Ignorance and Grammar
by
Marie-Christine Meyer e i zg: -
M.A., Humboldt University Berlin (2008)

Submitted to the Department of Linguistics and Philosophy
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2013

© Marie-Christine Meyer, MMXIII. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute
publicly paper and electronic copies of this thesis document in whole or in part

in any medium now known or hereafter created.

/\

R AR R R R R R R I I I A A AR AT R

............. o APV e B N TR v
\\/ Dep \rtment of Linguistics and Philosophy

Certifiedby............... e e e

Irene Heim
Professor of Linguistics
Thesis Supervisor

Accepted by . .voimierriben i l ............................................

David Pesetsky
Professor of Linguistics
Head of Department



Ignorance and Grammar
by
Marie-Christine Meyer

Submitted to the Department of Linguistics and Philosophy
on, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

Abstract

In this thesis, I propose a new theory of implicature. I argue that the two main theories avail-
able so far - the (Neo-)Gricean pragmatic theory on the one hand (e.g., Sauerland (2004)),
and the hybrid grammatical theory of scalar implicatures on the other hand (e.g., Fox (2007))
— cannot provide a satisfactory account of disjunctions like Al drank some or all of the beers.
As I'will show, the meaning of these sentences is characterized by the presence of grammati-
cal ignorance implicatures. In this they differ from their simpler alternatives. I will show how
the proposed Matrix K theory of implicature derives this result. The new theory is a radically
grammatical theory in that all kinds of implicatures — weak, scalar, and ignorance implica-
tures - are derived in the grammar. I will also show how Hurford’s constraint can be derived
from a general principle of manner in the new theory. I will then turn to logically under-
informative statements like Some elephants are mammals and show how their oddness falls
out from the Matrix K theory without further stipulations. Next, I argue that the theory ex-
tends to infelicitous Hurford disjunctions like Jean is from France or from Paris. Both phe-
nomena can receive a uniform explanation in terms of grammatically derived, contextually
inconsistent implicatures, without stipulating obligatory scalar implicatures. Lastly, I turn to
the case of implicature suspension and show how the new theory can account for missing
implicatures.

Thesis Supervisor: Irene Heim
Title: Professor of Linguistics
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Chapter 1

Introduction

1.1 Surface Redundancy in Disjunction

Throughout the first part of this thesis, I will be concerned with what I call Sur-
face Redundancy. A particularly striking case of such redundancy can be found

in disjunctions like the following:

(1)  They have locations in Alewife or Braintree, or both

2) Al drank some or all of the beers

I assume, uncontroversially, that both is elliptical for both of A, B and that this in
turn is semantically equivalent to the conjunction A and B. Assume now a sim-

ple hypothesis according to which A or Bis defined in terms of logical disjunction



A v B and the quantificational expression somein terms of the existential quan-
tifier 3. It seems like these disjunctions should then be equivalent to one of their

disjuncts:

(3)  They have locations in Alewife or Braintree

(4) Al drank some of the beers

But if this is so, why would a speaker bother to add the second, seemingly redun-

dant disjunct?

It might seem like a poor terminological choice to call a redundancy that is iden-
tified at LF a surfaceredundancy. There is good reason to stick with this terminol-
ogy, however. Redundancy is a semantic notion and as such only identifiable at a
level of syntactic representation which is interpreted semantically; I assume this
representation to be Logical Form. As we will see shortly, adding covert operators

at LF may obviate the redundancy, which in this sense is a surface redundancy.

Given this intuitive understanding of surface redundancy, we can now turn to
the theoretical challenges this phenomenon presents and how these challenges

have been addressed in previous research.



1.2 Background: Implicatures

1.2.1 Pragmatically Derived Implicatures

Pragmatic theories of implicature assume that the meaning of a sentence can
be divided into a semantic component and a pragmatic component, where the
latter is derived through Gricean principles of communication (cf. Grice (1975,
1989); Gazdar (1979); Horn (1984, 2004); Hirschberg (1985); Matsumoto (1995);
Levinson (2000); Kadmon (2001); Sauerland (2004, 2011); Spector (2006); Geurts
(2010). All implicatures belong to the pragmatic component and are thus de-
rived post-grammatically, by comparing the speaker’s assertion to potential al-
ternative assertions in view of Grice’s maxims of conversation. Collapsing these
maxims, the Gricean system can be summarized by the following principle (cf.

Matsumoto (1995); Katzir (2007)):

5) GRICE’S COOPERATIVE PRINCIPLE

A cooperative speaker does not assert W if there is a sentence S such that:

I. S=>WA-(W=3S)
2. Sisrelevant

3. K©®)

Before we go on, aremark about relevance is in order. Though I make no attempt

at contributing to this question here, I hasten to say that giving a more precise
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definition of relevance is not a trivial matter. For now, the following informal
characterization will do: A sentence is relevant only relative to a given discourse
context. A context can be defined in terms of the question that is currently being
discussed (the QUD, cf. von Kuppevelt (1995); Roberts (1996); Magri (2009)).
Then we can define a sentence as relevant in a certain context if (and only if) it
gives at least a partial answer to the current QUD (cf. Spector (2007); Zondervan

et al. (2008); Benz and Salfner (2013)).

I assume as an axiom that speakers are being cooperative unless they explicitly
opt out of cooperative communication (for example, by being ironic). Further-
more I assume that being cooperative entails making only relevant assertions. It
follows that an assertion is always relevant in the context it is made (cf. Magri
(2009)). This allows us to reconstruct the currently discussed QUD in case it is

not explicit.

If a principle of communication like (5) is indeed governing linguistic communi-
cation, the reasoning that is set in motion by the assertion of a weak sentence W

can be described as follows:

1. The speaker asserted Al drank some of the beers (let’s abbreviate this as W)

2. Since he did not explicitly signal that he is being un-cooperative, this means
there is no other sentence S which satisfies all of the three criteria from the

cooperative principle (5):

(@) Sislogically stronger than W

11



(b) Sisrelevant
(c) the speaker is sure that S (KS)

3. S = Al drank all of the beers is clearly stronger than the asserted sentence

W = Al drank some of the beers

4, In contexts in which W is relevant, S will typically be relevant, too (just
consider the fact that the QUD which W typically addresses is How many
drinks did Al have?)

5. Therefore, neither the first nor the second criterion could be the reason

why the speaker didn't assert S instead of W

6. By exclusion, the speaker’s epistemic state must be the culprit:

She is not sure that Al drank all of the beers

Looking back at the cooperative principle in (5), we have thus derived the nega-

tion of the third criterion. Formally:

(6) -K (Al drank all of the beers)

Here and throughout, I use K as a doxastic necessity operator, i.e., Ky expresses
necessity relative to the beliefs of a doxastic source s, which in most contexts will
be the speaker. Where there is no ambiguity, I will therefore leave out the sub-

script S; as a paraphrase for (-)K I use the locution ‘the speaker is (not) sure

12



that 1. Likewise, I will refer to implicatures of the form -K\» as weak impli-
catures. Weak implicatures thus amount to the conclusion that the speaker as-
serted a weak sentence W rather than a stronger relevant alternative S because

he is not sure that S is true.

As pointed out by Fox (2007a), however, a weak implicature is so-called because
it makes a weak claim. By this | mean that ~K(S) covers a relatively large set of

situations, which can be further partitioned into two kinds:

SITUATION FORMAL DESCRIPTION
The speaker is sure that S is false K(=S)
The speaker is ignorant as to whether or nor S is false =K(S) A -K(-S)

Thus, both K(-S) and (-K(S) A -K(=S)) asymmetrically entail -K(S):

(7) a. K(=8) = -K(S)

b. ("lK(S) A —K(~8)) = -K(S)

To introduce a further terminological convention, 1 will refer to inferences of the
form K- as scalar implicatures, while I use the term ignorance implicatures to

refer to inferences of the form (-K(S) A -K(-S)).

The Gricean hearer who hears an assertion of W and, reasoning on the basis of

the cooperative principle as illustrated above, derives the weak implicature -K(S)

13



could thus faced with a follow-up decision problem: Since the derived weak im-
plicature is consistent with both situations in ?2, he may want to decide whether
to strengthen —K(S) into a scalar implicature, or whether to strengthen -K(S) into
an ignorance implicature (cf. Soames (1982); van der Sandt (1988); Horn (1989);

van der Sandt (1988); Horn (1989); Sauerland (2004)).

The choice between the two options ultimately depends on what he thinks about
the speaker: If he assumes she is informed about S (formally: K(S) v K(=S), cf.
Soames (1982)), then he will strengthen the initially derived inference -X(S) into
K(=S). If he thinks the speaker is not informed, this can only mean that -K(S)
is to be strengthened into the ignorance implicature (-K(S) A =K(=S)) instead
(cf. Soames (1982); van der Sandt (1988); Horn (1989); Sauerland (2004); Chemla
(2008)). As we will see below (see 2.1), however, this should not be considered
a forced choice: Hearers cannot always adequately judge the competence of a
speaker regarding stronger alternatives; in this case, they have to content them-

selves with the inference that —KS.

1.2.2 Grammatically Derived Implicatures

In the grammatical theory of implicatures, the dividing line between semantic
and pragmatic components is drawn rather differently: Scalar implicatures are
derived in the semantic, rather than the pragmatic module, while the pragmatic
component, based as before on Grice’s cooperative principle, derives ignorance

implicatures (see especially Fox (2007a)). Semantically derived scalar implica-
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tures are now the result of a syntactic ambiguity resolution in favor of an LF
which contains a covert exhaustivity operator ExH (cf. Krifka (1995); Chierchia
(2004); van Rooij and Schulz (2004); Spector (2006); Fox (2007a)). Roughly, EXH
adjoins to a clause W and adds to the meaning of W the negation of W's stronger
alternatives (for the sake of simplicity, and where this creates no confusion, I will

use the same variable for a sentence and its denotation):

© [EXHW]=W A VSe ALT(W)s.t. (S=>WA—~(W=S)): =S

Let us apply this to a sentence which contains the scalar item some:

(9)  ExH [Aldrank some of the beers]

In order to calculate the meaning of this LE we first have to identify the set of
formal alternatives ALT. Let us assume as before that ALTis defined as those
sentences which would answer the same contextually given QU D; for simple ex-
amples like (9), the only alternative is thus the singleton set {Al drank all of the

beers}.

For the LF in (9), this will derive the denotation in (10). I use the opportunity
to introduce a notational convention which I will be using throughout this the-
sis: Deriving the denotation of an LF containing one or more exhaustivity opera-
tors requires several intermediate steps and calculations, for instance, listing the

alternatives which the exhaustivity operator excludes. I will explicitly list these
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intermediate steps below the first line of the computation, which is simply the
expression to be calculated (i.e., [ ¢ ] ); after listing the intermediate steps in the
derivation, the last line of the calculation gives the full denotation of the expres-

sion in question:

(10) [ exH [AL drank some of the beers] | =
- ALT(Al drank some of the beers) = {AL drank all of the beers}

= Al drank some of the beers & Al didn't drink all of the beers

But the semantics of EXH needs to be refined once we try to apply it to disjunc-
tions. Let’s assume, uncontroversially, that not only the corresponding conjunc-
tion, but also the disjuncts are themselves relevant alternatives to a disjunction.
A disjunctive sentence like (11-a) will then be associated with the alternatives in

(11-b) (cf. Sauerland (2004); Spector (2006); Katzir (2007)):

(11 a. Al went to Alewife or to Braintree
b. ALT(Al went to Alewife or to Braintree) = {Al went to Alewife, Al went

to Braintree, Al went to Alewife and to Braintree}

All of these alternatives asymmetrically entail the disjunction. As a consequence,
if (11-a) is parsed with an exhaustivity operator ExH, the semantics of EXH in (8)

predicts the following, inconsistent meaning for the LF:

16



(12) [ Bxm [Al went to Alewife or to Braintree] | =
Al went to Alewife or to Braintree & Al didn't go to Alewife & Al didn’t go
to Braintree & Al didn't go to Alewife and Braintree

=1

This problem can be fixed if we adopt a more fine-grained definition of EXH as

proposed in Fox (2007), which is given below:

(13)  [EXHW]=W A YSeZE(W, ALT(W)): =S

This definition provides a new domain of quantification for the operator EXH:
this domain is no longer ALT itself, but only a subset of all alternatives ALT. Fox
calls this subset the innocently excludable alternatives Z€. In nutshell, this set
can be defined as those alternatives in ALT (¢) whose negation can be added to ¢
without entailing any other alternative of ¢. This is what the following definition

states:

(14) ZEW,ALT(W)) =M. ~3p e ALT® (W) s.t. WAp = ¢
where ALT” (W) are those elements among .ALT(W) which are not en-

tailed by W

For a disjunction like (12), the set Z€ will no longer include the disjuncts; as illus-

trated in 22, negating a disjunct and adding it to the disjunction entails the other

17



disjunct:

(15) (Al went to Alewife or to Braintree) A —(Al went to Alewife) = Al went to

Braintree

With the updated definition of EXH, then, the predicted meaning for an LF like

(12} is the following:

(16) [ exH [Al went to Alewife or to Braintree] |

-ALT(Al went to Alewife or to Braintree) = {Al went to Alewife, Al

went to Braintree, Al went to Alewife and to Braintree}
-ZE& = {Al went to Alewife and to Braintree}

= Al went to Alewife or Braintree A Al didn't go to Alewife and Braintree

Summing up the picture so far, the scalar implicature that the speaker believes
Al didn’t drink all of the beers in examples like (61), or that Al didn’t go to both lo-
cations in examples like (11-a), arises when the sentence is assigned an LF which
includes the operator EXH. The operator adds to the basic semantic meaning the

negation of certain stronger alternatives, namely, those which can be innocently

18



excluded as defined in (14).!

But a scalar implicature, at least the way we have used the term, is an inference
of the form K- {cf. Soames (1982); Horn (1989); Sauerland (2004)), while the
exhaustivity operator merely adds -\ to the meaning of its argument. Under a
grammatical theory of scalar implicatures, this epistemicized version of the in-
ference follows from -¢ under the assumption that the speaker believes what he

says, as expressed for example in Grice’s maxim of QUALITY (cf. Grice (1975)).

1.2.3 Symmetry

Let us go back and consider what kind of implicature(s) the pragmatic theory
predicts for a disjunction. As before, we assume that the alternatives of a dis-
junction A or Bare defined as the set {A, B, (A and B)}. All of these alternatives are
stronger and equally relevant. From the cooperative principle in (5), the hearer
will thus derive the weak implicatures that the speaker chose the weak disjunc-
tion rather than any stronger relevant alternative because she is not sure about

any of these alternatives:

! As we will discuss in more detail in this chapter and in 3.1, the parse including ExH is of course
not obligatory - there is no empirical evidence that a sentence containing a weak scalar item
always carries the scalar implicature that the speaker is sure that the stronger alternative are
false (cf. Noveck (2001), Noveck et al. (2002), Papafragou and Musolino (2003), Bott and Noveck
(2004), Guasti et al. (2005), Breheny et al. (2006), Chevallier et al. (2008), Zondervan et al. (2008).
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(17) AorB

~ =K(A), -K(B), =K(A A B)

According to what we said in section 1.2.1, we might expect that any of these
weak implicatures could be contextually strengthened into scalar implicatures
if the speaker is assumed to be competent about the relevant alternatives. For
example, the weak implicature -K(B) might be strengthened into the scalar im-
plicature K(-B). Together with the assertion, this scalar implicature would then
entail that the speaker is sure that A is true, as shown below (recall that the asser-

tion of A or Bwarrants the assumption that K(A v B)):

(18) [K(A v B) A K(-B)] = K(A)

If this kind of strengthening is not ruled out, we predict that an assertion of A or

Bmay in principle convey that the speaker is sure that Ais true.

As pointed out by Kroch (1972), von Fintel and Heim (unpublished class notes),
Horn (2000); Fox (2007a), the prablem is not limited to disjunction, but will arise

with all alternatives which have the following property:

(19 SYMMETRY
Two alternatives o, o € ALT(¢P) are symmetric iff @ A o = on &

A -otn = o

20



Note that according to this definition, the disjuncts A and B are symmetric alter-

natives of a disjunction A or B.

In Sauerland’s (2004) pragmatic theory, the solution to this problem is based on
the idea that weak implicatures are given precedence (whence Sauerland’s termi-
nology, who calls them primaryimplicatures), and that scalar implicatures need
to pass a consistency test against all primary implicatures in order to be licensed

at all (cf. also Soames (1982)). Sauerland’s test works as follows:

(20)  SAUERLAND CONSISTENCY CHECK
Given an assertion of W, the scalar implicature K(-S) is licensed for any
stronger relevant alternative S iff the following is consistent:
[KW) A N P A K(=S)]
PeWl

(where W1lis the set of all weak implicatures, i.e., those of the form -K(S))

This has the desirable consequence of ruling out the empirically unattested strength-
ening of the weak implicatures -K(A} and -K(B), since this would contradict the
conjunction of the assertion and all weak implicatures which the cooperative

principle derives:
(21) K(AvB) A-K(A) A-K(B) A-K(AAB) AK(-B) = L

By contrast, strengthening the weak implicature -K(A A B) into a scalar implica-

ture is licensed, accounting for the exclusive interpretation of disjunctions:

21



(22) KAvB) A=K(A) A=K(B) A-K(AAB) AK-(AAB) # L

But not only disjunctions may have symmetric alternatives. Above we assumed
that for the sentence W = Al drank some of the beers, the relevant stronger al-
ternative was S = Al drank all of the beers. As it turns out, however, there might
be another stronger relevant sentence, namely, Al drank some but not all of the

beers.

It will be easier to check the consequences of this additional factor if we intro-

duce the following abbreviations:

23) a. SOME = Al drank some of the beers
b. ALL = Al drank all of the beers

c. SBNA = Al drank some but not all of the beers

Given these alternatives, what kind of implicatures does Sauerland’s pragmatic
system predict for the assertion of SOME? Since both ALL and SBNA are stronger

than SOME, two weak implicatures will be derived from the cooperative princi-

ple:

(24)  Aldrank some of the beers (= SOME)
~ -K(ALL)
~ -K(SBNA)

22



Sauerland’s consistency check in (20) prevents scalar implicatures to arise for any

of these alternatives:

(25) a. K(SOME) A -K(ALL) A -K(SBNA) A K(-SBNA) = 1

b. K(SOME) A -K(ALL) A -K(SBNA) A K(-ALL) = 1

But preventing the scalar implicature K(-ALL) turns out to be empirically inade-

quate, since it would rule out the following attested interpretation:

(26) Al drank some of the beers

~ K =(Al drank all of the beers)

Symmetric alternatives like {SOME, SBNA} are problematic for the grammatical
theory, too, for exactly the same reason: They seem to prevent any scalar im-
plicatures from arising, including the ones which are empirically attested. This
is because, given an alternative ALT(W) which includes symmetric alternatives
of W, the set Z£ of innocently excludable alternatives will always be empty, as

shown below:

(27)  ExH [Al drank some of the beers] (= EXH SOME)
-ALT(SOME) = {ALL, SBNA}
IE=w

= Al drank some of the beers

23



In sum, if a sentence like Al drank some of the beers is associated with the set
of alternatives {Al drank some but not all of the beers, Al drank all of the beers},
neither the pragmatic, nor the grammatical theory as we have presented them
so far would be able to derive the scalar implicature that (the speaker is sure)

that Al didn’t drink all of the beers.

1.2.3.1 Formal Alternatives

The solution to the challenge posed by symmetry is to restrict the alternatives
which are considered during implicature computation to a formally defined set
ALT (cf. Horn (1972); Gazdar (1979); Atlas and Levinson (1981); Sauerland (2004)).
Horn hypothesized that the lexicon contains special scalar items which come
with a lexical specification of their alternatives, now known as Horn-scales (cf.
22). Katzir (2007) offers a fully general mechanism to derive the set ALT of formal
alternatives which doesn’'t make reference to Horn-scales, but only to the lexicon
in general. The idea is to define ALT(¢) as the union of ¢’s lexical alternatives,

and ¢’s sub-constituents:2

2The full algorithm proposed in 22 also includes the operation of contraction, but since we won't
be making use of this option in what follows, I don't include it in the definition of his algorithm
in (28).
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(28)  KATZIR ALTERNATIVES
Let ¢ be a sentence containing one or more scalar items v. 1 is a formal
alternative of ¢, 1\ € ALT(¢), iff  can be obtained from ¢ by (i) replac-
ing one or more terminal nodes in ¢ with amember of the same syntactic

category taken from the lexicon and/or (ii} deleting sub-constituents in

$

As opposed to Horn's original suggestion, Katzir's algorithm predicts the full set
of disjunctive alternatives {A, B, (A and B)}: While only the conjunction could
be derived from the Horn-scale {or, and), Katzir's DELETE-operation allows us to
add the disjuncts A, B to the set ALT(A or B). Likewise, Katzir’s algorithm solves
the puzzle posed by SBNA (see (23) above): since Al drank some but not all of the
beers (SBNA) cannot be derived from Al drank some of the beers (SOME), it will

not be part of ALT(SOME).

Let us briefly check how the new definition of formal alternatives is implemented
in the pragmatic and the grammatical theories. In the latter, the implementation
is straightforward: It is now the formal alternatives ALT which provide the do-
main of quantification for the operator ExH. Since SBNA ¢ ALT(SOME), there will
now be exactly one innocently excludable alternative, resulting in the observed

scalar implicature:

(29)  ExH [Al drank some of the beers] (= EXH SOME)

-ALT(SOME) = {ALL} =Z&3
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= Al drank some of the beers & Al didn't drink all of the beers

In the pragmatic theory, formal alternatives are implemented by restricting the
scope of the cooperative principle ((cf. Fox (2007a))), which necessitates a slight

re-formulation, given below :

(30)  Acooperative speaker does notassert W if there is a sentence S such that:

1. Se ALT(W)
2. S=WaA-(W=5S)
3. Sisrelevant

4. K(S)

The crucial change is the addition of the first criterion: Since SBNA ¢ ALT(SOME),
no weak implicature ~K(SBNA) will be derived from the cooperative principle.

This in turn enables the alternative ALL to pass Sauerland’s consistency check:

(629 K(SOME) A -K(ALL) AK(-ALL)# L

31t follows from Katzir's formal definition of structural alternatives and the fact that each scalar
item v is part of its own Horn-scale, that for every ¢, ¢ € ALT(¢). From the definition of EXH
in (8) it follows that the negation of ¢ can never be added to ¢. For the sake of simplicity, I will
therefore omit ¢ when listing the set ALT(¢) here and in what follows.
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In sum, once we restrict implicature computation to the set of structurally-defined
alternatives, symmetric alternatives will no longer be an obstacle to deriving at-

tested scalar implicatures.

