
A First Course in Software Engineering for Aerospace Engineers

Kristina Lundqvist, Jayakanth Srinivasan
Department of Aeronautics and Astronautics

Massachusetts Institute of Technology
{kristina, jksrini}@mit.edu

Abstract
Software is a critical component of mission capability in all aerospace systems. This

capability is realized directly through the use of onboard software, and enabled through the
use of software on ground support systems. Students attending an aerospace engineering
program come with a highly diversified background in software development ranging from
novice user to expert programmer. A first course in software development has to account for
the diversity, and as an outcome provide both a common vocabulary, as well as a common
baseline of skills. This paper presents our learning from designing and teaching such a
course for aerospace engineering undergraduates.

1. Introduction
Aerospace systems are ever increasingly becoming dependent on software components.

The Task Force on Defense Software [11] estimates the percentage of capability delivered by
software in a modern combat aircraft, such as the F22, to be 80%. The existing curriculum in
aerospace engineering does not effectively address the need for engineers who are well versed
in both the foundational disciplines in aerospace such as fluids, structures and propulsion as
well as software design, development and sustainment. The department of Aeronautics and
Astronautics at MIT made Aerospace Information Engineering a strategic thrust in 1998 [4]
to address this urgent need. Since the decision was made, a number of courses in Aerospace
Information Engineering have been offered in the department, ranging from digital
communication to artificial intelligence. There was however, a lack of a “first” course that
would provide a common launch platform for the students on which they could build more
detailed knowledge. There were attempts made to offer a foundational course in the three
years prior to the course described in this paper, but they had mixed success.

In spring 2003, the authors took responsibility for the course, and carried out a major
revision of both the contents of the course, as well as the teaching methods used. During a
series of retrospectives over the previous offerings of the course both with faculty and
students, some of the critical issues that had to be addressed were identified:

• The curriculum requirements for freshmen at the MIT School of Engineering do
not include a mandatory course in programming. Hence, Aero-Astro students came
into the course with a highly diversified background in software development
ranging from novice browser user to expert programmer.

• Previous offerings had used a Handy Board for robot programming as part of the
course. While almost all the students found building robots exciting, a majority
found getting their robots to work as expected quite frustrating, as they did not
have a strong background in low-level real-time programming.

Proceedings of the 19th Conference on Software Engineering Education & Training (CSEET’06)
1093-0175/06 $20.00 © 2006 IEEE

• Contextualizing software development in the aerospace context was challenging as
‘simple’ domain examples do not capture either the complexity of aerospace
software or illustrate the power of concepts like tasking.

There are three major contributions of this paper: first, we define the elements of a first
course in software engineering for undergraduate aerospace engineers based on the course we
taught entitled “Introduction to Computers and Programming;” secondly, we share our
learning from using ‘pair teaching’, code skeleton laboratories as the basis for problem sets,
as well as recitations and muddiest point of the lecture cards [8]; finally, we discuss the use of
term projects to contextualize the impact of software in the aerospace industry.

There has been significant work done earlier in terms of defining a first course for non-CS
majors. Shannon [12] presents a first course based around Lego robot programming using
python that can be used for both CS and non-CS majors. Powers [10] presents a two course
sequence around Java, however, given the limited use of Java in the aerospace environment,
porting the course structure into our context would have been challenging. Guzdial and Forte
[7] recently presented a design process for creating a first course for non-CS majors, and we
found a strong correlation to the approach we had used.

The remainder of this paper is organized as follows: in section 2, we discuss the overall
design of the course, and present the learning objectives as well as assessment methodology
used in the course; in section 3, we discuss the actual execution of the course, and highlight
critical learning points over the semester; section 4 presents the lessons learnt both during the
semester, as well as at the end of the course.

2. Course Design
The course contents were decided based on three factors: an analysis of existing offerings

within the School of Engineering at MIT; Discussions with industry partners and senior
faculty within the department, to determine the knowledge base that we wanted to build; and
finally a study of existing educational standards, specifically the Computing Curricula
Computer Science report [2], and the Ironman edition of the SWEBOK [6].

