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ABSTRACT
Although many take the seemingly simple ability to balance in order to maintain

posture for granted, approximately 8 million American adults have chronic balance
impairment issues derived from vestibular dysfunction. For patients suffering from
severe vestibular dysfunction, maintaining balance in daily activities, such as walking on
an uneven surface at night, turning one's head, or attempting to stand on a moving
surface, can prove extremely challenging. Unfortunately, many vestibular-loss sufferers
are left with limited treatment options and can become permanently debilitated. In order
to aid the vestibular-impaired population in partially restoring postural stability, it is
important to develop rehabilitative solutions.

For subjects suffering from severe bilateral vestibular loss, but with intact eighth
nerve function, the invasive vestibular prosthesis is a potential rehabilitative solution.
This must be developed and fully characterized in non-human primates in parallel with
human implementation. In this research, we characterized the postural response of a
severely vestibular-lesioned non-human primate instrumented with a prototype invasive
vestibular prosthesis. We showed that the severely vestibular-impaired animal aided by
the prosthesis was able to utilize the partially restored vestibular cues to increase its
stability compared to the severely-impaired state.

We also explored the impact on balance of (1) supplying an additional cue (light-
touch) and (2) compensative strategies that the subject develops when suffering from
mild or severe vestibular-impairment. We determined that the severely-impaired animal
decreased its trunk sway when provided the light-touch cue, however a mildly-impaired
animal did not. We also determined that an animal with mild vestibular impairment
spontaneously compensated for its vestibular loss to stabilize itself both for stationary
support surface conditions and for support surface perturbations. This thesis is the first
time that animal posture measures for different levels of vestibular impairment have been
used in conjunction with a feedback controller model to investigate the postural control
mechanisms used.

The results reported within this thesis begin to establish the baseline database of
primate postural responses to a wide variety of test situations for different levels of
vestibular impairment that will be needed for further investigation and evaluation of
rehabilitative solutions, such as prototype vestibular implant systems.

Thesis Supervisor: Richard F. Lewis
Title: Associate Professor of Otology and Laryngology (Neurology)
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I. Introduction

1.1 Motivation for Research

Everyday life depends on the posture needed to maintain balance. Without this

we would risk falls leading to injury and possibly even death. Approximately 8 million

American adults have chronic balance impairment issues derived from vestibular

dysfunction (NIDCD 2008). Vestibular loss can arise due to congenital anomalies,

genetic diseases, exposure to ototoxic drugs, age-related hair cell degeneration, and other

idiopathic causes. People suffering from severe vestibular dysfunction experience

equilibrium disorders that can cause unsteady balance in daily activities such as walking

in dim lighting or on uneven surfaces, bending to pick something up, or the simple task of

turning one's head. Although some patients may develop compensatory strategies over

time, vestibular-loss sufferers that are unable to do so are left with limited treatment

options and can become permanently debilitated. Possible rehabilitation solutions (in

order of most to least invasive) include: 1) an invasive vestibular prosthesis (e.g., Gong

and Merfeld 2002) that is aimed at restoring vestibular function, 2) non-invasive balance

aids or devices (e.g., Back-y-Rita 2003; Peterka et al. 2006) that supply information to

the subject about their body orientation (e.g., via tactile sensation) in order to serve as

partial substitutes for the missing vestibular information, and 3) a set of posture strategies

that the subject develops (either on their own or with expert training) in order to

compensate for their vestibular dysfunction (e.g., increased muscle stiffening (as in

Carpenter et al. 2001; Horak et al. 1994)).
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For subjects suffering from severe bilateral vestibular loss, but who still have

intact eighth nerve function, the invasive vestibular prosthesis may supersede the second

and third rehabilitation strategies listed above. This most invasive rehabilitative solution

must be developed and fully characterized in non-human primates prior to, or in parallel

with, human implementation. In Chapter VI, we characterized the postural response of a

severely vestibular-lesioned non-human primate (the rhesus monkey) that was

instrumented with a prototype invasive vestibular prosthesis. An invasive vestibular

prosthesis that encoded angular head velocity (via electric stimuli delivered to the

semicircular canal afferents) was implemented, and we show that this information was

integrated by the central nervous system (CNS) to provide the severely-impaired animal a

more accurate estimate of head orientation. Because both head orientation cues and neck

proprioceptive cues are needed in order for the animal to estimate its trunk position (e.g.,

Mergner 1983; Stapley 2006), the partially restored head orientation information (derived

from the integration of the partially restored head velocity cues via the vestibular

prosthesis) enabled the severely-impaired animal to reduce its trunk sway.

The second rehabilitation solution (sensory substitution) was not addressed

explicitly, but we did explore the impact of providing an additional light-touch cue (via

an earth-mounted juice reward dispenser) to animals with either mild or severe vestibular

loss (Chapter V). These analyses showed that the severely-impaired animal decreased its

trunk sway when provided the light-touch cue, however the mildly-impaired animal did

not. We hypothesize that the mildly-impaired animal spontaneously and successfully

compensated for the mild impairment (see below) in its animal farm environment and did

not make use of the additional cue during testing.
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In the least invasive rehabilitation scenario, the vestibular-loss patient develops a

new posture control strategy (either on their own or with training) that compensates for

the vestibular dysfunction and restores stability. Here we show that an animal with mild

vestibular impairment can spontaneously compensate for its vestibular loss and stabilize

itself both for stationary support surface conditions (Chapter III) and for support surface

perturbations (Chapter IV). In this thesis, measures related to the posture of rhesus

monkeys in three sensory states (i.e., normal, mild vestibular impairment, and severe

vestibular impairment) were used in conjunction with a feedback control model that

allowed us to investigate the postural control mechanisms used (i.e., long-latency sensory

mediated mechanisms and/or intrinsic/short-latency mechanisms) by these animals.

Taken together, the analysis of the measured data and the modeling results are related to

the third rehabilitative solution outlined above.

In clinical practice, a broad range in severity of vestibular dysfunction exists

across vestibular-loss sufferers. While previous studies have focused predominantly on

quantifying the balance of subjects with either normal vestibular function or severe

vestibular dysfunction, differences in the posture of normal, mildly-impaired, and

severely-impaired subjects have not been characterized. Understanding how different

levels of vestibular function affect the postural control mechanisms (e.g., the ability or

inability of the subject to adjust postural strategy in order to compensate) should help to

determine the most beneficial rehabilitative solution for the patient. The results reported

here also begin to establish the baseline database of primate postural responses to a wide

variety of test situations and in different sensory states that will be needed for the

evaluation of prototype vestibular implant systems.
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1.2 Background and Significance

1.2.1 Previous posture studies

Input stimuli to the three main sensory systems for posture (i.e., the visual system,

somatosensory system, and vestibular system') are encoded in neural responses that are

integrated by the postural control system to yield an output postural response. For human

and non-human subjects suffering from equilibrium disorders of peripheral vestibular

origin, maintaining balance may prove to be challenging for situations involving: limited

visual or somatosensory cues (Horak et al. 1990), decreased base-of-support2 (e.g., Horak

and Macpherson 1996), large amplitude head-turns (Stapley et al. 2006) and rotations of

the support surface (e.g., Macpherson et al. 2007; Peterka 2002). Thus, previous studies

have utilized quiet-stance, head-turns, and tilts of the support surface to determine the

effects of vestibular dysfunction on posture.

1.2.1.1 Quiet-Stance

Quiet-stance is the simplest experimental condition used to evaluate the effects of

the visual, somatosensory, and vestibular systems on posture and has been used both in

human and animal studies. Quiet-stance refers to the condition in which both the visual

surround and support surface are stationary and the subject attempts to stand as still as

possible. Horak et al. (1990) have shown that humans with bilateral vestibular loss are

able to maintain sway within normal range as long as they receive cues from visual or

somatosensory systems. Furthermore, it has been shown that humans with bilateral

vestibular loss have difficulty balancing when visual and somatosensory cues are

unavailable or unreliable (e.g., Black and Nashner 1984). Thus, daily activities, such as

17



standing or walking in dimly-lit environments on uneven or compliant surfaces, would

prove challenging for those suffering from vestibular dysfunction.

It has been previously shown that humans with severe bilateral vestibular

dysfunction in an environment with limited visual cues could reduce their center-of-

pressure (COP)2 sway when they were allowed a light (< 1 N) finger-tip touch to a

surface. Without this additional contact cue, none of the vestibular-loss subjects could

stand in the dark without falling, but all the normal subjects could. However, when

provided a light-touch cue, bilateral vestibular-loss subjects were significantly more

stable in the dark than normal subjects in the dark without the touch cue. These findings

showed that an additional cue (i.e., light-touch to a stationary surface) was effective in

attenuating body sway in the absence of vestibular and visual information (Lackner et al.

1999).

Although there can be a broad range of vestibular function (from normal function

to severe dysfunction) across subjects, the effects of utilizing a light-touch cue on posture

have been determined exclusively for either normal or severe vestibular-loss humans (as

in Lackner et al. 1999). The benefit of providing an additional sensory cue (e.g., light-

touch) to an animal with an intermediate level of vestibular dysfunction (i.e., mild

bilateral vestibular hypofunction or "mBVH") compared to an animal with severe

vestibular dysfunction (i.e., severe bilateral vestibular hypofunction or "sBVH") has not

previously been determined. Therefore, it was important to determine if a subject with a

mild level of vestibular dysfunction could benefit (e.g., stabilize its trunk) by an

additional sensory cue (e.g., light-touch). More specifically, could an animal with mild

vestibular loss reduce its trunk sway when provided a light-touch cue in darkness? Also,

18



we aimed to determine if a severe vestibular-loss animal would make use of the light-

touch cue and demonstrate a greater benefit (i.e., greater reduction in trunk sway)

compared to the animal in the mild vestibular-loss state.

During quiet-stance testing, normal and labyrinthectomized cats had similar COP

sway (Thomson et al. 1991). This study is mentioned here because it the most relevant to

our studies involving characterization of the different levels of vestibular function in the

rhesus monkey. However, the severely vestibular-lesioned cats were not tested in

conditions of weak visual and somatosensory cues or decreased base-of-support, which

may have revealed postural instability. Furthermore, only COP (derived from vertical

ground reaction force data) was measured and not body movements directly (e.g.,

displacement of the center-of-mass) which could have revealed increases in body sway.

In order to move beyond the limitations of previous quiet-stance cat studies, we did the

following: 1) varied somatosensory cues by providing relatively strong or weak surface

cues (i.e., thin, hard rubber surface or a thick, compliant foam surface, respectively), 2)

varied mediolateral stance width to provide either a large (18 cm) or small (9 cm) base-

of-support, 3) measured the animal's head and trunk movements (via position sensors), as

well as ground reaction forces (via platform tri-directional force sensors). Furthermore,

unlike human and animal studies that focused on either normal subjects or subjects with

severe vestibular loss, we addressed the effects of three levels of vestibular dysfunction

(i.e., normal, mild dysfunction, and severe dysfunction) on the animal's postural response

to the quiet-stance experimental test conditions. We hypothesized that an animal with

mild vestibular hypofunction (mBVH) may be able to compensate for its loss by

increasing muscle stiffness (via long-latency and/or intrinsic/short-latency mechanisms),
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thereby allowing the animal to sway within normal range, but that an animal with severe

vestibular hypofunction (sBVH) would have increased sway and possibly be unable to

compensate.

1.2.1.2 Head-Turn

It is well known that vestibular dysfunction can have a profound affect on

standing balance in some conditions but not others. For both human and non-human

subjects with severe vestibular loss, maintaining balance while turning the head is

difficult. When asked to turn their head while walking, human bilateral vestibular-loss

sufferers exhibit ataxic gait. In order to compensate for their loss, bilateral vestibular-

loss humans may adopt a strategy where the head is "fixed" and not moving relative to

the trunk (Herdman 1994). Furthermore, cat studies show that labyrinthectomized

animals thrust their bodies to the ipsilateral side of the head-turn (opposite the response

of normal animals), which led to imbalance and falls (Stapley et al. 2006). Based on

previous human perception studies (e.g., Mergner 1983; 1991), it was hypothesized that

since the vestibular-lesioned animal no longer received head-in-space (vestibular) cues,

but still received head-on-trunk (neck proprioceptive) cues, the animal calculated an

erroneous estimate of trunk-in-space (or trunk position) which led to imbalance and falls.

While previous studies focused on either normal or severe vestibular-loss test subjects,

they did not address postural responses to head-turns for subjects with various levels of

vestibular dysfunction.

We investigated the effects of the degree of vestibular function on the postural

response to head-turns. Head-in-space information was varied between sensory states:

normal, mild bilateral vestibular loss (mBVH), severe bilateral vestibular loss (sBVH),
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and severe bilateral vestibular loss aided by a vestibular prosthesis (sBVH + STIM-ON).

The effect of partially restored vestibular information (via a vestibular prosthesis) on an

animal's posture while undergoing head-turns has not previously been studied and further

understanding could have implications for humans with severe vestibular loss.

The vestibular prosthesis used was a semicircular canal prosthesis that mimicked

canal function in that it encoded angular head velocity through modulated electrical

pulses to the eighth cranial nerve (introduced in Section 2.3.1. and discussed in Chapter

VI). We hypothesized that the relatively high angular velocity head-turns in the plane of

the one-dimensional vestibular prosthesis (as opposed to the quiet-stance and platform

roll-tilt experimental stimuli where the head was relatively stationary or moving at low

velocities) would show the effects of the prosthetic stimulation on trunk sway. Although

the prosthesis used was a semicircular canal prosthesis that transduced angular head

velocity, and not a prosthesis that restored sensation to the otoliths (the primary vestibular

organs that sense linear acceleration and gravity necessary for standing balance), there

has been considerable evidence that shows that canal cues can contribute to the estimate

of head orientation relative to gravity (e.g., Angelaki et al. 1999; Merfeld et al. 1999).

We hypothesized that partially restored head orientation (vestibular) cues combined with

the information of the head relative to the trunk (neck proprioceptive) cues would enable

the animal in the sBVH +STIM-ON state to better estimate trunk position than in the

sBVH sensory state.

We hypothesized that an animal that was mildly impaired would be able to

compensate for its moderate vestibular loss and control trunk sway within normal range

during head-turns. However, based on previous studies (e.g. Stapley et al. 2006) we
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presumed that an animal that was severely impaired would be relatively unstable and

suffer increased trunk sway when turning its head to targets. Lastly, we hypothesized

that an animal with severe bilateral vestibular loss aided by a vestibular prosthesis (sBVH

+ STIM-ON) would have partial restoration of head rotational cues, resulting in a better

estimate of head orientation, and thus a more accurate estimate of trunk position

compared to the sBVH animal. The partially restored head orientation (vestibular)

information in combination with the existing head relative to the trunk orientation (neck

proprioceptive) information would lead to a more accurate estimate of trunk position.

This was hypothesized to cause decreased trunk sway for the animal sBVH + STIM-ON

state compared to the sBVH sensory state. The degree to which the prosthesis affects

posture in a severely impaired animal is an initial, but crucial, step in documenting the

potential benefits of the prosthesis to severe vestibular-loss humans.

1.2.1.3 Platform tilts

A posture task more difficult for severe vestibular-loss sufferers than stationary

platform conditions (e.g., quiet-stance and head-turns) was dynamic tilts of the support

surface. To determine the posture response to support surface tilts as a function of

amplitude (i.e., stimulus-response curve) and also the transfer function of the postural

control system, a pseudorandom input platform tilt has been applied in several human

studies (e.g., Goodworth et al. 2009, 2010; Peterka 2002). Peterka (2002) showed that

for normal human subject's root-mean-square (RMS) center-of- mass (COM) 2 body sway

saturates (or increases non-linearly) as platform tilt amplitude increases. The saturation

of the normal subject's response as stimulus amplitude increases is attributed to the

normal test subject's ability to increase orientation to earth-vertical as opposed to the
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platform surface. This orientation to earth-vertical prevents normal humans from falling

at the larger amplitude tilts in both the sagittal and frontal planes (Goodworth and Peterka

2010; Peterka 2002). As tilt amplitude increases, the normal human orients more with

earth-vertical and less with the tilting platform. The sensory reweighting hypothesis

predicts that normal humans weight their graviceptive (or earth-vertical) cues more

heavily than their proprioceptive (or support surface) cues as stimulus amplitude

increases. However, human subjects with severe bilateral vestibular loss do not exhibit

the same reweighting of graviceptive cues with increases in stimulus amplitude (likely

due to their severe vestibular impairment). Instead, they rely more heavily on their

proprioceptive cues, and orient increasingly more with the support surface (Peterka

2002). Therefore, their stimulus-response curves remain close to linear and do not

saturate. At larger amplitudes, this response results in instability and falls.

Characteristics that are seen in the RMS stimulus-response curves can also be seen in the

gain-phase relationships of the system transfer functions. For larger stimulus amplitudes,

normal humans orient their COM with earth-vertical (i.e., gain = body tilt from

upright/stimulus tilt approaches zero) as opposed to the platform. However, bilateral

vestibular-loss subjects oriented their COM with the platform (i.e., gain = body tilt from

upright/stimulus tilt is greater than or equal to one).

Postural responses to pseudorandom tilt stimuli have not been published for

quadrupeds. Instead, ramp and hold rotations (Macpherson et al. 2007) and discrete

sinusoidal inputs (e.g., Beloozerova et al. 2003; Brookhart et al. 1965) have been used.