1.2.4 Ignorance Implicatures

Above [ introduced a three-fold terminological distinction, to which I now want
to return. Next to scalar implicatures, i.e., inferences of the form K(-d), we de-
fined weak implicatures as -K(¢) and ignorance implicatures as the conjunction

[-K(p) A =K=(D)].

In the preceding sections we have concentrated on the derivation of scalar im-

plicatures in the pragmatic and the grammatical systems as proposed by #2 and

22

In Sauerland’s pragmatic system, all implicatures are derived on the basis of the
cooperative principle in (30), which first yields weak implicatures about all stronger,
formal alternatives ALT. As pointed out in section 1.2.1, this may lead the hearer
to further distinguish between the two kinds of situations which the weak impli-
cature ~K(¢) describes: On the one hand, those situations in which the speaker
is sure that ¢ is false (= K(-~®)), and on the other hand, those situations in which
the speaker is truly ignorant with respect to ¢ (= -K(¢p) A -K(~})). We saw above
that the first inference is only licensed if it passes Sauerland’s consistency test for
scalar implicatures. Though Sauerland (2004) does not explicitly deal with igno-

rance implicatures, the system allows weak implicatures to be strengthened into
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ignorant implicatures whenever the speaker is assumed to be in doubt about the
stronger alternatives. Thus, based on contextual considerations, the weak impli-
cature in (32) may subsequently be strengthened into a true ignorance implica-

ture:

(32)  Aldrank some of the beers
WEAK IMPLICATURE:
~ -K(Al drank all of the beers)
CONTEXTUAL STRENGTHENING:

~ - K(Al drank all of the beers) A —K-(Al drank all of the beers)

In the grammatical theory proposed in by Fox on the other hand, if it is not parsed
with matrix EXH, a simple sentence like (32), or a simple disjunction like Al went
to Alewife or Braintree will always gives rise to a true ignorance implicature (cf.
Fox 2007:24). This is because Fox rejects the claim that the cooperative principle
is defined with reference to formal, rather than informal alternatives. Instead,

Fox suggests the following hypothesis:

(33)  FOX’S DICHOTOMY
The semantic component computes implicatures on the basis of formal
alternatives ALT, while the pragmatic component computes implica-

tures on the basis of all relevant sentences the language provides
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Implicature computation in the semantic component is done by EXI1 while the
pragmatic component derives implicatures based on Grice’s cooperative princi-
ple. Obviously, under Fox’s hypothesis in (33), the cooperative principle will be

formulated without reference to ALT, as in the version from (5) above.

We already saw that restricting EXH to formal alternatives was the only way to
derive empirically attested scalar implicatures. As we will see now, having the
cooperative principle range over all alternatives, including symmetric alterna-
tives, also has far-reaching consequences. In order to understand what these are,
let us look at our previous example SOME one more time. Recall the distinction

between formal and informal alternatives (ALT™ for short) for this sentence:

(34) Al drank some of the beers (=SOME)

a. ALT(SOME) = {ALL}

b. ALT"(SOME) = {SBNA, ALL}

As stated earlier the informal alternatives are defined without structural con-
straints but simply on the basis of relevance. Now, there are two possible LFs for
this simple sentence, and two different semantic denotations, as we have seen

above:

35) [SOME | = SOME

(36) [ ExH [SOME]] = SOME A -ALL
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At this point, the semantic component is done and pragmatic reasoning based on
the cooperative principle will begin. Given Fox’s dichotomy, this means that the
two propositions will be compared to all relevant stronger alternatives ALT™ (SOME)

as given in (34-b). For the LF in (35) this will yield the following weak implica-

tures:*
(37) SOME
~ -K(ALL)

But given the symmetry of the two alternatives, together with the premise that
the speaker is sure of his assertion (=K(SOME), this logically entails true igno-

rance implicatures;

(38) K(SOME) A -K(ALL) A -K(SBNA)

E K(SOME) A -=K(ALL) A -K(-ALL) ( A -K(SBNA) A -~K-(SBNA))>

Thus, given the possibility of defining symmetric alternatives for any sentence

(cf. Fox (2007b)), Fox’s dichotomy allows to to state the following corollary:

4For the LF in (36) no pragmatic implicature will be derived since none of the alternatives in
ALT'™(SOME) is stronger than the proposition expressed by ExH [SOME].
SThe part in parenthesis is redundant but is included here for completeness.
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(39 FOX’S DICHOTOMY - COROLLARY
Either a weak sentence W gives rise to a semantically derived scalar im-

plicature, or to pragmatically derived ignorance implicatures

To summarize, both in the grammatical theory and in the pragmatic theory of
implicatures, assertion of W can give rise to an ignorance implicature about S,
i.e., to the inference that -K(S) A ~K(=S). In a pragmatic system, this is achieved
under the premise that comparison driven by the cooperative principle is re-
stricted to a formally defined set of alternatives ALT; given this premise, weak
implicatures can be strengthened both into scalar implicatures and into igno-
rance implicatures, depending on contextual assumptions about the speaker’s
competence. In the grammatical system, on the other hand, it is assumed that
scalar implicatures are derived in the semantics by an operator EXH which quan-
tifies over the restricted set of formally defined alternatives ALT, and that the
pragmatic module will derive implicatures on the basis of a broader set of alter-
natives, which in particular include structurally more complex, symmetric alter-
natives like SBNA. Given the presence of such symmetric alternatives in the prag-
matic derivation, the implicatures derived in the pragmatics will always have the

form of ignorance implicatures.

31



1.3 Obligatory Exhaustification and Hurford’s Constraint

Having established the necessary background, we are now in a position to un-
derstand the theoretical challenge posed by surface redundant disjunctions like

(40) and (41):

(40) Al drank some or all of the beers

(41)  They have locations in Alewife or Braintree or both

We will start by assuming that the LF of these disjunctions is as suggested by their

surface structure, schematically:

(42) a. SOME or ALL

b. [AorB]or BOTH

It is easy to see that the semantic meaning of these disjunctions is equivalent to

one of their disjuncts:

43) a. [SOME orALL]=SOME

b. [[AorB]orBOTH]=AorB

But what kind of implicatures do the grammatical and the pragmatic theory pre-

dict for these surface redundant disjunctions? This will be the topic of the fol-

32



lowing sections.

1.3.1 Predictions of the Pragmatic Theory

Recall that in the pragmatic theory, both scalar and ignorance implicatures are
computed on the basis of a formal set of alternatives .4LTas defined by Katzir's
algorithm in (28). Applying this algorithm, we obtain the following formal alter-

natives:

(44) a. ALT([AorB]or BOTH) = {(A or B), A, B, (A and B), [(A or B) and (A
and B) ]}

b. ALT(SOME or ALL) = {{SOME, ALL, (SOME and ALL)}

But obviously some of these alternatives logically entail others, so we can rid the
set of some logical redundancy; recall also the convention introduced earlier (see
fn. 3) according to which ¢ will be not longer listed under ALT (¢$); we will apply

this simplifying convention to items that are logically equivalent to ¢:

(45) a. ALT(JAorB]or BOTH) = {A, B, (A and B)}

b. ALT(SOME or ALL) = {{SOME, ALL}

All three elements in (45-a) are stronger relevant alternatives of the asserted dis-
junction [A or B] or BOTH. The hearer, using the cooperative principle, will there-

fore derive the following weak implicatures:
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(46) [A or B] or BOTH
~ -KA

~ —-K(A and B)

Now, Sauerland’s consistency check for strengthening weak implicatures into
scalar implicatures (see (20)) predicts that -K(A and B) can be strengthened into

K-(A and B) iff the following is consistent (cf. Chierchia et al. (2007)):

47) K(AorB) A -KA A-KB A -K{(A and B) A K-(A and B)

This is clearly the case, and as pointed out in Chierchia et al. (2007), the predic-
tion that emerges under the pragmatic is that a speaker could use They have lo-
cations in Alewife or Braintree or both when she is sure that They have locations in
Alewife and Braintreeis false. The same empirically inadequate result is obtained
for Al drank some or all of the beers, which is predicted to be usable in a situation
in which the speaker is sure that Al didn't drink all beers. This prediction is em-
pirically wrong and the theory would need to introduce additional constraints to
remedy this. Given that EXHis not available (at least not in embedded position),

however, it is unclear what these constraints might look like.
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1.3.2 Predictions of the Grammatical Theory

As it turns out, the grammatical theory also needs additional assumptions to rule
out this empirically wrong prediction. To see why, it suffices to note that there is

nothing that would rule out the following LF:

(48)  ExXH[[A or B] or BOTH]

As stated above the set ALTcontains the following (logically distinguishable) mem-
bers: {A, B, (A and B)}. Recall from above that Exnwill add the negation of each
these elements to its argument as long as the result will not entail any other
member of ALT(cf. the definition of innocently excludable alternatives Z& in

(14)). Given this definition of ExH, the meaning of (48) will be the following:

(49)  [ExH[[AorB]orBOTH] ]
-ALT([A or B] or BOTH) = {A, B, [A and B]}
-Z& = {(A and B)}

=(A v B} A=(AAB)

If this LF is not blocked, again this results in the inadequate prediction that sen-
tences of the form [A or B or BOTH] and [SOME or ALL] should be useable in

situations in which the speaker is sure that (A and B) or ALL are false.
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1.3.3 Hurford’s Constraint

In order to remedy this, it is assumed that LFs like the one in (48) are simply ruled
out by a particular constraint against certain types of disjunctions. The con-
straint goes back to the empirical description of Hurford (1974); Gazdar (1979)

and is stated in (50):

50 HURFORD’S CONSTRAINT

A disjunction [A or B] is ungrammatical if A= Bor B = A

Before we look at what this constraint achieves within the grammatical theory,
let’s first check what the consequences are within the pragmatic theory. Since
there is no silent EXH operator, only LFs like those in (42) are available. As we
saw, for these LFs the pragmatic theory makes the wrong prediction that a scalar
implicature should be possible.® So without Hurford’s constraint, the pragmatic
theory predicts unattested readings, and with Hurford’s constraint, it predicts a

sentence like Al drank some or all of the beers to be infelicitous, contrary to fact.

®Even if we assume that ExHis available in the pragmatic theory in matrix position as an abbre-
viation for a pragmatically derived scalar implicature (cf. Sauerland (2011)), this leaves us with
the LF in (48), which as we saw makes the same, empirically wrong prediction that [A or B] or
BOTH could yield the scalar implicature not both.
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The grammatical theory, on the other hand, is at an advantage. Though the avail-
ability of embedded adjunction sites for Exthas recently been the topic of much
debate, it is becoming more and more clear that embedded exhaustification is a

real possibility (cf. 22)

But if we take the possibility of adjoining EXH to embedded clauses for granted,

there is now another possible LE:

(51)  [ExH[AorB)]] or BOTH

This LF satisfies Hurford’s constraint because EXH[A or B] does not entail [A and

B] (or vice versa). The full derivation of the denotation of (51) is shown below:

(52) [EexH[AorB]]
-ALT(A or B) = {A, B, (A and B)}
-Z€ = {(A and B)}

=(AVvB) A=(AAB) (abbreviation: (AvB)

(53)  [[ExH(AorB)]or BOTH]
=(AvB) V(AAB)

=AvVvB
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However, it seems like we are back at square one, since this is the exact same
meaning of the simpler LF [A or B] (see (43)). Perhaps, then, the grammatical
theory predicts the complex LF in (51) to have noticeable effects at the pragmatic

level. To check this, we have to calculate the predicted pragmatic implicatures.

Recall that in Fox’s (2007) system, pragmatic implicatures result from compari-
son of the assertion with all formal and informal alternatives ALT'™. As we saw
above, this set includes symmetric alternatives. Now, the semantic meaning of
the complex [EXH(A or B)] or BOTH was (A v B). Its informal alternatives will

therefore be defined as follows:

(54) ALTi“([EXH(A or B)] or BOTH) = {A, B, (A and B), (AvB)}

From the cooperative principle in (5) we derive the following implicatures:

(55)  [EXH(A or B)] or BOTH

~ =K(A) A -K(B) A -K(A AB) A=K(A v B)

Now, together with K(A v B) (which follows from the assertion), this can be

strengthened into:

(56) -K(A) A -K(-A) A-K(B) A -K(-B) A-K(AandB) A -K-(A A B)
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Would this be any different from the ignorance implicatures which would arise
from the LF [A or B]? As stated above, the simpler [A or B] expresses the same
semantic meaning and therefore, the same informal alternatives will be taken
into consideration when calculating the pragmatic implicatures of [A or B]. As a

result, the pragmatic implicatures will be exactly the same as in (56).

1.3.4 Intermediate Summary

We saw that for the pragmatic system, surface redundant disjunctions like SOME
or ALL are an unsolved puzzle: The theory predicts the availability of unattested
scalar implicatures ~(ALL) without Hurford’s constraint, but falsely predicts sur-

face redundancy to be infelicitous if Hurford’s constraint is assumed to be valid.

The grammatical theory, on the other hand, can explain the absence of the unat-
tested scalar implicatures by adding Hurford’s constraint as a primitive to the
theory. However, the augmented theory still faces the challenge of explaining the
function of surface redundant disjunctions. This is because as we saw, the theory

predicts SOME or ALL to have a reading which could also be expressed by SOME.

One way for the grammatical theorist to respond to this challenge is to say that
the virtue of surface redundancy vis-a-vis a simpler structure is that only the for-
mer, but not the latter, is unambiguous. This answer of course presupposes Hur-
ford’s constraint, according to which the only possible LF for a surface redundant
disjunction like (57-a) is (57-b), while a simple structure like (58-a) can be parsed

both as (58-b) and as (58-¢):
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67 a. SOME or ALL

b. [exh SOME] or ALL

(58) a. SOME
b. Exi# SOME

c¢. SOME

Above we saw that the grammatical theory predicts that surface redundant struc-
tures — given Hurford’s constraint — are both semantically and pragmatically equiv-
alent to one of the readings of a corresponding simpler structure. Presupposing
that this prediction is empirically correct, it is reasonable to view the advantage

of surface redundancy in disambiguation.

In the next chapter, however, we will see that this prediction is empirically wrong
and that surface redundant disjunctions actually differ in meaning from their
simpler counterparts. I will propose a theory which can account for this subtle
but robust difference in meaning between surface redundant and simple struc-
tures. Furthermore, 1 offer a way to derive Hurford’s constraint from a principle
of brevity, thus deriving the fact that structures like (57-a) cannot give rise to the

scalar implicature —(ALL) without having to stipulate Hurford’s constraint.
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Chapter 2

The Matrix K Theory of Implicature

2.1 The proposal

In this chapter, I will introduce the basics of a new theory of implicature in which
all implicatures are derived in the grammar. 1 will introduce the new system by
showing how it replicates known implicatures of disjunction. I will then go on
to show how the new theory addresses the puzzle of surface redundancy. We
will see empirical evidence that surface redundant disjunctions are not equiv-
alent to any reading a simpler structure may have. This empirical finding will
be accounted for in the new theory. Lastly, I will show that Hurford’s constraint
can be derived from a a principle in the spirit of Grice’s maxim of Manner. The
new theory can thus adequately account for the unique contribution of surface

redundancy, and furthermore does not rely on a stipulation like Hurford’s con-
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straint.

In the grammatical theory, and specifically, in the version proposed in Fox (2007),
scalar implicatures and ignorance implicatures are derived by two completely
different mechanisms, based on two different kinds of alternative sets. I propose
a new theory in which three kinds of empirically attested implicatures — scalar,
weak, and ignorance implicatures — are derived by one mechanism and on the

basis of the same set of alternatives.

The first ingredient of the new system is the assumption that assertively used
sentences contain a covert doxastic operator which is adjoined at the matrix level

at LF (cf. Chierchia (2006); Alonso-Ovalle and Menéndez-Benito (2010)):1

(1)  THE MATRIX K AXIOM

Attach Ky to every assertively used sentence ¢

As mentioned earlier (see section 1.2.1), the operator K has the following seman-

1Abrusan (2011); Simons (2007) observe what I think are overt counterparts of the Matrix K op-
erator. Simons calls these parenthetical uses of verbs like know, believe, hear. The Matrix K
operator patterns with these uses by not, at least not directly, addressing or contributing to the
current QUD. As Abrusan points out, Simons’ analysis suggest that these parenthetical uses of
epistemic attitude verbs, and consequently, also the Matrix K operator, can be analyzed as evi-
dentials (cf. Aikhenvald (2006); Speas (2008)). In this thesis, [ will not contribute to this particu-
lar line of research, and I leave it for another occasion to investigate implications of the Matrix
K hypothesis which are independent of its contribution to the topic of this thesis, namely, the
theory of implicature.
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tics:

2) [Ked ] =2Aw. Vw' eDox(x)(w): db(w’)
w’ € Dox(x)(w) iff given the beliefs of x in w, w’ could be the actual

world?

The subscript x refers to the doxastic source, i.e., the individual whose beliefs K
is quantifying over. In the cases that we will be concerned with, x is the speaker.
Where there is no ambiguity, I will therefore leave out the subscript of the Matrix

K operator.

Secondly, I follow the grammatical theory in assuming that an exhaustivity oper-

ator can be adjoined at LF:

3) EXHAUSTIFICATION

The operator EXH can be adjoined to any node v(s

With these two ingredients, a surface structure ¢ can now be mapped unto a
range of different LFs, which leaves the hearer with the task of syntactic ambi-

guity resolution. Pragmatics, under this view, is the sum of principles that guide

2As an abbreviation I will use the following convention: [ Ky | iffKx &, i.e., I will use K also in
the meta-language to abbreviate the denotation of the Matrix K operator.
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this ambiguity resolution.

The workings of the Matrix K system, which is based on the axioms (1) and (3),
will be introduced and discussed step by step in what follows. To get accustomed
to the new theory, we will start with a case study of one of the most fundamental
applications of any theory of implicature, namely, the case of disjunction. First,
we will derive the range of possible meanings that is predicted for a simple dis-
junction like Al went to Alewife or to Braintree. Then we will turn to the question

of ambiguity resolution and the ’pragmatics’ of disjunction.

2.1.1 First application: Disjunction

Given the Matrix K Axiom, a disjunction A or B will be parsed as K (A or B) at
LE Given furthermore the availability of ExH, we are looking at (at least) four

different possible LFs, given below:3

(4) a K[AorB]
b. Kexh[AorB]
c. EXHK[AorB]

d. ExHKexh[AorB]

31 will make a notational distinction between unembedded ExH and embedded exh in what fol-
lows.
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What is the denotation of each of these LFs? In order to answer this question, we
need to look both at the semantics of EXH and the set ALT it operates on in more

detail.

As a reminder, I repeat below the definition of ExH given above in (13) from Fox

(2007a):

(5) [ExHP]=d A VaeZ&E(P, ALT(D)): -a

The set ZE (&b, ALT(d)) was defined as those alternatives in ALT(¢) whose nega-

tion can be added to ¢ without entailing any other alternative of ¢:

6  ZE(D,ALT(d)) =Ace. -3/ € ALT? () s.t. d A x>
where ALT? (&) are those elements among ALT () which are not entailed

by ¢

The set ALT (more specifically, its subset Z&) provides the domain of quantifica-
tion for the operator ExH. .4LTis at least partially defined by the syntactic con-

figuration in which EXH occurs, as it is its sister node which defines the set ALT.

Looking at the list of possible LFs in (4), the definition of EXH thus predicts the
quantificational domains for EXH in the LF ExH K [A or B] to differ from thatin K
exh [A or B] and in ExH Kexh [A or B]. The typographic difference ExH vs. exh
is meant to highlight this difference. To calculate the meaning of these three LFs,

then, the first task is to identify the quantificational domain of the exhaustivity
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operator in each of these structures.

2.1.1.1 ASimple Case: Kexh ¢

With an LF where EXH is embedded under K| as in (7), nothing will change — Exx
will quantify over the set ALT(A or B) as defined above (as before, where it can

easily be recovered from context I will leave out the arguments Z€):

(7)  [Kexh[AorB]]=
-[exh[AorB]]=(AVB) AVxeZE: -
-ALT(A or B) = {A, B, (A and B)}, Z€ = {(A and B)}
-[exh[AorB]]=(AvB) A=(AAB)

K[(AVvB)A-(AAB)] =K(AVB) A K-(AAB)

2.1.1.2 Deletion and Alternatives: ExH K ¢

Let’'s now look at what happens when EXH takes scope above K instead:

(8)  EXHK[A or B]

In order to calculate the meaning of this LF we will first have to establish what
the set ALT(K[A or B]) is. Recall from the previous chapter that Katzir’s algo-
rithm predicts that « € ALT(¢) if (not iff)) « can be derived from ¢ by deletion

(repeated from (28) in section 1.2.3.1):
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(9)  KATZIR ALTERNATIVES
Let ¢ be a sentence containing one or more scalar items v. \ is a formal
alternative of ¢, P ¢ ALT(d), iff 1 can be obtained from ¢ by (i) replacing
one or more occurrences of v in ¢ with a member of v's Horn-scale and/or

(i) deleting sub-constituents in ¢

The DELETE-operation is essential to deriving the single disjunct A as alternative

for the disjunction A or B.

Crucially, Katzir’s algorithm in (9) allows for the deletion of the Matrix K opera-
tor. Depending on whether or not we make use of this option to derive the al-
ternatives for the LF in (8), the set ALT will consist of different elements — those
in (10-a) if K cannot be deleted, but those in (10-b) if DELETE can target the K-

operator:

(10) a. ALT(K[Aor B]) = {KA, KB, K(A and B)}

b. ALT'(K[Aor B]) = {KA, KB, K(A and B), (A or B), A, B, (A and B)}

Let’s start by calculating the meaning of (8) on the basis of the alternatives in

(10-a):

(11) [ExHK[AorB]]
-[K[AorB] ] =K(AV B)

-ALT(K [A or B]) = {KA, KB, K[A and BJ}
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-I& = {KA, KB, K[A and B]}

=K(AvB) A-KA A-KB A -K(AAB)

=K(AVvB) A -K(AAB) A =KA A -K-A A -KB A -K-B*

What would happen if we used the alternatives in (10-b)? The crucial change will
be in the definition of Z€. Since there is no logical relationship between K¢ and
¢ (recall from the definition in (2) that K is not factive), there will now be more

innocently excludable alternatives:

(12) [exHK[AorB]]
-[K[AorB]]=K(A v B)
-ALT’(K [A or B]) = {KA, KB, K[A and B], [Aor B], A, B, [A and B]}
-I& = {KA, KB, K[A and B], [A or B], A, B, [A and B]}

=K(AvB) A-KA A-KB A-K(AAB)A-(AvB)®

=KAVB) A =K(AAB) A -=KA A -K-A A =KB A =K-BA =(AvB)

“As stated in the previous chapter (see section 1.2.4), when weak ignorance implicatures about
two symmetric alternatives are derived, this will entail true ignorance implicatures about these
symmetric alternatives.

