
Edge-Unfolding Almost-Flat

Convex Polyhedral Terrains

by

Yanping Chen

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2013

c© Massachusetts Institute of Technology 2013. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 18, 2013

Certified by. .
Erik Demaine

Professor
Thesis Supervisor

Accepted by .
Prof. Dennis M. Freeman

Chairman, Masters of Engineering Thesis Committee

Edge-Unfolding Almost-Flat

Convex Polyhedral Terrains

by

Yanping Chen

Submitted to the Department of Electrical Engineering and Computer Science
on May 18, 2013, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

In this thesis we consider the centuries-old question of edge-unfolding convex polyhe-
dra, focusing specifically on edge-unfoldability of convex polyhedral terrain which are
“almost flat” in that they have very small height. We demonstrate how to determine
whether cut-trees of such almost-flat terrains unfold and prove that, in this context,
any partial cut-tree which unfolds without overlap and “opens” at a root edge can be
locally extended by a neighboring edge of this root edge. We show that, for certain
(but not all) planar graphs G, there are cut-trees which unfold for all almost-flat
terrains whose planar projection is G. We also demonstrate a non-cut-tree-based
method of unfolding which relies on “slice” operations to build an unfolding of a
complicated terrain from a known unfolding of a simpler terrain. Finally, we describe
several heuristics for generating cut-forests and provide some computational results
of such heuristics on unfolding almost-flat convex polyhedral terrains.

Thesis Supervisor: Erik Demaine
Title: Professor

2

Acknowledgments

I would like to acknowledge my thesis advisor Prof. Erik Demaine, not only for the

suggestion of this interesting yet tangible corner of edge-unfolding, but also for his

continual guidance and enthusiasm throughout my research. I would also like to

thank my parents for their unending support and care throughout my time here at

MIT and my work on this thesis.

3

Contents

1 Introduction 10

1.1 History and Background of Edge-Unfolding 10

1.2 Our Results . 14

2 Almost-Flat Convex Terrains 17

2.1 Polygons, Polyhedra, and Terrains . 17

2.2 Convexity . 19

2.3 Almost-Flatness . 20

2.3.1 Height Bounds on Flatness . 21

2.4 Convex Lifting Representation . 22

2.5 Angle-Delta Representation . 23

2.5.1 Height to Angle-Delta First-Order Approximation 24

2.6 Ideal Almost-flatness . 27

3 Edge-Unfolding Almost-Flat Convex Terrains 29

3.1 Cut-Forests and Glue-Trees . 29

3.1.1 Unfolding Motion . 31

3.1.2 Local Overlaps . 33

3.1.3 Height Bound for Local Overlaps 36

3.2 Projections and Unfolding . 38

3.2.1 Path Definitions . 38

3.2.2 Weakly Monotonically Increasing Distance (WMID) Paths . . 39

3.2.3 Strongly Monotonically Increasing Distance (SMID) Paths . . 41

4

3.2.4 SMID Trees . 45

3.2.5 Projections with no SMID Paths 48

3.3 Unfolding Almost-Flat Convex Terrain 50

3.3.1 Tree Definitions . 51

3.3.2 First-Order Approximation . 51

3.3.3 Insignificance of Second-Order Effects 55

3.3.4 All Partial Edge Cut-Trees Locally Extensible 57

3.4 Slice Unfolding . 59

3.4.1 Definitions and Examples . 59

3.4.2 General Slice Unfolding . 60

3.4.3 Empty Sector Property . 62

3.4.4 Triangular and Quadrilateral Vertex-Slices 64

3.4.5 General Vertex-Slices . 68

4 Computational Search Techniques 72

4.1 Generating Convex Terrain . 72

4.1.1 Spherical Liftings . 72

4.1.2 Convex Functional Liftings . 76

4.1.3 General Convex Liftings . 76

4.2 Testing Tree Validity . 78

4.3 Simple Path Unfolding Algorithm . 79

4.4 Cut Forest Generation . 80

4.4.1 Brute-force Enumeration of all Forests 81

4.4.2 Random . 83

4.4.3 BFS Limitation . 83

4.4.4 Greedy Heuristics . 83

5 Computational Results 85

5.1 Test System and Implementation Details 85

5.2 Time to First Unfolding . 86

5.3 Percent Random Edge-Unfoldings . 87

5

5.4 Total Cut-Forests and Unfolding Cut-Forests 88

5.5 Cut Forest Algorithm Comparison . 90

6 Conclusions and Future Work 94

6.1 Future Work . 95

6

List of Figures

1-1 Flattening of a triangular pyramid to an almost-flat triangular pyramid 13

2-1 Example polygon and polyhedron . 18

2-2 Example open polygon and terrain 19

2-3 Convexity Examples . 20

2-4 Convex lifting . 22

2-5 Angle-delta representation of a regular triangular pyramidal terrain . 23

2-6 Calculating angle-delta from lifting 24

3-1 Cut-trees, glue-trees and unfolded nets 30

3-2 Terminology for overlaps . 31

3-3 Unfolding motion of a cut-edge . 31

3-4 Unfolding motion of a cut-path . 32

3-5 Unfolding motion of a cut-tree . 33

3-6 Non-local and local overlaps . 34

3-7 Example local overlaps at various angles 35

3-8 Always overlapping cut-tree . 35

3-9 Path and subpath terminology . 39

3-10 WMID path . 40

3-11 SMID path . 41

3-12 SMID path unfolding . 42

3-13 SMID unfolding conflict causes contradiction 43

3-14 SMID tree unfolding . 47

3-15 Projection with no SMID paths to center vertex 48

7

3-16 Example lifting of GNS1 . 49

3-17 No SMID path to center projection with only triangular faces 49

3-18 Arbitrary convex polygon to no-SMID projection construction 50

3-19 Tree, subtree, branch terminology . 51

3-20 Cut-tree orientation, unfolding around vi rotates side without (r, v1) . 52

3-21 First-order approximation of branch unfolding 53

3-22 Possible local overlap of tips in a vertex-subtree 54

3-23 Checking for tip overlaps . 55

3-24 Second-order effect of shifting vertex positions 56

3-25 Second-order effect of angle-deltas . 57

3-26 Partial cut-trees locally extensible . 58

3-27 Example slice operation . 60

3-28 Different types of slices . 60

3-29 Example general slice unfolding . 61

3-30 Example vertex-slice with non-expansive fN motions 62

3-31 Empty sector property for simple leaf 63

3-32 Empty sector property for complex leaf 63

3-33 A triangular vertex-slice . 64

3-34 Key for picture categorizations of quadrilateral vertex-slices 65

3-35 Example picture characterization of attachment edges for a quadrilat-

eral vertex-slice . 66

3-36 Non-WMID path with only obtuse angles 66

3-37 Characterizations of quadrilateral vertex-slice with 1 acute angle . . . 67

3-38 Characterizations of quadrilateral vertex-slice with 2 acute angles . . 67

3-39 Characterizations of quadrilateral vertex-slice with 3 acute angles . . 68

3-40 General slice with three acute angles 68

3-41 Key for picture categorizations of general vertex-slices 69

3-42 Characterizations of general vertex-slice with 0 acute angles 69

3-43 Characterizations of general vertex-slice with 1 acute angle 70

3-44 Characterizations of general vertex-slice with 2 acute angles 70

8

3-45 Characterizations of general vertex-slice with 3 acute angles 71

4-1 Spherical liftings of the same 50 random points in a 4-gon, 15-gon, and

100-gon . 74

4-2 Problematic side-cases for general spherical liftings 75

4-3 General spherical liftings of 15,50, and 100 points from the same ran-

dom seed . 76

5-1 Time to first unfolding versus size of graph for brute-force enumeration

with and without pruning heuristic 86

5-2 Percent of random cut-trees and random BFS cut-trees which conflict 87

5-3 Total number of cut-forests and unfolding cut-forests for different graph

sizes . 88

5-4 Ratio of cut-forests which unfold at different graph sizes 89

5-5 Percent of cut-forests which unfold for various greedy heuristics . . . 90

5-6 Percent unfolding cut-forests for 100 and 1000 runs of “angle+dijkstra”

heuristic . 91

5-7 Percent unfolding cut-forests for various A,B,C, and D parameter values 92

9

Chapter 1

Introduction

In this thesis, we pursue the age-old question of edge-unfolding convex polyhedra by

examining a specific subset of such polyhedra. Specifically, we consider almost-flat

convex polyhedral terrain, which can be informally considered as convex liftings of

planar graphs with a very small height. First, in this chapter, we review the history

of the edge-unfolding problem, as well as give a brief overview of our results and the

organization of this thesis.

1.1 History and Background of Edge-Unfolding

For centuries, mathematicians and artists alike have studied and depicted polyhedra

in manuscripts. An early example of this was Underweysung der Messung [8] (Ger-

man for “The Painter’s Manual”), a book by Albrecht Dürer about the technique

of perspective drawing. Throughout the book are many pictures of polyhedral nets,

i.e. pictures of unfolded polyhedra where the faces of the polyhedra are laid out in

the plane and connected at the appropriate edges. What is interesting is that every

such polyhedral net Dürer drew was not only a single connected piece, but also non-

intersecting or non-overlapping. While we will cover these concepts more formally in

Chapter 3, informally, this process of “edge-unfolding” can be thought of as taking a

pair of scissors and cutting along the edges of a polyhedron in such a way as to yield

a single connected component of faces which is then flattened in the plane. If this

10

flattened “net” does not overlap with itself, then we say that the original polyhedron

is “edge-unfoldable.” Shephard [8] formally conjectured in 1975 that it is possible to

edge-unfold in the same manner all convex polyhedra.

Conjecture (Shephard’s Conjecture). All polyhedra are edge-unfoldable.

This conjecture remains an open problem to this day. Meanwhile, the related

problem of whether a general non-convex polyhedron is edge-unfoldable has been

solved by Grünbaum [10, 11] and Tarasov [18] in their papers, and perhaps most

comprehensively, by Bern et al. in their papers on “ununfoldable polyhedra,” where

they demonstrated several general non-convex polyhedra [4], including ones with only

convex faces [6] or with only triangular faces [5], which cannot be edge-unfolded into

non-overlapping nets.

While there have been several studies on the open problem of edge-unfolding

convex polyhedra, when given a convex polyhedron or polyhedral surface, still not too

much is known about exactly which edge-unfoldings, if any, will yield non-overlapping

nets.

One of the first major results in this area come from Schevon’s 1989 PhD thesis

Algorithms for Geodesics on Polytopes [16], where she showed that most unfoldings

of convex polyhedra appear to be overlapping by computationally exploring random

unfoldings of random convex polyhedra with vertices on the unit sphere. For each

value of n between 10 and 80, Schevon generated 5 convex polyhedra of n vertices on

the unit sphere. For each such polyhedron, 1000 unfoldings were randomly selected

by random generation of glue-trees. Each unfolding was tested for overlap, produc-

ing an estimate of the percent of unfoldings which are overlapping. The results of

the experiment showed that as n gets larger, the percent of overlapping unfoldings

approached 100%. Specifically, almost all of the unfoldings tested of polyhedra of

more than 70 vertices were overlapping, implying that a random glue-tree of a large

convex polyhedron is almost guaranteed to be overlapping and giving evidence that

Shepard’s Conjecture might be false.

A more comprehensive study of various algorithms and polyhedra comes from

11

Schlickenrieder’s 1997 master’s thesis Nets of Polyhedra [17], where he defined and

tested several unfolding algorithms against several classes of convex polyhedra which

he created. The results were inconclusive for the general problem — every single

algorithm had a counterexample convex polyhedron which it could not unfold, while

every convex polyhedra generated was successfully edge-unfolded by some algorithm.

One of the more promising algorithms was named “STEEPEST-EDGE-UNFOLD,”

and it selected edges for the cut-tree by picking locally at each vertex the “steep-

est” edge e which maximized e · o for some objective vector o in R3. This algorithm

unfolded almost all of the polyhedra, and a variation which repeated the algorithm

using randomly generated objective vectors until an edge-unfolding was found man-

aged to unfold all of the polyhedra tested after at most 7 objective vectors tested.

A promising conjecture of the paper was that this “RANDOMIZED-STEEPEST-

EDGE-UNFOLD” could potentially unfold all convex polyhedra.

Unfortunately, this was disproven by Lucier’s 2006 article Local Overlaps in Spe-

cial Unfoldings of Convex Polyhedra [14], where he created counterexamples for

RANDOMIZED-STEEPEST-EDGE-UNFOLD and another more general algorithm

Schlickenrieder conjectured to always produce valid edge-unfoldings. Lucier accom-

plished this by first constructing a convex polyhedral terrain which had no non-

overlapping steepest-edge unfoldings for any objective vector in a cone. This was

done by showing that, for every objective vector in the cone, the steepest-edge un-

folding would cause a local overlap. Then, embedding the terrain in a triangle, he

tiled the faces of a large convex polyhedron with this constructed terrain in such a

way that the cones of ununfoldability covered all of space. This guaranteed that any

objective vector picked for the algorithm would fall in one such cone and thus fail to

edge-unfold that corresponding terrain-embedded face. Lucier [13] also used similar

methods to construct an ununfoldable convex polyhedra for normal-order unfoldings,

a generalization of steepest-edge unfoldigs proposed by Schlickenrieder.

Another interesting result in the field comes from Benton and O’Rourke’s 2007

article Unfolding Polyhedra via Cut-Tree Truncation [3], where they presented the

technique of “vertex truncation” which takes an unfolding cut-tree T of a convex

12

polyhedron P and turns it into an unfolding cut-tree T ′ of a related convex polyhedron

P ′. In more detail, let P be a convex polyhedron, and let P ′ be P with a corner cut

off. This means that P ′ has a face where P has a vertex. Benton and O’Rourke

showed that if an unfolding cut-tree T of P fulfilled an “empty-sector property,” and

the newly created face is triangular, then T can be modified to T ′, an unfolding cut-

tree of P ′, and this new T ′ also has the empty-sector property. Using this technique,

they showed that any convex polyhedron which can be obtained by a series of such

operations from an initial convex polyhedron which has a cut-tree with the empty-

sector property — for example, a pyramid — is also edge-unfoldable.

Figure 1-1: Flattening of a triangular pyramid to an almost-flat triangular pyramid

In this thesis we will be focusing on “almost-flat convex polyhedral terrains.” As

Figure 1-1 shows, an almost-flat convex polyhedra terrain can be thought of as a

convex polyhedral surface which is “flattened” by uniformly scaling it down in one

direction. The inspiration for studying such constructs came from a chat among Mar-

shall Bern, Erik Demaine, and David Eppstein in 1998 (and continued in discussions

with Günter Rote and Greg Price) — the motivation is that since such constructs are

almost flat, then they are very close to their planar projections, which are close to

non-overlapping nets, and unfolding such constructs will only result in slight shiftings

of the faces in their planar projection. Therefore, the only possible overlaps should

be between faces which are adjacent in the planar projection, i.e. local overlaps. This

will hopefully make it easier to analyze which cut-forests unfold, since we can then

consider each cut-tree separately because we only need to worry about local over-

laps. We will formally define such constructs in Chapter 2, as well as explore various

methods of representing them.

13

1.2 Our Results

As mentioned, we start in Chapter 2 by defining rigorously various terms we have been

using such as polygons, polyhedra, terrains, and almost-flatness. While it is trivial to

see any convex terrain as a convex lifting of a planar graph, we show in Section 2.5

an alternative representation based on the angle differences between the faces of the

terrain and the faces of the planar projection of the terrain. Such a representation

is useful since it tells us how much various angles open when we unfold based on a

cut-tree, and we use it throughout the rest of the thesis in our analysis of cut-trees.

We also demonstrate how to convert between the convex lifting representation and

the angle-delta representation and how to bound the maximum angle-delta.

After some introductory definitions of cut-forests and edge-unfolding, in Sec-

tion 3.1 we consider the issue of local overlaps. A local overlap is an overlap between

neighboring faces, which is a special case of a general overlap between any two faces.

We show that, for any almost-flat convex terrain T , there is a positive finite bound

BoundLocal(T) such that if T has height at most BoundLocal(T), then for any cut-

forest F , any overlaps from the unfolding of T by F will be local overlaps. This

proves our intuition that if the convex terrain is flat enough, then it is only possible

to have local overlaps on unfolding if we have any overlaps at all. We also show that

there are almost-flat convex terrains T for which no matter how flat T is, as long as

it has non-zero height, there are cut-forests of T which will always result in overlaps.

This shows that overlaps are still possible, and almost-flatness does not necessarily

trivialize edge-unfolding by any means.

Next, in Section 3.2, we consider just the planar projections of almost-flat con-

vex terrains. We define several path types, including most notably the Strongly

Monotonically Increasing Distance (SMID) Paths, which are based on just the planar

projection and not on the associated convex lifting or angle-delta additions. We prove

that, for any planar graph G, there is a positive finite bound BoundSMID(G) such

that, for any convex lifting T of G, if T has height less than BoundSMID(G), then

any SMID paths of G will be a cut-path of T which unfolds without overlap. By

14

putting together multiple SMID paths to form a tree, we show that such SMID trees

share a similar property — any SMID trees of G will unfold without overlap for any

almost-flat convex lifting of G. Hence, we can find an unfolding of an almost-flat

convex terrain by finding a SMID cut-forest of its planar projection. Unfortunately,

we also note that it is not always possible to find a SMID forest for all planar graphs,

and give several counterexample planar graphs which have no SMID spanning forests.

