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Abstract
Nano-electromechanical (NEM) relays are an alternative to CMOS transistors as the
fabric of digital circuits. Circuits with NEM relays offer energy-efficiency benefits over
CMOS since they have zero leakage power and are strategically designed to maintain
throughput that is competitive with CMOS despite their slow actuation times. The
floating-point unit (FPU) is the most complex arithmetic unit in a computational sys-
tem. This thesis investigates if the energy-efficiency promise of NEM relays demon-
strated before on smaller circuit blocks holds for complex computational structures
such as the FPU. The energy, performance, and area trade-offs of FPU designs with
NEM relays are examined and compared with that of state-of-the-art CMOS designs
in an equivalent scaled process. Circuits that are critical path bottlenecks, including
primarily the leading zero detector (LZD) and leading zero anticipator (LZA) blocks,
are carefully identified and optimized for low latency and device count. We manage
to drop the NEM relay FPU latency from 71 mechanical delays in a CMOS-style im-
plementation to 16 mechanical delays in a NEM relay pass-logic style implementation.
The FPU designed with NEM relays features 15x lower energy per operation compared
to CMOS.

Thesis Supervisor: Vladimir Stojanović
Title: Associate Professor of Electrical Engineering
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Chapter 1

Introduction

NANORELAYS, short for nano-electromechanical (NEM) relays, are electrostatically
actuated mechanical switches. They are an alternative to transistors as the build-

ing block for digital circuits. Digital circuits are traditionally implemented with com-
plementary metal-oxide-semiconductor (CMOS) transistor logic, and such logic can also
be implemented with NEM relays [1]. While the process technology for CMOS contin-
ues to scale down to smaller sizes, its unwanted leakage power has also been increasing
exponentially. On the other hand, NEM relays offer zero leakage power for any type
of digital circuit, and its process technology can be scaled down like that of transistors
[2].

CMOS scaling has enabled the energy per digital computation to go down by reduc-
ing the power supply, VDD, and the threshold voltage, VT . However, this scaling ap-
proach reaches a minimum energy point as the once dominant dynamic energy Edynamic
begins competing with leakage energy Eleakage, as seen in Fig. 1.1 [3]. The reduction
of VT leads to subthreshold conduction that contributes to Eleakage. This has forced a
move to running digital circuits in parallel as in multi-core processors, but eventually
this will become ineffective [1].

NEM relays are nearly ideal switches that have an infinite subthreshold slope and
do not exhibit leakage power as seen in the current-voltage characteristic in Fig. 1.2 [4].
Since the energy per circuit operation is then constrained only by dynamic switching
power, the energy per operation can continue to scale down beyond that for CMOS. The
potentially higher energy-efficiency of digital circuits made of NEM relays compared to
those made of transistors makes NEM relays worth exploring.

The relatively high yields of fabricated NEM relays have enabled the design and
test of increasingly complex NEM relays circuits. A NEM relay based inverter, latch,
and full adder have been demonstrated [2]. Additionally, the (7:3) compressor needed
for a NEM relays based multiplier circuit has also been demonstrated, making it the
largest working NEM relays based circuit with 98 relays [5]. This opened the door to
explore very large scale integrated (VLSI) circuits with NEM relays.

Thus far, prior work demonstrated the energy-efficiency advantage of NEM relays
over CMOS, with NEM relay adders and multipliers as the most complex blocks. These
are mostly realized through circuit design techniques that balance out the slow mechan-
ical delay with the fast electrical delay in the NEM relay. The question remains if such

13



Figure 1.1. Energy per operation for circuits made with transistors is limited by a minimum energy
point. Data courtesy of V. Stojanović.

Figure 1.2. Ideal switching characteristics exhibited by nano-electromechanical relays. Left: energy
per operation can continue to scale down for circuits made with NEM relays due to no leakage energy.
Right: the current voltage characteristic of NEM relays. Data courtesy of R. Nathanael [4].



Sec. 1.1. Thesis Outline 15

techniques can be carried over successfully to the largest computational blocks in a dig-
ital system. To answer this question, this thesis looks at the design of the floating-point
unit (FPU) with NEM relays, as the most complex arithmetic structure in the heart of
every modern processor.

Modern processors typically run arithmetic computations on an FPU. The FPU
can be designed with NEM relays to realize energy-efficiency benefits offered by the
technology. Although the NEM relays circuit design is already understood for many
FPU components, several other components are designed in this work to optimize the
use of NEM relay circuit area, energy, and performance. A complete analysis of the
fused multiply-add (FMA) operation, representative of FPU logic, as implemented with
NEM relays, is presented.

� 1.1 Thesis Outline

This work begins with a background on NEM relay devices and the design of circuits
with them in Chapter 2. Experiments on NEM relay test chips are discussed in Chapter
3. The FPU is described in Chapter 4, along with the motivation for representing the
variety of FPU designs with the design of an FMA. The FMA, designed with NEM
relays, is described in Chapter 5. The energy and performance analysis of the FMA
and comparison with CMOS is presented in Chapter 6. The work concludes with
Chapter 7.
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Chapter 2

NEM Relay Devices and Circuit
Design

THERE are several flavors of NEM relays with which we can design circuits. Al-
though some of the first computers were built with relays, vacuum tube and tran-

sistor technology proved more efficient in that era [6]. The recent revival of the relay
stems from advances in micro-electromechanical systems (MEMS) that have enabled the
fabrication of miniaturized relays with precise features whose size ranges from microm-
eters to nanometers [4, 7, 8, 9]. Current relays are called NEM relays because they have
sub-100nm features, though they may still be referred to as micro-electromechanical
(MEM) relays due to the remaining micron-scale features.

Each type of NEM relay has a physical model based on its electromechanics and a
logical model based on switching characteristics. These models provide the basis for
circuit design with NEM relays.

� 2.1 Structure of NEM Relays

The different types of NEM relays shown in Table 2.1 are fabricated by our collab-
orators working under Professor Tsu-Jae King Liu at the University of California at
Berkeley. The first MEM relay design considered had three terminals (3T) and was a
single cantilever as described in [10], but the cantilever design gave way to a symmetric
movable structure as shown in Table 2.1 since it suffers less from the impact of residual
stress and strain gradient.

It was desirable to keep the actuation by the gate independent from the conduction
enabled by actuation. Hence, a four-terminal (4T) NEM relay was designed where
the gate to body voltage determines whether the device is actuated and the channel
connects the source and drain terminals when the device is actuated [4]. The 4T NEM
relay is pictured in Fig. 2.1.

Since the gate structure consumes the most area, another pair of drain and source
electrodes could be added to the 4T NEM relay, yielding a six-terminal (6T) NEM
relay [9]. The 6T NEM relay enables logic gates to be designed with less area since any
two paths sharing the same gate to body control can be placed under the same gate
structure.

17



18 CHAPTER 2. NEM RELAY DEVICES AND CIRCUIT DESIGN

Figure 2.1. Structure of the four-terminal (4T) nano-electromechanical (NEM) relay. When the
voltage between the gate and body is low, the device is in the off -state with no current; when it is high,
the device is in the on-state with a current IDS .
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Table 2.1. Evolution of NEM relay devices. The movable gate (G) structure is outlined in green,
body (B) electrodes are filled in solid blue, drain (D) and source (S) electrodes are filled with a blue
gradient, and the channels are in transparent red. The 3T, 4T, and 6T devices are also called crab-leg
NEM relays, whose physics are different from seesaw NEM relays.

Details for the fabrication of crab-leg NEM relays are outlined in [4, 7].
Table 2.1 shows the evolution of the NEM relays with a crab-leg gate structure from

3T to 4T to 6T. Experiments with each of these types of NEM relays have enabled some
learning as to how to enhance the device structure. Table 2.1 shows how the 4T NEM
relay was enhanced by reducing the channel area and increasing the body electrode area
to facilitate actuation, and how the 6T NEM relay was enhanced with an even larger
actuation area and holes in the gate structure to facilitate the device’s release in HF
vapor.

Newton’s second law is used to describe the motion of crab-leg NEM relays. The
law takes the form of Equation 2.1, where the first term describes the mass, the second
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W (µm) h (µm) gd (nm) g (nm) Ad (µm2) A (µm2) Vpi (V)

5 1 100 200 8 810 10.5

Table 2.2. Dimensions and Vpi for a 4T NEM relay in a 5 µm process used for an illustration of device
actuation in static analysis.

term describes the damping force, the third term describes the spring force Fspring, and
the right side of the equation is the force of electrostatic attraction Felec. meff is the
mass of the movable structure, keff is the spring constant of the movable structure, Q
is the quality factor, V is the gate to body voltage, g is the gap between the gate and
body, and z is the displacement of the movable structure defined as 0 in the off -state.

meff
d2z

dt2
+

√
keffmeff

Q

dz

dt
+ keffz =

εAV 2

2 (g − z)2
(2.1)

The pull-in voltage is the voltage at which the NEM relay switches from off to on.
This is determined through static analysis with derivations presented in [11].

Vpi =

√
8keffg3

27ε0A
(2.2)

Likewise, the pull-out voltage, also known as the release voltage, is determined as
the voltage at which the NEM relay switches from on to off. It is lower than Vpi.

Vpo = Vrl =

√
2 (keffgd − FA) (g − gd)2

ε0A
(2.3)

FA is the surface adhesion force which also lowers Vpo further. Since Vpo < Vpi, there
is a hysteresis gap in the transfer characteristic of a NEM relay. This gap is illustrated
in Chapter 3 and can be used to an advantage because it can be used to avoid crowbar
current by getting a device with the opposite body voltage to turn off before a device
connected to the same output turns on [12].

A 4T NEM relay with specific dimensions in Table 2.2 is used for a static analysis
to determine the behavior of its pull-in and pull-out. The device dimensions match a
device presented in [13].

The static analysis shown in Fig. 2.2 involves setting the velocity and acceleration
of the movable gate to zero to observe the remaining Fspring that Felec must overcome
for pull-in and also the Felec that Fspring must overcome for pull-out. The analysis
shows that pull-in occurs at V = 10.5 V indeed and that V must be reduced to 9.65 V
for pull-out.