SNote that -(A v B) entails ~A, -B, and —(A A B). Even though by definition of ZE, all of these can
be added to the meaning of K(A or B), it will therefore be enough to just include —(A v B).
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As this derivation shows, if we were to use the alternatives in (10-b) to derive the
denotation of the LF in (8), i.e., if these were the actual alternatives of K[A or B],
the assertion of a disjunction A or B should in principle be able to convey that
A or B is false (namely, if the disjunction is parsed as ExH K [A or B]). This is
an empirically inadequate result, and the most obvious strategy to remedy this
is rule out the alternatives in (10-b). This means that Katzir's DELETE-operation

has to be restricted so as not to apply to the Matrix K operator.

In this context it is worth noting that there are cases in which an alternative set
much like (10-b) seems to be possible and indeed desired. An example is given

in (13):

(13) Al believes somebody stole his lighter

~ The lighter wasn't actually stolen

Generally, sentences of the form x believes that p can give rise to the inference

that p does not actually hold (cf. 22).

5In fact, as noted by Simons (2007), this is only true as long as x doesn't have first person features,
and even for first person features the inference re-emerges in past tense:

(14) I believe that somebody stole the lighter
+ The lighter wasn’t actually stolen
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This inference could be derived through the following alternative set, which is

derived from the assertion by deleting the doxastic operator believe:

(16)  ExH[Al believes somebody stole his lighter] =

-ALT (Al believes somebody stole his lighter) =
{somebody stole his lighter} = ZE

A believes somebody stole his lighter & It is not the case that somebody

stole his lighter

Before Katzir proposed his DELETE-AND-REPLACE algorithm in (9), it was thought
that this result had to be derived by replacing believe by its factive alternative
know, which would derive the same result as in (16) (cf. Heim (1991); Percus
(2006); Chemla (2008)). On the other hand, with Katzir’s DELETE-operation other

options like the one presented in (16) become available. The use of deletion to

(15) I believed that somebody stole the lighter
~ The lighter hadn't actually been stolen

Simons argues that the inference in (13) only arises with parenthetical uses of believe and other
relevant verbs, and that first- person or first-person past tense uses are excluded from being used
parenthetically.

Note also that this is not the full generalization yet, since a parallel behavior is observed with
certain verbs of saying: x claims that p may indicate that p does not actually hold. The analysis
can be extended to these cases in an obvious way, but for ease of exposition I will concentrate
on epistemic attitude operators in what follows.
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derive the alternatives of the epistemic operator know has also been suggested

in??,

In sum, deletion of epistemic and doxastic attitude verbs to derive the alterna-
tives of the relevant sentence seems to be an option which should not be ruled
out categorically. It appears to be an available option in examples like (16) or
presupposition triggers like know, as argued in ??2. Besides these possible ap-
plications, the DELETE-operation has most famously been used in deriving dis-
junctive alternatives (cf. 2?). On the other hand, example like (12) illustrate that
the availability of deletion cannot be unrestricted. Further research is needed to

establish the empirical scope of Katzir’s DELETE-operation and its restrictions.

Though this thesis does not attempt to contribute to this research question, ex-

amples like (12) suggest the following generalization:

(17)  Asentence of the form OP ¢, OP a universal doxastic or epistemic quan-

tifier, may give rise to the inference that - just in case OP is overt.

Turning this into a theoretical conclusions, this generalization the suggests that

the following restriction applied to DELETE:

(18)  RESTRICTIONS ON DELETE

The DELETE-operation may target only overt elements
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This restriction would rule out the derivation in (12) but allow the one in (11),

thus correctly ruling out the unavailable readings which (12) would give rise to.”?

2.1.1.3 Recursive Exhaustification: exdH Kexh ¢

Importantly, the proposed restriction in (18) applies not only to the covert K op-
erator, but to the covert exhaustivity operator ExH as well. This will become im-
portant in the derivation of the LF in (19), in which one exhaustivity operator

occurs in the scope of another:

(19) ExHKexh [AorB]

In order to compute the denotation of this LE we need to define two sets of alter-
natives, both for the matrix and the embedded exhaustivity operator. According
to Katzir’s algorithm, augmented with the proposed restriction on deleting covert

material in 22, these two sets will look as follows:

(200 a. ALT(Kexh[AorB])={KexhA, KexhB, Kexh (Aand B)}

b. ALT(AorB)={A, B, (A and B)}

"Though I have nothing interesting to say about the role of focus and its interaction with impli-
catures here, it seems that the restriction on DELETE posited in (18) could be linked to focus and
its role in determining the formal alternatives ALT for implicatures; see Fox and Katzir (2009)
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We can calculate the denotation of (19) in two steps, starting with the embedded

clause K exh [A or B]. The denotation of this clause is straightforward:

21) [Kexh[AorB]]
-ALT(AorB) ={A, B, [A and B}
-Z€ = {[Aand B]}

=K(Av B) AK-(AAB)

According to the definition of EXxt the denotation of the entire LF will the de-
notation of K exh [A or B], as given in (21), conjoined with the negation of all
innocently excludable alternatives within the set ALT(K exh [A or B]). In order
to identify these alternatives, it will first be necessary to compute the denotation

of the elements in ALT (K exh [A or B]):

22) a. KexhA
b. KexhB

c. Kexh[AandB]

What is the domain of quantification for the exhaustivity operator which is con-
tained in these alternatives? This question will be discussed in greater detail in
section 4.3.1; for now I simply presuppose that the relevant alternatives for the
emebdded exhaustivity operator in (22-a)-(22-b) are simply given by the other

disjunct (cf. ?2), while the exhaustivity operator is vacuous when adjoined to the
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conjunction. Consequently, the denotation of the alternatives in (22) will be the

following:

(23) a. [[K eth]] = K(A) A K(-B)
b. [KexhB]=K(B)AK(-A)

c. [Kexh[AandB]]=K(A AB)

All of these alternatives can be added to [K(A v B) A K~(A A B)] without entailing

another alternative. The overall denotation of the LF in (19) is thus defined as in

22:

(24) [exHnKexh[AorB]]=[Kexh[AorB]] AVxeZE: -~
-ALT(K exh [A or B]) = {KexhA, KexhB, K exh[A and B]} (see (20-a))
-I€ = {KexhA, KexhB, K exh[A and B]}
= {[K(A) AK(-B})], [K(B) AK(-A)], K(A A B)}

=K(AVvB) AK-(AAB)A-=K(AA-B) A =K(B A =A)

=KAvB) AK-(AAB) A-KA A-K-A A-KB A -K-B
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2.1.2 Intermediate Summary and Last Option: K¢

We have now derived the meaning of all LFs which contain an exhaustivity op-
erator at a possible adjunction site.2 But of course, the axiom in(3) doesn’t state
that exhaustification is obligatory - it is merely an option. Therefore, we have
one last possible LF to consider, whose meaning should now be relatively simple

to derive:

(25) KJ[AorB]

[K[AorB]]=K(AVB)

To sum up, this is where we are now: We have introduced the main ingredients
of the new system, namely, the Matrix K axiom in (1) and the Exhaustification
axiom in (3). These two axioms together assure that assertion of ¢ will be parsed
as K&, and that an exhaustivity operator can be inserted both above and below
K, giving rise to the four possible LFs derived above for the case of ¢ = [A or B].
We have then derived the denotation of these possible LFs, which are repeated

below:

8For now I will ignore cases where EXH occurs inside the disjuncts. These will be discussed in
section 2.4 below and later in chapter 4.3
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Summary: Possible LFs for Disjunction

[K[AorB]]= K(A v B)
[Kexh[AorB]]= K(AVvB) A K-(AAB)
[exuHK[AorB]]= K(AvB) A =K(AAB) A -KA A -K-A A -KB A -K-B

[exuKexh[AorB]]= K(AVvB) A K-(AAB) A -KA A -K-A A -KB A -K-B

2.2 Epistemic Transparency

It is now time to think about what these LFs actuaily mean and whether they
all correspond to felicitous uses of a disjunctive sentence. We will start with the

simplest LF:
(26) [K[AorB]]=K(AvVB)

According to this LE a disjunction conveys that the speaker is sure that one or
both of the disjuncts are true, and nothing else. But this is consistent with the
following speaker states (I call K ¢ a speaker state, by which I mean the state of

mind of somebody who is sure that ¢ is true):

270 a. KAAB)

b. KA
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In other words, if (26) were a possible LF for a disjunction like Al went to Alewife or
to Braintree, we would predict that the sentence could be felicitously used both
by somebody who is sure that Al went to Alewife (or to Braintree), and by some-

body who is sure that he went to both locations.

A similar problem arises with the following LF:

28) [Kexh[AorB]]=K@AvB) AK~(AAB)

Nothing about the meaning of (28) rules out that the speaker is already sure of

one of the disjuncts, which makes this LF empirically inadequate, too.

One might think that a simple solution to this problem could be found in a stip-

ulation like the following:

(29)  Scalar items carry a [uexh] feature

Being uninterpretable, this feature would have to be checked against the inter-
pretable [exh] feature of an exhaustivity operator. This is essentially a fancy way
of saying that EXH is obligatory (a version of (29) is actually proposed by 22, which
we will discuss in chapter 3.1.) But in the matrix K system, this will not help, as

the LF from (28) illustrates:
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30) [Kexh[AorB]]=K(AvVB) AK-~(AAB)

If the scalar element or really carried an uninterpretable [uexh] feature, this fea-
ture would be checked here and the whole LF sould be licensed. It cannot be
licensed, however, for the same reason given earlier: Nothing about the denota-
tion in (30) rules out that the speaker is already sure of one of the disjuncts. So

(29) turns out to be useless.

In the theory of implicature I propose, what has previously been identified as the
pragmatic component is reduced to the sum of principles guiding syntactic am-
biguity resolution. The main principle guiding this ambiguity resolution, under

the view advanced here, is what I will call Epistemic Transparency:

3L EPISTEMIC TRANSPARENCY

An LF of the form [... Ks¢] is licensed iff it entails S’s state of mind about

every P e ALT(p)°
States of mind are: (i) K (ii) =K

In what follows, I will use the term speaker state to refer to K¢ and -Kdo.

%As will be discussed in more detail in section 4.2.1.4 of Chapter 3, the set .ALTas used in the
definition of Epistemic Transparency is sensitive to contextually given relevance.
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Transparency is very different from other principles which have been proposed
within the grammatical theory of implicature, and which are also intended to
guide the ambiguity resolution made necessary by the introduction of the ex-
haustivity operator. The gist of these proposals is that EXH needs to strengthen
the meaning of the structure it attached to in order to be licensed (cf. Fox and

Spector (2013)).

In a sense, Epistemic Transparency also is a strengthening principle; though in
the Matrix K system, semantic strength does not automatically correlate with in-
formedness of the speaker. As can be seen from comparison of the disjunctive
LFs in above, an LF of the form ExH K ¢ is semantically stronger than K ¢, though
only ExH K ¢, but not K¢, expresses that the speaker is not sure about the ele-
ments in ALT(¢$). In the new system, then, a semantically stronger sentence is

one which is more explicit about the speaker’s state of mind.

Let's now turn to the effect which Epistemic Transparency has on the interpreta-
tion of disjunction. We saw above that from the four possible LFs for a surface
structure A or B, two need to be ruled out. The first of these problematic LFs,

together with its denotation, is repeated below:

32) [K[AorB]]=K(AVB)

As can easily be seen, Epistemic Transparency is not satisfied for this LF: No
speaker state is entailed about any of the elements in the set ALT(A or B) = {A, B,

(A and B)}.
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The other problematic LF and its denotation is given in (33):

(33) [Kexh[AorB]]=K(AVB) AK-(AAB)

This time, checking whether Epistemic Transparency is satisfied will involve some
more calculations. First, we need to calculate the set ALT (exh[A or B]). Follow-
ing the by now familiar Katzir-algorithm and the restriction on deleting covert

material, this will yield:

(34) ALT(exh[AorB])={exhA, exhB, exh (A and B)}
={(AA=B), BA-A), (AAB}

To be sure, (33) does entail a speaker state about the last of these elements, namely,
K-(A A B). Butit doesn't entail a speaker state about any of the first two elements.
The reason is this. That ¢ does not entail 1) means that ¢ is consistent with the
negation of P (formally: ¢ A —p # L). Let’s check if this is the case for the deno-
tation in (33) and the two possible speaker states about the alternatives (A A -B)

and (B A =A), viz., K(A A -B) and -K{A A -B) (and K(B A -A) and -K(B A -A)):

K(A v B) and K-(A A B) (= the denotation of (33)) means that in all of the speaker’s
doxastic alternatives, one of A, B are true and in none of her doxastic alternatives,

both A and B are true. This is consistent with three scenarios:

1. In all of her doxastic alternatives, A is true and B is false
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2. In all of her doxastic alternatives, B is true and A is false

3. in some of her doxastic alternatives, A is true and in some, B is true

Scenario 1 verifies K(A A -B), which is the negation of -K(A A -B). This means
(33) does not entail -K(A A ~B). Scenarios (ii) and (iii) verify -K(A A -B). This is
the negation of K(A A -B). Therefore, (33) does not entail K(A A -B). In sum, (33)
does neither entail —-K(A A -=B) nor K(A A -B). Mutatis mutandis, the same argu-
ment applies to (B A -A), leading to the conclusion that (33) does neither en-
tail K(B A -A) nor -K(B A -A). In sum, (33) neither entails a speaker state about

(A A =B), nor about (B A -A). QED.

This leaves us with two other LFs, which we will check for Epistemic Transparency

in turn. The first one and its denotation is given below:

35) [ExuK[AorB]]=

K(AvB) A ~=K(AAB) A -KA A =K-A A -KB A -K-B

The alternatives for which a speaker state has to be entailed are given by the set
ALT(A or B) = {A, B, (A and B)}. Obviously, Transparency is satisfied and the LF is

licensed. Checking the other possible LF is a bit more complicated:

(36) [ExHKexh[AorB]]=
K(AvB) A K=(AAB) A =KA A -K-A A -KB A -K-B
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Here, Transparency requires that K¢ or -K¢ be entailed for all ¢ e ALT (exh[A or

B]). Let us first establish what this set is:

(37) ALT(exh [AorB]) ={exhA, exhB, exh(A A B)} = {(A A =B), (B A -A), (A A B)}

It is obvious that (36) entails a speaker state about the last alternative, namely,

K=(A A B). But what about the first two alternatives?

The LF in (36) expresses that (i) in all of the speakers doxastic alternatives, one of
A or Bis true, (ii) in none of her doxastic alternatives, both are true, (iii) in some
of her doxastic alternatives, A is true and in some A is false and (iv) in some of her
doxastic alternatives, B is true and in some B is false. Now, if K(A A -B) were the
case, then in all her doxastic alternatives, A would be true. This is a contradiction
to (iii). Therefore, it must be the case that -K(A A -B). Likewise, if K(B A -A) were
the case, in all her doxastic alternatives B would be true. This is a contradiction

to (iv), so it must be the case that —-K(B A -A). QED.

In sum, Epistemic Transparency predicts that the only acceptable LFs for dis-

junction are the following two:

(38) a. [ExHK[AorB]]=
K(AvB) A s K(AAB) A -KA A -K-A A -KB A -K-B
b. [ExuKexh[AorB]]=
KAvVvB) A K-(AAB) A =KA A =K-A A =KB A -K-B
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The only difference is that while the LF in (38-b) expresses that the speaker is
sure that the corresponding conjunction is false, the LF in (38) expresses that the

speaker is not sure that A and Bis true.

It is important at this point to be aware of the strong tendency to interpret nat-
ural language X is not sure that ® as -K¢ A -K-¢, i.e., as conveying true igno-
rance with respect to ¢. This feature makes it is a poor paraphrase for the derived
meaning in (38-a), which merely states that there are at least some doxastic al-

ternatives in which (A A B) is false.

I will stick to the terminology introduced earlier, and call -K¢ a weak implica-
ture. True ignorance implicatures are those meaning components of the form
-Ké A -K-¢. In what follows, I will elaborate on this difference and the empiri-

cal status of weak vs. ignorance implicatures in more detail.

Before we go on, a word about terminology. Traditionally, implicature is a term
used for components of meaning which are derived post-grammatically, on the
basis of pragmatic principles. In this sense, a grammatical theory of implicature
is a contradiction in terms. In the theory I propose, the terminological issue is
even more pressing because there seem to be no real (i.e., extra-grammatical)
implicatures left at all. Nevertheless, for the sake of continuity I will stick to the
traditional terminology and call an entailment of K which has the form K- or

-K (P € ALT(d)) an implicature.
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2.3 Weak Implicatures: Absence of Evidence or Evi-

dence of Absence?

The question that I will address in this section is whether the two LFs in (38-a)
and (38-b) are sufficient to cover the empirically attested readings of disjunction.
Uncontroversially, I assume that one of these attested readings conveys that the
speaker is ignorant about the disjuncts and that she is sure that the correspond-

ing conjunction is false. This is adequately captured by the LF in (38-b).

I take it to be almost as uncontroversial that there is another reading. The least
we can say about this reading is that it is characterized by the absence of a scalar
implicature. I will call this the inclusive reading. Now an important question
arises, which to my knowledge neither the empirical, nor the theoretical litera-

ture has addressed in much detail:

* Does the inclusive reading of disjunction indicate true ignorance about the

corresponding conjunction?

My claim is that the answer to this question is No, and that the LF in (38-b) ade-

quately captures the inclusive reading.

Important evidence for this claim comes from the following observation. If the
inclusive reading really entailed an ignorance implicature, it should be possible

to refer back to this implicature in subsequent discourse. One way to do so is
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the locution Are you saying that\ 2. T assume that it is appropriate as a response
to a sentence ¢ if there is at least one reading of ¢ which implicates V. A quick

survey of relevant cases confirms that this generalization is correct:

(39) A: My cleaning gentleman is coming tomorrow

B: Are you saying you have a cleaning gentleman?

(40) A: Allmy friends didn’t call me for my birthday

B: Are you saying none of them called you?

(41)  A: ltried to stop smoking

B: Are you saying you still smoke?

Ideally, we should also find evidence from infelicitous uses. As the following
cases show, targeting propositions which are merely consistent with the asserted

sentence is indeed ruled out:

(42  A: Iwill buy a Gamay or a Valdiguié

B: #Are you saying you will buy two bottles?

Likewise:

(43) A: Al went to South America for vacation

B: #Are you saying he went to Chile?
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This allows us to employ the locution as a diagnostic for the presence (and ab-
sence) of implicatures. Let’s first start with a relatively straightforward case, namely,
scalar implicatures of weak sentences. As expected, the scalar implicature com-

ponent can be targeted:

(44) A: Ireadsome of your articles on the topic

B: Areyou saying you didn’t read them all?

The same is true for the scalar implicature of a simple disjunction:

(45) A: Table 3 ordered a sandwich or a hot chocolate

B: Are you saying they didn't order both?

Let us now turn to ignorance implicatures. In a simple disjunction, the ignorance

implicatures about the disjuncts can be targeted without problem:

(46) A: Table 3 ordered a sandwich or a hot chocolate
B: Are you saying you don’'t know whether they ordered the sandwich

or the hot chocolate?

Looking back at the denotations of the two admissible LFs in (38) and (38-b), this

is predicted since both of those LFs entail true ignorance about the disjuncts.

Crucially, however, targeting a potential ignorance implicature about the con-

66



junction is not a possibility, as the following case illustrates:

47 A: Table 3 ordered a sandwich or a hot chocolate

B: #Are you saying you don’t know whether they ordered both?

As pointed out by Irene Heim (p.c.), there is a variation of the Are you saying test

which replicates this result. Consider the following minimal pair:

(48) A: Table 3 ordered a sandwich or a hot chocolate

B: Are you saying they might not have ordered both?

But compare this to the infelicitous example below:

(49) A: Table 3 ordered a sandwich or a hot chocolate

B: #Are you saying they might have ordered both?

In order to see how this relates to the question of whether or not the inclusive
reading of simple disjunctions carry a true ignorance implicature, note first that
the semantics of epistemic might can be defined in terms of existential quantifi-
cation over doxastic alternatives. Given a simple semantics along these lines, B’s

question in (48) is about the following:

(50) [ might (A and B)]" < 3w’ e Dox(s)(w):[Aand B]W =1
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Let’s use this semantics of might to give a semi-formal rendition of the exchange

in (48) (where the speaker s = A):

(b1) A: AorB

B: #Are you saying [Iw’ e Dox(s)(w): [Aand B[ =1]

Now, a true ignorance implicature of A’s simple disjunction [A or B] entails the

following:

(52) [-K-(AandB) " < -Yw’eDox(s)(w): [-(Aand B)]* =1

< Iw’eDox(s)(w): [Aand B]" =

Thus, if there was a true ignorance implicature about the conjunction, B’s ques-

tion in (48) should be felicitous and answerable by Yes.

By the same logic, the felicity of (48) supports the view that the simple disjunc-
tion only entails a weak implicature and that consequently, the LF in (38-a) is

empirically adequate.

To see this better, we can look at the semi-formal rendition of the exchange in

(48), as given below:

(53) A: AorB

B: Are you saying [Iw’ € Dox(s)(w): [Aand B[ =0]
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A weak implicature of the simple disjunction would match the semantics of B’s

response and is this predicted to yield a felicitous exchange, as observed:

(54) [ -K (Aand B)]" < -Vw' e Dox(s)(w):[Aand B]]W’ =1

< Fw’eDox(s)(w): [Aand B]" =0

Sentences containing somebehave completely parallel in this respect: While their
scalar implicature can be targeted, this is not possible for the supposed igno-

rance implicature about the stronger alternative:

(55)  A: Alreturned some of your books yesterday

B: Areyou saying he didn't return all of them?

Compare this to:

(56)  A: Alreturned some of your books yesterday

B: #Are you saying you don't know whether he returned all of them?

This is strong evidence in favor of the view that simple weak sentences W do not

give rise to ignorance implicatures about S.

But now compare the behavior of a simple structure to that of a surface redun-
dant structure. As it turns out, our diagnostic reveals the presence of an igno-

rance implicature in the latter case:
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B7) A: Table 3 ordered a sandwich or a hot chocolate or both

B: Are you saying you don’t know whether they ordered both?

And similarly for the example with some:

(58)  A: Alreturned some or all of your books yesterday

B: Are you saying you don’'t know whether he returned all of them?

I conclude from these observations that the role of surface redundancy in gram-

mar is to explicitly mark ignorance implicatures.