Furthermore, we show that, for any convex polygon p, we can make a planar graph

which has no SMID spanning forests with p as its outer boundary. Therefore, by

considering projections alone, it is not possible to unfold all such almost-flat convex

terrains.

Then, in Section 3.3, we consider the case of unfolding almost-flat convex ter-

rains while taking into account the relative heights of vertices. We give a first-order

approximation of determining whether a given cut-tree unfolds without overlap in

Section 3.3.2, and then argue in Section 3.3.3 that considering first-order effects alone

is appropriate by showing that any second-order or higher effect can be made insignif-

icant by almost-flatness. We then prove in Section 3.3.4 a result of local extensibility

of partial cut-trees. This means that if we have a partial cut-tree C which unfolds

without overlap, then there is at least one edge neighboring the root of the tree by

which we can “locally” extend our C to give a larger partial cut-tree C ′ which also

unfolds without overlap. Note that the “local” part of this result comes from the fact

that we assume we can extend C at its root by any neighboring edge, but this is not

true in general since it could be that extending C by some neighboring edge of the

root of C will result in a loop.

In Section 3.4, we describe a different unfolding technique called “slice unfolding,”

which is similar to, and can be considered as an extension of the “cut-tree truncation”

methods of Benton et al. [3]. Informally, this method takes a convex polyhedron P (or

in our case, an almost-flat convex terrain T) for which one knows E, an edge-unfolding

of P , and then tries to create an edge-unfolding of P ′, the convex polyhedron of P with

a section “sliced” off, by modifying E in the neighborhood of the sliced off section.

We start by demonstrating how slice unfolding works in general, showing what slices

15

look like, and giving an example sequence of unfoldings created by a sequence of

slices. Then, we focus our attention on vertex-slices, a type of slice which cuts away

a section which contains exactly one vertex. We show that, in the context of almost-

flat convex terrain, all triangular vertex-slices result in new valid unfoldings, which

essentially translates the result of “Cut-Tree Truncation” [3] to the space of almost-

flat convex terrains. We then continue on to analyze and categorize which unfoldings

of quadrilateral vertex-slices and general vertex-slices result in valid unfoldings.

Next, in Chapter 4, we detail some algorithms and heuristics we developed for

computationally searching for edge-unfoldings in almost-flat convex terrain. We start

in Section 4.1 with algorithms for generating spherical convex liftings in regular m-

gons, general spherical liftings, and general random liftings of convex planar graphs.

We also show algorithms for finding unfolding cut-paths and determining, based off

of our first-order approximation method from Section 3.3.2, if a cut-tree unfolds

without overlap. Then we demonstrate an algorithm for non-repeating brute-force

enumeration of cut-forests, which is useful for computationally calculating the total

number of cut-forests and the total number of unfolding cut-forests. Finally, we devise

a greedy algorithm for constructing a cut-forest and propose several heuristics to use

it with.

Finally, in Chapter 5, we give some computational results of edge-unfolding almost-

flat convex terrain. We reaffirm Schevon’s [16] result by showing that, for almost-

flat spherical liftings, the percentage of randomly selected cut-forests which unfold

without overlap seems to decrease as the terrain size increases. Similarly, our results

suggests that, for general spherical liftings, on average, the total number of cut-forests

as well as the total number of unfolding cut-forests increase exponentially as terrain

size, while the percentage of unfolding cut-trees decreases exponentially as terrain

size. Lastly, we tested the heuristics we devised for our greedy cut-forest generation

algorithm, showing that a heuristic which relies on Dijkstra distance and threshold

angle values works the best — it is able to maintain an 80% success rate even for

general spherical liftings of close to 6,000 vertices.

16

Chapter 2

Almost-Flat Convex Terrains

In this chapter, we introduce the concept of almost-flat convex terrains, the focus of

our study in unfolding. We rigorously define such notions as terrains, convexity, and

almost-flatness, as well as examine two main methods of representing such constructs.

2.1 Polygons, Polyhedra, and Terrains

We start with a review of definitions and properties of polygons, polyhedra, and

terrains. For each such construct, we give a rigorous definition, but assume knowledge

of common Euclidean geometric concepts such as angles, edges, faces, etc. Similarly,

we often make use of Cartesian coordinates and base some of our definitions on such

coordinates.

Let x1, x2, . . . , xn be coplanar points in R3 such that none of the straight line

segments x1x2, x2x3, . . . , xn−1xn, xnx1 intersect except at common endpoints. Then,

we say that x1x2 · · ·xn is an n-sided polygon Q with vertices VQ = {x1, . . . , xn} and

edges EQ = {x1x2, . . . , xn−1xn, xnx1} (see Figure 2-1a). Essentially, a polygon is a

planar region bounded by straight line segments — let this bounded region be the

interior of the polygon, which is separated from the rest of the plane (the exterior)

by the edges of the polygon (the boundary). We say that two polygons are touching

if they share points only along their boundaries, and two polygons are intersecting if

they share points in their interiors. Note that polygons do not need to be coplanar

17

to be touching or intersecting.

v1

v3
v2

v5
v4

v6

e1

e5

e6

e4

e3

e2

(a) Polygon (b) Polyhedron

Figure 2-1: Example polygon and polyhedron

Then, a polyhedron P is a union of non-intersecting polygons {q} which are con-

nected at edges to form a closed surface, and where no two adjacent polygons are

coplanar (see Figure 2-1b). Let us define a polyhedron P by the ordered triplet

(V,E, F), where V ⊂ R3 is the set of vertices of P , E ⊂ V × V is the set of edges

of P , and F ⊂ V ∗ is the set of faces of P . Similarly to before, let the finite space

bounded by the faces of a polyhedron be its interior, and the rest of R3 be the ex-

terior. With this definition of “inside” and “outside”, we can define the normal to

a given face to be the unit vector perpendicular to the face and pointing away from

the interior of the polyhedron. Similar to how polygons have angles at vertices, poly-

hedra have dihedral angles at edges; the dihedral angle at edge e is the interior angle

between the two faces which share e. It can also be calculated as π − A, where A is

the signed angle between the face normals of the same two neighboring faces.

Next, an open polyhedron O (Figure 2-2a) is a connected subset of faces of P

homomorphic to a disk — i.e. there are no holes. Finally, a terrain T (Figure 2-2b)

is an open polyhedron with a unit vector ~Z such that the projection of T to a plane

perpendicular to ~Z is a planar graph. Also, let the vertices of T not surrounded by

faces be the boundary vertices of T . In essence, T is a “patch” of a polyhedron, which

can be “flattened” in the direction of ~Z without any overlap or degeneracy of faces.

Note that this means any line parallel to ~Z intersects T at at most one point, so there

can be no “vertical” faces with respect to ~Z. Continuing, we define the “interior” of

T to be the set of points {x − t ~Z | x ∈ T, t > 0}, where x ∈ T are points on the

18

surface of T . Informally, this represents the volume “under” T . Using this definition

of the interior, the previous condition for projection without degeneracy or overlap

can also be stated as the following: for every face f of T , the dot product of the

normal of f with ~Z is strictly positive.

(a) Open polyhedron (b) Terrain

Figure 2-2: Example open polygon and terrain

Let us also define a simple terrain to be a terrain which contains no non-boundary

edge between two boundary vertices. Then let a non-simple terrain be a complex

terrain. A complex terrain is multiple simple terrains joined at edges.

For convenience, whenever we speak of a terrain T , we will mean a simple terrain

with ~Z parallel to the positive z axis, in which case the projection of T to the xy

plane will be a planar graph. Similarly, when considering such terrains, we assume

that that all z coordinates are non-negative, and that the lowest vertex lies in the

z = 0 plane.

2.2 Convexity

A polygon or a polyhedron P is convex if and only if for every pair of points a, b ∈ P ,

the line segment ab is contained in P as well. Here, a ∈ P means that a is not in

the exterior of P , so a can be either in the interior of P or on the boundary of P .

More practically, a polygon is convex if all of its interior angles are less than π, and

a polyhedron is convex if all of its dihedral angles are less than π. Also, all the faces

of a convex polyhedron are all convex as well: this is easy to see by considering any

non-convex face and the faces adjacent to the > π angle. For a terrain T , we can use

19

the same definition for convexity by using the definition of interior as described in

the previous section.

(a) Convex polygon (b) Convex polyhedron (c) Convex polygon as
half-space intersection

Figure 2-3: Convexity Examples

Another important property of convexity is that we can treat convex shapes as

intersection of half-spaces (see Figure 2-3c). For polygons, this means that convex

polygons are intersections of half-planes, while for polyhedra, this means that convex

polyhedra are intersections of half-spaces. Hence, another way to represent a convex

polyhedron would be a list of planar inequalities representing the half-spaces which

form the polyhedron. While we won’t be using this representation directly, some

unfolding techniques we present in Section 3.4 will make use of these ideas.

2.3 Almost-Flatness

We say that a terrain T is almost flat with flatness ε if the z coordinate of every

vertex of T is less than or equal to ε. Note that this definition makes use of the

coordinate-based definition of terrains which we mention at the end of Section 2.1.

To avoid confusion, we will use the common term of “flatter” to mean a smaller ε,

and “less flat” to mean a larger ε. A useful fact to note is that any terrain T can

be converted into an almost-flat terrain by merely scaling all the vertices of T in the

z axis by an appropriate constant. Also, note that such scaling does not affect the

convexity of a terrain.

An almost-flat convex terrain T is, as its name dictates, “almost flat.” This means

that, for small flatness ε, the faces of T are actually very close in size and shape to

20

the faces of the xy projection of T . This is the main defining characteristic of the

terrains which we will be examining in the rest of this thesis, as it is one which is not

well-explored. A big motivation for looking at such T is that, since the faces of T

and the corresponding faces of the xy projection of T are very close, an unfolding of

T is merely a slight perturbation of the projection of T . These concepts of unfolding

will be discussed more in Chapter 3.

2.3.1 Height Bounds on Flatness

In many places we will use the assumption that, since T is almost flat, we can use first-

order approximation on functions of quantities involving ε. While we don’t explicitly

prove this, we assume that we can bound ε for certain functions f(x) such that the

difference between f(a + cε) and f(a) + f ′(a)cε for applicable constants a and c is

small enough not to matter for our applications. Stated more formally:

Claim (Height Bound for First-Order Application). For a given almost-flat convex

terrain T and a given finite set of strict inequalities involving continuous functions

of values involving heights and positions of vertices of T , there exists a flatness value

ε such that using the first-order approximation of such functions in regards to ε will

not change the result of the inequalities.

Proof Sketch. For any function f which is continuous in a neighborhood of x,

we have a bound on f(x) for x in the neighborhood. By shrinking the neghborhood,

and thus shrinking the bound on f(x), we can ensure that whatever strict inequalities

which use f(x) will be satisfied despite the inaccuracy brought on by the first-order

approximation.

Where applicable, we will provide arguments for the validity of first-order approx-

imation in our calculations.

21

2.4 Convex Lifting Representation

Taking advantage of the fact that an almost-flat convex terrain is very close in shape

to its projection, we will now detail two methods of representing such a terrain T by

its projection, the planar polygonal graph G, along with another piece of information.

The first such representation is a convex lifting of G.

Figure 2-4: Convex lifting

More specifically, the convex lifting representation of T is the pair (G,H), where

G is the planar projection of T , and H is a function mapping vertices of G to heights

as a ratio of ε (see Figure 2-4). In other words, the z coordinate of vertex v of T is

H(v)ε. Since T is almost flat with flatness ε, we see that ∀v, 0 ≤ H(v) ≤ 1.

For all intents and purposes, when it comes to unfolding, two almost-flat convex

terrains T1, T2 are the same if they share the same G and have linearly related H,

that is:

∃a ∈ R,∀v ∈ G,HT1(v) = a ·HT2(v).

This is because, as long as they both have flatness ε which satisfies all the bounds

mentioned in later sections, being flatter does not change their unfoldability, which

depends only on those flatness thresholds and G.

We note that this “representation” is really no different than merely defining T as

a graph on points in R3, where the z coordinates are in terms of ε. While the more

useful representation for unfolding is the one detailed in the next section, it is much

easier to generate and test for convexity using this representation since we can treat

22

ε as an arbitrary positive constant to obtain a terrain with real values. This is valid

since, as mentioned before, scaling a terrain in the z axis does not affect its convexity.

2.5 Angle-Delta Representation

Instead of height at each vertex, we can instead represent T as the planar projection

G along with a function D detailing the angle-delta at each angle of G. In more detail,

if A is an angle of a face G, and A′ is the corresponding angle of the corresponding

face of T , then D(A)φ + a = a′, where a and a′ are the magnitude of angles A and

A′ in radians, and φ is a small constant representing the “flatness” for angle-deltas,

just like how ε represents “flatness” for the convex lifting representation. Figure 2-5

shows an example angle-delta representation of an equilateral triangular pyramid.

+φ

−2φ

+φ

+φ

+φ+φ

+φ

−2φ

−2φ

Figure 2-5: Angle-delta representation of a regular triangular pyramidal terrain

This angle-delta representation is useful for calculating unfoldings since it means

we can just use G with minor angle adjustments. For instance, consider the almost-

flat open pyramid T above. This is an almost-flat convex terrain with angle-delta

representation (G,D) as shown. By making the approximation that the lengths of

edges in G and T are equal and using the first-order approximation of sin, we see that

we can calculate approximately what the unfolding of G will look like using just G,

D, and simple arithmetic without having to calculate exactly the shapes of the faces

23

of T and laying them out on the plane. We will explore these concepts of unfolding

using the angle-delta representation in more detail in Chapter 3, but this is the main

motivation behind this representation.

2.5.1 Height to Angle-Delta First-Order Approximation

Since it is much easier to generate almost-flat convex terrains in the convex lifting

representation, but it is easier to reason about unfolding using the angle-delta repre-

sentation, we detail in this section a way to convert a convex lifting to the first-order

approximation of the angle-delta representation.

A'

B'

C'

A

B

C

hC

hB

hA

a'

b'

c'

a
c

b

Figure 2-6: Calculating angle-delta from lifting

Referring to Figure 2-6, let A,B,C be three vertices of G such that ∠ABC is

an angle of a face of G. Then, let A′, B′, C ′ be the corresponding vertices of T . In

the convex lifting (G,H) with flatness ε, let the lifting be hA, hB, hC , so the actual

heights are hAε, hBε, hCε. Now, consider triangle 4ABC. By the law of cosines, we

have

b2 = a2 + c2 − 2ac cosB.

Similarly, for triangle 4A′B′C ′ we have

b′2 = a′2 + c′2 − 2a′c′ cosB′.

24

Substituting in

a′ =
√
a2 + ε2(hB − hC)2

b′ =
√
b2 + ε2(hA − hC)2

c′ =
√
c2 + ε2(hA − hB)2

for the edges, as well as B′ = B+D(B)φ for the angle, where D(B)φ is the angle-delta

for ∠ABC which are we trying to calculate, we get

b2 + ε2(hA − hC)2 = a2 + c2 + ε2(hB − hC)2 + ε2(hA − hB)2

− 2
√

(a2 + ε2(hB − hC)2)(c2 + ε2(hA − hB)2) cos(B +D(B)φ).

Subtracting the law of cosines for 4ABC then yields

ε2(hA − hC)2 = ε2(hB − hC)2 + ε2(hA − hB)2

− 2
√

(a2 + ε2(hB − hC)2)(c2 + ε2(hA − hB)2) cos(B +D(B)φ)

+ 2ac cosB.

Letting

P = h2B − hAhC + hBhC + hAhB

Q1 = 2a2(hA − hB)2 + 2c2(hB − hC)2

Q2 = (hB − hC)2(hA − hB)2,

we can simplify the equation to be

ε2P = ac cosB −
√
a2c2 + ε2Q1 + ε4Q2 cos(B +D(B)φ).

Now, we make the first-order approximation for square root and cos, using the rea-

25

soning that ε and φ are very small, and simplify to get

ε2P ≈ ac cosB −
(√

a2c2 +
ε2Q1 + ε4Q2

2
√
a2c2

)
(cosB −D(B)φ sinB)

ε2P ≈ ac cosB −
(
ac+

ε2Q1 + ε4Q2

2ac

)
(cosB −D(B)φ sinB)

ε2P ≈ −
(
ε2Q1 + ε4Q2

2ac

)
(cosB −D(B) sinB) + acD(B)φ sinB

ε2P +
ε2Q1 + ε4Q2

2ac
cosB ≈

(
ac+

ε2Q1 + ε4Q2

2ac

)
(D(B)φ sinB)

2acPε2 + ε2Q1 cosB + ε4Q2 cosB ≈ (2a2c2 + ε2Q1 + ε4Q2)D(B)φ sinB

2acPε2 + ε2Q1 cosB + ε4Q2 cosB

(2a2c2 + ε2Q1 + ε4Q2) sinB
≈ D(B)φ

2acP +Q1 + ε2Q2

(2a2c2 + ε2Q1 + ε4Q2) sinB
ε2 ≈ D(B)φ.

