA binding is
accomplished by eIF4E, the third member of eIF4F, which specifically binds to the 5' cap
structure. The interaction between the cap and the cap-binding protein of eIF4F is
essential for efficient translational initiation and explains the cap's role in translation.
Accordingly, adding cap analogues to in vitro assays inhibits translation, most likely by
sequestering eIF4F away from the RNA (Lawson, et al., 1988). Also, inhibiting the
formation of the eIF4F complex eliminates cap dependent initiation. Mutations in eIF4G
that inhibit its association with the cap-binding protein affect translation in vivo (Tarun
and Sachs, 1997). Additionally, a family of inhibitory proteins known as 4E-binding
proteins can inhibit cap-stimulated translation initiation. These proteins bind to eIF4E
and inhibit the formation of eIF4F, thus affecting translational initiation (reviewed in
Sonenberg, 1996).

The role of the poly(A) tail in translation has recently been elucidated by the
identification of proteins that can interact with both the tail and the initiation complex
(reviewed in Gallie, 1998). A series of earlier experiments showed that the presence of a
poly(A) tail at the 3' end of the mRNA could stimulate translation (Doel and Carey,
1976). The addition of a poly(A) tail to RNA can enhance its translation in Xenopus
oocytes (Galili, et al., 1988). Conversely, blocking polyadenylation by mutating the
polyadenylation signal results in the failure to translate the mutated RNA (McGrew, et
al., 1989). A protein containing four ribonucleotide recognition motifs (RRM) known as
poly(A) binding protein (PABP) binds the poly(A) tail (Adam, et al., 1986; Sachs, et al.,
1986). The binding of PABP to the poly(A) tail was suggested to be responsible for
poly(A) dependent translational enhancement. Accordingly, addition of excess poly(A)
to an in vitro translation resulted in a reduction in translation efficiency (Munroe and
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Jacobson, 1990). This inhibition could be reverted by the addition of purified PABP
(Grossi de Sa, et al., 1988). In addition, genetic analysis in yeast showed that a
temperature sensitive mutation in the pabip gene affected translation (Sachs and Davis,
1989). The mutant yeast lacking PABP (I will use PABP to refer to both yeast Pabip and
higher eukaryotes PABP to avoid confusion) is characterized by an increase of
monoribosomes, suggesting a defect in initiation. In addition, reversion analysis isolated
bypass suppressors of the PABP mutation that affected components of the 60S ribosomal
subunit (Sachs and Davis, 1989). All of these suppressor strains showed a decrease of
relative amount of 60S subunit compared to 40S subunits. This genetic analysis led to
the belief that PABP's function was to promote assembling of the 80S ribosome at the
start codon. A series of experiments using reporter mRNAs containing either or both a 5'
cap and a poly(A) tail in plant, yeast and mammalian cells, revealed that these two
structures act synergistically to enhance translation (Gallie, 1991). The synergism
observed in these experiments confirms that PABP may participate in steps at which the
5' cap is involved, such as recruitment of the preinitiation complex.

The development of a yeast in vitro translation system which showed cap and
poly(A) dependence helped to further the understanding of the poly(A) tail's role in
translational initiation. Adding monoclonal antibodies to PABP to the extract resulted in
reduced translation of a polyadenylated reporter gene (Tarun and Sachs, 1995). This
result confirmed the requirement of PABP for poly(A) dependent translation. In addition,
this study verified a synergistic effect between the cap and the poly(A) tail and showed
that this effect could be eliminated by the addition of antibodies against either PABP or
the cap-binding protein. Therefore, both PABP and eIF4E are required for the synergistic
stimulation of translation. Finally, this report showed that the poly(A) binding protein
stimulates 40S subunit joining to the RNA. It was therefore suggested that mutations in
60S could compensate for the loss of 40S subunit recruitment by increasing the
concentration of free 40S ribosomal subunit in the cell.

The interdependence of the 5' cap structure and the poly(A) tail for optimal
translation suggests that communication between these two structures might be important
for efficient translation. Biochemical studies performed with yeast extracts showed that
eIF4F and PABP physically interact (Tarun and Sachs, 1996). More specifically, PABP
binds to the eIF4G subunit. This interaction involves a 114 amino acid region of eIF4G
adjacent to its eIF4E-binding site and requires that PABP be bound to RNA. The PABP
binding site in eIF4G is required for the cap and the poly(A) tail to synergistically
stimulate translation (Tarun, et al., 1997). The interaction with eIF4G maps to the second
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RRM of PABP. As expected, this domain is required for efficient translation of a
polyadenylated message (Kessler and Sachs, 1998). These results suggest that a physical
contact between the eIF4F and PABP is necessary for the poly(A) tail to enhance
translation (Figure 3).

A direct interaction between PABP and eIF4G was also reported in plant and
human cells (Le, et al., 1997; Imataka, et al., 1998). In plants an additional interaction
between PABP and eIF4B has been reported (Le, et al., 1997). In addition, studies using
human cells revealed that PABP associates with a newly identified PABP interacting
protein (PAIP-1) (Craig, et al., 1998). This protein shares homology with a part of eIF4G
responsible for binding eIF4A. Accordingly, PAIP-1 binds to both PABP and eIF4A
making a second connection between the poly(A) tail and the cap (Figure 3).

All of this information suggests that the poly(A) tail functions to recruit PABP to
the RNA, which in turn interacts with initiation factors that are connected to the cap
structure. There are various reasons why an interaction between the two ends of the RNA
might be important for its function. It has been suggested that the PABP/eIF4G
interaction aids in the recruitment of the 40S ribosomal subunit to the RNA hence the
increase in translation efficiency with the presence of a cap and a poly(A) tail. In
addition, requiring a complex between proteins bound at each end of the RNA for its
translation might be a means to test for RNA integrity prior to starting translation.
Alternatively, these protein-protein interactions between factors associated with the cap
and the poly(A) tail might enable RNA circularization during translation. Atomic force
microscopy showed that a reconstituted yeast eIF4E/eIF4G/PABP complex can
circularize capped and polyadenylated RNA (Wells, et al., 1998). Circularizing the RNA
may facilitate re-initiation through the physical proximity of the two termini. Support for
a circular model of translation comes from work on rotavirus mRNA translation.
Rotavirus mRNAs are capped but lack a poly(A) tail. The viral protein NSP3A binds to
specific sequences in the 3'UTR of viral mRNAs. NSP3A has been shown to interact
with cellular eIF4G (Piron, et al., 1998). In addition, the amount of PABP bound to
eIF4F decreases during rotavirus infection, suggesting that NSP3A is able to recruit
eIF4F away from the cellular RNAs and preferentially translate its RNA.

The mechanism used by rotavirus to block cellular translation shows that the
complex formation between PABP and the initiation factors is a good target for
translational regulation. For instance, based on the models described above, selectively
deadenylating a message would lead to its translational silencing. In addition, global
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regulation of translation by the cell or a virus can be mediated by the phosphorylation of

initiation factors involved in cap-binding.
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TRANSLATIONAL REGULATION IN DEVELOPMENT

In the last few years it has become clear that translational regulation is a common
method of controlling gene expression. Nowhere is translational regulation more
abundant and important than in oocyte and embryonic development. Early embryos are
usually transcriptionally inactive, but require the expression of a great number of genes.
For this purpose maternal mRNAs are stockpiled in the developing oocyte. The
requirement for different proteins at different times demands that the translation of these
messages be regulated. As development carries on, cells need to assume specific
identities and functions. Translational regulation seems to also play a role in the
specification of cell fate as seen in the case of germ cell specification in C. elegans and
neuron development in mammalian systems. In addition, translational regulation can, in
concert with mRNA localization, be involved in the formation of morphogenic protein
gradients within a single cell in order to achieve axis and pattern formation in the
embryo.

It has become clear that untranslated regions at both ends of the mRNA play
important roles in the regulation of translation. Regulation mediated by the 5'UTR
usually utilizes steric hindrance to impede the formation and scanning of the initiation
complex. For instance, the regulation of the ferritin mRNA involves the binding of a
regulatory protein to a stem loop in the 5'UTR. Protein binding to the 5'UTR stabilizes
the stem loop and inhibits ferritin translation by impeding binding of the 40S ribosomal
subunit scanning complex (reviewed in Rouault, 1996).

The examples discussed in detail in this introduction require regulatory elements
in the 3'UTR of the mRNA. We now know that the mediation of translational regulation
by the 3'UTR is the rule more than the exception. It has been suggested that the lack of
evolutionary constraint on the 3'UTR might ease the appearance of regulatory sequences
in this region of the transcript. Very small changes in the 5'UTR can strongly affect
initiation and translation, while the 3'UTR can afford more modifications. In addition,
the recent understanding of the influence of the poly(A) tail on translation could explain
the role of 3'UTR in translational control. The proximity of some of these elements to
sequences required for polyadenylation could suggest that the process involved in the
addition of a poly(A) tail might be a regulatory target.

Translational regulation through elements in the 3'UTR can also utilize
mechanisms that do not involve changes in the poly(A) tail. These sequences can act as
signals for masking proteins that sequester the mRNA away from the translational
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machinery. In addition, 3'UTR sequences can in some cases affect the initiation process.
How the 3'UTR affects events occurring at the 5' end of the message is not known.
Nevertheless, the fact that the poly(A) tail interacts with the cap through protein
interactions might help in developing and testing models that explain the role of the
3'UTR in the regulation of initiation. All of the cis-acting elements described here
associate with specific proteins. Genetic approaches in C. elegans and Drosophila have
shown that these factors are required for the regulation imparted by the 3'UTR. The
function of these proteins could be very diverse. They might displace proteins necessary
for polyadenylation or for the initiation of translation or directly remove the poly(A) tail.

The examples here discussed have been chosen to provide an idea of the diversity
of mechanisms and factors involved in the regulation of translation during development
and cell fate determination. In addition, these examples show that the mechanisms used
are conserved in a diversity of species and developmental processes. In all of these cases
the cis and trans acting factors are known. Nevertheless, the actual mechanisms for the
regulation are not fully understood. As new techniques are developed for the
identification of proteins interacting in this process and the study of the regulated mRNA,
many of the unanswered questions will surely be solved.

Masking, adenylation and translational activation in oocyte development

In the developing oocytes the transition from cell cycle arrest to mitotic division
occurs upon fertilization. In species such as frogs and mice, this event is preceded by the
a release from cell cycle arrest, known as oocyte maturation. In oocytes a great number
of the components needed for maturation and early development are present in the form
of mRNAs. Some of these mRNA must be silent until oocyte maturation or fertilization.
Cyclins, for instance, play important roles after the cell cycle resumes, but their
premature expression has deleterious effects. Therefore, cyclin mRNAs are not
translated in early oocytes and become active after oocyte maturation. Two models have
been used to explain the global silencing of these messages. The "masking" hypothesis
proposes that the formation of mRNA-protein complexes (mRNP) upon transcription
hides the RNA from the translational machinery (reviewed in Standart and Jackson,
1994). A second model proposes that the active and specific deadenylation of newly
transcribed messages keeps them repressed until maturation induces their
polyadenylation and subsequent translation (reviewed in Richter, 1996). New evidence
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shows that these two models are not mutually exclusive and that the masking proteins
might be involved in the deadenylation events described for various mRNAs.

The masking hypothesis was first used to explain the global regulation of mRNAs
in immature oocytes. mRNPs were suggested to form after transcription in order to keep
the mRNA from being recruited to the ribosomes. Upon fertilization, the masking
proteins are released and the mRNA is translated. mRNPS have been isolated from
Xenopus and clam oocytes and their components and properties studied in detail.
Purified mRNPs from frogs and clams do not allow in vitro translation of the mRNA
(Richter and Smith, 1984). Nevertheless, if the proteins are removed first by phenol
extraction, the mRNA is translated. Therefore, the transcript itself is competent for
translation but the proteins somehow impede its expression. Two proteins that form part
of Xenopus mRNPs, mRNP3 and FRGY2, have been identified (Bouvet and Wolffe,
1994b). These two proteins form part of the Y box family of nucleic acid binding
proteins. FRGY2 and mRNP3 are not sufficient to reconstitute mRNP silencing,
indicating that other proteins might be required for this process (Bouvet and Wolffe,
1994b). In addition, functional mRNPs only form in vivo for mRNAs transcribed in the
nucleus and will not form with in vitro transcribed and injected mRNAs (Bouvet and
Wolffe, 1994b). This observation, along with the fact that FRGY2 is a transcription
factor, establishes a link between transcription and the assembly of mRNPs. mRNA
sequences required for masking have not been identified, but the 3'UTR seems to play an
important role in the masking and unmasking steps. It has also been suggested that the
global unmasking of the silenced mRNP may be mediated by phosphorylation of the
masking factors (Standart and Jackson, 1994; Bouvet and Wolffe, 1994b). Further
studies are required to better understand the role of the mRNPs in translational regulation
and the mechanisms involved in masking of mRNAs.

In Xenopus oocytes, some of the silenced mRNAs such as cyclin, cdk-2 and c-
mos have a shortened poly(A) tail. With the onset of maturation, the poly(A) tail of these
messages are lengthened. Cytoplasmic adenylation in the case of these mRNAs is
concurrent with translational activation (Dworkin and Dworkin-Rastl, 1985; Dworkin, et
al., 1985; McGrew, et al., 1989; Gebauer, et al., 1994). This observation, combined with
the implication of the poly(A) tail in translation, have led to the hypothesis that silencing
and activation can be achieved by changes in the poly(A) tail length. Cytoplasmic
adenylation depends on two cis-acting elements in the mRNA. The first signal is the
canonical AAAUAA polyadenylation signal also responsible for polyadenylation in the
nucleus. A second signal necessary for cytoplasmic polyadenylation lies also in the
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3'UTR, upstream of the AAAUAA hexamer. This signal, known as the cytoplasmic

polyadenylation element (CPE), has a general structure of UUUUUUAU, but its

composition and location vary among different mRNAs. An elegant study involving

interspecies injections of mRNAs from Xenopus, Drosophila and mouse into embryos of

the three species was able to show that the regulatory sequences and the trans-acting

factors needed for cytoplasmic polyadenylation are likely to be conserved across species

(Verrotti, et al., 1996). A protein that can bind the CPE, CPEB, has been identified in

Xenopus oocytes (Hake and Richter, 1994). CPEB has two RRM motifs and is abundant

in oocytes. Immunodepletion of CPEB impedes the polyadenylation of injected mRNA

in mature oocytes and this phenotype is rescued by the addition of purified CPEB (Hake

and Richter, 1994).

Prior to a developmental signal such as oocyte maturation these mRNAs remain

in a silent deadenylated state. This silencing seems to be an active process requiring both

cis and trans-acting factors. Studies of the repression of cyclin B1 before maturation in

Xenopus led to the discovery that the CPE is necessary to maintain the quiescent state of

the mRNA (Joel Richter, personal communication). Injection of CPE sequences into

Xenopus oocytes resulted in the premature translation of Cyclin B 1. This result indicates

that the injected CPE can displace a translational repressor from the mRNA. In addition,
this resulting premature translation is not accompanied by polyadenylation of the

message. This could suggest that the determining event for translational activation at

oocyte maturation might not be the addition of a poly(A) tail but the displacement of a

masking factor. Notwithstanding, after maturation, polyadenylation results in an

induction of translation to levels greater than seen when the masking factors are

competed away in immature oocytes. In addition, mutations in the CPE affect the early

masking and also the post maturation induction. This result suggests that the CPE

sequences play a dual role in repression and activation. A second type of CPE has been

identified in Xenopus in mRNAs that get preferentially polyadenylated after fertilization.

C12 and activin receptor mRNAs contain an embryonic type CPE (eCPE) consisting of a

poly(U) tract in their 3'UTR. Similar to CPE, eCPE is involved in masking of the RNA

and in the polyadenylation of these messages after fertilization (Simon, et al., 1996).
eCPE is bound by ElrlA, a member of the ELAV family of RNA-binding proteins, but its

role in cytoplasmic polyadenylation has not been determined (Wu, et al., 1997). It will

be interesting to learn whether CPEB also binds to these sequences and what the role of

Elr1A is in the unmasking and polyadenylation of these mRNAs.
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Similar evidence for the dual function of the CPE comes from studies in surf clam

(Spisula solidissima) oocytes. Three abundant RNAs coding for cyclins A, B and

ribonucleotide reductase (RR) remain in a silent state in the developing oocyte until

fertilization, which in this organism triggers maturation. Cis-acting sequences

responsible for the masking effect have been mapped to the 3'UTR of these mRNAs and

contain poly(U) stretches similar to the CPE from Xenopus mRNAs (Standart, et al.,

1990). An 82 kDa protein that binds to the masking element has been identified as a

homologue of the CPEB (Walker, et al., 1996; Walker, et al., 1999). Both the cis and the

trans-acting factors involved in activation seem to play a role in translational repression.

Addition of antibodies against CPEB to clam oocyte lysates leads to the translation of

cyclin mRNA, while the same treatment of mature eggs results in deadenylation and

repression of the mRNA (Minshall, et al., 1999). This study confirms the dual role of

CPEB as a masking and activation factor. It was observed that CPEB in Spisula

undergoes rapid phosphorylation after fertilization (Walker, et al., 1999). Consequently,

phosphorylation of CPEB may be required for the activation of mRNAs and account for

the different functions of this protein.

The role of CPE sequences and their associated factors in mRNA masking is also

seen in mammalian oocyte development. When the mRNA for mouse tissue type

plasminogen activator (tPA) is first transcribed, it possesses a long poly (A) tail which is

rapidly reduced in the growing mouse oocyte. This mRNA remains in the oocyte

cytoplasm in a dormant state until the resumption of meiosis, when it acquires a long

poly(A) tail. The sequences required for the masking effect and the maturation-induced

polyadenylation of tPA mRNA are overlapping, and therefore known as adenylation

control elements (ACE) (Huarte, et al., 1992). Injecting ACE sequences into immature

mouse oocytes result in the premature translation of tPA mRNA (Stutz, et al., 1998). The

translational activation of this mRNA with competitor ACE sequences does not require

lengthening of the poly (A) tail. Nevertheless, a tail of at least 40-50 residues is required

to see this effect. A factor binding to the ACE sequences has been identified. Injection

of ACE sequences reduces the amount of this 8OkD factor bound to tPA mRNA

suggesting that it is responsible for the masking effect (Stutz, et al., 1998). This factor

has a similar molecular weight to the Xenopus CPEB. Its binding and functional

behavior would suggest that the ACE binding protein might be the mouse homologue of

CPEB.

From these studies it is evident that CPE/CPEB-mediated masking and activation

of oocyte mRNAs are conserved in diverse species. It has recently been suggested that
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the actions of CPE sequences and CPEB might be required also in somatic tissues of a

developed organism. Thus, masking and control of polyadenylation might be general

mechanisms for the control of translation. In mouse brain it has been observed that

xCaMKII, a protein required for synapse plasticity, gets preferentially translated in

dendrites following visual stimulation. Analysis of the ocCaMKII mRNA shows that it is

polyadenylated upon visual stimulation (Wu, et al., 1998). In addition, XCaMKII RNA

has two CPE domains in its 3'UTR, and CPEB is present in high concentrations in the

dendritic layer of the hippocampus and in postsynaptic densities of the adult mouse brain.

The CPEs in xCaMKII can bind CPEB in vitro and can mediate polyadenylation-induced

translation in Xenopus oocytes (Wu, et al., 1998). These results implicate the

CPE/CPEB-mediated mechanisms of translational control and activation in somatic cells

and suggest that mechanisms known to affect translation during early development might

be used at other stages to regulate gene expression in specific tissues.

Oocyte development seems to also require other silencing events that are

independent of the CPE and CPEB. Some of the messages that get polyadenylated and

activated after maturation get deadenylated and become translationally silent after

fertilization. Xenopus mRNAs eg]-cdk2, eg5, eg-2 and c-mos show this characteristic

polyadenylation/deadenylation behavior. In contrast to the default deadenylation that

leads to turn over of RNA messages, the deadenylation of eg2 mRNA is a sequence

specific event. Deletion of a 17 nucleotides region in the 3'UTR of this mRNA turns

deadenylation into polyadenylation (Bouvet, et al., 1994a). This embryo _deadenylation

element (EDEN) is also present in the 3'UTR of c-mos and Eg5 mRNA and is

independent of the cytoplasmic polyadenylation signals (Paillard, et al., 1998). In

addition, a 53 kDa protein containing three RRM RNA binding motifs (EDEN-BP) binds

to the EDEN sequences and is a necessary component of the EDEN-dependent

deadenylation (Paillard, et al., 1998). Three additional AUU repeats in the c-mos 3' UTR

are able to enhance EDEN-dependent deadenylation (Audic, et al., 1998). This effect

was observed for two distinct RNAs containing EDEN sequences, implying that

combinations of cis-acting elements may regulate stage and site-specific deadenylation in

Xenopus embryos.

The concerted masking, adenylation and final deadenylation of mRNAs during

oocyte maturation seems to control the translation of maternal messages. This

mechanism of translational control underlines the important role that poly(A) tails play

during translation. In addition, it is clear that this regulatory mechanism and the cis and

trans-acting factors involved in it are conserved among diverse organisms such as clams,
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frogs and mice. Nevertheless, various issues are still unresolved. The relationship

between CPEB and masking factors such as FRGY2 is not understood. It is possible that

these two masking mechanisms act on different messages to achieve regulation. A
second possibility is that mRNPs form in the nucleus so that the mRNA is protected from

translation as it is exported to the cytoplasm. Once in the oocyte cytoplasm other factors
such as CPEB may reduce the poly (A) length and continue to mask the mRNA from the

translation machinery. Finally, it is also possible that CPEB and mRNP factors like

FRGY2 are partners in the masking of mRNAs during oocyte development.

The relationship between unmasking, polyadenylation and activation is not clear.

Release of CPEB from the 3'UTR seems to be sufficient for activation, but
polyadenylation of the messages insures that the translation is efficient.
Immunodepleting CPEB from mature oocytes eliminates polyadenylation. This might be
a consequence of a direct role of CPEB in polyadenylating the mRNA. The switch from
repressor to activator perhaps induced by phosphorylation needs to be studied further.
Further work on the translational regulation of mRNAs in early oocytes will allow us to
better understand the processes involved in masking and activation. Experimental
systems in which genetic methods are well established could be useful to identify new
factors involved in these processes.

Translational regulation in C. elegans sex determination: tra-2 and
fem-3

Sex determination in the nematode C. elegans is controlled by a cascade of
regulatory genes (Hodgkin, 1990). Two sexual fates exist: XX animals are self-fertilizing
hermaphrodites, while XO animals are cross-fertile males. The germ line of a C. elegans

hermaphrodite produces sperm first and then oocytes, while the male exclusively
produces sperm. The tra-2 gene directs female cell fate in the hermaphrodite worm. Tra-
2 protein is thought to act as a repressor of downstream male determinants. In the male,
tra-2 mRNA is present but its translation is regulated. Dominant gain of function

mutations of tra-2 (tra-2 (gf)) transform hermaphrodites into females which only produce
oocytes (Doniach, 1986). XO animals are also feminized, producing only oocytes. This
transformation corresponds to higher levels of Tra-2 protein.

All six tra-2 (gf) mutations map to a 60 nucleotide direct repeat element (DRE)

located in the 3' UTR. The direct repeats consist of two 28 nucleotide elements separated
by a four nucleotide spacer (Goodwin, et al., 1993). Deletion of these repeats causes
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germ line transformation. Conversely, DREs in the 3'UTR of a reporter message cause

its translational repression. Disruption of the DRE does not affect the mRNA levels but

causes a movement of the mRNA towards larger polysomes. Using crude worm extracts,

a protein complex that binds to the DRE was identified and named DRF (Goodwin, et al.,

1997b). Stages at which this complex is present correspond to the lowest levels of tra-2

expression.

Further studies using a yeast three-hybrid screen identified the C. elegans protein

Gld-1 as a member of DRF (Jan, et al., 1999). Gld-1 is a member of the STAR family of

RNA binding proteins. In gid-1 loss of function (gld-J(lf)) mutants, the oocyte germ line

fails to progress through meiosis, causing an over proliferation of germ-line cells. In

hermaphrodite animals, few or no sperm are made. This phenotype is consistent with a

failure to regulate tra-2 expression. Correspondingly, Tra-2 protein is over-expressed in

gld-1(lf) while levels of tra-2 mRNA are unchanged. In vivo and in vitro studies show

that Gld-1 can direct the repression of a DRE containing reporter. The mechanism by

which the translation of tra-2 is regulated in not completely understood The presence of

DREs correlate with a short poly(A) tail while their absence is characterized by a long

poly(A) tail (Jan, et al., 1997). Whether the deadenylation is the mechanism by which

translation is shut down or a consequence of a different regulatory mode is not known.

