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ABSTRACT

Due to tremendous fluctuation in the semiconductor market and rapid introduction of
competitive products, demand forecasts and capacity requirements are difficult to predict. To
meet rapidly fluctuating customer demand, manufacturers must have sufficient
manufacturing capability and flexibility.

Planning for variable demand is complicated by the need to forecast tool requirements that
are highly dependent on product mix. Lithography steppers (1-2 year lead-time, multi-million
dollar capital assets) are the most mix sensitive tools in wafer fabrication. This work seeks to
develop a model and improved business process to assess the impact of possible demand
scenarios on lithography stepper requirements.

The model has two primary components: an optimizer and an uncertainty simulator. The
optimization program calculates the minimum number of lithography steppers required to
support a given mix scenario. Automating the current process reduces the amount of time
required to assess various scenarios by over 70%, reduces the risk of errors, and provides
consistent analysis and data sharing across several business teams.

The model also introduces an innovative approach to including uncertainty in the tool
forecasting process. The model improves planning by taking into consideration uncertainty
in demand volume, mix, and production parameters. Historical forecast error is evaluated to
assess the uncertainty in forecasts and its impact on the mix sensitive tool sets. The work
seeks to both enhance future forecasting and provide a tool for improved decision making in
strategic long-range capacity planning.
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Chapter 1: Introduction and Overview

Over the past few years, shorter microprocessor product life cycles and fierce

competition in the industry have increased the difficulty in forecasting demand for

microprocessor chips. Semiconductor manufacturers typically maintain small or zero final

goods inventories of wafers to minimize the number of wafers rendered obsolete when the

demand pattern changes or a new product is introduced. Therefore, to meet the rapidly

fluctuating customer demand, microprocessor manufacturers must have sufficient capacity

and manufacturing flexibility. According to Bard et al [2], "for a given demand and planning

horizon, the general facility design problem faced by semiconductor manufacturers is to

decide how much capacity to build into their systems."

The difficulty in forecasting demand can also be attributed to the extensive

semiconductor supply chain. As described by a forecasting firm for the semiconductor and

related industries [1]:

"economic factors change and start to influence the purchase behavior of End-
Equipment customers. After some delay, the distribution channel, retailers and
wholesalers, feel the change in demand. After another delay, they change their
orders from OEMs. The latter revise their bookings of semiconductors and
peripherals, impacting the backlog of" microprocessors.

Academic research has proven that when people are asked to predict the future, they

tend to extrapolate the most recent past. Due to the long semiconductor supply chain, the

semiconductor industry, and in particular microprocessor manufacturers, are particularly

vulnerable. Forecasts of microprocessor demand are often based on extrapolations of

extrapolations made both up and down the supply network. Due to the multiplicative effects,

errors made in forecasts are compounded throughout the supply chain forecasts.

Correctly predicting and preparing for the market fluctuations have a significant effect

on a semiconductor manufacturer's bottom line. According to recent business journals [22],

one semiconductor manufacturer estimated the growth of the PC market to be 10% in the

year 2000. Accordingly, they cut capital spending in 1999 from $5 billion to $3.4 billion.

Instead, PC growth hit 18% and they had insufficient capacity to meet the increased demand

for their microprocessor chips. "The bad forecast may have cost [the manufacturer] more

than $800 million in lost sales [in 2000]. [A primary competitor, who] added capacity, grew its

processor share to 18%, from 14% in 1999."
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Semiconductor chip manufacturing is characterized by capital-intensive investments.

The manufacture of microprocessors involves four main steps: fabrication, sort, assembly,

and test. According to a 1999 industry trade journal, "Modern fabrication facilities (fabs)

being built today by such companies as Motorola, Intel and Advanced Micro Devices run to

more than 1 billion dollars, chiefly due to the high cost of machinery and the need for a

cleanroom environment."[23] The Semiconductor Business News predicts that the costs of a

new fabrication facility may reach $10 billion over the course of the next decade. Planning,

construction, and ramp-up to full production can require a 3-4 year lead-time.

As Jordon and Graves [8] note in a 1995 article, increasing manufacturing flexibility is

a key strategy for efficiently improving responsiveness to the market in the face of uncertain

future product demand. Process flexibility is achieved by product assignment decisions

including, which products are to be built at which plants and on which production lines. Since

more than 60% of the total cost of a fabrication facility is attributed to the equipment alone,

making efficient use of the machines is of great strategic importance.

1.1 Problem Description

Achieving a high degree of manufacturing flexibility and efficiency is very challenging

in the manufacture of semiconductor chips. Several key process steps in fabrication, sort,

assembly, and test are highly dependent on the product mix. The type of product being

manufactured can significantly affect the number of lithography, epoxy, burn-in, and final test

machines required to meet demand production. Swaminathan noted [25], tool requirements

are often planned so "that the tools have a high utilization while meeting the demand

projections." If the demand realized is less than projected in the coordinated demand

projection, there is lower utilization of the tools. Alternatively, shortages occur if the actual

demands are higher than forecasted or the product mix changes.

In fabrication, the lithography process is the most mix sensitive, and also the highest-

cost, longest lead-time tool set. Lithography stepper technology also changes rapidly.

Leading-edge manufacturers continue to adopt new technologies, further increasing the

uncertainty in planning tool capacity. According to the semiconductor industry journals [23],

the lithography exposure systems make up to 20% of the total cost of fabrication. If the total

cost of a fab reaches the predicted $10 billion over the course of the next decade, a

lithography bay could account for more than $2 billion of the cost. Today, industry averages

for lithography steppers estimate tool costs between $8 and $9 million dollars, with an

expected 20 to 30% increase in the cost of next generation 300 mm wafer exposure tools.
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The number of exposure tools can vary greatly depending on the product mix. Given

the intensive capital expenditure and the long-lead time, forecasting and assessing

lithography tool requirements is a strategic step in the overall capacity planning process.

The intent of this project is, therefore, defined as follows:

Develop and implement a model and accompanying business process to quickly and

easily assess the impact of various demand scenarios on mix sensitive lithography steppers

under demand uncertainty.

1.2 Introduction to Industry Partner

Intel Corporation is a semiconductor chipmaker that supplies the communication and

networking industry with a wide range of microprocessor products. Intel serves numerous

market segments including server, workstation, mobile, and flash.

In light of the tremendous fluctuations in the semiconductor market, Intel has a

dedicated team responsible for developing a long-range capacity forecast. Each quarter,

Intel's Strategic Capacity Planning (SCP) team publishes a 5-year forecast of manufacturing

capacity requirements for all fabrication, sort, assembly, and test facilities.

The Strategic Capacity Planning team works with the product divisions to estimate

demand for all market segments, including logic and flash products. They also evaluate

current and predicted manufacturing capabilities. By assessing capabilities, market

strategies, product revenues, and possible demand scenarios, SCP formulates a long-range

plan (LRP) or capacity strategy. Once ratified by management, the new capacity statements

and demand are published as the LRP Plan of Record.

Due to the complexity and variability in forecasting long-range demand, several 'what-

if' demand scenarios are developed each cycle. Scenarios may include a delayed product

launch, faster than anticipated growth of a market segment, or significant change in a

production parameter such as die size. The effect on overall capacity requirements is

assessed for those scenarios deemed to have highest likelihood of occurrence and the

greatest impact.

For process steps like lithography, epoxy, burn-in, and final test, the type of product

significantly affects the number of tools required. The most expensive, longest lead-time

fabrication tool set, a lithography stepper, is the most sensitive to product mix. A comparison

of two possible demand scenarios in the Q4 2000 cycle showed an increase of nine steppers

required to meet an aggressive launch of a microprocessor to support mobile market

8



demand. At an average tool cost of $8 million, this represents a potential $72 million

additional capital investment to support the second demand scenario.

Each LRP cycle, the SCP team needs to further evaluate scenarios that significantly

vary product mix, and hence mix sensitive lithography tool requirements. The team does not

currently have a tool or business process within SCP to quickly and efficiently evaluate

multiple scenarios. A subset of what-ifs, which they predict will have an impact on tool

needs, is evaluated through a time-consuming, manual process with the industrial

engineering team. Further, the current process does not take into consideration uncertainty

in the forecast and the financial impact of tool requirements to support different scenarios.

1.3 Approach and Methodology

The thrust of this project is the development of a model and improved business

process for analyzing the impact of various demand forecasts on mix sensitive lithography

steppers. The optimization tool calculates the minimum number of additional lithography

stepper tools required to support a given mix scenario, taking into consideration tool sharing,

availability, and cost. Automating the current process reduces the amount of time required to

assess various scenarios by over 70%, reduces the risk of errors, and provides consistent

analysis and data sharing across several business teams. In addition, the tool improves the

planning process by taking into consideration uncertainty in demand volume, mix, and

production parameters across the planning horizon. The optimizer is integrated with Monte

Carlo simulation software to assess the range of tool requirements given historical and

anticipated variability. Assessing the financial impact of preparing for different scenarios

enhances the decision-making capability in long-range capacity planning.

1.4 Project Goals and Measurements

The goals of the work included:
* Assessment of long-range planning processes in industry and commercial solutions

for capacity planning

. Development of a linear program model to determine the number of lithography tools

required to meet the demand for various possible demand scenarios

. Analysis of historical forecast error to assess uncertainty of future capacity forecasts

* Recommendation for an improved business process flow for assessing possible

demand fluctuations
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1.5 Thesis Structure

The remainder of the thesis is broken into four parts. The first part presents aspects

of semiconductor manufacturing relevant to the remaining topics. The second part highlights

current long-range capacity planning practices. The third section presents a methodology for

improvement through utilization of a linear optimization model combined with a variability

simulator using Crystal Ball®. The final section presents the model outputs and analysis of

the methodology and model as enhancements to the current business practices.

Chapter 1 provides a background and overview. Chapter 2 includes an overview of

the semiconductor manufacturing process, and more specifically the lithography process

steps. The current process of long-range capacity planning is reviewed in Chapter 3.

The framework for forecasting capacity requirements is covered in Chapter 4. This

chapter discusses both the process of assessing the impact of what-if demand scenarios and

the method for calculating tool requirements. Chapter 4 further defines the need for

improvements to the existing long-range planning practices and the methodology behind the

model. Chapter 5 provides a detailed explanation of both components of the model, the

optimization and variability simulator. Model validation and sample output results are

reviewed in Chapter 6.

A review of literature regarding strategic capacity planning practices and commercial

software solutions was also conducted as background to the methodology of the project.

Results of the literature review and benchmarking activity are included in Chapter 7. The

final chapter, Chapter 8, reviews and summarizes key findings.
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Chapter 2: Manufacturing Process Overview

With the preceding outline of the problem domain, this work can now introduce

microprocessor technology and an overview of the semiconductor manufacturing process.

This chapter also discusses the lithography process and explains the sensitivity of

lithography tool capacity to the product and mix of products.

2.1 Microprocessor Technology

Microprocessor devices are commonly referenced by the width of the transistor gates

on the chip. In a 2001 article [15], Dr. Marcyk of Intel described the evolution of Intel's

microprocessor devices. In 1993, Intel introduced a 0.50 micron' device, followed by a 0.25

micron device, and currently a 0.18 micron generation. In December 2000, Intel researchers

demonstrated the future capability of 30-nanometer (0.03 micron) transistors. The

demonstration of 0.03 micron capability indicates the possibility for continued scaling of

future production processes.

The term process generation or process technology is often used to refer to a family

of products with the same line width. Each new process technology generation results in

increased capital expenditure for production, decreased cost per function, and increased

complexity of processing and more process steps.

The transition between process generations typically occurs about every two years.

Intel co-founder Gordon Moore postulated nearly 35 years ago that a doubling of the

processing power would occur every 18 months. This became known as Moore's Law and

has become one of the key forces behind the rapid, continuous development in the

semiconductor industry. The pace of technological advancement continues to accelerate.

Typically, each process technology has followed a similar life cycle as the product

transitions from ramp-up to full-production to ramp-down. Given the rapid pace of

development, the life cycle of each process technology is becoming shorter.

Figure 1 shows actual production wafer starts per week data over an eight-year time

horizon2. Early process generation (n) had a slow ramp of increasing WSPW requirements

per quarter. Once the new process generation (n+1) is introduced, demand for the initial

process (n) gradually ramps down. In the more competitive market place with increased

competitive product offerings and faster speed of product introductions, the transition

between processes is changing. Now technologies are experiencing a significantly faster

One micron is about one-thousandth the width of a human hair.
2 Note: WSPW data has been scaled from the actual data to demonstrate the trend, but disguise actual figures.
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ramp up in demand. New products are introduced sooner, shortening the amount of time a

product can recoup development and production investments. The accompanying ramp-

down is significantly faster as demand transitions to the next generation processor.

-.- n -- n+ 1 -i-n+2

60000

50000

40000

30000

20000

10000

0
1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 1718 1920 21 22 2324 25 2627 28 29 3031 32

Quarter

Figure 1. Microprocessor technology life cycles

2.2 Semiconductor Manufacturing Process

Semiconductor manufacturing begins with raw silicon wafers3 and ends with

packaged integrated circuits. Integrated circuits (IC) are essentially electronic devices

consisting of many miniature transistors and other circuitry. Memory and logic products such

as microprocessors are examples of integrated circuits.

The semiconductor manufacturing process includes two main phases: fabrication

and assembly. During fabrication, multiple integrated circuits, often referred to as die4 or

chips, are produced on the wafer. In this phase, the wafers are sent through numerous

processes, often multiple times, and often in re-entrant cycles.

As outlined in Van Zant's [26] reference guide to microprocessor manufacturing, the

process of fabrication includes four basic operations in a seemingly infinite number of

sequences and variations. "They are layering, patterning, doping, and heat treatments." In

3 Wafer: a thin, usually round slice of a semiconductor material (silicon), from which chips are made.
4 Die: a unit on a wafer separated by scribe lines; after all of the wafer fabrication steps are completed, die are
separated; the separated units are often referred to as chips.
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the layering process, thin layers of insulators, semiconductors, and conductors are added to

the wafer. Numerous layers are added to each die to produce a functioning circuit.