Consolidating the constant terms, i.e.

c1 = 2acP +Q1 cosB, c2 = Q2 cosB

d0 = 2a2c2 sinB, d1 = Q1 sinB, d2 = Q2 sinB,

we have the first-order approximation

D(B)φ ≈
(

c1 + c2ε
2

d0 + d1ε2 + d2ε4

)
ε2 ≈

(
c1
d0

+
c2 − d1c1

d0

d0
ε2

)
ε2 ≈ c1

d0
ε2

for D(B). Making this calculation for every single angle of G, we can convert a convex

lifting representation (G,H) with flatness ε of T into an approximate angle-delta

representation (G,D) with flatness φ = ε2 which should be accurate enough assuming

T is flat enough. More specifically, in this calculation we made the assumptions that

√
x+ dx ≈

√
x+

dx

2
√
x

26

and

cos(x+ dx) ≈ cos(x)− sin(x)dx

for small dx. Since cos has no degenerate points, and we only use the approximation

for square root for positive constant values, these approximations should be accurate

for small ε. Of course, the ε required will depend on G.

Now, by our definition of convex lifting, we limited all the hi to be in the interval

[0, 1], so given that limitation, we can actually bound the absolute value of the angle-

deltas:∣∣∣∣ c1d0
∣∣∣∣ =

∣∣∣∣2acP +Q1

2a2c2

∣∣∣∣ ≤ ∣∣∣∣6ac+ 2a2 + 2c2

2a2c2

∣∣∣∣ ≤ ∣∣∣∣ 3

ac
+

1

c2
+

1

a2

∣∣∣∣ ≤ 5

MinEdge2
.

Hence, by scaling G such that its minimum edge has length
√

5, we get a nice bound

of 1 on the absolute value of any angle-delta — we assume that all G we consider

from now on have this property, which can be easily achieved by uniformly scaling G

appropriately.

2.6 Ideal Almost-flatness

We note from the calculations above, assuming our approximations to be accurate,

that all non-zero angle-deltas have an ε2 factor to them, so uniformly scaling the

height liftings H by z will also uniformly scale the angle-deltas D by z2 approximately.

So, we can achieve liftings with vertex heights arbitrarily close to 0 which also have

angle-deltas arbitrarily close to 0. This is actually what we want to work with: an

“ideal” almost-flatness where all heights and angle-deltas are approximately 0, but

we know the relative heights and relative angle-deltas. This allows us to freely use

first-order approximations, which drastically simplifies the trigonometric calculations

of unfolding into simple multiplication. For instance, a sin θ can be simplified to be

simply aθ.

Indeed, the rest of our calculations will treat an almost-flat convex terrain T as

such an “ideal” almost-flat terrains with essentially 0 height. This allows us to freely

27

use first-order approximations while dropping the ε and φ from calculations. At the

same time, we will show that this is a valid simplification by providing bounds on

ε to show that, for a given projection G, there exist real values of ε such that an

almost-flat convex terrain T = (G,H) with flatness ε shares the same properties

which we are interested in as an “ideal” almost-flat convex terrain with projection

G and relative heights H. So, while we will assume “ideal” almost-flatness, we will

also prove ε bounds (i.e. height bounds) to show that such “ideal” almost-flatness is

achievable with real values.

28

Chapter 3

Edge-Unfolding Almost-Flat

Convex Terrains

This chapter covers a theoretical exploration of edge-unfolding almost-flat convex

terrains through four sections. The first section provides a definition of various ways

to specify unfoldings as well as a demonstration of how unfolding affects the faces of

an almost-flat convex terrain T in regards to its projection G. The second section

explores how much information about the unfoldability of a terrain one can gleam

from just its projection. The third section examines what cut-trees unfold without

overlapping and proves a result on extending partial cut-trees. The fourth section

demonstrates an alternative unfolding technique based on treating the faces of an

almost-flat convex terrain as “slices.”

3.1 Cut-Forests and Glue-Trees

An edge-unfolding of a polyhedron P is a cut-tree or glue-tree of P . A cut-tree C is

a spanning tree of the vertices of P , and its corresponding glue-tree C is a spanning

tree of the dual of P such that, for every edge e not in C, the dual edge of e is in

C ′. A cut-tree specifies which edges to “cut” faces apart in order to unfold P , while

a glue-tree specifies which edges to “glue” faces together in order to unfold P . Let C

be an edge-unfolding glue-tree of P , and let PC be the faces of P such that fi, fj ∈ PC

29

are connected by edge e if the dual of e is in C. Then, setting all dihedral angles

of PC to be π gives us the net of edge-unfolding P by glue-tree C. In other words,

the net of unfolding P by C is a planar embedding PC of the faces of P such that

two faces of PC share edge e if the dual of e is in C. Similarly, we can define the

net of edge-unfolding P by a cut-tree C to be the net yielded by unfolding using the

corresponding glue-tree C. Figure 3-1 gives an example cut-tree and its corresponding

glue-tree of a square pyramid, along with the resulting net.

(a) Cut-tree C (red) and glue-tree C
(blue)

(b) Net from C/C

Figure 3-1: Cut-trees, glue-trees and unfolded nets

The intuition behind edge-unfolding a polyhedron P is that we are “cutting” or

“gluing” the faces of a polyhedron along edges and then “flattening” the result to get

a net. If two faces of a net intersect, then we say that they overlap, and that the net

overlaps. In addition, an overlap must be caused by a vertex v being in the interior

of a face f , so for convenience we say that that v overlaps with f and also that v

overlaps with e, where e is the closest edge(s) which intersects with an adjacent edge

to v (Figure 3-2). If no faces overlap in the net of unfolding P by C, then we say

that C unfolds P , and if some cut-tree of P unfolds P , then P is (edge) unfoldable.

The same definitions apply to open polyhedra and terrains, except that instead of

a cut-tree of terrain T , we have a cut-forest, which is a spanning forest of the vertices

of T , where each tree contains exactly one boundary vertex of T . This is required

for the net of unfolding T by a cut-forest C to remain a single connected component

of faces. For most of the time, we will be dealing with unfolding almost-flat convex

terrains and not polyhedra, so let us clarify some terms which we will use: A “cut-

forest” will indicate an unfolding of a terrain T as detailed above, while a “cut-path”

30

(a) Local overlap example

v

e

f

(b) v overlaps with e and f

Figure 3-2: Terminology for overlaps

will indicate a directed path of a subset of the vertices of T ending at a boundary

vertex of T and a “cut-tree” will indicate a tree of a subset of vertices of T rooted

at a boundary vertex of T . More specifically, for a cut-tree t of a terrain T , let its

root be the one vertex of t which is on the boundary of T , and let a leaf of t be any

non-root vertex of t with only one incident edge in t.

3.1.1 Unfolding Motion

In this section, we will take a look at how faces of an almost-flat convex terrain T move

away from their corresponding faces of the planar projection G when unfolded by a

cut-tree C. Let us start with the simplest almost-flat convex terrain — a triangular

pyramid without the bottom face — and the simplest cut-tree — a single edge. As

shown in Figure 3-3, ABCD is a triangular pyramid with angle-deltas as shown, and

we are interested in the edge-unfolding by the single cut edge DA. This results in

ABCA′D, where DA splits into two edges DA and DA′, which opens with angle 3φ,

the negative of the sum of the angle-deltas at D.

A

BC

D

(a) Cut-tree of one edge

D

A A'

(b) Unfolded net

D

A A'

(c) Just the cut-edges

Figure 3-3: Unfolding motion of a cut-edge

31

Figure 3-3c shows the results of the unfolding through just the cut-edge DA:

vertex A is first split into A and A′, and then fixing DA, we see that DA′ rotates by

3φ around D to give the final position of A′ in the unfolded net. Note that indeed, we

only need to look at the cut-edges when considering if a net overlaps, since those are

the only edges which can intersect and cause overlaps. Similarly, when considering

such cut-edges, we only care about the aggregate angle-delta at each angle of the

cut-tree.

A

B

C

D

(a) Longer cut-path

A

B

C

D

B'

C'

D'

(b) Unfolding at A

A

B

C

D

B'

C'

D'

(c) Unfolding at B,B′

A

B

C

D

B'

C'

D'

(d) Unfolding at C,C ′, final unfolding

Figure 3-4: Unfolding motion of a cut-path

Using this abstraction of considering just the cut-edges, let us observe a more

complicated cut-path unfolding. Figure 3-4 shows a cut-path ABCD with aggregate

angle-deltas as listed and how the unfolding based on fixing AB proceeds. First,

unfolding at A rotates the entire subpath AB′C ′D′ by φA around A. Next, unfolding

at B rotates the subpath BCD by φB around B and unfolding at B′ rotates the

subpath B′C ′D′ by φB′ around B′. Finally, the unfoldings at C and C ′ rotate the

edges CD and C ′D′ by φD and φD′ around C and C ′ respectively. Note that in this

example, we fixed the edge AB, but we could have fixed any edge and still get the

same resulting unfolded cut-path in terms of relative vertex locations. Likewise, we

can apply the same concepts to a cut-tree, as shown in Figure 3-5.

32

A

B

C

D

(a) Simple cut-tree

A

B

C

D

A'

(b) Unfolding at B

A

B

C

D

A'

B'

(c) Unfolding at C

A

B

C

D

A'

B'

(d) Unfolding at B′

A

B

C

D

A'

B'
B''

(e) Unfolding at D

A

B

C

D

A'

B'
B''

(f) Unfolding at B′′, final
unfolding

Figure 3-5: Unfolding motion of a cut-tree

Hence, overall we see that we can figure out the unfolded form of T by a cut-tree by

considering just the cut-tree itself. We do this by calculating aggregate angle-deltas

at each vertex of the unfolding cut-tree and then “unfold” each vertex by rotating the

rest of the cut-tree around that vertex by the aggregate angle-delta at that vertex.

Then, an overlap would involve an intersection of cut-tree edges. This abstraction

is very important since it allows us to focus on the cut-trees themselves while not

actually simplifying away any part of the original problem of figuring if an unfolding

results in an overlapping net.

3.1.2 Local Overlaps

An overlap which occurs between two edges which share a vertex in T is a local

overlap, and otherwise it is a non-local overlap (Figure 3-6). Local overlaps are easier

to consider than general overlaps since they depend mostly on the local geometry.

This is the main reason we picked almost-flat convex terrains: because they are almost

flat they have small angle-deltas, and hence their nets should be relatively similar to

their projections. This then implies that their nets will only have local overlaps if any

33

(a) Non-local overlap cut-tree and net (b) Local overlap cut-tree and net

Figure 3-6: Non-local and local overlaps

at all. In Section 3.1.3 we will formally prove this for arbitrary almost-flat convex

terrain T by showing a height bound based on T which achieves this.

Meanwhile, let us consider the implications assuming unfoldings of T with pro-

jection G can only have local overlaps. First of all, this means that we can consider

cut-trees of a cut-forest of T separately, since overlaps between edges of different

cut-trees are not local overlaps. Next, note that since the motion of unfolding is

rotation, it follows intuitively that a cut-path which is mostly straight in G will have

no overlaps regardless of the distribution of angle-deltas — we will explore this idea

more in Section 3.2. Similarly, if we assume our analysis of unfolding motions to be

accurate, then a local overlap can only be caused by an acute angle between an edge

and the vertex it is being rotated around for the unfolding. So, we want to avoid

acute angles in cut-paths, but we also want to avoid right angles. The reason is that

the angle-deltas might cause a right angle to become an acute or obtuse angle (see

Figure 3-7), but it gets more complicated than that — considering angle-deltas when

checking whether the motion of unfolding will clear an angle requires dealing with

second-order effects, a problem we will discuss more in Section 3.3.3.

Finally, we note that if T is fully flattened (say, by setting ε = 0), then it definitely

has no overlapping unfoldings since it becomes the planar graph G. Similarly, as we

34

(a) Local overlap on
obtuse angle

(b) Local overlap on acute
angle

(c) Ambiguous right angle
case

Figure 3-7: Example local overlaps at various angles

will show soon, for every T there is a certain εlocal for which all unfoldings of T

flatter than εlocal can only have local unfoldings. Therefore, it becomes a question of

whether for arbitrary T there is an εno−overlap for which all unfoldings of T flatter than

εno−overlap has no overlaps at all. That is, is there a height bound below which the

question of edge-unfoldability is trivial for almost-flat convex terrains? Unfortunately,

this is not so — it is easy to see that, for most T , there are cut-trees which always

overlap no matter how flat T is. One such example is seen in Figure 3-8: the cut

path ABC will always overlap at B′ due to the unfolding around A since ∠ABC is

acute. Then, because T is almost flat, B′ will travel a small distance and BC will

only “open” a short distance, and hence they will always overlap.

(0,0,0) (6,0,0)

(4,1,1)

(2,2,1)

(3,6,0)

A

B

C

Figure 3-8: Always overlapping cut-tree

35

If T were not almost flat, it could have been either that φB is large enough to

make ∠ABC ≥ π or that B′ travels far enough that no overlaps happen. In a way,

almost-flatness makes it harder for T to unfold since it actually causes more local

overlaps to occur.

3.1.3 Height Bound for Local Overlaps

Now, let us show that we can actually achieve the “only-local-overlaps” property with

an actual height bound. To start, note that, for a cut-tree of T = (G,H) = (G,D) to

cause a non-local overlap, a vertex v must move a relatively large distance. Namely,

assuming the target edge e which v overlaps with is fixed, the cut-tree must move v

at least the distance between v and e in G. This distance is a strictly positive and

finite value which does not depend on ε, but instead only on the geometry of G. For

now, let us assume that the convex lifting does not change the length of edges of G

appreciably; we will show later in Section 3.3.3 that this minute lengthening of the

edges of G only causes a second-order effect which can be ignored when compared to

the first-order effect supposing a flat enough ε. Meanwhile, let us prove the following

bound:

Theorem 1 (Height Bound for Local Overlaps Only). Let T = (G,H) = (G,D)

be an almost-flat convex terrain with flatness 0 < ε < 1. Let SmallDist(G) be the

smallest distance between a vertex v of G and an edge e of G such that v is not

adjacent to e, and let EG be the edge set of G. Then, we have the bound

BoundLocal(T) =
SmallDist(G)(∑

e∈EG
|e|
) (∑

d∈D |d|
) .

Then, if ε < BoundLocal(T), every unfolding of T can have only local overlaps if any

at all.

Proof. A cut-tree C can only cause a non-local overlap involving a vertex v if v

overlaps with a non-adjacent edge e. Assuming we unfold C with e fixed, we see that

the unfolding of C must move v a distance at least that of the distance between e

36

and v, which must be at least SmallDist(G). What we want to do is to bound the

total distance C moves v by bounding the real maximum angle-delta (ε2 maxD |d|),

which in turn gives a bound on ε. Now, each angle of C with angle-delta d at vertex

vC moves v at most dist(v, vC) sin d. Therefore, the total contribution of C in terms

of moving v in unfolding is

Total =
∑

vC∈C,d∈D(∠vC)

dist(vC , v) sin |dφ|

≤
∑

v′∈VG,d∈D(∠v′)

dist(v′, v) sin |dφ|

≤
∑

v′∈VG,d∈D(∠v′)

dist(v′, v) |dφ|

≤
∑

v′∈VG,d∈D(∠v′)

(∑
e∈EG

|e|

)
|dφ|

≤
∑
d∈D

(∑
e∈EG

|e|

)
|dφ|

=

(∑
e∈EG

|e|

)(∑
d∈D

|d|

)
φ,

where VG is the vertex set of G, D(∠v) is the set of angle-deltas at v, and φ is the

corresponding “flatness” value for angle-deltas. So, we need(∑
e∈EG

|e|

)(∑
d∈D

|d|

)
φ < SmallDist(G).

Solving for φ gives

φ <
SmallDist(G)(∑

e∈EG
|e|
) (∑

d∈D |d|
) = BoundLocal(T).

Now, remembering that φ ≈ ε2 from our calculations in Section 2.5.1, we see that,

if ε < K for some constant K and 0 < ε < 1, then φ = ε2 < ε < K. Hence, if

ε < BoundLocal(T), then we know that any cut-tree of T , on unfolding with any

edge e fixed, will move any vertex v a distance less that SmallDist(G), and so there

37

can be no non-local overlaps in any unfolding of T .

This bound is by no means tight. We can achieve a tight bound for a given

T = (G,H) = (G,D) by considering all possible cut-trees of G, and then scaling ε

enough such that no cut-tree of G causes a non-local overlap. However, this theorem

shows that such a bound indeed exists and is non-zero. Hence, we can achieve the “no

non-local overlap” property for any convex terrain T by scaling all heights of T by

BoundLocal(T)
MaxHeight(T)

, showing that this property of our “ideal” almost-flatness is achievable

with real values.