The identification of targets and protein interactions of the trans-acting factor Gld- 1 will

help to understand how the DRE/Gld- 1 complex controls translation,

Evidence that this mechanism of regulation might be conserved in other

organisms comes from the presence of DRE sequences in the 3'UTR of the human

oncogene gli (Jan, et al., 1997). Consequently, these elements have been renamed tra-2

and gli elements (TGE). Deletion of the TGEs increases gli's capability of transforming

cells. In addition, the gli 3'UTR binds to a protein complex from mammalian cell

extracts that has a similar molecular weight to DRF. This information suggests that gli

might be regulated in human cells in a similar way to tra-2's regulation in nematodes,
implicating this regulatory mechanism in higher eukaryotes. In addition, the presence of

the tra-2 TGEs in the 3'UTR of a reporter can direct deadenylation in Xenopus oocytes,
emphasizing the conserved nature of TGE mediated regulation (S. R. Thompson and M.

Wickens, personal communication).

Fem-3 is required for normal male development in C. elegans. In hermaphrodites

Fem-3 instructs the first germ cells to become sperm and then its expression is turned off

and oocytes are formed. Loss of fem-3 function transforms both the hermaphrodites and

males into females. Gain of function mutations result in the masculinization of the
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hermaphrodite germ line. Genetic analysis shows that, in gain of function mutations,

fem-3 is able to escape the regulation to which it is normally exposed after the formation

of sperm. All fem-3 gain of function mutations fall within a five nucleotides element in

the 3'UTR (Ahringer and Kimble, 1991). These mutations do not affect the levels of

mRNA but result in a lengthening the poly(A) tail. Deadenylation might therefore be

part of the mechanism used to repress the expression offem-3.

A protein that specifically binds to the fem-3 regulatory sequences was identified

using a yeast three-hybrid screen (Zhang, et al., 1997). The FBF protein is specifically

expressed in the germ line and is required for the sperm/oocyte switch. FBF contains

eight repeats in its C terminal region which are homologous to the RNA binding domain

of the Drosophila protein PUMILIO (PUM) (Barker, et al., 1992; Macdonald, 1992;
Murata and Wharton, 1995; Zamore, et al., 1997). PUM and FBF belong to a large

family of proteins containing this newly identified RNA binding domain (Zamore, et al.,
1997). PUM is required in the Drosophila embryo in order to, along with the posterior

determinant NOS, repress the expression of hunchback (hb) RNA (Wang and Lehmann,
1991; Barker, et al., 1992) This repression correlates with a deadenylation of hb mRNA

and depends on specific sequences in the hb 3'UTR known as nanos response elements

(NREs) (Wharton and Struhl, 1991; Wreden, et al., 1997). The PUM RNA binding

domain binds specifically to the NREs (Zamore, et al., 1997). NREs and the fem-3

regulator sequences show some homology, but it is likely that FBF and PUM might have

distinct RNA specificity. Since PUM requires the action of a second protein, NOS, in

order to repress the translation of hb, it is further possible that FBF interacts with other

proteins to control fem-3 expression. The products of the C. elegans mog genes are good

candidates for FBF functional partners, since they are also required for the

spermatogenesis to oogenesis switch (Graham, et al., 1993b).

The Drosophila protein PUM is also active in other developmental processes such

as oogenesis and germ cell migration (Lin and Spradling, 1997; Forbes and Lehmann,
1998). PUMILIO's targets during these developmental stages are not known.

Furthermore, NOS does not seem to act as PUMILIO's partner in all of its regulatory

functions (Forbes and Lehmann, 1998). This observation opens the possibility that PUM
and perhaps FBF act to target specific RNAs for regulation by binding to 3'UTR

sequences and then recruit other factors that impose translational silencing.
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Translational regulation in cell fate specification: 15-lipoxygenase

Mammalian red blood cells lose their nucleus during development, thus

generating new proteins through new transcription is not possible. Therefore, as in

oogenesis and embryonic development, translational regulation is used to change the

protein content of the cell at different stages. An important step in the differentiation of

mammalian reticulocytes into erythrocytes is the destruction of the mitochondria. The

enzyme 15-lipoxygenase (Lox) catalyzes the degradation of lipids and is unique in its

ability to attack intact phospholipids which makes it instrumental in mitochondria

destruction. lox mRNA is the second most abundant message in bone marrow erythroid

precursor cells. Nevertheless, the protein is not expressed until reticulocytes undergo the

last steps of maturation in the peripheral blood. Rabbit's lox mRNA silencing depends in

10 tandem repeats of a pyrimidine-rich 19 nucleotide motif located in its 3' UTR and

known as the differentiation control elements (DICE) (Ostareck-Lederer, et al., 1994).

These repeats bind a 48 KDa factor that is necessary and sufficient for translational

repression of lox in vitro. Interestingly, these in vitro studies did not used capped or

polyadenylated messages suggesting that the repression might be independent of changes

in the poly(A) tail.

Recent studies have identified the 48 KDa factor as a fragment of heterogenous

nuclear ribonucleoprotein K (hnRNP K). In addition, hnRNP El was also purified

because of its ability to bind the DICE sequences (Ostareck, et al., 1997). Transfection of

either or both hnRNP K and hnRNP El into HeLa cells specifically represses the

translation of a reporter message with DICE sequences in its 3'UTR. In addition silenced

lox mRNA forms a complex with hnRNP proteins in vivo. Fractionation of rabbit

reticulocyte lysates in the absence of silencing factors show that lox mRNA is present at

similar levels in the ribosome-associated and lighter fractions. Nevertheless, addition of

hnRNP K and hnRNP El shifts the message from the polyribosomes to the monosomal

fraction. These results suggest that hnRNPs might regulate translation by affecting the

assembly the 80S ribosomes (Ostareck, et al., 1997). In addition, it was shown that the

purified hnRNP molecules could inhibit cap-dependent as well as internal ribosomal

entry site (IRES) dependent translation. Therefore, the regulation of lox mRNA in

erythrocyte development affects steps upstream of the cap-binding steps of initiation

which are needed in IRES translation. hnRNPs seem to be able to affect the recruitment

of the 60S ribosomal subunit to the initiation complex. The study of translational

regulation in mammalian blood cell differentiation gives evidence that regulation via the

3'UTR can affect other processes besides polyadenylation. Poly(A) independent
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translational regulation could act by inhibiting translation mechanisms occurring at the

5'UTR. Binding proteins complexed to the 3'UTR might be able to affect such processes

given that the 5' and 3' UTR are already interacting through PABP and eIF4F.

Translational regulatory cascade in Drosophila oogenesis and

embryogenesis: oskar, nanos and hunchback

Early development in Drosophila is characterized by the lack of transcription.

Therefore, the initial molecular cues required for axis specification and body patterning

are supplied to the egg during oogenesis in the form of maternal mRNAs and proteins.

The regulated expression of these messages is the consequence of regulatory cascades

that include both mRNA localization and translational regulation. The advantages of

Drosophila as a genetic system have allowed the dissection of these mechanisms at the

molecular level. Specification of the posterior pole of the embryo and the subsequent

development of the abdomen have become model systems for the study of mRNA

localization and regulation. Abdomen formation in the embryo depends in the regulation

of the hunchback (hb) mRNA at the posterior pole of the early syncytial embryo (Irish, et
al., 1989; Lehmann and Ntisslein-Volhard, 1991; Wang and Lehmann, 1991; Wharton

and Struhl, 1991). Since hb mRNA is present in the entire embryo this regulation

requires to be spatially controlled. The localized action of hb regulation is the product of

a complex regulatory cascade that begins during oogenesis with the regulation of the

oskar mRNA.

Oskar (OSK) protein in the oocyte is exclusively present at the posterior pole. Its
function in this region of the egg is to localize mRNAs and also to specify the cytoplasm

that gives rise to the primordial germ cells (Ephrussi, et al., 1991; Ephrussi and Lehmann,
1992). OSK mRNA is localized to the posterior pole during oogenesis. The maternal osk

mRNA is transported into the oocyte during early stages of oogenesis, and becomes

localized to the posterior pole of the oocyte during midoogenesis. Expression of OSK

protein at the posterior pole of the oocyte is coincident with its localization (Kim-Ha, et
al., 1995). Mutations that disrupt osk localization but not its stability also affect its

translation, indicating that expression of unlocalized osk is repressed (Rongo, et al.,
1997). Localization and translational control depend on sequences in the 3'UTR. A
repeated sequence motif in the 3'UTR interacts with an RRM protein called BRUNO
(BRU) (Kim-Ha, et al., 1995; Webster, et al., 1997). The RNA elements responsible for

this interaction are known as BRU response elements (BRE). Mutations in the BREs

- 29 -



cause ectopic translation of osk without affecting osk localization. In addition, BREs can
direct the regulation of a reporter gene. BRU, therefore, may be involved in the
translational regulation of unlocalized osk. BRU is a homologue of the EDEN binding
protein required for specific deadenylation of Xenopus c-mos mRNA (see above).
Interestingly, the regulation of osk occurs without changes in its poly(A) tail (Salles, et
al., 1994; Rongo, 1996). A model that explains the different mechanisms performed by
these homologous proteins is that BRU and EDEN-BP simply target specific mRNAs for
regulation by binding to 3'UTR sequences and that other factors perform the specific
regulatory events, that may or may not involve deadenylation. A second RNA binding
protein that interacts with both the osk 3'UTR and BRU has been identified (Lie and
Macdonald, 1999). Genetic analysis of this factor, known as APONTIC, reveals that its
function is also required for the regulation of unlocalized osk mRNA. Additionally,
evidence exists for other factors that bind to 3'UTR sequences required for repression but
not for BRU binding (Gunkel, et al., 1998). Furthermore, genetic analysis of the
mutation arrest, which corresponds to mutations in BRU, indicate that BRU regulates
multiple mRNAs involved in gametogenesis (Webster, et al., 1997).

The activation of osk translation once it is localized is an active process that
requires cis and trans-acting factors. Several gene products, including Aubergine and
Staufen, have been implicated in the translational activation of osk (Wilson, et al., 1996).
A recent study reports that sequences in the 5'UTR are required for translation of OSK
and that a 68 KDa factor binds to these segments of the mRNA. Interestingly, this region
is not required for OSK translation if the BRU mediated regulation is affected by BRE
mutations (Gunkel, et al., 1998). This result indicates that these sequences are required
for derepression and that they might facilitate the removal of the BRU repressor.

Once OSK protein is translated at the posterior, one of its functions is to localize
the posterior determinant nanos (nos). Localization of nos to the posterior pole of the
oocyte occurs during late stages of oogenesis (Wang, et al., 1994). This localization
requires multiple sequences in the nos 3'UTR (Gavis, et al., 1996a). NOS protein is
expressed in the embryo after fertilization forming a posterior to anterior gradient.
Embryos lacking OSK result in the delocalization of nos mRNA and the lack of NOS
expression. The translational control of unlocalized nos mRNA is independent of
changes in the poly(A) tail length and is mediated through a 90 nucleotide region in the
3'UTR known as the translation control element (TCE) (Gavis, et al., 1996b). Smaug, an
embryonic protein, binds to sequences within the TCE which are required for regulation
of nos, indicating that Smaug is a translational repressor of nos (Smibert, et al., 1996).
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Quantitative experiments have revealed that most of nos mRNA is not localized to the

posterior, suggesting that translational regulation is the principal mechanism for posterior

restriction of NOS activity (Bergsten and Gavis, 1999). In addition, translational

repression and localization of nos seem to be mutually exclusive suggesting that factors

involved in the localization somehow remove the repressor from the mRNA. Thus, the

spatial restriction of nos mRNA is achieved by translational repression, and the

localization of nos is only required to activate translation.

NOS function in the embryo is to restrict the expression of the transcription factor

hb to the anterior of the embryo. HB protein produces an anterior to posterior gradient

complementary to that of NOS. HB represses the transcription of genes required for the

formation of the abdomen. Thus, lack of NOS protein results in the misexpression of HB

at the posterior and the lack of abdominal segments (Wang and Lehmann, 1991). Two

bipartite repeats in the 3'UTR of hb, termed NANOS response elements (NRE), are

required for hb regulation (Wharton and Struhl, 1991). As mentioned above, PUMILIO
(PUM) protein binds to these sequences and aids in the repression of hb translation

(Murata and Wharton, 1995; Zamore, et al., 1997). Unlike NOS, PJM is present

throughout the entire embryo, therefore NOS confers the spatial specificity to hb
regulation. It has been suggested that PUM acts as a "docking protein" for factors that

specifically regulate the translation of hb. The 3'UTR of hb is preferentially

deadenylated in the posterior, and this process requires PUM, NOS and the NREs

(Wreden, et al., 1997). The exact relationship between the removal of the poly(A) tail

and the repression of translational is not known.

In summary, the concerted gene regulation, required for the patterning of the

Drosophila embryo, utilizes a combination of mRNA localization and translational

regulation. As in many cases of translational repression in development, the 3'UTR of

the regulated message plays a critical role. In addition, in some cases regulation

coincides with changes in the length of the poly(A) tail, although other mechanisms are

clearly exploited during the development of Drosophila.
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CONCLUSIONS

It is clear that the cap and the poly(A) tail of an mRNA play in important role

during its translation. Accordingly, the removal of the poly(A) tail is suspected to be a

step in the regulation of translation. The translational silencing of cyclins in Xenopus

oocytes, of tra-2 and fem-3 in C. elegans and of hb in Drosophila embryos is

accompanied by deadenylation. On the other hand, the regulation of nos and oskar in

Drosophila oocytes and embryos and of 15-lipoxygenase in mammalian erythrocytes

does not involve a change in the size of the poly(A) tail. In this case, steps in initiation or

ribosomal joining might be the targets of regulation. Whether the removal of the poly(A)

tail is cause or consequence of the regulation of translation is not known. It is possible

that deadenylation and direct control of initiation are used in combination to reinforce the

necessary quiescent state of the mRNA.

One detail that repeats itself in regulatory mechanisms from masking to initiation

is the role of 3'UTRs and associated RNA binding proteins. Various studies have shown

that the two ends of the mRNA can interact during translation, and that this interaction is

necessary for efficient translation. Thus disrupting this interaction by competing away

the linking factors or by preventing access to cis-acting sequences could influence the

rate of translation. New techniques developed to find protein-protein or protein-RNA

interactions will allow the determination of the global translational factors affected by the

specific translational regulators.

The function of the trans-acting factors PUM and BRU presents an interesting

paradigm in mRNA regulation. These two factors bind specifically to mRNA regulative

elements, but require the action of other factors to impart the regulation. These proteins

might act as landing pads for factors that perform specific functions during regulation

such as deadenylation. In addition, both PUM and BRU seem to regulate more than one

target and they might recruit different protein partners depending on the message being

regulated. This modular model of regulatory factors will be discussed further throughout

this thesis.
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Figure 1.1 Translation initiation

Diagram of factors and steps involved in the initiation of eukaryotic translation. Adapted

from (Merrick and Hershey, 1996).
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Figure 1.2 Translation elongation

Diagram of the steps in eukaryotic translation elongation based on the hybrid state model

(Wilson and Noller, 1998). Boxes labeled E, P and A refer to the ribosomal binding site

for the empty, the peptidyl and the aminoacyl tRNA respectively.
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Figure 1.3 Interaction between the cap and the poly(A) tail

Models for the circularization of the mRNA in yeast, plants and mammals. Double

arrows point at factors that physically interact. Adapted from (Gallie, 1998).
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SPECIFIC AIMS

The aim of this thesis is to elucidate the functional characteristics of the Drosophila
protein NOS. NOS is involved in the regulation of translation of the maternal hunchback

mRNA in the embryo. In addition, NANOS is involved in other developmental steps
such as oogenesis and germ cell migration. Chapter 2 discusses a genetic and molecular

analysis of the NANOS protein. A highly selective mutagenesis screen was performed to
determine essential amino acids in the protein. This screen has allowed the identification

of several functional domains within the NANOS protein. Chapter 3 describes a yeast
two-hybrid screen performed in order to identify proteins that interact with NANOS.
Two specific interactions are discussed in detail in this chapter along with tests
performed to study the potential physical interaction between NANOS and PUMILIO, an
RNA binding protein necessary for the NANOS dependent regulation of hunchback.

Chapter 4 discusses experiments performed to study the physical and genetic interaction
between NANOS and the RNA binding protein BRUNO. The implications of this
interaction in oogenesis and in translational regulation are discussed. Finally, Chapter 5
discusses the conclusions drawn from these studies and attempts to draw a modular
model for proteins involved in translational regulation.
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CHAPTER 2

Isolation and characterization of new alleles of the
Drosophila gene nanos

SUMMARY

The Drosophila protein NANOS is involved in three developmental stages: oogenesis,
embryogenesis and germ cell migration. In the early embryo NANOS is required to
regulate the translation of the maternal transcript hunchback. The mechanisms used by
NANOS to regulate hunchback and its exact function in other stages of development are
not known. The NANOS protein contains two zinc fingers in its C-terminal region that
are necessary for its function in embryogenesis. Here we describe a highly selective
genetic screen aimed at isolating new nanos alleles. The molecular and genetic analysis
of 68 new alleles has allowed us to identify amino acids critical for NANOS function.
This analysis shows that the zinc fingers are essential for NANOS function in all its
developmental roles. Furthermore, a region C-terminal to the zinc fingers was shown to
constitute a novel functional domain within the NANOS protein. This "tail region" of
NANOS is required for abdomen formation and germ cell migration but not for
oogenesis.
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AUTHOR'S NOTE

Chapter 2 will be submitted for publication to the journal Genetics as
Arrizabalaga, G., Lehmann, R. "Isolation and characterization of new alleles of the
Drosophila gene nanos"
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INTRODUCTION

Establishment of polarity along the anterior to posterior body axis of the

Drosophila embryo requires the function of the maternal effect gene nanos (nos) (Wang

and Lehmann, 1991). nos RNA is synthesized during oogenesis and becomes localized

to the posterior pole of the oocyte at the end of oogenesis (Wang, et al., 1994). Upon

fertilization, NOS protein is translated from the posteriorly localized RNA to form a

posterior-to-anterior protein gradient. Cis-acting sequences required for localization of

nos RNA to the posterior pole as well as sequences that prevent translation of unlocalized

RNA have been mapped to the 3'UTR of nos RNA (Gavis and Lehmann, 1992;

Dahanukar and Wharton, 1996; Smibert, et al., 1996; Gavis, et al., 1996a; Gavis, et al.,
1996b). NOS acts together with pumilio (pum) to repress translation of the maternally

provided transcription factor hunchback (hb) (Barker, et al., 1992; Macdonald, 1992). In

the wild type, HUNCHBACK protein is distributed in a gradient reciprocal to that of

NOS protein. In the absence of either NOS or PUM function, HUNCHBACK protein is

translated throughout the embryo. Ectopic translation of hb in the posterior region leads

to the transcriptional repression of genes normally required for abdomen formation.

Thus, nos or pum mutant females produce embryos that lack abdomen.

Biochemical analysis has shown that a -400 aa C-terminal region of PUM protein

binds directly to a sequence motif in the 3'UTR of hb RNA, referred to as the NANOS

Response Element (NRE) (Murata and Wharton, 1995; Zamore, et al., 1997). The NREs

are necessary and sufficient for the regulation of hb by NOS and PUM (Wharton and

Struhl, 1991). A number of experiments suggest that PUM is bound to the NRE

throughout the embryo (Murata and Wharton, 1995; Zamore, et al., 1999). hb translation,
however, is only inhibited where NOS is present. Thus, the distribution of NOS

somehow determines the spatial regulation of hb. This conclusion is supported by

experiments in which NOS was expressed at ectopic positions. In a set of experiments

nos was mislocalized within the oocyte, by replacing the posterior localization sequences

of nos with the anterior localization sequences from bicoid 3'UTR (Gavis and Lehmann,
1992). Alternatively, translational repression of nos was overcome by removing the nos

3'UTR and replacing it with the 3'UTR of tubulin which leads to uniform distribution of

the RNA and the protein (Gavis and Lehmann, 1994). In both cases head structures were

lost and replaced by more posterior structures. It was shown that ectopic expression of

nos in addition to hb also affects translation of the anterior morphogen bicoid (bcd)

whose function is required for the development of the head and thoracic structures. Like

hb, bcd contains NRE sequences in its 3'UTR.
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In addition to early pattern formation, nos function is also required for the
development of the germ line. In the early embryo nos RNA and protein are taken up
into the primordial germ cells as they form at the posterior pole. In the absence of NOS
many aspects of normal primordial germ cell (PGCs) behavior are affected (Kobayashi,
et al., 1996; Forbes and Lehmann, 1998). Germ cells fail to migrate towards the somatic
gonad, which forms from mesodermal tissue. Germ cell morphology is aberrant and
certain transcripts that are only expressed at later stages of normal development are
expressed early in nos mutant germ cells. It has therefore been proposed that NOS
affects the translation of a number of maternally deposited RNAs that are required for
early germ cell migration (Asaoka et al., 1998). HB is not the target of nos in the PGCs,
since the germ cell migration defect of nos mutant PGCs is observed even in the absence
of maternal HB product (Forbes and Lehmann, 1998).

Transcription of nos is initiated during the first larval instar and is restricted to the
germ line throughout its development. While nos mutant males are fertile, several
aspects of female germ line development are affected in nos mutant females (Forbes and
Lehmann, 1998). Only about 50% of nos homozygous mutant PGCs that reach the
embryonic gonad will become germ line stem cells. In the wild type, germ line stem cells
maintain themselves and produce daughter cells, termed cystoblasts. The cystoblast
undergoes four round of division to give rise to sixteen interconnected cells, one of which
will become the oocyte. In nos mutants, germ line stem cells do not maintain their stem
cell character throughout the life of the female and differentiation of the cystoblast into
an egg chamber is affected. As a consequence, nos mutant females produce only very
few eggs. Targets for NOS during germ line development have not been identified.
Interestingly, while nos shares with pum a role in the translational regulation of hb and in
germ cell migration, certain aspects of the oogenesis phenotypes of nos and pum are
different. This observation suggests that NOS and PUM have different partners and
control separate targets during oogenesis (Forbes and Lehmann, 1998).

The specific role of NOS in translational regulation is unclear and a direct
physical interaction between NOS and PUM or NOS and the hb NREs has not been
established. NOS encodes a protein of 402 amino acids with a highly conserved C-
terminal region (Curtis, 1995b). The carboxyl end includes two zinc fingers of the
CCHC type, similar to those found in the nucleocapsid binding protein of HIV I (Curtis,
et al., 1997). Zn finger domains similar to those of NOS have been identified in proteins
from Xenopus, leech, and C. elegans (Mosquera, et al., 1993, Curtis, et al., 1997; Pilon
and Weisblat, 1997). The function of these genes is not clear, however, due to the
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respective expression pattern, a role similar to that of Drosophila NOS in pattern

formation and germ line development has been proposed.

The analysis of nos mutants should identify domains in the protein important for

NOS function. Such an analysis could also provide important information regarding the

different aspects of the nos mutant phenotype. Only four alleles of nos have been

described (Wang, et al., 1994; Curtis, et al., 1997). While one allele is a stop codon,

three alleles map to the C-terminus. One of these alleles carries a mutation in a cysteine

predicted to be involved in metal ion binding of the Zn finger and leads to a strong

phenotype similar to that of complete null mutations. The other two mutations are a

deletion and a point mutation in a region C-terminal to the Zn finger, termed the "tail

domain". These mutants have been shown to affect hb translational regulation and have

no effect on female germ line development. The role of mutations in the tail domain in

germ cell migration has not been analyzed. In addition, injection experiments using wild-

type and mutant nos transcripts have been used to determine regions of the NOS protein

that are required for NOS function (Curtis, et al., 1997). The specific experimental

design restricted the analysis to the role of NOS in hb regulation, while other aspects of

the phenotype could not be analyzed. These experiments showed that the Zn finger

region and tail domain are necessary for NOS function in hb regulation, while other

regions of the protein seem not essential.

Here we describe a selective genetic screen that allowed us to obtain 68 new nos

alleles. We have identified the specific lesions in each allele and have characterized the

phenotype of each mutation. This analysis demonstrates the functional relevance of the

Zn finger domain for all aspect of nos function. Our experiments further suggest that the

tail domain constitutes a separate domain required for hb regulation and PGC migration.

Implications of our analysis for the functional, structural and evolutionary aspects of nos

are discussed.
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METHODS

Fly strains

IL114 1 +7.2 enIlIFor the screen wg was utilized. sax bn sp/ Cyo p(ryt =en]) wg flies were

a gift from Bill Gelbart. Nos C/Df(3R)D 4  was used when crossing the transgenes to a

nos null background (Curtis, et al., 1997). Nos 7 carries a 7 amino acid deletion in the C
terminus of NOS (Figure 2.2A).