The time needed for a single actuation is called a single mechanical delay, tmech [13].
tmech is also derived from Equation 2.1, and is given by the operating voltage VDD and
material parameters. The parameters α, β, and γ are set by Q.



Figure 2.2. Static analysis of the 4T NEM relay whose dimensions are in Table 2.2. The electrostatic
force Felec is plotted for different voltages V against the spring force Fspring for all displacements of
the movable gate, where z = 0 is the off -state. This analysis is with zero surface adhesion force.
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Figure 2.3. Seesaw NEM relay [8].

tmech ∼= α

√
meff

keff

(
gd
g0

)γ (VDD
Vpi
− χ

)−β
(2.4)

Typically tmech is longer than the electrical delay for signal propagation along a
wire, telec. This factor matters for the purpose of circuit design.

Additional device model details for the 4T NEM relay, including the expression
for keff and derivation of tmech, are given for an actual process and predictive scaled
process in [13]. The reliability of the contacts is also projected to improve with scaling
[14].

In addition to crab-leg NEM relays, another type of NEM relay is the seesaw. Fig.
2.3 illustrates the seesaw NEM relay which is demonstrated to work in [8]. It features
two sets of drain, source, and body terminals and a single gate terminal. The body
terminals are biased at opposite voltages with one at VDD and the other at VSS which
is typically ground. This way either the left side is actuated and the right side is
deactuated, or vice versa. This enables perfectly complementary switching because up
to one of the two pairs of channels is conducting at any given time [15, 16].

The switching energy for a generalized NEM relay is given in Equation 2.5, where
Ctotal is the total amount of capacitance on an output.

Esw =
1

2
CtotalV

2
DD (2.5)
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Logic

|VGB| > Vpi →
D connected to S

|VGB| < Vpo →
D not

connected to S

|VGB| > Vpi →
DL connected to SL

DR connected to SR

|VGB| < Vpo →
DL not connected to SL

DR not connected to SR

|VGBL
| > |VGBR

| and
|VGBL

| > Vpi →
DL connected to SL

DR not connected to SR

|VGBR
| > |VGBL

| and
|VGBR

| > Vpi →
DL not connected to SL

DR connected to SR

Table 2.3. Circuit symbols and logical descriptions for different flavors of NEM relays.

� 2.2 Logical Description of NEM Relays

Each type of NEM relay can be described more simply in terms of their on state and off
state [17]. The circuit symbol and logical description for NEM relays used in circuits
are shown in Table 2.3.

The logical descriptions in Table 2.3 show that 6T and seesaw NEM relays offer
twice the logical capability for the same area as a 4T NEM relay. Also, seesaw NEM
relays are ideal for perfectly complementary logic, because the two source terminals can
be connected as one output and then the gate will select either the left drain or right
drain terminal to pass through to the output.

� 2.3 Circuit Design with NEM Relays

NEM relays can be used to build digital logic as with CMOS, to the extent where NEM
relays can be used as drop-in replacements for transistors when biased appropriately.
The nMOS and pMOS equivalents for NEM relays are shown in Fig. 2.4.

The inverter and buffer are made using the appropriate drop-in replacements for
the CMOS inverter. Since NEM relays can pull the output down to VSS just as well as
up to VDD, both inverting and noninverting logic are possible with NEM relays, and
the CMOS inverter design can be used for a buffer as well. The inverter and buffer
are designed with 4T, 6T, and seesaw NEM relays in Fig. 2.5. The designs also show
how half the number of devices is required for circuits with 6T and seesaw NEM relays
compared to circuits with 4T NEM relays.

Although CMOS-style designs can be directly translated into NEM relay circuits,
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Figure 2.4. Equivalent nMOS and pMOS drop-in replacements with appropriately biased NEM relays.
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Figure 2.5. Inverter and buffer designed with NEM relays. The input is A, the inverter output is
A inv, and the buffer output is A buf. 4T, 6T, and seesaw NEM relay designs are shown.

it is wiser to design NEM relay circuits differently due to one critical disparity between
CMOS and NEM relays. That is, NEM relays have a mechanical delay tmech that is
significantly longer than the electrical delay telec. This means that NEM relay circuits
are better designed when all actuations take place simultaneously. Although CMOS
circuits are designed to have few transistors in series due to the quadratic increase in
Elmore delay per transistor in series, NEM relay circuits can tolerate long stacks of
relays in series because the total delay is still limited by the mechanical delay. The
phenomenon where telec is increased by increasing the NEM relay stack length until
telec ≥ tmech is illustrated in Fig. 2.6 [5].

In essence, NEM relays circuits are best designed with pass transistor techniques
which stack together many NEM relays in series. This means that NEM relay gates are
connected to circuit inputs only if the circuit is to operate within a single mechanical
delay, tmech. In cases where a pass-transistor design requires far too much area compared
to another design for the same circuit, it may be better to choose the other design and
suffer multiple tmech delays. However, more often than not, the number of NEM relays
required is lower than the number of transistors required for the equivalent CMOS
circuit. This is illustrated in the circuit in Fig. 2.7 which is built with CMOS and
NEM relays [1].

The fan-in and fan-out of logic gates is less important with NEM relays than it was
with CMOS. This is because the latency of a NEM relay depends much less critically
on fan-in and fan-out due to the dominance of mechanical delay. While CMOS circuits
limit the fan-in and fan-out of a circuit to four typically and introduce additional gate
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Figure 2.6. Electrical vs. mechanical delay for a long stack of NEM relays in current (1 µm) and
scaled (90 nm) NEM relay process technology, courtesy of H. Fariborzi [5].

Figure 2.7. The same circuit is built with CMOS and NEM relays. Less NEM relays are required
than transistors. Schematics are courtesy of F. Chen [1].

stages if there are more inputs, NEM relays circuits do not have such a limitation. This
makes it possible to use fewer NEM relays with a greater proportion of inputs on gates
or bodies compared to the number of transistors of the equivalent circuit in CMOS.

The feasibility of putting the output of one or more NEM relays on the gate of the
next stage of NEM relays in a circuit is called composability. The composability of
NEM relays circuits is experimentally verified in Fig. 2.8, where a NEM relay NOT
gate outputs with full swing to be a valid input to another NEM relay circuit [2]. The
hysteresis gap Vpi−Vpo also sets the minimum swing needed on VDS to have NEM relay
circuit composability. The swing on VGB can be much larger in magnitude because the
gate and body do not carry current, unlike the drain and source.
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Figure 2.8. Schematic and measured voltage transfer curve of a NEM relay NOT or XOR gate showing
hysteresis and full rail swing at the output. Data from [2].

� 2.4 Process Technology and Scaling

The process technologies considered in this work are described with model parameters
tabulated in [11]. This includes the 2nd generation 4T NEM relay process, scaled 6T
NEM relay process, predictive 90nm equivalent 4T NEM relay process, and predictive
90nm equivalent 6T NEM relay process. The model for scaling crab-leg NEM relay
devices is described in [13].

The need to develop circuit design infrastructure and novel NEM relay circuit de-
signs described in [18] is addressed with solutions described in Sections 5.3 and 6.3.

As the process technology advances, the same circuit designs of VLSI systems may
be implemented using the new process nodes. This warrants the exploration of floating-
point unit (FPU) design with NEM relays presented in this work.
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Chapter 3

Experiments on NEM Relay Chips

THE experimental demonstration of NEM relay circuit designs is carried out by
a collaborative team that handles the design, fabrication, and testing of NEM

relays chips. The team has students and researchers under faculty at MIT (Prof. V.
Stojanović), the University of California at Los Angeles (Prof. D. Marković), and the
University of California at Berkeley (Prof. T.-J. King Liu and Prof. E. Alon). The
team developed the complete computer-aided design (CAD) infrastructure described
in Sections 5.3 and 6.3 to produce the layout of test chips that are then fabricated.
The NEM relays process technology is CMOS-compatible, because the NEM relays are
fabricated in a back-end-of-line (BEOL), low-temperature process.

The first test chip, CLICKR1, helped the team determine better device dimensions
as well as other improvements for the next test chip, CLICKR2. CLICKR2 circuits were
built using the enhanced 4T NEM relay device shown in Table 2.1, and experiments on
the test chip made way for some key circuit demonstrations. Each successive test chip
featured a new generation of NEM relay device used for circuits. Table 3.1 shows the
scaling of the device cell for each test chip, including the overall device dimensions of

CLICKR2 CLICKR3 CLICKR4 CLICKR5 CLICKR6

Device:
120µm x 150µm
Gate overlap:
30µm x 30µm

Device:
20µm x 20µm
Gate overlap:
7µm x 7µm

Device:
63µm x 36µm
Gate overlap:
15µm x 15µm

Device:
64µm x 36µm
Gate overlap:
15µm x 15µm

Device:
50µm x 36µm
Gate overlap:
16µm x 25µm

Table 3.1. Device cell used for circuits on each test chip. Device images are taken from CAD
environment and are not to scale relative to each other. CLICKR3 is fabricated at Sematech and all
others are fabricated at UC Berkeley.
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Figure 3.1. On the top left is the full adder output courtesy of F. Chen, on the top right is the (7:3)
compressor output courtesy of H. Fariborzi, and on the bottom is a micrograph of the CLICKR2 test
chip containing the circuits.

the movable structure plus anchors and the approximate dimensions of the actuation
overlap area under the gate.

The full adder and (7:3) compressor for a multiplier were demonstrated on CLICKR2
and are reported in [2, 5]. The demonstration results are reproduced in Fig. 3.1. Other
circuits from this test chip, including a latch and DRAM are reported as well [19].

