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ABSTRACT 
We take an engineering design approach to a problem of the artificial - corporate decision-analysis 
under uncertainty. We use Design of Experiments (DOE) to understand the behaviour of systems 
within which decisions are made and to estimate the consequences of alternative decisions. The 
experiments are a systematically constructed class of gedanken (thought) experiments comparable to 
“what if” studies, but organized to span the entire space of controllable and uncontrollable options. We 
therefore develop a debiasing protocol to forecast and elicit data. We consider the composite 
organization, their knowledge, data bases, formal and informal procedures as a measurement system. 
We use Gage theory from Measurement System Analysis (MSA) to analyze the quality of the data, the 
measurement system, and its results. We report on an in situ company experiment. Results support the 
statistical validity and managerial efficacy of our method. Method-evaluation criteria also indicate the 
validity of our method. Surprisingly, the experiments result in representations of near-decomposable 
systems. This suggests that executives scale corporate problems for analyses and decision-making. 
This work introduces DOE and MSA to the management sciences and shows how it can be effective to 
executive decision making.  
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1 INTRODUCTION 
This article is about a new idea: we can study corporate problems and their potential solutions under 
uncertainty using engineering methods; specifically, DOE [1] and MSA [2]. These are proven methods 
in engineering and manufacturing, but are absent in management decisions. Our hypothesis is that as in 
an engineering system, corporate problems and their potential outcomes depend on the behaviour of 
organizational systems under uncertainty, and these systems can be studied with experiments (real or 
simulated). We also consider decisions as intellectual artefacts than can be designed, evaluated, and 
their outcomes predicted using engineering methods.  
 DOE presents us with a method to understand the behaviour of the corporate systems within 
which decisions are made and to estimate the consequences of alternative choices as scenarios. The 
experiments are a set of systematically designed gedanken experiments structured to span the entire 
space of controllable and uncontrollable options.  
 In any experiment, data quality depends on instruments and how they are used. We consider the 
composite of the organization, their knowledge, data bases, formal and informal procedures as a 
measurement system. Gage theory from MSA presents us with an engineering method to uncover 
weaknesses that contribute to low-quality data, and take corrective action.  
 Executives jealously guard decision-making as a power-reserved. Our objective is not to make 
decisions. Rather, it is to provide a more complete and systematic analysis than is currently practical 
and provide the results of this analysis to corporate leaders in a form that is particularly useful to them.    

2 LITERATURE SURVEY 
Decision theory is an interdisciplinary field of study to understand, improve, and predict the outcomes 
of decisions under uncertainty. It draws from systems analysis, mathematics, economics, psychology, 
and management. Scholars identify three research streams: the normative, descriptive, and prescriptive 
streams. We follow Keeney [3] and summarize the three strands in Table 1.  
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Table 1. Summary of normative, descriptive, and prescriptive theories 

 normative descriptive prescriptive  

 focus  
how people should 
decide with logical 
consistency  

how and why people  
decide the way they do 

prepare people to decide 
and help them make better 
decisions  

criterion  theoretical adequacy empirical validity efficacy and usefulness 
scope all decisions classes of decisions tested specific decision problems  
theoretical  
 foundations 

axioms of  
utility theory  

psychology of beliefs and 
preferences 

logic, normative and 
descriptive theories  

operational 
 focus  

analysis of alternatives. 
determine preferences.  

prevent systematic errors in  
decision-making 

processes, procedures. 
end-end decision life-cycle. 

judges “theoretical sages” experimental researchers applied analysts 
 
 Normative theory is deals with the logical consistency of decision-making. A person’s choices 
are rational, when their behaviour is consistent with the normative axioms of expected utility theory 
(EU) [4]. These axioms establish ideal standards for rationality. Though elegant, normative theory is 
not without paradoxes or inconsistencies [5], [6]. Moreover, perfect rationality far exceeds people’s 
cognitive capabilities; therefore, they satisfice and do not maximize [7]. Simon [7] in his seminal work 
on organizational behaviour argues that bounded rationality is the fundamental operating mechanism 
in decision-making. We adopt this perspective of bounded rationality for our work.      
 Descriptive theory concentrates on representations of how and why people make the decisions 
they do. For example, Prospect Theory posits that we think of value as changes in gains or losses [8]. 
In Social Judgment Theory, the decision maker aggregates cues and correlates them against the 
environment. Naturalistic Decision Making opts for descriptive realism. For example, Klein [9] studies 
contextually-complex decisions characterized by urgency, volatile and risky conditions such as 
combat. His work reveals that these decision-makers rely on a few factors and mental simulations that 
can be completed in a limited number of steps. We note that corporate decisions are also characterized 
by urgency, volatile and risky conditions, but with insufficient simulations.  
 Prescriptive Decision Theory is about the practical application of normative and descriptive 
theories. Decision analysis is the discipline that seeks to help people and organizations make more 
insightful decisions and act more intelligently under uncertainties. Decision analysis includes the 
design of alternative choices, i.e. the task of “…logical balancing of the factors that influence a 
decision … these factors might be technical, economic, environmental, or competitive…” [10]. 
Decision analysis is boundedly rational. “There is no such thing as a final or complete analysis; there 
is only an economic analysis given the resources available [11].” We illustrate the diversity of decision 
analysis with a sample of four prescriptive theories (Table 2). 