Transgene and P-element transformation

The nos-tub3'UTR hybrid gene has been previously described (Gavis and
Lehmann, 1994) and its structure is shown in figure 2. lD. It contains genomic sequences

of nos with its 3'UTR replaced by that of tubulin. It also contains a haemagglutinin

epitope tag at the 5' end of the coding region. A Not I fragment from pDM30n(ha)-t

(Gavis, et al., 1996a) was inserted into the w' P element vector pCaSpeR3 (Pirrota,
1998).

Injection of CaSpeRnos-tub3'UTR (p[nos-tub3'UTR]) into yw flies was

performed as described by Spradling (Spradling, 1986). Seven independent transformed

lines were established. Those carrying the transgene in the second chromosome were
kept for use in the screen. Females from all transformant lines were completely sterile,
producing embryos with head defects and lack of thoracic segments (data not shown).

Protein expression was observed in all lines by staining embryos with anti-NOS

antibodies (data not shown).

In order to test whether female sterility of the P(nos-tub3'UTR)transgene was

100% penetrant, 200 yw; P(nos-tub3'UTR)/Cyo wg females from line 198.1 were crossed

to 100 OregonR males and allowed to lay eggs for 4 days. None of the eggs developed,
assuring us that even in large scale this transformant line does not yield viable progeny.

EMS mutagenesis and selection for nanos alleles

See Figure 2.2 for an outline of the screen. Males carrying the transgene p( nos-

tub3'UTR) were balanced with a CyO chromosome containing a P-element homozygous

lethal allele of wingless (wg). 14,400 of such males were mutagenized with a 35 mM

solution of EMS (Sigma) in 1% sucrose for 24 hours using standard procedures
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(Ashburner, 1989). The males were starved for 6 hours prior to mutagenesis, placing
them in a bottle with a Kimwipe saturated with water. After EMS treatment, males were
crossed to 14,300 wg/Cyo females. In the next generation, the presence of wg in the
balancer chromosome from the males eliminates all flies except for those carrying the
transgene. A total of 186,000 flies were divided in groups of approximately 200 animals,
allowing them to mass mate. Only groups with a female carrying a mutation in the
transgenic nos will gave rise to crawling larvae. 68 of about 900 groups had F2 progeny
which developed to adulthood.

These surviving flies have a 50% chance of having inherited the mutant
transgene. To identify those that carry the mutation, w+ virgin females were tested for
production of viable offspring by crossing them to yw; wg/Cyo males. In this manner 68
balanced heterozygous mutant lines were established. To ensure that all mutants studied
were independent events, only one isolate per group was used for analysis.

Females from F2 containing two transgenes were identified by their eye color and
used to test for second site suppressor. If the mutation lies within the transgene, the
second transgene should be a wild-type version of the fusion gene, thus rendering the
flies sterile. A second site suppressor should affect both transgenes equally, therefore
allowing the females to reproduce some viable offspring.

Sequencing

Genomic DNA was isolated from each mutant line (Barker, et al., 1992). PCR
was used to obtain DNA fragments of the nos-tub3'UTR trasgene. In order to isolate only
the mutant transgene, and not the endogenous nos gene, we specifically amplified two
fragments using primers directed against sequences in the epitope tag and the tubulin 3'
UTR (Figure 2. lD). Two PCR fragments, one from the epitope tag to the nos intron 1
and a second from intron 1 to the 3' UTR of tubulin, were amplified from the various
mutants. At least two simultaneous amplifications were performed for each fragment, in
order to distinguish real mutations from those induced by PCR. We sequenced directly
from the PCR fragments using either the AmpliCycle or ABI Prism systems form Perkin
Elmer.
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Germline clones

yw; FRThbFBnosL7 females were crossed to yw hsFLP; FRTovoD males (a gift

from Claude Desplan), and their progeny heat shocked as 2 "d or 3rd instar larvae to

induce FLP expression (Chou and Perrimon, 1996). Larvae were heat shocked at 37 0C as

described by Forbes and Lehmann (Forbes and Lehmann, 1998). yw hsFLP;

FRThb FBnos UIFRTovoD females were crossed to nos RCDf(3R)Dl x43. OvoD females do

not produce eggs, thus only hbFB nos homozygous germline clones will give rise to

progeny.

Cuticle preparation and embryo staining

For cuticle preparations, embryos were dechorionated in 50% bleach, fixed in 1:4
glycerol and acetic acid and mounted in Hoyer's medium (Lehmann and Nusslein-
Volhard, 1986).

Embryos derived from germ line clones were stained with anti-vasa to visualize
the germ cells as previously described (Forbes and Lehmann, 1998).

RNA injections

To obtain nosWT RNA, vector pN5 (Wang and Lehmann, 1991) containing the full

length nos cDNA was linearized with Xho I and transcribed with SP6 polymerase. In
order to isolate nos RNA we performed the same process with a derivative of PN5
carrying the small deletion in the carboxyl terminus (Curtis, et al., 1997). The RNA was

precipitated in ethanol and resuspended in water. Three concentrations were used in the

injections: 250 ng/gl, 500 ng/gl and 1.3 jg/gl.

Site specific PCR mutagenesis was used to generate pN54CF1 and pN54CF2.
pN54CF1 carries a mutation that changes the fourth Cys of the first finger to a Ser while
pN54CF2 carries a mutation in the fourth Cys of the second finger changing it for a Ser.
Both these plasmids were linearized with Xho I and transcribed with SP6 polymerase.

The two RNAs were injected at a concentration of 1.5gg/gl.

A 0 to 45 minute collection of embryos laid by nos L7InosL7 mothers was
dechorionated, lined up for injection on a coverslip, and injected from the dorsal side.
Embryos were allowed to develop for 2 days at 18 0C. Hatched larvae were collected and
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unhatched embryos were hand devittelinized and mounted in 50% Hoyers and 50% lactic
acid for cuticle preparation.
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RESULTS

Isolation of new NANOS alleles

A large-scale analysis of the amino acids that are essential for NOS protein
function should provide useful information regarding structurally important domains
within the NOS protein. Despite a number of genetic screens designed to identify new
nos alleles by non-complementation with the allele nos5', only 3 new alleles were
identified (Lehmann and Ntisslein-Volhard, 1991; R. Lehmann, personal
communication). This may indicate that NOS protein function is not easily disrupted by
point mutations or the screens previously used were unsuitable to identify new alleles.
We therefore designed a new scheme to identify important amino acids in NOS that
allowed specific recovery of a large number of new nos alleles. This mutagenesis screen
identifies mutations in nos by suppressing the dominant, female sterile phenotype that is
caused by ectopic expression of nos. Replacing the nos 3'UTR with the tubulin 3' UTR
leads to stable expression of unlocalized nos RNA, which is translated throughout the
embryo (Gavis and Lehmann, 1994). Presence of NOS protein in the anterior of the
embryos inhibits the translation of hb and bicoid (bcd) RNA (Gavis and Lehmann, 1992)
Thus, females which carry a transgene with the NOS coding sequences fused to the
3'UTR of tubulin (P(nos-tub3'UTR)) produce embryos that lack head and thoracic
structures and have duplicated abdominal segments (Figure 2.1B). These embryos are
not viable thus rendering the females that carry this transgene dominant sterile. A
mutation induced in the transgene that disrupts NOS function as a translational repressor
of bcd, will revert the female sterile phenotype, thereby leading to viable offspring in the
next generation (Figure 2.1C). Subsequently, the mutated transgene can be analyzed for
mutations affecting NOS protein sequence.

While we are interested in identifying amino acids important for the function of
NOS as a translational repressor of hb, the mutagenesis scheme selects for nos mutations
that suppress NOS' ability to repress bcd RNA translation. A number of observations
suggest that the effect of NOS on hb and bcd translational regulation are quite similar and
that therefore mutations affecting the regulation of one should also affect regulation of
the other. First, bcd regulation by NOS is dependent on sequences in the bcd 3'UTR that
are, with regard to base composition and function, similar to the NREs in the 3' UTR of
hb (Wharton and Struhl, 1991). Second, PUM protein, which acts in conjunction with
NOS in the regulation of hb, is also required for translational repression of bcd (Lehmann
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and Niisslein-Volhard, 1991). Third, we tested whether known alleles of nos that were
identified on the basis of their effect on hb regulation, also abolish bcd regulation. For
this test we took advantage of an oskar (osk) transgene (P(osk-bcd3'UTR), that localizes
osk RNA and OSK protein to the anterior pole of the egg (Ephrussi and Lehmann, 1992).
In the wild type, nos RNA localization to the posterior is dependent on osk activity
(Ephrussi, et al., 1991). Consequently, anterior localization of osk by the transgene leads
to ectopic localization of the endogenous nos RNA and protein to the anterior. Ectopic
localization of nos to the anterior leads to anterior deletions and posterior duplications in
embryos derived from females carrying the P(osk-bcd3'UTR) transgene (Ephrussi and
Lehmann, 1992). We placed the P(osk-bcd3'UTR) transgene into the background of two
different, strong nos missense mutations, nosc and nosRD, and analyzed the phenotype of
the progeny. Embryos derived from these females showed the nos phenotype: head and
thorax were formed normally but there was no abdomen (data not shown). This result
demonstrates that a mutant NOS protein unable to repress hb regulation is also unable to
repress bcd translation. Thus, a genetic screen based on the suppression of Nos-mediated
regulation of bcd should allow identification of mutations that are also deficient in hb
regulation.

An outline of the screen performed is shown in figure 2.2. A total of 14,400
males carrying the transgene was mutagenized with EMS and crossed to y w flies that
also carry appropriate second chromosomal balanced markers. The use of the wg
homozygous lethal mutation in the balancer chromosome allowed us to only obtain flies
carrying the transgene in the Fl generation. Progeny of F1 females die as embryos unless
the female carries a version of the transgene in which NOS function is lost.
Consequently, many females could be tested simultaneously since only few would be
fertile. In total 93,000 haploid genomes were tested and 68 independent mutant lines
were established, this accounts for a mutagenesis rate of 1 in 1,370 haploid genomes.

Two types of repression can result in a reversion of the female sterile phenotype:
intragenic and second site suppression. A simple test allowed us to distinguish between
these two possibilities. In the F2 (Figure 2.2), female flies with two copies of the
transgene could be easily distinguished from those carrying only one copy, since
expression of the w' marker carried by the P(nos-tub3'UTR) transgene is dosage
sensitive. To distinguish between intragenic and second site suppressors we analyzed the
phenotype of the progeny of females that carry two copies of the transgene. If the
mutation lies within one of the transgenes, the second copy of the transgene should still
render the flies sterile. On the other hand, a second site suppressor should affect both
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transgenes equally, therefore allowing females carrying two copies of the transgene to

produce normal or phenotypically less severely affected progeny. All mutant lines were

tested in this manner and none proved to carry a second site suppressor according to this

test (see below). We conclude that the 68 mutation identified are likely to affect function

of the nos transgene directly.

Molecular analysis of the alleles

Once the mutant lines were established, the transgenes were analyzed in order to

identify the mutation. Each line contains both the transgene and the endogenous nos.

Transgenic sequences were specifically isolated from the mutant lines by using primers

unique to the transgene (see materials and method). We have identified mutations in 60

alleles. All but two mutations affect a single base. EMS is an alkylating agent that can

add an ethyl group to many positions in all four bases (Ashburner, 1989). In Drosophila,

the prevalent mutation resulting from EMS mutagenesis is a GC -+ AT transition. In our

screen we prevalently see this type of mutation: 50 out of 58 base changes seen (Tables 1,

2 and 3). Nevertheless, we see other kinds of more unusual changes. AT -* TA changes

account for 6 of the 58 mutations, while the change TA-*GC is seen in two mutations

affecting the same amino acid (L350-R). A change in the protein coding sequence has

not been detected in eight of the 68 alleles, we are presently testing the effect of these

mutations on nos RNA and protein levels.

We have divided the mutants into three categories: nonsense mutations (Table 1),

rearrangements (Table 2) and missense mutations (Table 3). In the first category we

found 27 EMS induced premature stop codons (Table 1). The stop codons are distributed

throughout the coding sequence and show no specific pattern.

In the rearrangement category (Table 2) we have included one deletion (nos )
one insertion (nos 58) and a mutation that affects the intron/exon structure of the

transgene (nos 246/5 26/623). This last mutation occurred in 3 different alleles. Similarly, the

deletion and the insertion start at the same base. The deletion is in frame and eliminates

27 amino acids that affect only the first zinc finger leaving the second finger, and the end

of the protein intact.

The missense mutations totaled 28 and have proven to be very informative. All

the mutations affecting specific amino acids fall in the C-terminal region of the protein

(Figure 3). The section of the protein affected by missense mutations spans the two Zn

fingers and the last 37 amino acids that we refer to as the "tail region". The motif CCHC
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is thought to be critical for zinc coordination and is characteristic for this type of Zn

finger. Most cysteines and histidines in the two motifs were affected in the screen

(Figure 3a) with the exception of the fourth Cys (C347 and C371) of each finger and the

first Cys (C347) in the second finger. C347 is changed to a Tyr in the previously isolated

allele nos" (Curtis, et al., 1997). To determine whether the fourth Cys (C347 and C371)

in each Zn finger is important for nos function, we tested the effect of mutating the

respective aminoacids directly. For this assay, C347 and C371 were mutated to Ser to

generate mutated cDNAs, 4CFl and 4CF2. RNA was prepared from wild-type and each

mutant cDNA and injected into embryos from nos 7 females. While injection of wild-

type nos cDNA (pN5) rescues of the abdominal phenotype of nos mutant embryos

already at a concentration of 250ng/Rl, RNAs synthesized from the mutant cDNAs were

unable to rescue even at a concentration of 1.5gg/ml (Table 4). We conclude that each

amino acid of the nos CCHC motif is important for function.

The remaining missense alleles are distributed in 4 clusters in the C terminus of

the protein (Figure 2.3A). The first group (nos , nos 505 and nos 672) falls between the

His and last Cys of the first finger. A second group of alleles (nos 585/587, nos 152/154 and

nos 27) affects the region between the two fingers. Two mutations (nos and

nos 277/560/565/579/626) lie in the second finger between the second Cys and the His. The

second of these two mutations, Ala 365-Thr, was identified five times, becoming the most

common mutation in the screen. The last group of mutations (nos 295, nos 3110) falls into

the "tail region" of NOS. Previous screens had identified two other alleles (nosL and

nos RW) that map to this region of the protein (Figure 2.3A).

This screen identified sixteen amino acids in the carboxyl terminal region of NOS

essential for the regulation of bcd translation by NOS. Eight mutations change amino

acids in the CCHC motif expected to have a function in the coordination of Zn, while the

other 20 mutations identify amino acids in other regions of the protein, where single

amino acid changes interfere with NOS function.

NOS has been shown to function during different stages of development. During

embryogenesis, the primary target of NOS-dependent translational regulation is

hunchback (hb), while the targets for NOS function during germ cell migration and

oogenesis have not yet been identified. To determine whether specific functions of nos

were differently affected by the new mutations, the abilities of each mutation to

complement different aspects of the nos mutant phenotype was tested.
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Effect of nos mutations on hb regulation

The new nos alleles were identified on the basis of their effect on bcd translation.

We therefore devised a genetic test to study the effect of the new mutants on h b

translational regulation. Our test rests on the following observations: First, one copy of

the wild-type P(nos-tub3'UTR) transgene is able to rescue the abdominal phenotype of a

strong nos mutant (Gavis and Lehmann, 1992). Due to translational repression of bcd,

these embryos still show head structure defects and do not hatch. Second, alleles that

have residual activity will show a partially rescue of the nos mutant phenotype, and

produce embryos with a variable number of abdominal segments. We crossed all P(nos-

tub3'UTR) transgenes into the background of a nos null mutant and determined the

strength of the new alleles and their effect on hb regulation, germ cell migration and

oogenesis. In the case of a mutation that affects the regulation of bcd but not of hb, the

resulting embryos should develop to adulthood since the abdominal phenotype would be

rescued. To perform this test we established stocks carrying the mutated transgene and

the null allele nosRC or a deficiency affecting nos. The two resulting stocks for each

mutant were then crossed to each other giving rise to nos null flies carrying one, two or

no copies of the mutated transgene. The females were then allowed to lay eggs, which

were inspected for the presence of abdominal segments. The three rearrangement

mutations and all of the missense mutations, except for one, when crossed to the null

background, in one and two copies, give rise to embryos that are indistinguishable from

nos mutants (Table 2.1). These embryos have normal thoracic and head structures but

lack all abdominal segments. The nonsense mutations behaved identically, with the

exception of the amber mutants that seemed to allow read-through, producing hatching

larvae at low frequency.

Only one of the missense alleles, nos 295, could partially rescue the abdominal

phenotype caused by the nos null background. Approximately 30% of the embryos laid

by nos null females carrying one copy of the nos 29 transgene form 2 to 8 abdominal

segments. With two copies of the transgene the amount of embryos showing this level of

rescue is about 50%. A previously isolated allele, nos RW, shows a similarly weak

phenotype (Curtis, et al., 1997). Like nos RW, the mutation in nos 295 changes an amino

acid in the tail region of the protein (Curtis, et al., 1997).

The genetic analysis of these mutants demonstrates that the suppression screen

was successful in identifying amino acids in the NOS protein essential for the

translational repression of hb. In addition, we were able to obtain both strong and weak

alleles.
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Only mutations in the zinc finger region affect oogenesis

Females that carry nos null mutations produce very few eggs and show defects in

early oogenesis; the number of germ line stem cells is reduced and germ line

development is often arrested after cystoblast division. To examine whether the newly

identified mutations also affect oogenesis, we tested the ability of the mutated transgenes

to rescue the oogenesis phenotype of nos females carrying the null mutations nosRC in

trans to a deletion of the gene. For this purpose we used the same nos null females

carrying one or two copies of the mutated transgene that were used to test the effect of

the alleles on hb regulation (see above). All missense alleles that affect the zinc finger

region are incapable of rescuing the oogenesis defect caused by a loss of NOS in the

ovaries (Figure 2.3A, Table 2.3). On the other hand, the 3 alleles that affect the tail

region of nos fully rescue the oogenesis phenotype and therefore behave very different

from the alleles that map to the Zn finger region. Nos mutant females carrying one or

two copies of these 3 transgenic alleles lay a normal number of eggs and their ovaries

looked like those from wild-type females. Alleles nos108 and nos complement the

oogenesis defect but fail to regulate hb appropriately. This phenotype is similar to that

observed for the nos mutation, nos , which deletes seven amino acids in the tail region.

Two mutations, the allele nos and the newly identified allele nos 295, affect abdomen

formation weakly and fully complement the oogenesis phenotype. These results suggest

that certain domains within the NOS protein may be required for the functions of NOS

during embryogenesis and oogenesis. While the Zn finger domain seems to be necessary

for all aspects of NOS function, the tail region only affects hb and bcd translational

regulation.

NANOS tail domain

Five mutations have been identified that map to the tail region of the NOS

protein. These mutations have in common that they specifically affect hb (and bcd)

regulation, but do not interfere with normal oogenesis. One reason for this specificity

could be that this region of the protein carries a function only required for the regulation

of hb. Alternatively, these mutations may reduce NOS function. In this case, hb

regulation would be more sensitive to reduction in NOS function than oogenesis. To

distinguish between these two possibilities, we reasoned that an increase in the

concentration of NOS protein with reduced activity should rescue the mutant phenotype,

while such an increase of a NOS protein lacking a particular function should have no
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effect. Two different means were used to increase the level of NOS protein with

mutations in the tail domain. In the first test, one or two copies of the mutated transgene

nos 10 were crossed into a homozygous nosL7 background. The previously isolated allele

nosL7 has a deletion in the tail region and homozygous females produce embryos that lack

abdomen while oogenesis is unaffected (Curtis, et al., 1997). This genetic combination

approximately doubles the amount of NOS "tail mutant" protein in the embryo (data not

shown). Figure 2.4 shows the phenotype of an embryo from a mother homozygous for

nosL7 and the transgene nos 10. All nosL7 embryos which, received either one or two

copies of the nos'08 transgene, completely lack abdomen and the filzk6rper are not

extended. Thus, increasing the amount of NOS protein by adding two additional copies

of the nos mutant transgene is not sufficient to weaken the abdominal phenotype.

In the second test, we decided to increase the levels of mutant protein even further

by injection of RNA that encodes protein mutant in the tail region. We introduced the

seven amino acid, in frame deletion of the nos mutation into the nos cDNA. RNA

transcribed from this construct or a wild-type construct was injected into nos mutant

embryos. Wild-type nos RNA can strongly rescue the abdominal phenotype of the nos

mutants when injected at a concentration of 250 ng/gl. In contrast, nos RNA is

incapable of any rescue regardless of the concentration used (Table 2.4). Even at a

concentration as high as 1.3 ig/g, nosL7 RNA was unable to rescue or weaken the

abdominal defect. We conclude that mutations in the tail region of NOS render the

protein completely inactive in the regulation of hb regardless of the amounts present.

Taken together, these two experiments suggest that the carboxyl-terminal region of NOS

is a functional domain required for the translational regulation of hb and bcd but not for

nos function during oogenesis.

NANOS tail domain in germ cell migration.

It has been shown that germ cells devoid of NOS fail to migrate correctly

throughout the embryo (Kobayashi, et al., 1996; Forbes and Lehmann, 1998). We

therefore decided to test whether the tail region of NOS is required for the migration of

germ cells. Since embryos mutant for nosL lack abdomen, germ cells are unable to

associate with the somatic component of the gonad which forms from abdominal

mesoderm. It is thus not possible to directly assess the role of a tail mutant such as nosL7

on germ cell migration. However, it was previously shown that embryos that lack

maternally derived hb and nos can develop a normal abdomen (HUlskamp, et al., 1989;
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Irish, et al., 1989; Struhl, 1989). In these embryos germ cell migration has been observed

and it was shown that complete lack of NOS affects germ cell migration very strongly

(Forbes and Lehmann, 1998). We therefore decided to test the nosL7 mutant in a similar

experiment. Since, homozygous females for both nos and hb will not survive because hb

is required for normal development, we obtained hb nos" double mutant embryos from

germline clones using the FRT/FLP/OvoD system (Chou and Perrimon, 1996, See

Materials and Methods).

Females with hbFB nosL7 mutant germline clones were crossed to nos mutant

males in order to have no maternal or zygotic contribution of nos. The resulting embryos

were stained with anti vasa antibodies to visualized the germ cells (Figure 2.5). Germ

cells form normally in these embryos and do not show any defects in migration up to

stage 10 of embryogenesis. In wild-type embryos at this stage the germ cells move from

the posterior midgut pocket to its basal surface. From here, the germ cells normally

migrate towards the lateral mesoderm. Instead, most of the nosL7 mutant germ cells fail

to leave the gut, forming tightly associated clusters of cells. Not all mutant germ cells

stay behind in the midgut; some germ cells follow a normal migratory pattern (Figure

2.5D). The morphology of the mutant cells is normal, and the embryos go on to develop

into fertile flies, confirming that some of the cells end up associated with gonadal tissues.

The phenotype observed in germ cells with NOS mutated in the tail domain

resembles that of germ cells completely lacking NOS protein (nosBN allele; Forbes and

Lehmann, 1998). However, the nosL7 phenotype seems to be weaker and more restricted

to the initial aspects of germ cell migration from the gut into the mesoderm. In embryos

that lack NOS, more cells remain associated with each other while exiting the gut, the

germ cells have aberrant morphology and do rarely contribute to the germ line. The

resulting males and females are mostly sterile. This suggests that the tail domain of NOS

either reduces the function of NOS for germ cell migration or this region of the protein is

needed for only some aspects of germ cell migration while other aspects remain

unaffected.
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DISCUSSION

A highly selective screen was performed to identify essential amino acids in NOS.

In total 68 new alleles were identified and characterized molecularly. All 28 missense

mutations affect the carboxy-terminal region of the protein. This region harbors two

CCHC type zinc fingers that were both affected in this mutagenesis. In addition, C-

terminal to the Zn fingers a region of 7 amino acids, the tail domain, has been identified

as a separate domain required for NOS activity during embryogenesis and germ cell

migration but not for oogenesis.

The NOS protein is a novel, but evolutionary conserved protein with two unusual

Zn finger motifs. Detailed mutational analysis was used to identify functionally relevant

amino acids. The present screen took advantage of the dominant female sterile

phenotype produced by females that carry a nos transgene that lacks the 3'UTR

regulatory sequences required for nos RNA localization and translational repression.

Such females are sterile because ectopic expression of NOS at the anterior causes

repression of bcd RNA translation and consequently defects in head development (Gavis

and Lehmann, 1994). Mutations induced in the transgene, which render the unlocalized

protein non-functional, revert the female sterility. Thus, this screen selects for new

mutations in nos as opposed to other screening methods that use non-complementation

assays. This selection scheme allowed us to test large numbers of single F1 flies without

having to establish individual lines and test those for a phenotype (Figure 2.2).