� 3.1 Scaled NEM Relays

The energy-efficiency benefits of NEM relay circuits are realized by scaling down the
device dimensions [13]. The scaling theory in [13] applies to the test chips that have
been successively scaled in each generation.
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Figure 3.2. From left to right are a high Vpi NEM relay and the CLICKR4 test chip containing those
devices.
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L Vpi Vpo Rexternal VDD RDS,relay
Low Vpi device 5.952 µm 7 V 5 V 50 kΩ 4 V 7 kΩ

High Vpi device 1.96 µm 13.1 V 12.4 V 50 kΩ 4 V 7 kΩ

Figure 3.3. From left to right: the transfer characteristic for a low Vpi NEM relay with long L, that
for a high Vpi NEM relay with short L, and a micrograph of the CLICKR3 test chip containing those
devices. Measured parameters for those devices are tabulated.

One way to check the energy-efficiency benefits of scaled NEM relays is to compare
their measured Vpi with that of larger generation NEM relays. CLICKR4 has larger
device dimensions and a measured Vpi is 12.5 V shown in Fig. 3.2. CLICKR3, which
was fabricated after CLICKR4, has a scaled down NEM relay and its measured Vpi is
7 V shown in Fig. 3.3. This is among the devices with the lowest measured pull-in
voltages.

The design of the low Vpi device in Fig. 3.3 is the design for the device used for all
circuits on CLICKR3. The high Vpi device in Fig. 3.3 is a unique device with short L for
experimenting purposes. It is better to fabricate long L devices because, as Equation
2.2 shows, Vpi ∝ L−

3
2 and is very sensitive to L if it is short, and as such the yield

is indeed better for long L devices. Since the long L devices are used in the circuits,
circuits such as the (7:3) compressor were working in the scaled process [11].
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� 3.2 Rudimentary Circuits and Tests

Circuits are tested by first characterizing individual devices in the circuit, as permitted
by the available pads, and then running gradually more complex circuit tests until
performing the test of the full circuit.

External resistors are needed especially on the nets connected to NEM relay drains
and sources, because they limit the current and prevent breaking by undesired heating
(contact welding) or oxide breakdown. External resistors may also be put on the nets
connected to gates and bodies to check if there is any parasitic leakage into the gate
or body nets, which ideally have no current but may be shorted to other nets due to
process issues. The external resistor values should be chosen based on the maximum
current permitted in the channel.

The older testing board had crossbar switches that let the user write a script on a
computer to connect each pin either to a supply voltage, to ground, or to another pin.
This allowed one to build circuits with two to five relays using the padded out individual
devices. However, since the crossbar switches on the testing board failed often, a new
testing board was developed that cannot connect pins to each other but could drive
or read a larger number of circuit pins without failing. The testing boards have spots
to place surface mount external resistors, though it is often better to choose axial-
lead resistors that would limit the current to an amount appropriate for the process
technology, and place those resistors in series with the power supplies.

While device dimensions were scaled down between CLICKR2 and CLICKR4, the
circuit complexity also grew. CLICKR4 is a test chip with a Picoblaze clone microcon-
troller circuit built with NEM relays. With the scaled down device size, most parts of
the microcontroller fit on the chip, except the instruction memory.

CLICKR4 also had individual devices for device and rudimentary circuits testing.
The transfer characteristics were measured and verified on these devices, and there
was some variation in Vpi from device to device. The NEM relays on CLICKR4 had a
tungsten (W) channel as in earlier test chips. It was discovered that the native oxide
that formed at the contacts was relatively thick enough to require a breakdown voltage
to permit conduction through the channel. The measured oxide breakdown VDS for W
NEM relays was typically 6 V.

W NEM relays could be oxide broken usually when there were up to two in series.
If there were more in series it would require a higher voltage that may destroy devices
instead. The microcontroller design was changed to provide access to internal nets via
oxide breaker devices that could be used to oxide break all NEM relays essential to the
microcontroller functionality. This design was spun on CLICKR5.

In addition to wafers with W NEM relays, additional wafers were built with ruthe-
nium (Ru) NEM relays. Ru was chosen because its oxide RuO2 is conductive. As it
turned out, Ru NEM relays did not need to be oxide broken, perhaps relieving the need
for oxide breaker devices. However, Ru NEM relays were more likely to break at currents
above 100 µA, requiring low VDS . CLICKR6 is a re-spin of CLICKR5 with additional
rudimentary circuits to test for better device characterization. The microcontroller on
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Figure 3.4. Microcontroller test chips, CLICKR5 (left) and CLICKR6 (right).

CLICKR5 and CLICKR6 are shown in Fig. 3.4.
An example of the oxide breaker devices introduced in CLICKR5 is shown on the

top of Fig. 3.5, where breaker devices provide access to oxide break all devices in a
flip-flop. CLICKR6 also has a corresponding padded-out flip-flop circuit shown on the
bottom of Fig. 3.5, and this circuit was tested. A buffer in the flip-flop master stage
is verified to work partially, in that it pulls down VDDSD

to the node MID when CLK2

is high and D is pulsed. The pull up path did not work because the device with VDD
on the body did not actuate. No oxide break VDS was necessary because the Ru NEM
relays do not require oxide breaking.

It makes sense to turn on the feedback device last, meaning it should be kept
deactuated until other parts of the circuit work.

Tests on more recent NEM relays chips made with ruthenium show that oxide
breaking can be avoided. External resistors of 100 kΩ limit currents to within 100 µA.

Although only small-scale circuits were demonstrated on the later test chips featur-
ing much larger scale circuits, there is still much hope for future generations of process
technology scaling and circuit integration. The Ru NEM relays do not require oxide
breaking and operate at VDS ≤ 3 V from the start, and have been observed to actu-
ate multiple times and have reasonable yield. The experiments described here helped
uncover process technology improvements, which are all the more necessary to realize
larger scale systems. Experience has proven many examples of working combinational
logic in NEM relays, motivating the design of the most complex arithmetic unit in a
computational system, the floating-point unit, with NEM relays.



Figure 3.5. Flip-flop with oxide breaker devices on CLICKR5, courtesy of C. C. Wang (top). Partial
buffer test on a CLICKR6 flip-flop (bottom). In the CLICKR6 buffer test, CLK2 is high and the pulse
on D is followed at the output MID.



Chapter 4

Floating-Point Numbers and the
Floating-Point Unit (FPU)

COMPUTERS represent numbers by assigning a meaning to the bits in a binary word.
Integers are often represented as two’s complement or sign-magnitude numbers.

When the length of a word cannot accommodate the range of real numbers that it
needs to represent, certain bits in the word can be used instead for an exponent that
defines the location of the binary point in a sign-magnitude number, similar to how in
scientific notation the exponent defines the location of the decimal point. Dedicating
bits for the exponent thereby increases the range of real numbers that a word can
represent.

A floating-point number is a representation of a real number in which the binary
point is not fixed [20]. Computations with floating-point numbers are done with a
floating-point unit (FPU).

� 4.1 Floating-Point Numbers

IEEE-754 is the standard for representing floating-point numbers with binary words.
The value represented by a floating-point number binary word containing the sign,
exponent, and fraction is (−1)sign×(1+fraction)×2exponent−bias. The specific assignment
of the bits in single-precision (32-bit) and double-precision (64-bit) IEEE-754 floating-
point numbers is listed in Table 4.1 [20]. The exponent is biased, meaning that an
offset called the bias is subtracted from the positive exponent. The bias is also listed in
Table 4.1. The significand, 1+fraction, adds 1 to the fraction because the significand is
designed to begin with a 1. That is, the significand has a 1 in the implied bit position
just above the most significant bit of the fraction [20].

There are exceptions to this representation [20]. In the case of representing the
number 0 as a floating-point number, the exponent and fraction are both all 0s. Infinity
and not-a-number (NaN) are defined with an exponent that is all 1s, and with a fraction
of all 0s for infinity or otherwise for NaN. Another exception is when the exponent is
all 0s but the fraction is nonzero, in which case the number is considered denormalized
and the significand has no implied 1 above the most significant bit of the fraction, in
order to permit the representation of numbers smaller than the smallest normalized
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Binary word type Bits bias sign exponent fraction

Single-precision floating-pt. 32 127 Bit 31 Bits 30 to 23 Bits 22 to 0

Double-precision floating-pt. 64 1023 Bit 63 Bits 62 to 52 Bits 51 to 0

Table 4.1. IEEE-754 standard for single-precision and double-precision floating-point numbers.

number, (1× 20−bias). When these exceptions do not apply, floating-point numbers are
normalized because of the implied 1 in the bit position above the most significant bit
of the fraction.

The improved ability to represent real numbers with floating-point numbers leads to
the design of the advanced hardware required to process numbers represented as such.

� 4.2 FPU Design

The floating-point unit (FPU) is a processor that performs computations on floating-
point numbers. The operations typically supported on floating-point numbers are ad-
dition, subtraction, multiplication, and division, though additional operations may be
available.

While FPU designs vary greatly, they share many common elements. The operands
and results of floating-point calculations are stored in registers, whose data may be
loaded from or stored to a separate memory. An FPU control unit is needed to provide
the correctly timed control of the registers depending on when they are being read or
written to. The FPU control unit also enables the arithmetic operation blocks based
on the operation to be performed on the operands. The FPU control unit may have
an internal instruction memory and data memory, or its instructions and data may be
hard-wired or taken from outside the FPU. Fig. 4.1 shows this generic design of an
FPU.

FPUs are often pipelined to use all available blocks at the same time and increase
throughput. However, the dominance of the mechanical delay in NEM relay circuit
latency makes it more important to focus on single-pipeline-stage FPUs for design with
NEM relays.

While modern computers use both single-precision and double-precision FPUs, the
important design trade-offs can be revealed by simply focusing on the single-precision
FPU for the purpose of design with NEM relays.

Common operations may be combined together to increase overall throughput. Fig.
4.1 shows a generic FPU and Fig. 4.2 shows an FPU with a combined multiply and
add.

FPU designs with CMOS have evolved based on separating pipeline stages based
on electrical delay of different paths that run in parallel, and this has enabled increases
in throughput [21]. FPU designs with NEM relays also demand a look at what can be
run in parallel to reach results faster, perhaps even in a pipelined fashion.