Table 2. Summary of four prescriptive theories 

 Utility Theory Imprecision Real Options AHP 
preference basis   utility preference monetary value importance 
units utils preference monetary units unitless 

foundations Subjective expected 
utility (SEU). 

Fuzzy sets and trade-
off functions. 

Temporal resolution 
of uncertainty. 

Scales for pairwise 
comparisons. 

principles Normative axioms.  Trade-offs are not 
additive.  

Sequential temporal 
flexibility. 

Linear ordering by 
importance. 

distinctive 
processes 
/analyses 

Decision 
representation. 
Utility function. 

Preference mapping 
for improved insight. 

Options: abandon, 
stage, defer, grow, 
scale, switch.  

Factors hierarchy. 
Analysis of pairwise 
comparisons. 

 
Five examples of prescriptive methods are: Ron Howard’s method of decision analysis [10] and 
Keeney’s Value Focused Thinking (VFT) [12] both of which use utility theory; Otto and Antonsson’s 
method of imprecision [13], real options [14], and Analytic Hierarchy Process (AHP) [15]. Keefer, 
Kirkwood, and Corner [16] present a survey of decision analysis. We position our work in this paper 
as a prescriptive method (Table 3, next page). We present the highlights of our method in juxtaposition 
with Table 2. The remainder of this article is devoted to the explanation of Table 3. 



ICED07/418                                                                       3 

Table 3. Summary of our DOE-based method 

  preference basis   more of output is better, or less is better, or require exact specified output  
  units  natural units specific to the decision situation 

  foundations 
 bounded rationality 
 design of experiments (DOE), Gage R&R  
 research on bias from descriptive decision theory   

  principles  unconstrained exploration of entire solution space  
 unconstrained exploration of entire space of uncertainty  

  distinctive processes 
 debiasing of elicited data 
 determining the quality of the input data 
 construction of decision alternatives 

3 HYPOTHESIS AND RESEARCH METHODS 

3.1 Hypothesis and research question  
We take an engineering design approach to investigate corporate decisions and their outcomes under 
uncertainty. Our hypothesis is that as in an engineering system, corporate decisions and their potential 
consequences depend on the behaviour of business systems, which can be studied with experiments 
(real or simulated). We also consider decisions as intellectual artefacts that can be designed and tested 
using engineering methods. The research questions are: Is there support to indicate the efficacy and 
validity of such an approach? What can we learn about the systems that underpin decisions? 

3.2 Protocol for experiments  

The canonical model for decision making 
The “canonical paradigm” [18] for decision making posits seven steps: (1) recognize a decision is 
needed, (2) define the problem or opportunity, (3) specify goals and objectives, (4) generate 
alternatives, (5) analyze alternatives, (6) select an alternative, and (7) learn about the decision. Simon 
notes: “The classical view of rationality provides no explanation of where alternate courses of action 
originate; it simply presents them as a free gift to the decision makers” [19]. Analysis has crowded out 
synthesis. We concentrate on step (4) in order to fill this gap.  

Data-collection and forecasting protocol  
All decisions are based on forecasts about outcomes and preferences for those outcomes. Forecasts are 
subject to bias [6]. Overconfidence is one of the most pernicious biases in decision making [20]. It is 
therefore surprising that there is “...  little evidence that debiasing techniques are frequently employed 
in actual practice [21]”. But how do you debias? Scholars suggest:  
 Counter-argumentation. This process requires the explicit articulation of the reasons why a forecast 

might be correct and also incorrect [22], [23]. Disconfirmatory information has a debiasing effect 
that enriches people’s mental models about the decision that improves their ability to conceptualize 
alternatives [24]. Therefore, our forecasting protocol that includes counter-argumentation. 