Genetic tests indicate that all 68 mutations directly affect the transgene and are

not caused by second site suppressors. Given the design of the screen, it is not surprising

that we did not obtain second site suppressors. A mutation in another protein necessary

for bcd regulation by NOS would likely affect hb regulation as well. While such a

mutation would be expected to rescue the bcd head defects, it may likely cause

abdominal defects due to a failure in hb regulation. A second site mutation that would

specifically affect bcd regulation is one that would mutate the NRE in the bcd 3'UTR and

thereby make bcd non-responsive to NOS-mediated translational repression. Since,
multiple base changes may be required to inactivate the NREs (Wharton and Struhl,

1991; Curtis, et al., 1997; Wharton, et al., 1998; Murata and Wharton, 1995), it is

unlikely that the present screen would have uncovered such a mutation.

Genetic analysis of the mutant lines showed that all mutations that were identified

due to their inability to repress bcd translation, also affected the ability to regulate hb

translation. The fact that we did not find any mutations that specifically affected bcd
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regulation strongly suggests that both regulatory functions are performed through

identical mechanisms. Indeed, it has been shown that both genes are regulated by similar

cis-acting sequences, the NREs and identical transacting factors, PUM and NOS

(Lehmann and Ntisslein-Volhard, 1991; Wharton and Struhl, 1991; Gavis and Lehmann,

1992).

Sequence analysis of the mutated transgenes shows that all missense alleles

identified map to the C-terminus of NOS. This region had already been identified as

important for NOS function in repressing hb (Curtis, et al., 1997). The fact that no

mutations affecting amino acids outside of the C-terminus were found could suggest that

the C-terminus is the only functionally required region of the protein. However, injection

of an RNA that encoded a truncated NOS protein that lacked 285 amino acids from the

N-terminus but had an intact C-terminal region, was unable to rescue the nos abdominal

phenotype (Curtis, et al., 1997). Thus, although necessary, the C-terminus of NOS may

not be sufficient for normal function. One possibility is that a single amino acid change

in the N-terminal half of NOS may not have a detectable effect on NOS function. Indeed,

homologs of NOS from other insect species which are able to substitute for lack of NOS

show very little conservation at the amino acid level in the N-terminal region of the

protein (Curtis, et al., 1995b). At this point we can also not exclude the possibility that

we have missed essential amino acids in other regions of the protein. Our screen only

assayed for the effect of NOS on bcd regulation and may have not identified mutations

specifically affecting other aspects of NOS function such as germ cell migration and

oogenesis. Statistical analysis further suggests that our screen did not reach saturation.

Each amino acid that can be mutated in our screen and can be identified by our selection

criteria, was hit on average 1.8 times which corresponds to a saturation of about 80%

according to a Poisson distribution. Further evidence for the lack of saturation is the fact

that three of the cysteines that were shown to be required for Zn coordination of the NOS

CCHC motif, were not identified in the mutagenesis screen, but are important for NOS

function (Curtis, et al., 1997; this study).

The Zn fingers

The last 87 amino acids of NOS contain two metal binding domains of the CCHC

type. It is not known what specific role the zinc fingers play in NOS. Zinc fingers of the

CCHC type are not found commonly. The spacing between the Cys and His residues in

NOS are unique to this protein and its homologues in insects, frogs and worms (Figure
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2.3B). Other proteins, such as the HIV nucleocapsid protein (Dannull, et al., 1994),

CNBP (Rajavashisth, et al., 1989) and Clipper (Bai and Tolias, 1998), have multiple

copies of CCHC zinc fingers but the ligand spacing is different. All of these proteins

have been implicated in binding to single stranded RNA. For instance, Clipper (Clp) is a

Drosophila endoribonuclease that cleaves RNA hairpins (Bai and Tolias, 1998). This

protein contains five CCCH fingers that confer the endonucleolytic function and two

CCHC fingers implicated in specific RNA binding. In addition to the CCHC motif, the

HIV I nucleocapsid protein and NOS share a seven amino acid spacing between the Zn

fingers. Of particular interest is the fact that the fourth amino acid in this seven amino

acid spacer is an Arg in both proteins. Our mutational analysis has identified this Arg351

as important for NOS function. This Arg is extremely conserved among HIV

nucleocapsid proteins (De Guzman, et al., 1998) and has been shown to be required for

viral genomic packaging (Ottmann, et al., 1995). In addition crystallography studies of

the nucleocapsid protein bound to its RNA target showed that this Arg makes direct

contact with nucleic acids (De Guzman, et al., 1998). Thus it is an intriguing possibility

that this Arg plays a similar role in NOS. NOS can bind to RNA with high affinity and

the ability of NOS to bind RNA resides in the C terminus (Curtis, et al., 1997). However,

a specific interaction between NOS and the NREs has not been established. On the other

hand, PUM protein has been shown to bind with high affinity and specificity to the NRE

(Murata and Wharton, 1995; Zamore, et al., 1997; Zamore, et al., 1999). While

mutations in the NRE that affect PUM binding do not affect the affinity of NOS for the

RNA (Curtis, et al., 1997), a small number of nucleotides outside the conserved NRE

motif have been shown to affect translational regulation of hb but not PUM binding

(Wharton, et al., 1998). Further experiments are required to determine whether NOS

contacts parts of the NREs with sequence specifictiy and whether Arg351 plays a role in

such an interaction.

Evolutionary conservation

The NOS CCHC motifs show significant homology with sequences from other

insects, Xenopus, leech and C. elegans (Figure 2.3B). While the function for the NOS

homologs from frog and leech is not known, a role for the respective proteins in

establishing embryonic polarity has been proposed. Both Xenopus Xcat2 and the leech

homologue are expressed in the developing oocyte (Mosquera, et al., 1993; Pilon and

Weisblat, 1997). In the embryo Xcat2 localizes to vegetal blastomeres, while leech NOS

protein is present in cells at the animal pole which act as ectodermal precursors
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(Mosquera, et al., 1993). Most amino acids mutated in our screen are conserved in these

divergent species. Only two mutations, alleles nos538 '549 and nos"', lead to changes in

non-conserved aminoacids (V354M and S337L). Given that these two amino acids are

next to His and Cys residues respectively, it is possible that these mutations affect the

coordination of metal in this Zn finger. Despite the high degree of conservation between

the two Zinc finger domains of Drosophila NOS and Xenopus Xcat2 the two protein

regions are functionally not interchangeable. C. Wang showed that a RNA, in which the

NOS Zn fingers were replaced in frame by those of Xcat2, was unable to rescue the nos

mutant abdominal phenotype (Wang, 1995).

Three homologues of NOS have been identified in C. elegans (Wilson, et al.,

1994; and G. Seydoux, personal communication). Nos3 is the only one that conserves

the characteristic CCHC motifs with the exact spacing within and between the two

fingers. Nos3 has been implicated in germ line determination (G. Seydoux, personal

communication). In addition, this NOS homologue has been shown to interact in a two-

hybrid screen with FBF (J. Kimble, personal communication). FBF is a C. elegans

homologue of PUM involved in germ line sex determination (Zhang, et al, 1997). FBF

binds to sequences in the 3'UTR of fem-3 which are necessary and sufficient for its

translational regulation (Ahringer and Kimble, 1991; Zhang, et al., 1997). Fem-3 directs

spermatogenesis in the hermaphrodite and its translation must be suppressed to allow the

switch to oogenesis to occur (Ahringer, et al., 1992). Consequently, mutations in the

fem3 3'UTR result in a gain-of-function phenotype in which only sperm are produced

(Ahringer, et al., 1992). In addition, RNAi analysis shows that eliminating FBF has the

same masculinizing phenotype as mutating the target sequences in fem3 (Zhang, et al.,

1997). These observations suggest a role for FBF and Nos3 in translational regulation

similar to that performed by PUM and NOS in Drosophila. Curiously, the interaction

between Nos3 and FBF occur through the N terminus of Nos3 (J. Kimble, personal

communicaton; see Chapter 4). This region of the protein harbors no homology to

Drosophila NOS except for its richness in the amino acids Ser and Thr. Additionally,

Nos3 does not share any homology with NOS in the tail domain. Thus the tail domain of

NOS might carry out functions that are unique to insect development. It is possible that

NOS homologues in other organisms play a role parallel to that of NOS in germ line

determination where this domain does not seem to be required.
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The tail region

Mutations in a region C-terminal to the Zn fingers of NOS cause abdominal and

germline migration defects without affecting the function of NOS in oogenesis, while

null mutations and mutations in the Zn finger region in addition cause strong defect in

early oogenesis. Our screen identified two mutations in this region, nos2 9 5 and nos3" 08 ,

each causing a single amino acids change, (T3781) and (M379K) respectively.

Previously, two other mutations affecting this region, nOS 7 and nosRW were isolated

(Curtis, et al., 1997). nos3 11, nosw andnos29 are missense mutations that map within the

region deleted by nosL7 . We therefore defined the seven amino acid region deleted in

nos" as the "tail domain". NosRW and noS
295 are the only nos alleles that show a weak

abdominal phenotype, which might indicate a role of this region in protein stability. On

the other hand, the fact that mutations in this region seem specifically affected in their

ability to regulate hb and bcd could suggest that this region constitutes a novel functional

domain. Indeed, while nos 31 08 and nos" do not affect oogenesis, their ability to regulate

hb and bcd translation is as strongly affected as it is in null alleles or point mutations

which carry amino acid changes in the Zn finger domain. In order to distinguish between

the hypothesis that mutations in the tail domain retain residual activity and the alternative

hypothesis that this region of the NOS protein constitutes a separate functional domain,

we altered the amount of mutant protein present in embryos. Since increasing the dosage

of tail domain mutant protein does not alter the abdominal phenotype of mutant embryos,

we favor the hypothesis that the tail region of NOS constitutes a separate functional

domain. Interestingly, the two known targets of NOS, bcd and hb are equally affected by

mutations in the tail domain. Both RNAs contain NRE sequence motifs in their 3'UTR.

NOS and PUM have been shown to act together to regulate hb and bcd. The phenotypes

of pum and nos mutants during oogenesis are different and it has been suggested that they

act on different, yet unidentified RNA targets. The tail domain may therefore only be

required for the role of NOS when it is interacting with PUM (see chapter 3 and 4).

Mutations in the tail domain affect germ cell migration differently from nos null

mutations. Null mutations or mutations in the Zn finger region of NOS have been shown

to have a dramatic effect on germ cell migration (Forbes and Lehmann, 1998).

Primordial germ cells devoid of NOS have altered morphology and fail to leave the gut

towards the mesoderm and tightly associate with each other in clusters (Forbes and

Lehmann, 1998). Furthermore, Kobayashi and colleagues have shown that enhancer trap

lines that are normally expressed in germ cells late during embryogenesis are expressed

earlier in nos mutant germ cells (Kobayashi, et al., 1996; Asaoka, et al., 1998). This has
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led to the hypothesis that some of the phenotypes displayed by nos mutant germ cells

may be caused by the precocious expression of genes normally expressed at a later stage.

Mutants in the tail domain affect germ cell migration but to a lesser extent. nosL7 germ

cells, like germ cell lacking NOS, fail to leave the gut and form clusters. However, the

clustering is not as extreme as that seen for the null mutant and germ cell morphology

seems normal. Furthermore, premature gene expression has not been observed in nosL7

mutants (Heller and Steinmann-Zwicky, 1998). Finally, many nosL7 germ cells reach the

embryonic gonad and the embryos develop into fertile adults.

These differences in phenotypes might indicate that nosL7 is a weak allele with

respect to germ cell migration. Contrary to what we see in hb regulation, perhaps nosL7

retains some function in germ cell migration. Alternatively, the tail domain may just

affect a subset of phenotypes observed in the null mutants. nos null mutant germ cells

show aberrant morphology and even when some cells reach the gonad the resulting adults

are sterile. Consequently, nos might be required in the germ cells for two independent

functions: migration, which requires the tail domain, and germ cell identity, which does

not require the tail domain. Problems in germ cell identity might exacerbate the

migration defect, hence the greater loss of germ cells in the null mutants. Clearly the

identification of nos germ line targets is required to further address the function of

different NOS domains in germ cell migration.

In summary, our analysis of a large number of nos mutants has led to the

following model for NOS protein function: The C terminus of NOS plays a crucial role

during three developmental stages of Drosophila development: oogenesis, embryogenesis

and primordial germ cell migration. NOS role during embryogenesis is to silence the

translation of maternal hb RNA. This function requires the NOS zinc finger and tail

region as well as the RNA binding protein PUM. During primordial germ cells

development, PUM and NOS are required for the migratory behavior, the temporal

control of gene expression, and for the differentiation of germ cells into germ line stem

cells. This process requires PUM, and the Zn finger region of NOS, the function of the

NOS' tail region seems to be restricted to aspects of migration. During oogenesis, PUM

and NOS seem to have overlapping as well as separate functions. Only the NOS Zn

finger region is necessary for NOS' function during oogenesis. NANOS homologs have

been identified in a number of organisms. RNA localization studies in Xenopus and

phenotypic analysis of nos mutants in C. elegans suggest a role for these NOS homologs

in germ cell development. In these organisms, the region of homology is restricted to the
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Zn finger motif and does not span the tail domain, suggesting that the tail domain may

have been recruited later in evolution and may fulfill a more specialized role.
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Figure 2.1 Reversion of the dominant female sterile phenotype caused

by ectopic NANOS.

A. Wild-type females lay eggs with nos RNA localized to the posterior via its 3'UTR.

NOS protein forms a posterior to anterior gradient and regulates the translation of the

maternal hb message in the posterior pole (Wang and Lehmann, 1991). The resulting

larvae have 8 abdominal segments, 3 thoracic segments, head structures in the anterior

and a telson at the posterior. B. Females carrying a nos message where the 3'UTR has

been changed to that of tubulin (nos-tub 3'UTR) give rise to embryos with unlocalized

NOS (Gavis and Lehmann, 1994). When NOS is ectopically expressed at the anterior,

the normal expression of bcd and hb at this end, is repressed (Gavis and Lehmann, 1992).

Consequently, the resulting larvae have head defects and lack thoracic segments and are

embryonic lethal. All females carrying a nos-tub 3'UTR transgene will therefore be

sterile. C. Inducing a mutation in the nos-tub 3'UTR construct so that the ectopic NOS,
although still expressed at the anterior, can no longer function, will revert the dominant

female sterile phenotype. Since endogenous nos is unaffected in this mutant, the

resulting larvae will be identical to wild type. D. Schematic of nos-tub 3'UTR transgene

(Gavis and Lehmann, 1994). The genomic sequences of nos were used. Open boxes

indicate nos exons while the dashed lines are the introns. The black box depicts the

hemaglutinin epitope included in the 5' end of nos. Black boxes with white dots are the

nos UTR sequences, while the box with vertical lines represents the tubulin 3'UTR.

Plain lines indicate flanking genomic sequences from the nos gene. The two pairs of

primers used to specifically isolate the transgene DNA are shown as arrowheads. Primers

A5' and A3' produce a 559 base-pair fragment while primers B5' and B3' amplifies a

1,102 base-pair fragment.
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Figure 2.2 Isolation of stable mutant lines.

The crossing scheme used in the screen performed is shown here. Details of the strains

used and the screen itself are included in the material and methods and results section. In

the F1 generation all females are sterile except for those carrying a mutation that affect

the transgenic NOS function. The box includes the genotype of the males and the only

fertile females in this generation. A total of 14,400 males were mutagenized, 93,000

haploid genomes were tested and 68 independent mutant lines were established.
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Table 2.1. Nonsense mutations

Alleles Base change Amino acid change

Nos 286 C(565*)-+ T Arg(102)-> Stop'

Nos 635 C(568)-> T Gln(103)-+ Stop'

Nos 641 C(598)-+ T Gln(113)-+ Stop'

Nos 554 C(625)-> T Gln(122)-+ Stop'

Nos 607 C(673)-> T Gln(138)-> Stop'

Nos 517 C(1302)-+ T Gln(165)-+ Stop'

Nos 539 C(1314)-> T Gln(169)-> Stop'

Nos 524 T(1337)-> A Tyr(177)-+ Stop 2

Nos 243
Nos 253 C(1390)-> T Gln(194)-> Stop 2

Nos 254

Nos 197 C(1401)-+ T Gln(198)-+ Stop'

Nos 111
Nos 204 C(1404)-* T Gln(199)-> Stop'
Nos 258

Alleles Base change Amino acid change

Nos 264 C(1410)-+ T Gln(201)-+ Stop'

Nos 212 C(1461)-+ T Gln(218)-+ Stop'

Nos 558 G(1549)-> A Trp(247)-+ Stop'

Nos 594 T(1594)-> A Leu(262)-> Stop'

Nos 139 C(1596)-> T Gln(263)-> Stop'

Nos 592
Nos 595 C(1671)-+ T Gln(288)-> Stop'
Nos 620

Nos 568 A(1719)-> T Lys(304)-+ Stop'

Nos 122 C(1912)-+ T Gln(344)-> Stop 3

Nos 183

Nos 263 A(1999)-+ T Lys(373)-+ Stop'

The number of the base mutated corresponds to the numbering given by C. Wang tor
the genomic sequence of nos (Wang and Lehmann, 1991) with one correction. An extra
three bases, AGA, were found between bases 1410 and 1411. Consequently, His (201) is
replaced by Gln and Ile.

'Amber

2 Ochre
3 Oa
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Table 2.2. Rearrangements

Alleles Base change Mutation

Nos 246
Nos 526 G(1827)-> A Last G of intron 2
Nos 623

Nos 272 A 1722-1775 In frame deletion, amino acids 305-331

Nos 581 13 bases insert Between bases 1722-1723
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Table 2.3. Missense mutations

Alleles Base Change Amino acid change Abdominal Oogenesis
phenotype phenotype

Nos 273 G(184l)-+ A Cys(320) - Tyr Strong Strong
Nos 516
Nos 599

Nos 18 A(1849)- T Cys(323)-> Ser Strong Strong

Nos 506 C(1888)-> T His(336)-+ Tyr Strong Strong

Nos 512 C(1892)-> T Ser(337)-+ Leu Strong Strong

Nos 505 T(1895)-+ A Val(338)-+ Glu Strong Strong
Nos 520

Nos 672 G(1898)-> A Arg(339)-+ Gln Strong Strong

Nos 585 C(1924)-> T Pro(348)-> Ser Strong Strong
Nos 587

Nos 153 T(1931)-> G Leu(350)-+ Arg Strong Strong
Nos 154

Nos 627 G(1934)-> A Arg(351)-+ Gln Strong Strong

Nos 538 G(1942)- A Val(354)-> Met Strong Strong
Nos 549

Nos 165 G(1955)-> A Cys(358)-> Tyr Strong Strong
Nos 614

Nos 6 G(1967)-> A Gly(362)-> Glu Strong Strong

Nos 277
Nos 560
Nos 565 G(1975)-+ A Ala(365)-+ Thr Strong Strong
Nos 579
Nos 626

Nos 19 C(1978)-+ T His(366)-> Tyr Strong Strong

Nos 295 C(2015)-> T Thr(378)-> Ile Weak WT

Nos 3 T(2018)-+ A Met(379)-+ Lys Strong WT
Nos 108

Strong indicates complete failure to rescue: embryos showed no abdominal segments and
females laid very few eggs and their ovaries looked devoid of mature eggs. Weak
abdominal phenotype means that approximately 50% of embryos showed between 2 to 8
abdominal segments. When WT oogenesis phenotype is indicated, females null for nos
carrying a copy of this mutated transgene were able to lay normal amounts of eggs and
their ovaries looked wild type.

- 70 -



Figure 2.3 Missense mutations in the carboxy-terminal region of NANOS.

A. The last 87 amino acids of NOS are depicted with the proposed configuration of the

two zinc fingers (Curtis, et al., 1997). Gray and black circles show amino acids mutated

in the screen described here. The two amino acids with open boxes have been mutated in

previous screens. The C with the box is changed to T in nosRD while the D is mutated to

N in nosRW (Curtis, et al., 1997). Bracket in the tail of the protein points at the 7 amino

acids deleted in the previously described nos" allele (Curtis, et al., 1997). The two

amino acids in a black box, along with nosRw and nosQ7 , do not affect NOS function in

oogenesis. B. Alignment of the C terminus of NOS from Drosophila melanogaster (D.

mel.) and virilis (D. vir.), Musca domestica (Musca), Chironomus samoensis (Chiron.)

(Curtis, 1995b), from leech Helobdella robusta (H. ro) (Pilon and Weisblat, 1997), from

the Xenopus laevis protein Xcat-2 (Mosquera, et al., 1993) and the Caenorhabditis

elegans protein NOS 3 (Wilson, et al., 1994). For NOS 3 only the two zinc fingers are

shown, since 118 amino acids follow this domain. Three C. elegans homologues have

been identified and all three have a role in germ line development (C. Seydoux, personal

communication). NOS 3 is the only putative homologue that contains both zinc fingers

with the exact spacing seen in Drosophila NOS. Outside the C terminal region there is

little homology between all shown proteins (Curtis et al., 1995). Asterisks indicate the

Cys and His involved in forming the two Zn fingers. Arrows point to amino acids that

have been affected in this and previous screens.
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Figure 2.4 Multiple copies of NANOS carrying a mutation in its tail

region do not rescue the abdominal phenotype.

Cuticle preparations were made from embryos derived from females with 2, 3 or 4 copies

of nos carrying a mutation in the tail region. These embryos look identical to those from

females null for nos. In all these embryos we can see no abdominal segment, a ventral

scar and unextended filtzkorper, all typical characteristics of strong nos mutant embryos.
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Table 2.4. RNA Injection into nosL7 embryos

RNA # abdominal segments % overall % strong n
rescue rescue

0 1-5 6-8

nosWT 250 ng/ l 10 9 49 85 72 68

nosW T 500 ng/gl 7 10 58 91 77 75

nosWT 1.3 gg/pl 5 6 39 90 78 50

nosL7 250 ng/gl 65 0 0 0 0 65

nosL7 500 ng/gl 72 0 0 0 0 72

nosL7 1.3 gg/gl 53 0 0 0 0 53

4CF1 1.5 g/gl 113 0 0 0 0 113

4CF2 1.5 gg/l 96 0 0 0 0 96

Uninjected 20 0 0 0 0 20

Strong rescue refers to embryos with 6-8 segments. 4CF1 has fourth Cys in first finger
changed to a Ser. 4CF2 has fourth Cys in second finger mutated to a Ser.
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Figure 2.5 NANOS tail region required for germ cell migration.

A-F Embryos stained with anti-Vasa antibody to show germ cells in brown. Arrows

point at the midgut in panels D, E and F. NanosBN mutants have no nos RNA or protein

in the embryo while nanosL7 mutant embryos carry Nos protein with a deletion in the tail

domain. A. In a wild-type embryo at stage 11, germ cells move from the midgut towards

the lateral mesoderm. B and C. In embryos derived from hb nosBN or hb nosL7 germline

clones the cells clump together in the midgut and fail to migrate to the mesoderm. D. In

a wild-type stage 13 embryo, the germ cells associate with the gonadal mesoderm at the

posterior of the embryo where together they will form the gonad. E and F. At stage 13,

in an embryo from the hb nosBN or hb nosL7 maternal clones we see several clumps of

cells, with a significant one still in the posterior midgut.
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CHAPTER 3

Identification of NANOS protein-protein interactions

SUMMARY

The Drosophila posterior determinant NANOS functions in the embryo to repress the

translation of the maternal transcript hunchback. Translational regulation of hunchback

also requires the RNA binding protein PUMILIO. The mechanism by which translation

of hunchback is controlled is not fully understood. In addition, NANOS acts in the

ovaries and the primordial germ cells where its function might not require PUMILIO.

Here we describe a yeast two-hybrid screen performed to identify proteins that interact

with NANOS during its various functions. This screen showed that NANOS is able to

interact with itself through its N terminal region. Additionally, NANOS interacts with

the translation elongation factor ly. This interaction is mediated by a 7 amino acid

stretch in the NANOS C-terminus that is essential for hunchback regulation. Also, we

were not able to detect a direct interaction between NANOS and PUMILIO using the

yeast interaction trap system.
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INTRODUCTION

Translational regulation, along with RNA localization, is essential in the

development of many organisms to achieve localized protein expression (Curtis, et al.,

1995a). In Drosophila the correct patterning of the embryo depends on the translational

regulation of the maternal RNA hunchback (hb). In order to understand the mechanisms

by which an RNA is regulated it is essential to know all the factors involved in such

regulation.