A closer look at the types of combinational logic used for all types of FPU operations
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Figure 4.1. Generic single-precision FPU design.
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Figure 4.2. Single-precision FPU design with a fused multiply-add.
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is needed to see what NEM relay logic could be run in parallel. First, the floating-point
add instruction logic contains logic for: adding, subtracting, multiplexing, shifting, and
rounding binary integers, and, critically, normalizing floating-point numbers [22]. The
normalization of floating-point numbers can be done slowly in iterations as in [20] but
is generally best done in a single iteration with a leading-zero detector or anticipator
[22]. Rounding requires an incrementer, which is a block that adds one plus the input.
Second, the floating-point multiply instruction has the same types of logic as for the
floating-point add instruction but also has a binary number multiplier. The multiplier
may be combinational, or in the case of a pipelined FPU it is often better to have a
pipelined multiplier. Third, the floating-point division instruction is considerably more
complex but includes the types of logic of the floating-point multiply instruction as
well as heavy use of adders, lookup tables (LUTs), and multiplexers [23]. Thus, there is
much in common between the types of combinational blocks used for each floating-point
operation.

Although a divider is not designed with NEM relays in this work, the blocks needed
to build a NEM relays divider are available. One possible implementation would be SRT
division, named after Sweeney, Robertson, and Tocher [23]. Such an implementation
could encode the binary decision diagram with multiplexers. The look-up tables (LUTs)
can be translated into multiplexer trees and optimized as described in Chapter 5.

Some of the combinational blocks needed for floating-point operations have already
been designed with NEM relays, while others are designed in this work. Among the
major NEM relay circuits that have been designed and demonstrated are the adder, sub-
tractor, multiplier, and various logic gates [2]. From this, it is observed that shifters,
leading-zero detectors, and leading-zero anticipators are the new blocks that are de-
signed in this work to realize an FPU designed with NEM relays.

� 4.3 Representing FPU Design with the Fused Multiply-Add Architecture

Given the variety of FPU architectures available, it is best to select one FPU archi-
tecture to design with NEM relays that can be compared apples-to-apples to a CMOS
implementation. This approach provides a well-defined, concrete implementation of an
FPU with NEM relays, including the new blocks that must be designed to realize any
FPU designed with NEM relays.

The ideal FPU architecture needs to represent the main types of operations per-
formed with floating-point numbers. The multiply-accumulate (MAC) operation com-
bines a multiplication and an addition into a single step:

out = A×B + C (4.1)

The MAC operation can be applied to floating-point numbers. In this form, it
represents the most common floating-point operation and offers higher accuracy and
performance because no rounding is done between separate multiply and add steps [24].

The fused multiply-add (FMA) is a multiply-accumulate design that has low latency
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because it aligns the addend significand of C in parallel with multiplication of the
significands of A and B [24]. After the addend is added to the multiplier result, the
result is normalized and rounded. This means that the FMA has parallel operations
from the start, and ends in a more serial normalization step. The FMA requires a large
leading-zero detector or anticipator and a large shifter for normalization. Further FMA
architectural details are outlined in [25].

The cascade multiply-add (CMA) performs the same operation as the FMA, but the
CMA combines multiplier partial product terms before alignment. Compared to the
FMA, the leading zero detector or anticipator and the shifter used for normalization in
the CMA are smaller because the CMA chooses which input to shift beforehand. An
analysis in CMOS shows that the energy per operation of an FMA and that of a CMA
in the same process are essentially the same, showing that various FPU circuit designs
for the same operation have only small differences in energy consumption [24].

The FMA and CMA are the most common architectures for the MAC operation,
and an analysis of the most energy-efficient designs for them in CMOS is available [24].
The FMA has been popular ever since it was used in an IBM PowerPC microprocessor
[26]. The highly parallel architecture of the FMA, the common use of the FMA in
FPUs, and the availability of a detailed energy analysis of the FMA designed with
CMOS provide motivation to design the FMA with NEM relays to represent the design
of an FPU with NEM relays.
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Chapter 5

The Fused Multiply-Add (FMA)
Designed with NEM Relays

HAVING chosen the fused multiply-add (FMA) architecture to represent the design
of the FPU with NEM relays, what follows is the design of the circuits to compose

the architecture. This chapter identifies how to optimize the design of NEM relay circuit
blocks to obtain high throughput while balancing the trade-offs between circuit area,
power consumption, and speed. In the process, several novel component circuit designs
are introduced.

� 5.1 Shortcomings of CMOS-Style Circuit Design

The typical choice of CMOS as the process technology for a circuit has driven design
decisions for the circuit as well. However, the CMOS design paradigm does not work
well for circuits with NEM relays. The pass-transistor circuit design paradigm for NEM
relays, described in Section 2.3, should be used to optimize circuits in the FMA.

Among the key drawbacks of applying the CMOS circuit design paradigm to design-
ing NEM relay circuits in the FMA are that the circuit delay and circuit area become
excessively large. The longer circuit delay stems from the many gate stages in CMOS-
style circuit designs, where each stage introduces a mechanical delay tmech into the
critical path from input to output. The larger circuit area stems from having to use
more NEM relays than are needed due to CMOS limitations on the number of inputs
to a device and to a single gate stage of a circuit. The greater area footprint and delay
time of such circuits also leads to higher energy consumption, adding yet another argu-
ment for applying the NEM relay circuit design paradigm to vastly reduce the circuit
delay, area, and energy per operation of the FMA designed with NEM relays.

To illustrate how crucial it is to follow the NEM relays design paradigm to optimize
the circuit design of the FMA, Fig. 5.1 shows the total number of mechanical delays in
the critical path of the FMA for when: (1) the design is translated directly from optimal
CMOS to NEM relays, (2) the design in (1) also has adders optimized for NEM relays,
(3) the design in (2) also has decoders and multiplexers optimized for NEM relays, (4)
the design in (3) also has the multiplier optimized for NEM relays, and (5) the FMA
design has all optimizations for NEM relays reported in this work.

39



40 CHAPTER 5. THE FUSED MULTIPLY-ADD (FMA) DESIGNED WITH NEM RELAYS

� �� �� �� �� �� �� �� 	�

�
��
�����������
��

�
���������������������
��

�
��������������� �����������
��

�
������!"���"��������������
��

�
�#���"��
��"��������������
�

��������	�
���
���
�����
���	��������
������
����

Figure 5.1. Reducing the number of mechanical delays for the fused multiply-add (FMA). Adder
(ADD) and multiplier (MUL) optimizations are recommended by [2, 5]. Additional decoder (DEC) and
multiplexer (MUX) optimizations are the beginning of further optimizations introduced in this work.

The optimal CMOS circuits that are translated to NEM relays without optimization
have a common maximum fan-in of four per gate stage, which is increased when opti-
mizing for NEM relays. Adders are implemented as Sklansky adders in optimal CMOS,
but they are better implemented as Manchester carry chain adders to be optimal for
NEM relays [1]. Multiplexers designed for CMOS have three gate stages, increasing by
one every time the number of inputs increases by a power of four due to the limited
fan-in of four in CMOS [27].

Circuits optimized for NEM relays are described in earlier literature. Adders and
multipliers have already been optimized for NEM relays in [2] and [5], respectively, and
these works outline the importance of applying the pass-transistor design paradigm to
optimizing other circuits. The optimized designs of other circuits are fully described in
this work, including decoders, special cases of multiplexers, and, especially, the leading
zero detector (LZD) and leading zero anticipator (LZA) blocks. The optimal design of
single-tmech NEM relay logic gates and adders are shown in Fig. 5.2.

� 5.2 Implementing the FMA Architecture in Hardware

Even with the architectural description of the FMA available in [24], it must be brought
to a behavioral hardware description for a hardware implementation. The behavioral
description would then go through a standard synthesis, place, and route flow to be
turned into a chip layout that can be fabricated. Fortunately, the team that performed
the energy analysis on the FMA also provided the tool used to turn the system-level
description into a behavioral hardware description [24].

The tool, FPGen, is an FPU generator built to explore the design space of FPU
architectures, providing insights on the energy efficiency and throughput for a number of
parameterizable designs [28]. This FPU generator is based on the Genesis2 framework,
a tool that enables system designers to generate the hardware description for a set of
given parameters and desired trade-off optimizations [29].

The behavioral Verilog of the FMA shown in this work was generated by FPGen,
with appropriate parameters set to have a pipeline depth of 0 for a combinational
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Figure 5.2. AND gate, OR gate, full adder, and 32-bit adder designed with 6T and seesaw NEM
relays. All circuits produce their result within a single mechanical delay.
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FMA and bitwidths set to that of the IEEE-754 single-precision floating-point number
standard. The justification for these parameter choices is in Section 4.2. The FMA
architecture, composed of circuits designed with CMOS, is shown in Fig. 5.3.

The generated design was verified in a behavioral Verilog simulation with several
test cases and corner cases. VCS is the RTL simulator chosen for that verification.

A higher level view of the circuit blocks in Fig. 5.3 reveals their architectural
functionality. In the first section “Multiply A×B, Prepare Exponent, and Align C,”
the significands a[22:0] and b[22:0] are multiplied in the multiplier on the left. In
parallel with this multiplication is the alignment of the addend significand c[22:0],
which is right shifted by an amount determined by the anticipated result exponent
a[30:23]+b[30:23]+offset−c[30:23].

In the second section “Add and Normalize,” the aligned significand c[22:0] is
added to the remaining partial products of the multiplier to get result preshift. The
leading-zero anticipator (LZA) has anticipation logic that takes the intermediate terms
from the added multiplier partial products and the “Final C Logic” which operates on
the aligned significand c[22:0]. This anticipation logic provides the binary number
whose leading zero position is determined by the leading-zero detector (LZD). The
LZD tells the left shifter how much to shift result preshift, thereby performing
normalization. Then the final sign, significand, and exponent are determined.

In the final section “Select Output,” an incremented version of the exponent and
significand are available, and a multiplexer chooses whether the final result is (1) left
untouched, (2) if the incremented result is chosen instead for rounding, or (3) if a special
constant such as infinity or not-a-number (NaN) is the appropriate result. Hence the
“Select Output” section performs rounding. Put together, the circuits composing the
FMA follow the architecture described in [25].