3.2 Projections and Unfolding

In this section we will examine in more detail the projection G of almost-flat convex

terrains. We will show that it is possible to find cut-paths which will probably unfold,

as well as cut-paths and cut-trees which will definitely unfold, just by looking at G

without worrying about H or D, assuming the terrain is flat enough. However, we

will also show that there exist projections G for which no such definitely unfolding

cut-paths and cut-trees exist.

3.2.1 Path Definitions

First, let us define some terminology involving paths (Figure 3-9). A directed path p

from v1 to vn of a graph G is an ordered list of points p = (v1, v2, . . . , vn), vi ∈ V ,

where (v1, v2), . . . , (vn−1, vn) are all edges of G. For convenience we will often drop

the word “directed” and just talk about “paths,” and also assume that we are talking

about paths of G, even if the G is not specifically mentioned. Similarly, when we talk

about “unfolding a path p,” we mean to treat p as a cut-path, and then unfold that

cut-path. We will also write the shorthand (v, . . .) to mean a path starting from v,

(. . . , v) to mean path ending at v, and (. . . , v, . . .) to mean a path containing v, and

only fill in other vertices as necessary when we need them. A lot of times it will also

be useful to consider a path p = (v1, . . . , vn) as a function fp(x) defined for 1 ≤ x < n

38

where

fp(x) = (1− (x− bxc)) vbxc + (x− bxc) vbxc+1.

For instance, fp(1) = v1 and fp(2.5) is the midpoint of the edge between v2 and v3.

Finally, let us define a subpath of p = (v1, v2, . . . , vn) to be some path (vi, . . . , vj) for

integers i, j, and a partial subpath to be a path (fp(a), vbac+1, . . . , vbbc, fp(b)) for reals

a, b, that is, a “subpath” of p which does not necessarily begin or end on vertices of

G.

v5

v4
v3

v2

v1

(a) Path p = (v1, . . . , v5)

v4
v3

v2

(b) Subpath (v2, . . . , v4)

v3

v2

(c) Subpath
(fp(1.5), . . . , fp(3.5))

Figure 3-9: Path and subpath terminology

3.2.2 Weakly Monotonically Increasing Distance (WMID)

Paths

Let us start with a weak approximation of an unfolding cut-path which we think will

likely unfold. As discussed in Section 3.1.2, for an unfolding motion centered on v1

of the path p = (v1, . . .), in order to avoid local overlaps we want to avoid making

acute angles (and right angles) between the line from v1 to an edge e of the path and

the edge e itself. So, let a weakly monotonically increasing distance path, or WMID

path, be a path p = (v1, . . . , vn) such that, if we let fp be the function representation

of p, then

∀a ∈ R, 1 < a < n, ‖v1 − fp(a)‖2 + ‖fp(a)− vbac+1‖2 < ‖v1 − vbac+1‖2.

39

That is, for any point fp(a) on the path and the vertex vbac+1 immediately after

it, we have that the triangle 4v1fp(a)vbac+1 is an obtuse triangle with obtuse angle

∠v1fp(a)vbac+1. Also, note that the distance function g(a) = ‖v1− fp(a)‖ is a strictly

monotonically increasing function, which is where the name comes from.

Now, let us look at some properties of WMID paths which let them “somewhat”

unfold when used as cut-paths (Figure 3-10). Let p = (v1, . . . , vn) be a WMID path.

We see that, by the definition, for any point x = fp(a) on edge e of p we have that

the line v1x forms an obtuse angle with the rest of e, i.e. {y ∈ e | y = fp(b), b ≥ a}.

We also note that, since the distance from v1 is a strictly monotonically increasing

function, every circle centered on v1 will intersect p at most once. Both these facts

mean that, if we unfold by some small angle φ at v1, assuming the rest of the angles

stay fixed, then there will be no local overlaps since the unfolding motion is a rotation.

v1 v1 v1

Figure 3-10: WMID path, showing obtuse angles from v1, single intersection with
circles at v1, and example unfolding

So, a WMID path p = (v1, . . . , vn) of G will unfold without overlap if the aggregate

angle-delta at v1 is some small −φ, and the aggregate angle-deltas at the rest of the

vi is 0.

However, at the same time, this means that many WMID paths of G will not

unfold in actuality, since it is impossible for non-boundary vertices of a convex terrain

to have 0 aggregate angle-delta, and since with WMID paths we are only concerned

that the angle the first vertex makes with the rest of the path is obtuse, the path

itself might actually have many acute angles as the above example shows.

40

3.2.3 Strongly Monotonically Increasing Distance (SMID)

Paths

What we really want is a path where every subpath is a WMID path. Let a Strongly

Monotonically Increasing Distance path or SMID path be a path p = (v1, . . . , vn)

such that, if we let fp be the function representation of p, then

∀k ∈ Z,∀a ∈ R, 1 ≤ k < a < n, ‖fp(k)− fp(a)‖2 + ‖fp(a)− vbac+1‖2 < ‖v1 − vbac+1‖2.

Essentially, this says that every subpath (vk, . . . , vn) is a WMID path. Also, by

changing the 1 in 1 ≤ k < a < n to any integer l < n, we see that every subpath

(vl, . . . , vn) is also a SMID path.

Figure 3-11: SMID paths can be unfolded from any vertex without overlaps

Whereas WMID paths can only be unfolded at v1 without overlap (assuming the

rest have angle-delta 0), since subpaths of SMID paths are WMID paths, SMID paths

can be unfolded at any vertex without overlap (again, assuming the rest have angle-

delta 0), as seen in Figure 3-11. However, we can do even better than that: we will

prove that SMID paths can be always be unfolded without overlap regardless of the

angle-deltas.

Theorem 2 (SMID Paths Unfold). Let p = (v1, . . . , vn) be a SMID path of G, the

planar projection of an almost-flat convex terrain T . Then, there is some ε such that,

if T is flatter than ε, then the cut-path p unfolds without overlap.

Proof. First, imagine the path pointing down — conceptually, we can rotate the plane

so that −−→v1v2 points in the negative y direction — then double the vertices of the path,

41

so we have v1, . . . , vn on the right and v′1, . . . , v
′
n on the left. Next, for 1 < i < n, let

D(vi) be the aggregate angle-delta for the angle ∠vi−1vivi+1, and similarly for D(v′i),

and let D(v1 = v′1) be the aggregate angle-delta around vertex v1 since this vertex

does not split on unfolding. Now, let us consider the act of unfolding in two stages,

summarized in Figure 3-12.

In the first stage, we “bend” the path p into p′ = (w1, . . . , wn) such that, for

1 < i < n, we have, on the right side, ∠wi−1wiwi+1 = ∠vi−1vivi+1 +D(vi)φ, where φ

is the angle flatness which depends on ε. This gives angle-deltas D(wi) = 0 on the

right, and angle-deltas D(w′i) = D(v′i) +D(vi) on the left. Essentially, we are shifting

all the non-zero delta angles from the vi side to the v′i side by bending the original

path by delta angles.

v1
D(v1)

D(v2)

D(v3)D(v′3)

D(v′2)

(a) Initial path

v1

D(v1)

0

0
D(v′3) +D(v3)

D(v′2) +D(v2)

(b) Bending

v1

(c) Peeling

Figure 3-12: SMID path unfolding

Then, in the second stage, we “peel” off the w′i side of the path. Due to convexity,

we have that at every interior point v, the aggregate angle-delta around that point —

the sum of the angle-deltas of all angles at that point — is negative. By our bending

in the first stage, the aggregate angle-delta around point wi is equal to the aggregate

angle-delta on the side of w′i, which then must be negative. So, now we open, or

unfold, each angle from w′1 to w′n−1 in order. We assert that this will not result in

overlaps as long as certain conditions hold:

Lemma. If the bent p′ is a SMID path and φ is small, then unfolding by opening the

angles from w′1 to w′n−1 will not result in overlaps.

42

Proof. First, note that since we are unfolding by opening each angle from w′1 to w′n−1

in order, then when opening the angle w′i, the subpath (w′i, . . . , w
′
n) is a SMID path.

This is because p′ started as a SMID path, and by opening the angles w′1, . . . , w
′
i−1

we have merely translated and rotated the SMID subpath (wi, . . . , wn) to the SMID

subpath (w′i, . . . , w
′
n). Then, using the assumption that φ is small and our original

description of p pointing down, we see that left side p′l only moves a small distance

from the right side p′r = p′, which does not move. Hence, throughout the unfolding

process, p′l is to the left of p′r, and on unfolding, we rotate a subpath of p′l to the left,

i.e. clockwise.

w′
i

wi

x = fp′
l
(a)

y = fp′
l
(b)

p′l = (w′
1, ...)

p′r = p′

Figure 3-13: Suppose opening at w′i causes conflict: rotating x around w′i will cause
a conflict at the circled point on p′. However, this means ∠w′ixy is acute,

contradicting (w′i, . . .) being SMID.

Let us define the Ca1,a2 to be the circle centered at fp′l(a1) = passing through

fp′l(a2). Then, suppose for the sake of contradiction that on unfolding w′i, a local

conflict is formed. Referring to Figure 3-13, this means that there is some point

x = fp′l(a), a > i later on in the path, such that if we draw the arc clockwise from x of

angle D(w′i)φ from the circle Ci,a, then the arc will intersect p′ before it intersects p′l, if

it intersects p′l at all. But we see that, for this to happen, no matter if x is a vertex of p′l

or x is in the middle of an edge, there is some later point y = fp′l(b), a < b ≤ bac+ 1

inside the circle Ci,a, which contradicts the fact that (w′i, . . . , w
′
n) is a SMID path

43

because then the angle ∠w′ixy is acute. Therefore, by contradiction, we must have

that there are no such local conflicts formed throughout the unfolding process if p′ is

a SMID path.

So, p unfolds if the bent p′ is a SMID path, and φ is small enough that the left

side does not move too far from the right side such that they switch sides. This

latter condition is almost always upheld and only becomes a problem if v1 is a very

sharp point, which is impossible for the almost-flat case. Meanwhile, for the former

condition we see that we need to pick φ small enough such that no bending can change

a SMID path into a non-SMID path, which we will show below. Hence, for some ε0

less than the bound demonstrated below, if T is flatter than ε0, then the cut-path p

unfolds without overlap, completing our proof.

In fact, we will give a stronger bound which holds for all SMID paths of G, not

just a specific one.

Theorem 3 (Height Bound for SMID Unfolding). For any convex planar graph G,

there exists an ε > 0 such that any convex lifting of G into an almost-flat convex

terrain T with flatness ε has the property that any SMID path of G is an unfolding

cut-tree for T .

Proof. First, let AngleMin(G) be the minimum difference between a right angle and

an angle formed by a v of a SMID path p = (v, . . .) and a later edge e on p. More

formally, this can be expressed as

AngleMin(G) = min
p=(v1,...,vn)∈GPSMID

,1<a<b<n
π − |π − ∠v1fp(a)fp(b)| ,

where GPSMID
is the set of SMID paths of G. This value cannot be 0, because by

definition of SMID paths, all such angles must be strictly obtuse angles, and since

there are a finite number of paths and angles, such a minimum difference must exist

and be positive.

Now note that, if the sum of the absolute values of all the angle-deltas times φ is

less than AngleMin, then it would be impossible for a SMID path to be bent into a

44

non-SMID path, since even in the worst case SMID path, even if all the angle-deltas

are added together, it would be impossible to change any obtuse angle to a right

or acute angle, so all SMID paths will remain SMID paths after bending. Since by

Section 2.5.1 we see that the absolute value of each angle-delta is bound by 1, we

need

|GA|φ < AngleMin(G),

where GA is the set of angles of G. Next, we see that 2 |GE| > |GA|, since each edge

is opposite at most two angles. Also, we know from our calculation of angle-deltas

from heights that φ = ε2. Putting it all together gives us the bound

BoundSMID(G) =

√
AngleMin(G)

2 |GE|+ 1
.

So, if ε < BoundSMID(G), then all convex liftings T flatter than ε have the

property that all SMID paths of G unfold without overlaps when used as cut-paths

of T .

Note that the bound we devised does not depend on T , but only on G. This

means that we can strengthen our previous theorem to the following:

Theorem 4 (SMID Paths Unfold, Stronger Version). Let G be a planar graph with

convex faces and a convex boundary. Then, any SMID path of G unfolds for any

convex lifting of G which is flatter than BoundSMID(G).

Proof Sketch. Combine the bound we just calculated with the previous proof

applied to all SMID paths of G.

3.2.4 SMID Trees

Similarly to how paths which are mostly straight would intuitively always unfold,

trees which have mostly straight branches should also always unfold. Let a cut-tree t

be a Strongly Monotonically Increasing Distance tree or SMID tree if every path from

a leaf of t to the root of t is a SMID path. This means that, if t has leaves l1, . . . , ln,

45

and root r, then the unique paths (li, . . . , r) comprised of only the edges of t are all

SMID paths.

Let us give some intuition as to why SMID trees should unfold. Each sub-path of a

SMID tree going from leaf to root is a SMID path, so each part of a SMID tree should

unfold by itself. Then, putting it all together should also result in a non-overlapping

unfolding. Informally, we can imagine this as the following: we start with a SMID

path, which we know to unfold by the previous proofs. Then, we unfold a branch

attached to this path. The worry is that unfolding this branch will cause conflicts

with the previously unfolded path. However, this will not happen since the branch,

along with the rest of the path, form a SMID path as well. Hence, it should not cause

conflicts.

Theorem 5 (SMID Trees Unfold). If t is a SMID cut-tree of G, then there is some

ε > 0 such that, if a convex terrain lifting T of G is flatter than ε, then t will unfold.

Proof. We will again use a two-step unfolding process (Figure 3-14) similar to what

we did before with SMID paths. We start by arranging t so that the root of t faces

in the negative y direction, so now we have left and right sides of each branch of t.

Then, each vertex of t splits into multiple vertices: vertex v splits into k vertices,

where k is the degree of v in t, let them be v1, . . . , vk from right to left.

In the first stage of unfolding, we want to bend t into t′ such that, for every vertex

v split into vertices v1, . . . , vk, the aggregate angle-deltas of v′1, . . . , v′k−1 are all equal

to 0, while the aggregate angle-delta of v′k is equal to the aggregate angle-delta around

vertex v. This is done similarly as our previous proofs by bending the tree t by delta

angles into tree t′.

Then, in the second stage of the unfolding, we again peel away the left sides by

unfolding the angles from right to left. Note that after unfolding, the tree t′ becomes

a path r′1, . . . , r′2, where r′ is the root of t′ and r′1 and r′2 are its right and left images

respectively (see Figure 3-14a). So, we unfold the angles in the same order along this

path, from r′1 to r′2. Note that this is the same order we unfolded the left side when

we did SMID path unfolding. By unfolding in this order, when we have unfolded

46

v11 = r′1r′2 = v21

v12
v52

v42

v22v32

(a) Vertex naming (b) SMID tree

(c) Bending (d) Peeling

Figure 3-14: SMID tree unfolding

r′1, . . . , v′, the rest of the tree w′, . . . , r′2 remains a SMID tree, since it is just rotated

and moved to its current location. Therefore, by a proof similar to the one we used

for SMID paths, we see that peeling a SMID tree will not lead to overlaps assuming

a small enough ε.

In fact, we can use the same ε bound as we used for SMID paths. This is because,

for a SMID tree to remain a SMID tree after bending, every path from leaf to root

must remain a SMID path. This reduces to that, for every SMID path p of G, when

each angle v of p is bent by up to the aggregate angle-delta around vertex v in either

direction, p remains a SMID path. This results in exactly the same bound as before.

Therefore, we see that the SMID cut-tree t does indeed unfold without overlap

assuming the terrain T is flatter than 0 < ε < BoundSMID(G).

Corollary 6. Any SMID cut-tree of G unfolds without overlap in any convex-lifting

T as long as T is flatter than BoundSMID(G).

This is a nice result since it means that, in some cases, we do not even need to

calculate convex liftings or angle-deltas and instead just need to find SMID cut-trees

of G, which we know to always unfold. By combining multiple such SMID cut-trees

47

together into cut-forests which span all vertices of G, we can find SMID cut-forests

which will unfold for any convex lifting, assuming appropriate almost-flatness.

3.2.5 Projections with no SMID Paths

However, it is not always possible to find a cut-forest, or even a cut-path, for all G.

For instance, consider Figure 3-15a of a convex planar graph GNS1 for which there

exists no cut-path from the center vertex v0 to the boundary. By symmetry, any path

from v0 to the boundary has to contain one of the two subpaths shown. However,

as Figure 3-15b shows, neither subpath is a SMID path, and so no paths containing

them can be SMID paths either.

(0,0)

(5,5)

(20,0)

(10,10)

(6,2)

v0

(a) GNS1 with no SMID paths to center (b) 2 subpaths with acute
angles shown

Figure 3-15: Projection with no SMID paths to center vertex

Hence, GNS1 has no SMID paths from v0 to the boundary, and therefore, by

extension, there are no SMID trees which contain v0, and so there can be no SMID

cut-forest spanning all vertices of GNS1. We also note that GNS1 does indeed have

valid convex liftings, one as shown in Figure 3-16, so this is not a contrived example

of a flat terrain.