 Anti-herding. Herding refers to people’s tendency to succumb to social pressures and produce 
forecasts that cluster together [25]. To avoid herding, our protocol forbids the disclosure of 
individual forecasts, but it encourages counter-argumentation. This is our non disclosure rule. 

 Accountability. Accountability is an important factor in reducing bias [26], particularly when it is 
known before judgements are reached. Accountability can attenuate the bias of overconfidence and 
improve the accuracy of forecasting.  

We embody these principles and our non-disclosure rule into our protocol. This process 
promotes more critical systems thinking that also diminishes information asymmetry among the team 
members engaged in the process. They are the hallmarks of our protocol.  

Generation and analysis of decision alternatives 
We use DOE procedures to construct decision alternatives and to predict outcomes under uncertainty. 
To construct a decision alternative, one simply specifies an appropriate treatment. This way, we can 
explore the entire solution space and answer any “what if” questions decision makers wish to pose.  
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Experiment Validation  
We follow Yin [27] and Hoyle, Harris and Judd [28] and subject our experiments to tests of construct, 
internal, and external validity.  

Method validation 
Carroll and Johnson [29] specify six criteria for the evaluation of a method. We use these six criteria to 
evaluate our DOE-based decision analysis method.   

4 INDUSTRIAL ILLUSTRATION: IN SITU EXPERIMENT  
Prior to these experiments, we performed extensive simulations of our method using a comprehensive 
(>600 equations) system dynamics model of a real company. Then we performed two in situ 
experiments, one in the US and the other Japan. Due to space limitations, we present the American 
experiment in this article. All experiments and simulations can be found in Tang [30].  

4.1   Experiment with a US manufacturing company  
We will call the company High-Tech Electronics Manufacturing. HiTEM is a contract manufacturer. It 
has plants in the US, Asia, and Europe. Adapting the canonical paradigm, we specified and used the 
experimental protocol below (Table 4) for this company experiment.  

Table 4. Experimental protocol   

1. Framing the problem  Understand the decision situation, goals and objectives. 
 Specify the problem in DOE normal form 

2. Establish the base line    Forecast the business-as-usual (BAU) case 
3. Forecast the sample space   Forecast the sample space in three uncontrollable environments   

4. Analyze the data  Analyze summary statistics and test treatments 
 Analyze gage R&R statistics    

5. Analyze alternatives  Construct and analyze alternatives 

6. Learning from the decision  Summarize findings and lessons from the experiment  
 Analyze validity of the experiment and the decision’s quality. 

4.2 Framing the Problem 

The Decision Situation  
HiTEM has not made a profit in three years. The newly appointed president must turn a profit in six 
months. He wanted to know what strategic alternatives, in addition to his own, were possible. He 
appointed a five-person task force to work with us. Task force members were from manufacturing, 
marketing, finance, and operations.  

Framing decision in our DOE normal form  
The “problem” and “outcomes” (Table 5) have already been addressed. The “controllable variables”, 
SG&A, COGS, and sales are the usual expense, cost, and revenue items. The plan was to alter the 
customer-portfolio mix by shedding customers that do not contribute a designated level of profit. 
“Financing” meant selling unprofitable plants in Mexico or China for a one-time cash flow.   

Table 5. Framing of HiTEM’s decision situation in DOE normal form 

problem   survival 
outcomes profitability in 6 months 

controllable 
variables 

. 1. SG&A 

. 2. COGS 
. 3. Capacity Utilization 
. 4. customer portfolio mix 

.5.  Sales 

.6. Financing 
uncontrollable 

variables 
. 1. change in demand 
. 2. senior executive interactions 

3. banker actions 
4. loss of critical skills 

 
The next step was to bracket the limits of the controllable variables (Table 6). “Level 3” was specified 
as doable, but only with a very strong effort. “Level 1” was the lowest acceptable-level of managerial 
performance. The * entries represent current level of operations, i.e. “business-as-usual” (BAU).  
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Table 6. Controllable variables and levels 

controllable  level 1 level 2 level 3 
SG&A $54 M + 10% $54 M * $54 M - 10% 
COGS $651 M + 2% $651 M * $651 M – 2% 
plant capacity 40% utilization 60% utilization * 80% utilization 
customer 

portfolio mix 
No change. Retain  

current customer mix * 
dev. < 10%,  A&T < 6%, 

manufacturing < 4% 
dev. < 20%,  A&T < 12%,  

manufacturing < 8% 
sales $690 M – 5% $690 M * $690 M + 5% 

financing cash shortfall * 
of $10 M annualized  

Divest Mexico plant. 
yields $12M annualized 

Divest China plant. 
yields $25M annualized 

 * BAU 
 
Uncontrollable variables are those management cannot, or are very costly to control, but have a direct 
impact on the desired outcome (Table 7). “Level 3” is the best, but realistic, condition. “Level 2” is the 
current condition, denoted by *. “Level 1” is the worst, but possible, uncontrollable condition. To 
determine the limits in Table 6 and 7, team members were free to consult with their staffs.    