To ensure correct development of the abdomen, maternal hb expression needs to

be eliminated from the posterior region of the embryo. While hb RNA is detected

through the entire length of the embryo, HB protein is exclusively seen at the anterior

pole (Tautz and Pfeifle, 1989). This observation suggests that hb RNA is regulated at the

level of translation. Two factors, NANOS (NOS) and PUMILIO (PUM), are required for

correct expression of HB and the formation of abdominal segments (Wang and Lehmann,

1991; Barker, et al., 1992). In the absence of either gene function, HB is translated

throughout the embryo and abdomen-specific gene expression is repressed. NANOS

seems to dictate the positional aspects of this regulation since its distribution is

complementary to that of HB. On the other hand, PUMILIO protein is found throughout

the entire embryo. Regulation of hb translation requires cis-acting elements in the hb

3'UTR known as NANOS Response Elements (NRE) (Wharton and Struhl, 1991). PUM

has been shown to bind specifically to the NREs (Murata and Wharton, 1995; Zamore, et

al., 1997).

The mechanisms by which translational regulation of hb occurs are not

completely understood. It has been shown that in Drosophila hb is deadenylated in the

posterior of the embryo (Wreden, et al., 1997). Consistent with the genetic information

known, this shortening of the poly(A) tail is dependent on NOS, PUM and the NREs. It

is not known whether the deadenylation is the cause, a consequence, or a parallel process

to a direct regulation of translation. Also unknown is the level of association of NOS

with the PUM-hb complex. We have been unable to detect a direct interaction between

NOS and PUM. Potentially NOS could be contacting the RNA since it has a high affinity

for nucleic acids, but no specificity for hb RNA has been demonstrated (Curtis, et al.,

1997). Identifying factors that interact with NOS might allow us to understand how

regulation occurs. One possibility is that additional proteins could either act as a link

between NOS and the poly (A) tail, interact with the translation initiation machinery or

confer RNA specificity to NOS.
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In addition to its role in embryogenesis, NOS acts during oogenesis and is

required for the migration of the germ cells (Kobayashi, et al., 1996; Forbes and

Lehmann, 1998). These two processes also require PUM. Nevertheless, in oogenesis

NOS and PUM seem to carry out overlapping, but at least partially independent functions

(Forbes and Lehmann, 1998). Thus, it is possible that both NOS and PUM may interact

with different partners and affect separate targets during oogenesis.

In order to identify proteins that interact with NOS and understand the

mechanisms of NOS function, we performed a yeast-two hybrid screen. This interaction

trap system allows us to screen quickly for interacting proteins expressed in different

Drosophila tissues and at different stages of Drosophila development. In addition it

allows us to directly test interactions with known proteins such as PUM. Through several

screens we have been able to identify interactions with the elongation factor ly (EF-ly),
the Drosophila RNA binding protein BRUNO (BRU) and NOS itself. This chapter

discusses preliminary studies performed on the interaction between NOS and EF-ly and

on the dimerization of NOS. The interaction between NOS and BRU is discussed in

Chapter 4.
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MATERIALS AND METHODS

Plasmids and yeast strains.

All parental yeast two hybrid plasmids and strains were a gracious gift from Dr.
Russ Finley (Gyuris, et al., 1993). pEG202 includes the yeast his3 gene and sequences
coding for amino acids 1-202 of the LexA protein followed by multiple cloning sites.
LexA is constitutively expressed from an adh1 promoter. PSH18-34 is the reporter
plasmid encoding a lacZ gene under the control of LexA operators. This reporter plasmid
carries the ura3 gene. pJG4-5 carries the trpl gene and the 88 residue acidic activator
under the control of the Gall promoter. The activation domain is followed by unique
EcoRI and XhoI sites. These sites are used to introduce cDNAs in order to express
activator-tagged proteins.

Two different yeast strains where used in the course of the two hybrid screen.
The actual screen was performed using yeast strain EGY48 (MATa, his3, trp], ura3,
LexAop(x6)-LEU2). This strain carries the Leu2 reporter gene under the control of LexA
operators and requires uracil (ura), histidine (his), tryptophan (trp) and leucine (leu) in the
media in order to survive. For the mating assays in addition to EGY48, yeast strain
YM4271 (MATa ura3-52, his3-200, lys2-801, ade2-101, ade5, trpl-901, leu2-3, 112,
tyrl-501, gal4-A5]2, gal80-A538, ade5::hisG) was utilized.

The plasmids encoding LexA fusion proteins were made by inserting the coding
regions in frame at the 3' end of lexA. Sequences coding for full length NOS were
introduced to pEG202 by inserting a BamHI to Not I fragment from pNB40-N5Bam.
This last plasmid has a BamHI site replacing the starting AUG and keeps the rest of the
nos cDNA sequence intact (D. Curtis, Unpublished data). This nos fragment cloned into
pEG202 has the 3'UTR of nos.

Fusion constructs carrying fragments of the NOS protein (Wang and Lehmann,
1991) were made by inserting PCR amplified fragments into pEG202 digested with
BamHI and NotI. Primers used are 25 bases long on average and contain 21 bases
complementary to nos. The 5' primer contains a BamHI site, while the 3' primer
contains a NotI site. Figure 3.3 shows a depiction of all the constructs used. "NOS N"
consists of amino acids 1 to 315, "NOS C" of the last 87 amino acids and "NOS tail" of
the last 29 amino acids of the protein. "NOS NI" carries amino acids 50 to 148. "NOS
114" is the last 114 amino acids.
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The NOS ANI and NOS ANII deletion constructs were designed by first inserting

a PCR fragment spanning the region upstream of the deleted sequence starting at the

NOS start codon into pEG202 digested with BamHI and NotI. The 3' end primer used

introduces an Apal restriction site 5' of the Not I site. The resulting plasmid was then

digested with Apal and Not I and a second PCR fragment covering sequences

downstream of the deletion up to the NOS stop codon was introduced. In both these

constructs the deleted amino acids are replaced by two amino acids, Gly Thr, encoded by

the Apal restriction site. NOSANI deletes amino acids 50 to 148, while NOSANII
eliminates amino acids 149 to 218. NOS A50-218 was cloned by amplifying a NotI to

BamHI fragment from pN5 A50-218 (Curtis, et al., 1997). NOSAL7 which carries a

deletion in the tail region of NOS was amplified from pN5nos " (D. Curtis, Chapter 2)

Constructs carrying nos mutations were generated by site directed PCR

mutagenesis. Full length nos, bru and orb (Wang and Lehmann, 1991; Lantz, et al.,
1992; Webster, et al., 1997) were isolated through PCR amplification and inserted into

EcoRI and XhoI sites in pJG4-5. All PCR reactions were performed in 100 pl reactions

containing 1 gg DNA, 1 mM Tris-HCl (pH 9.0), 50mM KCl, 0.1% Triton X-100, 3mM

MgCl 2 , 5gM of each primer, 0.2mM of each dNTP and 2 units of Taq polymerase. The
reaction was cycled 30 times at 95'C for 30 seconds, 55'C for 45 seconds and 95'C for 2

minutes.

To sequence pEG202 constructs primers Peggal and Pegga2 were used. To

sequence cDNA clones in pJG4-5, primers BCO1 and BCO2 were utilized.

Peggal: 5' TCG CAA CGG CGA CTG GCT 3'

Pegga2: 3' CCC GCT TAA AGA ATA CTA 5'

BCO1: 5' CCA GCC TCT TGC TGA GTG GAG ATG 3'

BCO2: 3' AGG TTA GTT CCA ACA GCC GAA CAG 5'

The embryonic library RFYL1 and the ovary library RFLY3 were a gift from Dr.

Russel Finley. Ovol was kindly given to us by Dr. Jirg Grosshans. All libraries consist

of unidirectional cDNA made from poly(A) selected RNA. In the case of RFLY3 and

Ovol the RNA was isolated from Drosophila ovaries while the RNA for RFLY 1 came

from Drosophila embryos ranging from 0 to 12 hours old. RFLY1 has 4.2 X 106
individual members with an insert size averaging 1 kb. RFLY3 has 3.2 X10 6 individual

members and the insert size averages 800 base pairs. Ovol has 1.5 X 106 members and

the average insert size is 1160 bp.
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Two hybrid screen

All experiments involving the two hybrid system were performed as described
(Finley and Brent, 1994b). In summary, yeast strain EGY48 (ura- his- trp-) was
sequentially transformed with pSH18-34 (ura+) and pEG202nos (his+). The presence of
these two vectors is selected on media lacking ura and his. This strain was then
transformed with the various cDNA libraries (trp+) and selected on media without ura,
his and trp. Trp+ colonies were collected and frozen. Each of the frozen cells contain the
NOS bait plasmid, the LacZ reporter and a member of the cDNA library. An aliquot of
the frozen cells was thawed and diluted 1:104 , 1: 10, 1:106 and 1: 10'. The dilutions were

then plated on media lacking ura, his and trp to determine the density of the frozen stock.
The activator tagged cDNAs are under the control of a galactose dependent promoter. In
order to induce cDNA expression, aliquots that could produce 1 x 10' colonies were
thawed and incubated for four hours in liquid media lacking ura, his and trp and
containing galactose. The cells were then plated on media lacking ura, his, trp and leu
and containing galactose to select for all the three plasmids and screen for activation of
the LexA0 -leu2 gene. Colonies growing on the lack of leucine were then streaked on
-ura -his -trp plate containing glucose as a sugar source. These colonies were then
replica plated onto galactose plates lacking leu or containing X-gal to re-test for the
interaction and confirm it with the expression of the more stringent reporter lacZ. Table
I shows the specific number of colonies screened and the positive clones obtained for
each one of the three libraries used. Library plasmids were rescued in E. coli DH5a or
KC8 cells and grouped according to insert size and restriction map. Restriction mapping
was performed on PCR amplified inserts using restriction enzymes Alul and HaeII to
determine groups of clones expressing the same gene. A member from each group was
sequenced using primers BCO1 and BCO2.

Yeast mating

Yeast mating assays were performed as previously described (Finley and Brent,
1994a). EGY48 strain (ura-, his-, trp-) transformed with the pJG4-5 cDNA constructs
(trp+) was selected on media lacking trp. PEG202nos (his+) and pSH18-34 (ura+) were
introduced into yeast strain YM4271 (ura- his-) and selected for by growing on media
lacking his and trp. EGY48 with the different cDNA clones were streaked as lines on a
plate lacking trp. YM4271 strains with different LexA-NOS fusions were also streaked
as lines on a plate without ura and his. Both plates were then replica plated onto one rich
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media plate forming a grid with the yeast lines. This system allows us to simultaneously
mate one cDNA containing strain with various strains carrying different versions of
LexA-NOS. The plate is then grown overnight at 30 0C to allow the formation of diploids
in the areas where the two strains came into contact. This plate is then replica plated onto
galactose X-gal plates lacking ura, his and trp. Since one strain can only survive the lack
of ura and his and the other the lack of trp, only diploid yeast will grow and, if an
interaction occurs, LacZ will be expressed.

EST clones

Clones LD05547 and GM01354 were obtained from Genome Systems. Both
clones are in Bluescript SK. The two clones were sequenced in order to obtain complete
sequence of the EF- ly.

P1 filter analysis

An EcoRI to XhoI fragment from LD05547 was labeled with [32P] dCTP using
the Rediprime DNA labeling system (Amersham). The probe was then purified through a
column made with Bio-gel P-10 medium (Bio-Rad). The P1 filter was pre-hybridized in
10ml high phosphate buffer (HPB) (0.5M NaCl, 0.iM Na 2HPO4 and 5mM EDTA,
adjusted to pH 7.0) and 1% sarkosyl for two hours at 55'C. The filter was then incubated
overnight in HPB and 1% sarkosyl with radiolabeled EF1y probe at 55'C. The filter was
then washed once in 1mM Tris-HCl pH 8.0 plus 1% sarkosyl at 55'C. This was followed
by three washes in 1mM Tris-HCl at 55"C for 10 minutes. Lastly, the filter was washed
in 2X SSC and 0.1% SDS for 10 minutes at room temperature. The filter was exposed to
X-ray film overnight.

Ovol colony probing

Probes for nos, bru, EF-ly, diphosphate reductase and clone X32 were made by
DIG-labeling an EcoRI to XhoI fragment from the pJG4-5 two hybrid plasmids. The
labeling reaction was done using the Dig Labeling Kit (Boehringer Mannheim).

All 69 LacZ + clones isolated from the Ovol library screen were plated on plates
lacking ura, his and trp. Colonies were lifted with Hybond N nylon 0.45 micron
membrane (Amersham). The filter was placed on Whatman paper filters soaked in IM
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sorbitol, 20mM EDTA and 50mM DTT for 40 minutes. The filter was then placed at
-70 0 C for 5 minutes and thawed. Next, the filter was then placed on Whatman paper
soaked in IM sorbitol, 20mM EDTA and 200 units/ml f-gucuronidase and incubated at
37'C for 6 hours. The filter was then placed on a paper filter saturated with 0.5M NaOH
for 10 minutes, on a paper filter saturated with 0.5M Tris-HCl and 6XSSC twice for 5
minutes and finally on a paper filter saturated with 2X SSC twice for 5 minutes. The test
filter was air-dried and UV-crosslinked. The filter was then pre-hybridized in prehyb (5X
SSPE, 50% deionized formamide, 0.1% SDS, 0.5% dry milk and 500gg/ml denatured
calf thymus DNA) for 30 minutes at 42'C. The filter was incubated in 1ml prehyb plus
10gl of the probe overnight at 420C. The filter was washed twice for 5 minutes at room
temperature in 2X SSC and 0.1% and twice in same buffer at 68'C. Finally, a detection
reaction was performed as described in the Dig labeling kit (Boehringer Mannheim).

Western blot

Yeast extracts were prepared by growing yeast in liquid media to an OD6 00 of 0.5,
spinning 1 ml of the culture to pellet cells and then resuspending in 50g1 of standard SDS
loading buffer. The cells were broken by freezing on dry ice and boiling prior to loading
on a 10% SDS-acrylamide gel. Proteins were transferred to a PVDF membrane. The
blot was blocked in 5% milk in PBS for 2 hours. The blot was incubated overnight in 2.5
% milk in PBS and a 1:1000 dilution of rabbit antibody raised against NOS(Wang, et al.,
1994). The blot was then washed in PBS and incubated in 2.5% milk in PBS with a
1:1000 dilution of AP-conjugated goat anti-rabbit sera (Jackson ImmunoResearch).
Afterwards, the blot was washed with PBS and last with AP buffer (100mM NaCl, 5mM

MgCl 2 and 100mM Tris pH 9.0). The blot was finally stained in 10ml AP buffer
containing 0.375 mg/ml of NBT and 0.25 mg/ml of BCIP.
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RESULTS

Two hybrid screen

In order to identify proteins that interact with NOS we performed a two-hybrid
screen. We used the interaction trap system developed in yeast by Stanley Fields and
Roger Brent (Fields and Song, 1989; Gyuris, et al., 1993). This system uses the binding
domain of the transcription factor LexA (LexA-BD) fused to the bait protein of interest
and cDNA libraries fused to a transcription activation domain (AD) (Gyuris, et al., 1993).
Two reporter constructs, one coding for Leu2 and the other for LacZ, are utilized to
detect interactions between the bait and a member of the library. Both of these reporters
contain LexA operator sequences. If an interaction occurs between the bait protein and a
member of the library, yeast containing both fusion proteins will be able to grow in media
lacking leucine and will turn blue in media containing X-gal (Figure 3.1). Sequences
coding for the entire NOS open reading frame were fused to LexA. This chimeric protein
can not activate transcription by itself and is expressed well in yeast (Figure 3.2).

Since NOS function is required during embryogenesis and oogenesis we wanted
to use libraries representative of these two stages. Consequently, we used two different
cDNA libraries obtained from Drosophila ovaries and one from 0 to 12 hour old embryos
(see Materials and Methods for details). Table 1 shows details of the total colonies
screened and the number of positive clones isolated for each one of the libraries. In total,
229 colonies out of 5.5 x 10' were able to grow on media lacking leu. The transcription
of lacZ is a more stringent test for an interaction. Therefore, all 229 colonies were tested
for the expression of LacZ by growing them in the presence of X-gal. This test showed
that 123 colonies contained library members capable of interacting with NOS.

The library plasmids from these isolates were rescued and characterized
molecularly. We first grouped plasmids harboring the same cDNAs by restriction
mapping using two different enzymes. Subsequently, one isolate from each one of the
groups was sequenced. Table 2 shows the identity of the cDNAs isolated from libraries
RFLY1 and RFLY3. Thirteen clones from the embryonic library contained the gal4
activation sequences fused to either nothing or very short sequences. In addition,
sequences coding for l6sRNA were isolated many times from both libraries. l6sRNA is
often isolated in two hybrid screen as a non-specific activator. Several of the cDNAs
identified encode proteins involved in translation and RNA binding. These two functions
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are compatible with NOS' role during development and these respective clones were

analyzed further.

We first confirmed that the plasmids isolated encoded proteins that can interact

with NOS. To verify the specificity of the potential interactors we performed mating

assays. This test takes advantage of the fact that haploid cells of opposite mating type

will fuse to form diploids when brought into contact with each other. We introduced the

activation-tagged cDNA sequences into yeast of the mating type a and the bait into yeast

of the mating type a. When these two strains are mated, the newly formed diploid cells

will be able to activate the transcription of the two reporter genes if an interaction occurs.

The strain containing the AD fused cDNA sequences was mated to three different mating

type a strains: one carrying the lexA-nos fusion, a second one with lexA fused to the

coding sequences of the human protein Lamin, and a third one carrying the parental

pEG202 plasmid. This mating test allowed us to recreate the interaction for only three

proteins (Table 2). High levels of LacZ expression were seen when diploid cells

contained LexA-NOS and either BRUNO, NOS or Elongation Factor ly (EF-ly) fused to

the activation domain. This interaction was specific to NOS. All other proteins tested

failed to show an interaction with NOS in the mating assay.

All 69 isolates from the Ovol screen were transferred to a filter and probed for the

presence of nos, bruno and the elongation factor. This was done to find out quickly

whether proteins identified with one library can also be identified as interactors from

another library. Both BRUNO and EF-ly were found once in the Ovol library screen

(Table 2). This result confirms the validity of these interactions.

NANOS dimerizes through its N terminus

One of the three interactions verified by the mating assay was NOS itself. The

nos cDNA isolated in the screen codes for amino acids 157-402. This fragment contains

most of the areas of homology found between NOS and other proteins (Figure 3.4a)

(Curtis, 1995b). In order to map the region of dimerization we performed mating assays

using LexA fused to various parts of the NOS protein (Figure 3.3). All these fusion

proteins were expressed at high levels in yeast and did not activate transcription in the

absence of an activation domain (data not shown). In order to recapitulate the in vivo

situation, we first performed mating assays using the entire NOS fused to the activation

domain instead of the fragment isolated in the screen. A negative control consisting of

activator tagged Orb was used in this experiment. Orb is a Drosophila protein required
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during oogenesis and is not expected to interact with NOS (Lantz, et al., 1994). The
NOS-NOS interaction occurs through the N terminal region of NOS, specifically through
amino acids 50 to 218 (Figure 3.3). Deletion of this region (A50-218) disrupts the
interaction (Figure 3.3). Additionally, there is an interaction between the smaller
fragment NOS NI and the NOS protein. This result suggests that this 88 amino acids
fragment is the dimerization domain. Nevertheless, this domain is not present in the
original NOS clone isolated (3X74, Figure 3.4A). In addition, deleting this domain or the
adjacent 69 amino acids does not affect the interaction. Two possibilities can explain this
result. It is possible that redundant dimerization sequences exist in the protein making it
difficult to eliminate the interaction through deletions. Alternatively, the interaction
could occur using a different part of the N terminal region in each of the two molecules
involved. For example, NOS NI could interact with the part deleted by ANOS NII.
Unfortunately, we were unable to express a NOS NII fragment in either of the parental
plasmids used in the mating assay. In order to differentiate between these two
possibilities we performed the mating assays using the fragment coded by 3X74 and the
different LexA fusions (Figure 3.4B). The key result from these mating assays is the lack
of interaction between NOS NI and the clone isolated in the screen. The activator tagged
protein coded by 3X74 does not contain the regions in NOS NI. Similarly, 3X74 does
not interact with NOS ANII which carries a deletion in the section of the N terminus left
in 3X74. Consequently, the dimerization does not occur through an interaction between
non-homologous regions of the protein. These results could suggest that there are two
distinct regions of dimerization (amino acids 50 to 148 and amino acids 149 to 218) in
the N terminus of NOS or that redundant sequences exist in the 168 amino acid
dimerization domain here identified.

Elongation Factor ly interacts with the tail domain

The elongation factor ly (EF-ly) was isolated as an interactor with NOS in the
two hybrid screen. This elongation factor was isolated from two independent ovary
cDNA libraries. This factor had not been previously cloned from Drosophila. The clone
obtained from library RFLY3 seems to code for the full-length protein by comparison to
database sequences of the protein from Xenopus and S. cerevisae. Blast analysis showed
that EST clones of this gene had been isolated from Drosophila. We obtained two
different EST clones from the Drosophila genome project. One of these clones came
from an ovary library, while the other was isolated from an embryo library. We
sequenced these EST clones along with the two isolates from our hybrid screen to obtain
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a consensus sequence for the Drosophila melanogaster EF-ly (Figure 3.5). The clone
from the Ovol two hybrid library coded for a fragment from amino acid 153 to the end of
the protein (Figure 3.5). Drosophila EF-ly consists of 431 amino acids and has the most
homology to EF- ly from Xenopus laevis and Artemia salina(Janssen and Moller, 1988).
This protein contains a signature GST like domain in its N terminus (Koonin, et al.,
1994). GST domains have been implicated in protein-protein interactions. However, this
region is truncated in the Ovol clone (Figure 3.5). This suggests that the interaction with
NOS does not depend on the GST domain of EF-ly and that the interaction might be
specific.

To determine where this gene maps in the fly genome we screened a P1 genomic
filter representing the Drosophila genome. Most of the P1 clones have been mapped to
particular contigs which cover about 85% of the total genome (BGDP). These contigs
have in turn been mapped to specific positions in the chromosome. This experiment,
therefore, allows us to obtain genomic sequence for this gene and simultaneously map the
gene to a position in the genome. Knowing the position of EF- ly allows us to search for
genetic mutations in the region and to analyze deletions of this region for potential
phenotypes. We used the entire cDNA as a probe to screen the filter. Six positive clones
were found (Table 3). One of the clones had no mapping information, while three of
them belonged to the same contig stg. This contig maps to region 99A5-99A8 on the
right arm of the third chromosome. The other two clones mapped next to each other in
adjacent contigs ser and Ets97D respectively. These two clones could represent separate
copies of the EF-ly gene. These two clones also map to the right arm of the third
chromosomes fairly close to the stg contig. In summary, there are three copies of this
gene in Drosophila, all mapping close together on the third chromosome. Other
organisms, such as yeast, also contain multiple copies of this gene all lying next to each
other in the chromosome (Kinzy, et al., 1994). The region where this gene maps in the
Drosophila chromosomes does not harbor any obvious candidates for a mutation in the
EF-ly. Deficiency Df(3R)3450 deletes the regions containing the gene found in the stg
contig. Deficiency Df (3R) Ti-P takes out a large region taking out the other two
potential copies of the EF-ly. It will be interesting to see whether any of these deletions
could rescue a weak nos phenotype by reducing the amount of EF-ly expressed.

We next mapped the region in NOS that interacts with EF- ly. In order to find the
specific region of NOS needed for this interaction we recapitulated the yeast mating
assays described earlier. EF-ly interacts specifically with the tail region of the protein
(amino acids 373 to 402, Figure 3.6). This interaction is inhibited by a seven amino acids
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deletion in this region (NOSAL7). This deletion is found in the allele nos", which

specifically affects hb regulation (Chapter 2). We also tested the interaction of EF- ly and
NOS protein with a specific amino acid change in the tail region known to affect NOS
function (Nos"', Chapter 2). The mutation found in allele nos108 (Met(379) to Lys
change) does not seem to affect this interaction (Figure 3.7). As with full-length NOS,
the tail domain fragment carrying this mutation can still interact with EF-ly (NOS tail
108, Figure 3.7). We have also shown that two other mutations in the C-terminal region
of the protein do not disrupt the interaction between full length NOS and any of the three
interactors isolated in the two hybrid screens (Figure 3.7) (Chapter 2, (Curtis, et al.,
1997)). In conclusion, the interaction between this translation factor and NOS occurs
through a small region in the C terminus that has been implicated in the translation
repression of hb.