Macpherson et al. (2007) examined bilateral vestibular-loss cats during ramp and hold

pitch and roll rotations of the support surface (~ 6 deg). The normal postural response
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was to maintain limb alignment with earth-vertical. However, the control strategy of the

vestibular-loss cats was opposite that of normal cats in that the animal rotated with the

platform surface as opposed to aligning with earth-vertical. This strategy led to

instability and falls. Similar to Peterka's (2002) study in humans, the large body sway

for vestibular-loss cats in response to platform tilt suggests that muscle activation patterns

were opposite those of normal subjects (i.e., abnormal response magnifies body sway

leading to destabilization) and consequently the lesioned animal became unstable. The

concept of sensory reweighting (described above) could be investigated by use of a

feedback controller model (e.g., Peterka 2002). More specifically, model parameter

graviceptive and proprioceptive weights could be investigated as a function of platform

tilt amplitude to either prove or dispute the hypothesis.

We hypothesized that a normal, and also mildly impaired (mBVH), animal's

trunk response to platform tilt would exhibit sway saturation, and furthermore, that

sensory reweighting would be present. Sensory reweighting means that the animal would

place a larger reliance (weight) on graviceptive cues that orient it with earth-vertical and

place decreased reliance on proprioceptive cues that orient it with the platform at the

larger platform tilt amplitudes. By modifying a previously developed human postural

feedback control model (described in Chapter IV),, we were able to test the sensory re-

weighting hypothesis for the animal's hindtrunk.

1.2.2 Balance Aids and Vestibular Prostheses

Vestibular hypofunction can occur as a result of congenital anomalies, genetic

diseases, exposure to ototoxic drugs, age-related hair cell degeneration, and other causes.

Patients with bilateral vestibular-hypofunction suffer from visual, perceptual, and postural
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deficits (e.g., blurred vision while walking and during head movements, chronic

disequilibrium, and postural imbalance) (e.g., Lewis et al. 2007). Because the inputs to

the vestibuloocular and vestibulospinal reflexes are limited or unavailable in vestibular-

loss sufferers, they are unable to stabilize their eye and body movements. Although

partial compensation may develop over time, those who are unable to do so are left with

very limited treatment options. Thus, there has been a pressing need for development of

rehabilitative solutions, and both non-invasive and invasive solutions have been

investigated.

Non-invasive approaches (such as "balance aids") do not emulate vestibular

function but instead are used as a means to augment postural reflexes by serving as a

sensory addition or sensory substitute. Some examples of non-invasive solutions are: 1)

tactile stimulation applied to the subject's torso (e.g., Peterka et al. 2006), 2) sound

presented by headphones (e.g., Dozza et al. 2005), and 3) electrical stimulation of the

tongue (e.g., Bach-y-Rita 2003; Tyler et al. 2003). While these solutions may aid in

augmenting posture reflexes, they cannot fully emulate vestibular function nor do they

restore visual reflexes (e.g., vestibuloocular reflex (VOR)).

Invasive approaches ("vestibular prostheses" or "vestibular implants") excite

neurons of the vestibular system and are aimed at restoring vestibular function. The

vestibular system responds to head movements that are both angular (via the semicircular

canals) and linear (via the otolith organs). Although a prosthesis that restores full

vestibular function (i.e., to both the otoliths and the semicircular canals) would be ideal,

this technology is not yet feasible (e.g., directing electrical stimulation to the otoliths is

hindered by the opposing polarities of the otolith hair cells). Instead past and current
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investigations have involved the use of a semicircular canal prosthesis aimed at restoring

rotational cues. Gong and Merfeld (2002) created a one-dimensional prosthesis that was

able to restore the angular VOR in a guinea pig with a plugged semicircular canal. To

explore the effects the prosthesis on eye movements in non-human primates, squirrel

monkeys with severe vestibular dysfunction have been used (e.g., Lewis et al. 2010;

Merfeld et al. 2007). Furthermore, development of a three-dimensional prosthesis used

to restore rotational cues to three semicircular canals has been investigated in chinchillas

(e.g., Della Santina et al. 2006; Fridman et al. 2010) and rhesus monkeys (e.g., Chiang

et al. 2011). While previous studies investigated the effects of invasive semicircular

canal prostheses on eye movements, their impact on posture had not been examined until

recently.

The effects of postural responses to electrical stimulation (via a unilateral

semicircular canal prosthesis in the right ear) were studied in human subjects suffering

from Meniere's disease (Phillips et al. 2013). The vestibular-loss humans were studied

for quiet-stance (with tandem foot placement) in the eyes-open or eyes-closed conditions.

While undergoing prosthetic stimulation to a particular canal, the force-plate derived

COP response was measured. The results showed that canal stimulation elicited postural

responses with directional selectivity. For example, for the right posterior semicircular

canal, head acceleration towards the right ear in the LARP plane (pitch back and roll

right), is naturally excitatory. However, electric stimulation localized to the right

posterior canal was interpreted (by the subject) as a sudden, unexpected rotation of the

body within the this plane which caused a postural reflex to pitch the body forward and

roll left to stabilize against the sensed perturbation. Another finding was that sway
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response modulated with modulation of the stimulation current. However, a limitation of

the prosthesis was that eye movements were not consistent with postural responses.

More specifically, in all subjects the direction of the elicited eye movements changed as a

function of stimulation current level (possibly due to increases in current spread at higher

current levels), but the direction of the postural response was not observed to change.

However, this study served as an initial step towards the feasibility and implications of a

vestibular prosthesis in regards to posture.

The prosthesis used in the present study stimulated the semicircular canal (angular

head velocity sensor) afferents of the right posterior canal, and was not a prosthesis that

restored sensation to the otoliths (linear acceleration and gravity sensors). However,

there has been considerable evidence that canal cues combine with otolith cues to

differentiate between head translations and head tilts (e.g., Angelaki et al. 1999). More

specifically, semicircular canals combine with otolith cues to estimate head orientation

relative to gravity. As opposed to studying the COP of eyes-open and eye-closed quiet-

stance conditions (as in Phillips 2013), we aimed to study the effects of head-turns to

illuminated targets (in a severely impaired animal instrumented with the prosthesis) on

trunk sway. We hypothesized that partially restored head orientation (vestibular) cues

combined with the information of the head relative to the trunk to give the animal in the

sBVH + STIM-ON state a better estimate of trunk position thereby causing a reduction in

trunk sway compared to the animal in the severely impaired (sBVH) sensory state.

1.3 Document Organization

In addition to the introduction, this thesis includes five main chapters:

Chapter II
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Chapter II describes the general methods used in this body of thesis research.

Chapter III

Chapter III characterizes posture by utilizing a stationary platform (e.g., to

implement the quiet-stance condition). Measures of RMS trunk roll and ground reaction

forces are shown for the normal and mildly-impaired (mBVH) rhesus monkey. Together,

these results show that a mild vestibular-impaired animal (R2) decreases sway and

increases forces exerted on the platform compared to a normal animal. Because

intrinsic/short-latency stiffness orients the animal upright on a stationary surface, we

hypothesize that by increasing (intrinsic/short-latency) muscle stiffness the animal with a

mild vestibular impairment is able to compensate for its vestibular deficit. Results were

interpreted with the aid of a feedback controller model. Model-predicted trunk sway

measures (Prieto et al. 1996) were closely matched (within 10% error) to trunk sway

measures derived from the measured data for the normal and mBVH states of R2. An

increase in model-estimated intrinsic/short-latency stiffness for the mBVH state

compared to the normal state was consistent with the stiffening hypothesis. Unlike the

normal and mildly-impaired animal (R2), it was hypothesized that the severely-impaired

(sBVH) animal (RI) would not be able to fully compensate (i.e., exhibit increased sway)

because increases in intrinsic/short-latency stiffness would be insufficient to offset the

destabilizing effects of diminished sensory feedback from the vestibular system. We

further hypothesized that the magnitude of the trunk sway was substantial enough that

(long-latency) neural feedback (as opposed to intrinsic/short-latency mechanisms (Loram

et al. 2007)) control became more dominant in the response (e.g., Peterka 2002).

Implementation of the feedback controller model was used to test this hypothesis and to
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explain the sBVH results. Model-predicted sway measures, and those derived from

experimental data, were in close agreement.

Chapter IV

Chapter IV characterizes posture utilizing a moving platform with a dynamic,

pseudorandom ternary sequence (PRTS) roll-tilt (input) stimulus. Normal and mBVH

results were described in terms of stimulus-response curves (i.e., trunk RMS roll as a

function of stimulus amplitude) and transfer functions (i.e., gain, phase, and coherence).

In the normal animal, saturation hindtrunk roll for an increase in stimulus amplitude (or

sway saturation) was measured. The animal in the mBVH state still exhibited some sway

saturation, but to a lesser extent than seen in the normal animal. We hypothesized that

the normal animal increased its graviceptive sensory weight (orientation to earth-vertical)

for an increase in stimulus amplitude. It had not been previously addressed, or even

explored, whether a feedback control model (based on humans) could be implemented to

determine meaningful interpretations of monkey data. A feedback controller model was

used to explore physiologic model parameter estimates and relate them to the normal and

mBVH measured results. For normal and mBVH sensory states, the feedback controller

model was also used to test the sensory reweighting hypothesis: increased weighting of

graviceptive cues at the larger stimulus amplitudes. This was the first feedback model of

its kind that characterized normal and vestibular-impaired monkey data.

Chapter V

The purpose of Chapter V was to study the effect of the degree of vestibular

impairment on the animal's ability to make use of a light-touch cue. One juice reward

configuration provided the animal a light-touch stationary reference, while the other did
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not. One rhesus monkey (R2) was studied in the mildly impaired (mBVH) sensory state

and other animal (Ri) in a severely impaired (sBVH) sensory state. We determined that

the animal in the sBVH state was able to utilize light-touch cues to greater attenuate its

trunk sway than the animal in the mBVH state.

Chapter VI

Chapter VI characterizes the effects of the prosthesis on posture during head-turns

toward illuminated targets. Rhesus monkey trunk position (trunk-in-space) in response to

head-turns was measured for an animal (RI) receiving two levels of head-in-space

(vestibular) information (i.e., sBVH and sBVH + STIM-ON). The prosthetic stimulation

during head-turns partially restored head velocity information that the CNS integrated to

provide the severely-impaired animal a more accurate estimate of head orientation. The

animal in the sBVH + STIM-ON sensory state had decreased trunk sway compared to the

animal in the sBVH state. The results imply that partial restoration of head-in-space cues

(via the prototype vestibular prosthesis), combined with normal neck proprioceptive (or

head-on-trunk) cues, can provide a severely-impaired animal a more accurate estimate of

trunk position (or trunk-in-space) and, as a result, a reduction in trunk sway.

1.4 Introductory Material

Postural control is maintained by sensory integration of three main sensory

systems: the somatosensory system, the visual system, and the vestibular system.

1.4.1 Somatosensory System

The somatosensory system includes proprioceptors and tactile sensors (i.e.,

somatoreceptors).
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In order to control our motor performance, perception of our body image is

needed. The term "proprioceptors" has been used to describe a set of somatosensory

afferents that convey information about the position and movements of body parts

relative to one another. Among proprioceptors, muscle spindles have been regarded as

the most important (e.g., Matthews 1988). Muscle spindle receptors are interspersed

throughout muscles. The rate of firing of spindle receptors depends on both the length

and movement (velocity) of the muscle. Spindle afferents fire rapidly during muscle

stretch, however they also fire tonically when muscle length is constant (Matthews 1988).

Muscle spindle receptors, such as those within the leg, provide important information for

postural control (Horak and Macpherson 1996). For example, if the muscle spindles

within the leg are stretched, the firing rate increases which transmits to the CNS the

information that can be used to estimate degree of body tilt and hence trunk position.

Located within the tendons are another type of stretch receptor (i.e., the Golgi tendon

organ). Tendon organs lie in series with the muscle and respond whenever the muscle

contracts. Together, muscle spindles and Golgi tendon organs provide the sensory

segment of basic (spinal) reflexes for stabilizing a joint and aid in maintaining posture

and locomotion.

The outputs of subcutaneous touch and pressure receptors can be used by the

brain to determine body position with respect to an external reference. Pressure receptors

are stimulated in the feet when standing on a support surface or stimulated in the fingertip

when touching an object. Mechanoreceptors respond to sensations of touch and pressure

on the soles of the feet, hands, and body. Furthermore, there are mechanoreceptors

within the skin that are sensitive to stretch. For example, shearing forces on the feet due
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to platform 'tilts cause the mechanoreceptors in the skin of the foot to change their firing

rate, thus giving information about velocity and perturbation of the support surface

(Horak and Macpherson 1996). Furthermore, Edin (2002, 2004) showed the importance

of skin mechanoreceptors for joint movements and postures. Movements at nearby joints

activate afferents originating from skin mechanoreceptors on the back of the human hand

and these afferents provide information of both the static and dynamic aspects of joint

movements (Edin 2002). This study held implications for mechanoreceptors in other

areas of the body. Edin (2004) obtained microneurographic recordings from the afferents

innervating the area of skin deformed by movements at the knee joint. Because the knee

joint is one of the largest joints in the body, and is also subjected to large torques on a

regular basis, control of the knee is imperative for postural stability. Edin (2002, 2004)

showed that because skin receptors are capable on conveying relevant high-fidelity

information, they play a significant role in proprioception.

1.4.2 Visual System

The visual system allows us to perceive our own motion and our position relative

to the world around us. Unlike nonvisual sensory systems, such as the vestibular system,

and to a lesser extent the somatosensory system, visual inputs do not habituate during

constant velocity motion (Previc 2004). However, the visual system has a long latency

compared to the nonvisual orientation systems. For example, the vestibular system can

relay signals for eye movement control in < 7 ms (e.g., Huterer and Cullen 2002) as

opposed to the visual system that can relay to the visual cortex in -100 ms (Previc 2004).

Thus, for low frequency movement visual signals provide reliable sensory information

used to help stabilize oneself. During higher frequency activities (e.g., brisk walking,
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jogging or running), we rely on "interactive" reflexes between the visual and vestibular

systems, to stabilize our visual field in response to head or body movements. The

vestibuloocular reflex (VOR) uses signals from the vestibular organs to control the

position of the fovea and therefore hold images stable during high frequency or rapid

head rotations.

The visual system is task and context dependent. In general, the visual input

dominates both at low frequencies of body sway and when the visual system is in conflict

with the somatosensory and vestibular systems (Horak and Macpherson 1996).

1.4.3 Vestibular System

The vestibular system within the inner ear contributes to equilibrium and spatial

orientation. The vestibular system senses rotations via the semicircular canals and linear

accelerations via the otolith organs. Both the canals and the otoliths can be modeled as

heavily damped linear second-order systems, which respond to angular velocity or tilt

angle and linear acceleration, respectively.

The three semicircular canals are approximately orthogonal to each other, and are

called the horizontal (or lateral), the anterior (or superior) and the posterior (or inferior)

semicircular canals. For yaw rotations (rotation about the vertical axis) there is

movement of fluid within the horizontal semicircular canal. For pitch (rotations in the

sagittal plane, about the interaural axis) or roll (rotations in the frontal plane, about the

nasooccipital axis) the anterior and posterior canals are activated. When the head rotates,

the movement of fluid, or endolymph, through the canal duct deflects a gelatinous

structure called the cupula, which contains hair cells. When the hair cell stereocilia are

deflected towards the kinocillium, gating channels open and depolarize the hair cell (i.e.,
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K+ ions of the endolymph flow into and depolarize the hair cell). This causes vesicular

release that leads to synaptic transmission on the hair cell afferent fibers. This process is

called mechano-electric transduction.

While the semicircular canals respond to rotations, the otolith organs, consisting

of the utricle and the saccule, sense linear acceleration and gravity. Because of their

orientations, the utricle is sensitive to horizontal movements and the saccule is sensitive

to vertical movements. Within the otolith organs, the otoconia crystals in the otoconia

layer rest on a viscous gel layer, and are heavier than their surroundings. During linear

acceleration, stereociliary bundles of the hair cells deflect and mechano-electric

transduction occurs.

*0 Anterior/superior
Anttiueo-c a caal \ Vestibular system

Vestibuio-cochiear
nerveUtricle

Saccule
Posterior/inferio/

Lateral/horizontal canal

Cochlea ion

Figure 1.1 The inner ear (The Balance Center of Maryland 2013).

The vestibular system plays an important role in posture in that activation leads to

several body and limb reflexes that result in stabilization of the head and body.

Vestibular signals are sent to the vestibular nuclei. From there, two vestibulospinal tracts

(i.e., the lateral vestibulospinal tract and medial vestibulospinal tract) descend from the

brainstem and are important in regulation of posture via action of proximal and axial
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muscles (Cheung 2004).

1.4.4 Postural Orientation and Postural Equilibrium

The previous section briefly described the three main systems involved with

posture. In this section, I discuss two important behavioral goals of the postural control

system: orientation and equilibrium.

Postural orientation is the relative positioning of body segments with respect to

one another, and it can be aimed at aligning the trunk, limbs, head, or gaze to a variety of

reference frames. Postural orientation can change (e.g., based on the specific task,

specific behavioral goals, and postural references). Postural references may include the

following: 1) a visual reference, 2) a somatosensory reference (e.g., contact with an

external object), 3) a vestibular reference (e.g., based on gravitoinertial forces and

perceived earth-vertical), and 4) an internal representation of body orientation (e.g., based

on prior experience or memory). Because the trunk determines the positioning of limbs

relative to objects with which one may wish to interact, trunk position is one of the most

important controlled variables of postural orientation (Horak and Macpherson 1996).

