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Abstract

This thesis considers the tactical reconnaissance asset allocation problem in military
operations. Specifically this thesis presents methods to optimize, under uncertain
conditions, tactical reconnaissance asset allocation in order to maximize, within ac-
ceptable levels of asset risk exposure, the expected total information collection value.
We propose a deterministic integer optimization formulation and two robust mixed-
integer optimization extensions to address this problem. Robustness is applied to our
model using both polyhedral and ellipsoidal uncertainty sets resulting in tractable
mixed integer linear and second order cone problems. We show through experimen-
tation that robust optimization leads to overall improvements in solution quality
compared to non-robust and typical human generated plans. Additionally we show
that by using our robust models, military planners can ensure better solution fea-
sibility compared to non-robust planning methods even if they seriously misjudge
their knowledge of the enemy and the battlefield. We also compare the trade-offs of
using polyhedral and ellipsoidal uncertainty sets. In our tests our model using ellip-
soidal uncertainty sets provided better quality solutions at a cost of longer average
solution times to that of the polyhedral uncertainty set model. Lastly we outline a
special case of our models that allows us to improve solution time at the cost of some
solution quality.
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Chapter 1

Introduction

In this thesis we provide an analytic approach to increase the planning effectiveness

for tactical surveillance and reconnaissance. This chapter outlines our motivation for

this research and introduces our general approach.

1.1 Research Motivation

According to Army planners the United States military faces a future of persistent

conflict characterized by complex environments and an adaptive and creative enemy

[19]. This projection is based on the US counter-insurgency experience in Iraq and

Afghanistan as well as recent conflicts in places such as Lebanon, among others. As

US doctrine has evolved as a result of these conflicts, the importance of accurate and

timely intelligence, defined as analyzed information regarding the enemy, has become

clear. Intelligence drives operations, which results in new intelligence, which leads

to further operations. This intelligence/operations cycle is critical to the success of

any current or future military operation.
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Due to the importance of information and intelligence in military operations it

is vital for Army planners to use their limited Intelligence, Surveillance, and Recon-

naissance (ISR) collection assets wisely. ISR in this context refers to the Army’s

systems used to collect and process information needed by commanders and key

decision makers. Current doctrine emphasizes that the Army must focus its ISR

operations for maximum collection by a limited number of assets and resources to

produce the best intelligence possible [22]. Unfortunately, based on the author’s first

hand experience in Iraq, military planners are frequently overwhelmed with potential

reconnaissance and surveillance targets. Additionally, due to time constraints and

competing priorities planners are often unable to conduct a thorough analysis of how

to optimally assign collection assets to these targets. Instead planners either default

to an assignment plan that focuses all of their assets on collecting the information

that they value the highest or one that provides the longest coverage possible of the

most areas.

This thesis focuses on one component of ISR operations, tactical air-ground re-

connaissance, and provides an optimization approach to improve planning synchro-

nization and integration in this area. ISR synchronization ensures that the most

appropriate assets, both internal and external to the organization, collect infor-

mation. ISR integration ensures the efficient tasking of these assets to collect on

the information requirements that will return the most value [21]. We term this

problem the Tactical Reconnaissance Asset Allocation Problem (TRAAP). Tactical

air-ground reconnaissance is a mission, at the brigade level or below, to obtain infor-

mation useful to the commander using both aerial and ground collection assets. The

thesis addresses the TRAAP by developing a method to optimize, under uncertain

conditions, reconnaissance asset allocation in order to maximize, within acceptable

levels of asset risk exposure, the expected total information value collected. The in-
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corporation of uncertainty into the model allows planners to develop mathematically

robust solutions, i.e., solutions that remain optimal or near optimal, when executed,

under a range of conditions.

Specifically, this thesis presents deterministic and robust optimization formula-

tions to determine the optimal allocation of reconnaissance assets to targets. We

apply robust optimization methods to our deterministic formulations in order to de-

velop realistic, useful, and flexible asset allocation models. Robust optimization is

particularly useful in this case as it addresses a number of operational and computa-

tional considerations of the TRAAP. The tactical “fog of war,” defined by military

analyst Carl von Clausewitz as the uncertainty in situational awareness in military

operations, forces military planners to rely on inexact data. Robust optimization

allows planners to account for this uncertainty and balance, based on the preferences

of the commander, the feasibility and optimality of the solution within some known

probabilistic bounds. Even more important in the time constrained environment of

combat operations, the robust optimization techniques used in this thesis often gen-

erate computationally tractable problems that are able to be solved in a relatively

short period of time. The methods proposed in this thesis result in linear or second-

order cone mixed-integer optimization problems that are computationally tractable

using commercially available optimization solvers.

This research is broadly applicable to both military and civilian security scenarios.

In a military context our models can provide combat battalion and brigade planners

assistance in generating their reconnaissance plans. It can also assist planners in

identifying collection gaps in their reconnaissance operations. Similarly this method

can be used by civilian border security personnel, for example along the US/Mexico

border, to improve the effectiveness of their border interdiction efforts.
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1.2 Thesis Organization

Chapter 2 provides background on the problem and a literature review. We intro-

duce relevant background on reconnaissance operations and ISR synchronization and

integration. Additionally we present an overview of robust optimization and asset

allocation problem literature. In Chapter 3 we introduce a deterministic formulation

of the TRAAP that incorporates reconnaissance asset risk considerations, multiple

asset types, missions, and mission configurations. The formulation successfully opti-

mizes the expected total information value collected of a given scenario. In Chapter 4

we present two robust extensions to the deterministic model. The robust extensions

successfully account for uncertainty in both asset risk exposure and target informa-

tion value. Each extension uses a different method to model uncertainty, allowing us

to compare the advantages and disadvantages of each method. Chapter 5 outlines a

useful special case of both the deterministic and robust formulations. This special

case provides drastic improvements in solution time at the cost of some solution qual-

ity. In Chapter 6 we compare the solution quality of our models using simulation.

Chapter 7 provides concluding remarks and areas of further research on this topic.
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Chapter 2

Background

Famed American General George S. Patton once asserted that “You can never have

too much reconnaissance.” [16] He was referring to the tremendous advantage an

army has when it can effectively collect information on battlefield conditions and

the dispositions and activities of its adversaries. This chapter provides background

on military reconnaissance and surveillance operations and planning doctrine. We

also present background on optimization approaches previously applied to reconnais-

sance and surveillance operations and the robust optimization techniques used in this

thesis.

2.1 Reconnaissance and Surveillance Operations

The goal of this research is to assist planners in developing effective reconnaissance

and surveillance plans. Reconnaissance, as defined by the Army, “is a mission to

obtain, by visual observation or other detection methods, information about the ac-

tivities and resources of an enemy or adversary, or to secure data concerning the

19



meteorological, hydrographic, or geographic characteristics of a particular area.”

[24] Surveillance operations are often executed as a part of reconnaissance opera-

tions. Both surveillance and reconnaissance involve observation and reporting. The

two are differentiated by the nature of how information is collected. Surveillance is

typically a passive observation of an area or areas and can be continuous. Recon-

naissance is generally a more active and short term collection of information and can

involve fighting for information [21]. In this thesis we do not attempt to dictate how

information is collected. Because surveillance is often a task completed as part of

reconnaissance, for the remainder of this thesis we will use the term reconnaissance

as an overarching description of both traditional reconnaissance and surveillance

missions.

2.1.1 Commander’s Inputs into the Reconnaissance Plan

Effective reconnaissance plans allow leaders to more efficiently apply their available

combat power, leading to fewer casualties and greater chance for mission success. To

illustrate this idea we present the following example.

Consider a light infantry battalion conducting security operations in Afghanistan

near the Pakistani border. The border creates a region in Pakistan for Taliban in-

surgents to organize, train, and equip themselves free from attacks from US and

coalition forces. Due to the length of the border, over 1500 miles (2430km) in total,

US forces have difficulty providing persistent and effective overwatch of all potential

crossing points. As a result many commanders are tempted, or pressured, into de-

voting too many of their resources towards denying the border to the enemy, at the

expense of other critical missions such as engaging with and building trust with the

local population, a proven counter-insurgency tactic. An efficient use of reconnais-
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sance assets in this case would allow the battalion commander to provide effective

border overwatch in the most critical areas, while keeping free the bulk of his forces

to execute more population-centric missions.

Effective reconnaissance plans are focused collection efforts. Commanders ensure

a focused collection effort by orienting their reconnaissance on a reconnaissance ob-

jective. The reconnaissance objective “is a terrain feature, geographic area, enemy

force, or specific civil considerations about which the commander wants to obtain

additional information.” [21] In our example the battalion commander’s reconnais-

sance objective could be the Taliban insurgents in Pakistan or possibly the border

crossing points he suspects the insurgents use most frequently. In either case by se-

lecting a reconnaissance objective the battalion’s planners and intelligence personnel

can begin to determine where and when to conduct reconnaissance. The comman-

der’s reconnaissance objective also allows planners to begin to set reconnaissance

priorities.

In addition to determining the reconnaissance objective the commander is respon-

sible for approving the Commander’s Critical Information Requirements (CCIR).

The CCIR is a list of information requirements that facilitate the commander’s deci-

sion making. Within the CCIR is a list of Priority Intelligence Requirements (PIR).

PIR ask a specific question that, if answered, provides intelligence to support a sin-

gle decision [21]. In our example scenario the commander may designate, “Does the

enemy infiltrate our area along Route Cubs?” as a PIR, where Route Cubs is a path

across the border from Pakistan. The CCIR and PIR allow planners to focus recon-

naissance assets on collecting information that will allow the commander to make

better decisions.
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2.1.2 Reconnaissance Planning and the Military Decision

Making Process

The commander’s reconnaissance objective, included in the commander’s guidance,

and CCIR/PIR are inputs into the Military Decision Making Process (MDMP). The

MDMP is a seven step analytical process that assists commanders and their staffs in

reaching logical decisions [23]. The steps are, in order of execution, receipt of mission,

mission analysis, course of action development, course of action analysis, course of

action comparison, course of action approval, and orders production. Reconnaissance

generally takes place as soon as possible in this process and is executed continuously

throughout. An outline of the MDMP is shown in Figure 2-1.

Reconnaissance planning is based on the commander’s guidance and staff out-

puts of the mission analysis step of the MDMP. During mission analysis the staff

will conduct an intelligence analysis of the situation. Based on this analysis and the

CCIR, staff planners will develop an initial reconnaissance plan, also known as an

ISR or collection synchronization matrix. When developing a reconnaissance plan

military planners must allocate their available assets in such a manner that they

optimize the expected total information value of the plan. At the lowest level they

must assign each available reconnaissance asset to a set of missions. A mission is

defined as a time window and location where reconnaissance can be conducted. Mis-

sion locations are referred to as Named Areas of Interest (NAIs), that are generally

associated with one or more PIR. When considering mission assignments planners

must take into consideration, among other things, the amount of risk exposure each

asset will experience. For example, a commander may not wish to assign a highly

valued asset to a mission where enemy contact is likely. A commander’s tolerance

for risk will be reflected in his commander’s guidance. Once the plan is complete
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Figure 2-1: The Military Decision Making Process

and approved by the commander a collection asset will then be officially tasked to

execute reconnaissance in one or more NAIs with the mission of answering the NAI’s

associated PIR.

In an extended security operation like our Afghanistan example the reconnais-

sance planning process can be a daily event. As battlefield conditions change the

commander’s PIR, reconnaissance objective, and risk tolerance will adjust accord-

ingly. Additionally, reconnaissance asset availability will differ on a daily basis based

on weather conditions, other operations, and numerous other variables that the bat-

talion cannot control. This requires the planning staff to continuously reassess their

reconnaissance plans and adapt it to the dynamic conditions of the battlefield.
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2.1.3 Types and Capabilities of Reconnaissance Assets

We now present a brief description of common reconnaissance assets used by the

United States Army and an overview of their capabilities and drawbacks. This is by

no means an exhaustive list but is meant to provide an example of the various types

of reconnaissance assets in use.

The majority of tactical reconnaissance operations are conducted by scout pla-

toons. Soldiers in scout platoons are specifically trained in the execution of recon-

naissance and surveillance operations. A typical light infantry battalion, such as the

one in our example, will have one scout platoon consisting of 19 soldiers divided

into three sections. A light infantry scout platoon is not equipped with vehicles,

although scout platoons in other types of combat units possess HMMWVs, Stryker

Reconnaissance Vehicles, and Bradley Reconnaissance Vehicles. Relying on ground

transportation limits the mobility of scout platoons, especially over difficult terrain.

The platoon is designed so that each scout section can independently conduct a sep-

arate reconnaissance mission, although this rarely happens in practice. Typically the

platoon works as a single unit to conduct reconnaissance on a single location. With

external support a scout platoon is capable of conducting continuous reconnaissance

for several days. However, scout platoons are generally employed to short duration

(less than 12 hours) reconnaissance missions and then given time to rest and refit

before their next mission. In addition to scout platoons, other types of ground units

such as infantry platoons and sniper teams also conduct reconnaissance.