2.1. Course Content

There are six possible approaches to teaching a first course in computing: Imperative-first,
Object-first, Functional-first, Algorithms-first, Hardware-first or Breadth-first, depending on
the emphasis and sequence of courses taught. Existing introductory courses within the School
of Engineering fell into the first four categories. These courses however did not match the
needs of a broad breadth-first introduction that was needed for aerospace engineers. Denning
et al., [3] recommend in the “Computing as a Discipline” report, that “the first courses in
computer science would not only introduce programming, algorithms, and data structures, but
introduce material from all the other subdisciplines as well,” making sure that “mathematics
and other theory would be well integrated into the lectures at appropriate points.” This view
was strongly recommended in the original Computing Curriculum 1991 report [1], but
successful adoption of such a breadth-first course beyond the originators of the course itself
have been limited [2]. The elements of the computing curriculum chosen as part of our
breath-first course are shown in Table 1.

The SWEBOK defines ten knowledge areas that cover the complete software
lifecycle: Requirements, Design, Construction, Testing, Maintenance, Configuration
Management, Engineering Management, Process, Methods & Tools, and Quality. From
the perspective of our breadth-first course, the teaching focus was on the core lifecycle

Proceedings of the 19th Conference on Software Engineering Education & Training (CSEET’06)
1093-0175/06 $20.00 © 2006 IEEE

phases of Design, Construction and Testing. The enabling components of Requirements,
Processes and Management were illustrated through in class case discussions, as well as
problem sets, quizzes and the end of term project.

CS Body of
Knowledge [2]

Elements Covered in 16.070

Discrete Structures DS2 Basic Logic, DS3 Proof Techniques, DS5 Graphs and Trees

Programming
Fundamentals

PF1 Fundamental Programming Constructs, PF2 Algorithms and Problem Solving,
PF3 Fundamental Data Structures, PF4 Recursion

Algorithms and
Complexity

AL1 Basic Algorithm Analysis, AL3 Fundamental Computing Algorithms, AL5 Basic
Computability, AL7 Automata Theory

Architecture and
Organization

AR1 Digital Logic and Digital Systems, AR2 Machine Level Representation of Data,
AR3 Assembly Level Machine Organization, AR4 Memory System Organization and
Architecture

Operating Systems OS1 Overview of Operating Systems

Programming
Languages

PL1 Overview of Programming Languages, PL3 Introduction to Language
Translation, PL4 Declaration and Types, PL5 Abstraction Mechanisms

Software Engineering SE1 Software Design, SE3 Software Tools and Environments, SE4 Software
Processes, SE5 Software Requirements and Specifications, SE6 Software Validation

Table 1. Mapping 16.070 onto the Computing Curriculum 2001

2.2. Selecting the Programming Language

There is no consensus among computer science instructors about which language is best
suited for CS1 and similar introductory programming courses. The choice of programming
language should not matter much since many students are at a stage where they are still trying
to master the basic fundamentals of programming. The emphasis should be on problem
solving, algorithm development, logic thinking, and have good support for software
engineering concepts instead of the advanced features of the language. Most CS1 classes use
either Java or C++, and while these languages are very effective for implementing large non-
critical applications, their use in mission-critical aerospace applications has been limited. Ada
95 has been successfully used in the aerospace domain, and had a strong following in schools
with aerospace programs [5]. This teaching mass has since declined as Ada is no longer
mandated by the US Department of Defense as the programming language of choice for
developing software. However, there have been sustained efforts at the USAFA to continue to
use Ada as the introductory programming language [13].

Given that students taking the course will be working on large scale aerospace systems, our
requirements for selecting a programming language were based around:

• A history of successful use in large scale, mission critical aerospace applications.

• Compilers that enforce good development practices, strong typing and informative
pre-runtime error detection.

• Coding standards that accepted industry practice.

Proceedings of the 19th Conference on Software Engineering Education & Training (CSEET’06)
1093-0175/06 $20.00 © 2006 IEEE

• Language features that are necessary for flight certification (for example by the
FAA).

Ada 95 as a programming language met those requirements, and open source GNAT
compiler coupled with the AdaGide IDE provided a stable development environment.