In patterning, a series of steps result in the removal of selected portions of the

surface layers to create a pattern on the wafer. Through the multiple processes of layering

and patterning, the various physical parts of the transistors, resistors, capacitors, diodes, and

metal conduction system are formed in and on the wafer. Patterning is the most critical part

of the fabrication process and is done using a variety of photolithography steps. The most

critical dimensions of the device are set by the patterning operation and errors can cause

distortion or misplacement of patterns. Changes or defects in the electrical functionality of

the device can result from errors in the pattern.

Doping, the process of adding an element that changes the conductivity of the

semiconductor, and heating are the other primary processes. Heat treatments are used to

anneal materials, deposit or grow layers, or otherwise change material properties. Through

the process of fabrication, wafers repeat the layering, patterning, doping, and heating

processes numerous times to produce a highly complex, multi-layer semiconductor device.

Following the water-fabrication process the wafer will have hundreds of die. Each die

is electrically tested for electrical performance and circuit functionality. The testing process is

referred to as sort, and is an important test of the wafer yield, which helps prevent costly

packaging of non-functioning parts.

In the final step of the overall manufacturing process, good wafers are sent for

packaging and test. Through the packaging process, wafers are separated into individual

chips using high-precision diamond cutters and each working chip is placed in a protective

package to allow for the attachment of external connectors. Each product is then tested to

ensure operability and to determine performance characteristics. During the entire process,

die on the same wafer may develop different characteristics, such as microprocessor speed.

Classifying the various speeds from a given batch is known as "binning." After this stage, the

packaged integrated circuits are ready for shipment.

2.3 Lithography Process Overview

As indicated in the Semiconductor Manufacturing Overview, the process of patterning

is one of the most critical operations in semiconductor processing. The "wafers spend 60%

of the process time in the lithography area."[26] Photolithography or lithography is most

commonly used to identify this process of patterning. The following are definitions of terms

frequently used in the photolithography process:
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* Lithography: process of pattern transfer onto the wafer

" Photoresist: light-sensitive film spun onto wafers and "exposed" using high-

intensity light through a mask. Depending on the type of resist, the exposed (or

unexposed) photoresist is dissolved with developers. A pattern of photoresist

remains, allowing etching to take place in certain areas while preventing it on

other regions of the wafer.

* Stepper: a tool that aligns and exposes one (or a small number of) die at a time.

The tool "steps" to each subsequent die on the wafer.

The lithography process is also the most mix sensitive step in fabrication. Depending

on the die size for a given product or mix of products, the number of lithography tools

required to meet a given demand forecast can vary significantly.

Photolithography is a multi-step process in which the required pattern is transferred

from a mask or reticle onto the surface layer of the wafer, as shown in Figure 2. The wafer is

moved or 'stepped' into position under the mask and the desired circuitry image is transferred

to the wafer via ultraviolet light. Correct alignment of the image patterns and the precise

dimensions of the image are essential to the functioning of the device.

UV light

Mask or
F _____~ reticle

Wafer with
multiple
layers

Figure 2. Exposure of the desired pattern onto the wafer

One of the most effective photolithography methods is a stepper. A reticle with the

pattern of one or several chips is aligned, exposed, and then stepped to the next site on the

wafer. A smaller reticle and smaller exposure area improves accuracy and reliability. For a

given reticle, the number of die exposed depends on the size of the die. As shown in Figure

3, each time the lithography scanner steps to a new position, an area of the wafer is

14



exposed. For larger die size products, only one die may be exposed per step, while multiple

small die can be exposed each step of the scanner.

The number of lithography tools required to meet the demand for a given product

depends on the number of good die out per tool. For larger die size products, fewer die are

exposed and therefore more wafers must be run to meet a given die demand. To increase

the number of die produced in a given time period, either the die size can be reduced or

more machines can be added.

Step
One Step

Two Step
Three

Wafer

Die

Figure 3. Number of die exposed each step depends on the die and reticle size

Each family of microprocessors, and often each product within that family, can have a

distinctly different die size. Over the course of the product's life cycle, the size of the die may

also shrink as engineering continues to make enhancements to the product. Shrinking the

die size is a key strategic measure to increase the overall output production of core products.

Changes can also occur in the reticle's size and exposure accuracy to increase the output of

good die. For a large die size product, improving the stepper functionality such that two

versus one die is exposed per step will double production output, assuming the same

throughput efficiency.

Thus, we find that the number of lithography tools required to meet a given demand

can vary significantly depending on the die size for a given product or mix of products. Given

the sensitivity of tool capacity requirements, accurately forecasting demand levels and the

corresponding capabilities is critical. The strategic capacity planning process and the issues

addressed during the long-range planning process is discussed in the following chapter.
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Chapter 3: Strategic Capacity Planning Overview

Intel's Strategic Capacity Planning team is responsible for the development of the

long-range capacity plan for all Intel products and across all of fabrication, assembly, and

test. The organization's vision is to align Intel's supply networks to customers' needs while

maximizing shareholder value. Intel's production and capacity planning process, the

Strategic Capacity Planning team, and the long-range planning process are discussed in

Chapter 3. A more detailed discussion of calculating tool requirements and planning for

possible demand scenarios follows in Chapter 4.

3.1 Production to Long-Range Planning

The period of time from actual production build plans to long-range forecast

requirements can be broken into three segments as shown in Figure 4. Production build plan

is the shortest time frame and represents the actual in-plant production plans zero to nine

months into the future. The extended build plan is a longer-range production forecast,

typically from nine months to 24 months into the future. Long-range capacity requirements,

however, do not represent actual production schedules, but are overall forecasted capacity

needs nine to 60 months out. The time periods are further described in the following section.

Production
Build Plan (BP)

Extended Build Plan

Long Ran ge Plan (LRP)

0 months 9 months 24 months 60 months

Figure 4. Short-term production planning to long-range capacity forecasting

The length of the horizon and how often the long-range forecasts are made varies

across the industry. However, a typical long-range capacity requirements planning horizon

begins approximately two quarters out and extends 15 quarters into the future. The long-

range plan is based on predicted demand requirements and forecasted manufacturing

capabilities. The long-range capacity plans are typically developed over a rolling three-
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month time period, four times annually. The quarterly long-range plans may often reflect

significant changes due to the large demand fluctuations in the semiconductor industry.

The long-range planning period is a critical component of the semiconductor

manufacturer's strategy. Accurate forecasts of future demand requirements and the

corresponding manufacturing capabilities are essential to ensure manufacturing flexibility.

The semiconductor manufacturer has the most flexibility during the long-range planning

period to assess various market segments and prepare manufacturing capacity accordingly.

The long-range plan drives capital investment decisions including the development of new

fabrication facilities, assembly/test sites, and subcontracting arrangements.

An extended build plan reflects the planned production over the two-to-six quarter

horizon. During this period, there is less flexibility to react to changes in demand. Long-lead

time production equipment, such as lithography steppers, limits some manufacturing

flexibility within the extended build-plan. During the extended-build plan timeframe, decisions

about which products are produced at which plant and external sub-contracting

manufacturing can be made to react to changes in the forecasted product demand. Since

the build plan is close to the actual production timeframe, the plan is updated monthly, in

contrast to the quarterly long-range planning cycle.

The production planning cycle (referred to as the build plan horizon) typically extends

9 months into the future. During this planning horizon, the actual wafer start per week

production schedules, allocation of product production per fabrication facility, and

assembly/test routing decisions are made. As with the extended build plan, the build plan is

conducted on a monthly basis.

3.2 Strategic Capacity Planning Team Structure

The Strategic Capacity Planning (SCP) team is responsible for Intel's long-range

strategic capacity roadmap and production facility investment decisions. Each quarter, the

team assesses the 5-year forecasted product demand, requirements, product parameters,

factory parameters and capacity. The output is a roadmap ratified by management, which

includes the plan for all capital and building by factory and technology across all fabrication,

assembly, and test facilities.

As shown in Figure 5, the SCP team is divided into three primary teams and four

support teams. The Demand Information Team works with the product divisions to forecast

demand requirements. The Factory Capability Team (FCT) is responsible for assessing

current and predicted future factory capabilities. The Roadmap Analysis Team is responsible
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for incorporating the demand and factory capability forecasts to develop a 5-year plan for

wafer start capacity requirements across the entire Intel manufacturing network. Four

additional teams support these efforts, including systems, organizational development,

modeling, and finance.

[ CP anaer

F.toryg a p y P Systems & Tools

.F aoyLsn- g Business Pocesses

Orgarizatirnal

Factory Develpment
Capability Team Lead

Tearsj

Demand Modieling Team
lnfcrmation

TeamJ

~Team*

Figure 5. Strategic Capacity Planning organizational structure

3.3 Long-Range Planning Process

Through the long-range planning process, the forecasted demand is compared to the

current factory capability. As depicted in Figure 6, the gap between forecasted requirements

and anticipated capabilities is assessed. In the event of a shortfall in capacity between

demand requirements and current capability, decisions must be made as to which markets

will be supported and how much additional capacity can be added. A capacity roadmap is

developed that allocates the forecasted capacity to demand and determines committed

capacity levels.
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Determine Assess factory

forecasted demand capability

Identify gaps

Determine market Determine commit

strategies capacities

Develop strategic
capacity plan

Figure 6. Long-range planning procedure

Through the long-range planning process, both a committed capacity and a possible

upside scenario capacity plan are developed. The commit capacity is the published long-

range plan and includes production routings; it is a combination of current and forecasted

production capabilities. The demand fulfillment and production plans are made based on the

commit capacity roadmap. There is high confidence that the forecasted commit capacity

requirements will be met. In addition, a plan that reflects a possible upside potential is

developed for resource planning, space assessments, equipment requirements, headcount,

and material planning. This plan includes incremental opportunities such as converted

capacity availability and possible demand variations. It represents the target capacity to

which the supply side plans, but it contains some significant risks.

For example, for a new product with uncertain demand, the commit plan represents

the planned capacity capabilities and hence the committed delivery levels for that processor.

However, the commit capacity plan may be insufficient to meet potential upside demand.

The potential upside plan, therefore, represents the target capacity. The supply side, such

as raw material, subcontracting, and tool procurement, targets the higher capacity

requirements in preparation for the potential upside demand.

As shown in Table 1, several key strategic questions are addressed through the long-

range planning process. In the area of demand assessment, decisions must be made

regarding market strategies, possible demand forecasts, and predicted product parameters.

Factory capability assessments focus on current capacity, sub-contracting opportunities,

factory production parameters, equipment requirements, and product routing between

fabrication facilities. The final strategic capacity plan is determined by assessing the demand

versus current factory capacity. Several possible capacity plans are evaluated to determine

19



the equipment and capital impacts of different demand forecasts. In the process of selecting

and ratifying a long-range plan, needed for long-horizon procurement decisions, strategic

questions about target markets, process technologies, and financial planning are made.

Demand Assessment
Which products should be added and deleted from the long-range forecast?
What is the base case (most likely) demand forecast?
Which 'what if' demand scenarios are possible?
What are the predicted product parameters (such as die size, yields, and run rates)?

Factory capability assessment:
What capacity is and will be available?
Are there possible space constraints in the fab?
Is there sufficient sub-contracting capability?
What fungibility (tool sharing, reuse, and allocation) issues exist?
What are the forecasted factory production parameters?
Is there an impact on equipment requirements?
What is the most efficient product routing strategy?

Strategic capacity plan determination:
What gaps exist between the forecasted demand and factory capabilities?
Which demand scenario is the most likely?
What are our strategic market positions?
Which process technologies and products will be allocated capacity?
What are the financial impacts of the possible capacity roadmaps?

Table 1. Key strategic decisions in the long-range planning process

Through the quarterly long-range planning process, the Strategic Capacity Team

develops a capacity roadmap for all of Intel's products and across the fabrication, sort,

assembly, and test processes. Based on the capacity plan, strategic investment decisions

are made, including plant expansions, new plant construction, sub-contracting agreements,

and tool procurement. As discussed in Chapter 2, the steps in the process that are sensitive

to the die size of the product further complicate tool procurement. Lithography stepper

capacity is highly dependent on the product or mix of products. The current process of

assessing tool requirements and the impact of possible demand scenarios on tool

requirements is discussed in Chapter 4.
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Chapter 4: Framework for Forecasting Capacity Requirements

Through the long-range planning process, a WSPW capacity roadmap is developed

to meet forecasted demand projections. During the planning process, several strategic

questions are addressed such as, which products should be supported and how much

capacity must be added or reallocated.

In making such strategic decisions, numerous factors are considered, including the

impact to high-cost, long-lead tools like lithography steppers. The process of calculating

stepper tool requirements is described in the following chapter.

As previously discussed, the number of steppers required to meet a given demand

can vary greatly depending on the product. As a result, a comparison of the impact to mix

sensitive tool requirements for various possible demand scenarios must be assessed when

making strategic capacity decisions. The current process of forecasting demand scenarios

and the opportunities for improvement are outlined in Sections 4.1 and 4.2. A new model

and revised process flow are defined which address several shortcomings to the existing

procedures. The two-part model includes an optimizer to calculate the number of tools

required and a Monte Carlo simulation to assess the impact of demand uncertainty. The

details of the new model are covered in Chapter 5.

4.1 Calculating Tool Requirements

Numerous variables and levels of complexity must be considered when calculating

lithography tool set requirements. Within each process technology, there are several product

families comprised of hundreds of individual products. Each product family may include a

number of variations of a product, due to specific feature sets required per market segment

like workstation, server, or desktop.