During complex motor tasks, head and neck position affect the perception of the trunk in

space. Thus, animals may tend to stabilize their head in space (e.g., to simplify

interpretation of visual and vestibular information).

Postural equilibrium is the state where the net forces acting on the body are

balanced. One of the main goals of postural equilibrium is to control the position and

velocity of the trunk, where most of the body mass resides. Center-of-mass (COM) is the

point at which the entire distributed mass of the body is balanced. Destabilizing

influences, such as gravity, produce external forces on the body. In order to control the
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position of the COM and maintain equilibrium, internal (body) forces attempt to

counteract destabilizing, external forces. The musculoskeletal system has a large number

of degrees of freedom and thus the transformation of muscle contraction to forces and

then to movement of the COM is mechanically complex (Horak and Macpherson 1996).

Although there are not simple relationships between the muscle contractions and forces

generated at the joints, the overall "goal" is to move the COM into the region of stability

by applying the appropriate forces (under the feet) on the support surface. Vertical

ground reaction forces of the support surface (i.e., the forces that are opposing the forces

exerted by the animal on the support) are used to determine center-of-pressure (COP).

COP is the weighted average of all the pressure over the surface area in contact with the

ground (e.g., bottom of the feet), and is the location of the (resultant) vertical ground

reaction force vector (Winter 1995).

In static equilibrium, the body's vertical projection of the COM lies within the

base-of-support. The base-of-support is the area that is bounded by the body's points of

contact with the support surface (e.g., the area between the feet). Static stability is

proportional to the following: 1) base-of-support area, 2) (vertical) distance from COM to

support base, and 3) body weight (Horak and Macpherson 1996). Quadrupeds have a

base-of-support that is large relative to COM height. A larger base-of-support allows for

a larger area within which the COM can move without loss of equilibrium. Thus,

compared to quadrupeds (e.g., cats and rhesus monkeys), bipedal humans are relatively

unstable because their base-of-support is small and COM is high. During dynamic

equilibrium, such as locomotion, the body COM projection rarely lies within the base-of-

support.
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In order to maintain postural orientation and postural equilibrium, a postural

strategy is formulated. Postural strategy is a high-level plan formulated by the nervous

system for one or more postural goals (e.g., trunk orientation, gaze fixation, or energy

expenditure). Postural strategy is described, for example, in terms of kinematics and

muscle synergies. The appropriate strategy will depend on task and context (i.e., one set

of goals may take precedence over another set of goals). And for a given task, there are

multiple successful strategies because the musculoskeletal system has more degrees of

freedom than are necessary to achieve a specific task or goal (Horak and Macpherson

1996). Alongside the postural strategy, a neural strategy applies a hierarchy on the

appropriate controlled (postural) variables to achieve one solution for a particular task.

Readers unfamiliar with the visual, somatosensory, and vestibular systems are referred to the introductory
material in Section 1.4.
2 Readers unfamiliar with posture nomenclature (e.g., base-of-support, center-of-pressure, and center-of-
mass) are referred to the introductory material in Section 1.4.4.
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II. Methods

2.1 Introduction

This chapter provides an overview of the methods used for this thesis research. It

describes the species used, the sensory states (defined in terms of vestibular function) in

which measures were made, the rhesus monkey balance platform, and the experimental

test conditions used.

For this research, non-human primates (i.e., rhesus monkeys) were used. Posture

was studied for various levels of vestibular function: normal, mild bilateral vestibular

hypofunction (mBVH), severe bilateral vestibular hypofunction (sBVH), and severe

bilateral vestibular hypofunction aided by a prototype vestibular prosthesis (sBVH +

STIM-ON). The animal stood on a balance platform that was equipped with force

sensors that were used to measure ground reaction forces, and the animal wore position

sensors to measure displacements of the head, foretrunk, and hindtrunk. The

experimental test conditions implemented have been used previously in human and/or cat

studies (described in Chapter I) to test the balance of those with normal vestibular

function and severe vestibular deficits. The balance platform setup allowed for a variety

of input experimental conditions (i.e., quiet-stance, head-turn, and pseudorandom roll-tilt

stimuli) used to quantify the animals' postural responses. Thus, the experimental

conditions highlighted in this chapter were implemented to characterize the postural

control system. The hypotheses, results, and interpretation of the measured data for the

experimental conditions discussed in this chapter are described in Chapters III, IV, V, and

VI.
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2.2 Explanation of Species Used

A major thrust of this thesis research was to aid in developing rehabilitative

solutions (e.g., an invasive vestibular prosthesis) for those suffering from vestibular loss.

People suffering from severe vestibular dysfunction experience equilibrium disorders that

can cause unsteady balance during daily activities (e.g., turning one's head or walking in

dimly-lit environments). Although some patients may develop compensatory strategies

over time, vestibular-loss sufferers that are unable to do so are left with limited treatment

options and can become permanently debilitated. As previously stated in the Chapter I,

possible rehabilitation solutions include: 1) an invasive vestibular prosthesis aimed at

restoring vestibular function, 2) non-invasive balance aids that supply information to the

subject about their body orientation (e.g., via tactile sensation) in order to serve as partial

substitutes for the missing vestibular information, and 3) a set of posture strategies that

the subject develops (either on their own or with expert training) in order to compensate

for their vestibular dysfunction. For investigation of the second and third rehabilitative

solutions, humans could serve as potential test subjects (as opposed to animal test

subjects). However, the first rehabilitative solution (the invasive vestibular prosthesis)

needed to be developed and fully characterized in a non-human primate prior to, or in

conjunction with, human implementation.

Although the second and third rehabilitative solutions (above) could be

investigated in humans, the advantage to using animal test subjects (e.g., rhesus

monkeys) for the experiments described in this thesis was that animal test subjects had

the potential to serve as their own control (as opposed to human studies where normal

and severe vestibular-loss patients were different individuals). By characterizing the

39



posture of animals in normal, mild, and severe vestibular impaired states, as well as a

severely impaired vestibular state aided by a vestibular prosthesis, allowed us to establish

a database on the effects of different levels of vestibular function on posture. This

knowledge would aid future vestibular-loss human posture studies, including those aimed

at the development of the vestibular prosthesis.

Although human testing would be the most direct path to characterization of the

first rehabilitative solution (the invasive vestibular prosthesis), animal test subjects were

used for the experiments discussed in this thesis. Non-human primates (rhesus monkeys)

were used because they were more similar to humans than e.g., guinea pigs (Gong and

Merfeld 2000; 2002) or chinchillas (e.g., Della Santina et al. 2006) that had been used

previously to characterize the effects of an invasive prosthesis on eye movements. The

use of non-human primate test subjects allowed for a broader and more extensive range

of the research experiments that were needed leading up to human implementation of the

vestibular prosthesis. Utilizing the rhesus monkey allowed us to characterize animal

behaviors (e.g., the main focus of this thesis: postural responses) 1 for systematically

varied levels of vestibular function (e.g., normal, mBVH, sBVH, and sBVH + STIM-

ON). It also allowed us to further develop the prosthesis itself and prosthesis

implantation procedures (e.g., surgical risks during placement or removal, assessment of

infection, implant failure and lifespan (not discussed further here)). By developing this

knowledge base (in non-human primates), this decreases the possible risks and enhances

the potential benefits associated with future implementation of the invasive prosthesis in

humans.
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Another advantage to using the rhesus monkey as a test subject was that there is a

large background database on the physiology of the vestibular system for this species that

could aid in interpretation of the results from these experiments. Because the rhesus

monkey was a frontal eye species with binocular foveate vision, we were able to quantify

level of vestibular function by a well-known reflex: the vestibuloocular reflex (VOR).

These reflexive eye movement responses (i.e., the vestibuloocular reflex (VOR)) are

linked to semicircular canal and otolith function and were quantified in response to

sinusoidal inputs. The monkey's sensory state (e.g., normal, mBVH, sBVH, and sBVH +

STIM-ON) was defined in terms of the VOR gain (ratio of eye velocity to head velocity).

Training and manageability were other reasons that the rhesus monkey was ideal

and favorable for use as compared to other potential non-human animal models. The

experimental conditions described here required animals that could be trained to perform

complex tasks (e.g., standing on a compliant foam surface or balancing on a platform

undergoing the pseudorandom platform tilt stimulus). Currently, there are no published

data on animals, other than humans, undergoing pseudorandom platform tilts, and it is

unlikely that either lower primates or non-primates could be trained to perform these sets

of experiments. Also, the rhesus monkey's manageable size, as opposed to larger non-

human primates such as chimpanzee or ape, made them favorable animals for this

research. Lastly, the principal investigator (Richard F. Lewis) had extensive experience

(>17 years) working with alert, behaving rhesus monkeys and training them to perform

complex tasks.

The obvious, mechanical difference between the rhesus monkey and humans is

that the rhesus monkey is a habitual quadruped in comparison to the human, a habitual
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biped. Initially, it was proposed to conduct the experiments with the animal standing as a

biped. Because the bipedal balance task turned out to be more difficult to implement than

anticipated, and also because it was a stance not habitual to the animal, we proceeded

with the rhesus monkey in its natural (quadrupedal) stance (Lewis et al. 2007).

Our preliminary analysis of normal monkey postural responses to pseudorandom

tilts showed similarities to that of human responses. This moderated our concerns about

the quadruped/biped differences. Rhesus monkey RMS roll of the trunk as a function of

pseudorandom roll-tilt amplitude (i.e., stimulus-response curves) showed striking

similarity to those seen in normal humans (Peterka 2002) in that the trunk sway generally

followed the platform tilt waveform, remained relatively constant across repeated cycles,

contained power primarily at the stimulated frequencies, and saturated with increases in

stimulus amplitude. Furthermore, the normal animal's upper to lower trunk (foretrunk to

hindtrunk) phase difference as a function of stimulus frequency showed that foretrunk

and hindtrunk are in phase at low frequencies but out of phase at higher frequencies (see

Chapter IV). This preliminary finding was similar to the normal human upper body and

lower body responses to mediolateral pseudorandom tilt (Goodworth and Peterka 2010).

These examples show that although the monkey was a habitual quadruped, the

similarities between human and monkey responses to pseudorandom tilts indicate that

monkey should provide a useful subject in the testing and development of a vestibular

prosthesis.

2.3 Sensory States

Two rhesus monkeys (RI and R2) were studied in various sensory states. R2 was

studied in the normal and mBVH sensory states and RI was studied in the control, sBVH,
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and sBVH + STIM-ON sensory states.2 As stated in Chapter I, previous posture studies

in both animal and humans have focused on normal function and severe vestibular

dysfunction. In the work reported here, we characterize rhesus monkey posture responses

to a range of experimental conditions for levels of vestibular function (normal, mBVH,

sBVH, and sBVH + STIM-ON).

In order to damage the vestibular hair cells while preserving the eighth nerve for

electric stimulation, ototoxic drugs (i.e., the aminoglycosides intratympanic gentamicin

and intramuscular streptomycin) were administered (see Section 3.3.1 for details). The

dosages of the ototoxic drugs were based on the animals' weight (RI: 7.9 kg and R2: 6.7

kg). The angular vestibuloocular reflex, or VOR, (a simple and direct measure of

semicircular canal function) was used to quantify sensory state. Figure 2.1 describes the

various sensory states in terms of the percent reduction of VOR compared to the baseline

state for each animal.
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Figure 2.1 Sensory states of RI (left) and R2 (right) shown as a percent reduction from baseline
values of VOR gain.

2.3.1 Vestibular Prosthesis

The details of the prosthesis design and implementation have been previously

published (Gong and Merfeld 2002; Lewis et al. 2010; Merfeld et al. 2007) and will only
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be described briefly. The study described in Chapter VI of this thesis utilized a one-

dimensional, semicircular canal prosthesis in which the electrode was placed in the

ampulla of the right posterior canal in the rhesus monkey, RI. Although a one-

dimensional prosthesis is described here, current ongoing research involves

implementation of a three-dimensional prosthesis to stimulate all three canals in one ear.

The one-dimensional prosthesis sensed head velocity that was high-pass filtered

(~0.03 Hz cutoff frequency, time constant of 5 s), to mirror the function of a normal

rhesus monkey semicircular canal. The filtered head velocity was used to modulate the

current pulse rate of the electric stimulus so that increasing (or decreasing) head velocity

results in increases (or decreases) in spike rate (similar to the normal physiology of the

canal and ampullary nerve). The tonic, baseline pulse rate was 250Hz with a pulse

amplitude of 90 microamperes with 200 ts pulse duration. The rate was modulated to

provide a bidirectional cue (i.e., head-turns that were ipsilateral to the stimulating

electrode increased the rate of stimulation while head turns that were contralateral to the

stimulating electrode decreased rate of stimulation). The modulation itself was based on

a hyperbolic tangent function that saturated at higher angular velocities, but was

approximately linear for mid-range velocities.

2.4 Equipment and Training

2.4. 1 Balance platform apparatus

Figure 2.2 displays the rhesus monkey balance platform used for the studies

described in this thesis. Each of the four platform footplates was equipped with tri-

directional force sensors (ME-MeBsvsteme Gmbl H, KD24S, Hennigsdorf, Germany) used

to quantify ground reaction footplate forces. A 16-bit analog-to-digital converter (ADC)
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with 5 V full-scale voltage range was used. The quantization error of the ADC was -

1.53 x10 5 V. The calibrated force sensor directional sensitivities were quantified as the

following: -21 N/V (vertical), -14 N/V (anterior-posterior), and -14 N/V (mediolateral).

Therefore, the measurement error (in N) associated with quantization error were the

following: ~ 1.53x10-3 N (vertical) and ~ 1.07x10 3 N (anterior-posterior and

mediolateral). Also, based on manufacturer specifications, each force sensor had a

nominal output of 0.5 mV/V +/- 0.1 % at the nominal force of +/- 100 N (i.e., an

operating force range 200 N). For a 5V source, the mean of nominal output of the sensor

is 2.5 mV with +/- 0.0025 mV deviation. We can convert the sensor deviation (0.0025

mV) to N using the calibrated sensitivities. The sensor error was the following: 5 x 10-

N (vertical) and 3.5 x 10-5 N (anterior-posterior and mediolateral). These measurement

and sensor error values are orders of magnitude smaller than the reaction forces that we

expected to measure for the animal (e.g., shear forces were expected to be > ~ 0.5 N and

vertical forces > -15 N). Force data were sampled at 200 Hz for the quiet-stance and

head-turn experimental conditions and at a rate of 600 Hz for the pseudorandom tilt

experimental condition, using LabVIEW (National Instruments Corporation, Austin, TX).

These sampling rates are much greater (> 10 x) than the frequencies expected for the

fluctuations in force measurements of the animal and therefore satisfied the Nyquist

sampling criterion.

To measure the motion of the head, foretrunk, and hindtrunk, three, six-degree of

freedom sensors (miniBIRD, Ascension Technology Corporation, Milton, VT) were

sampled at 100 Hz for the quiet-stance and head-turn experiments and at 150 Hz for the

pseudorandom platform tilt experiment. These frequencies were much greater than the
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frequencies expected for body-sway (< - 10 Hz) and therefore satisfied the Nyquist

sampling criterion. Angular ranges of the sensors were +/- 1800 (yaw and roll) and +/-

900 (pitch). Factory specifications of the position sensors were described as resolutions

relative to the mid-range transmitter (i.e., static resolution for position was 0.5 mm and

static resolution for orientation was 0.10 at 30.5 cm from a mid-range transmitter). Since

the sensors were within close proximity to the transmitter, we assumed the factory

specification of 0.10 to be the measurement resolution. We were initially expecting body

motions to generally be > ~ 0.10, and so it was anticipated that this resolution was

satisfactory. For our experimental measurements we observed the following angular

deviation ranges from the mean: head-mounted quiet-stance (hindtrunk: -0.07 to -0.150;

foretrunk: -0.17 to ~0.320), head-turns (foretrunk: -4 to ~ 14 0), PRTS (hindtrunk: -0.1 to

~1.20).

In order to limit visual cues, all test sessions were conducted in dim lighting with

a black tarp surround. When recording test sessions, infrared illuminators (48-LED

Illuminator Light Cctv Ir Infrared Night Vision) were used in conjunction with a pair of

Kodak (movie) cameras with infrared lenses. The cameras were positioned to image the

front and side of the animal to record: 1) animal behavior and 2) human handling artifacts

within a given test session.
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Figure 2.2 Rhesus monkey balance platform (Lewis et al. 2007).

The stationary platform allowed for changes of the base-of-support and also of the

support surface material (quiet-stance experiment). The stationary platform was also

used in conjunction with illuminated targets placed on the surround to evoke animal head

movements (head-turn experiment). Furthermore, the platform allowed for dynamic tilts

in the roll axis (pseudorandom stimulus experiment).

Depending on the posture experiment, the balance system included three different

reward configurations illustrated in Figure 2.3: a vertical, earth-mounted juice reward

system (that provided a light-touch cue), a head-mounted juice reward system (no light-

touch cue), a platform-mounted juice reward system (that was attached to, and moved

with, the balance platform). The earth-mounted reward configuration used a flexible

mouth tube attached to a rod in front of the balance platform. The head-mounted reward

configuration used a juice tube clipped to the monkey's headcap and, with flexible

tubing, was routed to the monkey's mouth. The head-mounted reward system allowed

the monkey to freely move its head during the test session. By moving directly with the

platform, the platform-mounted juice reward configuration motivated the animal to stand

on the tilting platform without providing it a stationary (re earth), reference cue.
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Figure 2.3 Schematic of the juice reward configurations. Earth-mounted, EM, dispenser (left), head-
mounted, HM, dispenser (middle), and platform-mounted, PM, dispenser (right).