But a few clarifications are in order. We saw above that the locutions Are you
saying that\p? and Are you saying that [ might]? can diagnose the presence of

scalar, ignorance and weak implicatures.

One set of examples discussed above involved exchanges in which these locu-
tions targeted supposed ignorance implicatures about stronger alternatives. While
this yielded felicitous results for the ignorance implicatures about single dis-
juncts, the results were infelicitous when supposed ignorance implicatures about
the corresponding conjunction were targeted. Crucially, however, targeting igno-
rance implicatures about the corresponding conjunction became possible with

surface redundant disjunctions.

As pointed out in Chapter 1, however, a weak implicature of the form -K(}),
though it doesn’t entail ignorance, is consistent with it. Though in this thesis I

will not have much to say about what happens post-grammatically, it is likely that
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grammatically derived weak implicatures like -K(A A B), may be strengthened
into true ignorance inferences given further contextual information about the

speaker.

Given this possibility, the generalization that emerges from the data above is the

following:

(59)  Are you saying that (might) \p? can only target grammatically derived

implicatures

Thus, we seem to have found a diagnostic which is sensitive to the status of the
meaning component they target and in particular, sensitive only to grammati-

cally derived implicatures.

This sensitivity to grammatical status became apparent in two kinds of contrasts:
While ignorance implicatures about the disjuncts can easily be targeted, the sup-
posed ignorance inference about the conjunctive alternative of a simple disjunc-
tion can not (see (47) and (49) above). Crucially, however, the ignorance implica-
ture about the corresponding conjunction can be targeted in a surface redundant
disjunction (see (57) and (58).) Not surprisingly perhaps, scalar implicatures can
always be targeted. The last crucial observation concerned weak implicatures:
As opposed to ignorance implicatures, weak implicatures about the conjunction

can be targeted in a simple disjunction.

As we will see shorty, these observations are accounted for by the Matrix K theory,
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which predicts grammatical ignorance implicatures for the disjuncts of (all kinds
of) disjunctions. Furthermore, the theory predicts simple and surface redundant
disjunctions to differ in their (grammatical) implicatures: While the former can
only entail a weak implicature about the conjunctive alternative, the theory pre-

dicts the latter to give rise to a (grammatical!) ignorance implicature.

Regarding our initial question, then, the answer is clear: the inclusive reading of
a simple disjunction does not entail ignorance and the LF in (38-a) is empirically

correct.

In the next section, I will show how surface redundant structures are analyzed
under the Matrix K theory, and how the theory accounts for the difference be-
tween simple and surface redundant sentences with respect to ignorance impli-

catures which we diagnosed above.

2.4 Surface Redundancy and Ignorance

I will begin by proving an existential claim: The Matrix K theory predicts that
there is an LF for surface redundant structures which adequately captures the
meaning of these structures and in particular, their ignorance implicatures. For

the sake of simplicity, I will use the familiar abbreviations:

(60) Al went to Alewife or Braintree or both

[AorB]or [Aand B]
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61) Al drank some or all of the beers

SOME or ALL

The two axioms that define the range of possible LFs for these and other sen-
tences are the Matrix K axiom and the Exhaustification axiom, the latter stating
that EXH can be inserted at any proposition-denoting node. Given these two as-

sumptions, the following LF is a possible parse of (61):

(62)  ExHK [(exh SOME) or ALL]

Here, one EXH is adjoined within the first disjunct. To calculate the meaning
of this LE the first step is to establish the alternatives which the matrix exhaus-
tivity operator quantifies over.!? The set is given below (as shown in section
22, I exclude logically redundant alternatives even if they are technically part of

ALTgiven Katzir’s algorithm):

(63) ALT (K [(exh SOME) or ALL]) = {K(exh SOME), K(ALL)}

The denotation of (62) can then be calculated as follows:

107 will assume that [ exk SOME | is the same in the context of the LF in (62) as in unembedded
contexts, namely, (SOME A -~ALL); as before I will abbreviate this meaning as SBNA.
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(64) [ EXHK[(exh SOME) or ALL] || =

[K[(exh SOME) or ALL] ] A VaeZE: -
-[ K[(exh SOME) or ALL] ] = K(SOME)
-Z& = {K (exh SOME), K(ALL)}

=K(SOME) A -K(SBNA) A -K(ALL)

=K(SOME)} A -K(ALL) A -K(-ALL)

Now first we should make sure that the LF verifies Epistemic Transparency. Recall
from above that this principle states that an LF of the form [... K ¢] is licensed
only if it entails K(1) or =K for all {p ¢ ALT(). For the LF the alternatives for

which a speaker state has to be entailed are the following:

(65)  ALT((exh SOME) or ALL) = {(exh SOME}), ALL}!1

Ascanbeseenin (64), the LF entails ~K(exh SOME) (abbreviated here as -K(SBNA))

and -K(ALL) and thereby satisfies Epistemic Transparency.

In sum, we have seen that the Matrix K theory predicts the existence of an LF

for a surface redundant disjunction like All drank some or all of the beers which

"Sirictly speaking there is also [ (exh SOME) and ALL], but this is inconsistent and we can omit
this alternative here.
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conveys that the speaker is sure that Al drank some beers, and that he is not sure
whether Al drank all or only some of the beers — in other words, it predicts the
existence of an LF which entails true ignorance with respect to the semantically

stronger alternatives. This is the intuitively correct meaning.

After this proof of existence, we can now go on to verify that the theory does not
predict any simpler sentence to convey this same meaning. The best candidate
LF for the simple sentence Al drank some of the beers would be the following,
which however only entails a weak implicature about the stronger alternative

ALL:

(66) EXH K SOME

[ ] =K(SOME) A -K(ALL)

As the discussion in the preceding section revealed, the predicted absence of a
true ignorance implicature for simple, but not for surface redundant sentences

is empirically adequate.

For completeness, we may also look at the derivation of the other surface redun-
dant structure, namely, [(A or B) or (A and B)]. Given the availability of EXH and

the Matrix K axiom, one possible LF is the following:

(67)  ExHK[exh(AorB)or(AandB)]
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To derive the denotation of (67), the first step is again to define the set ALTwhich

the topmost EXH quantifies over:

(68) ALT(K[exh (AorB)or(AandB)]) =
{K exh (A or B), KexhA, KexhB, K(A and B)} =

{K(AvB), K(A A =B), K(B A -A), K(A A B}}

Given this set, the meaning of (67) is defined as follows:

(69) [Ext K[exh (AorB) or (Aand B)] ] =

[K[exh(AorB)or (AandB)] ]| A Ve ZE: -
-[K[exh (AorB)or (Aand B)| | =K(A v B)
-TE = {K(AvB), K(A A =B), K(B A -A), K(A A B)}

=KA v B) A-K(AAvB) A-K(AA-B) A-K(BA-A) A=K(AAB)=

KAvB) A-K(AAB) A -K-(AAB} A-KAA-K-A A-KBA-K-B

Compare this to the two admissible LFs of the corresponding simple disjunction

from (38) and (38-b) above:

(70) a. [exHK[AorB]]=
K(AvB) A sK(AAB) A -KA A =K-A A -KB A -K-B
b. [ExHKexh[AorB]]=

KAvVvB) A K-(AAB) A =KA A =K-A A -KB A -K-B
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While (67) entails a true ignorance implicature about the conjunction, the only
two available LFs for the simple disjunction are either the scalar implicature
reading, or the inclusive reading which is mute with respect to whether or not
the speaker is in a scalar implicature or an ignorance implicature state of mind.

As we saw in the preceding section, this is the empirically correct result.

2.5 Architectural Efficiency and Hurford’s Constraint

Above we saw that the Matrix K theory offers a new understanding of Surface
Redundancy as a means to convey true ignorance, which as we saw is not part
of the meaning of the corresponding simpler structures. In the Matrix K system,
none of the possible LFs of simpler sentences express ignorance, while under the
pragmatic and grammatical theory of implicature, these simpler sentences are
predicted to be able to convey the same meaning as the more complex surface

redundant structures.

So far, all these predictions were derived on the basis of two premises, namely,
that assertions include a matrix K operator at LE and that every proposition-
denoting node is a possible adjunction site for the exhaustivity operator. We saw
in section 2.2 that the resolution of the resulting ambiguity is guided by the prin-
ciple of Epistemic Transparency, which effectively states that a weak scalar item
should be used in a way that makes it clear to the hearer what the speaker’s state

of mind is concerning the alternatives.
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However, this simple version of the theory over-generates meanings for surface
redundant sentences. Specifically, as it stands, we predict a surface structure like

Al drank some or all of the beers to have two other possible LFs, given below:

(71) K [exh (SOME or ALL)]

[ ]=K(SOME) A K~(ALL)

(72)  ExH K [SOME or ALL]

[ 1=KSOME) A -K(ALL)

Let us first make sure that both of these LFs are indeed predicted to be licensed
by Epistemic Transparency. For (71), ET is satisfied if a speaker state about both

of the following alternatives is entailed:

(73)  ALT(exh (SOME or ALL)) = {exh SOME, ALL} = {SBNA, ALL}

Recall that Epistemic Transparency defines two possible speaker states about an
alternative {, viz., K() and -K(). Let’s start with the last alternative in (73):
ALL. The denotation of (71) states that K-(ALL). Since this is stronger than, and
thus entails, -K(ALL), a speaker state about the last element of these alternatives
is indeed entailed by (71). What about SBNA? The denotation in (71) doesn’t ex-

plicitly list a speaker state about this alternative, though it logically entails one:

(74) [ (71) ] = K(SOME) A K—(ALL) & K(SBNA)
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Checking Epistemic Transparency for (72) is even easier. The alternatives for
which a speaker state has to be entailed are given by the set ALT(SOME or ALL) =
{SOME, ALL}. A quick look at the denotation of (72) confirms that ET is satisfied

for this LE too.

In sum, both the LF in (71) and the one in (72) are licensed by the basic Matrix K
system as defined by the Matrix K axiom, the Exhaustification axiom, and Epis-

temic Transparency.

Now we can go on to show that this is indeed a problem. If (71) were a possible
LF for the surface redundant sentence Al drank some or all of the beers, we would
predict that the sentence could be felicitously used by a speaker who is is sure

that Al didn’t drink all of the beers.

Turning to (71), though it only entails a weak implicature about ALL, the predic-
tion for this LF is the same: If this were a possible LF of Al drank some or all of
the beers, the sentence could be used by a speaker who is sure that Al didn’t drink
all beers. This might sound like a contradiction to what we said earlier about
the inclusive reading of disjunctions, which we defined merely as the absence of
scalar implicature. But it is important to keep in mind that it it is the hearer who
is in charge of ambiguity resolution. In the Matrix K theory, ambiguity resolution
can quite literally be understood as the process of reasoning about the speakers
state of mind. Now, even though this state of mind can only be either K~(ALL) or
(-K(ALL) A -K~(ALL)) (given -K(ALL)), this doesn’t mean the hearer can tell (cf.

the discussion in section 1.2.4 of Chapter 1). And it is precisely in the situations
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were he can't tell that he would chose the LF in (72) — if it were available.

As for the speaker about which the hearer is reasoning, the semantics of (72) is
consisted with him being in a K-(ALL) state. Thus, if a hearer could chose the
LF in (72) for Al drank some or all of the beers, she should not be surprised if the
speaker continued with ... I drank the others.'> But after assertion of the sur-
face redundant sentence, this move is impossible (the simple sentence in (75-a)

serves as a control):

(75) a. Aldrank some of the beers... I drank the others

b. Al drank some or all of the beers ... # I drank the others

Having reassured ourselves that both LFs are empirically inadequate, we can now

go on to discuss possible solutions for this problem of over-generation.!3

One solution — the only solution proposed so far - for this problem is of course

Hurford’s constraint (cf. Hurford (1974); Chierchia et al. (2007)):

(76) A sentence containing a disjunctive phrase is infelicitous if one disjunct

120f course the same argument also applies to the LF which entails a scalar implicature (i.e., the
one in (71)), but at this point it is important to understand that it applies even to the weaker LF
(71), which only entails a weak implicature.

BThere are two other possible LFs which would pose similar problems, namely, LF4 = K[SOME
or ALL] and LF5 = K[ (exh SOME) or ALL]. But as can easily be verified, both of these LFs are al-
ready ruled out by Epistemic Transparency and we need not worry about them in what follows.
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entails the other

This constraint would effectively rule out the problematic LFs in (71) and (72)
because these LFs contain the disjunctive phrase SOME or ALL, the right disjunct

of which entails the left one.

But Hurford’s constraint as stated in (76) is stipulative, and it would be a consid-
erable improvement of the Matrix K theory if we could derive the constraint as a

theorem, which is what [ will try to do in what follows.

2.5.1 Deriving Hurford’s Constraint: Efficiency

Looking at the meaning of the two problematic LFs in (71) and (72), the intu-
itive problem with these LFs is this: If this were the meaning the speaker would
have wanted to express, he could have used a simpler sentence (namely, SOME).
Capitalizing on this intuition, it might seem like a simple constraint agains un-

necessary complexity — call it BREVITY — could do the job:

77 BREVITY
Let ¢ be a syntactic tree and let A be a sub-constituent of ¢

#¢ if d is equivalent to A

This constraint does indeed rule out the LFs in in (71) and (72) — as shown in (79),

these LFs contain a subtree ¢ which violates BREVITY:
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(78) 0}

A or B
et —
SOME ALL

Crucially, [¢ = [A ], and therefore, ¢ is ruled out by BREVITY. Unfortunately,

however, the constraint also rules out the attested LF in which the first disjunct

is exhaustified locally:
(79) ¢
A or B
/\ ‘ P
exh A ALL
A
SOME
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Since [¢ ] = [A], this LF would incorrectly be ruled out by the constraint in

(77).14

The problem with BREVITY illustrates that structural complexity should not be
constrained per se. Language seems to be sensitive to the available means of

simplifying a given structure, and these means seem to be restricted.

I argue that the problem with the LFs in (71) and (72) is one of inefficiency: They
have not much to offer by way of meaning to warrant their extra complexity. Inef-
ficiency is encountered wherever complex structures are mapped to an LF which
expresses a meaning that could have been expressed by a less complex LE As
a matter of architectural economy, inefficient choices of LFs are expected to be

ruled out.

1 Note that restricting (77) to immediately dominating nodes has the desired effect of licensing
the attested LF:

(80) BREVITY (Version 2)
Let ¢, A be non-terminal nodes s.t. ¢ immediately dominates A.

#dif[d]=[A]

In what follows I will not make use of this rather stipulative modification but rather, suggest a
principle which is based on Katzir's notion of structural complexity.
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How can this theoretical intuition be stated formally? I suggest to make use of

Kratzir’s notion of structural complexity:1°

(81) EFFICIENCY
An LF ¢ is ruled out if there is a competitor { such that
(i) p e COMP ()
@ [v]=[¢]

COMP is the competition set of a given LF ¢. It is defined in terms of Katzir’s

structural complexity:

82) YeCOMP(d)iffPpsd

According to this definition, COMP(¢) will contain all LFs which can be ob-
tained from ¢ by the familiar algorithm of replacing scalar items with their lexical
alternatives and deleting sub-constituents. Importantly, the constraint against
deleting covert elements we introduced in section 2.1.1.2 (see definition ?2) re-
mains valid for the definition of COMP, which means that K and ExH will not

vary across elements in COMP.

151 use the notation COMP rather than ALT to indicate that, while both sets are derived
through the same (i.e., Katzir’s) algorithm, COMP refers to structural alternatives of LFs, while
ALTrefers to structural alternatives of surface sentences.
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Looking at the structure in (79), is becomes apparent what sensitivity to available
simplifications means: Katzir's definition of structural complexity, together with
the independently needed constraint on the deletion of covert material, is the
crucial factor. Contrary to the principle of brevity stated in (77), the nodes ¢ and

A are not competitors according to (81).

Let us now apply the principle of Efficiency to the problematic LFs from above to
see its effect. For the first problematic mapping between the surface redundant

disjunction SOME or ALL to the LF in (71), the principle is applied below:

(83) Surface: SOME or ALL
LF2: K[exh (SOME or ALL)]

[ ]=K(SOME) A K-(ALL)
-COMP(LF2) = {K exh SOME, K exh ALL}
-4 Efficiency: [ LF2 ] = [ Kexh SOME]

= LF2 ruled out

As this illustrates, the problematic LF looses against its competitor K exh SOME.
This competitor is in fact a possible LF for the simple sentence Al drank some of

the beers.

A similar result is obtained for the other problematic LF:

(84) Surface: SOME or ALL
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LF3: ExH K [SOME or ALL]

[ ]=K(SOME) A -K(ALL)
-COMP(LF3) = {EXHKSOME, EXHK ALL}
-4 Efficiency: [ LF3 ] = [ Exd K SOME ]

= LF3 ruled out

This time, the problematic LF3 looses against the competitor EXH K SOME, which
is again one of the possible LFs of the simpler surface sentence Al drank some of

the beers.

Now let us check the predictions of Efficiency for the sentence Al drank some but

not all of the beers, which is problematic for a simple Blocking condition like (85):

(85) BLOCKING

#S if there is a sentence §’ such that S’ s Sand [S' [ =[S ]

To see where the problem lies, let S = Al drank some but not all of the beers. There
is a sentence 8’ such that §’ 3 Sand [ $'] = [S] . This sentence is Al drank some
of the beers, parsed as K exh SOME. Thus, the blocking constraint in 22 is too

strong and just like (77), will fix a problermn of over-generation by introducing one
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of under-generation (cf. Katzir (2008)).16

Efficiency, on the other hand, should predict Al drank some but not all of the beers
to be licensed, which means there has to be at least one admissible LF to which

it can be mapped. Let’s start with the simplest option, given below:

(86) LF1: KSBNA

[ ] = K(SBNA)
-COMP(LF]) = {K(SOME), K(ALL)}
-v' Efficiency: -3 e COMPs.t. [P ] =[LF1]

=" LF1 licensed

As this shows, the simple LF1 is licensed by Efficiency, and the sentence is thus
predicted to be licensed precisely under the interpretation we do in fact ob-

serve.l?

But now the worry might be that there could be further LFs which are licensed by
EfficiencyEfficiency, but which correspond to empirically unattested uses. Below

I show that this is not the case, and that on the contrary, Efficiency rules out some

6Note that BREVITY as stated in (77) will not rule out this sentence, at least not unless local ex-
haustification of some is made obligatory.

71t is easy to see that Epistemic Transparency is also satisfied: About all elements in ALT(SBNA)
= {SOME, ALL}, LF1 entails a speaker state, given that K(SBNA) = K(SOME) A K—-(ALL).
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LFs containing vacuous exhaustivity operators.

The first of these additional LFs is the following:

(87) K exh SBNA

It should be clear by now that the meaning of this LF would be equivalent to that

of the simpler LF in (86), and that EXH is adjoined vacuously here:

(88)  [KexhSBNA] =[KSBNA ] =K(SBNA)

By Efficiency, the LF in (87) will in fact be ruled out. To see why, it is enough
to look at the set COMP(KexhSBNA) = {KexhSOME, KexhALL}. Among these
competitors, the first LF is equivalent to the LF in (87): | KexhSOME ] = [ KexhSBNA ] .
Thus, even though the LF containing the vacuous exhaustivity operator is by def-
inition empirically indistinguishable from the LF without the vacuous operator,
Efficiency predicts this LF to be ruled out. As can easily be checked, the same
result is obtained for the two other syntactically possible (but semantically in-

distinguishable) LFs K[ (exk SOME) but not ALL] and [ExtH K SBNA].
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To conclude, I would like to point out the relation between the principle of Ef-
ficiency and the Matrix K hypothesis.!® Suppose we tried to derive the effects
of Hurford’s constraint from Efficiency in the grammatical theory, i.e., a theory
which assumes a covert exhaustivity, but no covert K operator. Under such a the-
ory, Hurford’s constraint would not follow from Efficiency. To see why, let us look
at what are the possible LFs for a surface redundant disjunct like (89) and which

of these LFs would be licensed by Efficiency:

(89) SOME or ALL

(90)  LF1: SOMEorALL[ ] = SOME
-COMPI(LF1) = {SOME, ALL, SOME and ALL}
-4 Efficiency: [ LF1] = [ SOME |

= | F1 ruled out

Next is an LF where EXH is adjoined at the matrix level:

91)  LF2: ExH [SOME or ALL] [ ] = SOME A ~(ALL)

-COMP(LF2) = {ExH SOME, ExH ALL, EXH[SOME and ALL}}

18Thanks to Danny Fox (p.c.) for stressing this point.
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-4 Efficiency: [ LF2 ] = [ Ex1 SOME |

== LF2 ruled out

Crucially, however, even the last remaining LF would be ruled out:

(92)  LF3: [(exh SOME) or ALL] [ ] = SOME
-COMP(LF3) = {fexh SOME, ALL, [exh SOME and ALL], SOME}
-4 Efficiency: [ LF3 ] = [ SOME ]

i LF3 ruled out

As this illustrates, the Matrix K hypothesis is an essential ingredient in the deriva-
tion of Hurford’s constraint from a principle like Efficiency; in the absence of
Matrix K, the same problem we have encountered above for BREVITY (see (77))
resurfaces. This argument of course abstracts away from a previously established
result, namely, that the correct meaning for (89) is not adequately captured by
any of these LFs; contrary to what the LF in (92) would predict, [SOME or ALL] is
not in fact equivalent to SOME, but the two sentences differ with respect to their

implicatures.
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Chapter 3

A New Theory of Oddness

3.1 The Problem: Under-Informativeness and Con-

textual Equivalence

Let us refer to common belief (CB) as a set of propositions which describe the
beliefs of all or the typical members of a certain group (e.g., Western society, the
students of Pragmatics 101, human beings).! Each member of this group also

believes that each member shares these beliefs, and that they share the believe

!Note that I depart from Magri (2009), to whom the following proposal is a response, in using
belief rather than knowledge to define contextual entailment; the explanation of the oddness
effects discussed in what follows (or, for that matter, any other effect discussed in this thesis)
doesn’t depend on whether or not the beliefs in question are actually true or not.
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that they share these beliefs, and so on and so forth (cf. Schiffer (1972); Stal-
naker (1974, 1978, 2002)). For example, among human beings it can be consid-

ered common belief that all men are mortal. I will abbreviate this as follows:

(1)  Ecg All men are mortal?