2.3. Course Structure

The course was initially designed as a 12 unit course (which imposes a weekly workload of
twelve hours a week on the student) in a 3-0-9 format (three hours of lectures, no lab hours,
and nine hours of study outside the class room). The absence of laboratory hours was based
on an assumption that lectures would contain sufficient code skeletons that students could use
for their learning. This assumption required us to rethink how the course was taught, and is
further elaborated in sections 3 and 4.

The course was taught using 37 lecture hours, 11 recitations and one end of term project.
The lectures were portioned into six segments: Computer organization and architecture, Ada
95 constructs, Discrete Structures and Algorithms, Theory of Computation, Software
Engineering, and Introduction to Other Classes as shown in Figure 1.

Figure 1. Segmentation in Course Content

2.4. Learning Objectives and Measurable Outcomes

Concisely stated, the learning objective of the course is to provide the students with an
understanding of the fundamentals of computer science and to leverage the Ada 95
programming language for problem solving in the aerospace domain. The students were
assessed against six measurable outcomes as shown in Table 2. Both formal and informal
assessment methodologies were used to ensure performance against those outcomes. The
formal assessment occurred in terms of the graded problem sets (both written and
programming problems), case studies, quizzes and the final project. More informal
assessments were carried out in terms of oral presentations, in class participation and
retrospectives during office hours.

Computer
Architecture
14%

Ada 95
Constructs
21%

Algorithms
22%

Theory of
Computation
19%

Software
Engineering
16%

Introduction
to Other
Classes
8%

Proceedings of the 19th Conference on Software Engineering Education & Training (CSEET’06)
1093-0175/06 $20.00 © 2006 IEEE

Measurable Outcome Assessment Approach

Solve simple problems in computer science with a specific focus on digital logic,
number systems, proof theory, and algorithm analysis

WPS, Q

Gain an intuitive understanding of the process of programming: the cycle of
problem understanding, formulation, solution, and implementation

CS, CP, Q, FP

Translate the intuitive understanding to practical implementation using good
design practices and software tools

CS, CP, Q, FP, OP

Solve basic programming problems using straight line programs, iterative
constructs and recursion

CP, FP, Q

Develop and demonstrate a programming style that is accepted industry practice CP, FP, Q

Demonstrate an understanding of the impact of computer science on aerospace OP, ICP, R, Q

WPS: Written Problem Set CP: Coding Problem CS: Case Study Q: Quiz FP: Final Project
R: Retrospective ICP: In Class Participation OP: Oral Presentation

Table 2. Measurable Outcomes and Associated Assessment Approaches

3. Course Execution
The initial design of the course was based around three hours of lecture supported by nine

hours of study outside the classroom. As with the best laid plans, there was a lot of tweaking
and some outright modifications in the course over the semester. The major elements in the
course such as pair teaching, recitations and end of term projects remained relatively static;
problem sets and quizzes had to be tweaked in order to meet the pace of learning; and we had
to radically alter the class structure to enable the inclusion of laboratory hours. In the
subsequent subsections, we will address the three critical elements of the course execution,
namely, pair teaching, problem sets & recitations, and laboratories.

3.1. In-Class Pair Teaching

Teaching happens in a turbulent environment that involves a large number of people
providing real-time feedback. Like pair programming [9], pair teaching involves a duo
of instructors who develop a shared mental model and common awareness of the
environment in order to work more effectively. We decided to use pair teaching as the
means of leveraging our common knowledge base in computer science as well as to
exploit our individual domain expertise in Computer Systems and Avionics
respectively. The approach to making the teaching effective was to have one instructor
teach the lecture, while the other sat with the students, gathering feedback (observing
class reaction, and scribing questions asked/issues raised) as well as leading case
discussions (primarily asking leading questions around concepts). There is an initial
overhead involved in synchronizing mental models and a continued overhead in terms
of pre-lecture meetings, real-time lecture involvement and post-lecture debriefs;
however the benefits far outweigh the overhead, as problems get identified and often
addressed by the end of every lecture.