The measurement system used in this research was novel. It allowed for various

configurations (i.e., including alteration of footplate cues and base-of-support, and

alteration of light-touch cues via the juice reward configurations) that were not addressed

in previous normal and vestibular-lesioned animal studies. Also, the platform was

motorized thereby allowing the pseudorandom roll-tilts to serve as an input to the

postural control system. In previous studies, this stimulus had only been used to

characterize human posture.

The measurement system used in this research was novel. It allowed for various

configurations (i.e., including alteration of footplate cues and base-of-support, and

alteration of light-touch cues via the juice reward configurations) that were not addressed

in previous normal and vestibular-lesioned animal studies. Also, the platform was

motorized thereby allowing the pseudorandom roll-tilts to serve as an input to the

postural control system. In previous studies, this stimulus had only been used to

characterize human posture.

2.4.2 Animal Iraining
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The animal was trained, by use of a juice reward system, to stand free of human

or mechanical restraint on the balance platform. In order to familiarize the animal with

its surroundings, the animal was initially brought into the fully-lit training room and was

seated in a (constrained) plexiglass chair. While in the chair, the animal acclimated to the

environment while receiving juice. After about a week, the animal was released from the

chair and began training on the platform. The animal technicians attached a very loosely

tethered training leash to a neck collar worn by the animal. One animal technician placed

the animal on the platform, while the other positioned each foot on the appropriate

footplate (to encourage the animal to stand in its natural quadrupedal stance). An earth-

mounted juice dispenser was located at the front of the platform and the experimenter

manually triggered juice. When the animal had each foot on the appropriate footplates, a

juice reward was provided. Because the juice reward was given only if the animal placed

each foot on the correct footplate, the animal learned to stand on the platform in order to

receive a reward. R1 took several days to learn how to stand on the platform without

human restraint, however R2 was able to stand freely on the platform on the first day of

training. The animal was considered to be comfortable standing if only minor (and

occasional) position adjustments were provided by the animal technicians. At that point,

the juice-reward was set to automatic triggering such that when the animal exerted a

minimum of 500 g (or 1 1 lb.) vertical force on each of the footplates, it received juice as

a reward. After the animal was able to do this for several days, it was outfitted with a

harness (to hold the position measurement sensors). Once the animal felt comfortable

wearing the harness (i.e., was not distracted by it or trying to remove it), the position

sensors were placed on the harness. After a few days of being comfortably instrumented,
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the tethered training leash was removed, the training room lights were dimmed and earth-

mounted quiet-stance data could be collected.

After the animals were able to associate standing on the platform with receiving a

juice reward, they were readily trained in the head-mounted juice reward configuration

and the platform-mounted juice reward configuration. The head-mounted juice reward

configuration required minimal training. The platform-mounted configuration was very

similar to the earth-mounted juice-reward configuration, and so the animal already knew

how to do the task. However, standing on the moving (tilting) platform required

additional training. Initially, the motor was left on to acclimate the animal to the new

acoustic environment and also vibrations from the motor being turned on. The animal

stood and drank with the motor on. After -2 weeks, small platform tilts (e.g., 0.50 and 10

pp) were introduced. After one more week, the animal was able to be introduced to the

larger roll-tilts and was able to stand on the platform freely. At this point, data could be

collected.

2.5 Experimental Stimulus Conditions

Input conditions to the three main sensory systems for posture (i.e., the visual

system, somatosensory system, and vestibular system) are integrated to yield a

measurable output postural response.

In this research, experimental stimulus conditions were implemented that have

previously proven to be challenging to humans and/or cats with vestibular dysfunction:

quiet-stance, head-turns, and pseudorandom roll-tilts. These stimuli (described in

Sections 2.5.1, 2.5.2, and 2.5.3) allowed us to vary the input condition level of difficulty

(e.g., by providing a range of sensory system cues) and measure the animal's force and
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body position responses. By measuring the output postural responses to known input

conditions, we were able to characterize and interpret the postural control system.

51



QUIET-STANCE

Input Conditions

Sensory Systems

Support surface cues

Light-touch cues Somatosensory

Control/Normal
mBVH

sBVH

Output Responses

Body Motion - Head and Trunk
Postural Motion
Control
System Ground Reaction Forces

Vestibular

Figure 2.4 Overview schematic of the quiet -stance input conditions and measured output responses.
Visual contribution (gray text) was limited.

H EAD-TURN

Input Conditions Output Responses

Sensory Systems

Illuminated targets

Normal ~Vestibular
mBVH

sBVH

sBVH + STIM-ON

Body Motion - Head and Trunk
Postural Motion
Control
System Ground Reaction Forces

Figure 2.5 Overview schematic of the head-turn input conditions and measured output response.
Somatosensory contribution (gray text) remained unaltered.

PSEUDORANDOM ROLL-TILT

Input Conditions Output Responses

Sensory Systems

PRTS Platform Somatosensory
Stimulus

Normal Vestibular

mBVH

Postural
Control
System

Body Motion - Head and Trunk
Motion

Figure 2.6 Overview schematic of the pseudorandom roll-tilt input conditions and measured output
responses. Visual contribution (gray text) was limited.
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Figures 2.4, 2.5, and 2.6 provide an overview of the experimental conditions used

in this thesis with the input cues/conditions diagrammed on the left side of each diagram

and grouped by sensory system (visual, somatosensory, and vestibular). The right side of

each diagram shows the (measured) output responses.

In Figures 2.4, left (for quiet-stance) and 2.6, left (for the pseudorandom roll-tilt),

note that no cues are listed for the visual system. By using dim lighting and surrounding

the monkey and balance platform with a black tarp, these cues were limited. The dim

lighting and tarp surround were also used in the head-turn set-up (Figure 2.5) but visual

cues (i.e., illuminated targets) were presented to evoke head-turns.

For the quiet-stance condition (Figure 2.4, left), somatosensory cues (e.g.,

footplate cues and light-touch cues) were varied. Footplate cues were varied by using

either a hard gum rubber (stronger cue) or a compliant foam surface (weaker cue). Also,

the light-touch cue was either present (earth-mounted dispenser) or absent (head-mounted

dispenser). For the head-turn experimental condition (Figure 2.5, left) footplate

(somatosensory) cues were held constant (i.e., a hard gum footplate surface was

provided). For the PRTS experimental condition (Figure 2.6, left) a PRTS platform tilt

stimulus was supplied to the platform.

The vestibular cues available to the animal's postural control system were varied

by testing the animal in different states of vestibular function: normal, mBVH, sBVH,

and sBVH + STIM-ON. The details of the normal, control, mBVH and sBVH states

listed on the left of Figure 2.4 are described in Chapter III (Section 3.3.1) of this thesis.

For quiet-stance (Figure 2.4, left), R2 was studied in the normal and mBVH sensory

states and monkey RI was studied in the control and sBVH sensory states. For the head-
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turn experimental condition (Figure 2.5, left), R2 was studied in the normal and mBVH

states and RI was studied in the sBVH and sBVH + STIM-ON sensory states. For the

PRTS tilt condition (Figure 2.6, left), R2 was studied in the normal and mBVH states.

For all experimental conditions (Figures 2.4, 2.5, and 2.6 right), body motion

(e.g., head and trunk motion) was measured.

2.5.1 Quiet-Stance

Figure 2.4 is a schematic representation of the quiet-stance stimulus condition.

This is the simplest stimulus condition used to evaluate the effects of the three main

sensory systems (i.e., visual, somatosensory and vestibular systems) on postural control

by measuring ground reaction forces and head and trunk motion while the animal

attempted to stand still.

As previously stated, the controlled variations in somatosensory cues included the

stationary balance platform's surface characteristics and presence/absence and character

of light-touch cues. The surface characteristics were varied to produce four test levels of

increasing task difficulty level (1 being the "easiest" and 4 being the "hardest") were

utilized to test the rhesus monkey's quiet-stance posture (Table 2.1). The gum-wide

condition (Level 1) provided a hard support surface (i.e., strong footplate cues) and wide

(18 cm) stance width that yielded a large base-of-support, while the foam-narrow

condition (Level 4) provided a complaint foam support surface (i.e., weak footplate cues)

and narrow (9 cm) stance width that yielded a small base-of-support.
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Table 2.1 The four support surface test conditions.

Level Description
1 Gum-wide

2 Gum-narrow

3 Foam-wide

4 Foam-narrow

Two juice reward configurations were used for quiet-stance: 1) an earth-mounted

(EM) juice reward configuration that provided a light-touch cue and a stationary

reference (Figure 2.3, left), and 2) a head-mounted (HM) juice reward configuration in

which the head was free to move and the stationary reference was unavailable (Figure

2.3, middle).

The quiet-stance experimental conditions also allowed us to further develop a

quiet-stance feedback controller model originally implemented in humans (Maurer and

Peterka 2005), but had not been used to interpret and characterize the postural control

mechanisms of non-humans with different degrees of vestibular function. The model was

modified and used in conjunction with the animal's sway (trunk roll) in response to the

quiet-stance condition. This allowed us to explore the affects of long-latency or

intrinsic/short-latency posture control mechanisms on postural control. These

mechanisms were explored for the normal, mBVH, and sBVH sensory states.

2.5.2 Head-Turns to Illuminated Targets

In this research, we investigated the effects of four different levels of head-in-

space (vestibular) information (i.e., normal, mBVH, sBVH, and sBVH + STIM-ON)

while the animal turned its head toward illuminated targets (Figure 2.5, left). As

previously stated, R2 was studied in the normal and mBVH sensory states, and RI was
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studied in the sBVH, and sBVH + STIM-ON sensory states. For R2, targets were placed

counter-clockwise in yaw (at 0 (or straight ahead), 40, 60, 900), and for RI, the animal

implanted with the right-posterior canal prosthesis, targets were straight ahead, and ~40'

oblique (i.e., in the plane of the right-posterior canal). Measured output responses were

the body movements of the animal and ground reaction forces (Figure 2.5, right).

The purpose of the head-turn experimental condition was to determine how high-

velocity head rotations to illuminated targets affected posture (e.g., trunk position and

velocity) in animals with various levels of vestibular information.

2.5.3 Pseudorandom Roll-Tilt Stimulus

Pseudorandom stimuli are beneficial in that they: 1) are white noise approximated

stimuli that are unpredictable to the test subject, 2) excite a bandwidth of frequencies (as

opposed to one discrete frequency) at approximately equal power, and 3) allow for

determination of the impulse response, or the system transfer function, which completely

characterizes the linear approximated system.

A white noise approximated signal (e.g. pseudorandom ternary sequence (PRTS)

stimulus), has been used as an input perturbation stimulus for human normal and

vestibular-loss subjects (e.g., Goodworth and Peterka 2010; Peterka 2002). However,

previous posture studies in animals, other than humans, have not utilized pseudorandom

roll-tilt stimuli. Such stimuli are valuable in characterizing an animal's posture in that

they are unpredictable to the animal, their duration can be customized to accommodate

attention/behavioral focus in animals, and also allow a bandwidth of frequencies to be

tested simultaneously. Thus, implementation of the PRTS (platform) roll-tilts was a

unique opportunity to characterize the normal and mBVH sensory states (Figure 2.6, left)
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by measuring output trunk response (Figure 2.6, right). From the measured trunk

responses, the frequency response (or system transfer function), as well as trunk

orientation as a function of stimulus amplitude (i.e., foretrunk and hindtrunk stimulus-

response curves) could be determined. Furthermore, transfer functions derived from the

measured data were used in conjunction with a sensorimotor integration model to test for

sensory reweighting in the normal and vestibular impaired states.

2.5.4 Criteria for Determining Usable Data

In order to select usable segments of measured data for analysis within each

experimental stimulus condition, a unified method for identifying and excluding outliers

from the analyses presented here was developed and applied to the measurements made

in RI and R2. The logic behind the development of the criteria is described below.

For one of the animals, R2, video was used to record each test session, so that

human handling could be identified and those measured data sections excluded.

However, for RI (tested prior to R2) test sessions were not video recorded, therefore

human handling artifacts could not be identified. We aimed to capture "natural" head

movements of the animal but to exclude head motions caused by inattention of the animal

that were not relevant to the experiment (e.g., the animal turning completely around while

on the platform to look at the surroundings). Also, the animals' head motion could vary

depending on the level of vestibular dysfunction, and we did not want to exclude useful

information about what the trunk was doing relative to the head. Therefore, we did not

constrain data to be within a specific head motion criterion for the quiet-stance and PRTS

stimulus experimental conditions. We were mainly concerned with trunk motion where

most of the body mass resides and hence the COM was located and capturing
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characteristics of the trunk that were representative of the test sessions, experimental

conditions, and sensory states of the animal.

We used: 1) consistent criteria that could be applied to the measured data of both

animals (R1 and R2) and 2) a criterion that has been documented as a method for

excluding outliers (e.g., Tukey 1977). Usable data were defined as those segments in

which body or head movements fell within a specific movement criterion. For test

segments (e.g., quiet-stance trials, PRTS cycles, or head-turn segments) within a given

test session, we pooled the segments and computed the sample minimum, lower quartile

(QI), median (Q2), upper quartile (Q3), and sample maximum based on the trunk motion

(for the quiet-stance and PRTS experimental conditions) or head motion (for the head-

turn experimental condition). Outlier sections were defined as those sections with trunk

(or head) motion less than or greater than Q1-1.5*(Q3-Q1) and Q3+1.5*(Q3-Q1),

respectively (as in Tukey 1977). All outlier sections were excluded from the analyzed

results.

Figure 2.7 displays a plot of foretrunk RMS roll for each trial of a typical quiet-

stance test session (for R2). It shows that out of 37 trials, only a 3 were unusable.

Overall, a relatively small fraction of all trials were excluded (e.g., Ri: ~86% of trials

were usable for earth-mounted and ~83% of trials were usable for head-mounted quiet-

stance; R2: -92% of trials were usable for earth-mounted and ~89% of trials were usable

for head-mounted quiet-stance)
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Figure 2.7 Quiet-stance foretrunk RMS roll for each (15 s) trial. Usable data (black) and
outliers (green) are shown. The dashed-line (red) represents the mean of the usable data + 1 SD.

2.6 Model Development

The development of models used to explore the characteristics of both the motor

and sensory components associated with posture employed control theory techniques. A

few of these models are described below.

2.6.1 Previous human models for standing posture

While biped stance is complex with several degrees of freedom, simplified

mathematical models have been used to elucidate some of the basic aspects of control

processes associated with standing. For the stationary platform (e.g., quiet-stance) or

small perturbations of the support surface (e.g., PRTS roll-tilts), the human biped has

been often approximated to rotate the body about the ankle joint (ankle strategy) and

sway as an inverted pendulum (e.g., McGhee and Kuhner 1970). Because the single-link

inverted pendulum model assumes that pivoting only occurs at the ankle of the subject, it

disregards movements about the knee and hip joints. Although for large perturbations

this may not be the case, for small body deviations from upright, humans utilize the ankle
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strategy. Therefore, the single-link model can be a good approximation for quiet

standing. In particular, Maurer and Peterka (2005) have shown that a human simple

inverted pendulum feedback controller model predicts quiet-stance sway measures

(described in Prieto et al. 1996) that were in good agreement with measured experimental

data from young and elderly adults (i.e., within 1 SD of the measured results). The

inverted pendulum model is the simplest physical model of human posture and greatly

reduces the analysis of postural control to manageable proportions, while still allowing

approximate predictions of trunk sway. However, because of its simplicity, other models

have attempted to account for body movements about joints other than the ankle.

Koozekanani et al. (1980) utilized a multi-segmented inverted pendulum to

account for movement at joints other than the ankle while modeling human posture.

Stockwell et al. (1981) reviewed and extended the model shown in Koozekanani et al.

1980 and described a five-link model of the human body including the head, torso, thigh,

shank, and foot. Movements were measured in test subjects about the ankle, knee, hip,

and neck to determine whether four degrees-of-freedom (DOF) was necessary or if a

simpler model was adequate to describe human sway. Using this video-computer

monitoring system, they attempted to determine whether a four-degrees-of-freedom

model was necessary or a simpler model would be adequate to describe human postural

sway. Stockwell et al. (1980) developed a method for estimating joint movements using

pin lights monitored at 1/30-second intervals by a pair of video cameras. The pin lights

were attached to the human subject at the forehead, mastoid, hip and knee. The position

of the ankle was measured at the beginning of the observation period and assumed

constant. From the measured data, they determined the amplitude spectra from the
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measured joint angles of 10 normal subjects during three minutes of quiet standing.

These joint angle spectra were described in terms of degrees as a function of frequency.

If a single-link model were adequate, significant movement would be present in only one

joint, the ankle joint. For a two-link model, movement would only be at two joints (e.g.,

at the ankle and at the hip). Instead, significant movement was seen in all body joints

measured. The authors concluded that a model with at least four degrees of freedom is

required to adequately describe human body sway.

In order to obtain accurate measurements of quiet-stance, very high-resolution

cameras are needed. However, even with the right equipment, there can still be a high

degree of error (e.g., associated with marker placement and human measurement error).