Table 7. Uncontrollable variables and levels 

uncontrollable   level 1 level 2 level 3 
change in 
demand   

change causes > 5% 
loss of gross profit  no change * change causes > 5% gain of gross 

profit 

 senior executive  
 interactions 

no change * 
same as level 2.  

Senior executives rarely deal 
openly with differences. End-runs 
are routine and disruptive. * 

Senior executives are open and 
discuss differences. There is 
strong management unity. 

 banker actions  banks end business 
with HiTEM  no change * banks cooperate with HiTEM 

and relax terms 
 loss of critical-  
 skills personnel 

lose ≥ 3 from critical 
skills list  no change * gain 1 or 2 highly qualified skills 

* current environmental conditions 
 
For a specific configuration of the controllable variables, we use an ordered 6-tuple; e.g. (2,1,2,2,3,2) 
that means variable 1 at level 2, variable 2 at level 1, and so on. We use a 4-tuple for a configuration of 
uncontrollable variables. So, [(2,2,2,1,2,1);(2,2,2,2)] is BAU in the current decision situation.  

Experimental data-set structure  
We use an L18 array for our core data set (Table 8). We augment our L18 with the BAU treatment and 
the high-leverage “test treatments” 19, 20, 21, and 22, which are obtained using the Hat matrix. We 
compound the uncontrollable variables into the current (2,2,2,2), worst (1,2,1,1), and best (3,3,3,3) 
uncontrollable environments as specified by the team.   

Establishing the base line: Forecasting BAU and Counter-argumentation   
Each team member individually forecasts profit for BAU six months out for the three uncontrollable 
environments (cells a, b, c in Table 8). Disclosing each other’s forecast was prohibited. Next, we direct 
each team member to write three reasons why their forecast is accurate and three reasons why not. We 
get 15 reasons why the forecasts are accurate and 15 opposing reasons. The team is then directed to 
read and debate all 30 reasons. After this discussion, they forecast the BAU treatments a second time. 
The non-disclosure rule still applies. Table 9 is a summary of the data from the above procedure. Note 
that the dispersion of the data from round 1 to round 2 declines. The group has learned from each other 
through the information transfer generated from our counter-argumentation process.   

Forecasting the sample space  
With this learning, we ask each team member to populate the entire data set similar to Table 8, where 
the rows were randomized differently. Each team member made 23*3= 69 forecasts, 23 treatments in 
three environments. We had a total of 69*5= 345 forecasts. The non-disclosure rules applied as before 
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Table 8. Data set structure for the HiTEM experiment 

controllable  factors uncontrollable factors’ levels uncontrollable factors 
level 2 level 1 level 3  cust./demand  change  
level 2 level 2 level 3  senior exec. interactions  
level 2 level 1 level 3  banker actions 
level 2 level 1 level 3  critical skills tre

atm
en

t 

SG
&

A
 

CO
G

S 

ca
pa

cit
y 

 

po
rtf

ol
io

 

sa
les

 

fin
an

cin
g 

current worst best  
BAU 2 2 2 1 2 1 a b c BAU treatment 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

1 
1 
3 
2 
2 
2 
3 
3 
3 
1 
1 
1 
2 
2 
2 
3 
3 
3 

1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 

1 
2 
3 
1 
2 
3 
2 
3 
1 
3 
1 
2 
2 
3 
1 
3 
1 
2 

1 
2 
3 
2 
3 
1 
1 
2 
3 
3 
1 
2 
3 
1 
2 
2 
3 
1 

1 
2 
3 
2 
3 
1 
3 
1 
2 
2 
3 
1 
1 
2 
3 
3 
1 
2 

1 
2 
3 
3 
1 
2 
2 
3 
1 
2 
3 
1 
3 
1 
2 
1 
2 
3 

   

L18 treatment  1 
L18 treatment  2 
L18 treatment  3 
L18 treatment  4 
L18 treatment  5 
L18 treatment  6 
L18 treatment  7 
L18 treatment  8 
L18 treatment  9 
L18 treatment 10 
L18 treatment 11 
L18 treatment 12 
L18 treatment 13 
L18 treatment 14 
L18 treatment 15 
L18 treatment 16 
L18 treatment 17 
L18 treatment 18 