Proceedings of the 19th Conference on Software Engineering Education & Training (CSEET’06)
1093-0175/06 $20.00 © 2006 IEEE

3.2. Problem Sets and Recitations

The problem sets were designed prior to the start of the course. We had not accounted for
schedule slippage in terms of material we actually covered in class in a week, and minor
adjustments had to be made to account for the same. As the problem sets evolved to more
complex programming assignments, we saw a significant increase in the time students spent
on actual coding of the solutions (we tracked both grades and time spent per problem within a
given problem set on a weekly basis). On closer examination of the total time spent on the
problem set as a sum of time spent in design and time spent in implementation, and
correlating them to scores received for the design section of the problem set, we found two
clusters:

• Students that had high scores, and had spent the expected amount of time on the
design section, and a significant amount of time on the actual implementation.

• Students that had low scores, and had spent very little time on the design section,
and most of their time on the actual implementation.

We did a retrospective in the classroom, and identified that the students who scored poorly
in the implementation section were struggling with a combination of programming language
syntax, coupled with compilation and debugging tools usage. The creation of optional weekly
laboratory hours and mandatory recitations addressed this issue. To account for the students
who were creating very limited designs, we addressed the problem in two ways: Firstly, the
grading system was modified to provide increased weighting for the analysis and design
component in both problem sets as well as quizzes, and secondly problem solving approaches
were discussed both in recitations and as part of the weekly laboratory hour.

3.3. Laboratories

There was an implicit assumption made that the code skeletons provided in the lectures
would provide the needed foundation on which students could build on for both their problem
sets and their end of term projects. We rapidly found that given the varied programming
experience, and almost complete lack of any awareness about Ada 95 prior to attending the
course (see Figure 2), some mechanism was needed to enable the students to use the code
skeletons presented in the lectures as part of the basis for solving the weekly problem sets.

Figure 2. Experience Levels Using Programming Languages

Understanding Programming Background

0

5

10

15

20

25

30

35

40

Never Used Used on example
programs

Regularly Used

Level of Programming

N
um

be
r o

f S
tu

de
nt

s

Ada Other Languages

Proceedings of the 19th Conference on Software Engineering Education & Training (CSEET’06)
1093-0175/06 $20.00 © 2006 IEEE

Since the addition of laboratory hours took place after the course had already started, we
created four self-organizing teams that would use the lab depending on their schedule
openings. Each team was assigned two undergraduate teaching assistants who were
responsible for handing out the laboratory questions, the skeleton code created by the course
instructors, and at end of the session, provide them with at least one complete solution to
problem set. The laboratory problems were timed to take 45 minutes, leaving 15 minutes for
questions and discussions with the undergraduate teaching assistants. In addition to enabling
the learning of the students, the questions were designed to be used as a basis for solving the
problem set.

4. Lessons Learnt
There were multiple feedback loops put into place to capture lessons learnt both

while the course was being taught, as well as at the end of the course. An initial survey
was carried out to get an understanding of the background knowledge possessed by the
students in computer science and programming. This survey allowed us to reduce the
impact of some of the problems that we faced during the teaching of the term. A
standard end-of-term survey was carried out to assess the effectiveness of the teaching
and learning strategies employed throughout the course. Of the 38 students that took the
course for credit, 22 completed the survey and provided both quantitative as well as
qualitative assessments of various aspects of the course. A summary of the most and
least effective teaching and learning strategies is shown in Figure 3.

Two questions that were not included in the standard survey were assessments of pair
teaching and retrospectives. Pair-teaching enabled us to leverage complementarities in
our backgrounds and teaching styles, however it required both instructors to be on the
same page. The pre-lecture meeting ensured that near term objectives were clearly
understood, and allowed us to refine the lectures and cases to address specific issues.
The post-lecture briefing after every lecture allowed us to identify gaps in knowledge
and conceptual misunderstandings, as well as to address them proactively in the next
lecture. The retrospectives were used as part of in-class discussions with the entire
class, as well as in small teams/individually in office hours. The in-class retrospectives
allowed students to share opinions as well as learning with their peers. The learning
was often based on the trade publications and academic papers that the students read to
successfully scope their final projects.