Next, we construct a convex planar graph GNS2 with only triangular faces that

also has no SMID paths from one of the center vertices to the outside. As seen in

48

Figure 3-16: Example lifting of GNS1

Figure 3-17, GNS2 is constructed by many connected concentric equilateral triangles,

where the ith triangle has side length slightly more than twice that of the (i − 1)th

triangle. Then, note that the only path from one of the center three vertices to the

boundary which has no acute angles is the one which spirals out, as marked. However,

this spiral is not a SMID path since the angle ∠v1v5v6 is acute.

(a) GNS2 of only triangular faces, with 7
layers of triangles around the center

v1

v2

v3

v4

(b) Zoomed in on center, spiral path not
SMID since ∠v1v5v6 is acute

Figure 3-17: No SMID path to center projection with only triangular faces

In fact, it is very easy to change any convex polygon p into a convex planar graph

49

gNS with valid non-zero convex liftings in a similar way to what GNS1 looks like by

the process shown in Figure 3-18. Essentially, at the interior of each vertex of p, we

put a small quadrilateral which is almost a triangle. Then, we connect adjacent such

shapes with lines which are parallel or almost parallel to the sides of p. Finally, we

connect all such quadrilaterals together at a point in the middle. For reasons similar

to why GNS1 has no SMID paths from the center vertex to a boundary vertex, neither

does this constructed gNS.

(a) Starting convex
polygon p

(b) Gadget added at each
corner

(c) Resulting gNS with no
SMID paths from center

Figure 3-18: Arbitrary convex polygon to no-SMID projection construction

Therefore, this shows that while SMID paths and trees of G represent “universal”

unfolding cut-paths and cut-trees of any convex lifting of G, not all projections of

almost-flat convex terrains yield such universal unfoldings. For those T , we will need

to take into account the convex lifting as well in order to determine whether T contains

unfolding cut-paths and cut-trees.

3.3 Unfolding Almost-Flat Convex Terrain

In this section we will look at general unfolding of cut-trees of almost-flat convex ter-

rains. We start with a characterization of what cut-trees unfold by using a first-order

approximation and then demonstrate reasons for why such a first-order approximation

is appropriate given the almost-flat nature. Finally, we end with a result concerning

universal local extensibility of all partial cut-trees.

50

3.3.1 Tree Definitions

Let us first start by defining some terms which will make it easier to talk about

unfolding cut-trees. Let t be a cut-tree of an almost-flat convex terrain T . This

means that t has a root r, which is on the boundary of T , and all other vertices of t

are interior vertices of T . Now, let a vertex-subtree be tv = {w | w ∈ t, v ∈ (w, . . . , r)},

that is, the vertex-subtree of t defined by the vertex v is the subtree tv comprised of

all vertices w (and connecting edges) such that the path from w to the root r passes

through v. Similarly, let a edge-subtree or branch be te = {w | w ∈ t, e ∈ (w, . . . , r)},

where e is an edge of t, and the subtree te includes all vertices w where the path from

w to the root r passes through e. Note that if a vertex v has neighboring vertices

w1, . . . , wn which are farther from the root r by breadth first search than v, then the

vertex-subtree tv is the union of the branches tw1 , . . . , twn . Similarly, if a vertex v

only has 1 neighboring vertex w farther than v from r, then the vertex-subtree tv is

the same as the edge-subtree t(v,w). Finally, a branch t(v,w) is an edge (v, w) and the

connected vertex-subtree tw. All these terms are summarized in Figure 3-19.

r

v
w

u

(a) Cut-tree t with root r

v

(b) Vertex-subtree tv

v
w

(c) Branch t(w,v)

Figure 3-19: Tree, subtree, branch terminology

3.3.2 First-Order Approximation

We will now consider what it means for a cut-tree to unfold in the first-order approx-

imation. As mentioned in previous sections, when a cut-tree is unfolded, it becomes

a path, where each angle of the path is increased or decreased slightly depending on

the aggregate delta angle at that angle. To make things more clear, let us fix a frame

of reference as shown in Figure 3-20: when we talk about unfolding a tree or subtree

51

t with root r, we assume that r opens “downward,” or in the negative y direction.

Then, when t is unfolded, let the path be labeled from left to right (r, v1, . . . , vn, r
′),

and we assume the edge (r, v1) to be fixed, so when an angle ∠v is slightly changed,

the side which does not include (r, v1) is the side which rotates.

r

v1

vi

r'

Figure 3-20: Cut-tree orientation, unfolding around vi rotates side without (r, v1)

With this in mind, let us look at the effect of the unfolding of a branch t(w,v)

on the edge (w, v) (see Figure 3-21). What we want to know is whether unfolding

the subtree t(w,v) will cause a local overlap involving the unfolded edges (w, v) and

(w′, v′). Hence, let us call (w, v) the outgoing edge, and we are essentially trying to

figure out the effect of unfolding tv on the right outgoing edge (v′, w′) assuming we

fix the left outgoing edge (v, w).

So, letting the unfolded cut-tree of tv be the path (v, v1, . . . , vn, v
′), we unfold

by fixing the position of (v, v1), and then bending, in order, ∠vi−1vivi+1 = ∠vi by

D(∠vi)φ, where D(∠vi) is the aggregate angle-delta at ∠vi. Since we are using a

first-order approximation, we will not consider the effect of bending ∠vi on later

angles vj, j > i and consider all the vi to be fixed — we will show in the next section,

Section 3.3.3, why this is valid. Similarly, we assume that all the bending will only

make a negligible difference on the orientation of the outgoing edge (v′, w′), and

instead we are only interested in the direction that all the bending moves the vertex

v′, to see if it will cause a local overlap with the fixed outgoing edge (v, w).

We will also make a first-order approximation on the opening motion. When

∠vi is opened by D(∠vi)φ, the rest of the path (vi+1, . . . , vn, v
′) rotates clockwise

by D(∠vi)φ, which means v′ rotates clockwise by D(∠vi)φ around vi. Instead of

an actual rotation, we will approximate it by a movement in a straight line in the

52

w

v
v'

w'

v1

v2

v3

v4

v5

(a) Branch t(w,v)

w

v

(b) First-order unfolding
of single vertex

w

v
v'

(c) Successful unfold since
v′ is on the left

Figure 3-21: First-order approximation of branch unfolding

direction
−→
viv
′
⊥, the direction perpendicular to viv′ in the clockwise direction, by the

distance sin(D(∠vi)φ)
∣∣viv′∣∣ ≈ D(∠vi)

∣∣viv′∣∣φ (Figure 3-21b). This approximation is

reasonable since there is definitely a φ > 0 where the difference between C0 sin(C1φ)

and C0C1φ is negligible, and similarly for the difference between a rotation and the

tangent approximation.

Hence, the overall effect of unfolding tv on v′ is the vector sum

−→
dv′ =

∑
vi∈(v,v1,...,vn,v′)

v̂iv′⊥D(∠vi)
∣∣viv′∣∣φ,

where v̂iv′⊥ is the unit vector perpendicular to
−→
viv
′. Then, unfolding tv does not cause

a local overlap on the outgoing edge (v, w) if and only if
−→
dv′ points away from (v, w)

— that is, if (v, w) is parallel to the y axis, that
−→
dv′ · 〈1, 0〉 > 0 since we are unfolding

with the left side fixed (Figure 3-21c).

One simplification to note here is that instead of calculating the effect of each

angle of the tree on v, we can just calculate the effect of each vertex of the tree

on v. This is because, each time we consider an angle ∠wxy of vertex x, we add

x̂v′⊥D(∠wxy)
∣∣xv′∣∣φ as its effect on v. However, since over the course of traversing

the tree in unfolding, we will add every angle of x, we can instead just add, for each

vertex x of the tree, x̂v′⊥D(x)
∣∣xv′∣∣φ as the aggregate effect of all the angles around

x, where D(x) is the aggregate angle-delta at x (which must be negative for interior

53

vertices because of convexity). Therefore we can also calculate
−→
dv′ as

−→
dv′ =

∑
x∈tv

x̂v′⊥D(x)
∣∣xv′∣∣φ.

So, the branch t(w,v) unfolds if the subtree tv unfolds, and the unfolding of tv does

not cause a local overlap in the outgoing edge (v, w).

Next, consider a subtree tv which is not a branch. This means that tv is composed

of multiple branches t(v,w1), . . . , t(v,wn), and the unfolding of tv is the path

(v = v0, w1, . . . , w
′
1, v

1, w2, . . . , w
′
2, v

2, w3, . . . , w
′
n, v

n = v′).

Now, each branch t(v,wi) causes a displacement 〈vi−1, vi〉, so, fixing v0 at the origin,

the unfolding places each vi at a place in the plane. Each such point vi represents

the tip of an angle ∠w′iv
iwi+1, and what we are worried about is whether two such

tips might overlap.

(a) Example overlap (b) Close up of overlap

Figure 3-22: Possible local overlap of tips in a vertex-subtree

Assuming that the subtrees of tv unfold, the neighboring tips vi and vi+1 will not

overlap. However, two non-neighboring tips might still overlap, as shown in Figure 3-

22. Note that such non-neighboring tip overlaps are local overlaps since the edges

involved are all incident on the vertex v in G. In this case, consider the edges vivi+1:

if tip vi overlaps with vj, then we see that vi−1vi or vivi+1 intersects with vj−1vj or

vjvj+1. So, to check for overlaps, we just need to check all of the edges vj−1vj against

one another for intersections, as shown in Figure 3-23.

Unfortunately, this misses out on possible overlaps between the extreme tips v0

54

v0

v1

v2 v3

v4

v5

(a) Non-overlapping case
with vertex labels

(b) Overlapping case, v4 overlaps with v1, causing
overlaps between v0v1, v4v5 and v1v2, v3v4

Figure 3-23: Checking for tip overlaps

and vn. However, in this case, suppose this subtree tv is part of a branch t(w,v). Then,

if the tips v0 and vn overlap, then this means the outgoing edge (w, v) will overlap.

So, we will still catch this overlap when we consider the branch t(w,v), which contains

tv.

This leaves the final case of v being the root vertex r, so tv is actually the entire

cut-tree. In this case, since the boundary of G is a convex polygon, it is impossible

for the tips v0 and vn to intersect in a way that we will not detect with our previous

method of checking for intersections of vj−1vj.

Hence, to check if a vertex-subtree tv is valid, we need to check whether each of its

branches t(v,w1), . . . , t(v,wn) are valid by themselves, and that none of the edges vi−1vi

intersect, where 〈vi−1, vi〉 represents the displacement caused by the unfolding of the

branch t(v,wi). Then, if in addition tv is part of a branch, then as long as the branch

it is part of has no overlaps with the outgoing edge, tv will be valid as well.

3.3.3 Insignificance of Second-Order Effects

In the previous section we ignored a lot of second-order effects which we will show in

this section to be insignificant. Here, we take “second-order effect” to be anything

beyond a first-order effect.

First, let us consider the effect of opening one angle by a delta angle on the rest of

the tree. So, let the path of vertices we will unfold be (v1, . . . , vn). This means that

the angles we are unfolding are ∠v1v2v3 = ∠v2, . . . ,∠vn−1. Starting by unfolding v2,

55

this shifts vertex vi, i > 2, by

|v2 − vi| sin(D(∠v2)φ)v̂2vi⊥ ≈ |v2 − vi|D(∠v2)φv̂2vi⊥,

where v̂2vi⊥ is the unit vector perpendicular in the clockwise direction to the vector

−−→v2vi. This moves v3 = (x3, y3) to v′3 = (x3 +C1φ, y3 +D1φ) for some constants C1, D1

depending on the geometry of G and angle-delta D, which means when opening

the angle at ∠v′3, later angles will be moved by dvi ≈ 〈C1φ + C2φ
2, D1φ + D2φ

2〉

for appropriate constants. Overall, after unfolding all angles, the position of vi will

be affected by some amount dvi = 〈
∑

j>0Cjφ
j,
∑

j>0Djφ
j〉 for some appropriate

constants Cj, Dj (different for each vi) depending on the geometry of G and angle-

delta D. Then, this dvi in turn causes the contribution of ∠vi on the tree root

vr to change by some
(∑

j>0Cjφ
j
)
φ. Hence, this second-order effect will cause

an aggregate change of approximately C ′φ2 in some direction for some constant C ′.

Hence, by picking a φ small enough that this C ′φ2 term is dominated by the Cφ

value from the first-order approximation, we do not need to worry about this second-

order effect affecting the result of the unfoldability test. Figure 3-24 below shows a

simplified version of this concerning a single vertex being affected by second-order

effects.

v
w

x
x'

dv'

dv''

(a) Unfolding branch at v moves x to x′,
causing deviation in dv′

(v,w)

v'

v''

y

(b) However, |v′y| = Cφ, but
|v′v′′| = C ′φ2, so pick small φ to

compensate

Figure 3-24: Second-order effect of shifting vertex positions

Second, on unfolding a vertex-subtree tv with outgoing edge (v, w), this edge itself

might slightly bend due to the delta angle at ∠v. This might cause a conflict, since if

56

(v, w) bends towards the unfolded v′, that could cause a local overlap. However, we

see that this is a second-order effect since v′ itself moves a distance of Cφ, for which

some amount C⊥φ is away from (v, w). This means that the maximum distance (v, w)

can move is sin(D(∠v)φ)Cφ ≈ CD(∠v)φ2 (see Figure 3-25). So, by picking a φ small

enough, the amount (v, w) moves will be dominated by the amount C⊥φ that v′ moves

away from (or towards) (v, w), so the result of whether an unfolding is valid will not

change.

v

(v,w)

v'

y

y'

Figure 3-25: Angle-delta at v rotates (v, w). But, since |vy′| = Aφ, then
|yy′| = Aφ sin(D(v)φ) ≈ A′φ2, which is dominated by |v′y| = Cφ

These two problems are the reason why, when considering whether an outgoing

edge unfolds, we want to make sure that the vertex v′ moves strictly away from the

fixed outgoing edge (v, w). This is because if v′ merely slides along (v, w) — say, if

we are unfolding around the point x, and ∠xvw = π
2

is a right angle — then we do

actually need to calculate the second-order effects in order to figure out whether an

overlap occurs. By using a more strict validity criteria, we avoid this case by assuming

that such cases result in overlaps. Hence, perhaps by calculating the actual unfolding,

some unfoldings which we regard as overlapping will actually be non-overlapping, but

such results will be quite rare, and this way we make sure that any tree counted as

non-overlapping by our first-order approximation will definitely be non-overlapping

when fully calculated.

3.3.4 All Partial Edge Cut-Trees Locally Extensible

Up until now, we have only considered “proper” cut-trees — trees with exactly one

boundary vertex — and subtrees of such cut-trees. However, we can also think of

57

subtrees as partial cut-trees. So, let us define a partial edge cut-tree of T to be a tree

t of only interior vertices of T with a specified root edge (w, v) such that w is a leaf

of t and every path from every vertex of t to w passes through the edge (w, v). Now,

let us prove our main result in unfoldability:

Theorem 7 (All Partial Edge Cut-Trees Locally Extensible). Let t be an unfoldable

partial edge cut-tree of T with root edge (w, v). Then, t can be locally extended by an

outgoing edge from w to become either an unfoldable proper cut-tree of T or a larger

unfoldable partial edge cut-tree.

Proof. Let us start by orienting (w, v) with w at the origin and v on the positive

y axis. Then, let unfolding t move w′ to (w′x, w
′
y). Since t is unfoldable, it unfolds

without overlap, so w′ cannot conflict with edge (w, v). This means that w′x > 0, so

w′ is in the positive x half-plane.

w

v

w'

u

Figure 3-26: Example partial tree t, w′ must be in the blue half-space. Extensions
(blue) in the green half-space clockwise from w′ unfold without overlap while

counter-clockwise extensions (red) conflict. By convexity, there must be some valid
unfolding extension u

By Section 3.3.2, we see that t with outgoing edge (w, u) unfolds if the unfolded

w′ does not conflict with this outgoing edge. So, we need an edge (w, u) such that

〈w, u〉·〈w,w′〉 > 0, which means that (w, u) is in the half-space clockwise from (w,w′).

As Figure 3-26 shows, since we know that w′ is in the positive x half-plane, this means

58

that the half-space clockwise from (w,w′) does not intersect with (v, w). Now, since

T is a convex terrain, every face of its projection G is also convex. This means that

there must be some neighbor u of w in G where ∠uww′ < π, so w has an adjacent

vertex u which is in the half-space clockwise from (w,w′).

Finally, we can extend t by this outgoing edge (w, u) to get t′, which must unfold

without overlap since w′ does not conflict with (w, u), and t already unfolds. There-

fore, we can extend t locally to t′. If u is another interior vertex, then t′ is another

unfoldable partial edge cut-tree. Else if u is a boundary vertex, then t′ is a proper

cut-tree.

The “locally” criteria in the proof serves to mean that we assume we can extend t

at w by any edge other than (v, w) while keeping t a tree. The proof would not work

if we remove this condition since it may be the case that all neighbors of w which are

in the negative x half-plane are already vertices of t, so we have essentially “trapped”

ourselves in a corner, and would not be able to extend t.