19 
20 
21 
22 

3 
1 
1 
3 

1 
3 
3 
2 

3 
1 
3 
3 

1 
3 
1 
3 

1 
3 
1 
1 

3 
3 
3 
1 

   

test treatment # 1 
test treatment # 2 
test treatment # 3 
test treatment # 4 

Table 9. BAU forecasts dispersions decline between round 1 and round 2 

average profit   $M standard deviation BAU forecasts 
round 1 round 2 round 1 round 2 change  

 current environment 
 worst environment  
 best environment 

- 5.5 
-10.9 
- 4.28 

-5.5 
-9.75 
-5.13 

1.3 
2.7 
2.5 

1.2 
0.5 
1.0 

declined  
declined 
declined  

Forecasting the sample space  
With this learning, we ask each team member to populate the entire data set similar to Table 8, where 
the rows were randomized differently. Each team member made 23*3= 69 forecasts, 23 treatments in 
three environments. We had a total of 69*5= 345 forecasts. The non-disclosure rules applied as before.  

4.5 Analyzing the data 

ANOVA summary statistics  
Table 10 shows the ANOVA and residual statistics for all three environments. For HiTEM, a contract 
manufacturer, COGS is the dominant controllable variable. The controllable variables are strong 
predictors (p<<0.05) of the profit outcome (except for capacity and financing in the best environment). 
The p and R2 values suggest that the appropriate controllable variables were selected. Residual 
statistics (p>>0.05) show they are not carriers of significant information. In the worst environment, we 
removed outliers (difficult to forecast treatments). We use Table 8 in its entirety to analyze interactions 
because it gives us more dof’s. There are statistically significant interactions, but their contribution to 
the outcome is small. This suggests that HiTEM’s system behaviour is near decomposable 
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 Table 10. ANOVA for team forecasts for current, worst, and best environments (N=72)  

current environment worst environment best environment  
adj MS MSadj  %   p adj MS MSadj  %  p adj MS MSadj  %   p 

 SG&A 
COGS 
capacity 
portfolio 
sales 
financing 
error 

56.82 
569.3 
14.6 
37.1 
51.5 
13.5 
2.4 

7.6 
76.2 
2. 
5. 
6.9 
2.1 
0.3 

0.000 
0.000 
0.017 
0.000 
0.000 
0.006 

- 

73.8 
622.8 
36.9 
26.6 
28.2 
21.7 
3.0 

9.1 
76.6 
4.5 
3.3 
3.5 
2.7 
0.4 

0.000 
0.000 
0.001 
0.000 
0.003 
0.001 

- 

56.6 
532. 
8.33 
36.4 
37.3 
6.5 
5.1 

8.3 
78. 
1.2 
5.3 
5.5 
1.0 
0.7 

0.001 
0.000 
0.204 
0.002 
0.009 
0.283 

- 
 total 747.1 100% - 813.1 100% - 682.2 100% - 

 R2       83.8% R2
adj   81.7% R2   81.9 % R2

adj   79.6% R2   69.3 % R2
adj   65.4% 

residuals AD        0.310 
 p            0.548 

AD        0.409 
 p            0.338 

AD        0.468 
 p            0.243 

 

Table 11. Interactions of controllable variables 

current  environment worst environment best  environment 2 factor interactions 
adj MS  %  p adj MS  %  p adj MS  %   p 

COGS*sales 
COGS*capacity utilization 
customer portfolio*sales 
customer portfolio*capacity 

1.97% 
- 
- 
- 

0.079 
- 
- 
- 

- 
1.16% 
0.9% 

- 

- 
0.08 
0.05 

- 

- 
- 
- 

1.31% 

- 
- 
- 

0.008 
 R2  90.2 %    R2

ad j 88.9 % R2  97.6 %   R2
adj  97.2 % R2  89.2 %   R2

adj  87.6 % 

Gage R&R summary statistics  
How “good” are the forecasts and the data produced? We apply the Gage R&R to explore this 
question. Gage R&R is used to analyze the sources of variation in a measurement system. We consider 
the team members who are forecasting the outcomes of experiments, their knowledge, data bases, 
formal and informal procedures, and their network of contacts as a measurement system. We adopt the 
MSA term, “operator”, to designate each team member who, instead of measuring a manufactured 
part, is making a forecast.  
 To obtain reproducibility and repeatability statistics, we use the four test treatments and the 
BAU treatment (Table 8). For these treatments, we use each operator’s forecast and compare it against 
the value we derive using our L18 array. This comparison is used to test the quality of the forecast data.   
 Reproducibility. Figure 1 (left panel) shows the forecasts for the four test treatments BAU, in the 

current environments, from our five operators. Operator 4’s forecasts show a positive bias, while the 
other forecasts exhibit much less variation. They show more reproducibility.  