Unmanned Aerial Vehicles (UAVs) are also typically employed in reconnaissance

operations, usually in a surveillance role. A light infantry battalion is generally

equipped with at least three RQ-11B Raven UAVs, see Figure 2-2. The Raven is a

hand-launched man-portable tactical UAV designed to conduct reconnaissance and

24



surveillance. It operates at an altitude of approximately 500ft above ground level

at speeds of 28 to 60mph. It has a maximum operational radius of 6 miles with an

endurance limit of 1 to 1.5 hours. The Raven is equipped with IR thermal cameras

making it capable of operating at night [2].

Figure 2-2: Raven RQ-11B UAV

Combat battalions also have the capability to request the support of more capable

UAVs from higher headquarters. The most common of these UAVs is the RQ-

7 Shadow, see Figure 2-3. The Shadow uses a vehicle towed catapult system for

launch and a ground arresting system, similar to those used on an aircraft carrier,

for recovery. It has a wingspan of 14ft and can operate at altitudes as high as

15,000ft at speeds of 81 to 127mph. It has an operational radius of 68 miles with an

endurance limit of 6 to 9 hours. The Shadow is also equipped with IR cameras for

night operations [1].

UAVs are highly mobile, have a long flight endurance, and possess excellent op-

tics. These features make them excellent at providing persistent surveillance of a

small area or numerous small areas over time. However, UAVs do suffer from cer-

tain drawbacks making them not always the ideal reconnaissance asset for a mission.

Their primary drawback is their limited observation area. Some have referred to UAV
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Figure 2-3: Shadow RQ-7 UAV

reconnaissance as conducting reconnaissance by looking through a straw. Their lim-

ited observation area make UAVs most useful for conducting reconnaissance in small

or well defined areas such as mountain passes or roads. Some UAVs, such as both

the Raven and Shadow, suffer from a large audio signature. Due to their relatively

low service ceilings and loud engines it is often easy to know if a UAV is operating

in the area. This characteristic can prevent the UAV from collecting information on

the enemy. UAVs are also limited by weather conditions. Poor weather can force a

UAV to land or diminish the quality of its optics to make them nearly useless. These

drawbacks make UAVs useful for only certain types of reconnaissance missions.

The last type of reconnaissance asset we will present are air reconnaissance assets.

Air assets include both fixed and rotary winged manned aircraft. Most Army combat

units do not have air assets organic to their organization and must request the support

of air assets from higher headquarters. Although fixed wing aircraft, such as F/A-

18s and F-16s, do occasionally provide reconnaissance support to Army units, the

majority of air asset reconnaissance is conducted by rotary wing aircraft. The OH-

58D Kiowa Warrior helicopter, see Figure 2-4, was specifically designed to conduct

battlefield reconnaissance. The OH-58D is a single engine, single rotor helicopter

with a crew of two. It has a maximum speed of 149mph, range of 345 miles, and a
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service ceiling of 15,000ft. A typical Kiowa mission will last no longer than two hours.

The OH-58D is also equipped with a Mast Mounted Sight (MMS) above the rotor

that provides thermal imaging, range finding, and target designating capability. The

Kiowa Warrior is armed with machine guns, rockets, and air to ground missiles [15].

Figure 2-4: OH-58D Kiowa Warrior Scout Helicopter

Rotary winged reconnaissance assets like the OH-58D are excellent at providing

short duration reconnaissance of large areas. Their optics allow them to observe

locations from a distance and from behind cover. Their armament also allows them

to fight for information if necessary. Unfortunately Kiowas are extremely vulnerable

to ground fire, adding a significant amount of risk to their employment. Air assets,

just like UAVs, are also subject to weather restrictions. Their relatively short flight

endurance also limits the utility of employing Kiowas in certain situations.

Reconnaissance planners must take the advantages and disadvantages of each

type of asset into consideration when formulating their reconnaissance plan. Based

on the weather, terrain, enemy situation, and a number of other variables, each NAI
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will have an appropriate asset type or group of asset types that will provide the best

reconnaissance in the area. For example, if we wish to conduct reconnaissance in

a high mountain pass that requires persistent observation for an extended period

of time, a Kiowa Warrior may not be the ideal asset to employ. The Kiowa’s lim-

ited endurance would leave critical gaps in observation. A UAV would be a better

choice as it can loiter in the area and focus on a small area due to the restricted

terrain. However, if poor weather is expected during the collection window a scout

platoon may be the best choice. A scout platoon is capable of conducting extended

observation of the area even in poor weather conditions.

2.2 Robust Optimization

In Section 2.1.2 we provided an overview of the process military planners use to de-

velop reconnaissance plans. The key problem military planners face when developing

a reconnaissance plan is how to best allocate their available assets in an uncertain en-

vironment so that they optimize the expected information value of their plan, within

certain physical and commander dictated constraints. This problem lends itself to

an optimization based approach.

The TRAAP falls into the category of optimization problems known as resource

allocation problems. More specifically, the TRAAP can be considered a general

knapsack problem. Knapsack problems consist of a set of items, each with a specified

value and weight, and a “knapsack” with a defined capacity. The goal is to place items

in the knapsack in such a manner as to maximize the total value of the items in the

knapsack without exceeding the weight capacity of the knapsack. Knapsack problems

have numerous applications and have been extensively studied. In the TRAAP our

“items” are mission assignments that have an associated expected information value
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and risk exposure. Our knapsack consists of the commander’s risk tolerance of our

assets.

Traditionally, optimization problems such as the knapsack problem assume we

have perfect knowledge of the problem parameters. In the case of the knapsack

problem we generally assume that we know with certainty the values, weights, and

capacity of the items and knapsack. In real world applications this assumption is

usually incorrect and can lead to highly unstable solutions. In fact, solutions “can

exhibit remarkable sensitivity to perturbations in the parameters of the problem,

thus often rendering a computed solution highly infeasible, suboptimal, or both (in

short, potentially worthless)” [7]. Robust optimization seeks to address this problem.

Robust optimization attempts to find solutions that remain optimal or near op-

timal under a range of conditions. It does this by modeling uncertainty in a de-

terministic, set-based manner. By using convex, closed sets to model uncertainty

robust optimization allows us to derive a solution that gives up some expected so-

lution value but will remain optimal for all data realizations within the uncertainty

set. This approach has numerous advantages. First, unlike stochastic optimization,

robust optimization has been shown to remain tractable for large problems. Second,

we can vary the trade off of robustness and optimality in our solution by chang-

ing the size or shape of the uncertainty set. Third, robust optimization requires no

prior knowledge of the nature or distribution of the data uncertainty. Fourth, robust

optimization allows us to derive probabilistic bounds on constraint violation.
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2.3 Literature Review

2.3.1 Robust Optimization Literature

The first robust model approach was proposed by Soyster in 1973 [18]. Soyster

proposed a linear optimization model that would remain feasible for all realizations of

data within a convex set. He showed that his approach was the equivalent of solving

the model after setting all unknown parameters to their worst case values. The

drawback of Soyster’s method is that it results in extremely conservative solutions.

Furthermore, Soyster’s method can only account for column-wise uncertainty.

In the late 1990’s Ben-Tal and Nemirovski [4, 5, 6] and El Ghaoui et al. [13]

independently addressed the problem of over-conservatism in Soyster’s method by

proposing the use of ellipsoidal uncertainty sets. Ellipsoidal uncertainty sets are

appealing for many reasons, the foremost being that they closely resemble typical

measurement errors. Using the Ben-Tal and Nemirovski/El Ghaoui et al. approach

one must derive and solve a robust counterpart of the linear optimization problem

that results in a solution that is robust and much less conservative than the solution

produced using Soyster’s method. However, tractability suffers using this approach

as the robust counterparts are non-linear conic quadratic problems.

In 2003 Bertsimas and Sim [9] proposed an approach that avoids both the over-

conservatism of Soyster’s method and the tractability concerns of the method’s pro-

posed by Ben-Tal and Nemirovski/El Ghaoui et al. The Bertsimas/Sim method

seeks to protect against a pre-specified number, Γ, of uncertain parameters assuming

their worst case values. They show that the method ensures constraint feasibility

if the number of uncertain coefficients assuming their worst case values is less than

Γ. Furthermore, they provide probabilistic guarantees that even if more than Γ
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coefficients change, the robust solution will be feasible with high probability. The

Bertsimas/Sim approach also maintains the tractability of the model. For example,

the robust counterparts of linear problems, remain linear. Therefore this approach

is suitable for applications involving a large number of variables and constraints. We

further discuss and apply the Bertsimas/Sim approach in Chapter 4.

2.3.2 Robust Reconnaissance Asset Allocation Literature

In 2004, Bertucceli et al. [10, 11] applied robust optimization using a modified Soys-

ter’s method to the UAV task assignment problem. In this approach attack UAVs

are assigned to targets with the goal of maximizing the total reward of targets that

are attacked. The reward for striking each target is subject to uncertainty. In their

model the uncertainty associated with each target can be reduced if a reconnaissance

UAV is assigned to the target prior to an attack UAV.

Bertucceli et al. apply robustness to their formulation by using a modified Soys-

ter’s method. The reward for attacking target i at time k, c̄ki, is uncertain with a

known standard deviation, σki. A scalar, µ, allows the planner to adjust the amount

of robustness in the solution from no protection against uncertainty to complete

protection against uncertainty. Complete protection against uncertainty in their for-

mulation is equivalent to Soyster’s method. This modified Soyster’s formulation is

outlined below

max

|NT |∑
i=1

c̄kixki − µσkixki + µσyki
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s.t.

|NT |∑
i=1

xki = |NV S|

|NT |∑
i=1

yki = |NV R|

xki, yki ∈ {0, 1}

Where |NT | is the number of targets, |NV S| is the number of strike UAVs, and |NV R|

is the number of reconnaissance UAVs. xki is 1 if a strike UAV is assigned to target

i at time k and zero otherwise. yki is 1 if a reconnaissance UAV is assigned to target

i at time k and zero otherwise.

In 2006, Bryant [12] and Sakamoto [17] applied the robust optimization framework

presented in Bertsimas and Sim [9] to address UAV task assignment and routing

problems. Bryant proposed a UAV assignment formulation based on the military’s

Effects Based Operations (EBO) framework. Tasks are valued based on their ability

to achieve desired effects. UAV assignments to tasks are then made to maximize

the total desired effects of the plan. Bryant then applied robustness to his planning

formulation using both the Bertsimas and Sim method with polyhedral uncertainty

sets and using chance constrained programming.

Sakamoto approached the UAV assignment problem as a vehicle routing problem.

In his formulation a UAV is presented with a set of tasks, with associated reward

values, located throughout a geographic area. His formulation seeks to select the

group of tasks and order of execution so as to maximize the total reward of the UAV

mission. He then applies robustness using the Bertsimas and Sim method using

polyhedral uncertainty sets.

This thesis seeks to build on this work. Whereas previous optimization ap-

proaches to reconnaissance asset allocation problems have focused exclusively on
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UAV task assignment, this thesis extends this approach to include UAV, air, and

ground reconnaissance assets. By doing so, this thesis also allows us to model the

benefits of mixing, using assets of different types to simultaneously collect informa-

tion on the same target, and redundancy, using more than one asset of the same

type to simultaneously collect information on a single target, which have been ne-

glected in previous work [24]. Lastly, this thesis uses more advanced methods to

model uncertainty, i.e., ellipsoidal and central-limit theorem based uncertainty sets,

than previous work on reconnaissance asset allocation problems. To the best of our

knowledge this is the first application of these specific modeling methods in a military

reconnaissance context.
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Chapter 3

Deterministic Approach

We first consider a deterministic optimization model approach to the TRAAP. Be-

fore we do this, we first describe the available data and key decisions facing tactical

reconnaissance planners. Our deterministic model successfully generates a reconnais-

sance plan that maximizes the expected information value returned of the plan. We

also present two algorithms that approximate a human planner’s approach to the

TRAAP. The plans generated by these algorithms will be used to help evaluate the

performance of our optimization models.

3.1 Data and Decisions

Reconnaissance planning is based on the commander’s guidance and staff outputs

of the mission analysis step of the Military Decision Making Process (MDMP), see

Section 2.1.2 for further discussion of reconnaissance planning and the MDMP. This

information comprises the data used in our optimization model. In particular, re-

connaissance planners use the staff estimates for the number and type of available
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reconnaissance assets, the capabilities of each of these assets, the locations where

information needs to be collected, known as Named Areas of Interest (NAIs), the

collection time windows associated with each NAI, the collection priority for each

NAI, and the commander’s risk assessment to develop their plans.

Using this information military planners must allocate their available reconnais-

sance assets, generally in what is known as an ISR synchronization matrix or recon-

naissance plan, in such a manner that they optimize the expected total information

collection value of the plan. At the lowest level they must assign each available

reconnaissance asset to a set of missions. A mission is defined as a time window

and location, i.e., NAI, where reconnaissance can be conducted. These assignment

instructions constitute the reconnaissance plan.