Sometimes, a group of interlocutors witnesses an event which normally can then
be considered common belief; for example, if the subjects in an experiment see
a troll deliver all the pizzas, it is common belief among the group of subjects
that the troll delivered all the pizzas (a story used in Gualmini (2004)). Likewise,
among the students of a high-school in which PE classes are single-sex, the fol-

lowing can be considered common belief:

(2)  EcpAll students in PE classes have the same gender

2As was the case with the Matrix K operator, CB is of course relativized to a group of believers, so
that the notation CBg4 would be more precise; but in what follows I will leave out the subscript
since the relevant group can easily be recovered from context and content of the sentence in
question.
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Given this relatively trivial definition of common belief, let us now turn to an

equally simple definition of logical under-informativeness:?

(3) LOGICAL UNDER-INFORMATIVENESS

A sentence W is logically under-informative iff there isan S € ALT(W) s.t.

i S=WwW
(ii) W =CB S

The last condition states that W and S are contextually equivalent. To see what
is meant by this, consider again mortality: In all worlds in CB, it holds that all
men are mortal. Now, given that All men are mortal logically entails Some men
are mortal, it will also hold in all worlds in CB that some men are mortal. In other
words, the set of worlds compatible with common beliefs in which some men are
mortal is identical to the set of worlds compatible with common beliefs in which

all men are mortal. This is contextual equivalence as defined in Magri (2009:257):

4) CONTEXTUAL EQUIVALENCE

W and S are contextually equivalent (W =¢g S)iffCBnW=CBnS

31f ALTis the set of presuppositional alternatives of W, this definition will carry over to 'under-
presuppositional’ sentences like I interviewed a father of the victim ( Hawkins (1991), modulo
the definition of logical entailment =, which will have to be replaced by the corresponding
ordering in terms of presuppositional strength (see e.g. Schlenker (2012)).

93



(5) CONTEXTUAL ENTAILMENT

S contextually entails Wiff CBnScW

But of course, it is not logically necessary that men be mortal. Therefore, there
are worlds compatible with logic (though not with common belief) in which
some, but not all men are mortal. Thus, that some men are mortal is contextually,
but not logically equivalent to the corresponding universal statement. According
to the definition in (3), Some men are mortal is logically under-informative when
compared to its logically stronger alternative All men are mortal, even though it

is contextually equivalent to this stronger alternative.

Now, an observation which turns out to be surprisingly non-trivial to explain is

that logically under-informative statements sound odd:

(6) (From one human being to another:)

# Some men are mortal

(7) (In the gender-separating high school:)

# Some students in this PE class are girls

At first, it seems like the oddness of under-informative sentences can be ex-
plained with reference to Gricean maxims. If indeed there is a requirement to
assert the strongest relevant sentence which one believes to be true (the max-

ims of QUANTITY, QUALITY and RELATION), then (6) will always be a bad choice:
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The only excuse for a weak assertion is lack of evidence for any stronger alterna-
tive (given that they would be equally relevant); yet, since the two sentences in
question are contextually equivalent, nobody who shares common beliefs about
mortality could be sure of (6) while having doubts whether all men are mortal.
Therefore, asserting the under-informative sentence is un-cooperative. If we as-
sume furthermore that un-cooperative assertions may sound odd, (6) would be
explained in a Gricean fashion. Indeed, an explanation along these lines seems
to be what e.g. Horn (1985) and, regarding similar data concerning presupposi-

tional strength, Hawkins (1991) had in mind.

However, as is well known by now, this Gricean argument involves a non-sequitur,
as first pointed out by Heim (1991) (see also Percus (2006); Sauerland (2008);
Schlenker (2012)). The problem is this. Gricean pragmatics is to be understood
as a system of principles which apply post-grammatically, i.e., at a point where
language is interpreted in its larger communicative context. At this point, how-
ever, the contextual equivalence between Some men are mortal and All men are
mortal will have been taken into consideration, which has the undesirable con-
sequence of making the two sentences indistinguishable from the point of view
of QUANTITY. In sum, Heim’s argument is that that QUANTITY does not actually
predict a preference for the logically stronger sentence, since, by assumption, the

maxim is sensitive to contextual rather than logical strength.
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3.2 Experimental Data

Magri himself doesn’t actually define the scope of his proposal; in particular, he
does not offer a formal characterization of the kind of under-informative sen-
tences he aims to cover. De facto, his proposal extends to all sentences which fall

under the definition of under-informativeness stated in (3).

Thus, it extends to data which have been discussed independently in the ex-
perimental literature (see Paris (1973); Noveck (2001); Noveck et al. (2002); Pa-
pafragou and Musolino (2003); Bott and Noveck (2004); Gualmini (2004); Guasti

et al. (2005); Breheny et al. (2006); Chevallier et al. (2008); Singh et al. (2013)).

These studies are all concerned with a sub-class of under-informative sentences,
namely, those which (together with their stronger alternative) are already en-
tailed by common beliefs. An example of this sub-class of under-informativeness

was (6):
(8) #Some men are mortal

The sentence is under-informative according to the given definition in (3), since
it is contextually equivalent, but logically weaker than All men are mortal. The
only difference to the examples discussed by Magri concerns the status relative
to common beliefs CB. In the examples he discusses, the weaker sentenbe does

not already follow from CB:
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9 #cp Some students in this PE class are girls

Once the premise that all students in PE have the same gender is added to CB,
however, both classes of under-informative sentences are characterized by their

contextual equivalence to their logically stronger alternative:

(10) a. Some men are mortal =g All men are mortal

b. Some students in PE are girls =cp All students in PE are girls

Specifically, the equivalence in (10-b) holds because CB contains the proposi-
tion that all students in PE classes have the same gender; on the other hand, the
equivalence in (10-a) simply holds because the stronger sentence is itself already
part of CB. It is conceivable that this difference wouid be reflected in speaker’s
judgments of these two different kinds of under-informative sentences, thus lim-

iting the validity of Magri’s arguments for these kind of sentences.

Specifically, if an essential feature of assertion is that it reduces the set of com-
mon beliefs CB, as proposed most famously by Stalnaker (e.g. Karttunen (1974);
Stalnaker (1978)), then neither Some elephants are mammals nor All elephants

are mammals can be successfully asserted among speakers having an elemen-
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tary school education (the sentence is used in a study by Bott and Noveck (2004)).4
This factor may have influenced speaker’s judgments, so that the results might be
no longer comparable to the kind of under-informative sentences which Magri

discusses, which are not entailed by common beliefs.

However, for subjects in an experimental setting, the most natural assumption
would appear to be that the target sentences do not express common belief be-
tween subject and experimenter. Thus, if asked about a statement like All ele-
phants are mammals, they might not object to its redundancy in view of com-
mon belief among human beings, but assume instead that the goal is to establish
whether the sentence can indeed be considered common belief. Secondly, this
factor does not distinguish between All elephants are mammals and Some ele-
phants are mammals, so that a difference in ratings between the two can only be
due to independent factors. It is precisely these factors for which Magri’s theory

offers an explanation.

In conclusion, the data discussed in the experimental literature falls within the
scope of Magri’s theory, and therefore, the findings reported in these studies is

highly relevant to the proposal (and vice versa).

“Though it might not be an assertion in Stalnaker’s sense, the statement may however have other
useful effects like re-assuring the group that all are indeed mutually believing the proposition
in question; given that not all common beliefs are equally salient, a seemingly redundant state-
ment can also raise saliency of commonly believed propositions (these functions are highlighted
by adding recall that ...).
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Returning now to the results of these experimental studies, they have been con-
sistent in showing that under-informative sentences are indeed disprefered, though
the rejection rates are not as high as might be expected based on theoretical pro-
posals like Magri's own, as we will see shortly. Depending on the design, the
acceptance rate of under-informative sentences in adults has been found to lie
between 75% (Paris (1973); Noveck (2001)) and 20% (Guasti et al. (2005); Noveck
et al. (2002)). In these studies, under-informativeness was either relative to long-
established facts like elephants being mammals, or relative to ad-hoc established
facts like in Gualmini’s pizza delivery story. Note that acceptance of the stronger
alternatives in contexts in which both the under-informative sentence and the
stronger alternative is entailed by previously established beliefs consistently ap-

proaches 100% in all studies.

While the theoretical and the experimental literature might differ on the ques-
~ tion whether the oddness is categorical or gradual (perhaps indicating several
interpretational choices), it appears to be almost universally accepted that the
rejection of under-informative sentences is linked to the calculation of scalar im-

plicatures. This view can be subsumed under the following hypothesis:

(11)  THE SCALAR IMPLICATURE HYPOTHESIS
Rejection of an under-informative sentence W is due to the scalar impli-

catures of W

This hypothesis is assumed both in Magri (2009) and in the experimental liter-
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ature cited above. The assumption is that Some elephants are mammals, for
those speakers who reject it, is interpreted as conveying that Not all elephants

are mammals, which in turn contradicts common beliefs.

As is obvious in view of our earlier discussion, the hypothesis that rejection of
under-informative sentences is due to scalar implicature computation can only
be maintained if first Heim’s problem is solved: Proponents of the scalar implica-
ture hypothesis (SIH for short) need an alternative theory of implicature which,
unlike Grice’s, can distinguish between contextually equivalent sentences. Sur-
prisingly, however, the problem has not been recognized in any of the experi-
mental studies, which is perhaps due to the fact that the thematic connection
between the experimental results and the theoretical insights of e.g. Heim (1991)
has not been drawn, and that theoretical literature discussing the problem more
broadly has only become available relatively recently (e.g., Percus (2006); Sauer-

land (2008); Schlenker (2012)).

But even if a theory of implicature consistent with the scalar implicature hypoth-
esis is made available, the STH is not self-evident: A speaker may well reject a sen-
tence like Some men are mortal even if he does not take it to convey that Not all

men are mortal. There might be an independent bias against under-informative
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sentences, even in the absence of a false implicature.’

However, in the experimental literature, the possibility of an alternative to the
scalar implicature hypothesis is only discussed in Noveck et al. (2002), who con-

duct a follow-up experiment and consequently reject an alternative hypothesis.®

5An example of such an independent principle is Heim's own Maximize Presupposition; given the
above mentioned problems with contextual equivalence, Heim concludes that this principle has
to be thought of as a primitive, not reducible to other pragmatic maxims.

570 test the alternative hypothesis that independent constraints, rather than scalar implicature,
explain the rejection of under-informative statements, Noveck et al. (2002) use the following
condition:

(12) P1 IfA thenBandC
P2 A
: B

The authors find that there is a contrast in acceptance between the conclusion presented in (12)
(92% and 75% acceptance rate in subsequent experiments), and the corresponding argument
pattern with the conclusion B or C (25% acceptance rate). They interpret this as evidence that
the rejection of the disjunctive conclusion in the latter is indeed due to scalar implicature com-
putation, rather than an independence constraint against under-informativeness.

However, if the low acceptance of the disjunctive conclusion B or Cin premise sets such as (12)
were due to the scalar implicature (A and B), we would expect the same exhaustive interpre-
tation to apply to the conclusion B, resulting in an interpretation of B as (B and -C). This in
turn would predict a lower acceptance rate of (12) than that found by Noveck et al. By contrast,
their result is consistent with the assumption that an independent constraint against under-
informative statements leads to rejection of the disjunctive conclusion. Under this alternative
view, the high acceptance rate of the conclusion in (12) can be explained independently: [ sus-
pect that it is due to the fact that B alone, as opposed to the disjunction B or C, can easily be
interpreted as the beginning of a list, thus leaving open the charitable interpretation that the
list of possible conclusions will or could in principle be continued. In sum, whether or not re-
jection of under-informative statements is linked to scalar implicature computation has to be
considered an open empirical question.
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In sum, the oddness of under-informative sentences has been documented in
a variety of experimental studies, though a substantial percentage of speakers
do in fact accept under-informativeness, at least in these experimental settings.
We also saw that on the theoretical side, the oddness of these sentences poses
another intriguing challenge for a pragmatic (Gricean) theory of implicatures. As
we have defined them above, these sentences are contextually equivalent to their
stronger scalar alternatives, but somehow this contextual equivalence does not
appear to be visible to the system that rules them out. However, Gricean prag-
matics is defined as a-set of principles governing rational communication and as
such cannot be conceived of as blind to contextual equivalence. The conclusion
which Magri (2009) draws is thus obvious: If the oddness of under-informative
sentences is to be explained in terms of scalar implicature, we need a system
of scalar implicature which is blind to this contextual equivalence, i.e, blind to
common belief. In what follows, I will present Magri’s account, which is based on
the assumption that the scalar implicature hypothesis from 22 is correct. Conse-
quently, the account is based on a grammatical theory of implicatures, building
on proposals by Groenendijk and Stokhof (1984); Krifka (1995); van Rooy (2002);

Chierchia (2004) and especially Fox (2007a).

3.3 Magri’s Proposal: Obligatory Scalar Implicatures

As we have seen above, if the oddness of logically under-informative sentences

is to be explained in terms of scalar implicature, the system that computes these
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implicatures needs to be blind to the contextual equivalence of the under-informative
sentence to its stronger alternative. As Magri (2009) shows, this can easily be
achieved within a grammatical theory of scalar implicature if the following hy-

pothesis is adopted (see Magri 2009:257):

(13) BLINDNESS

The exhaustivity operator EXH is defined in terms of logical entailment

To see the effects of Magri’s blindness hypothesis, consider first what would hap-
pen if EXH were defined in terms of contextual entailment. Suppose that the

under-informative sentence from our PE class above is parsed as follows:

(14)  EXH [Some students in this PE class are girls]

According to the simplest definition of EXH, the operator excludes all stronger al-
ternatives of its argument. But if strength is defined in terms of contextual entail-
ment =cg, rather than logical entailment, ExH will not exclude any alternatives

at all:

(15) [ exH[Some students in this PE class are girls] ] =

-ALT(Some students in this PE class are girls) = {All students in this

PE class are girls}

-[ Some students in this PE class are girls ] =cp [ All students in this
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PE class are girls |
-IE =1}

= Some students in this PE class are girls

No scalar implicature can be derived if EXH is sensitive to the fact that the formal
alternative All students in this PE class are girls is contextually equivalent to its
argument. In other words, a definition of Z€ in terms of contextual entailment
faces the same problem as the Gricean explanation, namely, that the (logically)
stronger alternative will never be excluded. According to the scalar implicature
hypothesis (see (11)), however, it is precisely the exclusion of the stronger alter-

native which explains the oddness of under-informative sentences.

Within a grammatical theory of scalar implicature, on the other hand, the prob-
lem doesn’t necessarily arise, as argued by Magri (2009), and independently in
Fox and Hackl (2006). The idea is that the computation of Z£ is part of a gram-
matical module which is informationally encapsulated in that it has access to
logical relationships between sentences, but not to the meaning these sentences

will have in a specific context of common beliefs and external facts

(see also Fodor (1983); on the other hand, Hobbs and del Rey (2011); Tanenhaus
and Brown-Schmidt (2008); Hobbs and del Rey (2011) argue against against en-
capsulation, though the arguments presented there mostly concern lexical se-

mantics, rather than implicature computation).
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One particular consequence of this view is Magri’s blindness hypothesis in (13):
All those sentences in .ALTwhose negation does not lead to a logical contradic-
tion can be innocently excluded by EXH. Within a modular view of implicature

calculation, the blindness hypothesis would seem like a default.

Let us look at what Blindness predicts for the under-informative sentences in
question. The contextual equivalence of the stronger alternative will no longer
be accessible to EXH, so that the set of alternatives it will innocently exclude will

no longer be empty:

(16) [ Ex1[Some students in this PE class are girls] ] =

-ALT(Some students in this PE class are girls) = {All students in this

PE class are girls}

-[ Some students in this PE class are girls | = [ All students in this PE

class are girls |

= Some students in this PE class are girls A —(All students in this PE class

are girls)

Importantly, this is not a logical contradiction. Neither is the following, which is

the result of having ex 'blindly’ exclude the logically stronger alternative:

(17) [ ExH Some men are mortal | = Some men are mortal A -(All men are

mortal)
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Despite being contradiction-free in the logical sense, these meanings will yield a
contradiction when interpreted relative to the common belief that all students in
PE classes have the same gender, or the common belief among us human beings

that all of us are mortal:

(18) a. Some but not all students in this PE class are girls A All students of
PE classes have the same gender = 1L

b. Some but not not all men are mortal A All men are mortal = .

Specifically, it is the scalar implicature derived by the blind exhaustivity operator
which causes the contradiction with common belief. Assuming that contradic-
tion to common belief leads to oddness (Magri calls this the Mismatch Hypoth-
esis), we have found an explanation for why under-informative sentences sound

odd, even though they are contextually equivalent to their stronger alternatives.

3.3.1 The Problem with Obligatory Scalar Implicatures

As pointed out by Magri, however, to explain the oddness of under-informative
sentences it is not enough to show that they will contradict common beliefs if ex-
haustified. What is needed is to make their exhaustification obligatory. In Magri’s

proposal, this is simply stipulated (cf. Magri (2009:261)):

(19)  Attach EXII to every matrix clause
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Under-informative sentences W (along with all other unembedded sentences)
will now be obligatorily parsed as EXH W, and thus always be interpreted as W
A =S for every S € ALT(W). Since S is entailed by common beliefs by defini-
tion (see (3) above), this means they will always contradict CB. This is how their

oddness is explained.”

But this explanation comes at a price, namely, the stipulation in (19). One of
the predictions that emerges is that partially informed speakers can not say what
they know. I argue that this is a serious problem for the theory: Even if [ was
unable to establish whether or not all invited guests came to my party, I should
be able to inform you of the fact that some of them came, without being guilty
of making an unjustified claim. But this is precisely what Magri’s theory would
convict me of. Assume that you asked me how many of the invitees came to the
party. Given obligatory exhaustification as required by (19), you would have to

parse my answer about the party attendance as in (20):

(20)  EXH [Some of the invited guests came to the party]

“Note furthermore that Magri also rules out the possibility of excluding the stronger alternative
from the set AL Tby making AL Tsensitive to relevance, while in turn making relevance be closed
under contextual equivalence. This means that in all contexts in which the logically under-
informative sentence is relevant, so is its logically stronger, though contextually equivalent al-
ternative.
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Given that ALT(Some of the guests came) = {All of the guests came} and that this
alternative is relevant in the given context, this means you would have to under-
stand me as telling you that not all of the guests showed up - by assumption, a

claim for which I lack evidence.

In Magri’s (2009) theory, then, anybody who isn’t on top of all the facts faces a
lose-lose situation: If he doesn't make a weak claim he deprives his interlocu-
tors of the (little) information he has and is thus being un-cooperative; if, on the
other hand, he makes the weak claim of which he is sure, he is committed to a
scalar implicature for which he lacks evidence and will thus likewise be accused

of being un-cooperative.

Extending the original account, Magri (2011) acknowledges that obligatory ex-
haustification as required by (19) leads to problems in standard cases, where
the stronger alternative is not contextually equivalent to the asserted sentence.
Though Magri (2011) does not discuss the case of the under-informed speaker
I pointed out above, he notes other cases where the optionality of scalar impli-
catures in sentences like (21) conflicts with the obligatory presence of EXH as

stipulated by the theory:

2n Al drank some of the beers

Magri notes that in contexts in which the QUD is Who drank some of the beers?,
(21) will not usually give rise to the scalar implicature that Al didn’t drink all of

the beers (other implicatures, e.g., that Bill didn’t drink some of the beers, may
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arise instead). To account for this variability in scalar implicatures while preserv-
ing obligatory exhaustification as required by (19), Magri relies on the following

hypothesis:

(22) MAGRI'S RELEVANCE HYPOTHESIS
Absence of a scalar implicature —S is never due to missing EXH, but to the

fact that S is not relevant in the given context

To implement this, we can assume that the set of formal alternatives ALT is sen-
sitive to contextual relevance as defined e.g. by the QUD - if the question under
discussion is Who drank some of the beers?, as we assumed in (21) above, the set
ALT (Al drank some of the beers) will no longer contain the sentence Al drank all
of the beers (instead, it may contain alternatives of the form x drank some of the
beers). As a result, even the obligatory presence of EXH won'’t lead to the scalar
implicature that Al didn't drink all of the beers, at least not in contexts in which

the QUD doesn’t make this stronger alternative relevant.

Magri’s relevance hypothesis in (22) thus explains the variability of scalar im-
plicatures as dependent on the current QUD while leaving intact the obligatory

exhaustification hypothesis in (19).

But what about cases like (20), where by assumption the stronger alternative is
made relevant by the current QUD? Given Magri’s relevance hypothesis in (22),
the only way to avoid unwanted scalar implicatures here would be to fiddle with

relevance: We would have to claim that even if the initial QUD was How many

109



of the invitees came to the party?, the under-informed speaker can make a weak
claim if he succeeds in changing the QUD into a question which would make
the stronger alternative, i.e., that which he doesn’t have evidence for, irrelevant.
Thus, at the point at which the speaker utters (20}, we would have to assume the

context was silently updated to a new QUD, for example:

(23)  Did some of the invitees come to the party?
[ ExH[Some of the invited guests came] |
ALT= {Some of the invited guests came, None of the invited guests came}

= Some of the invited guests came

In what follows, I will show that the Matrix K theory can account for Magri’s data
without recourse to obligatory scalar implicatures, and as consequence, without

this volatile notion of relevance to account for missing scalar implicatures.

3.4 Under-Informativeness in the Matrix K Theory

Though I reject Magri’s claim that it is obligatory scalar implicatures which ex-
plain the oddness of under-informative sentences, I agree with him that the en-
capsulation of implicature computation plays a crucial role in the puzzle, and

that it is the resulting contradiction with context which leads to oddness.