 Repeatability. In a similar manner, we subject our four test treatments and BAU treatments to the 
tests of repeatability. Figure 1 (right panel) shows typical results of an operator. The graphs are 
“close” suggesting repeatability and that the operator was not guessing randomly.  

 
 
 
 
 
 
 
 
 
 

 

Figure 1. Sources of variability for forecasts 

forecasts of current environment 

-10.0

-5.0

0.0

5.0

10.0

131333 133113 222121 313113 323311

$ 
M

operator 4 

participant 2

-10.0

-5.0

0.0

5.0

10.0

131333 133113 222121 313113 323311

derived forecasts 

operator 
forecasts

operator 2 
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Table 12 shows our Gage R&R statistics. (We removed operator #4’s data due to its excessive bias). 
The p values for treatment, operator, operator*treatment, and repeatability are statistically significant 
(p<<0.05). Of the total variation, 7.07% is from repeatability, 11.00% from reproducibility, and 
81.92% from part-part.     

Table 12. ANOVA for measurement variances 

Two-Way ANOVA Table With Interaction  
Source 
treatment 
operator 
treatment*operator 
repeatability 
Total 

DF 
4 
3 

12 
20 
39 

SS 
299.10 
25.01 
23.46 
15.72 

363.28 

MS 
74.77 
8.34 
1.95 
0.79 

F 
38.26 
4.23 
2.49 

p 
0.000 
0.029 
0.035 

Gage R&R 
Source 
Total Gage R&R 
   Repeatability 
   Reproducibility 
       operator 
       operator*treatment 
Part-to-Part 
Total Variation 

VarComp  
2.01 
0.79 
1.22 
0.64 
0.58 
9.10 
11.11 

% of VarComp 
 18.01 
   7.07 
 11.00 
   5.74 
   5.26 
 81.92 
100.00 

 

 
The manufacturing heuristic for a quality measurement system is 90% part-to-part variation, 5% each 
for repeatability and reproducibility [2]. However, we do not find any literature to inform us whether 
this heuristic applies in equal measure in our domain. This is an open area for further research.  

4.6 Construction and analysis of alternatives  
Given the forecasts for the frugal L18 set of controllable choices, we can construct forecasts for all 
possible sets of choices. One simply specifies a treatment that fits the alternative choice. The president 
was being pressured to improve the BAU (current situation) by changing one single controllable 
variable. We constructed those alternatives. None meets the profit objective and neither would a two-
factor improvement policy (except in the best environment). Table 13 shows a few cases.  

Table 13. Derived predictions for strategic alternatives 

derived profit $ M 
environment strategic alternatives vs. BAU 

current worst best 
2,2,2,1,2,1 BAU -5.54 -9.40 -2.89 
2.3.2.2.2.1 
3,3,2,1,2,1 
2,3,3,1,3,1 
3,2,2,2,2,1 
3,2,2,1,2,2 

    BAU ⊕ [COGS +] ⊕ [portfolio+] 
   BAU ⊕ [COGS +] ⊕ [SG&A+] 
  BAU ⊕ [COGS +] ⊕ [finance+] 
BAU ⊕ [portfolio+] ⊕ [SGA+] 

B     BAU ⊕ [sales+] ⊕ [SGA+] 

-0.40 
-0.86 
-1.40 
-2.71 
-3.25 

-4.24 
-4.79 
-4.67 
-6.61 
-7.15 

2.18 
1.65 
1.82 
0.07 
-0.68 

      ⊕ means set the variable identified by [variable+] at next higher level in the BAU 6-tuple.  
 