Each of the individual products has a different run rate per lithography stepper tool

type. Further, for a given stepper tool, each product will require a different number of layers

on the wafer. Therefore, for the purposes of this model, the numerous individual products

are grouped into product 'buckets'. Product buckets are defined as those products within a

product family that have the same die size. Since each product within the 'bucket' has the

same die size, a run rate and number of layers for the product bucket is determined.

As shown in Figure 7, each process technology has individual product buckets, which

have a distinct number of manufacturing layers per wafer. In addition, each process
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technology has an associated tool set, a subset of tools per bucket, and a specific run rate

per tool type.

Process Lithography
Technology Tool Set

Product Subset of
Bucket Tools

Bucket
Bucket 4 ---------.---. . Layer Run
Layers Rate

Figure 7. Hierarchy of technologies and lithography stepper tools

An example of the process, product bucket, and tool relationships is highlighted in

Figure 8. For a given process technology, A, assume there are 4 product buckets (1-4). For

two tool types, X and Y, each product bucket has a different run rate and number of layers

that must be applied at that tool type.

Tool Type X Tool Type Y ...
Process Run Rate # of Layers Run Rate # of Layers
Technology A 1 33 3 53 8

2 43 4 54 2 ...

Product Buckets 3 40 8 23 1

4 35 1 19 5 _._..

Figure 8. Example of tool type product specific parameters

Within each process technology, there may be upwards of 30 individual product

buckets. To further scale the model, only a subset of buckets is used and all other products

are grouped in a 'Various' bucket with an assumed average run rate and number of layers.

The subset of buckets is selected based on a weighting algorithm that gives more weight to

near term WSPW requirements. For each process technology, four to five major product

buckets with higher near-term production requirements are used.
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Each process technology is manufactured on a given set of lithography tools. More

specifically, a layer on a product is applied in a specific lithography stepper. With each new

generation of microprocessor, an accompanying set of new-and-improved lithography

steppers is introduced. In general, older process generations run on older tools and at the

time of each new process generation, a new lithography stepper tool platform is introduced.

The allocation of each new manufacturing technology to a new process technology is often

referred to as a 'waterfall strategy.' Due to the high cost of the lithography steppers, tool

reuse and continued enhancement of tool capability is a priority.

Stepper tools may be used on a variety of process generations, but have different

production parameters for each process. Further, each product bucket within a given

technology has a different run rate on a tool. And at the most detailed level, each product

bucket layer has a run rate specific to a lithography stepper type. In summary, a given

lithography stepper can produce different product bucket layers within a product family at

different run rates.

When planning lithography stepper tool requirements, the peak demand is of the

greatest concern. At the peak, the most tools will be required. Both the timing and the

quantity of units demanded at the peak are the most difficult to forecast.

During the ramp-up of a process technology, new tools are installed to support the

peak production levels. When lithography tools are installed, several months of initial

qualification and testing are required before they attain the anticipated full-production level.

Tools in the final stages of qualification may have lower yields, lower utilization, higher

rework, or slower run rates. During tool start-up, yields are often lower, therefore; more

wafers must be started through the process to make up for the lower output. The result is an

increase in the capacity and corresponding tools required to meet demand. These tools are

often called 'spike' tools because the tool is not required once all equipment has reached full-

production capability. Planning for the potential spike in tool requirements further increases

the complexity of forecasting tool needs.

And finally, determining tool set requirements is complicated by the long-lead time

required to procure the equipment. Receipt of a tool often takes 12-24 months (4-8 quarters)

depending on the tool type. Forecasts of projected tool set needs often extend 8 to 16

quarters into the future. Given the long lead-time, extensive cost, and mix-sensitivity of the

tool, forecasting lithography tool set requirements is a key component of the strategic

capacity planning process.
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4.2 Forecasting Demand Scenarios

As Section 4.1 describes, each process technology includes numerous product

families, each comprised of hundreds of individual products. The product manager forecasts

demand for the complete range of products in a given technology.

The product manager's forecast is typically expressed as the thousands of units

required per quarter per product per process technology (Ku/qtr). The Strategic Capacity

Planning Demand team converts the forecasted product demand from Ku/qtr to wafer starts

per week (WSPW) required to meet the unit demand. The number of wafer starts required to

meet the desired demand varies based on each product's estimated die yield per wafer and

wafer yield.

A 'base case' forecast of wafer start per week requirements per quarter is developed.

The base case represents what planners feel is the most likely forecast for demand. In

addition to the base case, multiple scenarios are developed to assess the impact of possible

demand changes on capacity requirements.

During each quarterly cycle, several possible scenarios are developed and their

likelihood of occurrence assessed. The scenarios represent a possible 'what if' case for

aggregate process level volume fluctuations, product mix changes within and between

technologies, and the tradeoffs between flash and logic market segments. The scenarios

may also address the possible changes in production parameters. Further enhancements to

the product, such as a decreased die size, can significantly affect the products run rates and

yield, and hence the number of wafer starts per week required to meet the same level of

demand. For those scenarios with an anticipated higher likelihood of occurrence, further

study is conducted to determine the exact impact on capital equipment and the total wafer

start per week capacity required.

Creating the demand scenarios is a substantial task. A possible scenario may

include a faster ramp of one process technology. The associated impact on the other

technologies is also considered, and their demand forecasts adjusted accordingly. In

addition, when the demand for a logic processor changes, adjustments must be made in the

demand for the associated chip set.
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Common demand scenarios include:

" A cumulative growth rate in microprocessor demand.

. Delays in a product family launch, which in turn increases demand for the current

product and a mirrored effect on the associated chip sets.

" Increased demand in a specific market segment, which drives increased wafer

start requirement capacity for the product family.

" A change in a production parameter such as die size. A 5% decrease in the die

size of a product can significantly reduce the number of production tools required

and wafer start per week capacity required for the same number of wafer outs.

* A faster market penetration of a new product.

" Transition of a product from one process technology to another, which affects

both the current and new process technology platforms.

4.2.1 Challenges with current process

Each quarterly cycle, typically 25-30 'what-if' demand scenarios are identified. The

likelihood of occurrence and the level of impact are then assessed. As shown in Figure 9,

those scenarios with an assumed higher probability of occurrence and higher impact are

given priority for further evaluation.

Impact on capacity requirements

Low High

0

_j

.0

0D )
Focus on high probability, high

impact scenarios

Figure 9. Selection of critical scenarios for further evaluation

A primary area for further assessment includes the impact that each possible

scenario has on the mix-sensitive lithography tool set. As shown in Figure 10 below, the

scenarios are then reviewed with several industrial engineers responsible for the lithography
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manufacturing process. Given the scenario description, the team determines whether they
anticipate a significant impact on tool requirements. Five or six scenarios that are deemed to
have the greatest impact are further assessed.

The current process uses a spreadsheet model. Each cycle, all updated product die
sizes, run rates, product categories, and current tool inventory must be manually input to the
spreadsheet model. The number of tools for each scenario is calculated and comparisons
between the scenario and base case projections are evaluated. The result of the analysis is
a critical component to assessing which scenario should be considered for the long-range
strategic capacity plan. There are several opportunities for improvement of the current
process for assessing the impact on mix sensitive tool sets.

Determine, based on
Determine Review list of what-if description, Select top 5 or 6
demand -o scenarios with -+ which will have a that have an

scenarios industrial engineers significant impact on tool anticipated impact
requirements

Run spreadsheet Summarize tool Assess scenarios forrequirementmodel for selected forecasts for development of long-
scenaios selected scenarios range capacity strategy

Figure 10. Current process flow for assessment of what-if scenarios

The current calculation process is as follows:

For each scenario:

Per process technology (each stored as an individual spreadsheet model):
" Calculate mix and WSPW requirements per product category

e Update production parameters including run rate, utilization, and rework per
tool type

* Calculate the production outs per week per tool type
For all technologies:

" Copy-paste calculated number of die out per week per tool type per process
technology into the virtual factory model

" Update tool inventories per tool type

" Update layers required per tool type per technology

" Calculate the number of tools required to support demand
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Numerous cut-and-paste steps are required to calculate the number of tools required

to support a given 'what-if' demand scenario. Due to the time intensive effort required, only a

subset of the possible scenarios is evaluated each cycle, possibly overlooking a scenario

that has significant implications.

Each quarter, updated manufacturing and product parameter assumptions and

parameters must be entered into the spreadsheet model for each technology. Run rates,

utilization, and rework assumptions per product bucket per process technology per tool are

determined. These values are entered into the multiple spreadsheet models for each

process generation. A common data warehouse would significantly reduce data entry time.

The production parameters are used across multiple organizations. Therefore, it is essential

that common assumptions are made for the parameter levels. To ensure consistency, a tool

that draws upon a common database of quarterly production assumptions is essential.

Further, the industrial engineers complete the calculations, but the output is an

essential component of the long-range planning process. To increase the efficiency of the

analysis, the Strategic Capacity Planning team would benefit from having a tool within their

organization to quickly and effectively assess the impact.

However, the most significant improvement to the current what-if analysis procedure

is incorporation of an assessment of uncertainty in the forecasts. The current method relies

on a point estimate of WSPW per quarter over time. Figure 11 demonstrates that in reality,

the demand may fall within a given range of estimates.

3.

Predicted wspw demand

Range of actual wspw demand

Time (quarters)

Figure 11. Actual WSPW demand forecasts vary within a range of the forecast

A comparison of past forecasts to the actual production indicates there is significant

error in the demand forecasting. Figure 12 compares the actual wafer starts in the fab

versus the quarterly forecasts for that same production quarter for one process generation.

27



Each of the 20 plots is the long-range forecast created that quarter for the time period over

Q1'95 to Q1'02. For example, in Q2'96, a forecast was made for WSPW requirements for

the period Q4'96 to Q3'00. That forecast varied significantly from subsequent forecasts and

the actual production in that same time period. Note that all data is based on the actual

production WSPW data and the forecasts; however, the data has been disguised. The

volume of demand, the timing of peak demand, and the product mix within a process

technology are variable. The significant variation in the forecasts versus the actual

production should be included in the assessment of the impact of possible demand

scenarios. Further discussion of the forecast error and percentages is included in Section

5.3.

-*- Q2'95 -K- 03'95 -K- Q4'95 X- 01'96 -*- 02'96 -- 3'96 -*- 04'96 -W- 01'97 -X- 02'97

-*- 03'97 ---- Q4'97 -E- 01'98 Q2'98 03'98 - (4'98 01'99 -E- Q2'99 - 0- Q3'99
Q4'99 Q1'00 -4- Actuals

1.2

1.0 -

0.8
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0.4

0.2

0.0
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Production Quarter

Figure 12. Variability in quarterly WSPW forecasts for a given technology platform

The current method of forecasting also assumes a specific estimate of mix between

products A and B. As depicted in Figure 13, the actual mix of products falls within a range of

likely estimates and not at the exact forecast. For example, the current what-if for a slow

ramp of Product B is a point estimate of the percentage of Product A and Product B in the

overall mix. However, similar to the volume forecast, there is a range of possible demand

mixes, represented by the dotted line around the point estimate.
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Figure 13. Actual product mixes vary within a range of the forecast

A recent study by Swaminathan documents the importance of scenario planning that

takes into consideration demand uncertainty.[25] The researcher developed a model for

procuring semiconductor fabrication equipment using two heuristics, one based on the data

related to the cost of the tools and another based on the approach to procuring tools. A

comparison was made between the performance of the heuristic to the solution of a single,

point demand projection. The results "indicate that the heuristics provide effective solutions

even for large problems and their performance is superior to the solutions of the coordinated

planning approach."

Further, the study includes an optimization model with the objective of minimizing the

stock-out costs incurred. The model calculates the expected costs when a single demand

forecast is used versus scenario planning. The result demonstrates lower costs for scenario

planning than single demand procurement strategies. "It implies that planning for a set of

demand scenarios is always far more efficient than planning for a coordinated demand

forecast based on the most optimistic estimate of product demands."

A final area for improvement to the current process is the addition of an economic

options analysis for those scenarios with a high probability of occurrence and a high impact

on tool requirements. The decision matrix (Figure 14) shows that, when prepared for a

possible scenario, the return on being prepared must be compared to the cost of

unnecessary preparation if the scenario does not happen. Likewise, the tradeoff between

the cost of preparation versus the loss of not being prepared (having insufficient capacity to

meet demand) must also be weighed. A complete options analysis is an extensive, yet

valuable last step. Currently, complete financial assessments are conducted for a small
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subset of possible scenarios. As described in Section 6.3, an options analysis based on the

output of the model is an area for further study.

Impact on capacity requirements What if the scenario ...

Low High Happens Doesn't happen

0

.
0

L.

ta
0M

0

Focus on high probability, high Assess the financial impact
impact scenarios

Figure 14: Options analysis decision matrix for what-if demand scenarios

4.3 Model Overview

As discussed in section 4.2, there are significant opportunities for improvement to the

current method of calculating tool requirements and the associated business process. The

intent of the project is defined as follows:

Develop and implement a model and accompanying business process to quickly and

easily assess the impact of various demand scenarios on mix sensitive lithography

steppers under demand uncertainty.

The improved tool is comprised of two primary components:

0 Optimization routine to calculate tool requirements

0 Monte Carlo simulation to assess the impact of forecast errors

The high-level model architecture is shown in Figure 15. Wafer start per week

demand forecasts and the measure of forecast errors are entered into the model. The Monte

Carlo simulator selects a value for each variable within the defined probability distribution.

The optimizer calculates the number of tools required to meet those demand requirements.