Considering the sheer number of circuit blocks in the FMA, NEM relay circuit blocks
cannot be written purely manually. The infrastructure exists to turn a behavioral hard-
ware description into a structural netlist of a NEM relay circuit, and this is discussed
next.

� 5.3 NEM Relays CAD Infrastructure for Synthesis

A set of computer-aided design (CAD) infrastructure has been maintained by the col-
laborative team that taped out the test chips shown in Chapter 3. The infrastructure
includes the electronic design automation (EDA) to synthesize structural netlists of
NEM relay circuits from a behavioral hardware description, place and route the struc-
tural netlists onto a chip layout with pins, simulate NEM relay circuits in an analog
environment based on physical Verilog-A models or in a digital environment based on
functional Verilog models, perform design rule checks (DRC) on a layout, perform a
layout versus schematic (LVS) check, and more. This section focuses more on synthesis,
while Section 6.3 covers other relevant aspects.

The NEM relay synthesis flow was developed by Kevin Dwan [30] and Cheng C.
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Figure 5.3. Fused multiply-add (FMA) designed with CMOS.
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Wang at the University of California at Los Angeles. It involves:

1. Writing behavioral Verilog, which is usually a register-transfer level (RTL) hard-
ware design abstraction.

2. Translating that into a gate-level netlist with a commercial tool, Cadence RTL
Compiler, using a Liberty file that provides the Verilog primitives for logical func-
tions with NEM relays.

3. Using the custom MATLAB script written by Cheng C. Wang that builds the
full and then pruned binary decision diagram (BDD) and generates a NEM relays
structural Verilog netlist based on that. 6T or seesaw NEM relays may be chosen
for the circuit. The circuit made maintains a single mechanical delay operation.

Many cells that run within a single mechanical delay were synthesized by the afore-
mentioned synthesis tool. The tool is designed to synthesize circuits that take only
one mechanical delay because there is only one gate stage by design. The synthesis
script may introduce dummy devices into the input rail to output path to ensure equal
electrical delay between any input and output, though these devices may be safely
removed.

One important consideration made by the synthesis tool is that it only connects
inputs to the gates of NEM relays, it only connects outputs to the sources of NEM
relays, and it only connects input rails to the drains of NEM relays and power rails to
the bodies of NEM relays. This way, the logical path from input to output always goes
from drain to source, and the state of whether a NEM relay is open or short circuit is
determined by the gate and body input signals of a NEM relay.

Since the synthesis tool constructs a BDD to represent circuit functionality, the
time taken complete synthesis depends exponentially on the number of inputs. This
means that the tool will finish in a reasonable amount of time only when there are
a small number of inputs. This makes it worthwhile to identify replicated blocks to
synthesize only what is replicated, or otherwise manually design circuits when there is
a clear pass-transistor design for it. On a side note, another synthesis tool for NEM
relays circuits was released very recently and overcomes some prior issues [17].

After synthesis, place and route are performed. A process design kit (PDK) is made
for each test chip’s process technology, and it includes the complete logical, physical,
layout, and schematic descriptions for NEM relay unit cells as well as the layer maps,
LEF, and DRC/LVS decks. For place and route, the LEF and Liberty file are needed
for layout information and timing information, respectively. The flow developed works
with Cadence Encounter to perform place and route with a given process and export
GDS for the final circuit layout. Although the commercial tools are timing-driven for
CMOS designs, their intermediate results are intercepted to design for NEM relays.

Among the circuits designed for the FMA with NEM relays, some were synthesized
while others were manually written as structural Verilog netlists due to the availability
of a design or due to impractical synthesis times for circuits with a large number of
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No. of input bits to pick from No. of 2:1 MUX No. of dual 2:1 MUX

2 1 1

4 3 2

8 7 4

16 15 8

32 31 16

n n− 1 dn2 e

Table 5.1. Multiplexer sizes.

inputs. All cells were taken through the place and route flow described in Chapter 6.
The manually optimized circuits for the FMA are described in the following sections.

� 5.4 Decoders and Multiplexers with NEM Relays

Decoders and multiplexers are heavily used in the FMA, such as the decoders in the
Exception Logic; these circuits are the first to be optimized for design with NEM relays.

A decoder has one output port for every combination of binary values on its input
ports. Only one of those ports is active, and that port is chosen by the input code.

Decoders are designed with NEM relays as illustrated in Fig. 5.4. The port con-
sidered active receives the input rail of choice for the “hot” signal, which is typically
VDD but may be VSS instead. The propagate path passes through the “hot” signal
only if the input matches the input code unique to that path. If the input does not
match the input code, a kill signal is sent with the opposite of the “hot” signal rail,
which is typically VSS . For a decoder that has n output bits, the input is at least log2 n
bits wide. For each output bit, there is a single decoder output with NEM relay body
voltages defined by the input code that makes the output active.

This style of decoder circuit uses the minimum number of NEM relays needed to
obtain a result within a single mechanical delay.

Multiplexers are designed with NEM relays as shown in Fig. 5.5. The seesaw NEM
relay on the right of this figure has its sources connected together and different inputs
on its drains, making it essentially a 2:1 multiplexer because the signal on the gate
chooses which input to pass through to the output on the sources. The 2:1 multiplexer
made of 6T NEM relays is actually a dual multiplexer, because it uses the same two
devices to multiplex two sets of inputs using the same input on the gates.

Larger multiplexers are designed by cascading 2:1 multiplexers as shown in Fig.
5.6. This forms a tree-like structure. Table 5.1 gives the sizes of larger multiplexers.
The number of 2:1 multiplexers corresponds to the seesaw NEM relay count and the
number of dual 2:1 multiplexers times two is the 6T NEM relay count. The FMA
contains many multiplexers in its behavioral hardware description, making it critical
to know how many cascaded 2:1 multiplexers are needed for in the FMA circuit blocks
designed with NEM relays.
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Figure 5.4. Generic optimal design of a decoder with NEM relays.
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Figure 5.5. 2:1 multiplexers designed with 4T, 6T, and seesaw NEM relays. The 6T NEM relay
implementation is a dual 2:1 multiplexer.
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Frequently, many of the inputs to a multiplexer may be known to be constant values.
In this case, it is best to prune NEM relay leaves from the multiplexer tree where the
leaf would always output the same constant value to the stage above it. It turns out that
the FMA has several circuit blocks where a large multiplexer is used and it is known
ahead of time that certain inputs are constant. An example is the 8:1 MUX which
selects the output of the FMA, where a number of the inputs are tied to a constant
NaN or infinity signal. In such cases, not only should the 2:1 MUX sub-blocks whose
output is already known be removed, but these sub-blocks also need to be removed so
that they are not included in a switching power estimate because their activity factors
are zero. The 2:1 MUX sub-blocks are referred to as tree leaves.

Let c be the number of adjacent constant inputs to multiplexers starting from the
most significant or least significant input bit of a large multiplexer. It is required that
c < n in an n:1 multiplexer.

The number of 2:1 multiplexers that can be removed in a seesaw NEM relay n:1
multiplexer design is:

2b
c
2c − 1 (5.1)

The number of dual 2:1 multiplexers that can be removed in a 6T NEM relay n:1
multiplexer design is:

dlog2 ce∑
i=2

⌊ c
2i

⌋
(5.2)

Although these removals do not apply to a general multiplexer, they are handy for
the special cases in the FMA when certain input signals are known to be unchanging.

� 5.5 Shifters with NEM Relays

Shifter circuits are implemented with multiplexers, as shown in Fig. 5.8. Such shifters
are called barrel shifters. This makes it crucial to apply the same type of optimization
introduced for multiplexers to shifters. The large datapath width in the FMA also
requires large shifters, meaning that shifters in the FMA consume a large number of
devices nominally unless they are optimized.

The left and right shifter circuits, implemented with barrel shifters, need only per-
form logical shifts. Thus no additional circuits are devised to perform arithmetic shifts.

As was done with multiplexers in Section 5.4, barrel shifters can also have certain
multiplexer leaves pruned. Again, this is necessary to get an accurate power estimate
because such multiplexer leaves whose outputs are constant have an activity factor of
zero.

The shifters in the FMA often have constant 0 bits in the input binary number
that is shifted, starting from the most or least significant bit. In the case of shifters
whose input bitwidth is between powers of two, that means the binary multiplexer
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Figure 5.6. 8:1 multiplexers designed with 4T, 6T, and seesaw NEM relays. An 8:1 multiplexer
comprises 2:1 multiplexers.
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Figure 5.7. The 8:1 multiplexer of Fig. 5.6 may have a constant signal (e.g. 0 in this figure) on some
inputs. For this case, the multiplexer tree is pruned to use the least number of NEM relays.
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Figure 5.8. Barrel shifters used for right shift (top) and left shift (bottom) operations.

tree is bound to have leaves which are set as 0. This means that, in addition to the
multiplexer inputs that are set at constant 0 for the filler bits of shifter outputs, there
are also inputs that are also set to constant 0 due to the extra tree level needed for a
shifter input bitwidth that is not an exact power of two.

The following formulation shows the number of 2:1 multiplexers with activity factors
of zero, due to constant inputs, that can be removed from such shifters. Define y as the
difference between the shifter binary multiplexer tree width and shifter input bitwidth.
If there is an extra tree level, then y > 0 and the additional 2:1 multiplexer leaves may
be removed.

y = 2dlog2 ne − 2log2 n = 2dlog2 ne − n (5.3)

Both types of leaves in the multiplexer trees with constant inputs are removed,
without assuming that those sets of constant inputs are adjacent to each other. It
turns out that the same number of leaves can be pruned for left shifters and right
shifters.