In Stockwell et al. (1980), no measurement error was given for the measured data and

camera resolution was not provided. However, the camera was described in the paper as

"ordinary". Since the magnitude of joint movements for quiet-stance were small it is

likely that the level of measurement error was greater than the magnitude of the joint

movements. Also, one obvious implication to having a 4 DOF model is higher model

complexity and more position measurements needed at the joints. The methodology

proposed within the study above may have been more relevant for modeling gait (where

joint movements could be much larger than quiet-stance). However, the expense of

adding a higher level of model complexity may not be compensated for by the amount of

accuracy added to quantify quiet standing. Instead, a simpler model should be used to

capture the approximate postural behavior for quiet standing or for small perturbations

(e.g., roll-tilts) in stance. Furthermore, a simpler model (i.e., with fewer model
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parameters) can yield greater confidence in model-estimated parameter values during

optimization routines (e.g., Pintelon and Schoukens 2001).

Nashner (1970) carried the control theory description of postural mechanisms a

step further (than modeling purely body dynamics) by conducting a set of experiments

with human subjects to formulate a basis for a multi-loop control model. This control

model was successful in describing the way in which a human utilizes multiple feedback

sensors to control orientation during quiet-stance. A human posture model proposed by

Kuo (2005) utilized both state feedback control and optimal state estimation to describe

both the body dynamics and sensors associated with postural control. For this model,

human body dynamics were modeled as a two-segmented inverted pendulum model that

allowed for both ankle strategy (i.e., pivoting from the ankle) and hip strategy (i.e.,

counter-rotating from the hip). Linear models of the proprioceptive, vestibular, and

visual systems were used in combination with the body dynamics. The system that was a

combination of these models was controlled by state feedback and optimal control.

Measurements made in healthy young subjects, older adult subjects, and bilateral

vestibular-loss subjects performing standard sensory organization testing (SOT)3 on a

balance platform were comparable to model-predicted COP results. Parameter variations

revealed that the model is robust for normal sensory conditions, but not when two or

more sensors are unreliable. Removal of the model's vestibular sensor (by decreasing

signal-to-noise) led to similar instabilities measured in bilateral vestibular-loss subjects

(i.e., instability for test conditions with unavailable or unreliable visual and support

surface cues). In contrast to the previous models mentioned, the utility of this model is
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that it incorporated both body dynamics and physiological sensor contributions to

posture.

A variety of posture models exist (not limited to those discussed here). However,

those mentioned above were used exclusively to describe human postural control.

2.6.2 Rhesus monkey feedback controller model

Implementing feedback controller models to describe rhesus monkey posture for

normal and vestibular impaired sensory states is novel. The goal of the models used in

this research were to adapt and build on models previously applied to human posture

while identifying the simplest model that still was able to capture the characteristics (via

physiologic model parameter estimates) of rhesus monkey posture. Thus, while multiple

segments and links allow for more complex motions and analysis of joint torques, they

also lead to higher model complexity. The application of the single-link inverted

pendulum analysis served as a first ever approach to modeling rhesus monkey posture in

two different sensory states. In this research, we modified inverted pendulum human

feedback controller models (Peterka 2002; Maurer and Peterka 2005) to describe the

mechanisms associated with rhesus monkey's (foretrunk or hindtrunk) posture for the

PRTS and quiet-stance experimental conditions. Through model-estimated parameters,

we characterized rhesus monkey posture for the animals in normal and vestibular loss

sensory states.

A simple feedback control model was used here in conjunction with experimental

transfer functions to investigate model parameter changes between sensory states and to

examine sensory reweighting of proprioceptive and graviceptive cues across support

surface stimulus amplitudes (Chapter IV).
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(J ~J

Figure 2.8 PRTS feedback controller model implemented for rhesus monkey posture.

Figure 2.8 displays the feedback controller model that was implemented for the

pseudorandom experimental stimulus condition (described in Chapter IV). For a

pseudorandom roll-tilt input, the support surface input (SS) is the roll-tilt waveform itself.

And the monkey's hindtrunk sway (HS) is the output response. As previously stated, for

quiet-stance or small platform motions some models of bipedal human stance have

treated the human as a single-link inverted pendulum that is inherently unstable. Because

the platform was either stationary or underwent only small perturbations, we modeled the

rhesus monkey's trunk as an inverted pendulum. When there is deviation from upright

stance, a corrective torque (Tc) comprised of the summation of a torque (TL), generated

by mechanisms with long-latency neural time delay, and an intrinsic/short-latency torque

(Ti), generated by mechanisms without time delay (or with short time delay). The torque

(Ti), is generated by: 1) the inherent mechanical characteristics of the muscles, joints,

ligaments, and musculoskeletal system (time delay = 0) and 2) the short-latency reflexes
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(< 25 ms). The intrinsic/short-latency mechanisms consist of stiffness and damping (K

and B, respectively). To stabilize the pendulum body, a long-latency (~ 200 ms), torque

(TL) requires a corrective torque equal to the angular deviation times the long-latency

stiffness represented by Kp, where "p" indicates proportional feedback, and another

component that is the time derivative of the angular deviation times the long-latency

damping represented by Kd, where "d" indicates derivative feedback. The incorporation

of integral control (Ki) that drives steady-state error of the output to zero has led to better

fits to human data but is not necessary to stabilize the pendulum itself (Johansson and

Magnusson 1991).

In order to characterize changes in control strategies between sensory states (e.g.,

effects of increased muscle stiffening on trunk sway) for the animal in quiet-stance

(Chapter III), a similar, but slightly modified model, was implemented for the quiet-

stance experimental condition and is described in Chapter III. In quiet-stance, the

support surface input to the platform (SS) is zero. Although animals attempt to stand

stationary, the spontaneous trunk sway is not zero and is measurable. The overall noise

in human postural control likely stems from the sensory organs (e.g., van der Kooij et al.

2001), however, we chose to model this as a single noise source. Spontaneous sway was

modeled as an input disturbance torque (Td) generated by the low-pass filtered, white

noise (as in Maurer and Peterka 2005). This quiet-stance model was used to interpret

changes in postural strategy (e.g., muscle "stiffening").

The goal of the model used in this thesis research was to implement a simple

model that aided in both interpretation of the results and prediction of physiologic model

parameters for the normal and vestibular-lesioned rhesus monkey postural responses. For
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quiet standing and relatively small platform perturbations, the application of single-link

inverted pendulum analysis served as a first pass approach. Although future models may

utilize multiple segments and links which allow for more complex motions and analysis

of joint torques, the model used within this thesis allowed us the ability to investigate,

and account for, the postural mechanisms associated with our measured results in the

normal and vestibular impaired states.

2.7 Conclusion

An innovative approach was implemented to characterize the rhesus monkey

postural response (i.e., postural orientation and equilibrium) to the experimental

conditions for various levels of vestibular function. Quiet-stance, head-turn, and roll-tilt

experimental conditions were used in conjunction with a balance platform to quantify

postural control. Compared to previous animal studies, the rhesus monkey balance

platform and experiments were novel and unique for the following reasons: 1) capability

to evaluate the effects of hard versus compliant footplate surfaces, in combination with

the allowing for the alteration of mediolateral stance width, 2) utilization of a motorized

platform to provide a continuous and dynamic, pseudorandom roll-tilt input stimulus

(something not previously investigated in animals other than humans), 3) characterization

and interpretation of rhesus monkey posture through use of control theory techniques

(e.g., feedback controller models and transfer function analysis), and 4) comparison of

different levels of vestibular function, including prosthetic stimulation, on posture.
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III. The severity of vestibular dysfunction influences postural
compensation in the rhesus monkey

3.1 Abstract

Previous studies of the effects of vestibular function on human and animal

postural responses and control mechanisms have focused predominantly on either normal

vestibular function or severe vestibular dysfunction. However, in clinical practice there

exists a broad range of vestibular deficits among patients suffering from vestibular loss.

In order to characterize the effects of different levels of vestibular function (i.e., normal,

mild vestibular hypofunction (mBVH), and severe vestibular hypofunction (sBVH)) on

rhesus monkey posture, two experimental conditions (quiet-stance and head-turns) were

conducted using a stationary balance platform. Surprisingly, we found that mild bilateral

vestibular hypofunction (mBVH) led to decreased trunk roll compared to normal values.

In order to compensate for its mild vestibular loss, we hypothesized that the animal, R2,

used muscle stiffening (via long-latency and/or intrinsic/short-latency mechanisms). The

measured data showed that in order to resist movement of the trunk, footplate forces and

roll torque magnitude were increased in the mildly-impaired animal. In order to test the

hypothesis that increased intrinsic/short-latency stiffness caused decreases in trunk sway

for the animal in the mBVH state, a quiet-stance feedback controller model was

implemented. Consistent with the experimental (measured) results, the model-simulated

trunk roll decreased when intrinsic/short-latency stiffness was increased from the normal

value. Normal and mBVH simulated trunk roll were validated by comparing model-

simulated sway measures to those derived from the measured results. The feedback

controller model was also used to predict trunk roll in a severely-impaired (sBVH)
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animal, Ri. The animal in the sBVH sensory state showed increased sway compared to

the control state.

The measured and quiet-stance model results were consistent with the following

interpretations: 1) in contrast to the normal state of R2, R2 in the mBVH state was able to

increase intrinsic/short-latency muscle stiffness and increase trunk stability and 2) for the

severe loss of vestibular function (the sBVH state), RI became unstable and utilized

long-latency mechanisms (as opposed to increased intrinsic/short-latency muscle

stiffening) due to the larger trunk sways.

3.2 Introduction

Sudden bilateral or unilateral vestibular-loss patients experience ataxia and severe

postural instability (Horak 2010). It has been shown that bilateral destruction of the

vestibular apparatus leads to broad-based stance, ataxic gait, uncontrolled head

movements, and impaired gaze stabilization. After weeks and months following

vestibular loss, postural stability may improve by increased reliance on the remaining

sensory information. Although the levels and types of compensation associated with

vestibular loss may vary across individuals, the behavioral goal of the postural control

system remains the same: to maintain postural orientation and postural equilibrium.

Postural orientation is the relative positioning of body segments with respect to

one another. Because the trunk determines the positioning of limbs relative to objects

with which one may wish to interact, it is one of the most important controlled variables

of postural orientation. Postural equilibrium is the balance of the net forces acting on the

body. One of the main goals of postural equilibrium is the control of position and

velocity of the trunk, where most of the body mass resides. The center-of-mass (COM) is
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the point at which the entire mass of the body is balanced. Destabilizing influences, such

as gravity, produce external forces on the body's COM. In order to control the position

of the COM and maintain equilibrium, internal body forces attempt to counteract

destabilizing external forces. The musculoskeletal system has a large number of degrees

of freedom and thus the transformation of muscle contraction to forces to movement of

the COM is mechanically complex. Although there is not a simple relationship between

the muscle contractions and forces generated at the joints, the overall "goal" is to move

the COM into the region of stability by applying the appropriate forces (under the

animal's feet) to the support surface. The static support surface then exerts an equal but

opposite force (or ground reaction force) back on the animal's feet.

For human and non-human subjects suffering from equilibrium disorders of

peripheral vestibular origin, maintaining balance may prove to be challenging for

situations involving limited visual or somatosensory cues (Horak et al. 1990), decreased

base-of-support (e.g., Horak and Macpherson 1996), and large amplitude head-turns

(Stapley et al. 2006). In this chapter, we report the results of experiments focused on the

trunk position and forces of the normal/control and vestibular-loss rhesus monkeys while

standing on a stationary support surface.

Quiet-stance has been used to evaluate posture in both human and animal studies

(e.g., Macpherson 1994; Thomson et al. 1991; Winter 1995). Some human studies have

shown that vestibular loss has had little effect on the ability to maintain quiet-stance.

More specifically, as long as a bilateral vestibular-loss subject is still receiving visual and

somatosensory cues they can exhibit normal postural sway (Black and Nashner 1984).

Similarly, previous quadruped (cat) posture experiments have shown that vestibular input
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has an effect on balance for some test conditions but not others. For instance, in quiet-

stance vestibular-lesioned cats had similar sway patterns compared to normal (Thomson

et al. 1991). However, narrowing stance width and providing only weak support surface

cues may have revealed residual instability. Furthermore, only center-of-pressure (COP)

derived from ground reaction force measurements and not body position measurements

(e.g. trunk position) were studied. In order to move beyond the limitations of previous

quiet-stance cat studies, we did the following: 1) varied somatosensory cues by providing

relatively strong or weak surface cues (i.e., thin, hard rubber surface or a thick, compliant

foam surface, respectively), 2) varied mediolateral stance width to provide either a large

(18 cm) or small (9 cm) base-of-support, 3) measured the animal's head and trunk

movements (via position sensors), as well as ground reaction forces (via platform tri-

directional force sensors). Unlike human and animal studies that focused on either

normal subjects or subjects with severe vestibular deficits, we addressed the effects of

various levels of vestibular function (i.e., normal, mild vestibular loss, and severe

vestibular loss) on the animals' postural responses to the quiet-stance experimental

condition. We also employed an additional stationary platform experimental condition

that is more challenging than quiet-stance: head-turns while standing.

When well-compensated bilateral vestibular-loss humans turn their heads while

walking, they exhibit difficulty balancing and ataxic gait (Herdman 1994). Stapley et al.

(2006) investigated posture in normal and severe vestibular-loss cats undergoing rapid,

large-amplitude head-turns. The labyrinthectomized cats produced an unexpected burst

in extensors of the limbs contralateral to the direction of the head-turn that thrust the

body toward the side of the head-turn. This led to imbalance and falls. It was
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hypothesized that this postural "error" arose from the misperception that the trunk was

rolling contralaterally (e.g., Mergner et al. 1997). More specifically, vestibular-lesioned

cats did not receive the appropriate vestibular (head-in-space) signals to counteract the

neck proprioceptive (head-on-trunk) signals, therefore the estimation of trunk position

(trunk-in-space) was erroneous.

Previous studies focused on the effects of severe bilateral vestibular-lesioned

animals (e.g., via bilateral labyrinthectomy). We introduced a condition of mild

vestibular hypofunction (mBVH) to test whether the impaired animal could compensate

for the reduced head-in-space (vestibular) signal by altering footplate torques and/or

changing relative positioning of body segments in order to stabilize its trunk.

We hypothesized that the rhesus monkey, R2, in the mild bilateral vestibular

hypofunction (mBVH) state would be able to compensate (e.g., have the same or

decreased sway compared to control) by increasing intrinsic/short-latency stiffness.

Based on existing literature (e.g., Horak et al. 1990), we also hypothesized that the rhesus

monkey, Ri, with severe bilateral vestibular hypofunction (sBVH) would be unable to

compensate for its deficit and show increased sway.

3.3 Methods

3.3.1 Subjects and Sensory States

Experiments were conducted with the approval of the Massachusetts Eye and Ear

Infirmary (MEEI) Institutional Animal Care Committee and were in accordance with

USDA guidelines. For these sets of experiments, two adult female rhesus monkeys, RI

and R2, (RI: 7 yrs, 7.9 kg and R2: 5 yrs, 6.7 kg) were used. In order to study the effects

of vestibular loss, two rhesus monkeys (RI and R2) were studied under two different
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sensory states. R2 was studied in the normal and mild bilateral vestibular hypofunction

(mBVH) sensory states and RI was studied in the control and severe bilateral vestibular

hypofunction (sBVH) states (described in detail below).

The animal, RI, underwent prosthesis surgery for its right posterior semicircular

canal using similar surgical procedures as described in Merfeld et al. (2007) for squirrel

monkeys and Lewis et al. (2010) for rhesus monkeys. The sensory state in which RI was

implanted with the prosthesis, but not treated with ototoxic drugs, defined the baseline, or

"control", sensory state. In order to quantify sensory state, the rhesus monkey's angular

vestibuloocular reflex (VOR), a simple eye movement reflex used to measure

semicircular canal function, was tested at discrete frequencies. After quantifying the

control state, the monkey then underwent a series of ototoxic treatments that targeted the

vestibular hair cells while preserving eighth nerve function. The purpose of these

treatments was to target and kill the vestibular hair cells while preserving a functioning

eighth nerve. Intratympanic gentamicin (IT gent) specifically targets and kills vestibular

hair cells and has been used to treat vertigo in Meniere's patients (e.g., Minor 1999).

Initial surgery was conducted under anesthesia (ketamine (10 mL/kg) pre anesthesia and

isoflurane (2 - 5% saturation with oxygen)) and consisted of tympanic membrane

perforation and gentamicin injection to each ear (i.e., 40 mg/mL in each ear). Peak

damage was estimated to be approximately 2 weeks post-administration of the drug (i.e.,

1 cycle of IT gent treatment = administration, then 2 week waiting period). RI

underwent a set of 3 cycles of IT gent treatments. In order to cause further vestibular

damage, the set of gentamicin treatments was followed by intramuscular streptomycin

(IM strep) treatments (350 mg/mL per day for 21 days x 2). At the conclusion of these
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treatments, this defined the sBVH state of RI. Figure 3.1 (left) is a plot of the percentage

decrease in VOR gain (relative to control) for R1 in the sBVH state.

Unlike Ri, R2 did not undergo prosthesis implantation and the normal (or base-

line) sensory state of R2 was quantified (in terms of VOR gain) prior to ototoxic

treatments. R2 underwent a series of ototoxic treatments under similar procedures to that

of Ri (i.e., 5 IT gent cycles and 3 IM strep treatments). The state of the R2 following the

ototoxic treatments was defined as mBVH. Figure 3.1 (right) is a plot of the percentage

decrease in VOR gain (relative to normal) for R2 in the mBVH state.
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Figure 3.1 Reduction of VOR gain from baseline measurement as a function of frequency measured
in R1 (left) and R2 (right).