The simulator selects another value for each variable and the optimizer recalculates. After

multiple trials, a distribution of the minimum number of tools required to meet a given

demand scenario is generated.
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Import WSPW Demand Forecasts

Enter estimated forecast error parameters

Monte Carlo 1 Optimization
Simulation Routine

The Model:
Selects WSPW requirements within forecasted range
Runs the optimization to calculate tool requirements

Repeats process multiple times to calculate statistical output

Output: Minimum number of tools required to
meet a given demand scenario

(mean number for given number of trials,
tool requirements within confidence intervals)

Figure 15. High-level model architecture

4.3.1 Revised process flow

The proposed process flow shown in Figure 16 leverages the new model to quickly

calculate and efficiently assess multiple what-if demand scenarios. Parameters such as die

size, utilization, rework, and run rates are updated in the common database. The user then

selects the desired scenario from the Strategic Capacity Planning database, runs a macro to

generate the individual product WSPW quarterly estimates, loads the forecast in the model,

and runs the model. The model is constructed such that the user can run either the optimizer

independently or include the variability assessment.

Run Macro to
Export "Fab calculate total Import volume Update variability Run the model to

Product Summary wspw by process data into assumptions for calculate the minimum
Report" from by quarter and by model volume and mix by number of tools

Planning Database product family by quarter required
quarter

Figure 16. Revised process flow for

assessment of scenario impact on tool requirements

As can be seen, the current process is tedious, even for the analysis of one possible

demand scenario. Complexity grows very quickly as the number of possible demand
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scenarios, products, processes, and lithography stepper tools increases. The problem is

further complicated as the demand forecasts are point estimates of the WSPW required for a

given product in a future production quarter.

By using a common database of parameters needed to calculate tool requirements,

the amount of cut-and-paste data entry is significantly reduced. A linear program quickly and

efficiency calculates an optimum solution within the given constraints. Finally, the solution is

further improved by including an assessment of the impact of the inevitable demand

uncertainty.
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Chapter 5: Forecasting Tool Requirements Model

Lithography steppers are the most capital-intensive tool-set in fabrication. Therefore,

assessing the impact on the number of tools required is an important step in making the

strategic decisions of which product mixes will be supported in the long-range capacity plan.

As outlined in Chapter 4, the model developed is used to compare the number of

lithography steppers required to meet various demand scenarios. The model has two

primary components, the optimizer to calculate the minimum number of tools necessary and

the simulator to assess the impact of demand uncertainty. Comparisons are typically made

between the base case demand projection and multiple what-if demand scenarios. The

model architecture, the structure of the optimization and simulation model, and key

assumptions are detailed in the following Chapter.

5.1 Model Architecture

The mix model includes both an optimizer and a Monte Carlo simulator. The

optimization is achieved with a linear program that determines the minimum number of

lithography steppers required to meet a given demand scenario.

What is linear programming?

'Linear programming is a mathematical technique for solving a broad class of

optimization problems that require maximizing or minimizing a linear function' [14] of decision

variables. An optimal solution to the problem requires that the values of the decision

variables satisfy a set of constraints.

The model described over the next several pages and pictured in Figure 17 is a linear

program using the ILOG OLP StudioTM, a programming environment that provides access to

a suite of optimization algorithms. The operator interface is in Microsoft® Excel with a

Microsoft® Visual Basic® macro written to call the optimization function. When the

optimization executable is called, the linear program retrieves data from the Microsoft®

Access database required for the optimization calculations. In addition, the optimization

routine checks to ensure that the user has the necessary ILOG licenses. The optimization

routine runs and the results are written to the database. The Visual Basic macro then

retrieves the stored results and displays the output in the Excel user interface.
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When the optimizer is used with the variability forecasting module in Crystal Ball®, the

above process is repeated for each trial of the simulator. The optimization model can be run

individually, however, with the forecasted WSPW demand imported directly by the user.

External Data
Optimization DB Sources

Server

User Workstation Optimization
DB

Spreadsheet

Monte Carlo A- DO

HELL

Optimization
Executable ODBC License Server

L ILOG
L icense Manager

Figure 17. Model architecture

5.2 Linear Optimization Model

5.2.1 General model assumptions

The model calculates the number of additional tools required at a virtual factory level.

The term 'virtual factory' refers to multiple distinct manufacturing facilities utilizing the same

process technology to fabricate a variety of different products. The multiple facilities operate

at many levels as a single combined facility. This model aggregates tool inventory across all

facilities. The solution does not take into consideration that the capacity of a tool at one

facility cannot, in application, be combined with the capacity of a tool at another location.

In addition, the model assumes an eight-quarter critical planning horizon. The model

output is, per each tool type, the number of additional tools needed per quarter over an eight-

quarter time horizon.

5.2.2 Model inputs

The model incorporates tool type, product, layer, and process level detail for each

tool. The following indices are used throughout the model:

0 i indicates stepper type
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. j indicates product type

* k denotes a particular layer of a product

The program relies on extensive data inputs, but relatively few operator inputs.

Data Inputs

There are several inputs that are required for the optimization function. The data is

stored in an Access database linked to the optimization routine:

" Product buckets per process. As explained in Section 4.1, multiple product

buckets (type j) are defined per process. The product buckets are assumed to

remain the same for the 8 quarter planning cycle.

. Manufacturing layers for each product bucket. Each product (type j) requires a

specific number of layers (k), which are applied in different tool sets (stepper

type i) for each technology. The number and type of each layer in a given product

bucket is also assumed to remain the same for each quarter.

Per quarter, for each of the first 8 quarters in the long-range planning cycle:

" Utilization and rework per tool per process. Every tool has a different level of

utilization and rework. For new tools, the utilization will increase over time and

the rework will decrease as the capability of the tool improves.

* Stepper run rates per layer per product bucket. Run rates for each product may

vary over time. For example, die size changes in the product can significantly

change the run rate for that product on a given tool. In addition, as a product's

manufacturing process improves, the run rate may decrease.

* Forecasted tool inventory in the virtual factory for each stepper type. The model

takes into consideration tool inventory currently in the virtual factory and tools that

are on order, but not yet in production. Therefore, for each quarter, the number of

available tools may change as new tools are put into production.

. Tool costs. The actual purchase cost of each tool is included. As new

technologies are introduced, several older machine types are no longer

purchased. For tools that will no longer be procured, the costs have been set at

one billion dollars; since the model seeks to minimize the number of new tools at

the lowest cost, it will not select those tools with the excessively high costs. The
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tool cost data is required per quarter as some tools may be phased out during the

8-month planning period of the model and new tools introduced.

Operator Inputs

The primary operator input is the estimated wafer start per week (WSPW) demand

per product per process. For each scenario that the user wishes to analyze, the forecasted

WSPW data must be imported to the model. The user exports a report from the planning

database that includes the process technology, product name, die size, and forecasted

WSPW by quarter. A macro was written to assign each individual product to the associated

product bucket. The macro then calculates the total WSPW requirements by bucket by

process by quarter. The WSPW data for each product bucket is imported into the

optimization model.

5.2.3 Optimization model operation

The goal of the model is to compare the impact of possible demand scenarios on mix-

sensitive lithography steppers. Given the cost versus the potential revenue of each product

mix, decisions will be made on target market segments and capital budgeting decisions. As

discussed in Section 4.1, determining tool requirements is a complex task, which depends on

numerous factors. Therefore, due to the level of complexity, several assumptions have been

made in the model. The model assumes a virtual factory and does not take into

consideration specific factory-level capabilities and requirements. The model is a helpful

planning tool, but is not intended for making factory and tool type and quantity specific

procurement decisions.

Decision Variables

Using the notation defined in the Model inputs section, the decision variables are:

0 xijk: the number of wafers running layer k of product j on stepper type i

. yi: the number of additional tools of type i required

Objective Equation

As the model is formulated, the objective is to minimize the number of additional tools per

tool type per quarter. Thus the objective equation minimizes the sum of the costs of

additional tools needed to support a given demand scenario. As Equation
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(1) shows, the objective function is based on a weighting factor, the cost of utilizing a given

stepper. The linear program takes into consideration the current tool inventory, capacity

required, and the run rate by layer by product by tool type. The weighting factor, therefore,

not only considers the cost of the tool, but also the efficiency of running each product per tool

type.

Objective Equation = min( wiyi (

Once the optimization routine has been called, an executable extracts the necessary

data for calculations from the Access data warehouse. Data includes current tool

inventories, tool capacities, product run rates, etc. A capacity consumption factor of running

one wafer on stepper type i of product j of layer k is calculated (cijk). The capacity

consumption factor is determined as a function of utilization, rework, and run rate metrics.

The wafer starts achievable (WSA) are also calculated for each layer k for products j

for each qualified stepper of type i, assuming that the indicated stepper type runs only layer

k. The capacity costs for each stepper for product j on layer k is determined. The cost is

normalized to generate a simple ratio of capacity costs per layer, with a base of 1.

Model Constraints

The optimization results are based on three primary constraints:

* The capacity used per tool can not exceed the capability of the tool. This

relationship is written as Equation (2):

CiikXijk sijk(ri + yi) V(j,k) (2)

Where:

cijk is the capacity consumption factor of running 1 wafer on stepper type i of

product j on layer k. This is a unit-less factor, based on a normalized value of the

costs of running multiple layers on a given stepper type.

ri is the inventory of stepper type i

sijk is the available capacity of stepper type i on layer k of product j
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* The sum of capable capacity on all layers over all tools must equal total demand

as shown in Equation (3):

xijk = pi V(j, k) (3)

Where p is the virtual factory requested starts (demand) of product j

. The number of wafers running specific layers of a product on a stepper type and

the number of additional tools required to meet the demand can not be negative.

Equation (4) represents the non-negativity constraint.

Xijk, Yi > 0 V(i, j,k) (4)

For each tool type, the minimum number of additional tools is calculated on a

quarterly basis. The minimum number of tools is above and beyond the number of tools

assumed to be in production for that quarter plus tools on order assumed to be in production

for that quarter.

Each quarter in the model is assumed independent. Therefore, for a given quarter,

the model uses the routine as formulated above to determine the optimum result. Then, the

optimization is repeated for each of the next seven quarters, over an eight-quarter time

horizon. For example, the output of the model may indicate a need for two additional tools of

Type X in Q2'02 and five additional tools of Type X in Q3'02. The five additional tools in

Q3'02 are independent of the Q2'02 forecast. In other words, if the 2 tools required in Q2'02

are purchased and installed in anticipation of the demand increase, then the number of tools

needed in Q3'02 is five less the two purchased the prior quarter, for a total of 3 additional

tools. The model was structured such that each quarter is treated independently so that

demand, production, and parameter variations can be made on a quarterly basis and the

output per quarter is actual number of additional tools needed, independent of tool changes

in prior quarters.
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5.3 Variability Model

5.3.1 Historical Analysis

Section 4.2.1 demonstrates the inherent inaccuracy of long-range forecasts. To

determine the magnitude of the forecast error, an analysis of the historical forecasts versus

the actual production was conducted. For the purposes of the analysis, the various

technology processes were divided into three categories: new processes (recently or soon

to be released technology platforms), ramping (technology platforms not yet at full-

production, but increasing in demand), and established (mature technologies at their peak or

ramp-down phase).

For each 'established' and 'ramping' process, the following were assessed:

" Evolution of the forecasts based on the life cycle of the product.

" Mean, median, and standard deviation in the forecasts.

" Average and normalized forecast error per quarter, calculated by comparing

forecasts over the past six years versus actual wafer starts per week.

* Forecast error in predictions 1, 2, et cetera, quarters in the future.

" Forecast error relative to the production volume.

The analysis of the forecast variation indicates that the level of variability is significant. The

variability is also highly dependent on the life cycle stage of the technology platform.

Historically, there is little direct correlation of demand from one quarter to the next. For

example, if there is a 5% increase per quarter for the past three, it does not necessarily imply

a 5% increase in the fourth quarter. Rather, semiconductor demand typically follows the life

cycle profile. Correlation does exist however, between the product mix and volume.

Increased demand for certain products will drive an increase in the overall demand versus a

tradeoff in demand between product lines. Actual production data was unavailable at a

product family level to assess actual versus forecasted error.

The following summarizes the variation between the process technology forecasts

and actual wafer starts per week.

Forecasting error increases dramatically as forecasts are made further in the future.

As shown in Figure 18, correctly predicting further into the future is more challenging due to

unanticipated demand fluctuations and new product introductions. The calculations are
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based on the total error in all forecasts made from Q1'95 to Q1'98 one to eight quarters into

the future. An average of 8 forecasts were used to determine this forecast error. Further

analysis of the error indicates that there is a slight positive bias. For this given process

technology, there is a tendency to overestimate the demand than under-estimated the

capacity requirements.
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Figure 18. Average forecast versus number of quarters in the future

Further analysis of the error showed that the error in predicting both the timing and

the actual WSPW at peak was larger than the error in forecasts for the ramp-up and ramp-

down of the process technology. Also of interest is the amount of error in forecasts of the

peak that are made one to eight quarters into the future. Figure 19 shows the normalized

percent error when forecasting the peak of the technology 1-8 quarters in the future based on

actual vs forecasted WSPW requirements for the peak of the technology. To generate this

analysis, forecasts made one-to-eight quarters into the future for the time period assumed to

be the peak of the technology were averaged. As the figure indicates, the amount of error in

the forecast of the peak increases as you forecast further into the future. And, compared to

the overall average of the error in the forecasts, shown in Figure 18, the error forecasting the

peak is larger.
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Figure 19. Average forecast error of the process technology's peak demand

The length of time of the technology's plateau is also highly variable. How long a

technology sustains peak production level varied between platforms. In some instances, the

technology began ramp down quickly as a new replacement platform was introduced.

Forecasts for the technology ramp-down have much less variation and seem to more

closely follow the standard technology life cycle. However, later technology platforms have

experienced a secondary hump, less than the peak technology volume. As demand for

microprocessors transitions from process generation (n) to (n+1), the associated chip sets for

the later technology (n+1) are often transitioned to the older platform (n). As a result, a slight

increase in demand or secondary hump is often noted late in the life cycle of process

generation (n+1).