When developing their reconnaissance plan, planners must also consider the im-

pact of mixing collection assets and of redundancy. Mixing is using two or more

different types of assets to simultaneously collect against a single NAI, while redun-

dancy is using more than one of the same type of asset to simultaneously collect on a

single NAI [24]. Typically using mixing or redundancy increases the collected infor-

mation value of a particular reconnaissance mission. Therefore, planners must decide

not only where and when each asset should be assigned, but also the configuration of

assets that are assigned to each NAI. A configuration is defined as a collection of one

or more assets, not necessarily of the same type, that are assigned simultaneously

to the same NAI. An example of a configuration could be one platoon and one Un-

manned Aerial Vehicle (UAV), while another example of a valid configuration could

be simply a single UAV.

Planners must also incorporate operational risk into their reconnaissance plans.

Risk, in this context, refers to hazards that exist on the battlefield, such as enemy

forces, weather conditions, or dangerous terrain, that can result in mission degrada-
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tion or mission failure [20]. Planners identify potential risk during mission analysis

and use this information when developing their plans. In practice, the commander

will identify what he feels is an acceptable level of risk exposure for his assets. Plan-

ners will then use the information they have regarding potential operational risk and

allocate assets in such a way as to not expose any asset to risk levels above the

prescribed limit.

Another consideration when forming a reconnaissance plan is the effect of unit

movements during collection time windows. Each NAI has an associated collection

window or windows. A collection window is a block of time when the planner believes

he has the greatest chance of gathering useful information in an NAI. Sometimes it

is useful for some or all of the assets that are conducting reconnaissance in an NAI

to be reassigned before the end of a collection window. A planner may consider this

action if, during a portion of the collection window, the expected information value

in a different NAI is significantly greater than the expected information value of the

original NAI. Mid-collection window asset transitions of this type allow a greater

utilization of available assets and increase the expected total information value of

the reconnaissance plan.

Although asset transitions typically generate plans with higher expected infor-

mation value, asset transitions also have associated penalties. Generally ground

reconnaissance units wish to minimize their total number of movements on the bat-

tlefield. A reconnaissance unit’s greatest asset is its ability to remain unobserved

by the enemy. When a ground unit is told to move from one location to another it

must expose itself, to some degree, to enemy observation. Often, once a reconnais-

sance unit is exposed, the enemy will adjust their activity in the area for a duration

of time in order to deny the friendly unit of the information it is trying to collect,

thus lowering the expected information value of further reconnaissance in this area.
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Therefore, in order to accurately model asset transitions our formulation must only

allow a transition when the expected increase in total information value more than

offsets the associated reduction in information value of further reconnaissance in the

original NAI. It is also important to note that not all asset types are subject to tran-

sition penalties. For example, many UAVs and manned reconnaissance aircraft fly

at altitudes where they do not increase their chances of enemy observation as they

move around the battlefield.

Although aerial reconnaissance platforms generally do not suffer from transition

penalties they are restricted by endurance limitations. UAVs and manned aircraft are

subject to mission duration limitations based on fuel capacity, weather conditions,

and other environmental factors. As a result, each system can only conduct recon-

naissance for a specified period of time before being forced to return to an airfield to

refuel and conduct maintenance. By incorporating asset endurance limitations into

our model we can generate more realistic plans and gain insight into the best times

to conduct resupply and maintenance for aerial assets.

3.2 Deterministic Model Formulation

With these considerations in mind we now model the TRAAP as an integer optimiza-

tion problem. Using the outputs of mission analysis we identify a set J of available

reconnaissance assets and I of NAIs where we wish to conduct reconnaissance. As-

sets are divided into K types, e.g., platoons, UAVs, sniper teams, etc., where the set

of assets of type k ∈ K, Ak, is a subset of J . All assets of the same type are assumed

to have equivalent capability. In order to account for mixing and redundancy each

mission can be serviced by multiple configurations of assets. As mentioned earlier,

an example of a configuration could be one platoon and one UAV. This configuration
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would be deemed feasible if at least one mission calls for at a minimum one platoon

and one UAV to conduct reconnaissance. The feasible configurations for all potential

missions are compiled into a set C. The quantity of asset type k ∈ K in configuration

c ∈ C is defined by the parameter akc.

We also have the sets Ti, defined as the set of time intervals when we wish to

conduct reconnaissance in NAI i, to reflect collection time windows. We then have

the set T , of which Ti ⊂ T , as the complete set of discrete time intervals in our

planning time horizon. Note that this formulation gives us the flexibility to schedule

multiple, non-consecutive collection windows in each NAI during our planning time

horizon. We then define the parameter eki1i2 as the number of time intervals required

for assets of type k to transition from NAI i1 to NAI i2.

The remaining model parameters are also developed from the mission analysis

outputs. The expected information value fic of executing reconnaissance in NAI

i in configuration c is based on a number of variables, including the commander’s

collection priorities, the number and capabilities of the reconnaissance assets in con-

figuration c, expected weather conditions, target characteristics, among others. The

anticipated risk rjic associated with asset j conducting reconnaissance in NAI i in

configuration c is, much like the information value, a function of multiple variables.

These variables include the enemy situation, the distance of the NAI from medical

facilities, the number and capabilities of nearby friendly units, etc. and can be de-

rived from the commander’s risk assessment. The risk assessment, along with the

commander’s intent, also provides the model with the acceptable level of accumu-

lated risk mj that each asset can be exposed to, we refer to this as an asset’s risk

budget. In our model we assume that both the information value, fic, and the risk

value, rjic, per time period remain constant in each NAI throughout the planning

time horizon. The extension to time varying parameters is straightforward.
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Next, we define the set B ⊂ K of asset types that are subject to asset transition

penalties. Asset transition penalties are defined by the constants α and β as follows.

If a combination (j, i, c) is engaged at time t−1 for some j, but not engaged at time t,

then for the next β time periods the value fi,c we obtain for conducting reconnaissance

at (i, c) is reduced to fi,c(1− α). That is, the expected information value is reduced

by α% during these periods. The values of the α and β parameters are adjustable

and based on the commander’s preferences and staff intelligence estimates from the

MDMP.

We then define the set L ⊂ K of asset types that have endurance limitations. For

each element k in L we have a new parameter, sk, that we define as the maximum

consecutive time periods assets of type k can conduct reconnaissance before needing

to refuel or conduct maintenance. In our model we assume that travel to and from,

and execution of refueling and maintenance activities can be conducted in one time

period. This assumption can easily be adjusted in our model to reflect different

operational conditions.

Our model has four types of binary decision variables. The first set of variables,

yict, represent whether reconnaissance is conducted in NAI i in configuration c during

time period t. The second type of decision variable, xjict, corresponds to whether

asset j conducts reconnaissance in NAI i in configuration c during time interval

t. We also define auxiliary binary decision variables, wit and pict to account for

asset transitions. The logic for wit is as follows. If xjic,t−1 = 1 and xjict = 0, then

wit = ... = wi,t+β−1 = 1. Moreover, if yict = 1 and wit = 1, then pict = 1, and in this

case the reward fic we receive will be fic(1− α) due to the asset transition penalty.
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Using this information we have the following formulation.

max
∑

i∈I,c∈C,t∈T

fic (yict − αpict)

s.t.
∑
c∈C

yict ≤ 1 ∀i ∈ I,∀t ∈ Ti (3.1)

yict = 0 ∀i ∈ I,∀t /∈ Ti (3.2)

xjict ≤ yict ∀j ∈ J,∀i ∈ I,∀t ∈ T (3.3)∑
j∈Ak

xjict = akcyict ∀k ∈ K, ∀i ∈ I,∀c ∈ C, ∀t ∈ T (3.4)

1−
∑
c∈C

xji1ct ≥
∑
c∈C

xji2ct′ ∀j ∈ Ak,∀k ∈ K, ∀i1, i2 ∈ I : i1 6= i2, (3.5)

∀t ∈ T : t ≤ t′ ≤ t+ eki1i2∑
i∈I,c∈C,t∈Ti

rjicxjict ≤ mj ∀j ∈ J (3.6)

t∑
t′=t−sk

∑
i∈I,c∈C

xjict′ ≤ sk ∀j ∈ Ak,∀k ∈ L,∀t ∈ T : t > sk (3.7)

β
∑
c∈C

(xjict−1 − xjict) ≤
t+β−1∑
t′=t

wit′ ∀j ∈ Ak,∀k ∈ B, ∀i ∈ I,∀t ∈ T : t ≥ 2 (3.8)

yict + wit ≤ pict + 1 ∀i ∈ I,∀c ∈ C, ∀t ∈ T (3.9)

xjict, yict, wit, pict ∈ {0, 1} ∀j ∈ J,∀i ∈ I,∀c ∈ C, ∀t ∈ T

Constraints (3.1) allow missions to be executed in only one feasible configuration.

Constraints (3.2) ensure that no assets can be allocated to NAIs during time intervals

that are not part of the set Ti, that is time intervals not in NAI i’s collection windows.

Constraints (3.3) ensure assets can only be assigned to missions and configurations
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that are executed. Constraints (3.4) ensure that the correct number of each asset type

are assigned to executed configurations and missions. Constraints (3.5) ensure that

assets are not assigned to a new NAI until after the appropriate number of transition

time intervals. Constraints (3.6) are risk constraints. They restrict assets from being

exposed to more risk than their maximum allowable risk level. Constraints (3.7)

enforce endurance limitations on aerial assets. Lastly, constraints (3.8) and (3.9)

determine when an asset transition penalty occurs.

3.3 Human Planning Approximation Algorithms

In order to gain a better understanding of the quality of our models we compare our

optimization based reconnaissance plans to estimates of reconnaissance plans devel-

oped by human planners. As discussed in Section 1.1, due to time constraints and

competing priorities military planners generally default to reconnaissance plans that

they feel will return the information that they value the highest or one that provides

coverage of the most areas. Thus, based on the authors first hand observations, hu-

man plans typically have all of their collection assets focused on the highest priority

areas or have their assets spread thin over the entire battlefield. In either case, hu-

man planners nearly always disregard the level of uncertainty associated with each

mission when developing their plans. With these observations in mind we present

two planning algorithms, one for each type of typical human reconnaissance plan,

for comparison with our models.
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3.3.1 The High Priority Mission Algorithm

We now consider the first type of planner, one who focuses his assets exclusively

on the highest priority missions. A high priority mission, in this context, is a mis-

sion with a high expected information value. Thus, a greedy algorithm, where mis-

sion/configuration assignments are made solely on their expected information value,

provides a reasonable approximation of how a human planner might act. In this al-

gorithm the planner prioritizes his collection efforts on the NAIs and configurations

that produce the highest expected information value. Beginning with the highest

priority NAI/configuration pair, the algorithm assigns assets in such a manner as

to maximize the total number of time periods that the NAI/configuration pair can

be executed without violating an asset’s risk budget. Once no more assets can be

assigned to an NAI/configuration pair the algorithm steps to the next highest pri-

ority NAI/configuration pair. The algorithm continues until no more assets can be

assigned to any NAI/configuration pairs without violating their risk budget.

The High Priority algorithm is outlined in detail in the steps below.

1. Create a list of all feasible NAI/configuration pairs.

2. IF list of feasible NAI/configuration pairs is empty, exit algorithm.

3. ELSE select NAI/configuration pair, (i, c), from list with highest expected

information value.

4. Create a list of feasible time periods, from the list of time periods that re-

connaissance can be conducted in NAI i, where assets are available to execute

configuration c.

5. Create a list of all possible asset groups that fulfill configuration c.
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6. FOR all groups in the asset group list:

(a) Create a list of asset group available time periods, from the list of feasible

time periods, that the asset group has all assets available. Record the

total number of time periods that the asset group is available, ta.

(b) Determine the number of time periods, tr, that the asset group can con-

duct reconnaissance in NAI i without any member of the group violating

its risk budget.

7. Assign all asset groups an asset group score. The asset group score equals the

minimum of ta and tr.

8. Determine the highest asset group score.

9. IF the highest asset group score is zero, skip to step 15.

10. IF multiple asset groups have the highest asset group score, select the asset

group, A, with the highest sum of remaining asset risk budgets.

11. ELSE select the asset group, A, with the highest asset group score.

12. Assign each asset in A to NAI i to the first tr time periods in the list of

asset group available time periods determined in step 6(a). Call this the set of

executed time periods.

13. Reduce the risk budget of each asset in A by the accumulated risk of this

assignment.

14. Mark all assets in A as unavailable during all executed time periods plus re-

spective transition times.
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15. Remove (i, c) from list of feasible NAI/configuration pairs and return to step

2.