3.3.2 Equipment

The animals were trained' to stand on a stationary balance platform. Each of the

four platform footplates was equipped with tri-directional force sensors to quantify

ground reaction forces that were equal and opposite the forces exerted by animal on the

footplates. Force data were sampled at 200 Hz for quiet-stance and head-turn

experiments using LabVIEW (National Instruments Corporation, Austin, TX). The

motion of the head, foretrunk, and hindtrunk were measured using three, six degree of

freedom sensors (miniBIRD, Ascension Technology Corporation, Milton, VT) with the

outputs sampled at 100 Hz for quiet-stance and head-turn experimental conditions.
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Sensors were affixed to the head, to the base of the scapula to measure the bulk

"foretrunk" motion, and just aft of the iliac crest, but forward of the monkey's tail to

measure the bulk "hindtrunk" motion (Figure 3.2).

In order to minimize visual cues, all test sessions were conducted in dim lighting

with a black-tarp surround. In order to observe animal behaviors, and identify human

handling artifacts within a given test session, cameras were positioned in front of and to

the side of the animal. Two infrared illuminators (48-led Illuminator Light Cctv Ir

Infrared Night Vision) were used in conjunction with a pair of Kodak cameras with

infrared lenses.

head foretrunk hindtrunk

HM dispenser

EM dispenser

Figure 3.2 Schematic of the juice reward configurations. Earth-mounted, EM, dispenser (left) and
head-mounted, H M, dispenser (right).

3.3.3 Quiet-stance experimental condition

In order to observe and quantify rhesus monkey quiet-stance, a stationary balance

platform was used. The balance platform allowed for alteration of footplate

somatosensory cues via a hard gum rubber surface (more cues) or a thick, compliant

foam surface (fewer cues). Also, mediolateral stance width was varied for either wide

stance (18 cm footplate separation) or narrow stance (9 cm footplate separation). Four
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test conditions of increasing task difficulty level were utilized to evaluate the rhesus

monkey's quiet-stance posture: gum-wide, gum-narrow, foam-wide, and foam-narrow.

The monkey was trained to stand on the balance platform, with each foot on the

appropriate footplate, while receiving a juice reward from an earth-mounted (EM) juice

dispenser or head-mounted (HM) dispenser (Figure 3.2).1 When the animal was able to

stand on the platform free of human constraint with each foot on the appropriate

footplate, data were collected. Table 3.1 summarizes the sensory states of the reward

configurations used for RI and R2.

Table 3.1 Quiet-stance reward configurations and sensory states of the animals R1 and R2.

Quiet-stance
Head-mounted Earth-mounted

dispenser dispenser

R1 N/A control

sBVH sBVH

R2 normal normal

mBVH mBVH

3.3.4 Head-turn experimental condition

The purpose of investigating the effect of head-turns on rhesus monkey posture

was to determine the impact varying levels of head-in-space (vestibular) information

have on trunk-in-space (trunk position). During the head-turns, the platform was set to

the narrow-gum condition and a head-mounted juice reward (as in Figure 3.2, right) was

used to allow free motion of the head. The animal, R2, stood on the stationary platform

and light-emitting diodes (LEDs) were positioned on the dark surround at 0 (straight-

ahead) at 37, and 60, and 900 counter-clockwise in yaw. A manual switch was pressed by

the experimenter to illuminate the targets in the different positions. When the monkey
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fixated on the appropriate target, it received juice as a reward. Head-turn data were

collected for R2 in the normal and mBVH sensory states.2

3.3.5 Data analysis

3.3.5.1 Quiet-stance

For quiet-stance, the main parameters of interest were the roll of the trunk (e.g.,

foretrunk and hindtrunk RMS roll) and ground reaction forces. In a given test session,

data were then broken down into 15 s trials. In order to remove the offset for a given

trial, the mean was computed and then subtracted from each data point within the trial.

The root-mean-square (RMS) trunk roll was then computed. Usable trials were defined

as those sections that fell within specific movement criteria 3: 1) foretrunk RMS roll from

all trials were pooled and the sample minimum, lower quartile (Qi), median (Q2), upper

quartile (Q3), and sample maximum were determined, and 2) the outlier trials were

defined as those with foretrunk RMS roll less than or greater than Q1-1.5*(Q3-Q1) and

Q3+1.5*(Q3-Q1), respectively (as in Tukey 1977). After outlier sections were excluded,

computations in the following sections were determined for the usable data.

3.3.5.2 Quiet-stance feedback controller model

The feedback controller model, described briefly in Chapter II, was used to aid in

interpreting and predicting control mechanisms associated with the different sensory

states.
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Figure 3.3 Feedback controller model implemented for rhesus monkey posture.

For quiet-stance or small platform motions, some models of bipedal human stance

have treated the human as a single-link inverted pendulum that is inherently unstable.

We modified the model shown by Maurer and Peterka (2005) for the rhesus monkey

foretrunk (Figure 3.3). In quiet-stance, the support surface input to the platform (SS) is

zero. Although the animal attempted to stand stationary, we measured spontaneous trunk

sway. The mechanism underlying this spontaneous sway was modeled as a disturbance

torque (Td) generated by a low-pass filtered, white-noise disturbance input. In order to

remain upright, the subject exerts a corrective torque (Tc) comprised of the summation of

a torque (TL), generated by mechanisms with long-latency neural time delay, and/or an

intrinsic/short-latency torque (Ti), generated by mechanisms without time delay (or with

short time delay). The torque (Ti), is generated by: 1) the inherent mechanical

characteristics of the muscles, joints, ligaments, and musculoskeletal system and 2) the

short-latency reflexes. The intrinsic/short-latency mechanisms consist of stiffness and
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damping (K and B, respectively). In order to stabilize the pendulum body, a long-latency

(~ 200 ms), torque (TL) requires a corrective torque equal to the angular deviation times

the long-latency stiffness represented by Kp, where "p" indicates proportional feedback,

and another component that is the time derivative of the angular deviation times the long-

latency damping represented by Kd, where "d" indicates derivative feedback.

Figure 3.3 shows the feedback controller model that was used to investigate

effects of changing intrinsic/short-latency mechanisms (i.e., intrinsic stiffness (K) and

intrinsic damping (B)) and long-latency neurally-mediated sensory integration

mechanisms (i.e., long-latency stiffness (Kp) and long-latency damping (Kd)) on rhesus

monkey trunk sway. In this thesis, intrinsic and short-latency mechanisms are defined as

all mechanisms having a latency < 25 ms (e.g., passive muscuoloskeletal, spinal feedback

loops), while long-latency mechanisms are defined as those having a latency ~ 200 ms

(e.g., visual, somatosensory, and vestibular pathways) (e.g., Goodworth and Peterka

2009). A model of human posture, Goodworth and Peterka (2009), has accounted for

differences between long, medium, and short-latency reflexes, as well as those

mechanisms inherent to the musculoskeletal system that act without neural time delay.

Instead, here we chose to only differentiate between long-latency mechanisms and short-

latency reflexes/intrinsic mechanisms that act with little or no time delay. The quiet-

stance model (Maurer and Peterka 2005) used a similar approach and described control

mechanisms for human quiet-stance either as "active" (i.e., long-latency neural time

delays associated with sensory integration mechanisms) or "passive" (i.e. short or no

neural time delay).

3.3.5.3 Foretrunk sway measures
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Quiet-stance sway measures, previously used to characterize human COP data

(Maurer and Peterka 2005; Prieto et al. 1996), were used here to quantify the

displacement, velocity, and frequency characteristics for both the experimental and the

model-simulated trunk roll (Equations 3.1 to 3.5). Displacement measures included root-

mean-square (RMS), or trunk deviation, and maximum distance (MAXD), or peak-to

peak-range of displacement. The root-mean-square velocity (RMSV) of trunk roll was

also computed. Frequency measures included the centroid frequency (CFREQ), or the

frequency where the spectral mass was concentrated, and frequency dispersion (FREQD),

which ranged from 0 to 1 (e.g., a perfect sinusoid would have a frequency dispersion of

0).

Root-mean-square displacement (RMS):

RMS= < [x()]2 (3.1)

where x(i) is position data for the trunk for sample number "i"
N = number of samples

Maximum distance (MAXD):

MAXD = max(x(i)) - min(x(i)) (3.2)

where x(i) is position data for the trunk for sample number "i"

Root-mean-square velocity (RMSV):

1 N-I
RMSV = [(i)j (3.3)

N -I-1

where (i) is derivative of the position data for the trunk for sample number "i"

N = number of samples
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Centroid Frequency (CFREQ):

CFREQ = (3.4)

where pto and p 2 are the zeroth and second spectral moments, respectively

Frequency Dispersion (FREQD):

2

FREQD= 1- (3.5)
uo x)U2

where spectral moments pto, pt, 2 are calculated for k = 0, 1, 2, respectively in Equation 3.6

Pk = (i x Af) x G(i x Af) (3.6)

and Af is the frequency increment (computed as 1/time increment between samples)
G(i x Af) = discrete Fourier transform of the trunk position trace where "i

is the sample number
m = number of discrete power spectral density estimates

3.3.5.4 Mediolateral center-of-pressure (ML COP)

A common measure used to describe the movement of the vertical ground

reaction force is the variation in the COP. The COP is derived from ground reaction

vertical force data. Since the stance width was smaller in the mediolateral direction than

in the anterior-posterior direction, we expected greater instability in mediolateral

direction. Thus, we were most interested in mediolateral (ML) shifts in COP (Equation

3.7).

(F, + Fm) (FLF. + FLHzw
MLCOP - - 37

(FRFz+ F z+FLF,+FL ) 2

w = mediolateral distance between footplates

FLFz = vertical force on left front footplate

FRFz = vertical force vector on right front footplate

FLHz = vertical force vector on left back footplate
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FRnz = vertical force vector on right back footplate

3.3.5.5 Head-turn

For the head-turn experimental condition, a manual switch was pressed by the

experimenter to illuminate a target in a specified position. The digital output of the

illuminated target had a value of zero or one indicating that the light was on or off,

respectively. This allowed us to distinguish head-turns made by the animal to look at the

specified target. Each head-turn within the measured data was then marked just before

and just after the head-turn. The parameters of interest were the maximum displacement,

or range of motion, (MAXD) and the maximum velocity (MAXV) in yaw and roll of the

head, foretrunk, and hindtrunk (Equations 3.8 and 3.9). After all head-turns to the target

were identified in the measured data, outliers based on MAXD head yaw and were

excluded from usable data. In order to normalize the data based on head motion,

percentage movement of foretrunk or hindtrunk roll or yaw relative to head yaw were

also computed (Equations 3.10 and 3.11).

MAXD = max(x(i)) - min(x(i)) (3.8)

where x(i) is position data for either the head or foretrunk within a given head turn section for
sample number "i"

MAXV = max(*(i)) - min(*(i)) (3.9)

where i(i) is derivative of the position data for either the head or foretrunk within a given head
turn section for sample number "i"

nMAXD trunk roll = MXrunkroll 1000/ (3.10)
MWAADeadyaw
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nMAXD trunk yaw = 1  0  (3.11)
MAXheadyaw

3.3.5.6 Torque about projected COM

The moment of a force is the turning tendency, or "torque", about an axis passing

through a specific point. In this case, the moment was determined about a point "P"

which was located halfway (0.5w) transversely between the footplates and 0.4L towards

the front footplates longitudinally (Figure 3.4). Moments were computed about this

location because it was the ground projection of the approximate location of the animal's

COM. Since the animal exerted ~55-60% weight on the front footplates in quiet-stance

and head-turn experiments, the COM was more towards the front footplates.

Furthermore, previous studies have shown the rhesus monkey trunk COM to be ~ 40%

towards the proximal joint center (Vilenksy 1978). Since the animal had a more

narrowed mediolateral stance than anterior-posterior, greater imbalance was expected in

roll. Thus, the rolling moment was determined for both quiet-stance and head-turn

experiments.
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Figure 3.4 Schematic of the top view of platform for moment calculation.

The moment was calculated by computing the cross product of the respective

moment arm with the footplate force vectors (" M= r x F") and is shown in the equations

below. The torque in roll is shown in Equation 3.14B.

MP = r x F (3.12)

where r = distance vector
F = force vector
P = point from which moments were calculated

or in expanded form

MIP = (0.4 Lj - 0.5 w ) x (F,.i + FIFI + FLF +(o.4Lj + 1.5wi) x (FRF + FFj + FRF

(-0.6Lj -0.5wi) x(FLHI + FLHj + FLHk )+(-0.6Lj +0.5wi) x (F,7 + FRHj + Fk)
(3.13)

where L = anterior-posterior distance between footplate centers
w mediolateral distance between footplate centers

I unit vector in the x-direction

j = unit vector in the y-direction

k unit vector in the z-direction
force vector on left front footplate

= force vector on right front footplate

FLH = force vector on left back footplate
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F, = force vector on right back footplate

Moment in roll:

( M,)1= MPj =(-0.5w- x FL) +(0.5wx Fk)-+ -0.5wl x FLHk)+(0.5wi xFRk) (3.14A)

or in scalar form

(Mjroii = (+0.5w(FLF)z)+(- 0.5w(FF ))+ (+ 0.5w(FHz)+(- 0.5w(FRH)z) (3.14B)

where "z" denotes vertical

3.3.5.7 Anchoring Indices

Anchoring indices (Amblard et al. 1997) have been used as a means of describing

the relative angular deviations of a body segment relative to an inferior body segment

(e.g. head relative to trunk) and is shown in Equation 3.15.

AI= r' " (3.15)
ar. + Ca

where
Al = anchoring index
a, = standard deviation of the relative angular distribution (with respect to axes linked to inferior
anatomical segment)

aa = standard deviation of absolute angular distribution of segment considered

Anchoring index (Al) was utilized to determine the movement of one body

segment relative to an inferior body segment for control and vestibular-lesioned states.

An Al < 0 would, in theory, indicate that the body segment was more stable relative to

the inferior body segment than in space (i.e., en bloc motion), an Al > 0 would indicate

that the body segment was more stable in space than relative to the inferior body

segment, and an Al = 0 would indicate that the body segment was neither more stable in

space nor relative to the inferior body segment. For both normal and mBVH sensory
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states of R2, head to foretrunk (or head-foretrunk Al) and foretrunk to hindtrunk (or

foretrunk-hindtrunk Al) were determined in roll.

In regards to comparison of results, for the above analyses a student's t-test

(assuming unequal variance, unequal sample size) was used in order to determine

significance.

3.4 Results

3.4.1 Quiet-stance experimental condition

Quiet-stance posture with head-mounted (HM) juice dispenser was studied in the

normal and mild vestibular-loss (mBVH) rhesus monkey, R2, and was quantified by

measuring both foretrunk (Figure 3.5, top left) and hindtrunk roll (Figure 3.5, top right).

In the normal state, changing stance distance for either gum or foam surfaces had no

significant effect on foretrunk roll, however changing from the gum to the foam surface

led to an increase in RMS foretrunk roll (df = 83, t = 2.80 , p < 0.01). For R2 in the

mBVH state, foretrunk RMS roll was not significantly different for the gum conditions

but was significantly decreased from normal values for both the foam-wide condition (df

= 74, t = -3.03 , p < 0.01) and the foam-narrow condition (df = 70, t = -3.9, p < 0.001).

Initially, the decreased RMS roll for R2 in the mBVH state may seem counterintuitive

and is addressed in the discussion section. For the "most difficult" quiet-stance test

condition (foam-narrow), increases were seen in RMS ML COP (df = 99, t = 11.10, p <
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for the mBVH state compared to the normal state (Figure 3.5, bottom).0.001)
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Figure 3.5 R2 quiet-stance head-mounted juice reward configuration results for foretrunk (top left)
and hindtrunk (top right) RMS roll as well as RMS ML COP (bottom) as a function of test condition,

with standard error bars shown.

Quiet-stance posture, for the earth-mounted juice configuration, was studied in R2

in the normal and mild vestibular loss (mBVH) sensory state and in RI for the control

and severe vestibular loss (sBVH) sensory state.

During the quiet-stance experiments, there were several factors that could have

led to the sBVH animal, RI, performing worse that were not relevant to postural control

(e.g., behavioral issues, change in temperament, and inattention of the animal due to its

severe impairment). For these reasons, we compared RI's best quartile performance

(RMS values in the lowest 25% bracket) to R2's best quartile performance (Figure 3.6).
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Severely-impaired (sBVH) RI showed an increase in sway in comparison to control

values, while mildly-impaired (mBVH) R2 showed a decrease in sway compared to

normal values except for the foam-narrow test condition (Figure 3.6).

In the normal state, R2 exhibited non-monotonic RMS roll for increased task

difficulty in that there was an increase in RMS roll between gum-wide and gum-narrow

(df = 20, t = 4.75, p < 0.001), no significant difference between gum-narrow and foam-

wide, and a decrease between foam-wide and foam-narrow (df = 13, t = -3.65, p < 0.01).

In the mBVH state, R2 showed a significant increase (df = 5, t = 11.18, p < 0.001) in

RMS roll between gum-wide and gum-narrow, and no significant difference between

gum-narrow and foam-wide, and between foam-wide and foam-narrow. In comparing

mBVH sensory state to the normal state, foretrunk RMS roll decreased for all quiet-

stance test conditions (e.g., gum-narrow: df = 14, t = -6.77, p < 0.001) except for the

foam-narrow condition (Figure 3.6, right).

In the control state, RI did not exhibit the characteristics seen in the normal state

of R2 (Figure 3.6, left). This difference between RI and R2 could be accounted for by

the fact that RI in the control state may have sustained some level of vestibular damage

caused by the surgical prosthetic implantation unlike the unimplanted R2. For control

RI, there was a slight increase in RMS roll between gum-wide and gum-narrow.