The variation in the forecast appears proportional to the predicted volume. As the

volume of predicted wafer starts per week increased, the amount of error in the forecasts

increased proportionally.

5.3.2 Variability Model Architecture

The current forecasting process uses point estimates for the anticipated quarterly

demand. The most likely WSPW requirements, by quarter, by product family, by technology

are estimated. Given the difficulty in correctly predicting the actual amount, several what-if

scenarios are generated, based on a variety of possible alternative outcomes. However, as

discussed, the process can be further improved by defining each of the forecasts as a range

or set of values. Rather than predicting demand for Product A to be 5120 units in Q2 of

41



2003, the anticipated volume can range from 4000 to 6000 units within a given profile or

probability distribution.

A software package called Crystal Ball was used to generate forecast variation due to

the demand uncertainty. Crystal Ball extends the capability of the Excel spreadsheet model

by allowing the forecasts to vary within a given range of possible outcomes. The output is a

more meaningful statistical picture of the range of possible tool requirements given the

uncertain demand forecasts.

A Monte Carlo spreadsheet simulation was created to imitate the anticipated real-life

outcomes. The Monte Carlo simulator generates random values for uncertain variables over

and over to measure the effect of uncertainty. The term Monte Carlo simulation was named

for Monte Carlo, Monaco, where games of chance such as roulette and slot machines are

played in the numerous casinos. Similar to the random behavior of chance, the Monte Carlo

simulation picks variable values within a defined probability distribution at random to simulate

a model.

The output of the model includes the number of tools required and associated

statistics: mean number of tools, number required for given levels of certainty, the range of

tools needed, and the standard deviation. Because Monte Carlo simulation uses random

sampling to estimate the model results, these statistics will always contain some level of

error. Crystal Ball allows one to define a confidence interval around the outputs; a bound

that attempts to measure the error within a given level of probability. Confidence intervals

are used to determine the accuracy of the statistics, and hence, the accuracy of the

simulation. As more trials of the simulation are calculated, the confidence interval narrows

and the statistics become more accurate.

5.3.3 Variability Model Formulation

Three primary areas of forecast variability exist that directly influence the number of

tools required to meet a given demand scenario: WSPW volume, product mix, and

production parameters. Parameters include decreases in die size and increased machine

capability, which affect run rates, tool utilization and rework and hence tool output capability.

Scenarios are often generated each cycle to address such parameter fluctuations as

improvements in die sizes. Given that the scenarios specifically address such changes, die

sizes were assumed constant over the planning horizon of the model. However, the effect of

both volume and mix variation have been included in the model simulation.
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The input to the optimizer is the by quarter forecast for each product bucket within

each process technology. As shown in Figure 20 below', the WSPW forecast per technology

and the individual product family estimates are variable. All actual WSPW forecasts have

been disguised. In this example, there are two process technologies, A and B. Product

buckets within each process technology are represented as Product Bucket 1, 2, 3 et cetera.

WSPW Forecast Per Quarter
Q1 Y1 Q2 Y1 103Y1 JQ4 Y1 Q1 Y2 jQ2 Y2 103 Y2 JQ4 Y2

Process Technology A 286 " 29392 30026 29534 29443 29384 29014 28142

1 4036 4221 4294 4025 3832 3518 3020

Product Buckets 2 309 236 3343 3345 3484 3525 3559 3431

3 7454 7706 7748 7568 7457 7455 7381 7254
4 14049 14343 14714 27 14477 14572 14556 14437

Product Mix % K 1 14.10% 13.97% 14.06 14.54% 13.04% 12.13% 10.73%
2 10.79% 11.01% 11.13% . 11.83% 12.00% 12.27% 12.19%
3 26.04% 26.22% 25.80% 25.62% 25.33% 25.37% 25.44% 25.78%
4 49.070/ 48.80% 49.00% 48.51% 49.17% 49.59% 50.17% 51.30%

Process Technology B 260 26873 2706 28523 29019 29840 29835 29724

1 8 9 8667 87 2 8847 8934 9273 9358 9211
Product Buckets 2 46 649 0 2170 2626 3094 3140 3223

3 1 451 17557 17 12 17506 17459 17473 17337 17290

Uncertain Process Te hnology WSPW per Quarter Demand

Uncertain Product Family Mix per Quarter

Figure 20. Uncertain input variables to the optimization model

The estimated WSPW for each product bucket can be calculated by multiplying the

percent of that product in the overall process technology mix times the process technology

volume as shown in Figure 21. Therefore, for a given per quarter forecast of the technology,

the mix of product buckets can be used to calculate the WSPW per bucket.

Process Technology

WSPW Forecast Per Quarter
Q1 Y1 I Q2 Y1 IQ3 Y1 IQ4 Y1

A 28629 29392 30025.7 .......

Product Buckets in Process A

01 Y Q Y1 Q3 Y1 Q4 Y1
1 14.10% 13.97% 14.06% .......

2 10.79% 11.01% 11.13% .......

3 26.04% 26.22% 25.80% .......

4 49.07% 48.80% 49.00%1 .......

WSPW per Bucket per Process A

Q1 Y1 Q2 Y1 1 Q4 Y1

1 406 4 7 4221 .......

2 3090 3236 3 .

3 7454 7706 7748 .......
4 14049 14343 14714 .......

Figure 21. Calculation of WSPW/product bucket/technology input to the optimization model

Note: All actual WSPW forecasts have been disguised. Forecasts shown were randomly generated in
Microsoft Excel.
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As previously discussed, both the volume and mix are assumed variable. For each

uncertain variable, Crystal Ball is used to set a range of possible values within a probability

distribution. The distribution type is selected based on the conditions of the variable.

Common probability distribution types include normal, uniform, triangular, and lognormal.

The process technology volume was modeled with a lognormal probability distribution.

Lognormal distributions are used in situations where values are positively skewed, for

example in financial analysis for security valuations. For example, stock prices exhibit this

trend because they cannot fall below the lower limit of zero but may increase to any price

without limit. The process technology estimates meet the conditions for the lognormal

distribution:

" The uncertain variable (WSPW/quarter/technology) can increase without limit but

cannot fall below zero.

" The uncertain variable is positively skewed with most of the values near the lower

limit. The lognormal distribution ensures that all WSPW forecasts are non-negative

and do not typically approach infinity.

" The natural logarithm of the uncertain variable has a normal distribution

Figure 22 is an example of how the uncertain process technology demand profile was

generated. For each scenario under evaluation, the Strategic Capacity Demand team's

forecast was loaded into the model. The mean of the distribution was assumed to be the

point estimate generated by the scenario.

Assumption Namoe, 11 Yl Process A VariablityPas

20.2W652 24,4422 26.59.9 3235. _____

S0.00 +hnfInity

Meen 27.500.01 Std bev2.750.00

nKce l er !Gallery Coarreate. el

Figure 22. Definition of the probability distribution for WSPW demand forecasts

The standard deviation of the forecast estimate was based on the assessment of

historical error. As described in Section 5.3.1, there is significant error between the actual
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production and forecasts. The model assumes that each process technology follows the

same life cycle profile. It also assumes that variability in future WSPW forecasts will be the

same as the variability of forecasts made in the past. If this assumption is true, then errors in

an (n+1) technology will follow the errors made in the forecasts of its predecessor, (n). Each

logic process is assumed similar to a previous technology platform and a similar correlation

between platform generations is assumed for flash. For example, for a given technology

platform, C, the error is similar to a predecessor technology, A. In Excel the percent error of

the forecast was calculated and Crystal Ball was referenced to that value as the expected

standard deviation. This model architecture allows one to easily adjust the level of estimated

error in the forecast to assess the impact on tool requirements. Error estimates can be

quickly updated and can be different for each quarter. This allows the user to set the error

estimates per quarter to reflect that the error in the forecast changes based on the life cycle

of the process technology.

There are risks associated with the assumption that the error made in current

forecasts emulates errors in the past. For example, the current constrained or unconstrained

manufacturing environment at the time of forecasting may affect predictions of future

demand. Further, in a constrained environment, actual production is limited to available

capacity. The forecast may have far exceeded the constrained environment, resulting in a

large error term. However, for the purposes of the comparative analysis of the effect of

various scenarios, the assumptions are acceptable provided consistent assumptions are

made for each scenario analysis.

As the model is constructed, the standard deviation assumptions in the uncertain

variable probability distributions reflect that both the volume and timing of peak production is

highly variable. For example, assume the scenario predicts that the peak demand is 12,000

WSPW in Q3. If the standard deviation assumptions for the Q3 and Q2 estimates are 1,000

WSPW and 800 WSPW respectively, then the peak could occur in Q2 versus Q3. As shown

in Figure 23, if the simulator selects a value plus one standard deviation from the mean in Q2

and minus one standard deviation in Q3, the assumption for peak demand shifts from Q3 to

Q2. This further reflects the value of the statistical analysis versus point estimates given the

uncertainty of the demand forecasts.
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Figure 23. Uncertainty of peak demand reflected in variability model

The forecasts for the product mix are also uncertain. Mix assumptions were modeled

as normal probability distributions as shown in Figure 24.

Figure 24. Definition of the probability distribution for product mix forecasts

The normal distribution is used to describe uncertain variables, quite often, natural

phenomena such as I.Q.s or height. In this case, the mix variation matches several normal

distribution characteristics:

* Some value of the uncertain variable is the most likely. The point estimate made in

the forecast is assumed to be the most probable.

" The uncertain variable could as likely be above the mean as below. The mix could be

just as likely plus or minus one standard deviation from the mean.

" The uncertain variable is more likely to be in the vicinity of the mean than far away.

As with the volume forecasts, the mean is the point estimate forecasted by the

Strategic Capacity Demand team's scenario forecast. However, in this case, the user enters

the assumptions on how much error there is in the mix forecasts by adjusting the standard

deviation. For uncertain scenarios, the variation of the mix between products can be quite

large. The user can take this uncertainty into consideration by increasing the standard

deviation of the forecasts. Since each mix percentage is set as an independent variable cell,
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the simulator may select mix values within each probability distribution profile that don't total

100%. To compensate for this, the percentages selected by the simulator were normalized

to 100% and then input into the model. Testing of this assumption to correct for greater than

100% mix indicated there was no significant change in the statistical output of the model.

The model architecture also allows the user to set a high level of uncertainty around a

particular product. For example, if demand for Product 1 in Process Technology A is highly

unpredictable, the user can increase the error in the mix forecast for Product 1 to assess the

level of impact on tool requirements and determine what level of capital expenditure will be

necessary to ensure demand is met.

A simplified version of the Monte Carlo simulation was also constructed as shown in

Figure 25. In this model, the WSPW forecast for each product bucket/process

technology/quarter was defined as an uncertain variable. This form of the model is in

contrast to the method discussed earlier, which varied both the product mix and overall

process technology totals.

WSPW Forecast Per Quarter
Q1 Y1 JQ2 Y1 JQ3 Y1 JQ4 Y1 JQ1 Y2 102 Y2 JQ3 Y2 JQ4 Y2

Process Technology

Product Buckets

Process Technology

Product Buckets

A 28520 28. 29358 29421 28970 - 28182
1 4036 4221 4207 4028 3825 3540 3065
2 3090 3236 343 3363 3494 3582 3557 3418
3 745 4 7706 7748 7586 7408 7472 7346 7290
4 14049 1443 14714 14303 14428 14542 14527 14409

B 2606 2668 271O2 284& 29186 29804 29913 29809
1 850,6 8624 8759 8845 8995 9235 9397 9290
2 9 167 857 2066 2730 3086 3160 3271
3 1756 17577 17566 17544 17461 17483 17356 17248

Uncertain Product Bucket Demand Per Quarter

Figure 25. Uncertain WSPW input variables to the optimization model for the revised model

In this architecture, the WSPW forecast per product bucket per technology was

directly modeled as a lognormal distribution. Again, the mean is equal to the forecasted

point estimate of the selected scenario. The standard deviation of the estimate is set as the

process technology level error. The percent error for each product bucket is, therefore, the

same. The user can manually adjust the standard deviation estimate to assess the impact of

a more uncertain WSPW forecast for a given product.
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The revised model architecture decreases the number of uncertain variables as only

the per-bucket uncertainty is considered, versus the process level and mix uncertainty shown

previously. The number of assumptions and estimates of forecast error is also reduced

using the simplified model structure.

5.3.4 Variability Model Output

In the variability model, the number of tools required is set as the output being

simulated and analyzed. After the desired number of trials, the statistics of the output and

the certainty of any one single output can be viewed. As shown in Figure 26, the output of

interest is the mean forecasted number of tools required to meet a given demand scenario.

In addition, the minimum number of tools required given the range of possible demand inputs

can be determined. Also of interest is the number of tools required to be 95% confident you

will have sufficient tool capacity to meet demand. Various percentiles can be assessed; they

represent the confidence of achieving a value below a particular threshold.

-e- 95% Confidence Interval -U- Mean ,A- Minimum

25
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Quarter

Figure 26. Output of the variability model for a given tool type

As shown in Chapter 5, the model is a complex integration of multiple software tools

to create a user-friendly, powerful analysis tool. To demonstrate the capability and use of the

model, a case example has been created and is described in Chapter 6.
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Chapter 6: Model Validation and Results

This chapter presents a case study of the model using a simplified situation

consisting of three technology processes and eight product families. The simplified case

study demonstrates the use and output of the optimization model.

6.1 Application of the Model

Consider a semiconductor manufacturer who produces one flash technology process,

with two primary product categories, Alpha and Beta. In addition to flash products, the

manufacturer has two generations of logic process technologies. Process technology A

includes three product families. Delta is the flagship product; it offers significantly faster

processing speeds than its closest competitors on the market. However, Delta is a very

large die size product that often drives increased tool requirements. Chi is a smaller die size

product and is an older version of Delta. The remaining products in this technology platform

are part of the Epsilon family. Epsilon includes a variety of smaller volume Process A

products, primarily chip sets for Kappa (a Process B technology product).