3.3.2 The Maximum NAI Coverage Algorithm

Next, we present a planning algorithm to model the behavior of a planner that is

primarily concerned with conducting reconnaissance in many different NAIs. This

algorithm is also a greedy algorithm, in that asset assignments to NAIs are prioritized

by their expected information value, but this algorithm also attempts to avoid, as

much as possible, assigning more than one asset to an NAI. This algorithm considers

each asset separately, beginning with the asset that has the highest remaining risk

budget. It will then attempt to assign each asset in such a manner as to avoid NAIs

with assets already assigned to them during any portion of the NAI’s collection

windows. If this is not possible the algorithm will then attempt to assign the asset

to any NAI/time period with no other assets assigned. Only then will the algorithm

consider pairing the asset with a previously assigned asset. The algorithm stops once

all assets are unable to be assigned without violating their risk budgets.

The NAI Coverage algorithm is outlined in detail below.

1. IF all assets have been considered for assignment, select asset, j, with highest

remaining risk budget

2. ELSE select asset type, k, with highest expected information value for a single

asset configuration with at least one asset that has not been considered for

assignment.

(a) Select asset, j, of type k, that has not been considered for assignment

with the highest remaining risk budget.
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3. Create a list of NAIs that request an asset of the same type as asset j, and

have no assets currently assigned to them.

4. IF this unassigned NAI list is not empty, select NAI i with highest expected

information value for a configuration with only asset j.

(a) Calculate the number of time periods, t, asset j can be assigned to NAI i

without violating its risk budget and transition constraints.

(b) IF t > 0, assign asset j to NAI i for up to t time periods it is available or

all feasible time periods in NAI i, whichever is smaller.

i. Reduce asset js risk budget by the amount of accumulated risk from

this assignment.

ii. Return to step 1

(c) ELSE, remove NAI i from the unassigned NAI list created in step 3 and

return to step 4.

5. ELSE, create a new list of NAIs that request an asset of the same type as j

and have at least one asset currently assigned to them.

6. IF this assigned NAI list is not empty, select NAI, i, with the highest expected

information value for a configuration, c, that includes asset j and all previously

assigned assets to NAI i.

(a) Calculate the number of time periods, t, asset j can be assigned to NAI i in

configuration c without violating its risk budget and transition constraints.

(b) IF t > 0, assign asset j to NAI i for up to t time periods when j is available

and when its assignment will result in configuration c.
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i. Reduce asset js risk budget by the amount of accumulated risk from

this assignment.

ii. Increase asset budgets of all other assets assigned to NAI i in config-

uration c by the difference between the accumulated risk of the asset

in configuration c and the accumulated risk of the previous configu-

ration.

iii. Return to step 1

(c) ELSE, remove NAI i from the assigned NAI list created in step 5 and

return to step 6.

7. ELSE IF unable to assign any asset, exit algorithm.

8. ELSE select asset, j, with next highest remaining risk budget and return to

step 3.
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Chapter 4

Robust Approach

In this chapter we apply robust optimization to our TRAAP formulation to account

for uncertainty in our model parameters. We consider modeling uncertainty using

both polyhedral and ellipsoidal uncertainty sets.

4.1 Modeling Uncertainty Using Uncertainty Sets

Our deterministic formulation assumes that we know explicitly the values for our

expected information value, fic, and our expected risk accumulation, rjic per time

period. Clearly under real world circumstances it is impossible to estimate the exact

realized values for these parameters. It is, however, possible to accurately estimate a

range in which we expect, with high confidence, the true values for these parameters

to take. Using our information value parameter, fic, as an example we redefine our

parameters as follows, see Bertsimas and Sim [9].

f̃ic =
[
f̄ic − f̂ic, f̄ic + f̂ic

]
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In this notation f̄ic represents the nominal, or expected, value of the uncertain infor-

mation value parameter f̃ic. f̂ic represents the half-length of the range in which we

expect the realized information value, fic, to fall in. We then expect the following to

be true for all i and c. ∣∣∣∣fic − f̄icf̂ic

∣∣∣∣ ≤ 1

Motivated by the central limit theorem, see Bandi and Bertsimas [3], as a means to

efficiently aggregate the uncertainty of these parameters, we propose the following

polyhedral uncertainty sets.

Ufic =

{
fic

∣∣∣∣∣
∣∣∣∣fic − f̄icf̂ic

∣∣∣∣ ≤ 1,∀i ∈ I,∀c ∈ C,
∑

i∈I,c∈C

∣∣∣∣fic − f̄icf̂ic

∣∣∣∣ ≤ Γ
√
D

}

Urjic =

{
rjic

∣∣∣∣∣
∣∣∣∣rjic − r̄jicr̂jic

∣∣∣∣ ≤ 1,∀j ∈ J, i ∈ I, c ∈ C,
∑

i∈I,c∈C

∣∣∣∣rjic − r̄jicr̂jic

∣∣∣∣ ≤ Φj

√
D, ∀j ∈ J

}

whereD = |I| · |C|

The new parameters Γ and Φj allow us to adjust the level of robustness we wish

to include in our model. When Γ and Φj equal zero we do not protect against

any uncertainty and our formulation is equivalent to the non-robust formulation we

outlined in Chapter 3. As we increase the values of these parameters we progressively

add robustness into our model at the expense of possibly more conservative solutions.

The ability to adjust the robustness of our model is especially useful as it allows

planners to tailor the model to the risk preferences of the commander and easily

generate multiple reconnaissance plans for consideration.
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4.2 The Robust Formulation Under Polyhedral Un-

certainty

We will now derive the robust counterpart to our deterministic TRAAP model using

polyhedral uncertainty sets. For ease of notation we define

Zic = Z+
ic − Z−ic =

fic − f̄ic
f̂ic

We can then redefine our uncertainty set for the information value parameter, fic,

as shown below.

Z =

{
Z

∣∣∣∣∣(Z+
ic + Z−ic

)
≤ 1,∀i ∈ I,∀c ∈ C,

∑
i∈I,c∈C

(
Z+
ic + Z−ic

)
≤ Γ
√
D

}

Using these robust parameters our model’s objective function now becomes:

max
x,y,w,p

∑
i∈I,c∈C,t∈T

f̄icyict +

(
min
Z

∑
i∈I,c∈C,t∈T

f̂ic
(
Z+
ic − Z−ic

)
yict

)
− α

∑
i∈I,c∈C,t∈T

pict

The interpretation of this new objective function is that we are trying to maximize

the expected total information value of the solution while also trying to minimize the

amount of uncertainty in our solution. As shown in Bertsimas and Sim [9] we can

restructure the inner minimization problem into an equivalent linear optimization

problem using the properties of linear optimization duality. After applying this

method we have the following robust objective function and additional constraints.

max
x,y,w,p,µ,ν,γ

∑
i∈I,c∈C,t∈T

f̄icyict + Γ
√
Dµ+

∑
i∈I,c∈C

νic −
∑

i∈I,c∈C

γic − α
∑

i∈I,c∈C,t∈T

pict
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s.t. µ+ νic + γic ≤ f̂ic
∑
t∈T

yict ∀i ∈ I,∀c ∈ C

µ− νic − γic ≤ −f̂ic
∑
t∈T

yict ∀i ∈ I,∀c ∈ C

µ ≤ 0

νic ≤ 0 ∀i ∈ I,∀c ∈ C

γic ≥ 0 ∀i ∈ I,∀c ∈ C

Applying the same process described above to our risk constraints we have the com-

plete robust TRAAP model formulation using polyhedral uncertainty sets shown

here.

max
∑

i∈I,c∈C,t∈T

f̄ic (yict − αpict) + Γ
√
Dµ+

∑
i∈I,c∈C

νic −
∑

i∈I,c∈C

γic

s.t. µ+ νic + γic ≤ f̂ic
∑
t∈T

yict ∀i ∈ I,∀c ∈ C (4.1)

µ− νic − γic ≤ −f̂ic
∑
t∈T

yict ∀i ∈ I,∀c ∈ C (4.2)

∑
c∈C

yict ≤ 1 ∀i ∈ I,∀t ∈ Ti (4.3)

yict = 0 ∀i ∈ I,∀t /∈ Ti (4.4)

xjict ≤ yict ∀j ∈ J,∀i ∈ I, (4.5)

∀t ∈ T∑
j∈Ak

xjict = akcyict ∀k ∈ K, ∀i ∈ I, (4.6)
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∀c ∈ C, ∀t ∈ T

1−
∑
c∈C

xji1ct ≥
∑
c∈C

xji2ct′ ∀j ∈ Ak, ∀k ∈ K, (4.7)

∀i1, i2 ∈ I : i1 6= i2,

∀t ∈ T : t ≤ t′ ≤ t+ eki1i2∑
i∈I,c∈C,t∈Ti

r̄jicxjict + Φj

√
Dρj +

∑
i∈I,c∈C

φjic −
∑

i∈I,c∈C

λjic ≤ mj ∀j ∈ J (4.8)

ρj + φjic + λjic ≥ r̂jic
∑
t∈Ti

xjict ∀j ∈ J,∀i ∈ I, (4.9)

∀c ∈ C

ρj − φjic − λjic ≥ −r̂jic
∑
t∈Ti

xjict ∀j ∈ J,∀i ∈ I, (4.10)

∀c ∈ C
t∑

t′=t−sk

∑
i∈I,c∈C

xjict′ ≤ sk ∀j ∈ Ak, ∀k ∈ L, (4.11)

∀t ∈ T : t > sk

β
∑
c∈C

(xjict−1 − xjict) ≤
t+β−1∑
t′=t

wit′ ∀j ∈ Ak, ∀k ∈ B, (4.12)

∀i ∈ I,∀t ∈ T : t ≥ 2

yict + wit ≤ pict + 1 ∀i ∈ I,∀c ∈ C, (4.13)

∀t ∈ T

xjict, yict, wit, pict ∈ {0, 1} ∀j ∈ J,∀i ∈ I,∀c ∈ C,

∀t ∈ T

γic, ρj, φjic ≥ 0 ∀j ∈ J,∀i ∈ I,∀c ∈ C

µ, νic, λjic ≤ 0 ∀j ∈ J,∀i ∈ I,∀c ∈ C
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This new model is equivalent to our non-robust, deterministic model proposed in

Section 3.2 with the exception of the new robust constraints and objective func-

tion. Constraints (4.1) and (4.2), along with the additions to the objective function,

add robustness against uncertainty in the information value parameter, fic. Con-

straints (4.8), (4.9), and (4.10) replace the risk constraints (3.6) in the deterministic

model and add robustness against uncertainty in the risk parameter, rjic. The re-

maining constraints are identical, and serve the same purpose, as those proposed in

our deterministic model.

The robust model has 2IC(J + 1) additional constraints than our non-robust

model, where I, C, and J represent the number of non-zero elements in the sets

I, C, and J respectively. The model also added complexity by the addition of six

types of new variables. Despite the addition of new constraints and variables we

have maintained the linear structure, and therefore the tractability, of our original

deterministic model. As a result this model can still be efficiently solved using readily

available commercial solvers.

4.3 The Robust Formulation Under Ellipsoidal Un-

certainty

The ability to model uncertainty in different ways is one appealing aspect of robust

optimization. Motivated by Ben-Tal and Nemirovski [4, 5] we now consider modeling

uncertainty using ellipsoidal uncertainty sets.

In this model we still expect the realized value of our uncertain parameters to

fall within some symmetrical range around a nominal value. Instead of aggregating

the uncertainty using the central limit theorem, as we did when constructing our
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polyhedral uncertainty sets, we now restrict the total “distance” that we expect the

aggregate realized values of our uncertain parameters to fall away from their nominal

values. This is accomplished using the Euclidean norm. This approach yields the

following ellipsoidal uncertainty sets.

Ufic =

{
fic

∣∣∣∣∣
∣∣∣∣fic − f̄icf̂ic

∣∣∣∣ ≤ 1,∀i ∈ I, c ∈ C,
∑

i∈I,c∈C

(
fic − f̄ic
f̂ic

)2

≤ Θ2

}

Urjic =

{
rjic

∣∣∣∣∣
∣∣∣∣rjic − r̄jicr̂jic

∣∣∣∣ ≤ 1,∀j ∈ J,∀i ∈ I, c ∈ C,
∑

i∈I,c∈C

(
rjic − r̄jic

r̂jic

)2

≤ Ψ2
j ,∀j ∈ J

}

In this case the parameters Θ and Ψj represent the level of robustness in the model.

When these parameters are zero, just as before, the model does not protect against

any deviations in our uncertain parameters from their nominal values. As we increase

the values of Θ and Ψj we increase the level of robustness of our solution.