Between gum-wide and foam-narrow, there was a large significant increase (df = 8, t =

10.59, p < 0.001). This response was opposite that of R2's response. R2 consistently

placed a greater percentage of weight (~ 55-60 %) on the forelimbs, and therefore was

able to brake her COM more effectively. Figure 3.6 shows that RI in the sBVH sensory

state had increased RMS roll when compared to the control state values except for the
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foam-narrow condition. Severely-impaired RI may have used an alternate strategy in the

foam-narrow condition: crouching to lower its COM. This could have effectively

allowed the animal to become more stable. When comparing sBVH to the control

sensory state for RI, there was a significant increase in RMS roll for gum-wide, gum-

narrow, and foam-wide test conditions (df = 3, t = 4.39, p < 0.05; df = 4, t = 10.54, p <

0.001; df = 3, t = 20.14, p < 0.001, respectively) and an insignificant difference for the

foam-narrow condition.

0.6 0.6
0.5 EControl a. ENormal R2

*sBVH 0.5 *mBVH

0 0.4 0 0.4

0.3 0.3
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01 U 0
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Figure 3.6 Best quartile foretrunk RMS roll as a function of test condition, with standard error bars
shown.

3.4.2 Head-turn experimental condition

R2 performed the head-turn experiment in both the normal and the mBVH

sensory states. For peak (MAXD) head yaw, both normal and mBVH states show that

MAXD yaw increased with increasing target amplitude (Figure 3.7, left). However, for

all head-turn amplitudes, for both sensory states, the animal undershot the actual target

position (i.e., the animal turned its head part of the way and then likely used eye

movements to fixate on the target). In comparing peak head movements for 60 and 900

targets there were no significant difference between normal and mBVH states. However,

MAXD for mBVH was significantly less than normal (df = 71, t = -5.68, p < 0.001) for
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the 370 target. The mBVH animal possibly used its eye movements to fixate on the

small-amplitude target rather than turning its head.

Although the MAXD yaw of the head was insignificantly different for the 60 and

900 target amplitudes when comparing the normal and mBVH states, there were

differences detected in roll (Figure 3.7, right). For the 370 target amplitude, there were

insignificant differences in peak head roll between normal and mBVH. However, the roll

of the head in the mBVH sensory state was significantly greater than normal for the 60

and 900 targets (df = 181, t = 5.70, p < 0.001 and df= 91, t = 2.57, p < 0.02, respectively).

In both the normal and mBVH sensory states, the animal's foretrunk and head

yaws were in the same direction (towards the target). MAXD foretrunk yaw was

normalized by MAXD head yaw ("nMAXD foretrunk yaw") and is expressed as an

absolute percentage (Figure 3.8, left). For the normal state, nMAXD foretrunk yaw

increased with increasing target amplitude. For the mBVH state, nMAXD foretrunk yaw

was not significantly different for the 370 target amplitude. For the 600 and the 900

amplitudes, the animal's mBVH nMAXD foretrunk yaw and the MAXD foretrunk roll

normalized by MAXD head yaw ("nMAXD foretrunk roll" shown in Figure 3.8, right)

were significantly less than normal (df = 223, t = -9.09, p < 0.001 and df = 96, t = -5.16, p

< 0.001). For the mBVH state, nMAXD foretrunk roll decreased for increased target

amplitude.

In both the normal and mBVH states, hindtrunk motion in yaw was opposing head

and foretrunk motion in yaw. Hindtrunk yaw was normalized by head yaw input and was

described as an absolute percentage of the peak head yaw, or "nMAXD hindtrunk yaw"

(Figure 3.9, left). For the mBVH animal, nMAXD hindtrunk yaw was the not
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significantly different from the normal value for the 370 amplitude. However, at the 60

and 900 amplitudes, nMAXD hindtrunk yaw for the mBVH state was significantly less

than the normal state (e.g., df = 172, t = -2.50, p < 0.05 for the 900 amplitude). Similarly,

mBVH nMAXD hindtrunk roll (Figure 3.9, right) was significantly less than the normal

values for the two highest target amplitudes (e.g., df = 172, t = -9.10, p < 0.001 for the

900 amplitude). Although only peak displacements are only shown here, peak velocities

were also computed and showed similar trends (i.e., decreased velocity for the mBVH

sensory state in comparison to normal values).
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3.4.3 Moments in roll and horizontal forces

One of the behavioral goals of the postural response is to control the COM. Since

most of the rhesus monkey's body mass resides in the trunk, trunk position and stability

are directly related to stabilizing the COM. When the animal exerted the appropriate

forces on the platform to oppose external forces acting on the body, COM stability was

achieved.

Figure 3.10 displays the mean roll moments about an approximate COM

projection, for quiet-stance test conditions (Figure 3.10, left) and head-turn amplitudes

(Figure 3.10, right). Roll torques were computed calculating the cross product of the

moment arm vector (from the approximate COM projection to the center of each

footplate) and the vertical ground reaction force vectors that were equal and opposite of

the forces that animal was exerting on the balance platform footplates.

Quiet-stance Head-turn
1.0

1.5 0.8 *Normal A

E 0.5 A mBVH
+0.3

0.5 0.0
Z A

-0.3 A

0 a E .0 0 -.
S U A

-. 8-0.5 .
-1.0

-1 gum-wide gum-narrow foam-wide foam-narrow 20 40 60 80 100
Test Condition Target Amplitude(deg)

Figure 3.10 Mean roll moments, with standard error bars, about the approximate center-of-mass
projection for quiet-stance (head-mounted dispenser) (left) and head-turn (right).

Positive roll torque is rolling to the right and negative roll torque indicates rolling

to the left. Increases in magnitude, or absolute value, mean that the animal is becoming

more resistant to motion in roll. In the quiet-stance gum test conditions, the animal had a

smaller magnitude roll moment in the mBVH sensory state than normal, indictating that
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the animal was excerting less torque on the platform in the mBVH state (Figure 3.10,

left). However, in the mBVH state animal going from the gum-wide to foam-wide,

resulted in a change in direction of the torque (i.e., the torque became < 0) indicating a

possible change in strategy from normal. For the foam conditions, the mBVH torque

remained < 0. In the mBVH state, the animal exerted a torque equal in magnitude but

opposite in direction to the normal animal in the foam-wide condition. For the foam-

narrow condition, the normal animal exerted ~ 0 torque, however, for the mBVH state it

exerted a torque < 0. This torque helped the animal to remain rigid in the roll plane (i.e.,

reduced RMS trunk roll) even though the test condition (foam-narrow) was difficult.

This strategy is consistent with increased ML COP, and decreased RMS foretrunk roll

seen in Figure 3.5 for the foam-narrow condition.

For the head-turn experimental condition, the normal animal showed torques

slightly < 0. However, the for mBVH state the animal showed increasing torque

magnitude (or absolute value of torque) for increasing target amplitude. This result is

consistent with: 1) the animal using different strategies during head-turns in the normal

and mBVH states and 2) the animal exerting greater torque to reduce its body roll in the

mBVH state. This increased torque exerted by the animal in the mBVH sensory state

allowed it to "stiffen" (i.e., reduce its trunk body sway) compared to the normal state.

This increased "stiffness" is consistent with previous results that show body or head

displacements in bilateral vestibular-loss humans and cats leads to higher levels of tonic

activity in the neck, trunk, and legs (Horak et al. 1994).

Horizontal ground reaction forces are shown for both the normal and mBVH

states in the quiet-stance gum-wide and gum-narrow test conditions (Figure 3.11). As
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has been shown previously in normal cats (Macpherson 1994), the normal horizontal

ground reaction forces were diagonal. Consistent with previous findings, when

mediolateral stance width was changed from wide to narrow, the horizontal force vectors

rotated medially, towards the centerline.

However, when the rhesus monkey was mildly impaired, forces typically rotated

(and even reversed directions), as well as increased in magnitude. In particular, the

forelimb forces that were acting to stabilize the foretrunk became much larger in

magnitude than the normal values, indicative that the animal was resistant to movement

(i.e., becoming more "stiff'). The animal exerted a greater percentage weight on the

forelimbs (-55- 60%) than the hindlimbs, so its COM was closer to the foretrunk than the

hindtrunk for all conditions. This application of forces seen in the forelimbs indicated

that the animal in the mBVH state applied a much larger force than in the normal state in

order to stabilize its COM (Tables 3.2 and 3.3). In terms of body movements, the

exertion of larger forces led to either no difference or decreased trunk roll (as seen in

Figure 3.5). In the mBVH state, the change in force pattern seen between wide and

narrow was possibly a way for the animal to counteract unwanted bending of the trunk.

More specifically, the force couple seen at the narrowed stance width (Figure 3.11, right)

were a means of resisting the bending moments of the animals' vertebral column that had

resulted from standing in the narrowed platform configuration.
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Figure 3.11 Schematic of quiet-stance mean (averaged) horizontal forces for all gum-wide (left) and
gum-narrow (right) usable trials. Normal (blue) and mBVH (red).

Table 3.2 Quiet-stance gum-wide horizontal forces magnitude (top) and direction (bottom) for
normal and mBVH states.

MAGNITUDE

Left Front (N) Right Front (N) Left Hind (N) Right Hind (N)

Control 1.62 +/- 0.12 1.76 +-0.13 1.19 +/- 0.07 1.90+/-0.17
mBVH 3.97 +/- 0.12 4.46 +/-0.17 2.48 +/- 0.04 1.77 +/-70.04

DIRECTION

Left Front (deg) Right Front (deg) Left Hind (deg) Right Hind (deg)

Control 171.43 +/- 43.65 29.36 +/- 56.56 187.99 +/- 55.84 323.42 +/- 83.37
mBVH 158.91 +/- 25.16 37.33 +/- 57.04 246.75 +/- 44.54 316.91 +/- 67.26

Table 3.3 Quiet-stance gum-narrow horizontal forces magnitude (top) and direction (bottom) for
normal and mBVH states.

MAGNITUDE
Left Front (N) Right Front (N) Left Hind (N) Right Hind (N)

Control 1.09 +/- 0.07 1.06 +/- 0.06 0.09 +/- 0.04 2.51 +/- 0.08
mBVH 2.97 +/- 0.08 2.98 +/- 0.03 1.08 +/- 0.06 0.30 +/- 0.04

DIRECTION
Left Front (deg) Right Front (deg) Left Hind (deg) Right Hind (deg)

Control 125.10 +/- 80.79 53.91 +/- 60.26 266.01 +/-67.17 283.08 +/- 70.60
mBVH 244.83 +/-60.31 60.40 +/- 43.91 274.12 +/-67.74 86.66 +/- 45.25
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3.4.4 Relative motion of body segments for normal and mB VH sensory states

3.4.4.1 Anchoring Indices (in roll)

Anchoring indices were used to characterize the relative motion of a superior

(e.g., the head) to inferior body segment (e.g., foretrunk) for R2 in the normal and mBVH

sensory states (Figure 3.12). For the quiet-stance experiment, in comparing each test

condition for the normal and mBVH sensory states, head-foretrunk roll Al were not

significantly different from each other. However, head-foretrunk Al was significantly <

0 for all test conditions for both sensory states (i.e., the head was more stable relative to

the foretrunk than in space). In comparing the normal and mBVH foretrunk-hindtrunk

roll Al, there was no significant difference for the gum conditions, however, there were

significant differences seen in the two foam conditions. More specifically, foam-wide

mBVH Al signficantly increased compared to normal (df = 75, t = 3.93, p < 0.001) and

foam-narrow mBVH Al significantly decreased compared to normal (df = 100, t = -2.12,

p < 0.02). For the foam-wide condition, the animal in the mBVH state had a foretrunk-

hindtrunk Al that was not significantly different than 0 indicating that the foretrunk was

neither more stable in space nor relative to the hindtrunk. However, for the foam-narrow

condition the animal in the the mBVH state showed a foretrunk-hindtrunk roll Al that

was less than normal and significantly < 0 meaning that the foretrunk was more stable

relative to the hindtrunk than in space (i.e., en bloc motion possibly indicative of

increased stiffening).
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Figure 3.12 Quiet-stance experimental conditions (head-mounted dispenser): head-foretrunk (left)

and foretrunk-hindtrunk (right) roll Al with standard error bars.

For the head-turn experiments, head-foretrunk Al was < 0 but increased with

target amplitude in both the normal and mBVH states (Figure 3.13). An Al < 0 indicated

that the head was more stable relative to the foretrunk than in space. The decrease in Al

seen in going from normal to mBVH states was due to the animal compensating by

changing postural strategy. More specifically, in the mBVH state the animal may have

adopted a head fixed to trunk strategy to compensate for its mild vestibular loss. This

strategy has been seen in human vestibular-loss subjects (Herdman 1994). In both the

normal and mBVH sensory state, foretrunk-hindtrunk Al decreased with an increase in

target amplitude (i.e., the animal's body motion shifted towards en bloc foretrunk-

hindtrunk motion with the two segments being "carried" together when the animal turns

its head towards the target), however, the results were not significantly different between

the two sensory states.
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Figure 3.13 Head-turn experimental condition: head-foretrunk (left) and foretrunk-hindtrunk
(right) roll Al with standard error bars.

3.5 Discussion

The purpose of this study was to determine the effects of degrees of vestibular

dysfunction on the rhesus monkey postural response to stationary support surface

experimental conditions. The principal findings were that for a mildly impaired (mBVH)

sensory state there was reduced body sway (RMS roll) compared to the normal state,

however, for a severely impaired (sBVH) sensory state there was increased body sway

compared to control state. Further investigation of mBVH measurements showed

increased moments and increased (horizontal) footplate force application (Figures 3.10

and 3.11). This, in conjunction with the decrease in trunk roll of the mildly-impaired

state compared to normal values (as shown in Figures 3.5 and 3.8), led to the notion of

"stiffening" compensation. We hypothesized that increased intrinsic/short-latency

stiffness was utilized as a postural compensation mechanism for the animal in the mBVH

state, R2, for quiet-stance, and possibly head-turns, in that it reduced body roll from

normal values. However, it was hypothesized that increased intrinsic/short-latency

stiffness was an insufficient postural compensation mechanism in the animal in the sBVH
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state, Ri, and that an alternate strategy was used. Hypotheses involving mBVH and

sBVH states were explored utilizing a quiet-stance feedback controller model.

3.5.1 The role of long-latency and intrinsic/short-latency mechanisms for postural

control on a stationary platform

Based on previous findings in humans and animals with severe bilateral vestibular

hypofunction, it was originally hypothesized that the animal in the mBVH sensory state

would exhibit increased trunk sway in the more challenging quiet-stance test condition

(foam-narrow) and head-turn experimental conditions due its vestibular loss. However,

for the quiet-stance and head-turn experiments, we measured either no significant

difference or decreased roll compared to the normal values. It has been proposed that in

vestibular-loss subjects perceived threat (e.g., fear of falling at height) alters the postural

control mechanisms used such that subjects became tense, more rigid, and therefore able

to maintain sway ranges comparable to controls (e.g., Carpenter et al. 2001). Thus, one

possible explanation is that in the mBVH sensory state, the animal compensates for the

partial impairment by becoming more rigid, thereby reducing its trunk roll. We

hypothesized that the animal may have been able to compensate for the mild impairment

by increasing muscle "stiffness" (via intrinsic/short-latency and/or long-latency

mechanisms), in particular for the foretrunk region, therefore causing a decreased trunk

roll.

Upright stance involves the use of both long-latency and intrinsic/short-latency

mechanisms to generate corrective torques (e.g., gravity acting on the body generates a

torque that drives the body away from vertical, thus a corrective torque must be generated

in order to correct for this torque and remain upright). We describe long-latency (~ 200
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ms) mechanisms as those that are mediated by the three main sensory systems used for

upright posture. The vestibular, visual, and proprioceptive systems are used to provide

long-latency neural feedback control of upright balance (e.g., vestibular system senses

head motion and orientation in space, proprioception detects orientation of one body

segment relative to another, and vision detects head orientation and motion in space). In

order to extract overall information of body orientation in space and elicit the appropriate

postural response, the information from each sensory system is integrated. Short-latency

reflexes that act with "short" (< 25 ms) neural time delay, and intrinsic mechanisms are

derived from the inherent mechanical properties of muscles and tendons around the joints

that act with no time delay. Intrinsic/short-latency stiffness provides a force that

counteracts gravity analogous to the way a spring generates a counter force when it is

displaced from equilibrium. In regards to previous studies of upright stance in humans,

the effective role of long-latency (commonly called "active") versus intrinsic/short-

latency (commonly called "passive") mechanisms is still a controversial topic of debate

and some studies even fail to differentiate between the two.

Peterka (2002), and others, described a view that intrinsic/short-latency ankle

stiffness (i.e., stiffness without neural modulation) is very low (i.e., < 10-15% mgh,

where mgh is equal to body mass x gravity x vertical COM height, is the "load stiffness")

but that long-latency (neural controller) stiffness plays a dominant role in postural

response. Low intrinsic values are supported by transfer function fits to human

experimental data for pseudorandom platform (pitch) tilts for stimuli ranging between 0.5

to 80 peak-to-peak (Peterka 2002). Another study that describes long-latency ("active")

dominance was (Qu and Nussbaum 2009). This study held the view that long-latency
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neural controller mechanisms dominated quiet-stance posture and that intrinsic/short-

latency (e.g., "passive") mechanisms were typically < 10% of long-latency torques.