The final technology process, Process B, is a new technology platform. Products

included in this category are Gamma, Kappa, and Lambda. Kappa is a new product with an

intended Q2'01 launch data. Lambda is an assortment of smaller volume product families.

Gamma is an established product with a small die size and lower demand.

Technology Process Product Family Die Size Comments
Flash Process 1 Alpha S Ramping product

Beta L Established product
Logic Process A Chi S Established product

Delta M New flagship product
Epsilon L Kappa chip sets

Logic Process B Gamma S Established product
Kappa M New product launch
Lambda L Various small vol. products

Table 2: Products included in the example case study
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For this case study, there are five stepper types, A-E. For each process technology,

the various steppers are used to apply different layers on the wafer. Critical layers, for

instance, may be applied on a newer generation lithography stepper tool. Each product

family Alpha - Lambda will run on different steppers at different run rates with a different

number of layers applied per tool as shown in Figure 27.

Stepper Type Stepper Type
Run Rate Number of Layers___

Technology Process Product A B C D E A B C D E
Flash Process 1 A 23 2 10 9 n/a 8 11 1 8 0

Beta 14 5 14 16 n/a 8 11 1 8 0
Logic Process A Chi 10 8 14 n/a n/a 6 9 6 0 0

Delta n/a 11 23 n/a n/a 0 9 6 0 0
Epsilon n/a 9 32 n/a n/a 0 9 6 0 0

Logic Process B Gamma 3 n/a 9 14 23 6 0 3 9 2
Kappa 6 n/a 11 17 25 6 0 4 9 1
Lambda 4 n/a 15 21 14 2 0 2 9 1

Figure 27. Per product, per tool type data included in the example case study

In this study, the user of the model would like to evaluate the impact on mix sensitive

lithography steppers. The tool requirements to meet the base case demand forecast is

compared to three possible demand scenarios:

a) The total annual market (TAM) demand increases for all logic and flash technologies

by 20%. In this scenario, the per quarter demand for each product increases by 20%

over the base case predictions.

b) The new flagship Delta product achieves faster market penetration than anticipated,

driving a significant increase in demand. In this scenario, the flash products have the

same quarterly demand as in the base case. While the Delta demand increases,

demand for the older product, Chi, drops. The increased Delta demand also impacts

Process Technology B products, which all experience a decreased volume demand

given this scenario.

c) Kappa's product launch is delayed from the intended Q1 date to Q4. As a result,

there is zero demand for Kappa until Q4. Demand increases for Chi, an older

product, which is an acceptable substitute in the market until the new product is

launched.
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Table 3 includes the WSPW quarter forecasts for each of the products in the case

example, both for the base case as well as for each of the three possible demand scenarios.

The data is entered as point estimates into the optimization; variability in the forecasts is not

included in this example. Note that all WSPW demand has been disguised.

Base Case
WSPW Requirement

Technology Process Product 01 Q2 Q3 04 Q5 Q6 Q7 08
Flash Process 1 Alpha 1611 2902 3061 3138 3628 3593 2990 2443

Beta 1386 2009 2388 1228 72 0 0 0
Logic Process A Chi 14501 12131 9626 6907 4556 2296 1941 1958

Delta 10962 15415 16855 16840 11424 4909 625 0
Epsilon 618 1212 1020 477 196 92 13 0

Logic Process B Gamma 1337 2625 3493 4235 5544 7113 6159 5663
,Kappa . 31 521 1979 6852 12277 15151 14615 14557
Lambda 203 669 937 1656 2183 3286 4423 5122

20% TAM Increase
WSPW Requirement

Technolo y Process Product 01 Q2 03 04 05 Q6 07 08
Flash Process 1 Alpha 1933 3482 3673 3766 4354 4312 3588 2932

Beta 1663 2411 2866 1474 86 0 0 0
Logic Process A Chi 17401 14557 11551 8288 5467 2755 2329 2350

Delta 13154 18498 20226 20208 13709 5891 750 0
Epsilon 742 1454 1224 572 235 110 16 0

Logic Process B Gamma 1604 3150 4192 5082 6653 8536 7391 6796
Kappa 37 625 2375 8222 14732 18181 17538 17468
Lambda 244 803 1124 1987 2620 3943 5308 6146

Rapid market penetration of Delta Product
WSPW Requirement

Technology Process Product 01 Q2 03 Q4 Q5 06 07 Q8
Flash Process 1 Alpha 1611 2902 3061 3138 3628 3593 2990 2443

Beta 1386 2009 2388 1228 72 0 0 0
Logic Process A Chi 10151 8492 6738 4835 3189 1607 1359 1371

Delta 17539 24664 26968 26944 18278 7854 1000 0
Epsilon 433 848 714 334 137 64 9 0

Logic Process B Gamma 1203 2363 3144 3812 4990 6402 5543 5097
Kappa 28 469 1781 6167 11049 13636 13154 13101
Lambda 183 602 843 1490 1965 2957 3981 4610

Delayed launch of Kappa Product
WSPW Requirement

Technology Process Product Q1 Q2 03 04 05 06 07 08
Flash Process 1 Alpha 1611 2902 3061 3138 3628 3593 2990 2443

Beta 1386 2009 2388 1228 72 0 0 0
Logic Process A Chi 21752 18197 14439 10361 6834 3444 2912 2937

Delta 10962 15415 16855 16840 11424 4909 625 0
Epsilon 494 970 816 382 157 74 10 0

Lo ic Process B Gamma 1123 2205 2934 3557 4657 5975 5174 4757

,Kappa 0 0 0 1337 2625 3493 4235 5544

1 Lambda 264 870 1218 2153 2838 4272 5750 6659
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The output of the model, the additional number of tools required per tool type per

quarter is included in Table 4. The model output will include fractional numbers of tools. As

previously discussed, the cost of a lithography stepper is significant, therefore, rounding to

the higher number of tools can imply a significant cost. However, the model's intent is to be

used to compare the relative impact between possible demand scenarios and not for the

procurement of equipment. The rounding errors are considered negligible when comparing

the relative impact between the possible demand scenarios.

O2J1 0301 Q41 01V2 Q2112 0312 0412 01Q)3
Base Case Stepper A 26.86 20.55 19.46 14.39 7.99 0.00 0.00 0.00
Base Case Stepper B 26.77 12.34 9.14 0.39 0.00 0.00 0.00 0.00
Base Case Stepper C 0.00 0.00 0.00 2.24 17.98 24.97 16.71 11.61
Base Case Stepper D 0.00 0.00 2.07 11.09 21.71 26.42 20.85 17.41
Base Case Stepper E 21.86 16.55 16.46 12.39 6.99 0.00 0.00 0.00

20% TAM Increase Stepper A 30.59 25.03 23.92 18.34 10.73 1.03 0.00 0.00
20% TAM Increase Stepper B 38.42 26.60 23.05 7.51 0.00 0.00 0.00 0.00
20% TAM Increase Stepper C 0.00 0.00 0.00 9.08 27.97 36.36 26.45 20.33
20% TAM Increase Stepper D 0.00 0.00 4.88 15.71 28.45 34.11 27.42 23.30
20% TAM Increase Stepper E 24.59 20.03 18.92 13.34 5.73 0.00 0.00 0.00

Rapid Delta Penetration Stepper A 28.90 20.55 19.46 14.39 7.99 0.00 0.00 0.00
Rapid Delta Penetration Stepper B 34.32 12.34 9.1 4 0.39 0.00 0.00 0.00 0.00
RapidDeltaPenetration StepperC 0.00 0.00 0.00 0.93 16.42 23.15 15.26 10.39
Rapid Delta Penetration Stepper D 0.00 0.00 1.17 10.21 20.66 25.20 19.88 16.59
Rapid Delta Penetration Stepper E 26.90 19.55 19.46 8.39 2.99 0.00 0.00 0.00

Delayed Launch of Kappa Stepper A 31.13 20.55 19.46 14.39 7.99 0.00 0.00 0.00
Delayed Launch of Kappa Stepper B 40.31 12.34 9.14 0.39 0.00 0.00 0.00 0.00
Delayed Launch of Kappa Stepper C 0.00 0.00 0.00 0.93 16.42 23.15 15.26 10.39
Delayed Launch of Kappa Stepper D 0.00 0.00 1.17 10.21 20.66 25.20 19.88 16.59
Delayed Launch of Kappa Stepper E 31.13 10.55 9.46 8.39 0.00 0.00 0.00 0.00

Table 4. Optimization model output for a multiple scenario analysis

Figure 28 summarizes the impact of the three possible demand scenarios versus the

base case. The graph shows a comparison of the total number of additional tools required to

meet the demand in each of the three scenarios and the base case. The number of

additional tools per quarter is the total number required in addition to those assumed to be in

production or on order and in production for that quarter. Each quarterly total is independent

of the prior quarter. No assumptions are made regarding tool purchases in prior quarters

based on the output of the model.

As expected, tool capacity for the 20% TAM increase in demand is significantly larger

than the base case for all quarters in the planning horizon. The rapid market penetration of
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the Delta products requires more machines in Q2'01 through Q4'01 due to the significant

increase in demand for the larger die size product. Due to the Kappa delay, tool

requirements will increase in immediate timeframe. The increase is driven by the demand

switching from the new product to an older, larger die size product, until the Kappa is at full

production.
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Figure 28. Number of tools required for base case versus three demand scenarios

Figure 29 demonstrates the capability of looking at per tool type requirements. As

new tool technologies are introduced and as product manufacturing specs per tool change

over time, tool requirements fluctuate. In this case, the base demand projection requires a

decrease in tool types A, B, and E over time and an increase in types C and D. Such

analysis is extremely valuable for developing tool transition, tool reuse, and procurement

strategies.

53

4,

0

0

M-

-U

0

E
z

1

1



25

20

15

10 -

0201 0301 0401 0102 0202 0302 0402 0103

Production Quarter

Figure 29. Per stepper type tool requirements to meet the base demand case

Given the level of detailed output from the model, several alternate cuts on the data

can be made such as a comparison of tool requirements for a specific tool type given

different possible demand scenarios. Such a comparison is done for Stepper Type D and is

shown in Figure 30. Note that the same number of Stepper Type D tools is required for both

the rapid delta penetration and the delayed launch of Kappa.
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Figure 30. Stepper type D requirements for base versus three demand scenarios
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Running the model for each possible demand scenario takes only a few minutes per

run. The ability to quickly and efficiently operate the model increases the ability to assess

the impact of multiple scenarios. Given the high capital costs and long-lead times of the

stepper tools, planning for required tool capacity is a critical step in the long-range capacity

planning process. The model is a valuable tool to provide more accurate and more efficient

data analysis essential in the planning process.

6.2 Benefits of the New Model and Business Process

The new model significantly reduces the time required to compare multiple scenarios.

Once the database has been updated with the correct quarterly production parameters,

demand forecasts can be entered and an optimized solution achieved in less than four

minutes for a single scenario. If additional variability analysis is desired, the optimizer can be

run with the front-end simulator. The run time then depends on the number of trials run.

Clearly, the more trials run, the more accurate and meaningful the output of the Monte Carlo

simulation. There is a tradeoff, however; the model processing time increases as more runs

of the simulation are made.

A common database stores all tool, parameter, and performance data such as die

sizes, utilization, and rework. The data warehouse structure eliminates the time consuming

task of updating parameters in the multiple Excel models. The model architecture not only

saves time inputting data, but also decreases the risk of errors and improves data sharing

between multiple users of the model.

An optimization function is used to calculate tool requirements. The minimization is

based on tool costs and run rates. The model inherently looks for the most efficient tool on

which to run each product. With the former method, assumptions had to be made regarding

which tools would be allocated which products.

The optimization also includes a more detailed assessment of the number of tools

required. The previous process assumed that all layers of a particular product had the same

run rate on a given tool. In reality, the run rate per layer per product per technology can vary

for each individual tool type. This level of detail is included in the optimization model,

providing a more exact solution.

The revised model takes into consideration the variability inherent in the demand

forecasts. With the current process, the demand forecast is assumed to be exact. In reality,

there is variation around the WSPW requirements for a given product and there is variability

in the mix of products. The Monte Carlo simulator includes the potential for inaccurate
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forecasts and allows one to assess the impact of the variation on the number of tools

required to meet a given demand 'what-if.' The challenge with implementation of the

variability model is the increased learning curve and acceptance within the users.

Agreement must be reached on the estimates of forecast error to ensure consistent usage

and assumptions.

Changing parameter settings in the model can easily generate slight revisions to

scenarios. For example, increasing the number of die exposed per step can be achieved by

either decreasing the die size or by improving the precision of the reticle. Specific what-if

scenarios are often generated to determine the impact of die size changes. However,

enhancements to the reticle performance are not. The model allows one to easily address

such a possible analysis by simply adjusting the run rates for the affected process in the

database and rerunning the optimization.

Given the architecture of the model, future enhancements can be easily made to

further increase the precision of the output, user friendliness, and expanded capabilities.

6.3 Ongoing Improvements and Future Enhancements to the Model

To further enhance the model's capability and effectiveness, multiple improvements

and ongoing enhancements are possible. As the optimization model and the new variability

assessment methodology gain buy-in and user support, momentum for improvements and

acceptance as a tool of record will increase. Specific improvements could include, but are

not limited to, the following:

Minor model changes can be made to make the tool more efficient and user friendly.

For example, enhanced output graphs or charts, a longer forecast range for 16 vs 8 quarters,

and variations to the objective function are possible. Alternate objective functions could be

written to answer such questions as: how many total tools are required or how many excess

tools will be in production?