HiTEM’s president stated that (3,2.5,2,2,1.5,1.5) was realistically all he could do, i.e. downsize the 
sales force to reduce SG&A (and expect a decline in sales) and reduce manufacturing labor to reduce 
COGS. He was less sanguine that he could increase plant capacity sufficiently to influence 
profitability. He also judged that with a reduced sales force he could not take effective action on the 
customer-mix issue. Finally to mitigate the anticipated cash shortfall of $10M, he was prepared to sell 
unused company real estate if he could not find buyers for the plants Mexico and China. Calculations 
for these variations yield Table 14. 
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Table 14. Derived predictions for variations of realistic strategy 

derived profit  $ M, σ variations of Realistic Strategy vs. BAU 
current   worst best 

(2,2,2,1,2,1) 
(3,2.5,2,2,1.5,1.5) 
(3,2.5,2,2,1.5,3) 

BAU 
realistic 
realistic ⊕ [China divestiture] 

$ -5.54 M, 1.29 
$ -1.13 M, 1.00 
$  0.05 M,  1.24 

$ -9.40 M, 1.06 
$ -4.46 M, 1.11 
$ -3.20 M, 0.83 

$ -2.89 M,  1.59 
$  1.59 M,  0.44 
$  2.38 M,  0.74 

 
The realistic strategy will outperform BAU in every environment. The factors that improve are SG&A, 
COGS, customer portfolio (e.g. COGS moves from level 2 to level 2.5), and financing - the variables 
that strongly impact profit, but they cannot turn around the company except in the best environment. 
Divestiture of the China plant in the realistic strategy can make HiTEM break even. In the current 
environment, there is less variation in the realistic strategy chosen by the president. It is less risky.  

4.7 Findings 

The method is useful and the protocol is an effective blueprint for experiments  
HiTEM’s president and his team were enthusiastic about the method and took immediate action. The 
following are examples of written feedback from the team.  

“the debate created by having to validate or disprove our actions [was useful].” 
“approach will make better decisions.” 

Table 15 summarizes the findings. It was surprising that forecasting the entire data set and the test 
treatments took substantially less the time than forecasting the BAU treatment. This suggests that the 
team can forecast complex scenarios, even under pressure.  

Table 15. Summary of findings about our protocol 

Framing the problem The DOE normal form is a useful framework to specify the decision situation, the 
controllable and the uncertainty space using the uncontrollable variables. 

Establish the base line Counter-argumentation process works well. It promotes individual and team learning. 
Forecast treatments Post counter-argumentation, the team readily forecasts many complex treatments. 

Analyze the data 
Controllable variables are strong predictors (p<0.05 with rare exceptions)  of outcome 
Controllable variables interactions are small. 
Summary statistics indicate that the team is able to identify the appropriate variables. 

Analyze alternatives Can construct any “what if” alternative and derive the outcome of any alternative 
Learning about the 
decision 

President and the team enthusiastic about the method, analysis, and findings. 
Good external correspondence of derived results 

 There is support for experimental validity  
 Construct validity. We have construct validity. We have a conceptual framework for our experiment 

that is actionable using independent and dependent variables. Our framework is specified by our 
DOE normal form (Tables 5, 6, 7). The independent variables are the six controllable and the four 
uncontrollable variables. Profit is the dependent variable. Our protocol and DOE procedures make 
the framework operational. ANOVA data show that the controllable variables are strong predictors 
(p<<0.05) of the profit outcome except for capacity and financing in the best environment.  

 Internal validity.  Experts must judge the effects of the independent variables on the dependent 
variables to be consistently credible with their domain knowledge of the phenomenon under study. 
As domain experts, HiTEM’s president and the working team judged that the independent variables 
exert their influence on the dependent variable (profit) in a valid manner (Figure 2). 

 External validity. We need to show that this method is generalizable to a larger population. Another 
field experiment is documented in Tang [28]. Results suggest that the method is sufficiently general 
for many other corporate decisions. Clearly, however, more experiments are called for. 

 Reliability. Can we repeat key experimental procedures with consistent results? We used two rounds 
of forecasts for BAU. Using Gage R&R, we obtained measures for repeatability, reproducibility, 
and part-part variation. We noted our protocol reduced the dispersion of the forecasts.  
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Figure 2. Controllable variables’ responses 

Our method passes tests of validity. Carroll and Johnson [29] specify six criteria for evaluating 
methods (Table 16). From this evaluation, we infer the validity of our decision analysis method. 