The number of 2:1 multiplexers that can be removed from a seesaw NEM relay
barrel shifter is:
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99-bit shifter 77-bit shifter

# Dual 2:1 MUX per output before pruning 64 64

# Dual 2:1 MUX total in shifter before pruning 6336 4928

# Dual 2:1 MUX removed for extra tree levels 154 536

# Dual 2:1 MUX removed for filler bits 2138 2138

# Dual 2:1 MUX total in optimized shifter 4044 2254

Table 5.2. Reduction of the number of dual 2:1 multiplexers that compose the 6T NEM relay barrel
shifters in the FMA, based on inputs known to be constant. Each dual 2:1 MUX has 2 6T NEM relays.

y∑
i=1

(
2b

i
2c − 1

)
+
n−1∑
i=1

(
2b

i
2c − 1

)
(5.4)

The number of dual 2:1 multiplexers that can be removed from a 6T NEM relay
barrel shifter is:

y∑
i=1

dlog2 ie∑
j=2

⌊
i

2j

⌋+
n−1∑
i=1

dlog2 ie∑
j=2

⌊
i

2j

⌋ (5.5)

Table 5.2 shows the reductions that were applied to the 99-input barrel shifter and
77-input barrel shifter in the FMA design.

� 5.6 The Leading Zero Detector (LZD) Optimized for NEM Relays

The leading zero detector (LZD) is in the critical path of the FMA, making it crucial to
reduce its number of mechanical delays. An LZD takes a binary number on the input
b and provides an output p which encodes the position of the first 1 bit from the most
significant bit of b in binary. Only if b is all 0s will the output valid bit v be 0.

The behavioral Verilog for the 76-bit LZD used in the FMA, when synthesized for
CMOS, yields 13 gate stages, which translates to 13 mechanical delays. The alternative
to this CMOS-style circuit design is to identify ways to reduce gate stages to significantly
reduce the number of mechanical delays.

One difficulty with creating a single-tmech LZD is that the 76-bit LZD has 76 inputs,
which is far more than what can be synthesized in a reasonable amount of time with
NEM relays. Different size LZDs were synthesized starting with the smallest 2-bit LZD,
and synthesis results are reported in Fig. 5.9.

It turns out that a custom RTL description of the LZDs yielded a smaller, more
efficient synthesized design compared to that synthesized with the available RTL de-
scription in FPGen. The custom behavioral description is called the Tree Design in
Fig. 5.9 and the Tree Design is illustrated in Fig. 5.10.

LZDs may be combined to form larger LZDs [31]. Fig. 5.11 shows how an n-bit LZD
is created with two n

2 -bit LZDs and additional logic. This means that the largest single-
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Modular Design
Using
2-bit
LZDs

Using
4-bit
LZDs

Using
8-bit
LZDs

Using
16-bit
LZDs

2-bit LZD 1 N/A N/A N/A

4-bit LZD 2 1 N/A N/A

8-bit LZD 3 2 1 N/A

16-bit LZD 4 3 2 1

32-bit LZD 5 4 3 2

64-bit LZD 6 5 4 3

76-bit LZD 7 6 5 4

128-bit LZD 7 6 5 4

Table 5.3. Number of mechanical delays, tmech, when using single tmech LZDs and combining them
to form larger LZDs with the multiplexing technique presented in [31].
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Figure 5.9. Complexity of LZDs. These are synthesized LZDs before pruning unnecessary relays.

tmech LZD that can be synthesized can be used to build a larger LZD of the desired
size using the design strategy in Fig. 5.11. Table 5.3 shows the number of mechanical
delays for LZDs constructed by combining various smaller size single-tmech synthesized
LZDs. Although the multiplexer and OR gate in Fig. 5.11 could be pass-transistor
designs, the NOT gate and select bit of the multiplexers must have an input on a gate
[32]. This explains the single tmech, labeled in Fig. 5.11, which is accrued when two
LZDs are combined for a larger LZD.

LZDs made through synthesis also have devices that are not used that can be pruned
from the tree schematic. For the various single-tmech LZDs synthesized into seesaw NEM
relay circuits, the number of relays in the circuit before and after pruning is shown in
Table 5.4.
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Figure 5.10. Tree design used as the RTL for area-efficient LZDs. This particular design is for an
LZD with 8 inputs.

2-bit LZD 4-bit LZD 8-bit LZD 16-bit LZD

Before pruning 4 13 40 111

After pruning 3 8 22 58

Table 5.4. Number of seesaw NEM relays before and after pruning unnecessary seesaw NEM relays
from the synthesized leading zero detectors (LZDs). The schematics for the pruned LZDs are in Figs.
5.12, 5.13, 5.15, and 5.16.
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Figure 5.11. Generic modular design of an LZD with n input bits using two LZDs with half the
number of input bits [31].
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Figure 5.12. LZD with 2 input bits designed with seesaw NEM relays. The circuit runs in one
mechanical delay. This design is optimized to use the lowest number of devices.

The schematics for the single-tmech LZDs with 6T and seesaw NEM relays are shown
in Figs. 5.12, 5.13, 5.14, 5.15, and 5.16. The schematics with seesaw NEM relays are
optimized to use the lowest number of devices, and the complementary nature of the
devices gives insight on the circuit function and general design of LZDs. First, it is
observed that the output v is always the result of an OR operation on all bits of the
LZD input, b. This OR logic tree is separate from the logic for the p outputs. Second,
the logic tree for p[0] includes all b bits and has alternating paths to the input supply
rails, skipping NEM relays with even or odd bits of b on the gate. Third, the most
significant bit of p depends on only the upper half of bits in b. Fourth, the middle bits of
p also have alternating paths like p[0] but they skip a different number of NEM relays.
By seeing these patterns, only certain middle bits of output p need to be synthesized
for even higher-bit LZDs because the other output logic trees are already understood.

The LZD circuits designed and shown in this work can also be used as pass-transistor
implementations of the same circuit in CMOS.
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Figure 5.13. LZD with 4 input bits designed with seesaw NEM relays. The circuit runs in one
mechanical delay. This design is optimized to use the lowest number of devices.
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Figure 5.14. LZD with 8 input bits designed with 6T NEM relays. The circuit runs in one mechanical
delay. This circuit design is synthesized and dummy NEM relays introduced are not removed from this
schematic, making it less intuitive.
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Figure 5.15. LZD with 8 input bits designed with seesaw NEM relays. The circuit runs in one
mechanical delay. This design is optimized to use the lowest number of devices, and it provides the
intuition for higher-bit single-tmech LZD designs.



����

����

����

����

����

����

��	�

�����

���
�

����

�����

�����

�����

�����

��
�

�����

�����

����

��
�

����

��
�

�����

����

��
�

����

����

����

��
�

����

����

��
�

����

����

�

����

��	�

����

�����

�����

���
�

�����

��	�

����

�����

����

�����

�����

���
�

�����

��
�

����

������

��	�

����

�����

�����

����

��
�

����

��	�

����

�����

�����

�����

������

Figure 5.16. LZD with 16 input bits designed with seesaw NEM relays. The circuit runs in one me-
chanical delay. This design is optimized to use the lowest number of devices, and it provides significant
intuition for higher-bit single-tmech LZD designs.
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� 5.7 The Leading Zero Anticipator (LZA) Optimized for NEM Relays

The FMA generated by FPGen uses a leading zero anticipator (LZA) for the FMA. An
LZA contains Anticipation Logic and an LZD. The Anticipation Logic developed in this
work is based on FPGen RTL but is custom built with NEM relays pass-transistor style
logic [24]. The Anticipation Logic operates on the propagate, generate, and kill terms of
the adder that feeds into it and the Final C values that also feed into it. It is observed
that the Anticipation Logic is bitwise, meaning that the same logic for a bit i can be
applied to all bits. Boolean logic symbols are used to describe the Anticipation Logic
block of the LZA for each bit i. The Anticipation Logic takes propagate (P ), generate
(G), and kill (K) signals used to get the sum of A and B, and combines that information
with the decoded ExpBase signal, known as max shift dec or M , to produce an edge
vector whose leading zero is detected by the LZD following the Anticipation Logic.

Pi = Ai ⊕Bi (5.6)

Gi = AiBi (5.7)

Ki = AiBi (5.8)

The unit bitwise logical operation of the Anticipation Logic is:

Vi = (Pi−2 ⊕Gi−1 ⊕Gi) +Mi (5.9)

This bitwise logical description is synthesized as a single-tmech 6T NEM relays circuit
and replicated for each bit going into the LZA for the purpose of FMA power estimation.

� 5.8 Circuit Topology Analysis for Area, Energy, and Delay Trade-offs

Although there is a relatively clear-cut process to design of the adder, decoder, mul-
tiplexer, shifter, and other logical circuit blocks in the FMA, some knobs remain to
pick a design based on the desired trade-offs. Knobs of interest are the multiplier and
leading zero detector, which come in several designs, and the optimal choice to make
for each depends on the desired trade-off.

An adder of any bit-width is designed with a Manchester carry chain, which provides
a result within a single mechanical delay [2]. This design is already optimal, and thus
it is left as is.

Table 5.5 lists the number of 6T NEM relays for each single-tmech synthesized LZD.
The process for determining the energy per operation is described in Chapter 6, but
since the 16-bit LZD is the chosen design here onwards, the Eop for the other contending
single-tmech LZD circuits is shown in Table 5.5.

Considering circuit topology alone, the energy consumption is directly proportional
to the number of NEM relays in the circuit. Large LZDs that are designed for a single
tmech tend to have more NEM relays than the same-input-size LZD made using the
technique in Fig. 5.11 made of two LZDs of half the input bitwidth. Specifically the
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LZD Circuit 6T NEM Relays Eop (aJ)

2-bit LZD (FPGen Design) 6 32.1

2-bit LZD (Tree Design) 6 18.4

4-bit LZD (FPGen Design) 20 72.2

4-bit LZD (Tree Design) 16 38.7

8-bit LZD (FPGen Design) 54 151.2

8-bit LZD (Tree Design) 44 50.1

16-bit LZD (FPGen Design) 142 129.6

16-bit LZD (Tree Design) 116 44.3

Table 5.5. Single-tmech LZDs designed with 6T NEM relays, any of which may be used in a NEM
relays FPU depending on the desired trade-off. These designs were not pruned. Eop is based on the
analysis in Chapter 6, and is shown here because only the 16-bit LZD (Tree Design) is used in the final
optimized FMA in Table 6.3.

former design has 1.4 times the number of relays of the latter design, not including the
MUX, NOT, and OR gate in the latter design. This suggests that the higher throughput
enabled by the former design is traded off with the lower area and energy of the latter
design. This trend applies to the LZDs that are synthesized as well as to the manually
optimized LZDs that have unnecessary NEM relays pruned off in Table 5.4. In this
table of optimal LZD sizes, the minimum number of NEM relays also increases more
than twofold for an LZD that has twice as many inputs.