NANOS and PUMILIO

NOS Function in the embryo requires the action of the RNA binding protein
PUMILIO (PUM) (Barker, et al., 1992; Wreden, et al., 1997). While the genetic
interaction between NOS and PUM has been well demonstrated, a physical interaction
has not been observed. All the libraries used in this screen were made by priming R.NA
from its poly(A) tail. Given that the average insert size for all three libraries is
approximately 1 Kb and that the 3'UTR of pum is approximately 1.2 Kb, we would not
expect to find PUM protein in these screens. In order to get around this problem we
tested for an interaction between NOS and PUM directly by using the yeast mating assay.
The PUMILIO protein is too large to be expressed in its entirety as a two hybrid fusion.
Therefore we used the minimal functional domain of PUM which consists of the RNA
binding domain harbored in its C terminus (PumC, amino acids 1093 to 1533) (Zamore,
et al., 1997; Wharton, et al., 1998). The RNA binding domain is able to rescue the pum
phenotype (Wharton, et al., 1998). This region fused to the LexA binding domain can be
expressed in yeast and does not activate transcription (D. Chagnovich, personal
communication). We detected no interaction between the LexA-PumC and the activator
tagged full-length NOS (data not shown). We also performed the inverse experiment by
expressing PumC with the activation domain and NOS fused to the LexA binding domain
with an identical result. In addition, these results were confirmed by simultaneously
expressing the constructs in a haploid yeast strain. Nevertheless, no interaction was seen
in these assays either. In summary, an interaction between NOS and the PUM minimal
functional domain can not be detected by a directed yeast interaction trap assay.
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DISCUSSION

NANOS and the Elongation Factor 1y

We have identified three proteins that have the ability to interact with NOS
protein. Two of these proteins, EF- ly and BRUNO, are implicated in translation and the
other is NOS itself. NOS role in the regulation of hb translation suggests that the
interactions with EF-ly and BRUNO might be meaningful. EF-ly interacts specifically
with the tail domain of NOS. This region is required for NOS function during pattern
formation and primordial germ cell migration but not during oogenesis (Chapter 2). This
domain is necessary for the regulation of hb translation, since its absence or a mutation in
it renders NOS incapable of regulating hb. A deletion in this region isolated as allele
nosL7 shows no function in hb regulation and is able to disrupt the interaction with the EF-
ly in yeast. Nevertheless, a mutation affecting a single amino acid in the tail region that
shows an identical phenotype to nos.7 does not affect the interaction with the elongation
factor. This result might indicate that this interaction is not specific or that the yeast
interaction trap system is not sensitive enough to detect the effect of a single amino acid
change. It is also possible that other amino acids in the tail region might be more
important in interacting with the elongation factor.

The elongation factor 1 (EF-1) complex is formed by three subunits a, P and y
and is involved in protein synthesis by binding aminoacyl-tRNA to 80S ribosomes under
GTP hydrolysis (Moldave, 1985). EF- 1 Py carries out the nucleotide exchange of EF- 1 a-
GDP to EF-la-GTP. EF-ly has been suggested to act as a catalyst in the nucleotide
exchange activity carried out by the P subunit (Janssen and Moller, 1988). The exchange
reaction has been suggested to be a rate limiting step in the elongation stage of
translation. An interaction between NOS and an elongation factor suggests that NOS
might be regulating translation by affecting the elongation rate. Potentially, NOS could
recruit EF-ly away from the elongation machinery, stalling translation. This idea is not
supported by previous experiments performed to study the translation status of the hb
RNA. Polysome gradient profiles of WT embryos, nos mutant embryos and embryos
with NOS at both the anterior and posterior pole were analyzed and compared to each
other (Wang, 1995). This experiment showed that as more NOS is present and less HB
protein is expressed, hb RNA shifts to the monosomal fraction. This is indicative of
translational regulation at the level of initiation. If hb were regulated during elongation,
as less HB protein is expressed more of the RNA should be trapped in the polysomes.
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What role an interaction between NOS and an elongation factor might play in the
regulation of hb is not known. It is possible that EF-ly carries out a function other than
translational elongation. In yeast, approximately half of this subunit is in the EF-1
complex, while the rest is free in the cytoplasm. In addition, deletion of all three EF-ly in
yeast has no effect on viability and translation (T.Goss Kinzy, personal communication).
Also , in Artemia salina, EF-ly has been suggested to interact with membrane and
cytoskeletal structures (Janssen and Moller, 1988). Further experiments, using mutations
in EF- ly should reveal whether the interaction observed in the two hybrid assay reflects a
functional connection between NOS and PUM and the translation machinery.

NANOS dimerization domain

The third interactor isolated suggest that NOS might be able to dimerize. We had
no previous evidence that dimerization might occur. We do not know at the moment
whether this interaction is required for NOS normal function. This interaction seems to
occur through the N terminus of NOS. This region of the protein has not been affected in
a mutagenesis screen (Chapter 2). In addition, the deletion A50-218 shown here to
disrupt this interaction, was shown to be able to partially rescue the abdominal phenotype
of a nos null embryo in an RNA injection assay (Curtis, et al., 1997). The amounts
injected are expected to exceed the normal amounts of RNA present in an embryo.
Therefore, the RNA injection assay might be able to overcome the need for dimerization
by having higher levels of the protein present. Potentially, this interaction is more critical
in other functions of NOS where it is not known whether the N terminus plays any role.
It will be interesting to see what the effect of this deletion in proteins expressed at normal
levels would be on the different roles of NOS.

NANOS and PUMILIO

The only protein known to interact genetically with NOS is PUM. PUM is active
in many of the developmental processes where NOS is required: oogenesis,
embryogenesis and germ cell migration (Forbes and Lehmann, 1998). Co-expression of
both factors and their similar phenotypes suggests that their functions are closely
connected. Previous efforts to show a direct physical interaction between these two
proteins have failed. We took advantage of the yeast two hybrid system used here to find
NOS interactors to directly probe for a PUM-NOS interaction. Unfortunately, this assay
was unable to detect direct binding between these two proteins. It is possible that an
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interaction between NOS and PUM is not direct or that it requires other factors or the
presence of specific RNA sequences to occur. New modifications of the two hybrid
system that can use more than two factors or RNA linkers will prove useful to further test
this interaction. In addition, we failed to see interactions between PUM and any of the
proteins interacting with NOS (data not shown). As more information becomes available
on the processes involved in the regulation of hb and other targets by NOS and PUM we
might learn what role the interaction between NOS and EF- ly might play in this process.
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Figure 3.1 NANOS interaction trap.

Full-length NOS protein fused to LexA binding domain is used as a bait in this
interaction trap. A. If no interaction occurs between NOS and a member of a cDNA
library carrying an activation domain, transcription of the reporters does not occur. B.
When an interaction occurs with an activator-tagged protein, the transcription of two
reporters is activated. The yeast cell hosting this interaction will be able to grow in
media lacking leucine, and will form blue colonies in the presence of X-Gal.
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Figure 3.2. LexA-NOS does not activate transcription and is expressed
in yeast.

A. Yeast cells carrying the LexA-NOS construct and no activation domain were plated
on both Leu+ and Leu- plates along with yeast carrying control plasmids. pSH17-4
codes for LexA fused to the activation domain of Gal4 and is capable of directly
activating the expression of leu. pRFHMI encodes a LexA fusion incapable of activating
transcription of the reporter genes. Yeast carrying the LexA-NOS fusion do not grow in
the absence of leucine, showing that this fusion protein cannot activate transcription. B.
Antibodies against the tail region of NOS detect a protein of expected size, (NOS 40 kDa
+ LexA 30 kDa = 70 kDa) in yeast extract of two independent isolates containing the
pLexA-nos fusion plasmid. MW is high molecular weight standards.
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Table 3.1. Results from three independent yeast two hybrid screens.

CDNA Library RFLY 1 RFLY 3 Ovo I
Drosophila embryo Drosophila ovary Drosophila ovary

0-12 hours
Complexity 4 x 10 6  3.2 x 106 1.6 x 106

Library + clones 2.9 x 107 1 x 107 1.3 x 106

Colonies screened 3 x 107 2 x 107 1.5 x 107

Leu + colonies 56 88 85

LacZ+ colonies 21 33 69

Library + refers to amounts of colonies containing the LexA-NOS plasmid and a member
of the library. These colonies were frozen and an aliquot was thawed and plated on leu-
media to find interactors. The number of cells in the aliquot determine the number of
colonies screened.
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Table 3.2. Identity of clones isolated in

Clone
Name Library

Size of
Isolates Insert Mating

Elongation factor ly 3X57 RFLY3 2 1.8 kb +
Ovol

Drosophila BRUNO 3X33 RFLY3 2 1.1 kb +
Ovol

Drosophila NANOS aa 157-402 3X74 RFLY3 1 1.7 kb +

X14 RFLY1 1.4 kb
Drosophila 16s rRNA X30 17 1.1 kb -

3X2 RFLY3 0.8 kb

Drosophila Ribonucleoside 3X24 RFLY3 7 1.5 kb -
diphosphate reductase

Drosophila ribosomal protein S7 3X67 RFLY3 2 1.0 kb -

Drosophila PORIN X8 RFLY1 2 1.4 kb -

Protein containing double stranded X20 RFLY1 1 1.5 kb -
RNA binding domain

Drosophila HEMOMUCIN X31 RFLY1 1 2.5 kb -

Drosophila EST X32 RFLY1 1 1.5 kb

Drosophila ribosomal protein DL 11 3X 18 RFLY3 1 1 kb -

Drosophila Minute (1) 1B protein 3X23 RFLY3 1 0.8 kb -
ribosomal protein L36

Zinc finger protein 3X52 RFLY3 1 1.7 kb -
5x(CX2CX 12HX 3HX7)

snRNP N/B 3X77 RFLY3 1 1.7 kb -

3X14 RFLY3 1 1.0 kb -

3X42 RFLY3 1 0.4 kb -

3X62 RFLY3 1 1.0 kb

3X73 RFLY3 1 1.0 kb -

Proteins that do not indicate Drosophila have not been cloned
sequences in the plasmid isolated showed no homology to
Libraries RFLY3 and Ovol were produced from ovary RNA.

in flies. ? indicates that the
sequences in the database.
RFLY1 was made from 0-

12 hour embryos. For mating results a + indicates that LacZ expression was seen in
diploid yeast containing this clone and the LexA-Nos fusion.
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Figure 3.3. NOS dimerizes through its N terminus.

Left column depicts different NOS fragments used in this mating assay. The second
column shows LacZ expression of diploid yeast carrying AD-NOS fusion and the NOS
fragments shown at the left fused to LexA. The last column shows diploid yeast which
carries AD fused to the Drosophila protein Orb and NOS fragments fused to LexA. All
diploid strains are grown on the same plate containing X-Gal. Blue yeast is indicative of
an interaction. Colored boxes in the NOS protein indicate regions conserved among
other insect NOS (Curtis, et al., 1995)
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Figure 3.4. Mapping the NANOS dimerization domain.

A. 3X74 is the NOS fragment isolated in the two hybrid screen. This fragment contains
the complete conserved Zn-fingers and C-terminal tail domain. B. Results from mating
assays between yeast carrying NOS fragments fused to the LexA binding domain and
activator-tagged full-length NOS or the isolated clone 3X74. +++ indicates high levels of
LacZ expression. When - is used no expression of the reporter was detected when plated
in X-Gal media. The first construct in the left colunm depicts full length NOS with the
previously described regions of homology in boxes (Curtis, 1995b).
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Figure 3.5. D. melanogaster Elongation Factor ly.
Sequence of the cDNA coding for EF-ly. Vertical line shows where the clone isolated

from the Ovol library begins. In bracket is the GST-like domain found in many EF-ly.
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GGCACGAGACGATTTAAACGGCGAATCCACCATGGTGAAAGGAACTCTGTACACTTACCCCGAGAACTTCCGGGCCTACAAGGCGCTCATCGC
I '93

Met Val Lys Thr Leu Tyr Thr Tyr Pro Glu Asn Phe Arg Ala Tyr Lys Ala Leu Ile Ala

AGCCCAGTACTCCGGAGCCCAGGTGAAAGTGGCCGACAACTTCAAGTTCGGCGAGACCAACAAGTCGGCTGAGTTCCTCAAGAAGTTCCCCGG

186
Ala Gin Tyr Ser Gly Ala Gin Val Lys Val Ala Asp Asn Phe Lys Phe Gly Glu Thr Asn Lys Ser Ala Giu Phe Leu Lys Lys Phe Pro Gly

TGGCAAGGTGCCCGCCTTTGAGACCGCCGAAGGACAGTACTTGAGCGAGTCCAATGCCATCGCCTACCTGCTGGCCAACGAGCAGCTGCGCGG
. I279

Gly Lys Val Pro Ala Phe Glu Thr Ala Giu Gly Gin Tyr Leu Ser Glu Ser Asn Ala Ile Ala Tyr Leu Leu Ala Asn Glu Gin Leu Arg Gly

CGGAAAGTGCCCCTTCGTGCAGGCCCAGGTCCAGCAGTGGATCTCCTTCGCCGACAACGAGATTGTGCCTGCCTCCTGTGCCTGGGTCTTCCC
1 372

Gly Lys Cys Pro Phe Val Gin Ala Gin Val Gin Gin Trp lie Ser Phe Ala Asp Asn Glu Ile Val Pro Ala Ser Cys Ala Trp Val Phe Pro

CCTGCTGGGCATTCTGCCGCAGCAGAAGAACAGCACTGCCAAGCAAGAGGCCGAGGCTGTGCTGCAGCAGCTCAACCAGAAGCTGCAGGACGC

' .465
Leu Leu Gly Ile Leu Pro Gin Gin Lys Asn Ser Thr Ala Lys Gin Glu Ala Glu Ala Val Leu Gin Gin Leu Asn Gin Lys Leu Gin Asp Ala

CACCTTCCTGGCCGGCGAGAGCATCACATTGGCCGACATTGTGGTCTTCAGCAGTCTGCTCCACCTGTACGAGTACGTCCTGGAGCCCAGTGT

558
Thr Phe Leu Ala Gly Glu Arg lie Thr Leu Ala Asp Ile Val Val Phe Ser Ser Leu Leu His Leu Tyr Glu Tyr Val Leu Giu Pro Ser Val

GCGCAGTGCCTTCGGCAACGTGAACCGCTGGTTCGTCACCATCCTCAACCAGAAGCAGGTCCAGGCCGTCGTCAAGGACTACAAGCTGTGCGA
- .651

Arg Ser Ala Phe Gly Asn Val Asn Arg Trp Phe Val Thr Ile Leu Asn Gin Ly Gin Val GIn Ala Val Val Lys Asp Tyr Lys Leu Cys Glu

GAAGGCCCTGGTCTTCGACCCCAAGAAGTACGCCGAGTTCCAGGCCAAGACCGGAGCCGCCAAGCCCCAGCAGCAGGCTCAGCAGCAGAAGCA

Lys Ala Leu Val Phe Asp Pro Lys Lys Tyr Ala Glu Phe Gin Ala Lys Thr Gly Ala Ala Lys Pro Gin Gin Gin Ala Gin Gin Gin Lys Gin

GGAGAAGCCCAAGGAAAAGAAGGAGGCGCCCAAGAAGGCTGCCGAGCCCGCCGAGGAGTTGGACGCCGCCGATGAGGCCCTGGCCGCCGAGCC

837
Glu Lys Pro Lys Glu Lys Lys Glu Ala Pro Lys Lys Ala Ala Glu Pro Ala Glu Glu Leu Asp Ala Ala Asp Glu Ala Leu Ala Ala Glu Pro

CAAGTCCAAGGACCCCTTCGATGCGCTGCCCAAGGGCACCTTCAACTTCGATGACTTCAAGCGCGTGTACTCCAACGA GACGAGGCCAAGTC
1' 930

Lys Ser Lys Asp Pro Phe Asp Ala Leu Pro Lys Gly Thr Phe Asn Phe Asp Asp Phe Lys Arg Val Tyr Ser Asn Giu Asp Giu Ala Lys Ser

CATTCCCTACTTCTTCGATAAGTTCGA'TGCCGAGAACTACTCGATCTGGTTTGGCGAGTACAAATACAACGAGGAGCTGTCCAAGGTGTTCAT
. 1023

Ile Pro Tyr Phe Phe Asp Lys Phe Asp Ala Glu Asn Tyr Ser Ile Trp Phe Gly Giu Tyr Lys Tyr Asn Glu Giu Leu Ser Lys Val Phe Met

GTCGTG CAATCTCATCACCGGCATGTTCCAGCGTCTGGACAAGATGCGCAAGGCGGCCTTCGCCTCCGTTTGCCTGTTCGGCGAGGACGGCAA
' '1116

Ser Cys Asn Leu Ile Thr Gly Met Phe Gin Arg Leu Asp Lys Met Arg Lys Ala Ala Phe Ala Ser Val Cys Leu Phe Gly Giu Asp Gly Asn

CAGCACCATCTCCGGCATCTGGGTGTGGCGCGGACAGGATCTGGCCTTCACGCTCTCCCCCGACTGGCAGATCGATTACGAGGTCTACGACTG

1209
Ser Thr Ile Ser Gly Ile Trp Val Trp Arg Gly Gin Asp Leu Ala Phe Thr Leu Ser Pro Asp Trp Gin Ile Asp Tyr Glu Val Tyr Asp Trp

GAAGAAGCTCGACGCCAAGAGCGAGGAGACCAAGAAGCT GGTCACCCAGTACTTCTCCTGGTCCGGCACCGACAAGGACGGTCGCAAGTTCAA
1302

Lys Lys Leu Asp Ala Lys Ser Giu Giu Thr Lys Lys Leu Val Thr Gin Tyr Phe Ser Trp Ser Gly Thr Asp Lys Asp Gly Arg Lys Phe Asn

CCAGGGCAAGATCTTCAAGTAATCATCTCTGCCCAGCCCAGCTCCGCTCAAAGCAGCAGCCGCCCTCATTTAGACCAACAACAACAACAGCAG

' 1395
Gin Gly Lys Ile Phe Lys -

CAGTAACAATAAAGTTTGAGATTTAAAATGCAGGAAGAGCACAATGCCCATTTCTTAAGTTCCAACTGATAAGTACACTAAAGATATCCAATA
SL I . , - , I ,. 1488

TCTGTCGTGCTGCCTCCCACGTTTGGCGGAATCGTGTGTCTCGCCTCCTGCATTTTGTACTGGAGAATTTGTTTGTAACCGCCTAAGCATAAC

1581

ACAGCATGATATTGTCAACGGAACAGCCGCCTGCAGTCAGAAAATATTTATAAAAAATAAAAGGTTTTCTATTAATAACAGCAAAAAAAAAAA

1674

AAAAAAA
' a 1681



Table 3.3. P1 clones containing EF-17.

P1 Clone Contig Position Chromosome

DS08773 ND ND ND

DSO6138
DS05903 stg 99A5-99A8 3(R)
DS02282

DS08064 ser 99A1-99A6 3(R)

DS09080 Ets97D 97C5-D2 3(R)

ND indicates that no information is available on this particular clone.
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Figure 3.6. EF-ly interacts with the tail domain of NOS

The first column contains cartoon depictions of different NOS fragments fused to LexA.

The second column shows diploid yeast formed after mating of a strain carrying AD-EF-
ly fusion to a strain carrying the NOS fragments shown at the left fused to LexA. The

last column shows diploid yeast which carries AD fused to the Drosophila protein Orb

and NOS fragments fused to LexA. All yeast are grown on the same plate containing X-

gal. Blue yeast indicates that an interaction occurred allowing lacZ to be transcribed.
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Figure 3.7. Effect of NOS mutations on protein-protein interactions.

LexA-NOS fusion with different mutations were used in these mating assays. These

fusion proteins were expressed in diploid strains along with the three interactors

identified in the screen. Full length EF-ly, BRUNO and NOS fused to the AD were used.

+++ indicates high expression of LacZ, while - indicates no detectable LacZ expression.

The NOS mutations used have been shown to affect NOS function in the embryo

(Chapter 2 , (Curtis, et al., 1997)).
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CHAPTER 4

The Drosophila posterior determinant NANOS interacts with
the RNA binding protein BRUNO during oogenesis.

SUMMARY

The posterior determinant NANOS and the RNA binding protein PUMILIO act together

during embryogenesis to repress the translation of the maternal mRNA hunchback at the

posterior pole. NANOS is also required during oogenesis for the differentiation of the

germ line cystoblast. At this stage, PUMILIO is not likely to be NANOS' functional

partner. Here we show through a two-hybrid screen and immunoprecipitation

experiments that NANOS directly interacts with the RNA binding protein BRUNO.

BRUNO has been identified previously as a translational repressor of oskar mRNA. We

find that both NANOS and BRUNO affect the differentiation of the cystoblast during

early oogenesis and that osk is not likely to be the target for this fuction. Therefore we

suggest that NANOS and BRUNO interact to regulate the translation of an unidentified

transcript during the development of the germ line cystoblast. Accordingly, we show that

NOS and BRU together can regulate the translation of a reporter gene targeted for

BRUNO binding.
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AUTHOR'S NOTE

The work described in Chapter 4 was performed in collaboration with various

people in Dr. Ruth Lehmann's lab. The analysis of nanos, pumilio and bruno expression

and phenotype in the ovaries were performed in collaboration with Dr. Alexandria

Forbes. Dr. Daniel Chagnovich designed the translation assay. I adapted this injection

assay and the necessary vectors for the study of NANOS and BRUNO dependent

translational regulation. I also performed the two-hybrid screen and the domain mapping

analysis.

This chapter will be submitted for publication as Arrizabalaga, G., Forbes, A.,
Chagnovich, D. and Lehmann, R. "The Drosophila posterior determinant Nanos

interacts with the RNA binding protein BRUNO during oogenesis"
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INTRODUCTION

The regulation of gene expression is a critical phenomenon necessary for the
functioning of all organisms. The control of transcription is a common and well studied

mode of achieving gene regulation. Nevertheless, in cells such as the developing oocyte

and early embryo, transcription is silent and a large amount of transcripts are stockpiled

to be used at different stages and places. Therefore, limiting the time and place of

expression of these transcripts is accomplished by translational regulation and mRNA

localization. The mechanisms by which the translation of specific messages are silenced

are not understood. Two common features among many cases of translational regulation

are the roles played by the 3' untranslated region (UTR) and RNA binding proteins

(Kelley, et al., 1995; Kim-Ha, et al., 1995; Murata and Wharton, 1995; Rivera-Pomar, et

al., 1996; Smibert, et al., 1996; Bashaw and Baker, 1997; Chan and Struhl, 1997;
Ostareck, et al., 1997; Zamfir, 1997; Zhang, et al., 1997; Gunkel, et al., 1998; Paillard, et

al., 1998; Jan, et al., 1999; Walker, et al., 1999).

A well studied phenomenon where both 3'UTR sequences and RNA binding

proteins play an essential role is the masking of mRNAs previous to oocyte maturation

seen in mice, frogs and clams (Hake and Richter, 1994; Stebbins-Boaz, et al., 1996;
Stutz, et al., 1998; Minshall, et al., 1999; Walker, et al., 1999). Many messages in these
organisms remain deadenylated and silenced until oocyte maturation when they become

polyadenylated and translated (Dworkin and Dworkin-Rastl, 1985; Dworkin, et al., 1985;
McGrew, et al., 1989; McGrew and Richter, 1990; Gebauer, et al., 1994). Both the
silencing and the activation depend on sequences in the 3'UTR known as the gytoplasmic

polyadenylation element (CPE) (Varnum and Wormington, 1990; Verrotti, et al., 1996;
Minshall, et al., 1999). An RNA binding protein known as CPE binding protein (CPEB)

binds to the CPE and is necessary for both masking and activation (Hake and Richter,
1994; Stebbins-Boaz, et al., 1996; Minshall, et al., 1999). How the translational

repression is achieved is not known. The correlation of silencing with a short poly(A) tail
and activation with a long poly(A) tail has led to the hypothesis that regulation is
achieved by changes in the poly(A) tail length. The poly(A) tail is required for cap-

dependent translation and through an interaction between the poly(A) binding protein and

eIF4F, the poly(A) tail physically interacts with the translation initiation apparatus

(Munroe and Jacobson, 1990; Gallie, 1991; Tarun and Sachs, 1995; Tarun and Sachs,
1996; Wells, et al., 1998). Consequently, it follows that elimination of the poly(A) tail
can affect the rate of translational initiation. Nevertheless, a direct causative relationship
between changes in poly(A) tail length and translational regulation has not been
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established. Also unknown is how CPEB acts as both a masking protein and an activator.

Changes in the phosphorylation state of the protein might explain the switch from

repressor to activator (Walker, et al., 1996; Walker, et al., 1999). Alternatively, CPEB

might interact with different cofactors to perform the two distinct functions. The study of

translational regulation in systems where genetic approaches are well established will aid

in the identification of other RNA binding proteins and co-factors involved in these

processes.

Specification of the posterior pole of the Drosophila embryo and the subsequent

development of the abdomen have become model systems for the study of both specific

translational regulation and mRNA localization. Abdomen formation in the embryo

depends in the regulation of the hunchback (hb) mRNA at the posterior pole of the early

syncytial embryo (Htilskamp, et al., 1989). Since hb mRNA is present in the entire

embryo this regulation requires to be spatially controlled. The localized action of hb

regulation is the product of a complex regulatory cascade that begins during oogenesis

with the regulation of the oskar mRNA,

OSKAR (OSK) protein in the oocyte is exclusively present at the posterior pole.