Using these new uncertainty sets we apply robustness to our model in the same

manner as before. This results in the following robust formulation, which is a second

order cone problem with binary variables.

max
∑

i∈I,c∈C,t∈T

f̄ic (yict − αpict)−Θ

∥∥∥∥∥f̂ic∑
t∈T

yict

∥∥∥∥∥
2

s.t.
∑
c∈C

yict ≤ 1 ∀i ∈ I,∀t ∈ Ti (4.14)

yict = 0 ∀i ∈ I,∀t /∈ Ti (4.15)

xjict ≤ yict ∀j ∈ J,∀i ∈ I,∀t ∈ T (4.16)
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∑
j∈Ak

xjict = akcyict ∀k ∈ K, ∀i ∈ I,∀c ∈ C, (4.17)

∀t ∈ T

1−
∑
c∈C

xji1ct ≥
∑
c∈C

xji2ct′ ∀j ∈ Ak,∀k ∈ K, (4.18)

∀i1, i2 ∈ I : i1 6= i2,

∀t ∈ T : t ≤ t′ ≤ t+ eki1i2∑
i∈I,c∈C,t∈Ti

r̄jicxjict + Ψj

∥∥∥∥∥r̂jic∑
t∈Ti

xjict

∥∥∥∥∥
2

≤ mj ∀j ∈ J (4.19)

t∑
t′=t−sk

∑
i∈I,c∈C

xjict′ ≤ sk ∀j ∈ Ak,∀k ∈ L, (4.20)

∀t ∈ T : t > sk

β
∑
c∈C

(xjict−1 − xjict) ≤
t+β−1∑
t′=t

wit′ ∀j ∈ Ak,∀k ∈ B, ∀i ∈ I, (4.21)

∀t ∈ T : t ≥ 2

yict + wit ≤ pict + 1 ∀i ∈ I,∀c ∈ C, ∀t ∈ T (4.22)

xjict, yict, wit, pict ∈ {0, 1} ∀j ∈ J,∀i ∈ I,∀c ∈ C, ∀t ∈ T

Just as with our robust model using polyhedral uncertainty sets, our robust model

using ellipsoidal uncertainty sets is equivalent to our deterministic model with the

exception of the new robust constraints and objective function. This model protects

against uncertainty in the information value parameter, fic, by adding a non-linear

term to the objective function. Robustness against uncertainty in the risk parameter,

rjic, is added by replacing constraints (3.6) in the deterministic model with the

robust, non-linear constraints (4.19). The remaining constraints are identical, and

serve the same purpose, as those proposed in our deterministic model.
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Note that when using ellipsoidal uncertainty sets we do not add additional con-

straints and variables. Instead, complexity is added to our model through the non-

linearity of both our objective function and our risk constraints. However, due to

the structure of our uncertainty sets our robust model is now a second-order cone

optimization problem. Efficient solution methods for second-order cone problems

with binary variables exist and have been implemented in commercial solvers such

as CPLEX and Gurobi. Thus, tractability of our robust model is maintained.
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Chapter 5

Fixed Allocation Approach

We now propose special cases of our deterministic and robust formulations that

prohibit assets from conducting transitions during NAI collection windows. By fixing

the allocation of assets during each collection window we reduce the complexity of

our models and achieve significant computational benefits at the expense of some

optimality and robustness. We provide these models for operational considerations.

Potentially a planner may prefer a sub-optimal plan immediately instead of a higher

quality plan later. These models give the military planner that option. Note that

unless explicitly discussed in this section all parameters from our earlier models retain

their previous definitions.

5.1 Deterministic Formulation of the Fixed Allo-

cation Approach

In order to reduce the complexity of our models outlined in Chapters 3 and 4 we

propose a few modifications and additions to their parameters. Previously we defined
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the sets I, to reflect the locations or NAIs where we wish to conduct reconnaissance,

and Ti, to describe what time periods we wish to conduct reconnaissance in NAI i.

By combining these temporal and spatial attributes we generate a new set, N , of

missions. A mission, just as before, is defined as a time window and location where

reconnaissance can be conducted. Whereas before we could define multiple collection

windows for each NAI, in this new formulation each new collection window in an NAI

is considered a distinct mission. Just as before each mission can be serviced by mul-

tiple configurations of assets. Therefore the expected information value parameter

and asset risk parameters are now defined as fnc and rjnc respectively.

We then state that if an asset is assigned to a particular mission, its allocation

is fixed and it will be considered unavailable to other missions from the mission

start time to the mission end time plus some transition time. This information is

captured in a mission compatibility matrix, gk, for each asset type. Two missions

are considered not compatible when their collection windows occur simultaneously

or when an asset cannot transition from one NAI to the other before the collection

window for the second mission begins. The values in each compatibility matrix are

represented as gkn1n2
, that is one, if mission n1 is compatible with mission n2 for assets

of type k and zero, otherwise.

By restricting asset assignments to the entire collection window of a mission,

as opposed to individual time periods in the collection window, we eliminate the

possibility of mid-collection window asset transitions and their associated penalties.

It also forces us to reassess how asset endurance limitations are modeled. It is

possible, using this formulation, to assign an asset to a mission with a collection

window longer than the asset’s endurance limit. We therefore assume that lower

level planners will decide what periods, within the mission collection window, the

asset will conduct reconnaissance and when it will return to base for maintenance and
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refueling. Despite the periodic gaps in reconnaissance by these assets the effects of

the asset on the mission, i.e., information value added, risk reduction from mixing and

redundancy, and risk accumulation, are assumed to be equally distributed throughout

the mission collection window.

Because we no longer have asset transition penalties our model has only two types

of binary decision variables. The first set of variables, ync, takes the value one, if

mission n is executed in configuration c and is zero, otherwise. The second set of

variables, xjnc, takes the value one, if asset j is assigned to mission n in configuration

c and is zero, otherwise.

Applying these changes we have the following deterministic formulation.

max
∑

n∈N,c∈C

fncync

s.t.
∑
c∈C

(xjn1c + xjn2c) ≤ 1 ∀n1 ∈ N,∀n2 ∈ N,∀j ∈ Ak, (5.1)

∀k ∈ K : gkn1n2
= 0∑

c∈C

ync ≤ 1 ∀n ∈ N (5.2)

xjnc ≤ ync ∀j ∈ J,∀n ∈ N (5.3)∑
j∈Ak

xjnc = akcync ∀k ∈ K, ∀n ∈ N, ∀c ∈ C (5.4)

∑
n∈N,c∈C

rjncxjnc ≤ mj ∀j ∈ J (5.5)

ync, xjnc ∈ {0, 1} ∀j ∈ J,∀n ∈ N, ∀c ∈ C

Constraints (5.2), (5.3), (5.4), and (5.5) have the same functions as constraints (3.1),
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(3.3), (3.4), and (3.6) in our previous deterministic model outlined in Chapter 3.

Constraints (5.1) enforce the mission compatibility requirements, namely they ensure

that an asset cannot be assigned to two incompatible missions.

5.2 Robust Formulations of the Fixed Allocation

Approach

We now propose robust formulations of our special case model using both polyhedral

and ellipsoidal uncertainty sets. We begin by modeling uncertainty using a polyhedral

uncertainty set motivated by the central limit theorem.

Applying robustness using the same method described in Section 4.2 we have the

following formulation.

max
∑

n∈N,c∈C

f̄ncync + Γ
√
Dµ+

∑
n∈N,c∈C

νnc −
∑

n∈N,c∈C

γnc

s.t. µ+ νnc + γnc ≤ f̂ncync ∀n ∈ N, ∀c ∈ C (5.6)

µ− νnc − γnc ≤ −f̂ncync ∀n ∈ N, ∀c ∈ C (5.7)∑
c∈C

(xjn1c + xjn2c) ≤ 1 ∀n1 ∈ N, ∀n2 ∈ N, (5.8)

∀j ∈ Ak,

∀k ∈ K : gkn1n2
= 0∑

c∈C

ync ≤ 1 ∀n ∈ N (5.9)
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xjnc ≤ ync ∀j ∈ J,∀n ∈ N (5.10)∑
j∈Ak

xjnc = akcync ∀k ∈ K, ∀n ∈ N, (5.11)

∀c ∈ C∑
n∈N,c∈C

r̄jncxjnc + Φj

√
Dρj +

∑
n∈N,c∈C

φjnc −
∑

n∈N,c∈C

λjnc ≤ mj ∀j ∈ J (5.12)

ρj + φjnc + λjnc ≥ r̂jncxjnc ∀j ∈ J,∀n ∈ N, (5.13)

∀c ∈ C

ρj − φjnc − λjnc ≥ −r̂jncxjnc ∀j ∈ J,∀n ∈ N, (5.14)

∀c ∈ C

ync, xjnc ∈ {0, 1} ∀j ∈ J,∀n ∈ N,∀c ∈ C

γnc, ρj, φjnc ≥ 0 ∀j ∈ J,∀n ∈ N,∀c ∈ C

µ, νnc, λjnc ≤ 0 ∀j ∈ J,∀n ∈ N,∀c ∈ C

whereD = |N | · |C|

This new model is equivalent to our deterministic model proposed in Section 5.1 with

the exception of the new robust constraints and objective function. Constraints (5.6)

and (5.7), along with the new terms in the objective function, add robustness against

uncertainty in the information value parameter, fnc. Constraints (5.12), (5.13), and

(5.14) replace the risk constraints (5.5) in the deterministic model and add robust-

ness against uncertainty in the risk parameter, rjnc. The remaining constraints are

identical, and serve the same purpose, as those proposed in our deterministic model.

The robust model has 2NC(J + 1) additional constraints than our non-robust

model, where N , C, and J represent the number of non-zero elements in the sets N ,

C, and J respectively.
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We next present a robust formulation of the Fixed Allocation model using el-

lipsoidal uncertainty sets based on the Euclidean norm. Derivation of this model

follows the same procedure outlined in Section 4.3.

max
∑

n∈N,c∈C

f̄ncync −Θ
∥∥∥f̂ncync∥∥∥

2

s.t.
∑
c∈C

(xjn1c + xjn2c) ≤ 1 ∀n1 ∈ N, ∀n2 ∈ N, ∀j ∈ Ak, (5.15)

∀k ∈ K : gkn1n2
= 0∑

c∈C

ync ≤ 1 ∀n ∈ N (5.16)

xjnc ≤ ync ∀j ∈ J,∀n ∈ N (5.17)∑
j∈Ak

xjnc = akcync ∀k ∈ K, ∀n ∈ N,∀c ∈ C (5.18)

∑
n∈N,c∈C

r̄jncxjnc + Ψj ‖r̂jncxjnc‖2 ≤ mj ∀j ∈ J (5.19)

ync, xjnc ∈ {0, 1} ∀j ∈ J,∀n ∈ N,∀c ∈ C

Just as before, our robust model using ellipsoidal uncertainty sets is equivalent to our

deterministic model with the exception of the new robust constraints and objective

function. This model protects against uncertainty in the information value parame-

ter, fnc, by adding a non-linear term to the objective function. Robustness against

uncertainty in the risk parameter, rjnc, is added by replacing constraints (5.5) in

the deterministic model with the robust, non-linear constraints (5.19). The remain-

ing constraints are identical, and serve the same purpose, as those proposed in our
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deterministic model.

By using an uncertainty set based on the Euclidean norm our robust counterpart

is a second-order cone problem, and therefore remains tractable using commercially

available solvers.
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Chapter 6

Computational Results and

Analysis

To test and evaluate our models we desire test scenarios similar to current and

anticipated operational problems facing military reconnaissance forces. Keeping this

in mind, and using the author’s first hand operational experience, we present a

representative scenario that a battalion-level reconnaissance planner may face in

a conflict similar to those in Afghanistan or Iraq. We then use this scenario to

conduct analysis of the solution quality, using simulation, of each of our models. In

particular, we focus on the effects of adding robustness into our models on solution

quality. Additionally we present further analysis on the computational demands of

our models.
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6.1 The Operational Scenario

Our test scenario is designed to reflect a typical operational problem facing battalion-

level reconnaissance planners in an environment similar to that found in Iraq or

Afghanistan during the height of US military involvement in these conflicts.

The test scenario we propose here is based on a fictional scenario used at the

National Training Center (NTC) to train US Army and Marine Corps units preparing

to conduct security and counterinsurgency operations in Afghanistan. The NTC is

located at Ft. Irwin, CA and serves as a world class military training facility focused

on preparing units to fight in the contemporary operating environment and future

battlefields [14]. The training staff at the NTC is responsible for developing complex

and difficult training scenarios designed to tax all elements and systems in a brigade

sized unit. Using the NTC scenario as our guide we scaled the problem to a battalion

sized operation and generated representative scenario data to feed into our TRAAP

formulations and algorithms. By doing so we hope to illustrate the effectiveness of

our models on a difficult problem used in real world training.

6.1.1 Test Scenario Background

In our test scenario a battalion task force is conducting security operations in the

Gilan Province of the fictional country of Atropia. Figure 6-1 depicts a map of the

battalion’s area of operations (AO) and NAIs. Gilan Province consists of mountain-

ous terrain in the north, transitioning to rolling plains in the south. The battalion AO

has no major population centers but does contain numerous small villages connected

by a sparse, mostly unimproved road network. In total, the battalion’s assigned

section of Gilan Province has a population of around 50,000. The battalion’s area of

operations also borders the country of Donovia. Although Donovia is considered an
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ally, due to sparse and ineffective Donovian military operations near the border, the

enemy uses the mountainous Donovian borderlands as a safe haven and support zone.