3.4 Slice Unfolding

In this section we will consider a more ground-up approach to unfolding, and see what

sort of constructions can be shown to be unfoldable using this method. We build on

and extend the result of “Cut-Tree Truncation” by Benton et al. [3] for the case of

almost-flat convex terrain.

3.4.1 Definitions and Examples

Recall back to Section 2.2 that we can also think of a convex terrain as an intersection

of half-spaces, where each face is a linear constraint. In this manner, we can “add”

a face by adding such a linear constraint, and “remove” a face by removing such a

linear constraint, as Figure 3-27 shows.

Let a slice be the addition of a face by the addition of such a linear constraint.

Note that a slice cuts away part of the terrain, and if the original terrain T is almost

59

(a) Simple pyramid (b) Top sliced off

Figure 3-27: Example slice operation

flat, then this removed portion R will also be an almost-flat terrain.

Figure 3-28 shows a few of the many possibilities for the removed terrain R: R

can contain just one vertex, one or more edges, or one or more faces. While we will

give a general analysis on slice unfolding, later on we will be focusing on the first

case, when R contains exactly one interior vertex. Let such a slice be a vertex-slice

— it is the same as a degree-n truncation as mentioned in [3], where n is the degree

of the interior vertex.

(a) Vertex-slice (b) Edge slice (c) Face-slice

Figure 3-28: Different types of slices

3.4.2 General Slice Unfolding

The general method of slice unfolding is to start with a simple terrain with a simple

unfolding cut-tree, and then using various slices paired with modifications to the cut-

tree, achieve an unfolding cut-tree for a more complicated terrain. In more detail,

say we have a terrain T with unfolding glue-tree C and unfolded net N . Then, we

make the slice s which yields T ′ and removed portion R when creating the new face

60

f . Now, each face of R is also a part (or all) of a face of T . Suppose we remove all

such parts of faces from T , which creates some free space and new edges ER. If we

can attach f to an edge in ER without causing any overlaps, then we have created

an unfolding glue-tree of T ′. Figure 3-29 shows three such steps in slice unfolding

starting from a triangular pyramid.

Figure 3-29: Example general slice unfolding from triangular pyramid with two
vertex-slices and an edge-slice

Let us also define fG to be the projection of f in T ′ (and hence T), and fN to

be the polygon formed by connecting the edges of f in N . Then, if we consider

an almost-flat T , then the question of overlap becomes a question of whether f will

intersect with fN when f is attached to some appropriate edge of fN . Now, there

are two ways the edges of fG can move to becomes the edges of fN . First, an edge

can remain connected, but rotate, that is, an angle of fG can change based on the

angle-deltas of T . Second, an edge of fG can disconnect from neighboring edge(s)

and move slightly (both translation and rotation). Unfortunately, this movement in

the second case is not purely expansive: as shown in Figure 3-30, depending on the

cut-tree and slice, it is possible for edges and vertices of fG to move closer to one

another when moving to their positions in fN .

In the end, it becomes a matter of whether the movement of fG to fN based on

the cut-tree producing N causes an overlap with where f is attached in the unfolding

61

v

w
fN

fG

Figure 3-30: Example vertex-slice with non-expansive fN motions. The marked
vertices v and w of fN actually get closer, so there is nowhere to attach fG without

overlap

of T ′.

The approach mentioned above is a very constructive method, and is also the one

used in [3]. However, given a terrain T , we can also use principles of slice unfolding

by simplifying T to a simpler terrain T ′ through removing faces. As shown in the

definitions, removing a face results in another convex terrain with one less face. So,

to find an unfolding of T , instead of trying to find a cut-tree, we can instead try to

find a subset S of the faces of T and a numbering of the rest of the faces of T such

that, if we start from a trivially unfoldable terrain constructed of just the faces of S,

and we slice unfold the faces of T as numbered, then each slice of face f will have

a valid non-overlapping attachment for f . While it is not clear whether looking for

unfoldings by this method is easier than just looking for unfolding cut-trees, at least

the prospect of simplifying T by removal of faces seems to be likely useful.

3.4.3 Empty Sector Property

For slice unfolding to work, Benton and O’Rourke [3] made use of an “empty sector

property” for a cut-tree C of a polyhedron P . This is the property that, for every

leaf edge e of C, the circular sector between the unfolded edges e, e′ in the net of

P is empty. While not all cut-trees have this property for general polyhedra, when

considering almost-flat convex terrain, all cut-trees which we recognize as unfolding

based on our first-order approximation from Section 3.3.2 have the empty sector

property.

First, consider a leaf edge e which is adjacent to only one other edge d. In this

62

case, for this cut-tree to unfold, we need that the angle between e and d be obtuse

(see Figure 3-31). Hence, it would be impossible for the edges d, d′ to overlap the arc

from e to e′.

w

Figure 3-31: Simple leaf trivially has empty sector property since ∠w must be obtuse

Then, consider a leaf edge e which is adjacent to several other edges. Referring

to Figure 3-32, let e = (w, v), and let v be split into v0, . . . , vn on unfolding, where

e, e′ = (w, vi), (w, vi+1). Now, let x be the point of intersection of the perpendiculars

to e and e′. Then, the triangle 4vixvi+1 contains the arc from e to e′, and is almost

degenerate since ∠vivi+1x = ∠vi+1vix = 1
2
∠viwvi+1 ≈ 1

2
Aφ where A < 1 is the

aggregate angle-delta at w. This means that the height of this triangle is

(
1

2
|e|Aφ

)
sin

(
1

2
Aφ

)
≈ 1

4
|e|A2φ2.

w

vi

vi+1
vi

vi+1

x

Figure 3-32: Complex leaf case: ∠vixvi+1 = 1
2
D(w)φ, so triangle 4vixvi+1 has

height Cφ2, which is second-order

Now note that, by our first-order definition for non-branch subtrees, for this cut-

tree to unfold, vivi+1 must not intersect with any other line vjvj+1. However, since the

height of triangle 4vixvi+1 has a φ2 factor, if none of the lines vjvj+1 intersect vivi+1,

then we can find a φ0 > 0 such that none of them intersect the triangle 4vixvi+1

63

either if φ < φ0. Since the triangle contains the arc between e and e′, again we see

that the sector is empty.

3.4.4 Triangular and Quadrilateral Vertex-Slices

The aforementioned reference [3] demonstrated that, for any unfolding convex poly-

hedron with the open sector property, if the slice is a vertex-slice on a leaf vertex of

the cut-tree such that the removed portion is a triangular pyramid, then the resulting

modified polyhedron also have the property and unfolds. Let us call a vertex-slice of a

leaf vertex of an unfolding cut-tree C of a convex terrain T valid if it produces a new

terrain T ′ and unfolding cut-tree C ′. Let us now examine all possible vertex-slices

and see which ones are valid in the case of almost-flat convex terrains.

Since we are dealing with vertex-slices of leaf nodes of cut-trees, the removed

portion R is a pyramid and it is unfolding along exactly one edge, so the movement

of fG to fN is strictly a bending motion of the edges. Furthermore, since T is convex,

all edges are strictly opening.

(a) Original G (b) Original net

(c) New G′ (d) New net

Figure 3-33: A triangular vertex-slice

We start by demonstrating the result from [3] in this context: if f is a triangle

64

4ABC, and the cut-tree C used to be through point A, then we can simply glue

the triangle f to BC opposite ∠A, and add the edges AB and AC to the cut-tree

(see Figure 3-33). Since we know that the rest of the cut-tree, which connects to A,

unfolds, and each of the new edges unfold trivially, this new cut-tree unfolds.

Now let us extend this result by considering all possible cases of quadrilateral

vertex-slices. We break the casework for the quadrilateral f into three sections since f

can have one, two, or three acute angles. Also, let use define f = v1 · · · v4v1 = e1e2e3e4

and that the original cut-tree connects to v1, which we call the opening. We want to

see whether it is always possible to form a new cut-tree C ′ of T ′ by adding all of the

edges of f but one, which is the edge we “attach” f to.

v1

v2

v3

v4

e1

e4

e3
e2

(a) Vertex and edge labels (b) Opening vertex

a

(c) Obtuse and acute
angles

(d) Definitely unfolds (e) Possibly unfolds (f) Never unfolds

Figure 3-34: Key for picture categorizations of quadrilateral vertex-slices

Each of these cases will be further split into subcases for where the acute and

obtuse angles are in relation to the opening v1, and for each subcase, referring to the

key provided in Figure 3-34, we will create a diagram as in Figure 3-35 for organizing

which attachment edges “definitely unfold,” “possibly unfold,” or “never unfold,”

labeled respectively as “unfold,” “possible,” and “overlap.” This diagram shows the

case for when f has two nonadjacent acute angles, where v1 is acute. Then, attaching

to e2 or e3 will always yield an unfolding, since this produces two new cut-paths: a

cut-path of a single edge, which always unfolds, and a cut-path of two edges joined

by an obtuse angle, which also always unfolds. On the other hand, attaching to e1 or

65

e4 will always cause an overlap, since a cut-path containing v3, which is acute, will

be created. Then, there are no edges marked as “possibly unfolding” since attaching

at each edge either definitely unfolds or never unfolds. Finally, for simplicity, we will

merge it all into one figure under “merged.”

a

a

(a) Unfolds

a

a

(b) Possible

a

a

(c) Overlaps

a

a

(d) Merged

Figure 3-35: Example picture characterization of attachment edges for a
quadrilateral vertex-slice

We will not give as indepth an analysis beyond the merged picture categorization

for the cases, but they all follow the following three rules:

1. A cut-path of one edge, or two edges joined by an obtuse angle, always unfolds.

2. A cut-path containing an acute angle never unfolds.

3. A cut-path containing three or more obtuse angles possibly unfolds.

The reason for the third rule is that even if a cut-path has all obtuse angles, it is not

necessarily even a WMID path, as Figure 3-36 shows.

Figure 3-36: Non-WMID path (blue) with only obtuse angles — marked angle (red)
is acute

For the one-acute-angle case, as shown in Figure 3-37, there are three subcases:

the acute angle can be either v1, v2, or v3 (since v2 and v4 are the same by symmetry).

66

a

(a) Acute v1

a

(b) Acute v2

a

(c) Acute v3

Figure 3-37: Characterizations of quadrilateral vertex-slice with 1 acute angle

For the two-acute-angle case, as shown in Figure 3-38, there are four subcases:

the acute angles can be neighboring or not, and v1 can be acute or not.

a a

(a) Acutes apart, obtuse opening

a

a

(b) Acutes apart, acute opening

a

a

(c) Neighboring, obtuse opening

a

a

(d) Neighboring, acute opening

Figure 3-38: Characterizations of quadrilateral vertex-slice with 2 acute angles

For the three-acute-angle case, as shown in Figure 3-39, there are three subcases:

the obtuse angle can be either v1, v2, or v3.

67

a

a

a

(a) Obtuse v1

a

a

a

(b) Obtuse v2

a

aa

(c) Obtuse v3

Figure 3-39: Characterizations of quadrilateral vertex-slice with 3 acute angles

3.4.5 General Vertex-Slices

Now let us consider the general cases by casework on the number of acute angles in

f . Since f has to be convex, we see that it can have anywhere from 0 to 3 convex

angles. Again, let use define f = v1 · · · vnv1 and that the original cut-tree connects to

v1, and our goal is to find a valid attachment edge for f . We will use a similar picture

categorization as before, where we represent general slices as shown by Figure 3-40

while referring to the key in Figure 3-41.

v1

v2

e1

en

e4, ... ,ei-1

v3, ... ,vi-1

ei+2, ... ,en-1

vi+1, ... ,vn

vi

ei+1

ei

e3

Figure 3-40: General slice with three acute angles

While we are only considering convex faces, the pictures will be much easier to

understand if we sometimes draw them as non-convex, and we may do so for clarity.

In addition, since we are always dealing with an unknown number of obtuse angles,

we can only categorize them into “possibly unfold” and “never unfold,” labeled re-

68

a

(a) Acute angle (b) One or more
obtuse angles

a

(c) Acute opening (d) Obtuse opening

(e) Possibly unfolds (f) Never unfolds (g) All edges
possibly unfold

(h) All edges never
unfold

Figure 3-41: Key for picture categorizations of general vertex-slices

spectively as “unfold” and “overlap.”

For the zero-acute-angle case, every angle of f is obtuse, thus there is only one

subcase, as shown in Figure 3-42, where attaching to any edge yields a possible

unfolding.

Figure 3-42: Characterizations of general vertex-slice with 0 acute angles

For the one-acute-angle case, as shown in Figure 3-43, there are two subcases: the

opening can be either at the acute angle or at an obtuse angle.

For the two-acute-angle case, as shown in Figure 3-44, there are four subcases

depending on whether the acute angles are adjacent or not and whether the opening

is at an acute angle or not.

69

a

(a) Acute opening

a

(b) Obtuse opening

Figure 3-43: Characterizations of general vertex-slice with 1 acute angle

a a

(a) Acutes apart, obtuse opening

a

a

(b) Acutes apart, acute opening

a a

(c) Neighboring, obtuse opening

a

a

(d) Neighboring, acute opening

Figure 3-44: Characterizations of general vertex-slice with 2 acute angles

Finally, for the three-acute-angle case, as shown in Figure 3-45, there are three

groups of subcases: either none of the acute angles are adjacent, two of the acute

angles are adjacent, or all of the acute angles are adjacent. If none of the acute angles

are adjacent, the opening can be either at an acute angle or an obtuse angle. Then,

if two of the acute angles are adjacent, the opening can be either at the single acute

angle, the pair of acute angles, or an obtuse angle. Lastly, if all of the acute angles

are adjacent, the opening can be either at the middle acute angle, a side acute angle,

or an obtuse angle.

70

a

a
a

(a) Acutes apart, obtuse opening

a a

a

(b) Acutes apart, acute opening

a
a

a

(c) Two neighboring,
obtuse opening

a

a

a

(d) Two neighboring,
single acute opening

a

a

a

(e) Two neighboring, pair
acute opening

a

a

a

(f) All neighboring, obtuse
opening

a

a a

(g) All neighboring, center
acute opening

a

a a

(h) All neighboring, side
acute opening

Figure 3-45: Characterizations of general vertex-slice with 3 acute angles

Overall, we see that depending on the shape of the sliced face f , the picture

categorizations above show which f can possibly be attached at which edges to yield

a new non-overlapping unfolding.

71

Chapter 4

Computational Search Techniques

In this chapter we will go over a few algorithms we used in our computational exper-

iments, the results of which are in the next chapter.

4.1 Generating Convex Terrain

We start with some simple algorithms for generating convex terrain. While it is easy

to get a convex polyhedron by generating random points in space and using a 3D

convex hull algorithm, this is suboptimal for convex terrains for a few reasons. First,

there is no control over just how many points are actually on the hull. If more points

are needed, adding more random points does not always help — a new random point

may well either lie in the current convex hull or actually reduce the number of points

in the convex hull. Second, a convex polyhedron is not easily convertible to a convex

terrain. It is not immediately obvious which faces are on the “bottom” and hence

need to be removed from a polyhedron to get a terrain.

4.1.1 Spherical Liftings

First, let us consider spherical liftings. A spherical lifting is a lifting of planar points

to a sphere. Suppose we have planar points in the unit circle around the origin, then

we raise the point (x, y) to the point
(
x, y,

√
1− (x2 + y2)

)
. Note here that we do

72

not necessarily have to lift to a half-sphere: we can also lift a point in the unit circle

to a sphere with radius r > 1 by lifting to
(
x, y,

√
r2 − (x2 + y2)−

√
r2 − 1

)
— while

we will not add this parameter to the algorithms below, keep in mind that it is very

simple and possible to do so. A nice property of a spherical lifting is that, since each

point on a sphere is the farthest point in that direction from the center of the circle,

the convex hull of a spherical lifting contains every single point.

However, even so, it is still not that simple to figure out which faces are on the

bottom, so let us start with Algorithm 1, a simpler algorithm which generates points

inside a regular m-gon inscribed in a unit circle raised to a unit sphere. Then, we add

the m-gon and take the convex hull. Finally, to get the convex terrain, we merely

remove all faces which consist of only points of the m-gon.

Algorithm 1 n point spherical lifting in m-gon

SphereLiftMGon n,m

1 Seed random number generator
2 l← empty list
3 for i = 1 to n
4 (x, y)← point in circle of radius cos 1

m
π around origin

5 Append
(
x, y,

√
1− (x2 + y2)

)
to l

6 for j = 0 to m− 1
7 Append

(
cos 2j

m
π, sin 2j

m
π, 0
)

to l
8 C ← ConvexHull3D(l)
9 for face f in C

10 if all vertices of f have z-coordinate 0
11 Remove f from C
12 return C

This algorithm works very well and always produces convex terrains T of exactly

n interior points and m boundary points, with the additional property that every

boundary point of T is in the xy plane, and some examples can be seen in Figure 4-1.