Its function in this region of the egg is to localize mRNAs to this area and also to specify

the cytoplasm that gives rise to the primordial germ cells (Ephrussi, et al.. 1991). The

maternal osk mRNA is transported into the oocyte during early stages of oogenesis, and

becomes localized to the posterior pole of the oocyte during midoogenesis through

sequences in its 3'UTR. Expression of OSK protein at the posterior pole of the oocyte is

coincident with its localization (Kim-Ha, et al., 1995). Mutations that disrupt osk

localization but not its stability also affect its translation, indicating that expression of

unlocalized osk is repressed (Rongo, et al., 1997). Translational control depends on a

repeated sequence motif in the 3'UTR, known as BRUNO response elements (BRE), and

an RRM protein called BRUNO (BRU) which binds to the BREs (Kim-Ha, et al., 1995;

Webster, et al., 1997). The regulation of osk occurs without changes in its poly(A) tail

(Salles, et al., 1994; Rongo, 1996). Therefore, BRU regulates osk translation by an

unkown mechanism.

Once OSKAR protein is translated at the posterior, one of its functions is to

localize the posterior determinant nanos (nos). Localization of nos to the posterior pole

of the oocyte occurs during late stages of oogenesis (Wang, et al., 1994). NANOS

protein is expressed in the embryo after fertilization only from the localized mRNA

forming a posterior to anterior gradient. Translational control of unlocalized nos mRNA

is independent of changes in the poly(A) tail length and is mediated through a 90
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nucleotide region in the 3'UTR known as the translation control element (TCE) (Gavis, et

al., 1996b). Smaug, an embryonic protein, binds to sequences within the TCE which are

required for regulation of nos, indicating that Smaug is a translational repressor of nos

(Smibert, et al., 1996). Quantitative experiments have revealed that most of nos mRNA

is not localized to the posterior and that translational repression and localization of nos

seem to be mutually exclusive (Bergsten and Gavis, 1999). Therefore, the spatial

restriction of nos mRNA is achieved by translational repression, and the localization of

nos is only required to activate translation.

NOS function in the embryo is to restrict the expression of the transcription factor

hb to the anterior of the embryo. HB protein produces an anterior to posterior gradient

complementary to that of NOS. HB represses the transcription of genes required for the

formation of the abdomen. Thus, lack of NOS protein results in the misexpression of HB

at the posterior and the lack of abdominal segments (Wang and Lehmann, 1991). Two

bipartite repeats in the 3'UTR of hb, termed nanos response elements (NRE), are required

for hb regulation (Wharton and Struhl, 1991). PUMILIO (PUM) protein binds to these

sequences and aids in the repression of hb translation (Murata and Wharton, 1995;

Zamore, et al., 1997). Unlike NOS, PUM is present throughout the entire embryo,
therefore NOS confers the spatial specificity to hb regulation. Unlike the regulation of

osk and nos, regulation of hb is accompanied by a deadenylation event which requires

PUM, NOS and the NREs (Wreden, et al., 1997). The exact relationship between the

removal of the poly(A) tail and the repression of translation is not known.

Several of the trans-acting factors involved in this regulatory cascade play roles in

other processes during development. Both NOS and PUM are required for the

development of the oocyte and for the migration of the germ cells (Wang, et al., 1994;

Kobayashi, et al., 1996; Forbes and Lehmann, 1998). Similarly, BRU is thought to affect

other transcripts besides osk, during early oogenesis (Webster, et al., 1997). In addition,
these factors might use different co-factors at different stages. PUM and NOS seem to

have distinct and separate functions during oogenesis. APONTIC (APT), a second RNA

binding protein that interacts with both the osk 3'UTR and BRUNO, is required for the

regulation of unlocalized osk mRNA but does not seem to share BRUNO's function in

early oogenesis (Lie and Macdonald, 1999). Here we describe a direct interaction

between NOS and BRU. Both of these genes share an expression partner and phenotype

in early oogenesis. In the wild-type ovary, germ line stem cells maintain themselves and

produce daughter cells, termed cystoblasts. The cystoblast undergoes four rounds of

division to give rise to sixteen interconnected cells, one of which becomes the oocyte. In
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both nos and bru mutant females, the differentiation of the cystoblast is affected. The

implications of this interaction in translational regulation and in egg development are

discussed.
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MATERIALS AND METHODS

Yeast two-hybrid screen

All experiments involving the two-hybrid system were performed as previously

described (Finley and Brent, 1994b). The interaction trap system used in this report uses

the DNA binding domain of the transcription factor LexA (LexABD) fused to the entire

NOS open reading frame and cDNA libraries fused to a transcription activation domain

(AD). Two reporter constructs, one coding for Leu2 and the other for LacZ, are utilized

to detect interactions between the bait and a member of the library. Both of these

reporters contain LexA operator sequences. If an interaction occurs between the bait

protein and a member of the library, yeast containing both fusion proteins will be able to

grow in media lacking leucine and will turn blue in media containing f-galactosidase.

All parental yeast two-hybrid plasmids and yeast strains were a gracious gift from

Dr. Russ Finley (Gyuris, et al., 1993). The bait plasmid pEG202Nos was designed by

fusing the entire nos coding regions in frame at the 3' end of the LexA BD in the 2p

HIS3+ plasmid pEG202. Cloning of pEG202Nos was achieved by inserting a BamHI to

Not I fragment from pNB40-N5Bam into pEG202. pNB40-N5Bam has a BamHI site

replacing the starting AUG of nos and keeps the rest of the nos cDNA sequence intact (D.

Curtis, Unpublished data). The chimeric LexA-NOS protein can not activate

transcription by itself and is expressed well in yeast (Chapter 3, Figure 3.2).

Yeast strain EGY48 (MA Ta, his3, trpl, ura3, LexAop x6)-LEU2) was sequentially

transformed with the 2g TRPl+ plasmid pSH18-34, which encodes the reporter gene

lacZ under the control of LexA operators, and pEG202nos. This strain was then

transformed with three different cDNA libraries. The embryonic library RFYL1 and the

ovary library RFLY3 were a gift from Dr. Russel Finley. Ovol was kindly given to us by

Dr. Jdrg Grosshans. All libraries consist of unidirectional cDNA made from poly(A)

selected RNA and cloned into the 2p TRP1+ plasmid pJG4-5. Expression of the library

cDNA fusion is under the control of the inducible GAL1 promoter. In the case of

RFLY3 and Ovol the RNA was isolated from Drosophila ovaries while the RNA for

RFLY1 came from Drosophila embryos ranging from 0 to 12 hours old.

A total of 5.5 x 107 yeast transformants containing these three plasmids were

plated in media lacking uracil, histidine, tryptophan and leucine and containing 2%

galactose. The lack of leu in the media selects for yeast that can activate the expression

of the leu2 reporter. In total, 229 colonies were able to grow on media lacking leucine.
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These colonies were tested for expression of the more stringent reporter gene lacZ by

growing them in the presence of f-galactosidase. A total of 123 blue colonies were

selected for further analysis. Library plasmids were rescued in E. coli DH5X or KC8

cells and grouped according to insert size and restriction map. Restriction mapping was

performed on PCR amplified inserts using restriction enzymes Alul and HaeII to

determine groups of clones expressing the same gene. All the clones were distributed in

22 groups.

To verify the specificity of the potential interactors we performed mating assays

(Finley and Brent, 1994a). This test takes advantage of the fact that haploid cells of

opposite mating type will fuse to form diploids when brought into contact with each

other. We introduced the activation-tagged cDNA sequences into yeast strain EGY48

(MATa, his3, trpl, ura3, LexA0 p(x6)-LEU2) of the mating type a and the pEG202Nos bait

or control plasmids into yeast strain YM4271 (MA Ta ura3-52, his3-200, lys2-801, ade2-

101, ade5, trpl-901, leu2-3, 112, tyrl-501, gal4-A512, gal8O-A538, ade5::hisG) of the

mating type a. When these two strains are mated, the newly formed diploid cells will be

able to activate the transcription of the two reporter genes if an interaction occurs. The

strain containing the AD fused cDNA sequences was mated to three different versions of

the EGY48 strain: one carrying the LexANos fusion, a second one with LexA fused to

the coding sequences of the human protein Lamin C, and a third one carrying the parental

pEG202 plasmid. Only clones from three of the groups showed a specific interaction

with the NOS protein. The BRUNO group contained two clones of similar size (Figure

4. 1A). One was isolated from the Ovol library while the other originated from the

RLFY3 library.

Binding domain mapping

Yeast mating assays were performed as previously described (Finley and Brent,
1994a). Several constructs carrying sequences for various parts of NOS fused to LexA-

BD were introduced individually into yeast strain EGY48 along with the reporter

construct pSH18-34. These haploid yeast strains were mated with yeast stain YM4271

carrying either the full length BRUNO protein fused to the activation domain or activator

tagged Orb. Orb is an RRM containing Drosophila protein required during oogenesis and

is not expected to interact with NOS (Lantz, et al., 1994). Interactions were assayed by

Lac Z expression in P-galactosidase containing media.
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Fusion constructs carrying fragments of the NOS protein were made by inserting

PCR amplified fragments into pEG202 digested with BamHI and NotI. Primers used are

25 bases long on average and contain 21 bases complementary to nos. The 5' primer

contains a BamHI site, while the 3' primer contains a NotI site. Figure 4.1 shows a

depiction of all the constructs used. "NOS N" consists of amino acids I to 315 and "NOS
C" of the last 87 amino acids. "NOS NI" carries amino acids 50 to 148. The NOS ANI
and NOS ANII deletion constructs were designed by first inserting a PCR fragment

spanning the region from the start codon to the 5' of the deleted sequence into BamHI

and NotI digested pEG202. The 3' end primer used introduces an Apal restriction site 5'

of the Not I site. The resulting plasmid was then digested with Apal and Not I and a

second PCR fragment covering sequences from the 3' end of the deleted area to the stop

codon was introduced. In both these constructs the deleted amino acids are replaced by
two amino acids, Gly Thr, encoded by the Apal restriction site. NOSANI deletes amino

acids 50 to 148, while NOSANII eliminates amino acids 149 to 218. NOS A50-218 was

cloned by amplifying from a NotI to BamHI fragment from pN5 A50-2 18 (Curtis, et al.,
1997). Full length BRUNO was cloned from p4004 (a gift from Paul Macdonald,
(Webster, et al., 1997)) into the activation domain plasmid PJG4-5 using PCR

amplification.

Fly strains

NosRC is a splice donor mutation that results in unstable RNA and appears to be a

protein null (Curtis 1997). Df(3R)Dl-FX3 is a deficiency that deletes the nos gene.

NosRCI Df(3R)Dl-FX3 is the strongest combination of nos mutations and might represent

the null phenotype (Forbes and Lehmann, 1998). NosL7 is a seven amino acids deletion
BNin the tail region of the NOS protein (Curtis, et al., 1997). Nos results from a P-element

insertion into the 5' region of the nos gene that eliminates expression of nos in the nurse

cells, consequently nos RNA is lacking in the embryos (Wang, et al., 1994).

The genetic mutation arrest (arrt) corresponds to mutations in the BRUNO
protein (Schupbach and Wieschaus, 1991; Webster, et al., 1997). For analysis of the

BRUNO phenotype we used alleles arrtWH53, arrtPE2 7 and arrtWQ47 (Schupbach and

Wieschaus, 1991). Df(27)Prl carries a deletion of the arrest locus. Transheterozygote

combination of the three alleles and each one of the alleles over the deficiency were

analyzed. All combinations showed similar phenotypes with arrtWH53 over the deficiency
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showing the strongest deffect. In this report we describe the phenotype of

arrtWH5/Df(27)Prl in detail.

Ovary staining

Antibody staining of ovaries was done as described before (Lin, et al., 1994).

BRUNO antibody u-BruB was a courteous gift from Paul Macdonald (Webster, et al.,

1997). This rat anti-BRUNO antibody was used at 1:10,000 for ovary staining. For the

detection of PUMILIO we used an antibody raised in rabbit against the internal section of

the protein at a dilution of 1:1000 (Forbes and Lehmann, 1998). Anti-Vasa antibody (a

gift from A. Williamson) was used at 1:5,000 while anti-NOS polyclonal antibody was

used at 1:10,000 (Wang, et al., 1994). For the PUM and Vasa staining, a Cy3-conjugated

donkey anti-rabbit secondary antibody (Jackson ImmunoResearch Labratories) was used

at 1:400. For BRUNO staining, FITC-conjugated goat anti-rat secondary antibody

(Jackson ImmunoResearch Labratories) was used at 1:400. All immunostained ovaries

were mounted in 1:1 PBS:Glycerol containing 2.5% DABCO (Sigma).

Immunoprecipitation and western blotting

Ovaries were dissected from Oregon R females in cold IX PBS. 50 p1 of ovaries

were homogenized in 180 g1 of extract buffer (50 mM Tris (pH 8.0), 150 mM NaCl, 1&

gg/ml leupeptin, 10 gg/ml pepstatin, 1% aprotinin, 10 gg/ml Pefablock, 0.1 mM PMSF, 2

mM EGTA, 2.5 mM EDTA and 1% NP40). Extract was spun at maximum speed in a

microcentrifuge for 5 minutes at 40 C. 75 g1 of the supernatant were combined with 3 pl

of rabbit anti NOS antisera and incubated on ice for 2 1/2 hours. To this extract, 30 RI of

a 1:1 suspension of Protein A-sepharose was added followed by 90 minutes incubation on

ice with occasional mixing. The beads were rinsed with cold extract buffer and then

washed 3 times for 10 minutes each in cold extract buffer. The beads were finally

resuspended in 50 pl of 2X SDS buffer (125 mM Tris at pH 6.8, 4% SDS, 20% glycerol,
5 M urea and 0.0 1% bromophenol blue) with 10 pl of 1M DTT and boiled for 5 minutes.

20 g1 of the imunoprecipitated extract was ran in a 10% acrylamide gel. Proteins

were transferred semidry onto a PVDF membrane. The blot was blocked for 2 hours in

Superblock blocking agent (Pierce) with 0.05% Tween 20. Anti-BRUNO antibody was

used at 1:10,000 in Superblock with 0.05% Tween 20. Incubation with the BRUNO

antibodies was performed overnight at 40 C. HRP conjugated goat anti-rat secondary
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antibody was used to detect the BRUNO protein at 1:500 in Superblock with 0.05%

Tween-20. Chemiluminescent detection reagents from Amersham were used as

instructed by manufacturer.

Transcription vectors

Constructs coding for the Renilla and firefly luciferase (pA25Rluc and pA25Fluc)

were designed by D. Chagnovich. Both these two constructs were made using pA25, a

modified version of pSP64polyA (Promega). The modification consisted in exchanging

the EcoRI site for an NsiI site. This change was introduced by amplifying a fragment

from pSP64polyA by PCR from the SP6 promoter to the EcoRI site, exchanging the

sequences encoding for the EcoRI site for those in the NsiI restriction site. This fragment

was blunted and then digested with Hind3 and ligated to pSP64polyA that had been

digested with Hind3 and EcoRI after making the EcoRI end blunt. The resulting plasmid

had 25 adenosine residues followed by the introduced NsiI restriction site. pA25-Rluc

was made by inserting a Renilla luciferase (RLuc) fragment (pRL-null, Promega) from a

NheI site 10 bases upstream of the AUG to an XbaI site 2 bases after the stop codon into

the pA25 vector digested with PstI and XbaI after removing the overhangs of the PstI and

NheI ends.

pA25-FLuc contains the coding sequences of firefly luciferase (FLuc) and the

UTR regions of hb. First, a fragment of the hb 5'UTR (Tautz, et al., 1987) spanning from

the first base of the 5'UTR to 511 bases before the start codon was PCR-amplified using

primers that introduced a XhoI site at the 5' end and a BamHI site at the 3' end. This

fragment was digested with XhoI and BamHI and introduced into pA25 digested with

PstI and BamHI after the XhoI and PstI sites were blunted. The resulting vector was

digested with BamHI and Sac. FLuc coding sequences were PCR-amplified from

pGEM-luc (Promega) using primers against the SP6 promoter and the 3' end of the

coding sequences including the stop codon and a KpnI site added at the 3' end. This

FLuc fragment was digested with BamHI, for which a site is present just before the AUG,
and KpnI. The 3'UTR fragment of hb was also amplified using PCR and consists of

sequences from the stop codon to base 3347 of the hb cDNA with KpnI and Sac sites at

the 5' and 3' ends respectively. This fragment was digested with KpnI and Sac,
combined with the digested vector and the FLuc fragment and ligated to form pA25

FLuc.
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For this report the reporter construct pA25Fluc was modified to contain BREs

within the hb 3'UTR. The XbaI and NsiI site in the 3'UTR of hb were changed to Spel

and HindII sites respectively using the Quickchange site directed mutagenesis system

(Stratagene) in order to flank the NREs with unique sites. The NREs were taken out by

digesting pA25Fluc with Spel and HindlIl. Three different fragments with BREs were

introduced in place of the NREs (Figure 4.6A). OskAB was added as a PCR-amplified

fragment spanning from nucleotides 1935 to 2142 of the osk 3'UTR (Ephrussi, et al.,

1991) with Spel and HindIII sites engineered at the ends. In order to make OskC2

complementary oligo-nucleotide stretches coding for a duplication of bases 2748 to 2790

of the osk cDNA and including overhangs complementary to Spel and HindIII sites at the

5' and 3' end respectively were phosphorylated, allowed to anneal, and gel purified by

standard methods. OskC2mut fragment was made as oskC2 with oligo-nucleotide

stretches that included mutations shown in Figure 4.6A.

pNBT was constructed to contain the coding sequences of BRUNO fused to the

nos 5'UTR and the tubulin 3'UTR. A HindII to BamHI fragment of the nos 5'UTR was

digested from a modified pN5 NOS plasmid (Wang and Lehmann, 1991) in which the

AUG has been mutated to a BamHI site. The digested nos 5'UTR fragment was

introduced into pSP64polyA (Promega) digested with HindII and BamHI. The resulting

vector was digested with BamHI and Sac. A PCR fragment of the entire bru coding

sequences and flanking BamHI and XhoI restriction sites was digested with BamHI and

Xhol. A fragment amplified from the Drosophila tubulincl 3'UTR (Theurkauf, et al.,

1986) spans from the base after the stop codon to 22 bases after the polyadenylation

signal and it is flanked by XhoI and Sac sites. This fragment was digested with XhoI

and Sac and ligated simultaneously to the vector containing the nos 5'UTR and the bru

fragment. For transcription reactions all constructs were linearized with NsiI and

transcribed with SP6 polymerase using the mMessage mMachine transcription system

(Ambion).

Injection assay

RNA injection mixtures included RLuc (100 pg/gl), either FLuc-oskAB, FLuc-

oskC2 or FLuc-oskC2mut (100 pg/gl) and the NBT mRNA (250 gg/gl). Embryos from

Oregon R females were collected for 45 minutes and dechorionated in 100% bleach for 1

minute. For each experiment, 30 embryos were injected at the anterior pole, 30 embryos

at the posterior pole with the RNA mixture and 30 remained uninjected. Embryos were
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incubated for 75 minutes at room temperature. Anteriorly and posteriorly injected and

noninjected embryos were broken and collected separately with a pipette and placed in 30
tl of passive lysis buffer provided by the dual-reporter luciferase system (Promega).

Samples were spun in a microcentrifuge at top speed for 10 minutes at 40 C to separate

extract from oil used during injection. 25 p1 of each sample were collected and assayed

for the activity of each one of the two luciferase reporters using the dual reporter assay

system from Promega and a Berthold Lumat LB 9501 luminometer. For the injections

into nos mutants nosBN or nosL7 homozygous flies were used.
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RESULTS

Interactor trap screen

In order to identify proteins that interact with NOS we performed a yeast two-

hybrid screen using the LexA interaction trap (Gyuris, et al., 1993) (See Chapter 3). The

full-length NOS protein fused to the Lex A binding domain was used as a "bait". An

interaction with a member of a cDNA library fused to transcription activation domain

(AD) activates reporter genes under the control of a LexA promoter. Since NOS function

is required during embryogenesis and oogenesis we used two ovarian libraries and an

embryonic library in separate screening experiments. Three different types of clones
were confirmed to have a specific interaction with NOS (See Materials and methods and

chapter 3). The factor described in this chapter was isolated once from each of the two

independent ovary libraries. These two cDNAs code for the C terminal region of the
Drosophila ovarian RNA-binding protein and translational control factor BRUNO. BRIJ

is a 604 amino acids protein with three RNA Recognition Motifs (RRM). Both clones

isolated contain the third RRM and most of the region between the second and third
RRM (Figure 4.1A).

In order to map the BRU interaction domain within NOS we performed yeast

mating assays (Brent and Finley, 1997). This assay allows us to form diploid yeast
strains carrying various parts of the NOS protein fused to the LexA BD, and AD fusions

of the full length BRU protein or the negative control Orb (Figure 4.1B). Full-length

NOS protein is able to interact with full length BRU as well as with the BRU fragments

isolated in the screen. We were unable to see an interaction between NOS and fragments

smaller than Ovo 17 (Data not shown). The interaction between NOS and BRU occur

through a 98 amino acid region within the N terminal section of the NOS protein.

Deletion of this domain disrupts the interaction in the yeast assay.

NANOS and BRUNO share expression patterns and oogenesis phenotype

NOS protein is involved in the translational regulation of hb during

embryogenesis, while BRU is required for the translational regulation of osk in the

developing oocyte (Wang and Lehmann, 1991; Kim-Ha, et al., 1995). The fact that these

two proteins perform similar functions at different stages of development suggests that
their interaction might be relevant to their activity in vivo. BRU protein is absent in the
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embryo and osk is regulated by BRU at stages of oogenesis when NOS is absent (Wang,
et al., 1994; Kim-Ha, et al., 1995; Webster, et al., 1997). Therefore, their interaction is

not likely to be occurring during either of the two known regulatory events controlled by

NOS and BRU, hb and osk regulation respectively.

We performed expression analysis of both NOS and BRU in order to ask whether

the proteins coexpressed at any specific stage during oogenesis. The expression patterns

of both NOS and BRU during oocyte development have been previously described

(Wang, et al., 1994; Webster, et al., 1997; Forbes and Lehmann, 1998). In the female

germline NOS protein can be detected at low levels in the stem cells. High levels of NOS

protein expression are visible in cysts in region 2 of the germarium. As oogenesis

progresses, NOS protein is not detected in the growing oocyte but it is seen in the nurse

cells at stage 10 of oogenesis. BRU protein can be detected in the germ cell in region 2A
of the germarium. It quickly accumulates in the presumptive oocyte where at stage 6 it

localizes to the posterior pole. The localization pattern of the BRU protein within the

oocyte coincides with the localization of the osk mRNA (Ephrussi, et al., 1991; Webster,

et al., 1997). During early oogenesis, NOS and BRU protein are both present at their

highest levels in region 2a of the germarium (Figure 4.2). Interestingly, PUM protein is

absent or low in this region of the germarium. The coincidence of their expression in

early germ line cysts is consistent with an interaction between NOS and BRU.

The area in region 2 of the germarium where high levels of NANOS are present

coincides with the oogenesis stage arrested in ovaries lacking NOS (Figure 4.3, (Forbes

and Lehmann, 1998). Thus, NOS function seems to be required in the development of

the germ line cystoblast at a very specific stage of oogenesis. We studied ovaries lacking

the BRUNO protein in order to see whether it was also required at the stage when it co-

expresses with NOS. Loss of BRU activity results in an arrest of germ line development

in region 2 of the germarium (Figure 4.3). Germ line stem cells are maintained but give

rise to a reduced number of cytoblasts, all of which fail to develop into normal cysts.

Cystoblast division occurs, but cysts seem to die prior to gaining a follicle cell envelope.

This is very similar to the early arrest of germ line cyst development observed in the

ovaries of nos mutant females (Forbes and Lehmann, 1998). This expression and

phenotypic analysis suggests that NANOS and BRUNO are required at the same stages

and for similar processes in the development of the germline.
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NANOS and BRUNO interact in ovary extracts.

In order to corroborate the idea that NOS can interact with BRU in the ovary, we

performed immunoprecipitation experiments. Antisera recognizing the tail region of the

NOS protein can immunoprecipitate BRU protein from ovary extract (Figure 4.4). This

effect is not seen with the use of pre-immune sera or Protein A beads alone. We were

unable to immunoprecipitate NOS protein with anti-BRU antibodies. The BRU antibody

was made using the last 188 amino acids (Webster, et al., 1997). This section of the

protein is involved in the interaction with NOS (Figure 4.1A). Thus, there might be

overlap between the epitope recognized by the BRU antibody and the NOS-interacting

domain, which would interfere with coimmunoprecipitation.