Most of the battalion’s reconnaissance efforts focus on suspected enemy infiltration

routes from Donovia.

Figure 6-1: Test Scenario Area of Operations

6.1.2 Test Scenario Data

Before generating the test scenario data we established certain scenario parameters,

such as the number and type of assets, number of NAIs, number of time periods in the

planning horizon, etc., in order to appropriately scale the scenario to a battalion sized

problem. The remaining scenario data was generated randomly and then manually

modified, where necessary, to better reflect the conditions of the NTC scenario. We
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chose to create our scenario data in this manner in order to ensure some randomness

in the data while still approximating a realistic battlefield situation. In this section

we will provide an overview of the scenario metrics and discuss in more detail how

our scenario data was created.

The test scenario consists of twenty-eight possible reconnaissance missions spread

across fifteen NAI’s over a twenty-four period (hour) planning horizon. Figure 6-2

depicts the scenario asset requests and collection windows for each NAI. The NAI

asset requests in Figure 6-2 are broken down by asset type; platoon’s, UAV’s, and

scout weapons teams (SWT). The asset requests for each NAI were randomly gen-

erated and then manually adjusted to better reflect the NTC scenario’s conditions.

Asset requests were capped for each NAI at a maximum of two platoons, one UAV,

and one SWT; resulting in the number of feasible asset configurations in the scenario

being 12 (including a configuration with no assets).

Figure 6-2: Test Scenario NAI Asset Requests and Collection Windows

The NAI collection windows in the scenario are correlated to reflect times of high

expected enemy activity, implying a high demand in reconnaissance assets, and low

activity in the area. In order to generate pseudo-random collection windows and still
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ensure a period of high asset demand we randomly selected a collection window start

time for each NAI between time periods 1 and 6. This ensured that there would be

significant overlap in the collection windows for all NAIs. After establishing the first

collection window for each NAI, further collection windows were created by randomly

selecting a start time at least three time periods after the previous collection window

ended. The length for all collection windows was randomly chosen between 2 and 12

time periods.

Figure 6-2 also shows the maximum possible expected information value per time

period for conducting reconnaissance in an NAI. These values, along with the infor-

mation values for other asset configurations, were generated using the number and

type of assets in each configuration and a randomly assigned NAI priority. All NAIs

were first randomly ranked from highest to lowest priority, where high priority in

this context means that, based on the scenario, we would expect a relatively higher

information value for reconnaissance conducted in the NAI. A few manual adjust-

ments to the priorities were then made to ensure consistency with the NTC scenario.

Nominal information values, f̄ic, were then assigned to each NAI/configuration pair

based on the NAI’s priority and the number and type of assets in the configuration.

The number and type of assets requested in each NAI was used to develop this data

due to the assumption that NAIs with larger asset requests will typically return

more valuable information. In reality this is not always the case, and we use the NAI

priority parameter to reflect this characteristic of real world scenarios. By doing so,

we ensured that some NAIs with relatively few assets requested would have higher

expected information values than other NAIs with more assets requested. The values

for the f̄nc parameters were calculated by summing the values of f̄ic for the number

of time periods in mission n.

Figure 6-2 also provides a general description (High, Medium, and Low) of the
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level of risk when conducting reconnaissance in each NAI. Risk data was generated by

randomly assigning each NAI an overall risk value between 0.0 and 1.0. Again, a small

number of manual adjustments were made to these assignments to ensure scenario

consistency. We categorized each NAI in Figure 6-2 based on these assignment. For

example, a high risk NAI has an overall risk value in the interval 0.667 to 1.0 and

a low risk NAI has an overall risk value in the interval 0.0 to .333. Risk values for

each asset type were then derived using this overall NAI risk value and the number

and type of assets in each configuration. Asset risk values were assigned so that the

level of risk exposure per time period is decreased for each additional asset in the

configuration.

We used two methods to establish the amount of uncertainty in our uncertain

parameters, f̄ic and r̄jic. In the scenario we assumed that all parameter uncertainty

was normally distributed around the nominal values. We also felt, based on the NTC

scenario information on hand, that the reconnaissance planners had a better estimate

of the amount of uncertainty in the information value parameters compared to the

risk value parameters. Thus, we randomly assigned each NAI a level of information

value uncertainty, f̂ic, between 10% and 90% of the nominal information value for

each configuration. The varied levels of uncertainty reflects the battalion’s belief

that they having a reasonable idea of the level of information value uncertainty in

each NAI. In contrast, the level of uncertainty for the risk parameters, r̂jic, was

set equal to 50% of the nominal risk value for all NAIs and configurations. This

implies that the battalion planners do not have a good estimate of which NAIs

have more or less risk uncertainty relative to the risk parameter nominal values.

The values for the parameters f̂ic and f̂ic represent two standard deviations of the

normally distributed uncertain parameters. This ensures, under the assumption that

the parameters accurately represent the real world, that the realized values of the
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uncertain parameters will fall with high probability, roughly 95%, within the interval

[f̄ic − f̂ic, f̄ic + f̂ic].

In the scenario the planner has approximately one third (four platoons) of the

battalion’s ground forces available to devote to reconnaissance tasks. This assumes

that the remaining battalion forces are devoted to other vital missions such as force

protection, offensive operations, civil-affairs, etc. The battalion is being supported

by two RQ-7B Shadow UAV’s and a dedicated scout weapons team (SWT) of OH-

58D Kiowa helicopters. Transition times between NAIs vary by asset type between

one and four time periods and only platoons are subject to transition penalties in

this scenario. The Shadow UAVs are subject to a nine hour endurance constraint

while the SWT has an endurance limit of two hours. Furthermore, the commander

has set the asset type risk budgets, meaning the amount of risk each type of asset

can assume, to protect platoons the most, followed by the SWT and then UAVs. All

of these parameters were selected manually to best reflect the conditions in the NTC

scenario. Table 6.1 provides a summary of these scenario metrics.

Table 6.1: Test Scenario Asset Summary

Asset Type Quantity
Trans.
Times
(Per)

Trans.
Penalties

Endurance
Limit
(Per)

Risk
Budget

Platoon 4 1 to 4 Yes None Low
UAV 2 1 No 9 High
SWT 1 1 No 2 Medium

6.2 Model Simulation

In order to evaluate the solutions produced by our TRAAP formulation and al-

gorithms it was necessary to use simulation. There are numerous approaches to
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simulation testing and, ideally, one would use a closed-loop method. A closed-loop

simulation for our scenario would generate realized information value and risk data

for each time period, starting at the beginning of our planning time horizon. The

simulation would implement each TRAAP solution time period by time period un-

til an asset violates its risk budget. At that time the simulation would input the

remaining risk levels of all assets, and other pertinent data, back into our TRAAP

formulation and generate a new solution for the remainder of the planning time hori-

zon. The simulation would resume and progress in this manner until all assets have

violated their risk budgets or the simulation reaches the end of the planning time

horizon. A closed-loop simulation such as this is very computationally expensive and

difficult to implement.

We selected to use a different, less complicated, form of simulation known as

Monte Carlo simulation. In a Monte Carlo simulation realized values for all of our

unknown data are generated. We then apply our solutions using this realized data.

After applying the data we can determine if an asset or assets have violated their

risk budgets and calculate the total realized information value of the solution. By

repeating this process multiple times we can generate statistics on how each solution

performs and use this information to compare solutions against one another.

In our testing we generated 5,000 separate realizations of our unknown risk and

information value parameters. All of our solutions were tested using this set of data

realizations in order to fairly evaluate their performance against one another. In

each simulation the unknown risk and information value parameters for each time

period were sampled from a normal distribution with a mean equal to f̄ic and r̄jic

and standard deviation equal to f̂ic
2

and
r̂jic

2
. If a time period was subject to an asset

transition penalty the simulation randomly determined whether the asset transition

was observed or not. We assumed that all asset transitions had an 80% chance of
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being observed by the enemy. If the asset transition was observed the corresponding

realized information values were sampled from a distribution with mean equal to f̄ic
4

and standard deviation equal to f̂ic
4

. If the asset transition was not observed by the

enemy the realized information value was sampled from the original distribution. To

avoid negative information and risk values, if the realized parameter value was less

than zero it was reset to equal zero. The parameters f̂nc and r̂jnc were calculated by

summing the realized parameter values for the time periods and NAI corresponding

to mission n.

6.3 Model Performance and Comparison

After simulation we compared our model solutions using three primary performance

measures; the mean of the realized information value collected over all simulations,

the standard deviation of the collected information value over all simulations, and

model feasibility. Model feasibility is a measure of constraint violation frequency. A

model was deemed feasible for a simulated scenario only if no assets exceeded their

maximum risk allowance. These three performance measures dictate the solution

quality of the model solution.

We selected these performance measures because they directly translate to char-

acteristics of desirable reconnaissance plans. The mean realized information value

is the expected intelligence benefit received from executing the plan. Clearly max-

imizing this value is the primary goal of any reconnaissance plan. The standard

deviation of the collected information value is a measure of how certain the plan is

of achieving the expected outcome. By minimizing this value it is less likely that

our reconnaissance assets will return to base without useful information. The fi-

nal performance measure, model feasibility, directly translates into saving soldiers’
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lives. A risk constraint violation implies that a unit is exposed to an unacceptable

level of risk. Solutions that minimize the likelihood of constraint violation reduce

the chances of soldiers being injured. Therefore a model solution with high solution

quality will have a large mean realized information value, small standard deviation,

and high probability of model feasibility.

6.3.1 Human Approximation Algorithm and Deterministic

Model Performance

Table 6.2 displays the solution performance of the deterministic and human approx-

imation algorithms after five thousand simulated realizations of the test scenario.

Table 6.2: Human Approximation Algorithm and Deterministic Model Solution
Performance

Model Mean Std Dev % Feasible
High Priority Algorithm 28.5 0.989 60.2%
NAI Coverage Algorithm 22.3 0.476 1.8%
Deterministic Model 38.3 0.800 27.1%

In total, our optimization based deterministic model outperformed both human

planning approximation algorithms. The High Priority and NAI Coverage algorithm

solutions each bested the deterministic model solution in a single performance cat-

egory; the High Priority solution improved solution feasibility by over 33% and the

NAI Coverage solution reduced the standard deviation of the total information value

by over 40% from the deterministic model. However, these performance gains came

at a very steep cost to mean information value collected, 26% for the High Prior-

ity algorithm and 42% for the NAI Coverage algorithm. In addition to the cost in
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mean information value both algorithm solutions performed worse than the deter-

ministic model solution in the other performance categories. Based on this evidence,

particularly the prohibitively high cost in mean information value, we can conclude

that our deterministic model provides an improvement in reconnaissance planning

performance from typical human planning methods.

Further analysis of our solutions provides some insight into why our human ap-

proximation algorithms performed poorly compared to our deterministic model. Fig-

ures 6-3, 6-4, and 6-5 provide an overview of the solutions derived using our deter-

ministic model, High Priority algorithm, and NAI Coverage algorithm, respectively.

The green sections represent the time periods when reconnaissance is conducted in

an NAI. The labels on, or adjacent to, the green sections state the number of pla-

toons, UAVs, and SWTs assigned to conduct reconnaissance in the NAI during that

time interval.

Figure 6-3: Test Scenario Deterministic Model Solution
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Figure 6-4: Test Scenario High Priority Algorithm Solution

After studying these results we conclude that the High Priority algorithm per-

forms poorly due to its failure to fully account for the level of risk of conducting

reconnaissance in each NAI. The algorithm selects locations to conduct reconnais-

sance solely on the expected information value returned. It only accounts for the

risk level of an NAI when determining how many time periods it can assign assets

to conduct reconnaissance in it. By using risk in a secondary manner such as this it

leaves the algorithm susceptible to assigning assets to a relatively high risk mission

where the expected information value return may not necessarily be worth the risk

invested. This appears to be the case in our test scenario. In Figure 6-4 we see

that the algorithm chose to maximize reconnaissance in NAI 04. This intuitively

makes sense as NAI 04 provides the highest expected information value return per

time period. However, NAI 04 is a medium risk NAI and therefore conducting re-

connaissance in NAI 04 comes with a significant risk investment, even with the risk
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reducing effects of mixing and redundancy. As a result over half of our available

assets (2 PLT’s, 1 UAV, and 1 SWT) devote a substantial part of their risk budgets

to conducting reconnaissance in NAI 04. This limits the availability of these assets

for additional missions and reduces the overall information value of the solution.

The deterministic model avoids this problem. By design the model weighs the

costs and benefits of conducting reconnaissance in each NAI. Thus, the deterministic

model tends to select reconnaissance missions with the most efficient reward to risk

ratio. For example, in Figure 6-3 we see that the deterministic model prioritized

platoon reconnaissance in NAI 08 and NAI 12. Both of these NAIs are low risk and

have high, although not the highest, expected information value per time period.