Table 16.  Caroll and Johnson’s criteria for method evaluation and findings 

Discovery.  power to uncover new phenomena   
 phenomenological behaviour of corporate systems and processes  
 system behaviour of the business processes are nearly decomposable 
 repeatability and reproducibility of corporate forecasting composite  

Understanding . valid constructs that uncover mechanisms  
 behaviour of corporate processes determined by controllable and uncontrollable variables. 
 the uncertainty space can be characterized with uncontrollable variables 

Prediction.  ability to make predictions based on rules of logic or mathematics  
 derivation of the output of any decision alternative under any specified uncertainty conditions 

Prescriptive control.  capability to modify the decision process and prescriptions  
 construction of alternatives that trades-off  performance and risk 
 generation of alternative decisions over the entire solution space under any uncertainty condition 

Confound control.  creating controlled situations to rule out confounding elements   
 controllable and uncontrollable variables separate their effects on the outcomes  
 high resolution arrays separate the interaction effects from the main effects 
 determine (and discriminate)  the % contribution of each controllable  variable to the outcome 

Ease of use.  economic and efficient use of time and resources   
 written feedback indicates that the method is easy to use and useful to the decision-makers 

What actually happened?   
During the six months after we were on site, HiTEM’s actual performance was (3,2.5,2.5,2.5,1,1) 
versus the planned “realistic” strategy of (3,2.5,2,2,1.5,1.5). HiTEM reported to the SEC a net income 
of $1M. In the execution of the “realistic strategy,” they were able to improve on two factors but 
underperformed in two others. Our method predicts $0.41M. This prediction is better than it appears, 
during the previous two quarters HiTEM’s losses exceeded $30 million.   

5 DISCUSSION 
 
 Corporate business processes that support a decision are complex. The decisions are multi-
functional with a variety of stakeholders with diverse and potentially competing interests. Therefore, it 
was surprising that the experimental data show that the interactions among the controllable variables, 
although present, were small. The system behaviour was nearly decomposable at our scale of analysis.  
 This result is consistent with principles of complex systems. Simon [31] noted that: “If we are 
interested only in certain aggregated aspects of behaviour, it may be that we can predict those 
aggregates by use of an appropriately aggregated model”. And “the dynamic behaviour of a nearly-
decomposable system can be analysed without examining simultaneously all the interactions of the 
elementary parts” [32]. Bar-Yam [33] observes that complex systems at the appropriate scale, i.e. at a 
level where the descriptions are self-consistent, the detailed behaviour of lower level objects is not 

      SG&A              COGS      plant capacity       customer mix       sales            financing
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relevant at a higher aggregated scale. And “The existence of multiple levels implies that simplicity can 
also be an emergent property. This means that the collective behaviour of many elementary parts can 
behave simply on a much larger scale”. [33]  
 Near decomposability of decisions is also consistent with the work of management scholars. 
Dawes [34] disclosed the “robust beauty” of linear models, i.e., experts are capable of identifying the 
predictors of an outcome with a linear relationship relative to the outcome. Research studies suggest 
that verbally reported weights were substantially overstated the importance of minor facts [35]. These 
research scholars sought experts who use the interactions in their decision-making, “configural” 
judges. The ANOVA statistics from these configural judges showed significant interaction terms. 
“Despite their significance, however, these interactions rarely accounted for much judgmental variance 
... judges were not necessarily mistaken when they claimed to use information configurally, but that 
linear models provided such good approximations to nonlinear processes that the judges’ nonlinearity 
was difficult to detect.” [36] (Italics are ours) Our experiments also exhibit this phenomenon. Framing 
a decision problem at the appropriate scale, near decomposability of complex systems, and the near-
linear behaviour of complex systems are areas worthy of more study.    

6 CONCLUDING REMARKS 
This research breaks new ground in corporate decision-analysis using DOE and Gage theory. It 
expands DOE and MSA research to an entirely new domain: administrative science. We have shown:  
 Engineering design approach to corporate decision analysis using DOE is feasible.  

One, we can explore the entire solution space. Using orthogonal arrays of controllable variables, we 
can derive outcomes over the entire solution space with the most parsimonious set of experiments. 
This capability unconstrains the range of “what if” questions decision makers can pose. Two, we can 
explore outcomes over the entire uncertainty space. Because the uncertainty space is constructed using 
uncontrollable variables, we can explore any decision alternative and its outcome over the entire space 
of uncertainty. This unconstrains the range of “what if” questions about uncertainty.  
 Engineering approach to analyze data quality using Gage theory is feasible.  

We can consider the executives who are forecasting, their knowledge, data bases, formal and informal 
procedures as a measurement system. Using Gage theory on this measuring system, we were able to 
measure repeatability and reproducibility. Regrettably, we can find no body of work to benchmark 
business-process Gage data. This suggests a new territory for research.     
 Validity tests suggest our in situ experiments and our DOE decision-analysis method are valid.   

Validity is inferred from our findings of executive feedback, statistical analyses of company 
experiments, validation criteria specified by scholars for tests of construct, internal, and external 
validity, as well as of reliability and Gage R&R analysis.   
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