Furthermore, I also agree with Magri that something like the scalar implicature

hypothesis in (11) lies at the heart of the problem, though I am not committed to
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scalar implicatures as the sole source of oddness. My version of the hypothesis is

thus less strong:

(24)  THE IMPLICATURE HYPOTHESIS
Rejection of an under-informative sentence W is due to the implicatures

of W

In fact, with the blindness hypothesis in (13), my account of the puzzle is almost
complete: In the Matrix K theory, the oddness of under-informative sentences
follows straightforwardly, without any additional assumptions, and in particular,
without the problematic stipulation in (19). To see how, recall the central axiom

of the theory:

25) THE MATRIX K AXIOM

Assertion of ¢ by S is parsed as Ks¢ at LF

The Matrix K theory is a radically grammatical theory of implicatures in that all
implicatures ~ weak or scalar — are derived by £xH. The disambiguation of a sur-

face structure is guided by the following principle:

(26) EPISTEMIC TRANSPARENCY

An LF of the form [... K¢ ] is licensed iff it entails S’s state of mind about

everyp ¢ ALT(¢)
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States of mind are: (i) K\ (i) -Kap

Let us look at what this means for under-informative sentences as defined in (3).
Given the Matrix K axiom, at LF these will at the very least contain a covert K-

operator:

(27)  K[Some men are mortal |

This LF simply expresses that the speaker is sure that some men are mortal. But
since ALT(Some men are mortal) = {All men are mortal}, the LF can only be li-
censed if entails a speaker state about the logically stronger alternative. At this
point, we have to ask the same question that Magri raised in relation to ExH: Is
the relevant notion logical entailment or contextual entailment? Above we fol-
lowed Magri in attributing the blindness hypothesis in ?? to the more general
view that the computation of implicatures is part of grammar, and in particular,
part of a grammatical module which is context-independent, i.e., blind to com-
mon beliefs and external facts. Let us therefore replace the blindness hypothesis

in (13) by a more general hypothesis (cf. Fox and Hackl (2006)):

(28)  ENCAPSULATION
The semantics and distribution of ExHis defined in terms of logical en-

tailment
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The encapsulation hypothesis is a more general version of Magri’s blindness hy-
pothesis in that it defines logical entailment as the underlying notion not only in
the definition of ExH itself, but also in the definition of Epistemic Transparency,

i.e., the principle which guides the distribution of ExH:

(29)  EPISTEMIC TRANSPARENCY
An LF of the form [... K] is licensed iff it logically entails S’s state of

mind about every{ € ALT(¢)

Given that the principle is stated in terms of logical entailment, the LF in (27) vio-
lates Epistemic Transparency, since it does not logically entail the speaker’s state
of mind about the stronger alternative All men are mortal. Therefore, a parse
including ExH becomes necessary. Crucially, and in contradistinction to Magri’s
theory, the exhaustivity operator can take scope below and above K; giving rise

to either a scalar or a weak implicature:

(30)  [Kexh[Some men are mortal] ]| =

K(some men are mortal) A K-(all men are mortal)

(31) [ ExH K[Some men are mortal] | =

K(some men are mortal) A -K(all men are mortal)

Both of these LFs, and only these two LFs, satisfy the principle ET and will be

grammatically licensed. What remains to be done at this point is to show that
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both possible LFs are problematic, thus accounting for the oddness of under-
informative sentences. In our terminology, the first LF entails the scalar implica-
ture that the speaker is sure that not all men are mortal. Recall that I adopt Ma-
gri’s view that it is contradiction to common beliefs which cause the sentences to
sound odd. It is worthwhile thinking about where exactly the contradiction lies
in this case. Assume the following axiom for common belief among a group G

(cf. Lismont and Mongin (1994)); [ write Kg ¢ for ¢ ¢ CBg:

(Al)  Kgd=Kih,xeG

In contexts in which it it is common belief that all mean are mortal, the LF in (30)

will lead to the following contradiction:®

(32) K; (All men are mortal) (Al)
K; —(All men are mortal) ((30))
7

Now consider the second LF in (31), which contains only the weak implicature
that the speaker isn't sure that all men are mortal. As can easily bee seen, this will

also conflict with common belief:

8Given that beliefs of a speaker normally have to be consistent; see 22 for discussion
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(33) K, (All men are mortal) (A1)
-Ks (All men are mortal) ((30Y)
4

In sum, the only two licensed LF express a meaning which is logically consistent
but, when interpreted in conjunction with common belief, result in a contradic-
tion. Specifically, as we just saw, common belief entails that the speaker is sure
about the stronger alternative, while the only licensed LFs either entail that he is

not, or entail that he is sure of the negation of the stronger alternative.

Let us quickly look at what happens with those under-informative sentences

which are not already entailed by common belief, as in our earlier example:

(34)  Some students in this PE class are girls

Recall our earlier high school scenario, where PE classes are single sex. Among

the group G of students, teachers, and parents in that school, it holds that:

(35)  Kg (All students in PE classes have the same gender)

Now, among the group which share this common belief, the sentence in (34) will
sound odd. By Epistemic Transparency, the two licensed LF of the sentence in
22 are parallel to the one shown in (30) and (31) above, i.e.,, one will entail K,

-(All students in this PE class are girls), while the other will entail the weak im-
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plicature that -Kg (All girls in this PE class are girls). From (35) and the axiom
in (A1), however, it follows that K (All students in PE classes have the same gen-
der). Therefore, both LFs will lead again to inconsistency when common belief

is taken into account:

(36) K, (Some but not all students in PE are girls)

K; (All students in PE have the same gender)

4

(37) K;(Some students in PE are girls) A -K; (All students in PE are girls)

K; (All students in PE have the same gender)

4

Again, while the two licensed LFs are logically consistent, they predict inconsis-

tent speaker beliefs when interpreted in the context of current common beliefs.

Finally, it should be noted that we have restored the ability of the partially in-
formed speaker to communicate: In the absence of evidence for the stronger
claim, his weak claim won'’t be interpreted as claiming evidence of absence -
in other words, since Magri’s stipulation in (19) is not needed anymore, a weak
statement will no longer have to be interpreted as being obligatorily exhaustified
and as a result, we no longer have to stipulate sudden changes in relevance, as

done in (22), to neutralize the effects of obligatory exhaustification.
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Chapter 4

Abolishing Hurford’s Constraint

4.1 Short Review of Previous Results

In the first two chapters of this thesis, we have been concerned with surface re-

dundant disjunctions like the following:
1) Al went to Alewife or Braintree or both

We saw that these constructions are an unsolved puzzle for the pragmatic theory,
and that the grammatical theory relies on a rather stipulative constraint to rule
out LFs which would give rise to the unattested scalar implicature that Al didn’t

go to both locations — Hurford’s constraint.
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We then showed that even if Hurford’s constraint is added as an axiom, the gram-
matical theory predicts surface redundant disjunctions like (1) to be semantically
and implicature-wise identical to a simpler structure like Al went to Alewife or
Braintree, at least under one possible reading of the latter sentence (namely, the

one which is not exhaustified).

As we argued in section 2.3 of Chapter 2, however, this prediction is empirically
inadequate: Surface redundant disjunctions are in fact different in meaning from
their simpler counterparts. Whereas the simpler structure does not give rise to
a true ignorance inference, surface redundant disjunctions do entail true igno-

rance with respect to the stronger alternative.

The rest of Chapter 2 was devoted to developing a new theory of implicature,
based on and named after the Matrix K Axiom, which states that assertively used
sentences are embedded under a covert doxastic operator at LE The second in-
gredient was the basic grammatical hypothesis that a covert exhaustivity opera-
tor can attach at any proposition-denoting node at LE The resulting ambiguity
of sentences like (1) ~ stemming mainly from the resulting scopal interactions
between K and EXH and the possibility of recursive exhaustification — was con-
strained by the principle of Epistemic Transparency. This principle states that an
LF of a sentence S is licensed only if it entails the speaker’s state of mind about
S’s alternatives, where the two possible state of minds were defined as K(S') and
-K(§8) (note that K-(S’) entails the latter and will therefore count when checking

Epistemic Transparency).
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After deriving the correct implicatures for simple and surface redundant struc-
tures in the new theory, we noted that just like in the grammatical theory, a sen-
tence like (1) is predicted to also have an LF like (2), which does not correspond

to an attested reading of the sentence and therefore needs to be ruled out:

(2) [ExuKexh[AorBorboth]]=

K(Av B) AK-(AAB) A-K(A) A-K(B)

While the grammatical theory relied on Hurford’s constraint to rule out this LE
we proposed to derive Hurford’s constraint from a principle in the spirit of Grice’s
BREVITY which we called the principle of Efficiency. Efficiency does not rule out
surface complexity per se, but imposes a constraint on LFs which are structurally
more complex, but semantically equivalent to their formally defined alternatives

as given by the competition set COMP.

As we saw, Efficiency correctly rules out the LFs which do not correspond to at-
tested readings of surface redundant disjunctions; in particular it rules out the

LF in (2) because its denotation is equivalent to that of a simpler competitor:

3) [exHKexh[(AorB)or(Aand B)]] =
K(Av B} AK=(AAB) A—-K(A) A-K(B)
COMP={...,Kexh [AorB],...} { Efficiency:

K(A v B) AK-~(AAB) A-K(A) A-K(B)=[ExHKexh[AorB]]
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This LF for the surface redundant sentence Al went to Alewife or Braintree or both
would end up conveying what Al went to Alewife or Braintree could also have
expressed and is therefore blocked by Efficiency. The only remaining, efficient LF
for the sentence is therefore the following (recall that I use the abbreviation v for

exh [A or B], i.e., for exclusive disjunction):

(4) [EexHK[exh(AorB)or(AandB)]]=
[K[exh(AorB)or(AandB)]] A VaeZE:-x
-[K[exh (A orB) or (A and B)] | =K(A v B)
-Z€ = {K(AvB), K(A A -B), K(B A -A), K(A A B)}

=KA Vv B) A-K(AvB) A -K(AA-B) A-K(BA-A) A-KAAB)=

KAvB) A-K(AAB) A-K-(AAB) A-KAA-K-A A-~KB A -K-B

As aresult of Efficiency, then, the only licensed LF is one in which an exhaustivity
operator is adjoined locally at the first disjunct - the LFs which do not contain a
local exhaustivity operator have nothing to offer by way of meaning to warrant

their extra complexity and are therefore not licensed by Efficiency.

So far, then, we have only been concerned with surface redundant disjunctions
which are felicitous, i.e., those sentences in which the entailment relation be-

tween the disjuncts is obviated by a covert exhaustivity operator.
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But of course, there are surface redundant disjunctions which are not felicitous
— these are the kind of sentences which Hurford (1974) was originally concerned

with:!

(5) #Jean worked in France or in Paris

In our new terminology, then, what has traditionally been known as Hurford dis-
junctions are infelicitous surface redundant disjunctions. These infelicitous dis-
junctions may seem to pose a challenge for any theory which does not assume

Hurford’s constraint.

In what follows, I will show how these original Hurford disjunctions are accounted
for under the Matrix K theory without Hurford’s constraint. Before we get there,
however, we will have to make a detour to discuss some issues concerning im-
plicatures based on non-logical scales. Though this is of general interest, as we
will see it will also be relevant for Hurford disjunctions, to which we will return

in section 4.3.

YHurford’s own example was ‘Jean was born in France or in Paris’, but it has been peinted out that
this particular disjunction suffers from the confound that one can only be born in one place,
which is why I modify the example slightly to avoid this confound (Singh (2008) credits this
observation to Irene Heim (p.c.))
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4.2 Specificity Scales and Implicature

Grice (1975); Hirschberg (1985); Matsumoto (1995) drew attention to implicature-
like inferences which seem to be based on specificity rather than logical strength.
For example, in contexts in which the contextually given level of specificity is set
at the city-level, an utterance involving the less specific item California may give

rise to an inference about San Francisco:

(6) A: Inwhich city did Al work again?
B: He worked in California

~ =K (Al worked in San Francisco)

This inference has the form of a weak implicature, and one way to interpret the
example is to take this observation at face value and derive the inference through
the same mechanism as implicatures involving logical scales. This hypothesis
would entail the existence of specificity scales, i.e., sets of lexical items (partially)
ordered by specificity. An example of such a scale would be (USA, California, San

Francisco), from which the following formal alternatives could be derived:

N ALT (Al worked in California) = {Al worked in the US, Al worked in Califor-

nia, Al worked in San Francisco}
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Based on these formal alternatives, the inference in (6) could then be derived

through the following LF:

(8)  ExH K[Al worked in California]

But the hypothesis that a sentence of the form ¢ [California] can give rise to gen-
uine implicatures about a more specific alternative like ¢ [San Francisco] seems
to conflict with the observation that specificity scales cannot give rise to scalar
implicatures, as observed by Singh (2008). Generally, I will say that specificity
scales are involved in implicature computation or associate with only if the ex-
cluded alternatives involve items on a higher level of specificity than the item
used in the assertion (or the prejacent in the case of only). The following exam-

ple illustrates the absence of scalar implicature based on specificity scales:

(9  A: Inwhich city did Al work again?
B: He worked in California

~+ K —(Al worked in San Francisco)

Related to this is an observation made by Singh (2008) (based on a diagnostic

used in Fox and Hackl (2006)), who presents the following example to illustrate
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that specificity items cannot seem to associate with only:2

(12) A: Did Al work in San Francisco?
B: #No, he only worked in California

+ Al didn’t work in San Francisco

Compare this to the acceptable examples below, in which only associates with

alternatives based on logical and evaluative scales:

13) A: Did Al drink all of the beers?

2As pointed out by Irene Heim (p.c.), Singh’s observation is in fact part of a broader generalization
which extends to logical scales. This is illustrated by the following example, which is completely
parallel to (12) but involves alternatives based on logical scales:

(10) A:  Did Al go to Alewife?
B: #No, he only went to Alewife or Braintree

As we will see below, the relevant generalization seems to be the following:

an No, only 1\ is possible as a response to ¢ iff ¢ is an alternative of {» which can be
innocently excluded without contradiction

Since A is never part of the innocently excludable alternatives of a disjunction [A or B], (10) is
expected based on this generalization. As for (12}, we will see below that the specificity-based
alternative Al worked in San Francisco may be excluded without logical contradiction, but that
this exclusion will eventually lead to a (contextual) contradiction.
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B: No, he only drank some of them

~ Al didn’t drink all of the beers

(14) A: Is Al drink an excellent swimmer?
No, he is only a good swimmer

~ Alisn’'t an excellent swimmer

To sum up the observations so far, while specificity scales can be used to com-
pute weak implicatures, they are neither available for scalar implicature compu-
tation, nor do they seem to be able to associate with only. This might be a reason
to abandon our initial idea that the inference in (6), which looks like a weak im-
plicature, should be derived as such, and simply conclude that specificity scales

are not visible for implicature calculation or association with only at all.

Upon closer inspection, however, it turns out that specificity scales are able to
provide the domain of quantification for only. As pointed out in Singh (2008), the
evidence comes from examples of the following kind, based again on a diagnostic
from Fox & Hackl, who investigate the unavailability of scalar implicature and

apparent lack of association with only in numeral modifiers like more than:

(15)  A: Did Al work in San Francisco?
B: TIonly know that he worked in California

~ 1don’t know if he worked in San Francisco
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In this example, a sentence of the from only ¢[California] is used to imply that
-¢[San Francsicol, i.e., only does exclude more specific alternatives, contrary to

what the example in (12) seemed to suggest.

Together, then, these data suggest the following conclusions:

* Specificity scales cannot give rise to scalar implicatures
» Specificity scales can give rise to weak implicatures

* Specificity scales sometimes, but not always, associate with only

The last point is illustrated by the contrast between the example in (12) and that
in (15). To explain the difference between examples where only can exclude alter-
natives defined in terms of specificity, and those cases where this is impossible, it

is therefore necessary to look for independent factors which distinguish the two.

4.2.1 Excludable Alternatives and Contextual Contradiction

4.2.1.1 Redefining the set Z&

As argued in Singh (2008); Fox and Hackl (2006), the contrast between 22 and
(15) is indicative of a wider generalization which concerns the question which

elements of ALT(¢) operators like onlyand ExH are allowed to negate.

I follow Spector (2006); Fox (2007a) and others in assuming that only and EXH

are lexically defined so as to avoid contradictions ~ a design feature for which

126



Fox (2007) coined the term innocent exclusion. Above we assumed the following

definition of the set Z&:3

(16) o e ZE(p)(ALT) iff

xe ALT?(p) & p A ~a doesn’t entail another alternative o’ € ALT(p)

This simplified definition worked fine for disjunction, since it avoids exclusion
of the disjuncts while at the same time allowing exclusion of the conjunction: In
Al only owns a car OR a bike, only negates the conjunction, but it doesn’t negate
that Al owns a car, since together with the initial statement this would entail that
he owns a bike. Based on an argument made in Groenendijk and Stokhof (1984),
however, Fox (2007) eventually adopts a more general definition of Z&, which
replicates all results which were derived on the basis of the semantics in (16), but
in addition can deal with the following problematic example from Groenendijk

& Stokhof (1984):

(17) A: Who did Fred talk to?

B: He only talked to some girl

3For current purposes we can make the simplifying assumption that only and ex# differ only with
respect to the presuppositional status of their argument: While Only Al smoked presupposes that
Al smokes, the corresponding version with ExH will assert that he does (cf. 22)
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Fox illustrates the problem as follows. Assume a model M in which the extension

of girlis this:

(18)  [girl]M = {Anne, Beth, Cate}

Assume furthermore that in some contexts, ALT (Fred talked to some girl) = {Fred
talked to Anne, Fred talked to Beth, Fred talked to Cate}. According to the old def-
inition of Z€, the whole set .ALTcan be innocently excluded by only: That Fred
talked to some girl and that he didn't talk to Anne doesn't entail any other alter-
native in ALT. Hence, Fred talked to Annecan be innocently excluded. The same
argument applies to the two alternatives, making them innocently excludable,
too. We end up predicting the following, logically contradictory meaning for B’s

answer in (17) (recall that there are only three girls in our model M):

(19)  Fred talked to some girl
A Fred didn’t talk to Anne A Fred didn't talk to Beth A Fred didn’t talk to

Cate

:M_L

To avoid this kind of contradiction, Fox suggests a definition of Z£ in terms of
maximality. This new definition is spelled out below (adopted from Magri (2009)’s

presentation of Fox (2007a)’s argument):
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(20) EXH AS MAXIMALITY OPERATOR
Given the set ALT(d) of formal alternatives of ¢, the subset Z€ of inno-

cently excludable alternatives of ¢ is derived as follows:

1. Build the set of all maximal, excludable subsets of ALT (¢)

2. Build the intersection of all maximal excludable subsets of ALT (¢)

(21) a. Asubset A of ALT(d) is excludableifd A N —ox L
xeA
b. Anexcludable subset A of ALT (¢} is maximal if it has no excludable

superset A’ ¢ ALT(¢)

Before we go on, let us confirm that Groenendijk & Stokhof’s problem is indeed
solved by this updated definition. Assume again the same model in which ALT=
{Fred talked to Anne, Fred talked to Beth, Fred talked to Cate}. There are three

maximal excludable subsets:

(22) a. Max; = {Fred talked to Anne, Fred talked to Beth}
b. Max; = {Fred talked to Anne, Fred talked to Cate}

c. Maxs = {Fred talked to Beth, Fred talked to Cate}

However, the intersection of Max; - Maxs is empty. The contradictory exclusion
from (19) is thus avoided with the more general definition of EXH in (20). If B
wants her answer in (17) to be felicitous, she has to have some other contextually

salient alternatives in mind which only can exclude, e.g., {Fred talked to some
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boys, Fred talked to some horses, Fred talked to some psychiatrists}.

4.2.1.2 Defining 7€ with Specificity Scales

Equipped with a more general definition of Z&, let us look at what this updated
definition of excludable alternatives means for alternatives based on specificity
scales. Starting with the behavior of only, we saw that there was a contrast be-
tween the unavailable exclusion in (12), where only attached to a sentence of the
form ¢, and the available exclusion in (15), where only attached to a sentence
of the form 0¢. Both examples are repeated below (assume as before a context

where city-level specificity is asked for):

(23) Al only worked in California

+ He didn’t work in San Francisco

But:

(24)  Ionly know that Al worked in California

~» [ don’t know if he worked in San Francisco

Let’s start with (23) and consider the prediction that would emerge if we assumed
that the domain of quantification for only can be given by the very restricted set
of alternatives .ALT(Al worked in California) = {Al worked in San Francisco}. If

that were the case, the set of innocently excludable alternative Z€ would be {Al
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worked in San Francisco} and the unattested reading in (23) should be possible.

I conclude from this that this restricted alternative set is unavailable. Instead
I adopt Singh (2008)’s hypothesis that the épeciﬁcity scale associated with Cal-
ifornia has to include all cities in California. This means that ALT (Al worked
in California) is formed by substituting California with all more specific items,
for instance, San Francisco, Los Angeles, Santa Barbara, etc.. As we will see, this
explains the missing interpretation in example (23). I will call this property Per-
vasiveness; it is a peculiarity of specificity scales which distinguishes these scales

(and the alternatives based on them) from logical and evaluative scales:

(25)  PERVASIVENESS OF SPECIFICITY SCALES
The scale of an item of specificity level n includes either all items of

specificity level n + 1 or none

As a corollary, the formal alternatives ALTof a sentence which contains a speci-
ficity item v will contain either all sentences which can be derived from replacing
v with its scale mates of specificity n+ 1 or none at all. Specifically, this means
that in contexts in which it is relevant whether or not Al worked in San Francisco,

a sentence like 22 will have the formal alternatives in (26-b):

(26) a. Al worked in California
b. ALT(Alworked in California) = All worked in San Francisco, Al worked

in Los Angeles, Al worked in Santa Barbara, ...
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In what follows, let us use the following abbreviating notation for this set of al-

ternatives:

27 ALT(Al worked in California) = All worked in T

It should be noted that Pervasiveness doesn't predict that a sentence like Al worked
in California always comes with these alternatives; in contexts in which the city-
level is not relevant (or some other alternatives are more relevant), the alterna-
tives derived from the specificity scale might simply not be active at all. The cru-
cial point is that the pervasiveness hypothesis excludes cases in which ALT (Al

worked in California) is given by the singleton set {Al worked in San Francisco}.

Now we can check the consequences of the pervasiveness hypothesis for the ex-

ample in (23), repeated below:

(28) Al only worked in California

Since by assumption the sentence was uttered in a context in which the city-level
is relevant, ALT (Al worked in California) will be defined as the set of pervasive
alternatives Al worked in San Francisco, Al worked in Los Angeles, Al worked in
Santa Barbara, etc., ie., Al worked in T. For simplicity, consider a model M in
which there are only four cities, so that the alternatives which onlyin (28) quan-

tifies over will be the following:
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29 {San Francisco, San Diego, Santa Barbara, San Jose}
ALT (Al worked in California) = {Al worked in San Francisco, Al worked in

San Diego, ...Santa Barbara, ...San Jose}

Given this alternative set, what are the maximal subsets Max € ALT which only
can exclude? Above I quoted Fox (2007) with the assumption that operators like
only and EXH are designed contradiction-free. But as we have seen in chapter 3.1,

this can mean either of two things:

1. Z¢ is defined so as to avoid logical, but not contextual contradictions

2. Z£ is defined so as to avoid both logical and contextual contradictions

Above we followed Magri (2009) in adopting the first option; more generally, we
assumed that the grammatical computation of implicatures by ExH takes place in
a module which has access only to logical, but not to contingent external facts or
common beliefs. Here I suggest that blindness extends to only since both oper-
ators make reference to the set of excludable alternatives.* This is the blindness

hypothesis stated in its most general form (see also section 3.1 of Chapter 3).