This high information value to risk ratio makes these NAIs an efficient use of our

low risk budget assets.

Being efficient in allocating assets does not mean that our deterministic model

ignores high or medium risk NAIs. In fact, the deterministic model assigns assets

to nearly all high and medium risk NAIs for at least a portion of their requested

collection windows. However, when doing so, the model generally assigns assets with

higher risk budgets, UAVs and SWTs, to these high and medium risk NAIs. By com-

pletely considering the cost/benefit trade-offs of asset assignments the deterministic

model is able to maximize the expected information value of the solution.

The High Priority algorithm’s higher solution standard deviation compared to

the deterministic model is also likely due to the algorithm’s emphasis on executing

missions with the highest expected information value. In general, NAI’s with higher

expected information value tended to have more uncertainty in the information value

parameter. This reflects the idea that if we highly value a certain piece of information,

it is likely that our enemy will go to greater lengths to deny us this information. The

enemy’s counter-reconnaissance efforts in high priority NAIs present an additional

79



variable that leads to greater uncertainty in the quality of information we obtain.

Because the High Priority algorithm stresses execution of missions with high expected

information value we would expect that the variability of our realized information

value would also be greater.

Figure 6-5: Test Scenario NAI Coverage Algorithm Solution

When considering the NAI Coverage algorithm we conclude that its performance

suffers, primarily, due to its failure to exploit the benefits of mixing and redundancy.

Figure 6-5 depicts the solution derived using the NAI Coverage algorithm. As the

name suggests, we would expect that the NAI Coverage algorithm would assign assets

to all, or nearly all, NAIs for at least a portion of their collection windows. In fact, the

solution produced by this algorithm provides less total NAI coverage than both the

deterministic model and High Priority solutions. This is a result of the algorithm’s

emphasis on minimizing the number of assets assigned to conduct reconnaissance in

each NAI, in other words, its avoidance of asset mixing and redundancy. Mixing
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and redundancy provide risk reducing benefits, many units working in coordination

are all generally exposed to less risk, but come at a cost of devoting a large portion

of the available assets to a single NAI, as was seen in our High Priority model. In

the case of our test scenario, by avoiding the benefits of mixing and redundancy our

assets, especially the low risk budget assets, accumulated risk at a much higher rate

than in our other approaches. This resulted in an overall reduction in NAI coverage

and a steep loss of mean information value collected.

The deterministic model addresses this issue by selectively using mixing and

redundancy to minimize the risk accumulation of the low risk budget assets. In

Figure 6-3 we see that in nearly all platoon assignments the platoon is supported

by at least one other asset. The only instance where this does not occur is in NAI

14, where only a single platoon is requested. This strategy of supporting low risk

budget assets also reduces the risk exposure to the supporting assets, allowing them

to conduct further reconnaissance in other NAIs. By inherently protecting low risk

budget assets the deterministic model avoids the performance obstacles observed in

the NAI Coverage algorithm and maintains a significantly higher mean information

value.

6.3.2 Robust Model Performance

Table 6.3 outlines the performance of solutions to the robust model using ellipsoidal

uncertainty sets after five thousand simulated realizations of the test scenario. This

table displays results when robustness is added to both the information value (Θ)

and risk constraint (Ψ) parameters. For comparison we also include the solution per-

formance of our deterministic model and human planning approximation algorithms.
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Table 6.3: Robust Model Solution Performance

Model Mean Std Dev % Feasible Θ Ψ
High Priority Algorithm 28.5 0.989 60.2% N/A N/A
NAI Coverage Algorithm 22.3 0.476 1.8% N/A N/A
Deterministic 38.3 0.800 27.1% N/A N/A

Robust Model -
Ellipsoidal Uncertainty

37.9 0.782 38.0% 0.1 0.1
37.8 0.782 61.2% 0.2 0.2
37.5 0.772 89.2% 0.4 0.4
37.3 0.771 97.8% 0.6 0.6
37.0 0.767 100.0% 1.0 1.0
34.9 0.741 100.0% 2.0 2.0

The simulation results show that the robust model formulation consistently pro-

duces higher quality solutions, in terms of solution feasibility and standard deviation,

for a relatively minor cost to expected information value collected when compared

to the deterministic model. For example at robustness level of Θ/Ψ = 1.0 we can

achieve a 4% reduction in solution standard deviation for a cost in mean total infor-

mation value of around 3% from the deterministic model. We also improve solution

feasibility by a dramatic 73% when applying robustness at this level. Although gains

in solution variability are modest in this case the most significant improvements in

solution performance occur in, arguably, the most important performance measure,

solution feasibility.

Our robust model also decisively outperforms both of our human planning ap-

proximation algorithms. For example, the robust model can achieve similar solution

feasibility performance to the High Priority model (around 60%) but at a fraction

of the cost in expected information value while also still maintaining a significantly

lower standard deviation. Although, in the cases we tested, we were unable to match

the NAI Coverage solution’s standard deviation using our robust models, it is unlikely

that an operational commander would be willing to give up over 42% of his expected
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information value and assume a significant risk of reconnaissance plan infeasibility

to achieve these improvements; especially when one considers that solution standard

deviation is a less significant, in an operational context, performance measure.

These results show that by using our robust model during planning a comman-

der will considerably improve his reconnaissance plan solution quality compared to

typical human generated plans. Additionally, our results imply that by using our

robust models a commander can trade a small reduction in expected intelligence

information to dramatically reduce the risk exposure of his soldiers compared to our

deterministic model.

6.3.3 Ellipsoidal vs. Polyhedral Uncertainty

It is evident that our robust model using ellipsoidal uncertainty sets provides im-

proved solutions over our deterministic model. We now compare the solution per-

formance of our robust model using ellipsoidal uncertainty sets with the solution

performance of our robust model using polyhedral uncertainty sets. Figures 6-6, 6-7,

and 6-8 depict the performance measures of both robust models as a function of the

relative cost of robustness, in terms of average percent total information value loss,

compared to the non-robust model. All figures depict solution performance when

robustness is added to both the information value and risk parameters.

Figure 6-6 depicts the solution feasibility performance of both robust models.

In our scenario the model using ellipsoidal uncertainty sets strictly outperforms the

model using polyhedral uncertainty sets in this measure. For instance, the ellipsoidal

uncertainty model achieves near 100% solution feasibility (greater than 97.5%) at

the cost of around 2.7% in expected total information value while the polyhedral

uncertainty model achieves this mark at the cost of nearly 3.6% in expected total
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Figure 6-6: Robust Model Solution Feasibility
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information value. The ellipsoidal uncertainty model outperforms the polyhedral

uncertainty model in this manner at all levels of solution feasibility performance.

Figure 6-7 and Figure 6-8 show the solution standard deviation as a function

of expected total information value lost from the non-robust model. We can see

that both models reduce solution standard deviation as robustness is added into

the model. The trend, depicted by a linear trend line, for both models clearly

shows that there is a reduction in solution standard deviation at higher levels of

robustness, but predicting how much decrease one will see from one solution to the

next is difficult. Regardless, by adding robustness into the model, solution quality

in terms of variability will remain similar or improved. The bottom line is that

robustness will not hurt solution variability. The inconsistency in solution variability

improvement of both models makes it impossible to decisively state which model

outperforms the other in this performance measure. Despite this we can state that,

in general, both models have an increased mission success rate, meaning a higher

rate of reconnaissance assets returning from a mission with useful information, as
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Figure 6-7: Robust Solution Std. Deviation - Ellipsoidal Uncertainty
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robustness is added into the model.

Based on this analysis we conclude that our model using ellipsoidal uncertainty

sets outperforms our model using polyhedral uncertainty sets in terms of solution

quality. The solutions produced by the model using ellipsoidal uncertainty sets con-

sistently achieve higher feasibility rates with less cost than the solutions produced

by the model using polyhedral uncertainty sets. Both models also reduced solution

variability as robustness was added into the model, but in an inconsistent manner. In

operational terms these results suggest that reconnaissance plans developed by our

model using ellipsoidal uncertainty sets will have greater risk reductions to assets

and more consistently successful missions than plans generated by our robust model

using polyhedral uncertainty sets, our deterministic model, or human planners.

6.3.4 Solution Quality Under Varying Levels of Uncertainty

When developing our models we made certain assumptions about the amount of

uncertainty in the risk and information value parameters. We chose values for the
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Figure 6-8: Robust Solution Std. Deviation - Polyhedral Uncertainty
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f̂ict, f̂nc, r̂jic, and r̂jnc parameters that we felt represented the half-length of the range

in which we expected, with high confidence, that the true values of these parameters

would take. Specifically, the f̂ict, f̂nc, r̂jic, and r̂jnc parameters encompass a range

that is two standard deviations from the nominal value. Meaning, if we assume a

normal distribution for each parameter, we estimate that roughly 95% of the time

the true, realized value of our parameters would fall within our chosen intervals. In

our simulations we assumed that the values we chose for these parameters were a

reasonable representation of reality. However, in a real world operational situation

it is possible that these assumptions are inaccurate. For this reason we now present

an analysis on the stability of our robust and non-robust solutions as simulated

parameter uncertainty is varied.

In this test we first solved our models under a certain assumption of the level of

uncertainty in the parameters, we term this “ideal” uncertainty. We then varied the

value of uncertainty in our simulation to understand how solution performance was

effected. In order to compare our robust model based on polyhedral uncertainty sets
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and our robust model using ellipsoidal uncertainty sets we tested solutions from each

model that had similar performance in simulation, in terms of mean total information

value, information value standard deviation, and solution feasibility, under “ideal”

uncertainty; meaning the realizations of our uncertain parameters were likely to fall in

the range we predicted. We also include the solution performance of our High Priority

algorithm, deterministic model, and of our model using ellipsoidal uncertainty sets at

robustness level of Θ/Ψ = 1.0 that was highlighted in Section 6.3.2 for comparison.

The solution performance for these points under “ideal” conditions are depicted in

Table 6.4.

Table 6.4: Performance of Comparable Solutions of Both Robust Models Under “Ideal”
Uncertainty

Model Mean Std. Dev. % Feasible Γ/Θ Φ/Ψ
Deterministic 38.3 0.800 27.1% N/A N/A
High Priority 28.5 0.989 60.2% N/A N/A
Robust - Ellip. 37.0 0.767 100.0% 1.0 1.0
Robust - Ellip. 37.9 0.782 38.0% 0.1 0.1
Robust - Poly. 37.6 0.810 36.0% 0.06 0.06
Robust - Ellip. 37.8 0.782 61.2% 0.2 0.2
Robust - Poly. 37.4 0.804 58.1% 0.09 0.09

Figure 6-9 shows the feasibility performance for each of the solutions in Table 6.4

as the level of uncertainty in our parameters is varied during simulation. The x-axis

in Figure 6-9 represents the multiplicative factor used in simulation of the uncertain

parameter standard deviation we assumed when generating our solutions. There-

fore 1 depicts solution performance when the level of uncertainty in our parameters

during simulation is “ideal”, meaning it equals what we assumed when developing

our solutions. The value 2, for example, represents a parameter distribution in sim-

ulation with twice the standard deviation than we assumed, and values less than 1
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represent less uncertainty in simulation than we originally assumed.

Figure 6-9: Solution Feasibility Under Varying Levels of Uncertainty
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Figure 6-9 clearly shows that our robust solutions provide higher quality solutions

than our deterministic model when underestimating the level of uncertainty in our

parameters. The results for robustness level of Θ/Ψ = 1.0 are particularly encour-

aging. For a cost of around 3% in mean information value we can underestimate the

uncertainty of our parameters by a factor of three and still achieve a greater than

50% feasibility rate. Our non-robust model does not achieve this level of feasibility

even when we know the exact amount of uncertainty in our parameters. When we

compare the stability of our two robust model solutions we see that in both cases we

tested, the solution derived using ellipsoidal uncertainty maintained a higher level

of performance as parameter uncertainty was increased than its counterpart derived

using polyhedral uncertainty. Similar, although less striking, performance is seen in

solution variability as uncertainty is increased in our simulation.

Also of interest is the performance of the High Priority algorithm solution com-

pared to our deterministic and robust solution performance. The High Priority
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solution performs slightly better in this metric when compared to our deterministic

solution and robust solutions with similar feasibility rates under “ideal” conditions

(Ellip.-0.2 and Poly.0.09). However, just as before, when we consider the cost in ex-

pected information value to achieve this slight performance advantage we still must

conclude that our deterministic and robust models provide higher quality solutions

overall. Furthermore, our robust solution with robustness level of Θ/Ψ = 1.0 pro-

vides significantly better solution stability than the High Priority algorithm solution

at dramatically less cost in information value. This example implies that solutions

derived from our models will nearly always outperform human generated solutions.

Overall, these results mean that by using our robust models to develop recon-

naissance plans military planners can ensure better mission results compared to non-

robust and typical human planning methods, even if they seriously misjudge their

knowledge of the enemy and the battlefield.