Larger-scale enhancements include linking the Access data warehouse to a common

database of shared parameters across several business units. The current data warehouse

is an offline population of multiple data sources. An extensive data warehouse eliminates

multiple data storage centers and reduces the risk of potential inadequacies of the data.

The estimated probability of occurrence of each scenario could be explicitly included

in the model. Making procurement decisions for the tools must also take into consideration

the likelihood of occurrence of that scenario.
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As discussed in Section 4.2.1, the financial impact of each scenario must be

assessed. For every scenario, there is the option of investing in the capital equipment to be

prepared for a possible fluctuation in demand. The cost of preparation must be compared to

the possible revenue potential if the demand scenario occurs. Alternatively, the cost of

excess capacity must also be weighed. Non-financial aspects further complicate the options

analysis. For example, decisions to invest in capacity to support a new market segment or

strategic product launch may be necessary regardless of the risk of excess capacity.

The process of forecasting and planning for long-range capacity requirements is

extremely challenging in the semiconductor industry. As demonstrated in the case study, the

output of the model provides a valuable assessment of the impact of possible product mix

scenarios. There are several advantages to the model and opportunities for continued

enhancement and ongoing development have been identified. The following chapter

describes a benchmarking study of external software products and methods used by others

in the industry to forecast long-range capacity requirements.
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Chapter 7: Literature Review and Benchmarking Study

Due to the complexity in the semiconductor manufacturing process and the

fluctuations in the industry, forecasting demand and planning capacity to meet customer

requirements is difficult. Considerable research has been conducted and documented in the

area of semiconductor planning. An assessment of texts, current periodicals, and academic

research was conducted as background to this work and was used in the formulation of the

model criteria and architecture. Section 7.1 highlights some of the documented practices in

the semiconductor industry. In addition, examples were considered from other industries

faced with similar cost-intensive manufacturing overhead and highly variable demand.

Several companies have developed complex software solutions that attempt to

integrate all or part of the semiconductor supply chain. To better understand the issues and

questions addressed by the software solutions, several commercial packages were reviewed

and are discussed in Section 7.2.

Benchmarking common industry practices and commercial solutions contributed to

the definition of the project deliverable and the framework of the model. Key contributing

factors are summarized in Section 7.3.

7.1 Review of Literature on Capacity Planning

The literature related to the problem of capacity planning is diverse and covers a wide

range of topics. The process of planning can be divided into two primary categories:

strategic and operational planning. Strategic planning includes the determination of what

products to market, which equipment sets to use in the factories, and the planning of the

introduction and retirement of process technologies. The operational aspect of enterprise-

wide planning includes the quotation of delivery dates to customers and the determination of

output schedules across the fabrication, sort, assembly, and test process steps. According

to Leachman of the Engineering Systems Research Center [12], "There are practically no

formal systems for strategic enterprise-wide planning in the semiconductor industry, although

there are a number of formal systems for operational enterprise-wide planning."

As described in the Engineering Systems semiconductor industry analysis, strategic

planning is generally performed ad hoc using spreadsheet tools. Alternatively, the

operational planning system is used in an off-line simulation or "what-if" mode. The research

indicates that operational planning calculations are made iteratively under different

assumptions of products, equipment, and processes to determine more strategic long-range

plans. "The particular form of the analysis tends to follow the tastes and preferences of the
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particular analyst, and it is thus difficult to ascribe a specific technique or methodology for

strategic planning to a given particular semiconductor firm."

Although there are few formal, consistent processes used in the semiconductor

industry, strategic planning, in particular capacity planning is a critical component of the

manufacturer's success. As noted by Jordon and Graves [8] "Increasing manufacturing

flexibility is a key strategy for efficiently improving market responsiveness in the face of

uncertain future product demand." Planning for manufacturing flexibility and sufficient

capacity requires assessing the impact on high-cost, long-lead time tools whose capacity

levels are significantly influenced by the type of product or groups of products being

manufactured. The problem defined in this work is how to model and calculate long-range

capacity requirements for one such tool set. The strategic capacity planning process for mix-

sensitive tool sets includes two research questions. How are tool capacity requirements

calculated quickly and efficiently for a variety of possible demand forecasts? And second,

how are tool requirements forecasted in the face of significant demand uncertainty?

A common tool used to address the first question is mathematical optimizations.

Leachman [11] indicates that although the semiconductor manufacturing process is

extremely complex, the planning is significantly improved by using optimization techniques.

"Planning in the industry is performed both incrementally and in a regenerative fashion.

Incremental planning involves adding production to an existing plan in order to meet new

demand. . . regenerative planning involves a complete reassessment of the plan in light of

revised demands or other changes in the input data. . . [R]egenerative planning offers the

ability to more fully optimize production." Optimization has been used predominantly to date

for the purpose of incremental, production planning purposes. However, optimization has

been more recently applied to the problem of capacity planning (e.g. Stray et al [24]). A

specific example of the use of optimization for the purposes of capacity planning is Peters

and McGinnis' [20] work in the electronic assembly industry.

Peters et al present and discuss a model for assigning products to various plants

when changing product production routings can significantly alter capacity requirements and

availability. Although the Peters study focuses on electronic assembly systems, there are

numerous similarities to the semiconductor industry that make their model relevant to this

work. Similar to the semiconductor industry, the electronics market is faced with short

product life cycles, high-cost production facilities, and fluctuating demand. Production

facilities are either focused (dedicated to one product line) or nonfocused. The Peters work
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seeks "a better understanding of the nature and impact of capacity constraints on the

strategic configuration decision when a pure focused strategy is used."

Peters demonstrates the use of an optimization model to calculate the minimum

capacity required to satisfy production requirements. In the course of calculating the

minimum requirements, an initial set of product assignments/reassignments is developed as

well as "a network flow based procedure for determining the optimal

assignment/reassignment process."

The intended output of the Peters model is similar to the questions addressed in this

work. This thesis is focused on the development of a tool to assess the impact of possible

demand forecasts on tool set requirements. The optimization approach discussed by Peters

addresses the same desired result. The model and solution determines the minimum

capacity solution for a given scenario.

"The decision maker can compare this solution to the company's current or
planned configuration. In addition, due to the speed of the solution procedure, the
decision-maker can perform sensitivity analysis on the input information to determine
how the solution changes with differing estimates of future parameter values (e.g.,
product introduction times, demand forecasts, etc.). This information about the best
solutions based on capacity and reassignment costs under different scenarios may
provide valuable insight to the decision maker."

The Peter's model is focused on the electronics industry, but the methodology and

optimization approach is applicable to the problems addressed by this work.

Papageorgiou, Rotstein, and Shah [19] document a supply chain optimization model

used for the pharmaceutical industry. Like Peters' work in the electronic assembly market,

the pharmaceutical industry has several similarities to semiconductors. The typical life

cycles of new drugs are becoming shorter, making strategic decisions about capacity plans,

product development schedules ever more critical. Papageorgiou "describes an

optimization-based approach to selecting both a product development and introduction

strategy and a capacity planning and investment strategy." A mixed-integer linear

programming model is used to select "the optimal product development and introduction

strategy together with long-term capacity planning and investment strategy at multiple sites."

Although the authors acknowledge that the scope of the model is prohibitively large, it

demonstrates the possible use of an optimization approach to assessing capacity

requirements. Papageorgiou also identifies the need for an extension to the work that takes

into consideration demand uncertainty. "For example, the uncertainty on the outcome of the

clinical trials of all candidate products could be incorporated within our existing framework."
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A similar optimization approach to determine capacity expansion requirements in the

semiconductor market is documented by Bard [2]. "For a given demand and planning

horizon, the general facility design problem faced by semiconductor manufacturers is to

decide how much capacity to build into their systems." He models the capacity expansion

problem "as a nonlinear integer program in which the decision variables correspond to the

number of tools at a workstation." Bard addresses a similar problem as the intent of this

thesis. "Semiconductor facilities are designed to run certain technologies or product families

at a predetermined rate of output." When changes occur in the intended product or product

mix, the capacity of the system is impacted. Bard uses his optimization model to calculate

tool-set configurations for different budget values and corresponding optimal cycle times to

generate a frontier curve for the trade-off between capital and cycle time and capital and

WIP. "These relationships can also be used to evaluate the impact of changes in throughput,

product mix and technology on WIP and cycle time. Such trade-off curves provide

management with a range of options as well as a means of conducting a margin analysis."

In addition to such external literature, a review of planning procedures and tools

internal to Intel was conducted. The internal assessment highlighted best practices within

other organizations and existing tools that could be leveraged. Wuerfel [28] documents the

use of a linear program to solve the problem of allocating wafer start production to various

factories to maximize the total wafer output of all factories combined. Wuerfel's study is used

in the operational planning (build plan) stage in which the actual production routings for

product are determined. The product routing is complicated by the lithography process step.

"The lithography area complicates the problem since its process steps are extremely

sensitive to factory product-mix. This sensitivity is because stepper run-rates are greatly

determined by a product's die size and the number of die per exposure field." Wuerfel's

Lithography Loadings Optimizer determines the optimum production routing within the

lithography capacity constraints for that given product mix. Wuerfel's work is intended for

short-term planning, but is very relevant to the intent of this thesis. The linear program

developed by Wuerfel addresses the lithography capacity constraints driven by the product

or mix of products being manufactured.

Many of the optimization solutions cited do not take into consideration the uncertainty

in the product demand or production process. As Leachman [11] discusses, planning in the

semiconductor industry is daunting due to the inherent complexities in the manufacturing

process, the product structure, and demand. "There may be significant uncertainties in

market demands; and there may be a great variety of demand types for each finished good,
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ranging from firm orders to flexible customer contracts to reliable forecasts to risky

forecasts." Due to the uncertainty, treating demand uniformly is an oversimplification of the

problem.

This work seeks to address both the question of how are capacity requirements

calculated and, second, how are tool forecasts made in the face of demand uncertainty? As

Petkov and Maranas [21] note, "Deterministic models for process planning and scheduling

assume that product demands are known with certainty. However, in medium and long-term

planning, product demands fluctuate. Failure to properly account for product demand

fluctuations may lead to either unsatisfied customer demands and loss of market share or

excessive inventory costs."

One common approach to addressing the possible fluctuations in forecasts is to run

several optimization routines that calculate capacity requirements for each of the possible

demand scenarios. Leachman [11] proposes an iterative optimization calculation to address

the possible changes in the optimization variables. Although the iterative, scenario based

approach is a very straightforward way to implicitly account for uncertainty, Petkov points out

that the scenarios "typically rely on either the a prioriforecasting of all possible outcomes or

the discretization of a continuous multivariate probability distribution." Petkov notes that

Monte Carlo sampling is often used to address multivariate probability sampling. "The basic

idea of Monte Carlo methods is to generate a large enough number of random variates

distributed according to the evaluated multivariate probability function." Petkov also notes,

however, the disadvantage of Monte Carlo sampling with the optimization routine. "Monte

Carlo sampling based approaches require multiple function evaluations to estimate the

objective function, constraints, and their gradients at every iteration of the optimization

algorithm." The Petkov solution is a stochastic model, which maximizes expected profits

"subject to the satisfaction of single or multiple product demands with prespecified probability

levels (chance-constraints)." The Petkov approach is applied to medium- and long-term

planning for chemical batch plants, but the philosophy is applicable to the planning of tool

capacities in the face of demand uncertainty.

As previously discussed, strategic planning in the pharmaceutical market faces many

of the same challenges as the semiconductor industry. Examples of how uncertainty is

addressed in strategic planning are relevant to this work. Gupta and Maranas [9] point out:

"One of the key sources of uncertainty in any production-distribution system is
the product demand.... Deterministic planning and scheduling models may thus
yield unrealistic results by failing to capture the effect of demand variability on the
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tradeoff between lost sales and inventory holding costs. Failure to incorporate a
stochastic description of the product demand could lead to either unsatisfied
customer demand and loss of market share or excessively high inventory holding
costs. . ."

Gupta and Maranas describe a two-state stochastic program in which uncertain product

demands and other uncertain variables are "modeled as normally distributed random

variables. This approach has been widely invoked in the literature as it captures the

essential features of demand uncertainty and is convenient to use." Similar to Gupta, Blau et

al recognize the impact of demand uncertainty and describe a model that uses a Monte Carlo

simulation in Crystal Ball. Blau's model is used in the strategic product development

planning process to assess possible product portfolios and the trade-offs between the

portfolio's risk and rate of return.

In the semiconductor industry specifically, Swaminathan [25] addresses the challenge

of wafer fabrication tool procurement in the face of demand uncertainty. Changes in the

technology and products, lead-time for procurement, the cost of the tools, and unpredictable

demands are all factors that make tool procurement planning difficult. Swaminathan

describes an "analytical model for tool procurement that incorporates the uncertainty in

demand forecasts and provides methods to operationally hedge against it. Our model

enables a manufacturer to plan for a set of possible demand scenarios (as opposed to a

single coordinated plan) and procure an efficient set of tools." The model uses a mixed

integer program and two heuristics to explicitly capture uncertainty in demand.

Swaminathan's work demonstrates that, "planning for a set of demand scenarios is more

efficient than planning for a coordinated demand forecast."

As evidenced by the literature review above, taking the impact of demand uncertainty

into capacity planning is critical. Various models and techniques have been used to address

the uncertainty in the tool capacity requirement calculation. In addition to literature, the

solutions provided by several commercial software solutions were analyzed.

7.2 Analysis of Commercial Software Solutions for Capacity Planning

There are numerous commercially available software packages that are used by

manufacturing firms to improve strategic enterprise-wide planning. i2 Technologies, SAP,

PeopleSoft, and Manugistics are some of the many commercial solutions. Some of the

software vendors, such as i2's High Tech Electronics and Electronics Industry segment, have

package solutions intended specifically for the semiconductor industry. Semiconductor
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manufacturers such as Motorola and Philips Semiconductor are users of such commercial

planning solutions.