However, the result is not truly random. For small m, since we took the shortcut

of generating points in the inscribing circle of the m-gon for simplicity, the points

do not fill the m-gon. Meanwhile, for large m compared to n, the boundary m-gon

73

greatly affect the structure of the resulting terrain. Despite these issues, this is a very

fast algorithm since it only requires one application of the 3D convex hull algorithm,

and assuming we pick a large n and not too large m, the center of the terrain should

contain all the complexities and randomness of any spherical lifting.

Figure 4-1: Spherical liftings of the same 50 random points in a 4-gon, 15-gon, and
100-gon

To do better, let us look at how we can create a terrain out of a spherical lifting

of random points P = {p} in the unit circle without a predefined boundary. First,

note that the vertices in the 2D convex hull of P are also the boundary vertices of

the convex terrain of the “top” faces of the 3D convex hull of P . Then, also note

that every “bottom” face of the 3D convex hull of P has to contain only vertices

from the 2D convex hull of P . So, we can proceed as before by generating the 3D

convex hull C of P , then removing all faces of C composed of only points from the 2D

convex hull of P to give us the convex terrain T . However, there are a few side-cases

we need to deal with when a “top” face of the 3D convex hull is composed of only

vertices from the 2D convex hull. One problem with such P is that our algorithm

will remove such faces and leave either disconnected points or multiple terrains joined

at vertices, as shown in Figure 4-2. But a bigger problem is that, even if we were

to not remove such faces, we see that the resulting terrain is not a simple terrain.

We really want simple terrains instead of complex terrains since unfolding a complex

terrain is really just unfolding multiple simple terrains. In such cases, depending on

how disconnected the graph is, we may either add additional points or just start over

with n new points without reseeding the random number generator, as shown in the

74

pseudocode of Algorithm 2.

A

B

C

(a) Since 4ABC is composed of
boundary vertices, it is removed, but

that disconnects vertex A

A

B

C

(b) Removing 4ABC causes several
problems, including non-convexity

Figure 4-2: Problematic side-cases for general spherical liftings

Algorithm 2 General n point spherical lifting

SphereLiftMGon n

1 Seed random number generator
2 l← empty list
3 C ← empty polyhedron
4 while |l| < n
5 for i = |l| to n− 1
6 (x, y)← point in circle of radius cos 1

m
π around origin

7 Append
(
x, y,

√
1− (x2 + y2)

)
to l

8 C ← ConvexHull3D(l)
9 C2← ConvexHull2D(l)

10 for face f in C
11 if all vertices of f in C2
12 Remove f from C
13 for v ∈ C2
14 if |AdjacentEdges(v)| > |AdjacentFaces(v)|+ 1
15 l← empty list // start over without reseeding random
16 Continue while loop from line 4
17 elseif |AdjacentEdgesv)| = 0
18 Remove v from l
19 return C

75

Figure 4-3 shows some example terrain from this method. While this produces

more random convex terrain without the m-gon of the previous algorithm, it requires

finding multiple 3D and 2D convex hulls, and might loop an unbounded number

of times depending on the random points selected. However, in practice it works

decently fast even for large n.

Figure 4-3: General spherical liftings of 15,50, and 100 points from the same
random seed

4.1.2 Convex Functional Liftings

Generalizing from spherical liftings from a circle, we can generate points in a convex

shape S and lift them to a convex function f(x, y). The procedure for doing this is

similar to Algorithm 2, except that instead of generating random points in a unit cir-

cle, we generate random points in S, and instead of lifting to
(
x, y,

√
1− (x2 + y2)

)
,

we lift to (x, y, f(x, y)). However, similar to the circle case, we still need to calculate

convex hulls and we still have no control of exactly what faces and graph we will get.

4.1.3 General Convex Liftings

Another way to generate a convex terrain is to start with a convex planar graph G

and take it to a convex lifting. Note first that a convex terrain has the property that

every interior edge is a “mountain edge” by origami terms. Then by the Maxwell-

Cremona Theorem [7], if we treat the planar graph as a tensegrity, this corresponds

76

to an equilibrium stress where all the interior edges have positive stress. Such a stress

can be converted into a lifting, one which we know to be convex and also valid in

terms of planarity of each face.

How we actually go about doing this is by constructing and solving a LP, which

has the following variables:

Heights — vz, the height of vertex v

Face Variables — fx, fy, fz, representing the face f as all points (x, y, z) which

satisfy

fxx+ fyy + fz = z

Stress — we, representing the stress on the edges e

Using these variables, we make the following constraints:

Face Equations — a constraint for each vertex of each face to ensure planarity of

vertices of each face

∀f, ∀v ∈ f, fxvx + fyvy + fz = vz

Stress Equations — a constraint to calculate stress from the faces f1, f2 incident

on interior edge e, where e⊥ is the 2D unit vector pointing from f1 to f2

∀e, f1, f2, 〈f1x, f1y〉 − 〈f2x, f2y〉 = wee⊥

Convexity — a constraint to maintain convexity by making all stresses positive

∀e, we > 0

Height Limitation — a constraint to limit the heights to the range [0, 1], to make

sure the solution is not unbounded

∀v, 0 ≤ vz ≤ 1

77

However, this LP is very much underdetermined: every planar graph G which has

valid convex liftings have infinitely many planar liftings. Conceptually, we want all

maximal solutions of this LP, that is, every vertex of the convex polytope which makes

up the solution space of this LP, which gives us a set of convex liftings of G which span

the space of all convex liftings of G. However, this will probably be an exponential

time algorithm, since there will likely be exponentially many such maximal solutions.

Instead, to generate a random lifting, we can solve the LP multiple times, each time

with a randomly generated objective function seeking to maximize
∑

v vzrv for random

rv. Then, we can take a random mix of the resulting convex liftings to produce a

random convex lifting of G.

4.2 Testing Tree Validity

In Section 3.3.2 we detailed how to test, under a first-order approximation, whether

subtrees unfold without overlap. We can directly convert the process to an algorithm

for checking unfoldability of cut-trees. First, however, let us define a tree datastruc-

ture: Let tv be a tree (or subtree) rooted at v. Then, Child(tv, e) = {tw1 , . . . , twk
}

is the set of vertex-subtrees of tv of vertices connected to v in tv in clockwise order

from edge e. Similarly, Child(tv) for a boundary vertex v returns the same result

as Child(tv, (v, w)), where w is the boundary vertex clockwise of v. Also, if (v, w)

is an edge of tv, then let Tree(v, tw) be the branch or edge-subtree t(v,w). Also, if

T represents the terrain, then let T = (G,H) = (G,A) be the convex lifting and

angle-delta representations of T - A can be easily calculated from T = (G,H) using

the formula presented in Section 2.5.1. Finally, let us define two helper functions:

OutgoingEdgeValid(tv, e, T) calculates if unfolding tv will cause an overlap on the

outgoing edge e = (v, w), and Displacement(tw, v) calculates the 2D displacement of

v from unfolding tw. Using these, Algorithm 3 gives the pseudocode for determining

whether a cut-tree unfolds without overlap under a first-order approximation

78

Algorithm 3 Recursive algorithm for testing tree validity. The input tv is a tree
rooted at v, and the optional input e is the parent edge of v if tv is a subtree from a
recursive call.

TreeValidRecursive tv, T, e = null

1 if |Child(tv)| = 1, Child(tv) = tw // tv is a branch
2 result ← TreeValidRecursive(tw, T, (w, v))
3 if result not valid
4 return not valid
5 elseif e = null // v is a boundary vertex
6 return valid
7 else // v is an interior vertex
8 return OutgoingEdgeValid(tv, e, T)
9 else // tv is not a branch

10 // list of positions of vj in the unfolded tree
11 vpos ← list of points, size |Child(tv)|+ 1, 0 indexed
12 vpos [0]← (0, 0)
13 for i = 1 to |Child(tv)|
14 if TreeValidRecursive(twi

, T, (wi, v)) not valid
15 return not valid
16 else
17 vpos [i]← vpos [i− 1] + Displacement(twi

, v)
18 // now, test for conflicts between branches
19 for i = 0 to |vpos| − 1
20 for j = i+ 2 to |vpos| − 1
21 if (vpos [i], vpos [i+ 1]) intersects (vpos [j], vpos [j + 1])
22 return not valid
23 if e = null // v is a boundary vertex
24 return valid
25 else // v is an interior vertex
26 return OutgoingEdgeValid(tv, e, T)

4.3 Simple Path Unfolding Algorithm

While Section 3.2.5 showed that not every G contains a SMID path from ever vertex

to the boundary, it remains an interesting question whether it is always possible to

find an unfolding cut-path from ever vertex of an almost-flat convex terrain T to

the boundary. So, building off of SMID paths, we made an algorithm which tries to

find paths for each vertex by adding edges in order of straightness from the already

constructed paths, and backtracking when the partial cut-path fails to unfold (see

79

Algorithm 4).

Algorithm 4 Algorithm for finding an unfolding cut-path of T from v

FindCutPath v, T

1 // this array of arrays stores possible adjacent edges from each vertex
2 vp ← empty array of arrays
3 Append the array of all adjacent vertices of v to vp
4 lvl ← 0
5 path ← (v) // 0 indexed list of vertices in path
6 while lvl > 0 or |vp[0]| > 0
7 if |vp[lvl]| = 0
8 Pop vp[lvl]
9 Pop path[lvl]

10 lvl −−
11 Continue while loop from line 6
12 if lvl = 0
13 Remove random vertex w from vp[0]
14 else
15 Remove w from vp[lvl] such that the

angle ∠path[lvl − 1]path[lvl]w is closest to π
16 if w ∈ path
17 Continue while loop from line 6
18 if OutgoingEdgeValid(path, (path[lvl], w)) valid
19 Append w to path
20 Append array of all adjacent vertices of w to vp
21 lvl ++
22 return path if it is a valid path to boundary

otherwise return null or failure

While it is true that this algorithm could possibly enumerate all paths from v to

boundary vertices, in practice it is quite fast and does not backtrack often when used

on random spherical liftings.

4.4 Cut Forest Generation

Finally, we will give some algorithms for generating spanning cut-forests to test for

unfoldability of a given terrain T . After introducing a basic brute-force enumeration

algorithm, we will give a few heuristics creating cut-forests which we think will likely

80

unfold.

4.4.1 Brute-force Enumeration of all Forests

Let us start with an algorithm for a brute-force enumeration of all spanning forests.

Let T = (G,H) be an almost-flat convex terrain, then let Interior(G) be the set of

interior vertices of G, and Exterior(G) be the set of exterior or boundary vertices of

G. Now, if |Interior(G)| = n, then any spanning cut-forest of G has exactly n edges.

Also, let Neighbor(v) be the set of all neighbors of vertex v.

The intuition behind Algorithm 5 is to remember the order edges are added onto

the partial forest, and keep track of the pool of possible edges at each each part of

the partial forest. This means that if the array forest contains the edges of the forest

added in that order, then pedges will be an array such that pedges [i] contains a list of

possible edges to try for the forest consisting of just the edges forest [0], . . . , forest [i].

So, we extend a partial forest of i edges by removing an edge from the possible edge

pool pedges [i]; this adds new possible edges, so we add those new possible edges to

a copy of pedges [i] and set it as pedges [i + 1]. Then, when pedges [i] is empty, we

backtrack to pedges [i− 1] and proceed from the possible edges there.

There are a few things to note about this algorithm. First, every cut-forest is

enumerated exactly once. This can be seen from line 12 — when an edge is added

to a partially complete forest fpartial, it is removed from the pool of possible edges

from then on. So, after all cut-forests containing fpartial and that edge are enumerated,

then all cut-forests containing fpartial and not containing that edge will be enumerated.

Hence, no cut-forest is enumerated twice.

This algorithm is presented as the simplest spanning forest enumerator, but it

can be inefficient. For instance, it is possible for all edges connecting to a vertex to

be removed from the possible edge pool. If this happens, no spanning forests can be

constructed from the remaining possible edges, though this algorithm will continue

checking all of them. This, however, can be tested for between lines 7 and 8.

Another issue is that when using this enumeration for the sake of finding an

unfolding cut-tree of T = (G,H) through brute-force search. In this case, forest

81

Algorithm 5 Algorithm for enumerating all cut-forests of G

CutforestEnumerate G

1 // all arrays are 0 indexed
2 forest ← empty set of forest edges
3 pedges ← empty array of arrays containing possible edges to be tried
4 for v ∈ Exterior(G)
5 Append all edges (v, w), w ∈ Interior(G) to pedges [0]
6 while |pedges [0]| > 0 or |forest | > 0
7 numedges ← |forest |
8 if |pedges [numedges]| = 0
9 Pop pedges [numedges]

10 Pop forest [numedges − 1]
11 Continue while loop from line 6
12 Remove an edge (v, w) from pedges [numedges]
13 if w ∈ forest
14 Continue while loop from line 6
15 Append (v, w) to forest
16 newedges ← empty array
17 for u ∈ Neighbor(w)
18 if u /∈ forest
19 Append (w, u) to newedges
20 Make a copy of pedges [numedges] as the array copy
21 Append all edges of newedges to copy
22 Append the array copy to pedges
23 if numedges = |Interior(G)|
24 // forest represents a spanning cut-forest
25 Output forest
26 Continue while loop from line 6

is unfoldable if and only if each rooted tree of forest is unfoldable. However, this

enumeration will yield many forests with the same unfoldable tree. This, however,

can be remedied by checking for it after line 25, and backtracking by removing edges

from forest until at least one edge is removed from each tree of forest which fails to

unfold. This is a very powerful heuristic, as will be shown later in Section 5.2, but it

also misses some valid cut-forests. The reason is, even if a cut-tree t is not unfoldable,

it might be possible to add edges to t to make it unfoldable. Hence, by pruning until

at least one edge of t is gone, we miss out on the possible unfolding cut-trees which

include t as a subtree. So, while this heuristic drastically speeds up the search for a

82

single unfolding cut-forest, it fails to accurately find all unfolding cut-forests.

4.4.2 Random

Instead of bruteforcing, it is also useful to be able to just output a random spanning

cut-forest. This can be done by modifying Algorithm 5 to return the first tree created

at line 25, and changing line 12 to remove a random edge from the pool of possible

edges. While this will not pick each spanning cut-forest with equal probability, it is

very simple to implement and should give decent results.

4.4.3 BFS Limitation

A heuristic we can place on cut-forest generation is to only allow BFS edges. In more

detail, assign each vertex v of G a “BFS index” BFSI(v), which is the fewest number

of edges one must traverse starting from v to reach a boundary vertex of G. Then,

we limit the enumeration or random generation algorithm to only allow the addition

of edges (v, w) where BFSI(v) + 1 = BFSI(w) . That is, if v is part of a tree, we can

only add (v, w) if w is strictly farther from boundary vertices than v.

While this heuristic does not take into account the geometric location of vertices,

it instead uses the intuition that we want our cuts to be, in terms of the graph

structure, the “shortest” paths from interior vertices to boundary vertices.

4.4.4 Greedy Heuristics

For a more systematic method, we can use a greedy algorithm by creating a heuristic

to rank potential edges and always append the “best” edge at any point in time to

our partial forest. Here we will list several potential heuristics along with reasonings

for why we considered that heuristic. The results of these heuristics used on general

spherical liftings can be found in Section 5.5.

Dijkstra — rank by smallest Dijkstra distance from the new vertex the edge connects

to the boundary point that tree is rooted at. This aims to make the smallest,

83

simplest trees possible, which should be more likely to unfold than larger, more

complicated trees.

Dihedral Angle — rank by either the smallest or largest dihedral angle of the edge

leading to the new vertex. If an edge has a small dihedral angles that means it

is between faces which are almost coplanar. It is unclear whether it would be

better to cut along such edges or edges with large dihedral angles, so we decided

to test both.

Angle — rank by smallest absolute angle between the new edge and the extension

of the parent edge it is to be attached to. This seeks to make cut-trees be as

straight as possible, somewhat like finding SMID-trees, which are more likely

to unfold than more angular trees.

84

Chapter 5

Computational Results

In this chapter we show the results of a few computational experiments we ran based

on the algorithms we described in the previous chapter.

5.1 Test System and Implementation Details

All code is written in Python for ease and speed of scripting, using Scipy 0.12 [12] for

their Python wrapping of Qhull [1] for calculating convex hulls. Other than that, the

rest of the datatypes are all implemented in native python lists and dictionaries. To

keep things simple, we kept everything single threaded, though there are definitely

many parts which could have been multithreaded to improve performance. Everything

is run on a CSAIL cloud cluster machine, which has a 6-core Xeon X5650 at 2.67GHz.

For the dataset, we mainly used spherical liftings, both general spherical liftings

as well as spherical liftings in an m-gon. This is because these are the easiest and

fastest forms to generate, and we could get a lot of variety by merely varying the

random seed used for generation. Similarly, we figured that if the number of points is

large enough, the randomness should ensure that most structures of interest should

appear somewhere in the midst of the spherical lifting.