The design trade-offs for the LZD are reminiscent of the design trade-offs uncovered
for the multiplier. A multiplier with large compressors is used in the FMA design,
providing the shortest number of mechanical delays out of designs available. This
choice comes with the penalty of additional NEM relays in the circuit compared to a
multiplier built of smaller (3:2) compressors, which has 60% of the number of NEM
relays compared to the design with large compressors [5]. Hence, the design trade-off
between a higher delay, smaller-area multiplier with (3:2) compressors and a shorter
delay, large-area multiplier with large compressors, is much like the design trade-off
between higher-delay, smaller area LZDs and lower-delay, large-area LZDs.

The LZD could be designed to yield a result within a single mechanical delay, and
the framework to do so has been laid out in this work. However, doing so saves only
three tmech in the whole FMA, which is only a 19% improvement over the FMA design
presented here.

6T and seesaw NEM relays are used to design the FMA circuit. One topological note
is that, for the same LZD design, the ratio of the number of 6T NEM relays for the LZD
to the number of seesaw NEM relays for the LZD starts at 1.5 for the 2-input LZD, and
settles at 1.1 as the LZDs get larger. This means that 6T NEM relay circuits becomes
just as area efficient as seesaw NEM relay circuits when the BDD for the function is
large. Reducing the number of NEM relays means that the amount of switching power
is also reduced, unless the relays removed already had a zero activity factor.

The completed design of the FMA with NEM relays is shown in Fig. 5.17.
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Figure 5.17. Fused multiply-add (FMA) designed with NEM relays.



Chapter 6

Energy and Performance Analysis
and Comparison with CMOS

THE energy per operation, performance, and area trade-offs for the design of the
FMA with NEM relays are considered in this chapter. A scalable technique to

analyze these variables in large systems of NEM relay circuits is presented.

� 6.1 Basis for Analysis

The power consumption of NEM relay circuits is determined exclusively based on their
dynamic energy, Edynamic. This is the same as switching energy, Esw, and is given for
a single circuit node by the voltage swing and the capacitance driven.

Esw =
1

2
CV 2

DD (6.1)

With the additional knowledge of the activity factor α on the node and the frequency
at which the inputs are toggling, f , one determines the dynamic power of this switching
event:

Pdynamic = αfEsw (6.2)

Pdynamic
f

= αEsw (6.3)

The total energy per operation, Eop, is taken by combining the switching energy
information for each node i:

Eop =
∑
i

αiEsw (6.4)

Pdynamic,total =
∑
i

αifEsw (6.5)

Eop =
Pdynamic,total

f
(6.6)

61
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Parameter Present Scaled 6T Relay Predictive 90nm 6T Relay

Aov (µm2) 45 1.54

g0 (nm) 100 10

gd (nm) 50 5

Ron (kΩ) 2-3.5 2-3

Cgb (fF) 7.2 (on), 3.8 (off) 2.3 (on), 1.46 (off)

Cgc (fF) 16 0.4

Cgs/d (fF) 0.32 (on), 0.17 (off) 0.3 (on), 0.18 (off)

Vpi, Vpo (V) 8, 6 0.04, 0.03

tmech (µs)
0.2 (VDD ∼= 2Vpi),
1 (VDD ∼= 1.2Vpi)

0.02 (VDD ∼= 2Vpi),
0.08 (VDD ∼= 1.2Vpi)

Table 6.1. Device model parameters for current and predicted NEM relay process technology. Data
from [11].

Note that the designer may choose to separate input rails to the drains, VDDSD
and

VSSSD
, from the input rails to the gates and bodies, VDD and VSS . In this case, the

aforementioned energy per operation analysis holds except now the switching energy
becomes:

Esw =
1

2
C (VDD − VSS) (VDDSD

− VSSSD
) (6.7)

The analysis in this work does not separate the drain input rails from the gate and
body input rails, so Equation 6.1 applies throughout this work. However, Equation 6.7
offers an opportunity to further lower energy per operation, because (VDDSD

− VSSSD
)

is limited by the hysteresis gap (Vpi − Vpo).

� 6.2 Process Technology

The present state-of-the-art working process technology is the Scaled 6T process. To
understand the benefits of energy-efficient computing when the process is scaled further,
the 90nm process technology node equivalent to that in CMOS is predicted. The device
model parameters for both of these processes are reproduced in Table 6.1 and completely
described in [11].

The capacitance seen at the gate of a NEM relay is given by the NEM relay capac-
itances between the gate and other effective grounds. This same capacitance can be
used to approximate the capacitance seen by the output of a NEM relay circuit, Cout,
which is assumed to drive the input of another NEM relay.

Cout = Cgb + Cgc + 2Cgs/d (6.8)
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� 6.3 NEM Relays CAD Infrastructure for Verification and Analysis

Once structural Verilog netlists for NEM relay circuits are made following the discussion
in Section 5.3, they can be functionally verified in a logical simulation, verified in a
physical simulation, or placed and routed to be fabricated on a test chip.

A scan simulation flow is developed to simulate structural Verilog netlists of scan
chains with the Verilog-A device models. The Verilog-A model was written by Fred
Chen and Hei Kam [1], and was significantly improved by Matthew Spencer. This
captures the analog device behavior to predict scan chain behavior. The flow developed
automates the choice of either Verilog or SPICE netlist simulation with HSPICE or
Spectre with the appropriate Verilog-A model for any duty cycle or input pattern.
Structural Verilog netlists are automatically converted to SPICE netlists if needed.
This flow was used to verify the scan chain on a microcontroller on a taped out NEM
relays chip.

This scan simulated flow is repurposed for the general purpose of simulating any
circuit with the MEMS Verilog-A device model, stimulating all possible input combina-
tions. This flow is used for getting the total power consumption of various FMA circuit
blocks designed with NEM relays.

The place and route process may be used to estimate the power consumption of
the circuit. Based on values in the Liberty file, the place and route flow in Cadence
Encounter can also give an estimate of the leakage power, switching power, and internal
power. Since there is no leakage power with NEM relays, and internal power is just a
way to track power back to certain cells, only switching power is of interest. Switching
power is calculated by Equation 6.2. The place and route flow was heavily modified to
get a switching power estimate for every circuit block in the FMA. Interconnects are
described in Section 6.6. The place and route switching power estimation technique can
be scaled to the overall circuit complexity of the FMA, and the process technology for
the estimation can be scaled as well, making power estimation preferred over physical
Verilog-A-based simulations.

� 6.4 Energy per Operation for Each Subcircuit

A functional Verilog simulation is necessary to perform a switching power estimate. In
this simulation, every possible input combination is stimulated in order from all 0 to
all 1, stepping at a frequency f . The functional simulations use a logical model of the
6T NEM relay device, which is represented as a tri-state buffer that is enabled when
the gate signal is opposite the body signal. The toggle activity and waveforms on all
nodes is recorded in a VCD file, which is then used by the power estimation tool to
get α and f . The switching power estimation reports include the transition density,
T = αf . The frequency chosen for all circuit functional simulations is f = 100 kHz.
Note that Eop does not depend on f because f cancels out; nevertheless, f is chosen
as a reasonable NEM relay circuit frequency. Based on the transition density reported
for each functional Verilog simulation, α was calculated and verified to be correct for
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Figure 6.1. Comparison of the switching power estimation and the circuit power consumption from
a physical-model-based simulation for the same circuits designed in the present scaled 6T NEM relay
process. Both the functional Verilog simulation and Verilog-A-based simulation use f = 100 kHz. This
shows that switching power estimation is a reasonable approximation in most cases.

circuits that could be manually verified. The functional Verilog simulations also verified
the correct operation of the circuits designed.

Circuit switching power estimates also require device pin capacitances. The pin
capacitances chosen for the Liberty file are Cs = Cout, Cg = Cout, Cb = 0, and Cd =
Cgs/d, where Cout is given by Equation 6.8. Cs matters the most because the sources are
the output nets and Cs is used to determine the energy when an output switches. The
underlying assumption is that each NEM relay output drives another NEM relay. This
is a good approximation of the widely varying output capacitances of each NEM relay.
To validate this claim, switching power estimates for various circuits were compared
against the power consumption reported in a physical simulation of the same circuits
based on the 6T NEM relay Verilog-A model.

The Verilog-A-based physical simulation is run based on the flow created to stim-
ulate all input combinations at a given frequency. The power consumption of the
simulated circuit, where all input combinations are stimulated in the simulation within
a total time tsim, is:

Ptotal =

∫ tsim
0 IDDdt

tsim
VDD (6.9)

Interconnect power is not included in the physical simulation because it only simu-
lates devices, and glitch power is included in the physical simulation.

A comparison of the pre-route switching power estimate with Equation 6.5 and
physically simulated circuit power consumption given by Equation 6.9 is shown for
various circuits in Fig. 6.1. The Liberty file for the power estimation and Verilog-A
model for the physical simulation are for the present scaled 6T relay process in Table
6.1. The same f = 100 kHz is used in both the functional Verilog simulation and



Sec. 6.5. FMA Analysis and Comparison between CMOS and NEM Relays 65

the Verilog-A-based physical simulation. Results show a close match except when the
transition density is very low, allowing physical glitch power to dominate as in the case
of the 16-bit LZD designs.