Commercial solutions provide the benefit of structured, previously tested, generally

user-friendly packages. The software package often integrates multiple aspects of the

overall supply chain, including customer management, supplier relationship management,

inventory management and strategic alliances. In addition to providing strategic planning

capabilities, many of the software solutions integrate with the operational packages that are

responsible for planning day-to-day production.

Specific questions addressed by supply chain software packages, such as i2

Technologies' RHYTHM Profit Optimization include [7]:

. What is the most profitable mix of products to manufacture given current
resources?

* Is outsourcing the correct strategy and at what level?
* What is the financial impact of adding capacity, decreasing inventory levels,

increasing demand for a product, or lowering minimum requirements for demand
fulfillment?

* How much would additional capacity on a given resource improve the bottom
line?

The software solutions have a general framework, which is not always flexible for very

application-specific requirements. Extensive specialization and customization of the software

package may be required to meet the needs of each customer. In addition, there are

significant start-up costs. Commercial packages require not only purchase of the software,

but often multiple user licenses, integration services, application consulting, and long-term

service and support.

Three packages frequently used in the semiconductor industry were assessed. A

brief summary of the analysis of each vendor's solution can be found in Appendices 1-3.

7.3 Summary of Key Findings and Influence on the Design of this Work

Benchmarking capacity planning practices across the semiconductor and related

industries provides valuable insights into ways to improve and expand current planning

practices. The literature and commercial software solutions reviewed influenced the problem

definition and model architecture described in this thesis.

Optimization models by Bard, Leachman, and Peters and McGinnis demonstrate the

applicability of optimization models in the capacity planning process. In this work, the model
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uses a linear program to address the question of how to quickly and efficiently calculate tool

capacity requirements. The optimization approach allows one to easily determine capacity

requirements and to assess the impact of changing product and manufacturing parameters.

As demonstrated by Bard [2], the optimization model allows one to change product mix,

product run rates, and tool parameters to assess the associated impact on capacity.

As demonstrated in the literature, taking into consideration demand uncertainty is a

critical component of the planning process. The current process used by the Strategic

Capacity Planning team does not address the demand uncertainty. Numerous model

architectures have been developed to address the variability. This work introduces an

innovative approach to combining an optimization model and Monte Carlo simulation to

address the uncertainty. The model is a straightforward solution, which addresses each

uncertain variable as a probability distribution.

The literature and commercial software solutions reviewed contributed to the problem

definition and architecture of the model. Summary comment and possible follow-on work are

discussed in Chapter 8.
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Chapter 8: Conclusions

Due to the rapid fluctuations in market demand and the ever increasing pace of

technological development, planning for manufacturing flexibility is ever more critical. As the

timing of capacity roadmaps accelerate, the time to develop new products is shorter as is the

production window to recover investments. Assessing the impact of demand fluctuations on

mix sensitive, critical tools becomes ever more essential.

This thesis describes an improved modeling approach and an improved model and

business process for determining the impact of possible demand scenarios. The work first

discussed the challenges inherent in forecasting integrated circuit demand and the

complexity inherent in the manufacturing process. The thesis then introduced an innovative

solution to the current methods of assessing the impact of mix-changes on lithography

steppers. An optimization model was built to determine an optimum solution, the minimum

number of tools required to meet a given WSPW demand forecast. The model was then

expanded through integration with a Monte Carlo simulation. The simulation incorporates an

assessment of variability due to the uncertainty in forecasting, both demand volume and

product mix. A case scenario was created to demonstrate the model's functionality and

output. The thesis also reviews current literature on the practices of capacity planning as

well as commercial software tools commonly used for long-range strategic planning.

While the model developed provides improved analysis and increased efficiency in

the planning process, there are areas for continued study. As discussed in Section 4.2.1, a

complete analysis of the most likely, highest impact scenario should include an integrated

analysis of the value created by preparing for a possible demand scenario. BeInap, [3] in his

1995 Massachusetts Institute of Technology thesis, discusses options analysis as an

innovative tool for manufacturing decision-making:

"As manufacturers become more cross-functionally integrated and globally
competitive, manufacturing decisions are becoming increasingly complex. Among the
tools available to manufacturing decision-makers, NPV and similar financial tools
have traditionally been the backbone for operational decision analysis. However,
because these financial tools capture only operational value and not strategic value,
decision-makers are often misguided in their decisions and/or the management of
those decisions."

Belnap introduces "the theory of financial options (stock options) and develops the

analogy of stock options to options on real assets (real options)." The theory of real options

can be used for quantifying the strategic value of a manufacturing decision as a complement
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to operational, net present value. The options analysis described by Belnap could be

integrated with the model developed in this thesis.

For each demand scenario, there are tradeoffs between the revenue potential

generated by the demand for that mix and volume of products and the costs of preparing

manufacturing capacity to meet that demand. The concept of assessing real options

analysis as a follow-on to this work was presented and accepted. Implementation and

integration, however, will meet with several of the same challenges faced during the

implementation of the optimizer and Monte Carlo simulation.

Linear programs that take into consideration several constraints to find an optimum

solution are not uncommon in the planning process. As a result, the concept of using a

linear program based on a common database of inputs was well received and accepted. The

initial concept tool included only a few processes, products, and a limited time frame. The

demonstrated capability and value of the model increased acceptance. The momentum

generated from the initial wins contributed to the successful development of the full-scale

model, which incorporated a larger range of process technology generations and a longer

time frame.

Using a simulator to assess the impact of forecast uncertainty was however, not a

common practice. The current planning process relies on the generation of several

independent demand scenarios as point estimates of future demand. As the research

demonstrated, there is error in the forecasts due to the demand uncertainty. The approach

of applying historical error to future forecasts in a Monte Carlo simulation was an innovative

approach. A key element of the project was, therefore, experiencing the process of pitching

a new concept, demonstrating the potential, gaining credibility, and obtaining buy-in from key

stakeholders for the development of the integrated model.
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Appendix 1. Commercial Software Overview: SAP

Package Overview:

SAP's Advanced Planning Optimizer has three sub-components:

Demand Planning
Production Planning
Supply Network Planning

Specifics:

The SAP solution has a basic package that the user changes to address his or her

needs. SAP does not view each application as a customized solution; rather the user

manages the package to meet requirements.

The SAP solution is intended for planning within the short-term, 9-month window.

However, the package could also be used for longer-term planning, but at a different level of

aggregation. For example, instead of assessing the machine-specific requirements, the

aggregate capacity, space, and machine needs would be determined.

APO's Demand Planning package includes a toolbox of statistical forecasting

techniques to create the most accurate forecast. Demand plans are based on historical

patterns as well as statistical methods, which include average models, exponential

smoothing, causal factors, and trend dampening.

The Supply Network Planning (SNP) module is defined as a midterm planning tool to

match supply and demand throughout the entire chain. The package integrates purchasing,

manufacturing, distribution, and transportation. It models the entire supply network and

related constraints and provides cost/profit based optimization capability.

Within SNP, the Capable to Match (CTM) solver takes prioritized demand and tries to

match it to categorized supply. CTM is responsible for making sourcing decisions within the

supply chain and ensures that multiple locations meet a single requirement. CTM uses

priorities to determine how a requirement can be supported, which product should be

supported first, which transportation lane should be sourced first, and what recipe should be

run at a specific location. The Interactive Planning Table (IPT) can be used to quickly assess

the capacity plan for a specific product over time.

Various modules are available within SNP. One such module is the model mix

planner. This module enables production planners determine the optimum order sequence

and scheduling for manufacturing products with a large number of variants.
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Industries and Customers Served:

SAP has several customers who currently use the SAP ERP systems and have

expanded their applications to include the Supply Network Planner. SAP does not have a

dominant presence in the semiconductor market. Users are from varied industries including

food and beverage, chemicals, transportation, and consumer products. Companies such as

Mott's, Dow Corning, Colgate, Goodyear, and Lufthansa have implemented the Supply

Network Planning packages.
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Appendix 2. Commercial Software Overview: i2 Technologies

Package Overview:

The RHYTHM Supply Chain Management Software (SCM) has three sub-processes:

. Demand Planner: Helps the manufacturer understand the customer's buying patterns

and develop accurate forecasts. Long, intermediate, and short-term horizons are

included.

" Demand Fulfillment: Assigns delivery dates to customer orders and provides reliable

delivery date commitments.

" Supply Planner (SCP): Optimally positions resources to meet demand. Strategic

planning, inventory planning, distribution and transportation planning are included.

Planning within the SCP package can be done at a strategic, high-level with Master

Planner or factory production level with Factory Planner. Long-term planning is more

mathematical, often using optimization techniques, while short term planning is based on

heuristics.

i2 modules can be incorporated into other business process systems such as SAP,

Oracle, or others. In fact, 40-50% of their applications are integrated with 3 rd party software

packages.

Specifics:

Master Planner: The Master Planner allows for high-level, strategic analysis of

demand forecasts versus overall facility capacity to determine if additional capacity is

required. Most users apply Master Planner for planning in the one-year time horizon;

however, the product could be easily applied for the two-five year time horizon required for

long-range planning. The system is flexible enough to allow one to look at demand from two

lenses: given the current demand, capacity, and business rules, what criteria are violated or

what capacity is required given the projected demand.

The Master Planner package integrates planning across the entire supply line, from

fab, sort, assembly, test, to final transportation and logistics. The effect of a demand change

can be easily assessed throughout the entire supply line.

Master Planner is typically used to plan requirements at a high level. However, both

the factory and Master Planner can be used at the machine level. The package can

determine the number of burn-in chambers or steppers required as well as the percentage
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utilization and production loading. For longer-term planning, the machines are often grouped

categorically. For example, the number of steppers is determined versus the specific

requirements for each machine type.

With Master Planner, one can run several what-if demand scenarios to determine the

capacity required for each. One can also change the product mix and assess the impact on

capacity requirements. For example, one can run a 90/10% mix of two different products

and then change the mix to 70/30% to determine the new capacity required. The software

will also report the customer service levels and assess the business rules violated with the

different combinations.

Rhythm Profit Optimization: This module, included within RHYTHM SCP Master

Planner, calculates the financial impact of a plan by modeling cash inflows for sale of product

and ouff lows for procurement of material, performance of manufacturing and distribution

operations, and for carrying inventory. With the profit optimizer, planning organizations can

answer such questions as what is the most profitable mix of products to make, where should

the products be made, and how much additional capacity on a given resource would improve

the bottom line. In a capacity constrained environment, the profit optimizer is used to

determine what is the optimum product mix that maximizes profit. The model optimizes on

revenue and costs given the resource requirements for operations, resource availability, and

material requirements. A Product Intrinsics" report can be generated which shows both

dimensions critical to determine the attractiveness of a product in the mix. The margin

information as well, as the different usages of critical resources or materials are evaluated to

determine which products are the most attractive.

Factory Planner: At the Factory Planner level, exact production schedules are

determined. The i2 Factory Planner is closely integrated with AutoSimulation's APF package

for production execution. Factory Planner is based on the Theory of Constraints. Given the

business criteria defined, Factory Planner looks for the 'most critical' bottleneck in the

system. The optimizer then level loads that bottleneck, assesses the impact on the overall

system, and then looks for the next most critical bottleneck and repeats the process.

One can also set hard and soft limits on various constraints. The system will then

report which of the constraints have been violated and to what extent. Similarly, one can set

tolerances for the system. For example, within what range one will allow the system to plan

over capacity, what is the maximum overdue order, or what lead-time window is acceptable.

One can then optimize based on different objectives such as ship all orders before the

promised date.
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Factory Planner is used for planning in the short-term, when one is working with a

finite capacity available. The Factory Planner can help prioritize orders based on the

capacity available.

Industries and Customers Served:

The primary industries served by i2 include semiconductor, automotive, general

consumer, energy & chemicals, metals, pharmaceuticals, and transportation.

Motorola currently uses Master and Factory Planner solutions for long and short term

planning. Dell is one current user of the i2 solution. They use the Factory Planner and run

continual 'what if' demand scenarios to determine the effect of product demand variations.

They run the what if analyzer off-line to determine the most critical effects and identify

avoidance game plans before they happen. Other customers of the i2 solutions include

Apple, Digital, HP, Seagate, AMD, Fujitsu, IBM, National Semiconductor, NEC, Phillips

Semiconductor and others.
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Appendix 3. Commercial Software Overview: Manugistics

Package Overview:

Manugistic's Business Process package is called NetWORKS. Within the

TMMNetWORKS solution set, there are numerous modules including NetWORKS DemandTM

NetWORKS StrategyTM, NetWORKS CommitTM, NetWORKS FulfillmentTM, NetWORKS

SupplyTM, NetWORKS Master PlanningTM, NetWORKS TransportTM, NetWORKS

SchedulingTM, NetWORKS ProcurementTM, among others.

Specifics:

The NetWORKS Master Planning and Strategy modules would have the closest

applicability for long-range strategic planning.

NetWORKS Master Planning is typically intended for planning in the short term given

existing material and capacity availability. The optimizer produces an optimized plan to

allocate and coordinate limited resources based upon different business strategies. The

planning package optimizes based on the use of constrained resources to improve customer

service and profit while reducing asset investment.

NetWORKS Strategy models a company's global trading network to help a company

determine optimal inventory levels, the appropriate product mix across a network, optimal

production, storage, and distribution locations, and appropriate seasonal pre-builds. The

optimizer balances the global supply chain network over time by product, customer, product

life cycle, and location for maximum profits.

Industries and Customers Served:

The primary industries served by Manugistics include apparel, automotive, consumer

packaged goods, electronics, food, and government. Manugistics does not have a specific

focus on the semiconductor industry. Customers within the electronics industry include

Analog Devices, Bose, Compaq, Ericsson, Harris Semiconductor, IBM, Lucent, Nokia, and

others.
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