It is of course conceivable that onlyand EXH differ with respect to blindness to non-logical facts.
However, the facts presented above and independent facts reported in 22 suggest that both op-
erators are defined strictly logically.
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Given the theoretical choices above, the blindness hypothesis would of course

translate into the first option:

(30)  BLINDNESS
The set Z€ is defined so as to avoid logical, but not contextual contradic-

tions

What does this mean for (28)? If onlyis blind to the fact that San Francisco, Santa
Barbara etc. are cities in California, there will be exactly one maximal excludable

subset, which constitutes the set Z€ by definition:>

(31 Max; = {Al worked in San Francisco, Al worked in San Diego, ...Santa

Barbara, ...San Jose} = Z&

I would like to point out an additional problem for the hypothesis that specificity-based infer-
ences are derived as implicatures, and in particular, by blind exclusion through ExH. If EXH is in-
deed blind to the fact that San Francisco is in California, a sentence of the form ExHd [California]
~in contexts where the city-level is relevant - will entail ~¢ [San Francisco] and generally, - [t],
T being the names of the cities which happen to be in California in the actual world. This is
because implicature calculation will be blind to the fact that negating all statements of the form
¢[7], in conjunction with ¢[California] is a contextual contradiction — once we take into consid-
eration that 7 is actually located in California, it becomes apparent that nothing can take place
in California but not in any city in California, at least not if California is bounded, if further-
more all of California is divided into cities and lastly, if nothing can be located on a boundary.
However, it would seem that by the same logic, blind exclusion by exs will exclude less specific
alternatives, so that EXH ¢[Califonia] will, among others, entail ~$[USA]. While the former re-
sult is desired given the facts observed above, the latter needs to be ruted out: We will have to
stipulate that alternatives of lower-level specificity simply do not enter blind exclusion, e.g. by
excluding them from the set ALT,
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Given this set of innocently excludable alternatives, (28) is predicted to have the

following denotation:

(32) [ Al only worked in California |

- ALT (Al worked in California) = {Al worked in San Francisco, Al worked

in San Diego, ...Santa Barbara, ... San Jose}
=I&

= Al worked in California
A Al didn’t work in San Francisco A Al didn't work in San Diego A Al

didn’t work in Santa Barbara A Al didn’t work in San Jose =pq L

But once we take into account the contextual knowledge that all these cities are in
California, this denotation will be recognized as being contradictory: Al cannot

possible work in California but not in any city in California (see fn. 5).

At this point, then, the explanation why Al only worked in California cannot
mean that he didn't work in San Francisco is clear: Given the pervasiveness of
specificity-based alternatives on the one hand, and blind exclusion on the other
hand, excluding Al worked in San Francisco is only possible if all other alterna-
tives of the form Al worked in T are excluded, too. This, however, will result in a

contextual contradiction, thus ruling out this particular reading.
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4.2.1.3 Remaining Case 1: Intervening know

We now also have an explanation for why specificity-based alternatives can as-

sociate with only in examples like (24), repeated below:

(33) a. Ionlyknow that Al worked in California

~r T don't know if he worked in San Francisco

Pervasiveness predicts that ALT(I know that Al worked in California) will be the
set of alternatives I know that Al worked in T, at least in contexts in which city-
level specificity is required. To find the subset Z€ of (logically) innocently ex-
cludable alternatives for (33), we will again have to identify maximal excludable
subsets in ALT. Going back to our four-city model from above, again there is just

one maximal excludable subset, which by definition will provide the set Z¢:

(34) Max; = {I know that Al worked in San Francisco, I know that Al worked

in San Diego, ...Santa Barbara,...San Jose} = Z&

With this set of innocently excludable alternatives, B’s response in (15) will end

up having the following denotation:

(35)  [Ionly know that Al worked in California ] =
I know that Al worked in California &

I don’t know that Al worked in San Francisco &
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I don’t know that Al worked in San Diego, ...Santa Barbara, ...

= I know that Al worked in California & -(I know that Al worked in 1)

But this time, the denotation is consistent: My epistemic state may well entail
that Al worked in California, but at the same time there does not have to be a
specific city T such that my epistemic state entails that Al worked in T. But what
about the intuition that in the context of a question like Did Al work in San Fran-
cisco?, the only negated alternative seems to be the one which involves San Fran-
cisco? As shown in (35), the grammatical level the sentence excludes all more
specific alternatives; post-grammatically, however, the hearer may of course as-
sign special status to one of the excluded alternatives. The impression that only
one alternative is excluded is thus due the fact that hearers in a particular context
may zoom into that part of the grammatical meaning which is salient due to pre-
vious discourse. As the example without intervening know in (28) showed, how-
ever, this zooming in cannot be done in the grammar. Following Singh (2008},
I proposed the pervasiveness hypothesis to captured this particular property of

specificity-scales.

What remains to be done now is to explain the curious contrast between the
availability of weak implicatures and the categorical absence of scalar implica-

tures with specificity scales.
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4.2.1.4 Remaining Case 2: Specificity Scales and ExH

One of the main claims of this thesis is that all implicatures are derived through
the use of EXH, and that the difference between weak and scalar implicatures
reflects the scope of the Matrix K operator relative to the exhaustivity opera-
tor. Given this hypothesis, the explanation of the different behavior of speci-
ficity scales with respect to weak and scalar implicatures receives a very natu-
ral explanation: The absence of scalar implicatures is due to the same reason
why only cannot exclude more specific alternatives in Al only worked in Califor-
nia, while the availability of weak implicatures is due to the same reason why
only know that Al worked in California can exclude more specific alternatives, as

shown above.

To see first how unattested scalar implicatures are accounted for, let us go back

to the example in (39), repeated below:

(36) A: Inwhich city does Al work?
B: He worked in California

+ K —=(Al worked in San Francisco)

To get this scalar implicature, the LF of B's answer would have to be the following:

(37)  Kexh [Alworked in California]
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It follows from Pervasiveness that ALT (Al worked in California) will be the set {Al
worked in San Francisco, Al worked in Los Angeles, Al worked in Santa Barbara,
...} (abbreviated as before as {Al worked in 1}). Given this set of alternatives, and
the blindness of ExH, the exhaustivity operator in (37) will again exclude all of

these alternatives, as shown in (32):

(38) [ KX exh Al worked in California ]
-ALT (Al worked in California) = {Al worked in T}
-=T&

= Al worked in California
A Al didn’t work in San Francisco A Al didn’t work in Los Angeles A Al
didn't work in Santa Barbara A ...

:C_I_

Once we factor in the contextual knowledge that San Francisco, Los Angeles, etc.
are cities in California, this denotation becomes a contextual contradiction. This
means that the only LF which could in principle exclude Al worked in San Fran-
cisco, i.e., the only LF that could in principle derive the missing scalar implicature

in (36), yields a contextual contradiction and is therefore ruled out.

Let us finally turn to something that is possible, namely, what we hypothesized

to be a weak implicature (repeated from (6)):
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(39) A: Inwhich city does Al work?
B: He worked in California

~ =K (Al worked in San Francisco)

To get this implicature, the sentence has to be disambiguated as follows:

(40)  ExH K [Al worked in California]

with ALT(K[Al worked in California]) = {K[Al worked in 7]}, what is the set Z&
of alternatives which EXH can negate? As we try to form maximal excludable

subsets, again we find that there is only one:

(41)  Max, = {K[Al worked in San Francisco], K[Al worked in Los Angeles],
K[...Santa Barbara], K[...San Jose], K[... San Diego], ...}
=I&

With this set of innocently excludable alternatives, the LF in 22 will have the fol-

lowing denotation:

(42)  K(Al worked in California) A
-K(Al worked in San Francisco) A
-K(...Los Angeles) A
-K(...Santa Barbara) A

-K(...San Jose) A ...
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= K(Al worked in California) & -K(Al worked in 1)

Just as was the case for I only know that Al worked in California, we find that
this denotation is consistent, too: I may well be sure of the fact that Al worked in

California and at the same time be uncertain about any more specific claim.

In sum, we saw that specificity scales are special in that they can give rise to weak
implicatures, but not to scalar implicatures. The explanation for this peculiarity

comes from:

* The definition of Z¢€ in terms of the blind, logically innocent exclusion

* The pervasiveness hypothesis in (25) according to which either all, or none

of the alternatives of higher specificity levels form ALT

One question that remains is the role of the principle of Epistemic Transparency
(ET). We saw above that specificity scales are special in that they can give rise to
weak, but not always to scalar implicatures (cf. Hirschberg (1985); Matsumoto
(1995)). Following a proposal of Singh (2008), I argued that this special behavior
is due to the pervasiveness of specificity scales, a property which distinguishes
them from logical and evaluative scales. Pervasiveness means that, if one alter-
native of a given specificity level is part of ALT, then all other alternatives of
the same specificity level have to be included in ALTas well. In effect, this ex-

cludes the possibility of EXH ‘Zooming in’ to some contextually relevant subset of
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ALTwhile ignoring other alternatives of the same level of specificity. This analy-
sis predicts that implicatures based on specificity scales should behave just like
other implicatures, except in environments where pervasiveness, together with
blind exclusion, leads to a contextual contradiction, as was the case in (32) and

(38) above.

Recall now that an LF is licensed in the Matrix K theory only if it satisfies the
principle of Epistemic Transparency, which requires the LF to entail the speaker’s
state of mind about the alternatives of (the overt part of) his statement. Since we
argued that ALT (Al worked in California) = {Al worked in T}, we seem be com-
mitted to the view that an assertion like (43-a) is necessarily parsed as (43-b),
and thus necessarily associated with the weak implicature that the speaker is not

sure about which city Al worked in:

(43) a. Alworked in California

b. EXH K [Al worked in California]

It seems like the LF in (43-b) is the only possible LF in accordance with ET, be-
cause parsing EXH with scope below K results in a (contextually) contradictory
meaning, as we saw above, and leaving it out seems to violate ET. This predic-
tion however seems empirically wrong; (43-a) can certainly be asserted without

conveying that the speaker is not sure about the city or cities Al worked in.

What is missing here are considerations of relevance; the set ALT behaves just

like other domains of quantification in being context-sensitive (cf. von Fintel

142



(1994)). Hence, the equation ALT (Al worked in California) = {Al worked in T} is
only valid in contexts in which naming a city would be relevant. But an assertion
like (43-a) is often made in contexts which don't require this level of specificity.
In these contexts, the sentence might have alternatives varying by state, or no
alternatives at all. What this shows us is that Epistemic Transparency makes ref-
erence to the set ALTas defined by contextual relevance. In other words, context-
sensitivity of implicature computation is to be located in the set ALT, which is
defined relative to the contextually given relevance and level of specificity. In
contexts in which the cities which Al has worked in are simply not relevant, Epis-

temic Transparency therefore does not predict obligatory weak implicatures.

4.3 Back to Hurford

Let us now go back to the question of how to account for (44) without invoking

Hurford’s constraint:

(44) #Jean worked in France or in Paris

In what follows, I will show how the Matrix K theory accounts for the infelicity of
these examples. The argumentation will proceed in the by now familiar fashion:
[ will show that there is no licensed LF which would yield a consistent meaning
for a surface structure like (44). As a reminder, for an LF to be licensed in the

Matrix K system means that the structure has to satisfy Epistemic Transparency
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on the one hand and Efficiency on the other hand (see Chapter 2).

4.3.1 Defining the Alternatives

In Chapter 2, we saw that there are three different LFs for a disjunction which
satisfy Epistemic Transparency (ET). Being a disjunction, the same is of course
true for the original Hurford sentence. The ET-licensed LFs are given schemati-
cally below. I will use the abbreviations F and P for the disjuncts Jean worked in
France and Jean worked in Paris, respectively. The results generalize to all cases
in which P and F are specificity-based alternatives such that P is more specific
than F and P contextually and asymmetrically entails F (see 3.1 in Chapter 3 for

a definition of contextual entailment and equivalence).

(45) a. EXHK[ForP]
b. ExH Kexh [ForP]

c. EXHK[exhForP]

To compute the denotation of these LFs, it will first be necessary to establish the
alternatives which the topmost EXH operator quantifies over. We will start doing

this for the first LF:

(46)  ALT(K[F or P])
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Before introducing the pervasiveness hypothesis for specificity-based alterna-
tives, we would simply have used Katzir’s algorithm to derive the following set

of alternatives:

(47)  ALT(X[F or P)) = {KE KB K[F and P]}

For our particular example, the first two alternatives are of course short for K[Jean
works in France] and K[Jean works in Paris], i.e., alternatives of the form ¢ [France]
and ¢[Paris]. Given that these are specificity-based alternatives, Pervasiveness
has to be factored in - there cannot be just one alternative of specificity level
n + 1, but all alternatives of the same specificity level as ¢ {Paris] have to be in-

cluded in the set, too. Thus, (47) has to be extended to include minimally:

48)  ALT(K[F or P]) = {KE KB K[F and P}, KT, KM, KS, ...}

Where T = Jean worked in Toulouse, M = Jean worked in Marseille, S = Jean worked
in Strasbourg, and so on and so forth for all French cities. As before, let us intro-

duce the following abbreviation for these city-level alternatives:

49)  ALT(KIF or P]) = {KE K7, K[F and P]}

Of course, the consequences of Pervasiveness carry over to the alternatives of the

topmost exhaustivity operator in (45-b) and (45-c) too, as shown below:
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(50) a. ALT(Kexh[ForP])={KexhEKexhP Kexh[FandP],KexhT, K
exh M, KexhS§,...}
b. ALT(K[exhForP])={Kexh EKBK[exh Fand P], Kexh T, K exh

M,KexhS§S,...,KT KM, KS,...}

The next step is to calculate the denotation of these alternatives — not a trivial task
since these alternatives contain exhaustivity operators themselves. This raises
the question as to what the alternatives of the alternatives are. In other words,
what is the definition of the set ALTwhich the exhaustivity operator in alterna-

tives like [K exh F] quantifies over?

One hypothesis which is highly relevant to this question goes back to Kratzer and
Shimoyama (2002), and concerns the alternatives of the disjuncts in the context
of interpreting a disjunction. One version of their hypothesis can be stated as

follows:®

5This hypothesis is only implicit in Kratzer and Shimoyama (2002)’s analysis of Free Choice sen-
tences, and is also (implicitly) adopted in Fox (2007a)’s account. Both proposals only discuss
cases in which the alternatives of the disjuncts are just the other disjunct, i.e., cases which sat-
isfy a stronger version of (51). These are cases where, for the interpretation of You may have the
cake or the ice cream, the only relevant alternative of the disjunct You may have the cake is the
other disjunct You may have the ice cream. However, in some contexts there might be a third
relevant alternative (cf. Zimmermann (2000)), e.g. You may have a grappa, so that ALT(You
may have the cake) will be the set {You may have the ice cream, You may have a grappa}. This
is allowed by the formulation in (51). In order for the entire disjunction You may have the cake
or the ice cream to exclude the grappa, however, the set ALT(You may have the cake or the ice
cream) will also have to include the alternative You may have a grappa.
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(61)  THE KRATZER-SHIMOYAMA ASSUMPTION
In a structure [A or B], the alternatives of the disjuncts A and B have to

include the other disjunct

To see the consequences of the Kratzer-Shimoyama hypothesis, let’s start calcu-

lating the denotation of the first alternative in (50-a) and (50-b):

(52) [KexhF]=?

The first step is again to establish the set ALT(F). The Kratzer-Shimoyama hy-

pothesis in (51) predicts that the set will include the other disjunct, i.e.:

(63) PeALT(H

Importantly, due to the pervasiveness of specificity-based alternatives, all other

alternatives of the same specificity level as P will have to be added now, too:

(54) TeALT(H)
Me ALT(F)
Se ALT(F)

Together, then, the alternatives used to calculate (52) will be the following:
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(55) ALTE ={RTM,S, ...} = {1}

Given the blind exclusion of the exhaustivity operator, the alternative in (52) will

get the following denotation:

(56) [KexhF]
-ALT(F) = {ET,M,S, ...}
IE=RTM,S,...}

=KF A-P AT A=-M A=S AlLL)

=K(F A1)

Let us continue with the second alternative listed in (50-a), namely:

(57 [KexhP]=?

Again, since the relevant context is the interpretation of a disjunction [F or P],

the Kratzer-Shimoyama hypothesis will necessitate the following:

(58) Fe ALT(P)

And just like in the previous case, the pervasiveness hypothesis predicts that the
set of alternatives will have to be extended as follows (I depart from my previous

practice and include P itself in ALT(P) for the sake of clarity):
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(59) ALTP)={EBRTM,S,...}

Based on this set of alternatives, the denotation of the second alternative is there-

fore the following:”

60) [KexhP]=K®P A-T A=M A=S A...)

Lastly, note that the denotation of the conjunctive alternative in (50-a) is straight-
forward since there will be no logically stronger alternative which ExH can ex-

clude here, making its occurrence vacuous in this alternative:

61) [Kexh|[FandP]]=KFEAP)

Let us briefly sum up what we did so far. We have established the set of formal
alternatives which will be used to calculate the LFs in (45), taking into considera-
tion the effects of the pervasiveness hypothesis for specificity-based alternatives
on the one hand, and the Kratzer-Shimoyama hypothesis for alternatives of al-

ternatives in disjunction on the other hand. The set of alternatives for all three

"Recall from footnote 5 that exclusion of the higher-level alternative F (=Jean worked in France)
will have to be banned for independent reasons; the following denotation is calculated on the
basis of this stipulation; however, the results of this section do not hinge on this decision and
would be equivalent if F were innocently excludable, i.e., if [ exh P | were equivalent to the con-
textual contradiction K(P A -F A =T A-M A ....
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LFs are repeated below:

(62) ExHK[ForP]
ALT(K[F or P]) = {KE KB, K[F and P], KT, KM, KS, ...}

(63) ExHKexh[ForP]
ALT(K exh [For P]) = {Kexh E Kexh P K exh [F and P], Kexh T, K exh
M, Kexhs§,...}

(64) ExHK[exhForP]
ALT(K [exh For P]) = {K exh E KB K [exh F and P], Kexh T, K exh M, K

exhs§, ..., KT, KM, KS, ...}

Secondly, and again taking into account the effects of pervasiveness and the
Kratzer-Shimoyama hypothesis on Katzir’s algorithm, we have derived the mean-
ing of those alternatives which themselves contain exhaustivity operators. Again,

these are repeated below:

65) [KexhF]=KE A-P A-T A=M A=S A...)

ZK(F /\—|T)
(66) [KexhP]=K{P A-T A=M A=S A...)

67) [Kexh[FandP]]=K(FAP)
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We now have all the necessary background to be able to calculate the denotation

of the three LFs in (45).

4.3.2 Deriving Infelicitous Hurford Disjunctions

4.3.2.1 FirstLF: ExH K [ForP]

Deriving the denotation of this LF involves only a relatively simple calculation,
the most important part of which is the derivation of the alternatives for the top-

most exhaustivity operator:

(68) ExHK[ForP]

The relevant set of alternatives were given in (62) above (repeated below):

69) ALT(X [ForP]) = {KE KR K[F and P], KT, KM, KS, ...}

= {KE K[F and P}, K1}

The denotation of the sister node of ExHis [ K[F or P] | = K(F v P). It is therefore
easy to see that all these alternatives are innocently excludable — more precisely,
their exclusion is logicallyinnocent. The LF in (68) will thus end up denoting the

following proposition:
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(70)  [exuK[ForP]]=

[K[ForP] | AVaeZE: -
-ALT(X[F or P]) = {KE, K[F and P], Kt}
-I€ = {KE K[F and P], K1}

=KF vP) A=K({F) A -K(FAP) n~-K(T)

While this might look innocent from a logical point of view, once this denotation
is interpreted against the background of contextually given common beliefs (or
knowledge), this becomes inconsistent. To see why, note first that that (F v P) is

contextually equivalent to F:

(71)  (FvP)=cgF

Given this contextual equivalence, the denotation in (70), though logically con-

sistent, ends up ascribing the following doxastic state to the speaker:

(72) K(F vP) A=K(F) A-K(FAP) A=K7

Ecp K(B) A -K(F) ...}

In other words, the LF in (70) expresses that the speaker (i) is sure that Jean

worked in France and that (ii) he is not sure that Jean worked in France.

Quite generally, I assume that this inconsistent speaker state which the LF de-

notes is enough to rule out the corresponding LE The question of whether or not
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inconsistent beliefs can sometimes be justified is not touched by this assump-
tion; when it comes to believes about the workplace of the individual Jean, 1 as-
sume that the hearer will reject an LF which ascribes inconsistent beliefs about
Jean’s workplace to the speaker. This leaves open the possibility that the entirety

of a person’s belief may be inconsistent.8

Being contextually inconsistent, then, the first LF will be rejected and the search

for a better parse of the Hurford disjunction will have to continue.

4.3.2.2 Second LF: ExH Kexh [ForP]|

The next parse that we will have to check is the one below:

(73)  ExHKexh[ForP]

In order to calculate the denotation of this LE it is best to start with an inter-
mediate calculation, namely, the denotation of the sister node of the topmost

exhaustivity operator:

(74)  Kexh[ForP]

8For a justification of inconsistent beliefs , see e.g. Makinson (1965); Kyburg (1961); Foley (1979).
Following Knight (2002), we might also say that the LF in (37) expresses an unacceptably high
degree of inconsistency, as it concerns the same QUD.
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Above we saw that Pervasiveness and the Kratzer-Shimoyama hypothesis work
together to derive a wider set of alternatives for a disjunction like [F or P] (see
(48)). For (74), then, the alternatives of the embedded exhaustivity operator
exh will not only include the disjuncts Jean worked in Paris and Jean worked in
France, but all alternatives of the form Jean worked in Toulouse, Marseille, etc..

Schematically:

(75) ALT(ForP)={EB[FandP],TM,S,...}
={E [Fand P}, 7}

Given this set of alternatives, and given the blindness of the exhaustivity opera-

tor, the denotation of (74) will be the following:

(76) [Kexh[ForP]]
-ALT(ForP)={EP [Fand P], T M,S,...}
-I€={[FandP], T, M, S, ...}

=K(F vP) AK-(F AP) AK(=T) AK(-M) A...

Having calculated the meaning of the sister node of the highest EXH, we can now

proceed to the matrix level and calculate the meaning of the entire LF:

(77)  [ExHKexh[ForP] ]
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The alternatives of the topmost exhaustivity operator were given in (50-a) above.
Given Pervasiveness and the Kratzer-Shimoyama hypothesis, this set looked as
follows — note that the set includes not only ¢[Paris], but all city-level alterna-

tives:

(78)  ALT(K exh [ForP]) = {Kexh E Kexh P, Kexh [Fand P], Kexh T, Kexh

M, Kexhs§,...}

In order to establish which of these alternatives is (logically!) innocently exclud-
able - given [ K exh [F or P] ] as shown in (76) — we will have to first calculate
their denotation. For those alternatives whose denotation is not obvious, this
was done above (see (65)-(67)); the meaning of the first alternative is repeated

from above:

(79) [KexhF]
:K(F A=P A=-T A=M A =S /\...)