6.3.5 Solution Time Performance

One of the appealing attributes of the robust optimization techniques used in this

paper is that they preserve the tractability of our model. This is important as

reconnaissance planning is generally conducted in a time constrained environment.

If our robust models cannot be solved in a reasonable amount of time they will not

be useful in application despite their significant improvement in solution quality.

Therefore a comparison of the computational demands of our models is necessary.

Figure 6-10 displays a comparison of solution times for our deterministic and

robust models. The data points used for comparison in Section 6.3.4 are used in

Figure 6-10 to show the differences in solution progress over time, in seconds, be-

tween solutions from our model using ellipsoidal uncertainty sets and from our model
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using polyhedral uncertainty sets with similar performance. The results depicted in

Figure 6-10 were derived by solving our models using Gurobi 5.0.2 on a computer

with 8xIntel Core i7-860(2.8GHz) processors and 16GB of memory.

Figure 6-10: Solution Time Comparison
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Understandably the deterministic model solves considerably faster than the more

complex robust models, especially when solving to proof of optimality. However,

when one considers the 3% relative optimality gap solution times we see that the

robust models do produce high quality solutions in a reasonable amount of time. In

fact, in all cases we tested the solver reached solutions within 5% of optimality in

under 300 seconds and in most instances, our robust models reached solutions within

3% of optimality in under 300 seconds. Even better performance, with respect to

finding the optimal solution, was achieved when the solver was set to prioritize

finding feasible solutions over proving optimality. Between the two robust models

the polyhedral model generally reached the optimal solution and proved optimality

faster than the ellipsoidal model. However, this advantage was too inconsistent

between tests, as can be seen by the robustness level Θ/Ψ = 1.0 results, to provide a
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definitive explanation of the extent of the polyhedral model’s dominance in this area.

Despite this, our results show that both the polyhedral or ellipsoidal robust models

can generate high quality solutions in a time constrained, operational environment.

We can reduce solution times further by using our fixed allocation model. Ta-

ble 6.5 illustrates the trade-offs of using the robust fixed allocation model as opposed

to our standard robust models. The table shows a selection of robust fixed allocation

and robust model solutions that have similar performance in solution variability and

feasibility. The column “Solution Time” in the table depicts the time, in seconds,

for the solver to prove optimality of the solution. The columns “5% Time” and “3%

Time” refer to the seconds required for the solver to achieve a 5% and 3% relative

optimality gap, respectively.

Table 6.5: Fixed Allocation Model Solution Time Comparison

Model Mean
Std.
Dev.

% Feasible
5%
Time

3%
Time

Solution
Time

FA Deterministic 34.1 0.762 64.5% 0.2 0.2 0.2

FA Robust - Ellip. 34.1 0.762 91.4% 2 2 2.8
FA Robust - Poly. 34.1 0.762 91.4% 0.2 0.2 0.2
Robust - Ellip. 37.5 0.786 90.4% 101 431 4536
Robust - Poly. 36.9 0.808 88.9% 29 356 2712

In this case both of the robust fixed allocation models reached identical solutions

in under three seconds. It is worthwhile to note that solution times to optimality

remained under eight seconds for all fixed allocation models tested. The standard

robust models took around 45 minutes and over an hour to prove optimality of solu-

tions with similar standard deviations and feasibility to the robust fixed allocation

solutions. This impressive reduction in solution time to optimality comes at a cost of

expected information collected, as can be seen by the lower mean total information

values of the fixed allocation models.
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These results do not discount the usefulness of our standard robust models. As

can be seen in Figure 6-10 and Table 6.5 high quality solutions (within 5% of opti-

mality) can be achieved within a few minutes using our standard models. We propose

both our standard and fixed allocation models in order to provide military planners

more flexibility when conducting operations. In an environment where higher qual-

ity solutions are more important than producing an immediate plan, a planner can

chose to use our standard robust models. If the planner is subject to severe time con-

straints and optimality is less important, he can still generate multiple high quality

plans for consideration using our fixed allocation robust models.
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Chapter 7

Conclusions

We have shown that robust optimization using the techniques described in Bertsi-

mas and Sim [9] provides an effective, flexible, and tractable method to model the

TRAAP with uncertainty. Most importantly we have demonstrated the ability of

our robust models to reduce the risk exposure of soldiers at a minimal cost to ex-

pected information value. Although this research is only a small contribution in the

area of reconnaissance planning, we feel that it presents a solid case for using robust

optimization in future work in this area.

7.1 Summary of Results and Contributions

An overview of our contributions and findings is outlined below.

� We propose a deterministic integer optimization formulation of the Tactical

Reconnaissance Asset Allocation Problem (TRAAP). The inputs to the de-

terministic model can be derived from the outputs of the Military Decision

Making Process (MDMP) allowing simpler implementation into the current
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Army planning methodology.

� We introduce two algorithms that produce reconnaissance plans representative

of a typical plan developed by a human planner under time constraints. The

algorithms model the two typical approaches of reconnaissance planners. The

first algorithm attempts to focus as many assets as possible on collecting on

the NAIs with highest expected information value per time period. The second

algorithm seeks to conduct reconnaissance in as many NAIs as possible by

minimizing the total number of assets assigned to collect in an NAI.

� We propose two robust extensions to our deterministic model. The first ex-

tension models uncertainty using a polyhedral uncertainty set motivated by

the central-limit theorem. The second extension models uncertainty using an

ellipsoidal uncertainty set based on the Euclidean Norm. The resulting ro-

bust formulations are mixed integer linear and second order cone problems,

respectively.

� We propose special cases of our deterministic and robust formulations that

prohibit assets from conducting transitions during NAI collection windows.

We then show that our Fixed Allocation models drastically improve solution

times while still producing quality solutions.

� We show that both solutions derived using our deterministic and robust models

significantly outperform solutions generated using our human planner approx-

imation algorithms. The human approximation algorithms provide marginal

improvement in certain performance measures, but at a prohibitively larger

cost in expected information value collected.
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� We show that our robust models consistently produce higher quality solutions

than our deterministic model. Our results imply that by using our robust

models a commander can trade a small reduction in expected intelligence in-

formation to dramatically reduce the risk exposure of his soldiers compared

to our deterministic and human approximation models. This is true even if

planners seriously underestimate the level of uncertainty of their parameters.

� We show that our robust model using ellipsoidal uncertainty outperforms our

model using polyhedral uncertainty in terms of solution quality. However, this

improved performance comes at a cost of generally longer solution times.

7.2 Future Work

Here we present some recommendations for future work in the area of robust recon-

naissance planning.

� Validate models using data from training centers such as the NTC or from

operations in Iraq and Afghanistan. The US military has developed and exe-

cuted innumerable reconnaissance plans in both combat situations and train-

ing. In many circumstances, especially at training centers such as the NTC,

the military has kept detailed records of the effectiveness of these plans after

implementation. This information could help validate our models by confirm-

ing assumptions and highlighting areas for model improvement. In this thesis

our testing was based on a scenario using contrived data. Although we took

measures to make this scenario as realistic as possible, only data from real

world military operations can truly confirm the utility of our models.
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� Develop methods to more accurately quantify uncertain parameters. A signifi-

cant hurdle to implementing our robust models is the difficulty in estimating

values for our uncertain parameters. Although we showed that our models still

provide quality solutions even if we drastically misjudge our uncertain parame-

ters, solution quality in this case still suffers. Further research using operational

data from Iraq and Afghanistan could be done on developing formulas to better

guide planners on estimating uncertain parameters in our models.

� Extend testing to different types of operational scenarios. Our testing was

completed using an operational scenario representing a battalion level security

and counterinsurgency operation in an area similar to Afghanistan. Further

testing could be done on model performance when using scenarios with varying

conditions. For example, how does increased asset transition times in a very

large area of operations effect solution quality? Other scenario factors such as

number of NAIs, number and type of assets, and length of planning horizon,

among others, could all be varied to examine their impact on overall solution

performance.

� Evaluate solution quality when adding and changing scenario uncertainty. In

our scenario we made certain assumptions regarding the type of uncertainty

in our models and scenario. Within the scenario, for example, we assumed

that all uncertain parameters were normally distributed. Further testing using

other symmetric distributions would show the versatility of our robust models.

Additionally, we only assumed uncertainty in our information value and risk

parameters. Extensions to our robust models incorporating uncertainty in

asset availability, weather effects, and unit transition times could enhance the

applicability and usefulness of our models.
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� Compare our robust TRAAP models to TRAAP models developed using dif-

ferent robust optimization approaches. In this thesis we only considered the

Bertsimas and Sim approach to robust optimization. This is not the only

method to account for uncertainty and a comparison with other approaches,

such as those discussed in Section 2.3, could illustrate certain conditions when

other methods provide higher quality solutions.

� Apply a heuristic approach to developing solutions to the TRAAP. Although

heuristics do not account for uncertainty, it still may be possible to develop

a heuristic that generates high quality reconnaissance plans with some robust

characteristics. A heuristic approach could significantly improve solution time

and avoid the use of an optimization solver, making operational implementation

much easier.
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Appendix A

Abbreviations and Acronyms

Abbreviation/
Acronym

Term

AO Area of Operations
CCIR Commander’s Critical Information Requirements
CDR Commander
COA Course of Action
GB Gigabyte
GHz Gigahertz
HMMWV High Mobility Multipurpose Wheeled Vehicle
IEEE Institute of Electrical and Electronics Engineers
ISR Intelligence, Surveillance, and Reconnaissance
LP Linear Program/Linear Programming
MDMP Military Decision Making Process
MILP Mixed Integer Linear Program
MMS Mast Mounted Sight
NAI Named Area of Interest
NTC National Training Center
Per Time Periods
PLT Platoon
PIR Priority Intelligence Requirements
SOCP Second Order Cone Problem
SWT Scout Weapons Team
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Abbreviation/
Acronym

Term

TRAAP Tactical Reconnaissance Asset Allocation Problem
TRADOC Training and Doctrine Command
UAV Unmanned Aerial Vehicle
US United States
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Appendix B

Sets, Parameters, and Variables

Type Symbol Description Unit Min Max

Sets

J set of all assets - - -
K set of all asset types - - -

B ⊂ K set of asset types subject to
asset transition penalties

- - -

L ⊂ K set of asset types subject to
endurance limits

- - -

Ak ⊂ J set of assets of type k - - -
I set of all NAIs - - -
C set of all asset configurations - - -
T set of discrete time intervals - - -

Ti ⊂ T set of time intervals when
missions in NAI i can be ex-
ecuted

- - -

N set of all missions - - -

Parameters

akic quantity of asset type k in
NAI i configuration c

Units 0 2

f̄ic point forecast of the infor-
mation value per time pe-
riod when executing mission
in NAI i in configuration c

- 0.0 ∞

Continued on next page
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Continued from previous page
Type Symbol Description Unit Min Max

Parameters

f̂ic half-length of the informa-
tion value range forecast
centered at f̄ic

- 0.0 ∞

mj risk budget for asset j - 0.0 ∞
r̄jic point forecast of the accu-

mulated risk per time pe-
riod of asset j when execut-
ing mission in NAI i in con-
figuration c

- 0.0 ∞

r̂jic half-length of the accumu-
lated risk range forecast cen-
tered at r̄jic

- 0.0 ∞

eki1i2 time periods required for as-
sets of type k to transition
from NAI i1 to NAI i2

Hours 1 4

sk maximum consecutive time
periods assets of type k can
conduct reconnaissance

Hours 2 9

α information value asset tran-
sition penalty constant

- 0.0 1.0

β time periods asset transition
penalty is in effect following
an asset transition

Hours 0 4

Γ budget of uncertainty for in-
formation value (Polyhedral
Uncertainty)

- 0.0 ∞

Φj budget of uncertainty for
risk for asset j (Polyhedral
Uncertainty)

- 0.0 ∞

Θ budget of uncertainty for in-
formation value (Ellipsoidal
Uncertainty)

- 0.0 ∞

Ψj budget of uncertainty for
risk for asset j (Ellipsoidal
Uncertainty)

- 0.0 ∞

Continued on next page
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Continued from previous page
Type Symbol Description Unit Min Max

Variables

xjict Binary: asset j assigned to
mission in NAI i in configu-
ration c at time t

- 0 1

yict Binary: mission in NAI i ex-
ecuted in configuration c at
time t

- 0 1

wit Binary: a mission in NAI i
is subject to an asset transi-
tion penalty during time t if
executed

- 0 1

pict Binary: mission in NAI i ex-
ecuted in configuration c is
subject to an asset transi-
tion penalty during time t

- 0 1

ρj dual variable (information
value)

- 0 ∞

φjic dual variable (information
value)

- 0 ∞

λjic dual variable (information
value)

- −∞ 0

µ dual variable (risk) - −∞ 0
νic dual variable (risk) - −∞ 0
γic dual variable (risk) - 0 ∞
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