� 6.5 FMA Analysis and Comparison between CMOS and NEM Relays

The critical path in the final optimized FMA design leads to a total of 16 mechanical
delays for the FMA operation. In the chosen predictive 90nm 6T NEM relays technology
node, the mechanical delay set by the overdrive voltage is 0.08 µs for VDD=1.2Vpi. The
total time to complete one FMA operation is on the order of 1 µs.

The FMA energy vs. performance trade-off is shown in Fig. 6.2 for CMOS and NEM
relays. The energy per floating-point (FP) operation for the FMA designed optimally
with state-of-the-art CMOS is from [24]. Up to a factor of 15 reduction in energy per
operation can be realized by switching the process and design paradigm from CMOS to
NEM relays. The FMA throughput is slower with NEM relays, but this can be made
up by using parallelism.

� 6.6 Interconnect Model Including Scaling

An interconnect model is devised for the 90nm predictive 6T NEM relay process for
the purpose of more accurate circuit power estimation. Based on suggestions in [33],
tungsten (W) metal is chosen as the first routing layer connected to the NEM relay
electrodes and aluminum (Al) metal is chosen as the second routing layer. The W rout-
ing layer thickness is 50 nm and the Al routing layer thickness is 125 nm. Additionally,
the minimum width is 120 nm and minimum pitch is 188 nm for both the W routing
layer and Al routing layer.

Process data in the library exchange format (LEF) for the process technology of the
scaled 6T relay in [11] is scaled down to the process technology of the 90nm equivalent
6T relay. These two process nodes are in Table 6.1. This information is combined with
an interconnect capacitance table (ICT) that is based on the aforementioned routing
layer dimensions for the 90nm process. The capacitance information is used with the
routed circuit layouts for a more accurate switching power estimate. Although the
interconnect dimensions used are not optimal, they are reasonable and are scaled from
the present process. Table 6.2 shows how the interconnect dimensions are scaled in the
LEF and ICT files from the scaled 6T to the 90nm equivalent 6T process node.

In CMOS processes, the load capacitance has not reduced much in the past few
generations of transistor scaling. This is largely because it is limited by the interconnect
capacitance. NEM relays processes offer the option to further reduce interconnect
capacitance while compensating by increased resistance. This, in turn, leads to lower
switching power in scaled NEM relay processes with scaled interconnects.

Fig. 6.3 shows the LZD2 circuit after it goes through the place and route flow for
power estimation. The placed and routed circuit enables post-route power estimations
including the effect of interconnect capacitances. Appropriate scaling factors are ap-
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Figure 6.2. Energy and performance trade-off for equivalent fused multiply-add circuits made in the
90nm CMOS technology node [24] and predictive 90nm equivalent NEM relays technology node (top).
The total latency of the NEM relay FMA depends on VDD (bottom).

Present Scaled 6T Relay Predictive 90nm 6T Relay

Routing Layer Metal2 (Al) Electrode (W) Metal2 (Al) Electrode (W)

Width (µm) 0.8 0.8 0.12 0.12

Area (µm2) 0.64 0.64 0.096 0.096

Pitch (µm) 1.25 1.25 0.1875 0.1875

Table 6.2. Scaling of interconnects with a constant scaling factor of 0.15.



Sec. 6.6. Interconnect Model Including Scaling 67

Figure 6.3. A placed and routed LZD2 circuit in the scaled 6T process technology, whose physical
data is scaled to the predictive 90nm equivalent 6T NEM relays process technology and used alongside
a predictive 90nm equivalent 6T NEM relays process interconnect capacitance table file to estimate
post-route switching power.

plied within the place and route flow to scale the route lengths and device sizes to the
predictive 90nm equivalent 6T NEM relays process technology. An interconnect capac-
itance table (ICT) file including the expected wire capacitances in the predictive 90nm
equivalent 6T NEM relay process technology is used by the switching power estimation
tool for post-route switching power estimates.

With the ICT available in the switching power estimation flow, both pre-route
and post-route power estimates were available. The pre-route power estimates were
approximately half of the post-route power estimates for each circuit cell. The complete
post-route energy per operation breakdown by circuit block in the FMA is in Table 6.3.

The multiplier used in the FMA is a 32-bit multiplier with Booth encoding that
takes five mechanical delays to produce a result. The energy per operation for a 16-bit
multiplier built in the same 90nm equivalent 6T NEM relay process technology used
for all FMA circuits in this work is reported in [11]. To extrapolate the energy for
a 32-bit multiplier in that work, an approximation for it is to multiply Eop for the
16-bit multiplier by the ratio of the number of relays in the 32-bit multiplier to the
number of relays in the 16-bit multiplier. This yields (9272/3211)×(24 fJ) = 69 fJ for
the multiplier in the FMA. The multiplier energy per operation includes the energy
dissipated in interconnects [11], and thus this Eop can be compared with the Eop of the
remaining circuit cells in Table 6.3 which also includes interconnect energy dissipation.

The energy breakdown of the FMA shows that multiplexers are the dominant con-
sumer of energy, followed by the multiplier and adders. Shifters include these multi-
plexers. The multiplexers and shifters are pruned as described in Chapter 5, ensuring
that nodes with no activity are not included. The multiplier energy could be further
reduced if (3:2) compressors were used instead of large compressors, though it may be
possible that the multiplier would then get into the critical path of the FMA due to
its slightly higher number of mechanical delays. Since the energy analysis is done on a
circuit cell by cell basis, the activity factors are based on the individual cells and are
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Circuit Units
Eop/unit
(aJ)

Relays/unit
Total
Relays

Total
Eop (fJ)

Full Adder 119 37.1 7 833 4.410

Full Adder
(with additional

P, G, K, P, G terms)
300 37.1 7 2100 11.100

AND2 3 4.8 2 6 0.014

DEC23 4 55.8 46 184 0.223

DEC7 76 19.7 14 1064 1.490

DEC8 6 23.3 16 96 0.140

ExpResultIsClogic 2 8.8 24 48 0.018

InfABLogic 1 11.7 6 6 0.012

NOT (and BUF) 21 12.0 2 42 0.253

LZD16 (Tree Design) 5 44.3 116 580 0.222

ManResultLogic1 27 88.7 12 324 2.390

ManResultLogic2 1 115.5 16 16 0.116

Multiplier
(32-bit, 5 tmech,
Booth-encoded)

1 69301.8 9272 9272 69.302

Dual 2:1 MUX 6567 29.1 2 13134 191.000

NanABLogic 1 58.2 16 16 0.058

NanZLogic 1 127.0 18 18 0.127

OR2 91 9.5 2 182 0.865

RoundLogic 1 216.3 22 22 0.216

SignResultLogic 1 77.6 12 12 0.078

XOR3 80 15.3 2 160 1.220

Grand Total 28115 283

Table 6.3. Energy per operation breakdown by circuit block in the FMA. The 90nm equivalent 6T
NEM relays process is used and VDD = 1.01Vpi. The energy per operation comes from the post-route
switching power estimate for each circuit cell.

not based the complete FMA activity picture. This is a reasonable approximation.
To analyze how much of the Eop of each circuit is dissipated in interconnects, the

distribution of the ratio of pre-route switching power to post-route switching power is
observed. It turns out that this distribution is mostly uniform, since the ratio has an
average of 45.4% and a standard deviation of 5.9%. This means that slightly over half
of the Eop for every circuit cell goes into the energy dissipated in interconnects, in the
90nm equivalent 6T NEM relays process node.



Chapter 7

Conclusions

CIRCUIT design with NEM relays is what enables the zero-leakage devices to deliver
on reducing the power consumption of computing, beyond CMOS. In the case of

the FPU, the NEM relays pass-transistor circuit design paradigm must be applied to
realize a NEM relay FPU that is competitive in throughput compared to an optimal
CMOS FPU and an order of magnitude better in energy-efficiency. In the process,
several novel custom pass-transistor circuits are designed, including several flavors of
the LZD. In this manner, it is seen that the NEM relay adder, multiplier, and now
the FPU can be more energy-efficient compared to their optimal CMOS counterparts
[1, 5].

The FPU designed and analyzed in this work is the largest system designed with
NEM relays. The latency of the NEM relay FMA is reduced from 71 mechanical delays
in a CMOS-style design to 16 mechanical delays in a NEM relay pass-logic-style design,
as shown in Fig. 5.1. The energy analysis in this work shows that the energy-efficiency
benefits of NEM relays extend into full VLSI systems.

� 7.1 Future Directions

Results from Chapter 3 show that many device enhancements are necessary to realize
the large and very-large scale circuits designed with NEM relays.

The reliability of NEM relays high relative to other emergent devices, considering
the high yield. However, process variations still exist that need to be modeled and
stabilized so that the operating voltages and external resistors are appropriate for circuit
operation.

The number of mechanical delays of the FMA designed with NEM relays could be
reduced even further if LZDs with more than 16 input bits are designed to run in a
single mechanical delay. However, this provides diminishing returns because, out of 16
mechanical delays for the FMA, reducing the LZD number of mechanical delays can
be reduced down to 13, which is not a significant improvement compared to the vast
improvements already made shown in Fig. 5.1.

The maximum datapath bitwidth for the CMA is smaller than that for the FMA,
meaning that a smaller shifter is required and that the LZD is smaller, requiring fewer
mechanical delays. Hence the design of a CMA with NEM relays is also worthy of
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exploration.
Although a single-precision FPU is explored in this work, the design trade-offs re-

vealed also apply to other designs such as that of a double-precision FPU. One potential
difference with the double-precision FPU is that the LZD may contribute even more to
the critical path of the FPU arithmetic blocks due to the larger bitwidths, highlighting
the importance of reducing the number of mechanical delays of the LZD.

Within the domain of circuits, future designs of graphics processor units (GPUs)
and central processing units (CPUs) with NEM relays may be of interest. NEM relays
may also find application in more elementary circuits such as crossbars or programmable
logic arrays (PLAs).

The fabrication of seesaw NEM relays needs to continue to advance while better
device models for them also need to be devised.

With the continued scaling of the NEM relays process technology and advancement
of the systems integration, the fabric of future computers may one day be NEM relays.
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