Translational regulation by NANOS and BRUNO

Given the fact that NOS and BRU have independent roles in translational

regulation, it is possible that their interaction in the germarium is required to silence the

translation of a specific mRNA. Targets for NOS or BRU during early oogenesis are not

known. It is likely that the mRNA targets regulated by NOS and BRU will carry BREs in

its 3'UTR in order to bring BRU to the transcript. Therefore we wanted to test whether

NOS and BRU could regulate the expression of a BRE containing reporter message. To

test this hypothesis we have used an injection assay developed to study NOS dependent

regulation in the Drosophila embryo (Figure 4.5, Chagnovich D. and Lehmann R., in

preparation). Since NOS protein is only present at the posterior pole, a message

regulated by NOS would be expressed better when injected at the anterior than at the

posterior. Therefore we have injected firefly luciferase (FLuc) reporter RNA with BREs

in its 3'UTR at the anterior and the posterior of the embryo. This RNA was coinjected

with a second reporter gene encoding the Renilla reniformis (sea pansy) Luciferase

(RLuc) without any regulatory sequences. RLuc has unique substrate requirements and

can be use to normalize the values of FLuc expression obtained in different injection

experiments (Figure 4.5B). Three different versions of the BREs were used in these

assays (Figure 4.6). OskAB contain the four BREs encompassed in regions A and B of

the osk 3'UTR along with flanking sequences (Kim-Ha, et al., 1995). OskC2 is a

duplication of region C of the osk 3'UTR that harbors two BREs. A similar duplication

was shown to confer translational regulation on a heterologous message (Kim-Ha, et al.,
1995). The third version of the BREs consists in oskC2 carrying mutations in the BREs
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(oskC 2mut) known to disrupt BRU binding and translational regulation (Kim-Ha, et al.,

1995).

The BRE containing messages are translated equally at the anterior and the

posterior of the embryo (Figure 4.6B). This is indicated by an anterior to posterior ratio

(A:P) of standardized Fluc expression of 1.2 for FLucoskAB and 1.1 for FLucoskC2.

This result indicates BRE containing messages are not regulated preferentially at either

pole of a wild-type embryo. This is consistent with the observation that BRU protein is

not present in the embryo. In order to test whether NOS could mediate regulation of

BRE containing reporters when BRU is present, we coinjected the reporter RNAs with

mRNA encoding for BRU. Even though no endogenous BRU protein is present in the

embryo, abundant amounts of bru mRNA are present (Webster, et al., 1997). Therefore,

some regulation is imparted on the endogenous mRNA. In order to overcome any

regulation of the injected bru mRNA, this transcript has been modified to carry

heterologous sequences in its 5' and 3'UTR not known to impart regulation (see Materials

and methods). When bru RNA is included in the injection mixture an A:P ratio of 1.9

with FLucoskAB and 2.1 with oskC2 are detected. These results indicate that the BRE

containing message is translated two-fold better at the anterior pole, This differential

expression of the BRE-containing reporters is abolished in the absence of NOS and with

mutations in the BREs (Figure 4.6B). In conclusion, the presence of both BRU and NOS

can confer regulation to a message targeted for BRU binding.
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DISCUSSION

We have identified a direct interaction between the embryonic posterior

determinant NOS and the ovarian RNA binding protein BRU. These two proteins have

both been implicated in translational regulation. Both NOS and BRU are required at the

same stage of oogenesis for the appropriate development of the germ line cyst. We have

been able to show that BRU and NOS can regulate the translation of a reporter RNA

containing BRU binding sites. These results taken together suggest that NOS and BRU

interact to regulate the translation of a yet unknown mRNA target in the germarium.

BRUNO, NANOS and PUMILIO may have different partners during early

oogenesis

NOS protein is required at the posterior of the embryo where it regulates the

translation of the maternal transcript hb (Wang and Lehmann, 1991). This regulation

requires the action of the PUM protein which binds to specific sequences in the hb 3'UTR

(Barker, et al., 1992; Murata and Wharton, 1995; Zamore, et al., 1997). Mutant pum and

nos females also show defects in oogenesis (Wang, et al., 1994; Forbes and Lehmann,

1998). In the germarium the loss of NOS affects the maintenance of the germ line stem

cells and the differentiation of the cystoblast. On the other hand, the focus of PUM

function seems to be in the establishment of the stem cell lineage and not in cystoblast

differentiation (Forbes and Lehmann, 1998). Accordingly, PUM is expressed at high

levels in the stem cells, while NOS expression is highest in the region harboring the

cystoblasts (Figure 4.2). These differences in expression pattern and phenotype led to the

suggestion that NOS and PUM have different partners during their respective roles in

oogenesis (Forbes and Lehmann, 1998).

Experiments performed for this report suggest that BRU is likely to be NOS

partner in its function in the germarium. BRU is expressed at high levels in region 2A

where NOS is expressed and PUM is absent. As in nos mutants, females lacking BRU

show a strong arrest in stage 2A of the germarium where both are expressed in wild-type

ovaries. The coincident expression and function is consistent with the direct interaction

seen in yeast and ovary extract. How NOS and BRU affect the development of the germ

line cyst is not known. Given that both proteins are involved in translational regulation,
it is possible that their interaction is required to silence a specific transcript at region 2A

in order to allow cyst development.
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BRU has been identified as a translational repressor of the maternal mRNA osk.

OSK is unlikely to be the target of a NOS-BRU interaction. OSK mRNA is present in the

germ line all throughout oogenesis, while the protein is visible only after stage 6 of

oogenesis when the RNA becomes localized to the posterior of the egg (Ephrussi and

Lehmann, 1992; Rongo, et al., 1995). Therefore, osk is being regulated by BRU at stages

when NOS protein is not present (Wang, et al., 1994; Kim-Ha, et al., 1995). In addition,

we were unable to see premature translation of osk in nos mutant ovaries (Data not

shown). Analysis of bru mutant flies suggests that BRU is likely to carry out other

functions besides regulating osk Loss of BRU results in early defects in oogenesis not

seen in flies carrying an osk transgene with mutated BRUNO binding sites. Therefore,
the early arrest in bru mutants is not likely to be the consequence of OSK misexpression.

Additionally, osk regulation by BRU requires the action of a second RNA binding protein

called APONTIC (APT) (Lie and Macdonald, 1999). Like NOS, APT binds to the

BRUNO protein. Nevertheless, bru and apt mutant ovaries do not share phenotypes in

the germarium (Lie and Macdonald, 1999). Apt mutant ovaries show a later arrest in

stage 6 of oogenesis (Lie and Macdonald, 1999). All these observations are consistent

with BRU having a different partner and target in early oogenesis. Further genetic

studies of the oogenesis process will be helpful in identifying potential targets of a BRU-

NOS dependent regulation.

The N terminus of NANOS defines a new functional domain

We have mapped the region of NOS required for the interaction with BRU to the

N terminus of the protein. A highly selective screen designed to identify amino acids

necessary for hb regulation did not reveal any essential amino acids in this area of the

protein (Chapter 2). In addition, the deletion A50-218 shown here to disrupt the NOS-

BRU interaction, was shown to be able to partially rescue the abdominal phenotype of a

nos null embryo in an RNA injection assay (Curtis, et al., 1997). These results suggest

that the N-terminal region is not required for NOS function in the regulation of hb. These

experiments did not address the requirement of this region in NOS function in oogenesis.

It is possible that the domain identified through this work as required for BRUNO

binding is solely necessary during NOS' role in oogenesis. Further genetic analysis will

allow us to test whether this region of the protein is indeed a functional domain specific

for BRU binding.
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BRUNO and NANOS affect the translation of a reporter gene

We have been able to show a BRU and NOS dependent regulation of a reporter

gene through the use of a novel injection assay. Translation of BRE containing mRNA is

repressed two-fold in the presence of both BRU and NOS. While the two-fold regulation

is statistically significant, it is considerably less than what would be expected for a

regulated mRNA. Nevertheless, several observations may account for the low repression

level observed. First, since BRU is not expressed in the embryo, BRU is introduced

along with the reporter genes as an mRNA. Thus, BRU needs to be translated before it

can target the RNA for regulation. This delay could allow the BRE containing FLuc

reporter to translate before regulation is imposed. The resulting accumulation of FLuc

previous to regulation would affect the measurements making the A:P ratio closer to 1. A

second caveat of this assay is the use of the osk BREs. It is possible that the context of

the osk BREs is not ideal for a NOS-BRU dependent regulation. If NOS is required to

contact RNA outside of the BRU binding sites, the mRNA context used will influence the

levels of regulation. Regardless of these problems, we see a consistent two-fold

regulation, in the presence of both NOS and BRU. The absence of either protein factor,

or mutations in the BREs disrupts the translational regulation. We have not been able to

assess whether this regulation is PUM dependent. Strong PUM mutants lay almost no

eggs and die prematurely, making it difficult to obtain enough embryos for the

experiment required. NOS and BRU seem to be acting together at a stage in oogenesis

when PUM is not present, thus we would predict the regulation seen in our assay to be

PUM independent.

Mechanisms of translational regulation

The mechanism that NOS and BRU might use in regulating their target is not

known. Interestingly, NOS and BRU are thought to affect translation of hb and osk by

different mechanisms. The regulation of hb coincides with a shortening of its poly(A)

tail which is dependent on both PUM and NOS (Wreden, et al., 1997). On the other hand

the regulation of osk is not accompanied with changes in its poly(A) tail (Salles, et al.,
1994; Rongo, 1996; Webster, et al., 1997). Several lines of evidence suggest that these

facts are not contradictory. Analysis of hb regulation through an injection assay similar

to the one described here reveals that hb mRNA can be regulated by NOS and PUM

independent of poly(A) tail shortening (D. Chagnovich and R. Lehmann, unpublished

results). This result suggests that deadenylation of hb might be a consequence of the
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regulation or a secondary mechanism of regulation. Therefore, NOS like BRU is capable

of regulating translation independently of poly(A) tail changes. The specific mechanism

of translational regulation might be accomplished through interactions with the

translation initiation machinery.

A Xenopus homologue of BRU, EDEN binding protein, is implicated in the

deadenylation of specific messages such as eg2 and c-mos after fertilization of the egg

(Paillard, et al., 1998). This protein binds to the "embryo deadenylation elements"

(EDEN) located in the 3'UTR eg2 and c-mos and is necessary for deadenylation and

silencing of the mRNA. It is not known whether the EDEN binding protein directly

shortens the poly(A) tail or recruits deadenylation factors to the transcript. Given that

BRU, which shares over 50% homology with EDEN binding protein, may not be

involved in deadenylation of osk it is likely that these RNA binding proteins act as

platforms targeting specific mRNAs for regulation by other factors.

Similar to BRU, PUM is an RNA binding protein that requires other factors such

as NANOS to impart translational regulation (Murata and Wharton, 1995). Various

experiments suggest that PUM is bound to the hb 3'UTR throughout the embryo (Murata

and Wharton, 1995; Zamore, et al., 1999). HB regulation, however, is restricted to the

posterior of the embryo where NOS is present. Thus, PUM targets the mRNA for

repression by binding to it and NOS confers the specificity to the translational regulation.

The association of NOS with different RNA binding proteins to regulate translation at

different stages proposes a modular model for translational regulation (Figure 4.7): In the

embryo NOS pairs with PUM to regulate the translation of hb. We have been unable to

detect a direct interaction between these two proteins in our yeast assay (Chapter 3).

During oogenesis NOS seems to interact with a different RNA binding protein, BRU.

BRU is known to also associate with other factors such as APONTIC to regulate

translation of osk at later stages of oogenesis. Hence, RNA binding proteins can

exchange "co-factors" at different stages to regulate the translation of specific maternal

transcripts.
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Figure 4.1 BRUNO interacts with the N terminus of NANOS

A. Comparison of full length BRU protein with the clones isolated in the two hybrid

screen. Yellow blocks indicate the RRMs. 3X33 was isolated from library RFY 3 and

consists of amino acids 327 to 640. Clone Ovo 17 was isolated from library Ovo I and

consists of amino acids 344 to 640. B. Yeast mating assays using different parts of the

NOS protein and the entire BRU protein. Left column depicts different NOS fragments

fused to the LexA binding domain and used in the mating assay. The colored boxes in

the full length NOS indicate the domains of homology in the protein (Curtis, 1995b).

The second column shows diploid yeast carrying AD-BRU fusion and the NOS fragment

shown at the left. The last column shows diploid yeast containing AD-Orb and the NOS

construct in the first column. An interaction between the NOS fragment and either BRU

or Orb activates the expression of Lac Z and results in blue yeast.
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Figure 4.2 NANOS, BRUNO and PUMILIO expression in the germarium.

Germarium stained with antibodies raised against NOS, BRU or PUM respectively

(Wang, et al., 1994; Forbes and Lehmann, 1998). Last figure is a cartoon of the

germarium showing the different domains of expression.
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Figure 4.3 nanos and arrest mutant germarium share a phenotype.

Germarium from wild-type, nanos and arrest females are shown stained with Vasa

antibodies to visualize the germline. Domains of protein expression are shown in the

cartoon for reference.
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Figure 4.4 BRUNO and NANOS coimunoprecipitate from ovary extracts.

Western blot probed with BRU antibodies. First lane shows fraction immunoprecipitated

with NOS antibodies. Second lane is the sample immunoprecipitated with no antibody.

Last lane shows fraction immunoprecipitated with BRU antibodies.
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Figure 4.5 Translational activity injection assay

Figure shows a representation of the protocol followed in the injection assay. The three

reporter constructs used are shown as boxes in different shades of green. The firefly

luciferase reporter contains BRE sequences in its 3UTR shown as triangles. The Renilla

reporter is unregulated and helps to normalize the results of different injections. The bru

construct provides BRUNO protein to the embryo. In each experiment, 30 embryos are

injected into the anterior or the posterior with the three constructs. Embryos are

incubated for 75 minutes, collected and broken in lysis buffer. The protein extracts are

then analyzed for Renilla and firefly luciferase activity. Values shown are the actual

values obtained for one experiment. The adjusted value is obtained by subtracting the

reading of 30 uninjected embryos from the raw value. The firefly/Renilla ratio allows us

to compare the translation activity of the BRE containing reporter when injected at the

two poles. If the test reporter is translated equally at both poles the anterior/posterior

ratio will be 1. A ratio of less that 1 indicates that the reporter RNA is regulated at the

anterior pole, while an anterior/posterior ratio greater than 1 is indicative of regulation in

the posterior pole.
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Figure 4.6 NANOS and BRUNO dependent translational regulation

A. Scheme of the osk 3'UTR. Regions A, B and C have been described to harbor BRU

binding sites known as BREs (Kim-Ha, et al., 1995). Fragments used in the injection

assay are shown in more detail. Blue boxes represent the BREs. OSK C2 is an exact

duplication of osk C that contains BRE 5 and 6. Sequences for BRE 5 and 6 are shown

under their respective boxes. OSK C2mut carries mutated BREs shown in red. The

mutations in osk C2 mut are shown in red letters. B. Results for injection assays

performed in wild-type or nos mutant embryos. In wild-type embryos the experiments

were performed in the absence or presence of BRU. All A:P ratios are the average of 10

to 20 experiments.
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Figure 4.7 Model for NOS, PUM and BRU roles in translational regulation

NOS role in embryogenesis entails the repression of hb translation. This function

requires the action of the RNA binding protein PUM. In early oogenesis NANOS

interacts with a different RNA binding protein called BRU. BRU is also active in late

oogenesis where, along with APONTIC protein, it regulates the translation of oskar RNA

((Lie and Macdonald, 1999).
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CHAPTER 5

Discussion
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During oogenesis and early embryonic development, expression of new proteins

is accomplished by translating stored mRNAs. Early development requires the concerted

action of proteins at specific times and places in the oocyte and embryo. The timed and

spatial regulation of the stored mRNA is achieved through RNA localization and

translational regulation. The exact mechanisms involved in these two post-transcriptional

regulatory methods are not well understood. Studies of RNA localization and

translational regulation in Xenopus, C. elegans and Drosophila have revealed an

important role for the 3'UTRs of the regulated transcripts and the RNA binding proteins

that associate with them (Goodwin, et al., 1993; Hake and Richter, 1994; Bouvet and

Wolffe, 1994b; Kim-Ha, et al., 1995; Murata and Wharton, 1995; Dubnau and Struhl,

1996; Rivera-Pomar, et al., 1996; Stebbins-Boaz, et al., 1996; Gavis, et al., 1996b;

Bashaw and Baker, 1997; Zhang, et al., 1997; Paillard, et al., 1998; Lie and Macdonald,

1999; Walker, et al., 1999). Regulation of translation directed by sequences in the

5'UTR can be easily explained invoking a hindrance model wherein proteins can bind to

the 5'UTR and block the initiation of translation (Goossen, et al., 1990; Oliveira, et al.,

1993; Gray and Hentze, 1994; Bashaw and Baker, 1997). On the other hand, regulation

via sequences at the 3'UTR is counterintuitive, given the separation between the

regulatory sequences and the site of translation initiation.

Many studies have contributed to the idea that the poly(A) tail is important for the

efficiency of translation (Munroe and Jacobson, 1990; Gallie, 1991; Gallie and Tanguay,
1994; Jacobson, 1996). Therefore, somehow the ends of the transcripts can influence

each other. This hypothesis is backed by the fact that proteins associated with the

poly(A) tail interact with proteins bound to the cap structure and that this association is

necessary for efficient translation (Gallie and Tanguay, 1994; Le, et al., 1997; Craig, et

al., 1998; Imataka, et al., 1998; Kessler and Sachs, 1998). Hence, eliminating the

poly(A) tail might eliminate or reduce translation. Accordingly, short poly(A) tails are

often seen in mRNAs that are not being translated (Varnum and Wormington, 1990;

Huarte, et al., 1992; Bouvet, et al., 1994a; Wreden, et al., 1997; Audic, et al., 1998;

Paillard, et al., 1998; Minshall, et al., 1999). It follows that proteins binding to the

3'UTR can influence translation by either deadenylating the mRNA or disrupting the

interaction between the tail and the cap. Nevertheless, in cases where binding of proteins

to the 3'UTR correlates with deadenylation and translational regulation, it is not known

whether deadenylation is a cause or a consequence of the regulation. In addition, there

are examples in which regulation through the 3'UTR does not depend on changes in the

poly(A) tail (Ostareck-Lederer, et al., 1994; Salles, et al., 1994; Gavis, et al., 1996b).
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Therefore, proteins bound to the 3'UTR are capable of affecting translation by

mechanisms not involving deadenylation or disruption of the poly(A)-cap interaction.

What those mechanisms might be is not known. The study of the proteins that bind to the

RNA or proteins that act as co-factors in the regulation can help elucidate the

mechanisms of translational regulation.

The Drosophila protein NANOS (NOS) is one of those co-factors involved in

translational regulation and the focus of the studies described in this thesis. NOS along

with the RNA binding protein PUMILIO (PUM) regulates the translation of the maternal

mRNA hunchback (hb) at the posterior of the embryo (Irish, et al., 1989; Wang and

Lehmann, 1991; Wharton and Struhl, 1991; Barker, et al., 1992; Murata and Wharton,
1995; Zamore, et al., 1997). Translational repression of hb correlates with deadenylation

of the mRNA. Like repression, deadenylation is dependent on NOS, PUM and hb 3'UTR

sequences known as NANOS Response Elements (NRE) (Wreden, et al., 1997).

Nevertheless, the translation of hb can be regulated without changes in the poly(A) tail,

suggesting that other mechanisms can be utilized to silence hb mRNA (D. Chagnovich,

unpublished results). The specific role of NOS in either deadenylation or in other

regulatory mechanisms is not known. The C-terminal region of NOS harbors two CCHC

zinc fingers most similar to the zinc fingers in RNA binding proteins (Curtis, et al.,
1997). NOS was shown to bind RNA, however it is unable to differentiate between wild-

type NREs and specifically mutated NREs suggesting a lack of specificity (Curtis, et al.,

1997). It is possible that the specificity of NOS for RNA is to sequences yet unidentified

or may require the action of a second factor Indeed, certain mutations in the NREs affect

hb regulation but not PUM binding (Wharton, et al., 1998). We do not know whether

these sequences could play a specific role in NOS binding to the RNA. In addition, most

mutations in the NOS protein affect the zinc finger region, but no proteins interacting

with this region have been found. This observation could suggest that this domain may

be involved in RNA binding. The collection of mutations isolated in my studies could

prove useful in studying this aspect of the NOS protein.

A second role for NOS could be to help PUM bind to the RNA. Nevertheless, a

physical interaction between NOS and PUM has not been detected. In addition, PUM is

capable of binding to the RNA in the absence of NOS with high affinity (Zamore, et al.,
1997; Zamore et al., 1999). It has also been suggested that NOS could act as a

deadenylase. Nevertheless, hb can be regulated by NOS without deadenylation (D.

Chagnovich, unpublished results). A fourth possible role of NOS could be to disrupt

translation by directly interacting with translation factors or with proteins binding to the
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poly(A) tail. The interaction with the elongation factor ly (EF-ly) could constitute the
link between NOS and the translational machinery. Previous studies suggest that
initiation and not elongation is the stage targeted for regulation (Wang, 1995).
Nevertheless, deadenylation, which occurs during hb regulation, would affect initiation
and any additional mechanism of regulation downstream of initiation might not be
detected. The relevance of the elongation factor in the regulation of hb can be studied by
providing the embryo with additional amounts of EF- ly. If NOS acts by recruiting away
the factor from the translation machinery, additional EF- ly should overcome the
translational regulation. This experiment could be performed in embryos expressing

NOS at the anterior where it represses both hb and the anterior determinant bicoid. Due

to the lack of bicoid at the anterior these embryos carry head defects and do not survive.
If additional EF- ly can overcome translation, injecting it at the anterior of these embryos

could result in rescue of the head defects and survival of the embryo. This assay can be

used for a number of translation factors that might be affected by NOS.

A similar approach, would be to randomly over-express genes in the embryo and
see whether NOS-dependent regulation can be overcome. Drosophila lines have been
developed in which each carries a promoter with Gal4 binding sequences randomly
introduced in the genome (Rorth, 1996; Rorth, et al., 1998). Expressing the Gal4
activator in specific tissues leads to the over-expression of genes adjacent to the Gal4
promoter insertion. This approach has been successful in isolating genes that affect germ
cell migration when over-expressed in those cells (M. Starz-Gaino, N. Cho, A. Forbes

and R. Lehmann, personal comunication). In order to find genes that when over-

expressed can overcome the regulation of hb, the over-expressed product has to be
contributed maternally into the embryo. A newly developed Gal4 promoter region that

allows UAS-tagged genes to be expressed in the germ line might make this approach

feasible (Rorth, et al., 1998). This screen would allow us to identify proteins that are
made limiting or recruited from the translation machinery by the action of NOS during hb
regulation. Furthermore, this approach could help us identify other targets of NOS
regulation. In the germ cells, NOS acts along with PUM to regulate the translation of
unknown mRNA transcripts. Over-expressing those transcripts might overcome

translational repression by having the mRNA in excess of the regulators and would cause

a phenotype in the germ cells similar to that seen in the absence of either NOS and PUM.
A preliminary screen using the Gal4 promoter lines and a driver expressed in the germ

cells was unsuccessful in isolating any candidates for NOS targets. Nevertheless, this
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screen could be modified in order to contribute the overexpressed genes maternally
(Zamfir, 1997; Rorth, 1998).

During early oogenesis NOS is required for the maintenance of the stem cell
progeny, the cystoblast. The results of my work strongly suggest that, during this stage
of development, NOS utilizes a different RNA binding protein, BRUNO (BRU), as its
partner in the translational regulation of an unknown target. In order to study the
mechanisms of regulation used by NOS and BRU and to identify other factors involved
in this process it is necessary to determine the target of the regulation. An approach that
might answer this question is to isolate RNA sequences that bind to BRU. A yeast three-
hybrid screen designed to isolate RNA binding proteins that bind to known RNA
sequences has been modified to look for RNAs that can bind to a specific RNA binding
protein (SenGupta, et al., 1996; SenGupta, et al., 1999). This type of screen could be
used to identify RNA targets for BRU and PUM in the presence and absence of NOS.

The work described in this thesis has helped in the understanding of NOS
function during different developmental stages. We have learned that the NOS protein
contains several functional domains. The N terminus seems to be required for
dimerization and for the interaction with BRU during oogenesis. The two zinc fingers in
the C terminus are required for all of NOS functions. On the other hand the tail domain
is essential for hb regulation and may play a role in germ cell migration but it is not
required during oogenesis. In addition, this thesis describes how NOS may fulfill its
different functions through interactions with different RNA binding proteins. Further
studies on the NOS protein, its functional partners and its targets will allow for a clearer
understanding of how the translation of specific messages is regulated during oogenesis
and early development.
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