As seen in Figure 3, the “muddiest part of the lecture” cards were not effective, as
the class was highly interactive, and more often than not, a case example or the
recitation effectively addressed the questions. The added laboratory hours were deeply
appreciated by students who did not have prior programming experience, and while
there were some logistical issues with getting the laboratory hours to run smoothly, we
believe them to have been instrumental in enabling the learning of our students.

The students were offered a choice of ten projects, all chosen from either currently
ongoing or recently completed aerospace systems. One of the authors created scoped
versions the systems in terms of project descriptions, and allowed the students to refine
the scope by performing a literature review covering academic papers as well as trade
journals. These projects were extremely effective in both getting across the impact of
software in aerospace, as well as enabling the students to gain a deeper understanding
of programming. One student quote in the qualitative segment of the survey said “the
project was good because I actually learned a lot about Ada during it”.

Proceedings of the 19th Conference on Software Engineering Education & Training (CSEET’06)
1093-0175/06 $20.00 © 2006 IEEE

Figure 3. Survey Elements Impacting Lessons Learnt

5. Acknowledgements
The authors would like to thank the students and undergraduate TAs that were part of the

first offering of the course in the form of 16.070 – Introduction to Computers and
Programming. Additionally, we take this opportunity to acknowledge the three anonymous
reviewers for their feedback.

6. References
[1] “Computing Curricula 1991”, ACM/IEEE-CS Joint Curriculum Task Force, ACM Press, New York, 1991.
[2] “Computing Curricula 2001 Computer Science”, The Joint Task Force of Computing Curricula IEEE
Computer Society Association of Computing Machinery, Dec. 2001.
[3] Denning, P.J., P.R. Young, “Computing as a discipline”, Communications of the ACM, 32(1):9-23, Jan. 1989.
[4] Department of Aeronautics and Astronautics Strategic Plan, Massachusetts Institute of Technology 1998,
available at http://web.mit.edu/aeroastro/www//about/index.html
[5] Feldman M.B., “Ada Experience in the Undergraduate Curriculum”, Communications of the ACM, Vol. 35,
No. 11, Pp- 53-67. 1992.
[6] “Guide to the Software Engineering Body of Knowledge (SWEBOK)”, Software Engineering Coordinating
Committee, Version. A project of the IEEE Computer Society, 2004.
[7] Guzdial M., A. Forte, “Design process for a non-majors computing course”, Proceedings of the 36th SIGCSE
technical symposium on Computer science education, February 23-27, 2005, St. Louis, Missouri, USA, 2005
[8] Mosteller, F. “The ‘Muddiest Point in the Lecture’ as a Feedback Device,” On Teaching and Learning: The
Journal of the Harvard-Danforth Center, Vol. 3, 1989, pp. 10-21, 1989.
[9] Nosek, J. T. “The Case for Collaborative Programming”. Communications of the ACM. March 1998: 105-108.
[10] Powers K.D., “Breadth-also: a rationale and implementation”, Proceedings of the 34th SIGCSE technical
symposium on Computer science education, February 19-23, 2003, Reno, Nevada, USA, 2003.
[11] “Report of the Defense Science Board Task Force on Defense Software”, Office of the Under Secretary of
Defense for Acquisition and Technology, Washington, D.C. 20301-3140, Nov. 2000.
[12] Shannon C., “Another breadth-first approach to CS I using python”, Proceedings of the 34th SIGCSE
technical symposium on Computer science education, February 19-23, 2003, Reno, Nevada, USA, 2003.
[13] Sward R.E., C. Martin, B. S. Fagin , D. S. Gibson, “The case for Ada at the USAF academy”, Proceedings of
the 2003 annual international conference on Ada: the engineering of correct and reliable software for real-time &
distributed systems using Ada and related technologies, p.68-70, December 07-11, 2003, San Diego, CA, USA,
2003.

Lessons Learnt

0

2

4

6

8

10

12

14

16

Case Studies Labs Project Recitation Mud Card
Survey Elements

N
um

be
r o

f R
es

po
nd

en
ts

Very Effective Effective Not Effective No Response

Proceedings of the 19th Conference on Software Engineering Education & Training (CSEET’06)
1093-0175/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