=K({F A1)

For the second alternative, the denotation was given in (66) above:

80) [KexhP]=K®P A-T A-M A=S A...)

Lastly, in (67) we saw that the meaning of the conjunctive alternative was the

following:

155



81) [Kexh[FandP]]=K(F AP)

The denotation of all other alternatives can be calculated completely parallelly

to these ones, which is why I will skip their calculation here.

Given now the meaning of the prejacent in (76), which of the alternatives in (78)
can the topmost EXH negate without causing a logical contradiction? In fact, the
set of innocently excludable alternatives will be the entire set (78). The compu-

tation of the denotation of our second LF will thus proceed as follows:

(82) [eExHKexh[ForP] ]
=[Kexh[ForP]] AVaeZI€:-~x
=[K(F vP) AK~(F AP) AK-T AK-M A...] AVaxeZE:~a (see (76))

-ALT(Kexh [ForP]) = {KexhE Kexh B K exh [Fand P],Kexh T, K

exh M, Kexhs§, ...} =Z& (see (78))

=[K(F vP) AK=(F AP) AK-T AK-M A...]

A-KEF A=) A-K(P AT A-M A-M A...) ASK(FAP) A ...

Though the calculation is not complete, i.e., not all innocently excludable alter-
natives have been negated, we can stop at this point. This is because the (par-
tial) denotation in (82) will become inconsistent once we factor in contextual
information. To see this, let us first simplify (82) a bit; the conjunct -K(F A —T)
expresses a contextual tautology and can therefore be omitted. The simplified

meaning is given below:
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(83) KF vP) AK=(F AP) AK-T AK-M...

A=KP AT A-M A-M A...) A=K(FAP)

Taking into account contextual equivalences and entailments, again this will yield

an inconsistent speaker state:

(84) K(F vP) AK<(F AP) AK-T AK-M...
A=-KP A-T A-M A-M A...) A=K(FAP)

Ecpg K(F}) AK(=P) AK(-T) AK(-M) A...

The meaning of this LE when interpreted using contextual information, will ex-
press that the speaker is certain that Jean worked in France, and that he is certain
that he did not work in Paris, Toulouse, Marseille, Strasbourg, and so on and so
forth for all French cities. Again, this is an inconsistent doxastic state and the LF

which expresses it will be ruled out on these grounds.

In fact, we could have established the contextual inconsistency of this LF already
when we were calculating the meaning of EXH’s prejacent in (76): It is already
here that the inconsistency arises, since the denotation of the topmost EXi1’s pre-

jacent is itself inconsistent (repeated from (76)):

(85) KF vP) AK-(F AP) AK{(-T) AK(-M) A...
Ece K(F) AK(-P) AK(=T) AK(-M) A...

=K({F) AK(-7)...4
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The prejacent expresses that (i) the speaker is sure that Jean works in France and
that (ii) he is sure that Jean doesn’t work in Pairs, Toulouse, Marseille, Strasbourg,
etc. for all French cities. As we have seen above, this is an inconsistent belief state

and the corresponding LF will therefore be ruled out.

4.3.2.3 Third LF: EXH K [exh F or P]

What remains to be done now is to calculate the meaning of the last LE Since this
structure involves mostly the same alternatives as the previous LE this derivation
will be simple at this point. As before, let’s first compute the meaning of the sister

node to the topmost exhaustivity operator:

(86) K[exhForP]

Note that the exhaustivity operator is adjoined locally within the first disjunct.
The only intermediate step necessary to compute the denotation of (86) is there-
fore to take into account the following, by now well-known denotation (cf. (65)

above):

(87) [exhF ]=KA-1

The denotation of (86) is therefore the following:

88) [K[exhForP]]=K[(F A -~1) vP]
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Now we can already proceed to the matrix level to compute the denotation of the

entire LF:

(89) EXHK[exhF orP]

The alternatives which the topmost exhaustivity operator quantifies over were

given in (64) and are repeated below:

(90) ALT(K[exhForP])={KexhEKP K [exh Fand P],Kexh T, Kexh M, K
exhsS,...,KT, KM, KS, ...}

Given the denotation of EXH’s prejacent in (88), all of these are innocently exclud-

able. The computation of the entire LF will thus proceed as follows:

(91) [ExuK[exhForP]]
=[K[exhForP]] AVaeZE: -«

=K[(FA-T) VP] AVxeZIE:-x (see (88))

-ALT(K [exhForP]) = {Kexh EKP K [exh Fand P], Kexh T,

KexhM,KexhS§,...,KT,KM,KS, ...} =Z& (see (90))

= K[(F AT) V P] A =K(F A -1) A=K(P) A —lK[(F AT A P]

A-K(TA-PA-MA=SA...) A...
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Again, this is more than enough to establish that the LF will denote an inconsis-
tent speaker state, given contextual information. To uncover this inconsistency,
we can first simplify (91) by leaving out the contextual tautologies -K(F A —1) and

—K[(F A ~T) A P]. The first part of (91) will then be (contextually) equivalent to:

(92) K[(FA-T) VP] A-K(P)

But as is easy to see by now, this will again end up denoting inconsistent speaker

beliefs:

93) [(KA-1) vP] A-K(P)

Ecg K(P) A -KP)...7

Again, I argue that an LF which denotes that the speaker (i) is sure that Jean
worked in Paris and that he (ii) is not sure that Jean worked in Paris will be ruled

out.

4.3.3 Summary

In sum, we have seen that all otherwise licensed LFs for the sentence Jearn workecd
in France or in Paris express inconsistent beliefs about the very same state of af-
fairs: Under the first LE it expresses that that the speaker is sure that Jean worked
in France and that he is not sure that Jean worked in France. The second LF ex-

presses that the speaker is sure that Jean worked France and that he is sure that
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he didn’t work in Paris, Toulouse, Marseille, Strasbourg, and so on for all French
cities again, a contradiction given common beliefs. The last possible LE as we
have just seen, expresses that the speaker is sure that Jean is from Paris and that

he is not sure that Jean is from Paris.

Having already derived the only attested LFs of felicitous surface redundant dis-
junctions like SOME or ALL without Hurford’s constraint in Chapter 2, we now
derived the infelicitous surface redundant disjunctions FRANCE or PARIS with-
out Hurford’s constraint as well. Inconsistency has been argued to be the under-
lying cause of oddness in a number of independent phenomena (e.g., von Fintel
(1993); Gajewski (2003); Fox and Hackl (2006); ?), and we can now add Hurford
disjunctions to the list of these phenomena. The only additional assumption
necessary to derive these results was the pervasiveness hypothesis for specificity
scales. As we saw, this assumption is needed independently: The difference in
availability between scalar and weak implicatures on the one hand, and the in-
teraction with only on the other hand provides strong evidence in favor of this as-
sumption. Secondly, we followed Fox (2000); Gajewski (2003); Magri (2009) and
others in assuming that certain modules involved in semantic computation are
blind to external facts and common beliefs. In the Matrix K system, these as-
sumptions fully account for the infelicity of surface redundant disjunctions in
which the disjuncts are ordered by specificity: The meaning derived in grammar

will invariably ascribe inconsistent beliefs to the speaker.
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Chapter 5

Implicature Suspension

5.1 The Problem of Implicature Suspension

In the literature on implicature, including the current contribution, most of the
ink is spilled on explaining how implicatures occur. But the absence of implica-
tures needs to be explained, too. This is because both in the grammatical and in
the pragmatic theory of implicatures, any assertion for which there is a stronger

competitor will ipso facto be subjected to pragmatic reasoning.

Recently, Fox (2013) has drawn attention to one context in which implicatures
seem to be suspended: A quiz show. Let us call the host of the quiz show the
speaker and the contestant, the hearer. I propose the following general definition

of these kinds of contexts:
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(1)  Let o be a sentence containing a scalar item. A Quiz Show is a context in

which

1. Forall o' e ALT(o): Ksox! v Kg—ax!

2. The hearer knows that 1. holds

Let us look at Fox’s scenario to illustrate. Contestants of this particular quiz show
can win one million dollars if they correctly guess where the money is hidden.
There are 100 boxes, five of which contain a million dollars. The host knows
which boxes are winners and the contestants knows that he knows. Now the con-
testants are in the process of narrowing down the boxes in which, according to
the partial information they are given by the host, the money could be. The host

tells them about a certain pair of boxes:

(2)  Ladies and gentlemen, I will give you a hint:

There is a million dollars in box A or in box B

The crucial observation here is that no ignorance inferences will arise (let’s again
use A and B as abbreviations, for There is a million dollars in box A/B; 1 use the

subscript gs to indicate the Quiz Show context):

(3) AorB
+ not K{(A) A -K(-A)

+ =K(B) A -K(-B)

163



Now the first question to answer is why we would expect any ignorance impli-
catures to arise in the first place. This question becomes particularly pressing
in view of definition (1): The hearers in the Quiz Show context of (3) are aware
that the speaker is certain about the truth value of A, B, and (A and B}, so why
would they go into the trouble of deriving an implicature which contradicts this

contextual knowledge?

Fox’s answer to this question is this: The relevant factor which the Quiz Show ma-
nipulates is the Gricean maxim of QUANTITY, which he interprets as the (violable)
requirement to make maximally strong assertions. As long as this requirement is
active, we expect the hearer to look for reasons why the speaker asserted a rel-
atively weak sentence. Fox’s claim is that in the particular quiz show context,
the speaker is no longer required to say as much as he knows, and therefore, a
weak assertion like that in 22 does not trigger any pragmatic reasoning about the

stronger alternatives he could have asserted instead.

Before we look at the consequences of this hypothesis, viz., that QUANTITY is de-
activated in Quiz Shows, for Fox’s grammatical theory of scalar implicatures, let’s
see what the consequence are for the pragmatic theory. Recall that in a pragmatic
system, both ignorance and scalar implicatures are derived on the basis of Grice’s
cooperative principle (see (5) in section (80)), of which quantity is one part: The
speaker is required to assert the strongest relevant sentence which she is sure of.
Fox’s hypothesis is that in a Quiz Show, she is no longer required to assert the

strongest alternative; she only needs to assert something relevant which she is
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sure of.

Within the pragmatic theory, this obviously predicts scalar implicatures to be
suspended in Quiz Shows, too, since they are derived from the cooperative prin-

ciple, and that principle is no longer fully active in these contexts.

As Fox observes, however, this prediction seems to be empirically wrong. Even in
Quiz Shows, hearers may conclude that (the speaker is sure that) A and Bis false
when what he asserted was A or B. Fox quotes the following case as evidence
that this scalar implicature may still be computed in a Quiz Show. Recall the silly

game show from above and consider again the speaker’s utterance:

(4) There is a million dollars in box A or in box B

Now, if the boxes are uncovered and there are a million dollars in both boxes, a

chronic nagger might find the following objection:

(6)  You gave us wrong information, mister! There was money both in box A

and in box B.

I agree with Fox that this is sufficient evidence to conclude that a scalar implica-
ture may be calculated even in Quiz Shows. Together with the first observation
about the absence of ignorance implicatures, the full generalization about impli-

cature suspension in Quiz Shows is thus the following:
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(6) THE QUIZ SHOW GENERALIZATION
In a Quiz Show in which the speaker asserts A or B, the only inference that

the hearer may draw is K;—(A A B)

If we agree with Fox about the premises, then (6) is indeed a problem for the
pragmatic theory. The grammatical theory, on the other hand, would have no
problem accounting for (6), since scalar implicatures are not derived from any

pragmatic principles to begin with, but rather, by the operator EXH.!

However, it is worth looking at these premises in some more detail. One of the
premises is that QUANTITY is de-activated in quiz show contexts. As stated above,
by this he means the requirement to make a maximally informative assertion.
As a reminder, Grice’s original QUANTITY maxim with its two sub-maxims are re-

peated below (cf. Grice 1975).

) Grice’s Maxim of QUANTITY
QUANTITY~1

Make your contribution as informative as is required for the current pur-

INote however that in the system proposed in Fox (2007), the insertion of ExHis guided by some-
thing like the following principle: Given two LFs &, ¢[ExH] which differ only with respect to
the presence of ExH, the hearer will chose ¢[exH] when the pragmatic ignorance implicatures
which would be derived from ¢ contradict contextual information about the speaker. Of course,
in a context in which ignorance implicatures do not arise by definition, the rationale for choos-
ing the more complex parse ¢[ExH] has to be something else.
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pose of exchange
QUANTITY-2
Do not make your contribution more informative than is required for the

current purpose of exchange

Sensitivity to context is thus already hard-wired into the Gricean maxim: The re-
quirement is to be as informative as currently needed, for example, for the quiz
show you happen to be hosting. What is the purpose of exchange in a Quiz Show?
One purpose is clearly to make the game more interesting, which can only be
achieved by not telling the hearers where exactly the money is. Another purpose
is not to leave them completely at chance level, which presumably would make
the show rather tedious. Given the maxim in (7), then, it seems at the very least
unnecessary to say the maxim is de-activated, since it was designed specifically
to deal with different informational needs in contexts like Quiz Shows. More-
over, given the existence of QUANTITY-2, it seems like the reason why the speaker
is avoiding a stronger statement is precisely because he is obeying QUANTITY:
For the purpose of the Quiz Show, anything stronger than A or Bwould be more
informative than required. The relevant factor that the Quiz Show manipulates
is thus not the requirement to make an assertion whose informational strength
corresponds to the current conversational purpose, but rather, it is this purpose
itself that has changed: In the Quiz Show, the purpose is precisely to not be fully

informative.

Note incidentally that the Quiz Show may also shed light on another question:
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It has sometimes been suspected that having both the maxims of QUANTITY-2
and RELEVANCE may introduce redundancy into Grice’s system, and that they are
empirically hard to distinguish, the ideabeing that too much information instan-
tiates irrelevant information by definition (cf. Horn (1984); Sperber and Wilson
(1986); Matsumoto (1995)). However, it seems like Fox’s Quiz Show is a good ex-
ample of a context in which the two maxims can clearly be told apart: While the
stronger alternatives are clearly relevant, they still constitute too much informa-
tion for the current conversational purpose (which even requires that they not

be asserted).

Having argued that the relevant factor the Quiz Show manipulates is not the con-
textual validity of Grice’s maxim of QUANTITY as spelled out in (7), we can now
check whether this has any favorable consequences for the pragmatic theory,
which under Fox’s premises had a problem accounting for the presence of scalar

implicatures and the absence of ignorance implicatures simultaneously.

Recall that in the pragmatic system, both kinds of implicatures are derived from
weak inferences of the form -Kx. The mechanism by which these weak infer-
ences are derived is one of exclusion: As stated in the introductory chapter (see
section 1.2.1), the cooperative principle requires the speaker to assert a sentence
(i) which is relevant, (ii) of which is sure, and (iii) which is stronger than any sen-
tence in ALTfor which (i)-(ii) hold. As the preceding discussion showed, in the
Quiz Show context it is important to specify the last point, which represents the

maxim of QUANTITY. More specifically, then, we should say the cooperative prin-
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ciple states that the speaker is required to assert a sentence for which (i) and (ii)

hold and which (iii’) is as strong as the current conversational purpose requires.

With this specification, we adjusted the underlying pragmatic principle on which
the pragmatic theory operates to the conclusion of the previous discussion. Based
on this adjustment, the idea might be to argue that the elements in the set ALT(A
or B) differ with respect to this last criterion (iii"). Specifically, one would have to
argue that criterion (ii) could be the only reason why A and B was not asserted,
thus yielding a weak inference of the form -K(A A B). Furthermore, one would
have to show that for the disjuncts themselves, the only possible reason why
these were not asserted is because they don't satisfy criterion (iii’), i.e., because
they are too strong for the purposes of the current exchange. By blaming the non-
assertion of A, B on criterion (iii’) (specifically, on QUANTITY-2), rather than on
criterion (ii) (specifically, QUALITY-2), the inferences —K(A), —K(B) could thus be
avoided, depriving us of the necessary basis to derive the unattested ignorance

inferences -K(A) A -K-(A) (and similarly for B).

But unfortunately, such a manoeuvre is bound to fail. This is because the follow-

ing is a valid argument:

(8) Pl Aistoo strong for the current purpose of conversation
P2 [(AandB)]Jc[A] A ~([A]c[AandB])

(A and B) is too strong for the current purpose of conversation

This means that if it assumed that the disjuncts themselves were not asserted be-
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cause this would constitute too much information, by necessity the same is true
of the conjunctive alternative. But as stated above, to get to the weak inference
-K(A A B) as a basis for the attested scalar implicature K-(A A B), it is necessary
to have criterion (ii) as the only possible reason why the conjunction wasn't as-
serted. Now we see that this premise is not satisfied: As soon as we blame the
non-assertion of the disjuncts on (iii’), we allow the same criterion to explain the
non-assertion of the conjunction, too. Again, this may obviate the derivation of
the weak inference -K(A A B) which this time is an undesired outcome, since it

deprives us of the basis for the attested scalar implicature K—(A A B).2

2A last attempt might be to argue that we have overlooked a relevant alternative, namely, the
symmetric alternative A or B and not both. This will not work for two reasons. On the theoretical
side, we saw above that the pragmatic system relies on the restriction of alternatives to the for-
mally defined set ALT, which excludes symmetric alternatives like A or B and not both (=(Av B).
On the empirical side, even if (A v B) were an active alternative in the pragmatic theory, telling
the hearers that the money is in box A or in box B but not in both cannot be too much informa-
tion, given Fox’s observation that the scalar implicature is attested in Quiz Shows. This rules out
criterion (iii") for the non-assertion of (AvB). The only criterion left would be (ii) (=QUALITY-2},
so the inference would be —K(A v B). This could be strengthened into a scalar implicature of the
form K—(AvB). Together with the assertion A or B, this would have the devastating consequence
of leading to the inference that the speaker is sure that the money is on both boxes. Formally:

9 K(AvB) AK-{Av B)
=K(AVB) AK-[(AVB) A~(AAB)]
=K(AvB) AK[-(AVB) v (AAB)]
=K(Av B) AK(AAB)
=K(AAB)
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5.1.1 Intermediate Summary

Let us sum up the results so far. We saw that implicature suspension in Quiz
Shows follows an interesting pattern: While ignorance implicatures are fully sus-
pended, scalar implicatures may still arise. Fox argues that a simplified version
of QUANTITY-1 is de-activated in Quiz Shows. Under the grammatical system,
this assumption is needed to explain the suspension pattern: If QUANTITY-1 is
de-activated, no ignorance implicatures will be derived, while scalar implica-
tures may still be derived by a covert extioperator. The pragmatic theory, on
the other hand, has problems explaining the suspension pattern in Quiz Shows
regardless of whether or not QUANTITY is assumed to be active or not. As the
previous discussion revealed, however, the relevant factor distinguishing Quiz
Shows from standard contexts is probably not the requirement to be as infor-
mative as is required for purposes of the current exchange. This is because non-
assertion of any stronger alternative should be explained precisely in terms of
the speaker’s faithfulness to the maxim of QUANTITY, and specifically, the combi-

nation of QUANTITY-1 and QUANTITY-2.

In what follows, I will show how the Matrix K system can account for the suspen-

sion patterns in Quiz Shows.
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5.2 Implicature Suspension in the Matrix K Theory

Before presenting my own own account of the facts, below I repeat the main in-

gredients of the theory:

(10) THE MATRIX K THEOREM

Assertion of ¢ is parsed as K¢ at LF

(11) EXHAUSTIFICATION

The operator ExH can be inserted at any node vy ;)

(12)  EPISTEMIC TRANSPARENCY
An LF of the form [ ... Ksd] is licensed iff it entails S’s state of mind about
every P € ALT(¢)

States of mind are: (i) K (ii) K

I suggest that the relevant factor that distinguishes Quiz Shows from normal con-
texts is the fact that the host does not have to be completely open about his epis-
temic state. In other words, it is the principle of Epistemic Transparency which

is suspended during Quiz Shows.3

3For the relation between Grice’s QUANTITY and Epistemic Transparency, see section (80).
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If Epistemic Transparency is suspended, the following LF will now be licensed:

(13) K[AorB]

[1=KAvVB)

This LF would normally be ruled out by Epistemic Transparency because it doesn’t
tell us what the speaker believes about the other members of ALT(A or B) ~ it is
not epistemically transparent in this sense. It is however the main characteristic
of the quiz show context that the speaker doesn't have to be transparent. The
hearer can thus decide to parse the assertion of A or Bas in 22. Under this parse,
the host literally only says that he is sure the money is in box A or in box B. He

does notsay that he isn’t sure that it is in A or that he isn’t sure that it is in B.

In the current system, Fox’s observation that scalar implicatures may still arise
in quiz show contexts can easily be accounted for. With Epistemic Transparency
being suspended, hearers have the choice to parse either (13), or the following

LE which contains the equivalent of the scalar implicature observed by Fox:

(14)  LF2=Kexh[A or B]

[LF2] =K(A v B) AK=(AAB)

Thus, the system correctly predicts the availability of the attested LFs and is in
this respect superior to the pragmatic theory. What seems to be missing, how-

ever, is an explanation for why the other possible LFs are not licensed in the Quiz
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Show - after all, just because Epistemic Transparency isn’t active doesn’t mean
LFs which happen to satisfy the principle are ruled out. The explanation for this

is simple. Let’s start with the following LF and its denotation:

(15)  LF3=ExHK[A or B]
‘ILFS]]ZK(AVB) A —|K(A/\B) A KA A =K-A A -KB A -K-B

Recall first the definition of a Quiz Show, repeated below in (16):

(16)  Let x be a sentence containing a scalar item. A Quiz Show is a context in

which

1. Foralla/e ALT(x): Kso! v K-/

2. The hearer knows that 1. holds

In the current scenario the speaker has asserted A or B. Given the definition in
(16), in the Quiz Show it will be the case that Ksa/ v Ks—o/ forall o’ € ALT(A07B)
={A, B, (A and B)}. Compare this to the the denotation of LF3 in 22. All conjuncts
of the form ~K¢ contradict this. Since the definition of a Quiz Show furthermore
includes the fact that the hearer is aware that K;x’ v Ks-«/ for all «’ € ALT (),
she will rule out LF3 in any Quiz Show context. The same is true of the last pos-

sible LF:

17 LF4 = ExHK exh[A or B]
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[LF4]=K(AVvB) A K-(AAB) A =KA A -K-A A -KB A -K-B
Again, all of the K¢ conjuncts contradict the contextual information that the

game show host is informed about all alternatives, and the hearer, knowing that

this is so, will rule out LF4 as well.
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