85

5.2 Time to First Unfolding

First, we tested how far our simple brute-force search algorithm can get in unfolding

randomly generated general spherical liftings, and how much this can be improved by

the pruning heuristic detailed in Section 4.4.1. So, we ran the brute-force cut-forest

enumeration and testing algorithm both with and without pruning for a fixed period

of 8 days on the same dataset. This dataset consisted of general spherical liftings

generated using the fixed seed of 0, with increasing vertex counts — starting with

5-vertex liftings, after the algorithm successfully unfolds the lifting of n vertices, it is

given the lifting of n+ 1 vertices.

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

5 10 15 20 25 30 35 40 45 50 55 60 65

Ti
m

e
(s

)

Number of Vertices

Time to First Unfolding

Full

Prune

Figure 5-1: Time to first unfolding versus size of graph for brute-force enumeration
with and without pruning heuristic

As the graph in Figure 5-1 shows, the pruning heuristic made a huge difference,

allowing the simple brute-force algorithm to unfold up to 65-vertex liftings, while the

original brute-force algorithm only managed to unfold up to 35-vertex liftings. There

are two interesting facts to note about this graph and experiment.

Firstly, since all the liftings are generated using the same seed of 0, this means that

in most cases, barring any sidecases as mentioned in Section 4.1.1, the n + 1-vertex

lifting has n of the same vertices as the n-vertex lifting. Since each time the brute-

86

force search began anew without keeping information from previous searches, it is

interesting to see that sometimes increasing the number of vertices actually dropped

the search time. This means that by adding a vertex to spherical lifting, we can

actually make it much easier (that is, several orders of magnitude lower search time

by brute-force) to unfold the lifting.

Secondly, note the data at the 16-vertex unfolding times. This is the single case

where pruning took much longer than not-pruning, and searched many more trees

than not-pruning. This is likely because of the fact that it is possible for pruning

to skip many valid cut-forests, which is also mentioned in Section 4.4.1, but here we

see that it is actually possible for this to cause pruning to miss enough valid forests

that it becomes slower than brute-force search. This also arises the possibility that,

while very unlikely, this pruning heuristic might possible result in not finding any

valid unfolding cut-forests even if ones definitely exist.

5.3 Percent Random Edge-Unfoldings

Similar to Schevon’s [16] exploration of percent of random cut-trees of convex hull of

spherical points which unfold, we did a similar study in percent of random cut-forests

of almost-flat spherical liftings which unfold.

0

10

20

30

40

50

60

70

80

90

100

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Percent of Random Cut-Forests which Conflict

Rand

BFS

Figure 5-2: Percent of random cut-trees and random BFS cut-trees which conflict

87

As the graph in Figure 5-2 shows, similar to Schevon’s results, as the number

of vertices increase, the percent of random cut-forests which unfold without overlap

goes to 0. The additional line corresponds to random cut-forests generated only from

BFS edges, as described in Section 4.4.3. While using this heuristic helped shift the

results to a slightly higher percentage, the eventual outcome is the same. Hence, we

arrive at the same conclusion that as the number of vertices increase, the chance a

randomly generated cut-forests unfolds without overlap decreases to 0.

5.4 Total Cut-Forests and Unfolding Cut-Forests

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

5 6 7 8 9 10 11 12 13 14 15 16

Total Cut-Forests

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

5 6 7 8 9 10 11 12 13 14 15 16

Total Unfolding Cut-Forests

Figure 5-3: At each size, 100 general spherical liftings are generated. The graphs
show a standard box and whisker plot while the line represents the average counts.

88

Another computational test we did was to check the total number of cut-forests

and unfolding cut-forests for general spherical liftings. It is well known that the total

number of spanning trees of a graph grows exponentially in the number of vertices,

which means that the number of cut-forests grows exponentially, since cut-forests of

the graph G can be put in a bijection with the spanning forests of a graph G′ which

is the same as G, except that the boundary vertices G are all merged into a single

vertex. Instead, we wanted to see if the total number of unfolding cut-forests also

grows exponentially in the number of vertices.

As the graphs in Figure 5-3 shows, the total number of cut-forests is definitely

increasing at an exponential rate, and it definitely appears that the number of un-

folding cut-trees of general spherical liftings is also increasing exponentially with the

number of vertices. Also, there is quite a lot of variation, as the counts vary by up to

3 orders of magnitude. Furthermore, consider the graph of the ratio of the average

number of unfolding cut-forests to total cut-forests in Figure 5-4.

0.1

1

1 2 3 4 5 6 7 8 9 10 11 12

Ratio Unfolding

Figure 5-4: Ratio of cut-forests which unfold at different graph sizes

While the ratio of unfolding cut-forests to total cut-forests decreases at an expo-

nential rate, experimentally the rate of this decay is much smaller, at least in the small

numbers which we tested, than the rate of growth of the total number of cut-forests.

Hence, we are lead to believe by experimental results that the number of unfolding

cut-forests increases at an exponential rate.

89

5.5 Cut Forest Algorithm Comparison

In Section 4.4.4, we listed several heuristics for use with a greedy algorithm for cut-

forest generation. We tested each heuristic on general spherical liftings of 10 to 490

points. At each size, every heuristic is tested using the same 100 terrains, generated

using 100 different random seeds.

0

10

20

30

40

50

60

70

80

90

100

10 40 70 100 130 160 190 220 250 280 310 340 370 400 430 460 490

Percent Unfolding Cut-Forests

angle+dijk

angle

dijkstra

dihedral

Figure 5-5: Percent of cut-forests which unfold for various greedy heuristics

As the graph in Figure 5-5 shows, the “min-angle” and “Dijkstra” heuristics did

extremely well. However, even better was the “angle+dijkstra” heuristic, which mixed

the two while using a cut-off which added a large penalty for edges which caused acute

angles with their parent edge. The “dihedral” heuristic actually did very poorly: the

one shown in the graph was for adding edges which had the smallest dihedral angle

first, which meant cutting along the edges which “bent” the most. The heuristic

which added the largest dihedral angle edges first did even more poorly than the one

shown.

Since the “angle+dijkstra” heuristic did so well in the range of sizes we tried, we

expanded the test to a larger range from 100 to 5900 vertices. We also increased the

number of trials to 1000 to see if that will smooth out the curve.

Unfortunately, the graph in Figure 5-6 shows that, like any of the other heuristics,

90

0

10

20

30

40

50

60

70

80

90

100

Percent Unfolding Cut-Forests for Angle+Dijkstra

100 runs

1000 runs

Figure 5-6: Percent unfolding cut-forests for 100 and 1000 runs of “angle+dijkstra”
heuristic

at much larger vertex counts, the success of this heuristic also decreases, and as

expected, 1000 trials did indeed smooth out the graph. So, then we decided to try

varying the parameters — for this heuristic, we had four parameters A,B,C,D: if

the angle between the edge and the parent is acute or right, we add a large penalty

and rank by Dist
A

+ Ang
B

, else if the angle is obtuse, we rank by Dist
C

+ Ang
D

, where Dist

is the Dijkstra distance including the new edge, and Ang is the absolute difference

in angle between the new edge and a continuation of the parent edge. For the above

graphs, we used the values A = 1, B = 1, C = 1, D = 5 chosen arbitrarily. In order

to see the impact of the parameters on performance of this heuristic, we tested again

with a wider range of parameters.

As the graphs in Figure 5-7 show, the parameters A and B had negligible effect

on the result — the data for AXBY C1D1 almost perfectly follows the data for

A1B1C1D1. Most likely, rarely is the algorithm ever forced to add an acute angle,

and when it does, that likely causes a conflict regardless of how acute the angle is.

Then, judging from the graphs of varying C and D, we see that they have opposite

effects — this is expected, since if the contribution of Ang is scaled down, this is the

same as the contribution of Dist being scaled up, and vice versa. Also, it seemed

91

0

10

20

30

40

50

60

70

80

90

100

Percent Unfolding Cut-Forests for Angle+Dijk at Different A/B Values

A2B1C1D1

A3B1C1D1

A4B1C1D1

A1B2C1D1

A1B3C1D1

A1B4C1D1

A1B1C1D1

0

10

20

30

40

50

60

70

80

90

100

Percent Unfolding Cut-Forests for Angle+Dijk at Different C Values

A1B1C1D1

A1B1C2D1

A1B1C3D1

A1B1C4D1

0

10

20

30

40

50

60

70

80

90

100

Percent Unfolding Cut-Forests for Angle+Dijk at Different D Values

A1B1C1Dinf

A1B1C1D10

A1B1C1D9

A1B1C1D8

A1B1C1D7

A1B1C1D6

A1B1C1D5

A1B1C1D4

A1B1C1D3

A1B1C1D2

A1B1C1D1

Figure 5-7: Percent unfolding cut-forests for various A,B,C, and D parameter values

92

that the Ang term in the obtuse angle case had a negative effect on the outcome,

hence we added the additional test case shown, which effectively set D =∞ by only

ranking by Dijkstra distance in the obtuse angle case. Overall, it appears that the

best heuristic for a greedy algorithm is this last heuristic, which ranks new edges by

Dijkstra distance, considering first the edges which make an obtuse angle with their

parent edge.

93

Chapter 6

Conclusions and Future Work

Overall, this thesis presented an exploration of almost-flat convex polyhedral terrain

along several avenues. On the theoretical side, we showed that almost-flat convex

terrains can only have local overlaps on unfolding and gave a method for determining

whether a given cut-tree unfolds without overlap. We also demonstrated that any

partial unfolding cut-tree can be locally extended into a larger partial unfolding cut-

tree. Then, considering only the planar projections, we showed that SMID-paths and

SMID-trees always unfold regardless of the convex lifting applied to the projection.

Next, we presented a more constructive method of unfolding based around “slicing,”

which is similar to and can be seen as a generalization of Benton and O’Rourke’s

vertex-truncation technique. We showed that all unfolding cut-trees of almost-flat

convex terrain have the “open-sector property” of Benton et al. and also characterized

the unfoldability of various vertex-slices. Finally, for all these properties, we gave

proofs and arguments to show that there exist positive and finite height bounds

which achieve these properties, showing that almost-flat convex terrains are still three

dimensional constructs and not flat.

Then on the computational side, we gave several algorithms for generating convex

terrain, checking cut-tree unfoldability, and enumerating cut-forests. We also pro-

vided several heuristics for use with a greedy algorithm for creating cut-forests to

test unfoldability. The computational results showed that as the number of vertices

increased, the probability of a random cut-tree unfolding fell to zero. Also, through

94

brute-force enumeration, our data shows that both the total number of cut-forests

and number of unfolding cut-forests increased exponentially as the size of the terrain.

Finally, our results show that the “angle+dijkstra” heuristic does a very good job of

producing unfolding cut-forests even for very large terrains.

6.1 Future Work

One interesting thing to note is that as mentioned at the end of Section 3.1.2, almost-

flatness at times actually makes it harder for cut-trees to unfold without overlap.

This is because, if the cut-tree contains a leaf which ends in an acute angle, then this

by itself guarantees a conflict in the unfolding. There are several ways this could be

useful for future study. First, it may be possible to use this fact along with other

properties of almost-flat convex terrains to create an almost-flat convex terrain which

has no unfolding cut-forests. Tiling such a construction on the faces of a convex

polyhedron would potentially lead to a convex polyhedron which is ununfoldable.

Second, this might be a reason to study the opposite of almost-flat convex terrain

— since almost-flatness actually results in more overlaps, it might be that the opposite

constructs would result in less overlaps. Since almost-flatness involves shrinking a

terrain in a direction, the opposite of almost-flatness, perhaps “almost-cylindrical,”

would involve stretching a terrain in a direction. Such terrain will be more cylindrical

in nature, and it may be interesting to consider what the nets from unfolding such

constructs would look like. It may be that since such forms are more tube-like, it may

be more possible to “unroll” them. Unlike unfoldings of almost-flat terrain which are

very close to their planar projection, unfoldings of such almost-cylindrical terrain will

be very different from their planar projection, but this may give them the space they

need to unfold without overlap.

A third use of the ununfoldability of cut-trees ending in acute angles in the context

of almost-flat convex terrain would be to prove that the probability of a random cut-

forest of a random almost-flat convex terrain unfolding goes to 0 as the size of the

terrain increases. Our computational results definitely show this for spherical liftings,

95

but a rigorous proof of the more general case might be more enlightening.

Finally, the work on vertex-slices can definitely be extended through considerings

of edge-slices and face-slices, and showing when such slices result in valid unfoldings.

96

Bibliography

[1] C. Bradford Barber and Hannu Huhdanpaa. Qhull. The Geometry Center,

University of Minnesota, http://www.qhull.org/, 1995.

[2] Nadia Benbernou, Patricia Cahn, and Joseph O’Rourke. Unfolding smooth prim-

satoids. arXiv preprint cs/0407063, 2004.

[3] Alex Benton and Joseph O’Rourke. Unfolding polyhedra via cut-tree truncation.

In Proc. of CCCG, pages 77–80, 2007.

[4] Marshall Bern, Erik D. Demaine, David Eppstein, and Eric Kuo. Ununfoldable

polyhedra. In Proceedings of the 11th Canadian Conference on Computational

Geometry (CCCG’99), pages 13–16, Vancouver, British Columbia, Canada, Au-

gust 15–18 1999.

[5] Marshall Bern, Erik D. Demaine, David Eppstein, Eric Kuo, Andrea Mantler,

and Jack Snoeyink. Ununfoldable polyhedra with triangular faces. In Abstracts

from the 4th CGC Workshop on Computational Geometry (CGC’99), Baltimore,

Maryland, October 15–16 1999.

[6] Marshall Bern, Erik D. Demaine, David Eppstein, Eric Kuo, Andrea Mantler,

and Jack Snoeyink. Ununfoldable polyhedra with convex faces. Computational

Geometry: Theory and Applications, 24(2):51–62, February 2003. Special issue

of selected papers from the 4th CGC Workshop on Computational Geometry,

1999.

97

[7] Robert Connelly, Erik D. Demaine, and Günter Rote. Straightening polygonal

arcs and convexifying polygonal cycles. Discrete & Computational Geometry,

30(2):205–239, September 2003.

[8] Erik D. Demaine and Joseph O’Rourke. Geometric Folding Algorithms: Link-

ages, Origami, Polyhedra. Cambridge University Press, New York, NY, 2007.

[9] Julie DiBiase. Polytope Unfolding. PhD thesis, Smith College, Northampton,

Mass., 1990.

[10] Branko Grünbaum. A starshaped polyhedron with no net. Geombinatorics,

11:43–48, 2001.

[11] Branko Grünbaum. No-net polyhedra. Geombinatorics, 11:111–114, 2002.

[12] Eric Jones, Travis Oliphant, and Pearu Peterson. Scipy: Open source scientific

tools for python. http://www.scipy.org/, 2001.

[13] Brendan Lucier. Unfolding and reconstructing polyhedra. Master’s thesis, Uni-

versity of Waterloo, 2006.

[14] Brendan Lucier. Local overlaps in special unfoldings of convex polyhedra. Com-

putational Geometry, 42(5):495–504, 2009.

[15] Travis Oliphant et al. Numpy. http://www.numpy.org/, 2007.

[16] Catherine Schevon. Algorithms for Geodesics on Polytopes. PhD thesis, Johns

Hopkins University, 1989.

[17] Wolfram Schlickenrieder. Nets of polyhedra. Master’s Thesis, Technische Uni-

versität Berlin, 1997.

[18] A. S. Tarasov. Polyhedra that do not admit natural unfoldings. [In Russian]

Uspekhi Mat. Nauk, (54), 1999.

98

	Introduction
	History and Background of Edge-Unfolding
	Our Results

	Almost-Flat Convex Terrains
	Polygons, Polyhedra, and Terrains
	Convexity
	Almost-Flatness
	Height Bounds on Flatness

	Convex Lifting Representation
	Angle-Delta Representation
	Height to Angle-Delta First-Order Approximation

	Ideal Almost-flatness

	Edge-Unfolding Almost-Flat Convex Terrains
	Cut-Forests and Glue-Trees
	Unfolding Motion
	Local Overlaps
	Height Bound for Local Overlaps

	Projections and Unfolding
	Path Definitions
	Weakly Monotonically Increasing Distance (WMID) Paths
	Strongly Monotonically Increasing Distance (SMID) Paths
	SMID Trees
	Projections with no SMID Paths

	Unfolding Almost-Flat Convex Terrain
	Tree Definitions
	First-Order Approximation
	Insignificance of Second-Order Effects
	All Partial Edge Cut-Trees Locally Extensible

	Slice Unfolding
	Definitions and Examples
	General Slice Unfolding
	Empty Sector Property
	Triangular and Quadrilateral Vertex-Slices
	General Vertex-Slices

	Computational Search Techniques
	Generating Convex Terrain
	Spherical Liftings
	Convex Functional Liftings
	General Convex Liftings

	Testing Tree Validity
	Simple Path Unfolding Algorithm
	Cut Forest Generation
	Brute-force Enumeration of all Forests
	Random
	BFS Limitation
	Greedy Heuristics

	Computational Results
	Test System and Implementation Details
	Time to First Unfolding
	Percent Random Edge-Unfoldings
	Total Cut-Forests and Unfolding Cut-Forests
	Cut Forest Algorithm Comparison

	Conclusions and Future Work
	Future Work