In an alternate view, it has been proposed that intrinsic/short-latency ankle torque

(i.e., torques not attributed to long-latency neural feedback) generate a large proportion of

corrective torque necessary to counteract the torque produced by gravity. Previous

studies (e.g., Gurfinkel et al. 1975; Nashner 1976), advocated that intrinsic/short-latency

stiffness in activated calf muscles is sufficient to stabilize the human inverted pendulum.

Loram and Lakie (2002) and Casadio et al. (2005) reported that although intrinsic/short-

latency stiffness values are < 100% (i.e., 91 and 65% of mgh, respectively), they are large

enough to make a significant contribution to postural stabilization. Furthermore,

although there is no differentiation between intrinsic or sensory modulated mechanisms,

Kearney and Hunter (1982) have shown that ankle stiffness increases as stretch size

decreases.

The extent that intrinsic/short-latency mechanisms and long-latency mechanisms

contribute to quiet-stance and dynamic torque remains controversial. However, Loram et

al. (2007) showed that intrinsic/short-latency stiffness is substantial for small, slow ankle

rotations but that intrinsic/short-latency stiffness decreases as the size of the ankle

rotation increased. (Long-latency) muscle response was recorded by use of

electromyography (EMG). For short stretches (i.e., for 0.4 and 0.15 deg rotations), the

'without EMG' and 'with EMG' models showed stiffness coefficients that were not

significantly different: 'without EMG': 3 +/- 1 and 3.6 +/- 0.9 Nm/deg for 0.4 and 0.15

deg rotations and 'with EMG': 3 +/- 0.9 and 3.6 +/- 0.8 Nm/deg. That is, stiffness for

small rotations reflect mechanical (e.g., intrinsic) and not long-latency modulation of
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ankle torque, therefore implying that muscle activity makes little difference to "short-

range" stiffness. However, for long stretches (e.g., 70 rotations), short-range stiffness

decreases. Short-range stiffness is high (101% mgh) at 0.03' and decreases drastically to

19% mgh for 70 rotations. This finding is in good agreement with previous work (Peterka

2002), in that (long range) intrinsic/short-latency stiffness is low (e.g., 13% mgh) during

perturbed stance..

Other findings (Cenciarini et al. 2010) have shown that increases in long-latency

(commonly called "active") stiffness with corresponding increases in long-latency

damping are a means of compensation in elderly adults (i.e., long-latency stiffness and

damping are significantly larger in the older subject group than in the young adult

subjects) in response to a pseudorandom roll-tilt stimuli supplied to the support surface.

Peterka (2002) also found that long-latency stiffness values are higher for bilateral

vestibular-loss subjects than normal subjects, suggesting that the vestibular-loss subjects

use this as a mechanism to compensate. Furthermore, it was determined that

intrinsic/short-latency (also commonly called "passive") mechanisms are small relative to

long-latency mechanisms for support surface tilts.

Based on the findings within the reported literature and this thesis, we have

hypothesized that in quiet-stance for normal and mBVH sensory states (i.e., with short

ankle stretch and stationary platform surface), that intrinsic/short-latency mechanisms

dominate (e.g., in the forelimbs of the animal). For large platform rotations (e.g.,

pseudorandom roll-tilts) and possibly for larger sways while standing on stationary

platform (e.g., quiet-stance performance of the animal in the sBVH sensory state) long-

latency (neural controller) mechanisms dominate. In this chapter we investigate the
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hypothesis that in the mBVH sensory state, the animal, R2, uses increased intrinsic/short-

latency stiffness to compensate for situations where the platform surface is stationary. In

the sBVH sensory state, the animal, Ri, was unable to compensate and exhibits large

sway. Although the platform was stationary in quiet-stance the animal's body sway in

the sBVH state was much larger than in the control state. Thus, we hypothesize that Ri's

utilization of intrinsic/short-latency mechanisms had decreased due to large sways (and

therefore large ankle stretch), and that sway was substantial enough that neural feedback

control was involved in the response. As previously stated, long-latency neural feedback

is necessary for large ankle stretch (e.g., during large platform rotations) as shown in

Peterka (2002).

In future work, direct measurement of muscle activity via EMG in the rhesus

monkey would aid in elucidating the role of long-latency mechanisms (acting with long

neural time delay) versus intrinsic/short-latency mechanisms (acting with little or no time

delay). Chronic invasive implantable EMG electrodes have been used in cats (e.g.,

Macpherson 1988b) and in rhesus monkeys (Hodgson et al. 2001). However, this method

requires intensive surgery that would involve subcutaneous implantation of the electrode

in the belly of each specific muscle. In the current study, non-invasive methods, like

reaction forces, body measurement data and a simple model (Section 3.5.2), were used as

a first step to gain insights into the roles of long-latency and intrinsic/short-latency

control mechanisms in the rhesus monkeys with varied levels of vestibular function.

3.5.2 Quiet-stance control model

The quiet-stance controller model implemented below shows proof-of-concept

that increased intrinsic/short-latency stiffening from normal, as proposed for the mBVH
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sensory state, can decrease body sway, and in the severe vestibular loss sensory state,

sBVH, the animal used different control mechanisms but was unable to compensate or

maintain stability.

For quiet-stance, the human biped is often approximated to sway as a single-link

inverted pendulum, rotating rigidly about the ankle joint (ankle strategy). Models of

bipedal, human stance have treated the human as a single-link inverted pendulum that is

inherently unstable and requires feedback control to stabilize. When there is deviation

from upright stance, a corrective torque, Tc, comprised of the summation of an long-

latency (neural controller) torque, TL, and intrinsic/short-latency torque, Ti, is generated.

Neural controller torque, TL, is generated with stabilization requiring one component of

corrective torque proportional to the angular deviation, Kp, another component that is the

time derivative of the angular deviation, Kd, and also a third component, the integral of

the angular deviation, Ki, has allowed for an even better explanation of human posture

data but is not necessary to stabilize the pendulum (Johansson and Magnusson 1991).

This proportional-integral-derivative "PID" controller has been used to model the neural

controller involved with stabilizing the human, inverted pendulum. A simple PID

feedback control model can be used in conjunction with experimental quiet-stance COP

(Maurer and Peterka 2005) or COM data traces.

As opposed to a full-body, complex biomechanical model, the simple inverted

pendulum model is implemented here to model the foretrunk in order to display proof-of-

concept that increased stiffening can decrease trunk roll.

Figure 3.3 shows the quiet-stance proportional-derivative (PD) feedback control

model for the rhesus monkey foretrunk that was implemented using Simulink
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(MATLAB, Mathworks, Natick, MA, version 2008b). Since integral gain, Ki, was not

necessary to stabilize the pendulum, we set this term to zero. Although the monkey

attempted to stand stationary, there was measurable spontaneous sway present that was

modeled as a low-pass, white noise disturbance input. The moment of inertia of the

foretrunk was J - 0.09 kgm2 and mgh - 2.5 kgm2/s2 were determined using

anthropometric measurements derived from cadaveric rhesus monkeys (Vilensky 1979).

Noise gain, Kn was set to 462 Nm and Tn, to 100 s (as in Maurer and Peterka 2005). The

white-noise input creates a disturbance torque, Td, and outputs are the angular deviation

of the trunk in roll. Visual, vestibular, and proprioceptive gains are assumed to sum to

one (i.e. total sensory system gain = 1). Human mean intrinsic/short-latency stiffness (~

4 Nm/deg) and intrinsic/short-latency damping (- 0.7 Nms/deg) values for small ankle

stretch (0.150) were used as initial values for the controller model and long-latency

mechanisms were assumed to play minimal a role and set to ~ 0 (Loram et al. 2007) for

normal and mBVH quiet standing.

Simulink (MATLAB, Mathworks, Natick, MA) model simulations were run for

600 s. The 600 s simulation was then segmented into forty, 15 s trials. For each trial, the

mean was computed and subtracted from each data point within the given trial. The trials

were then pooled and the means and standard errors for each of the sway measures were

computed. These simulated sway measures were then compared to experimental sway

measures computed for the foam-wide head-mounted test condition for R2 in the normal

and mBVH sensory states and RI in the sBVH sensory state. This test condition was

selected because it was where changes in sway were seen in mBVH R2 and sBVH RI

compared to their baseline (i.e., normal or control) states.
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3.5.2.1 Normal and mBVH model-simulated sway

Head-mounted control and mBVH data from R2 were used in conjunction with

the model. Control intrinsic/short-latency stiffness, K, affected displacement sway

measures and intrinsic/short-latency damping, B, affected velocity and frequency sway

measures. The human values of K = 4 Nm/deg and B = 0.7 Nms/deg (Loram et al. 2007)

were used as initial values. The experimental mean values for the sway parameters RMS

and RMSV were compared to the RMS and RMSV obtained by model-simulated roll

resulting from various K and B values. The optimal values for K and B occurred when

the model-predicted sway parameters for RMS and RMSV intersected the experimental

values for RMS and RMSV. However, in order for the model-predicted sway measures

to better match the other sway measures (MAXD, CFREQ, and FREQD) within ~ 10 %

error from the experimental values, K and B values were then adjusted. Thus, the final

normal-fitted values for the animal were K = 8 Nm/deg and 0.62 = Nms/deg. This

increase in stiffness for the normal animal, compared to the human, could be accounted

for due to physiological and anatomical (e.g., rhesus monkeys have high strength-to-

weight, and strength-to-height, ratios), and structural differences (e.g, quadrupedal as

opposed to bipedal stance) between the rhesus monkey and human.

Using a similar procedure described above, for the mBVH sensory state K and B

were determined to be 12.5 Nm/deg and 1.47 Nms/deg, respectively. Figure 3.14 shows

that as K is increased from the normal value (8 Nm/deg) to the mBVH value (12.5

Nm/deg), and the simulated roll decreased. Experimental (measured) and model-

predicted sway measures were closely matched and are shown for normal and mBVH in

Figure 3.15.
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model-predicted (square) and measured data (circle). Bars represent standard error.
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3.5.2.2 sBVH model-simulated sway

In the sBVH experimental results (Figure 3.6), increases from control were seen.

Three possible hypotheses were posed to account for this: 1) there was a large increase in

intrinsic/short-latency stiffness (e.g., the animal attempted to apply a similar, but more

exaggerated strategy than in the mBVH state) without a corresponding increase in

damping thus leading to oscillatory behavior and increased sway (e.g., a severely

underdamped system), 2) there was very small intrinsic/short-latency stiffness and

damping due to the animal having an opposite postural response compared to normal and

thus the animal was unable to compensate and increased roll resulted, or 3) the animal

utilized an alternate strategy than in the normal and mBVH sensory states by activating

neural feedback mechanisms, such as long-latency stiffness and damping, due to the

larger sways (and larger ankle stretch) in the sBVH sensory state.

The first scenario seems the least likely because very large increases in

intrinsic/short-latency stiffness would be unlikely to yield a drastic decrease in

intrinsic/short-latency damping. Furthermore, increases in natural frequency (oscillatory

behavior) of trunk sway associated with this increases in stiffness for low damping values

is not physiologic. For example, for R2 in the normal and mBVH sensory states,

experimental values for CFREQ (normal: 1.415 +/- .021 Hz and mBVH: 1.445 +/-.031

Hz) were not significantly different and therefore were possibly independent of the

sensory state of the animal. The second scenario seems more likely in that sBVH animals

(as in Macpherson et al. 2007) exhibit opposite postural strategies when compared to

control. However, the third hypothesis is most aligned with the previous discussion on

small versus large (ankle) rotations (Section 3.5.1). More specifically, due to the large
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ankle rotation in the sBVH state, and hence large body sway, the animal was likely

utilizing long-latency mechanisms. Decreases in intrinsic/short-latency stiffness were

shown for increased ankle rotations (Loram et al. 2007), but the relationship of

intrinsic/short-latency damping to amplitude of rotation is less clear. Although the

animal is applying neural feedback control mechanisms, it is severely impaired and

therefore is not generating a large enough long-latency mediated corrective torque to

compensate for its loss.

A head-mounted set of quiet-stance sBVH foretrunk data from RI (not shown)

was used to estimate model parameters. Simulated foretrunk roll is shown in Figure 3.16.

Kp and Kd were determined to predict simulated sway measures within the ~10% sway

measure error criterion. Kp was determined to be 0.7 Nm/deg and Kd = 0.02 Nms/deg.

In order to allow better velocity fits, intrinsic/short-latency damping was held at 0.4

Nms/deg. Simulated roll sway measures were closely matched to experimental sway

measures and are shown in Figure 3.17.
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Figure 3.16 Model-predicted foretrunk roll for sBVH sensory state.
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3.6 Conclusions

Previous studies of normal and severe bilateral vestibular-loss (e.g.,

labyrinthectomized) animals and humans have not addressed postural responses as a

function of the degree of bilateral vestibular impairment. This chapter demonstrated that

the rhesus monkey can compensate for a mild degree of vestibular loss by: 1) altering the

forces exerted on the support surface and 2) increasing intrinsic muscle stiffness and

becoming more rigid (e.g., increasing intrinsic/short-latency muscle stiffening).

However, with a severe degree of vestibular loss, the animal was unable to compensate

using the same mechanisms as normal or mBVH states and thus an increase in trunk

sway was seen. Predictions of a feedback controller model were consistent with the

general hypothesis that the degree of vestibular function has an influence on the postural

control mechanisms used.

'Chapter II (Section 2.4.2) addresses animal training.
2Chapter VI addresses head-turn experimental results for a severely-impaired (sBVH) animal with partially
restored vestibular cues (via vestibular prosthesis). Head-turn data was collected for RI in the sBVH and
sBVH aided by a vestibular prosthesis (sBVH +STIM-ON) sensory states.
3Chapter 11 (Section 2.5.4) justifies the logic behind the outlier criteria used.
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IV. Sensory reweighting in the rhesus monkey postural
response

4.1 Abstract

Do rhesus monkeys with normal or mild vestibular loss have the ability to

modulate their reliance on sensory feedback for postural responses? Can sensory

reweighting explain differences between animals with normal vestibular function and

those with vestibular dysfunction? To answer these questions, a dynamic, pseudorandom

ternary sequence (PRTS) roll-tilt input stimulus was applied at several amplitudes to a

balance platform and rhesus monkey trunk roll was measured. Similar to normal human

responses, the normal rhesus monkey exhibits a nonlinear saturating increase in hindtrunk

root-mean-square (RMS) roll for increases in stimulus amplitude (sway saturation

indicative of a change in sensory reliance).. An animal with mild bilateral vestibular

hypofunction (mBVH) also exhibited some sway saturation, but in general showed larger

sway than normal at the larger stimulus amplitudes. For each stimulus amplitude, a linear

approximation of body sway was used to characterize behavior in the form of a system

transfer function. Transfer function gain (e.g., hindtrunk roll/input roll) and phase were

determined for the animal (R2) in the normal and mBVH sensory states. Transfer

function gain of the mild vestibular-lesioned animal increased compared to the normal

state. The animal in the mBVH state oriented more with the platform surface compared

to the normal state that oriented more with earth-vertical at larger stimulus amplitudes.

Transfer function results were used in conjunction with a feedback controller model to

test the sensory reweighting hypothesis: the animal "weighs" (or relies upon)

graviceptive cues more heavily (i.e., orients more with earth-vertical) as stimulus
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amplitude increases. Model predictions were consistent with this hypothesis in that the

normal and mild impaired states model results showed increases in graviceptive sensory

weight (orientation to earth-vertical) with increases in stimulus amplitude. The model

also indicated that differences between the normal and impaired states could be explained

by a change in utilization of sensory feedback (as opposed to other neural mechanisms

such as long-latency stiffness or time delay). Specifically, the model showed that the

monkey in the mBVH state reduced graviceptive sensory weighting and increased

proprioceptive sensory weighting compared to the normal state. In conclusions, both

experimental (measured) results and model predictions support the hypothesis that

sensory reweighting is a balance control mechanism used in both normal and mild

vestibular dysfunction sensory states.

4.2 Introduction

Control theory techniques have been used to characterize the postural control

system (e.g., Goodworth and Peterka 2012; Peterka 2002). For a system approximated as

linear, cross-correlating a random input signal with the system output response yields an

impulse response function, or in the frequency domain the system transfer function, that

fully characterizes the system. Peterka (2002) studied postural control of normal and

severe bilateral vestibular-loss humans. For postural control, transfer function gains

exhibited nonlinear (saturating) stimulus-response curves (Peterka 2002). More

specifically, a normal human's root-mean-square (RMS) center-of-mass (COM) body

sway saturated for the larger platform tilt amplitudes (sway saturation). Saturation of the

normal subjects' response was attributed to the normal test subject's ability to increase

reliance, or weight, on graviceptive (e.g., vestibular cues) as stimulus amplitude
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increased. This prevented them from falling off the platform. However, human subjects

with severe bilateral vestibular loss did not exhibit the same sway saturation in that the

stimulus-response curves remained linear with increases in stimulus amplitude. More

specifically, even at the larger stimulus amplitudes the severe vestibular-loss subjects

continued to orient towards the platform surface and therefore could not maintain

stability. Characteristics that were seen in the RMS stimulus-response curves could also

be seen in the gain relationships of the system transfer functions. For larger stimulus

amplitudes, normal humans' COM was increasingly more stable relative to earth-vertical

(i.e., gain = body tilt /stimulus tilt was decreasing away from 1) than to the platform.

However, bilateral vestibular-loss subjects' COM was more stable relative to the platform

(i.e., gain = body tilt /stimulus tilt > or = 1) than to earth-vertical.

Previous posture studies in quadrupedal animals have not utilized pseudorandom

tilts. Instead, ramp and hold rotations (Macpherson et al. 2007) and discrete sinusoidal

inputs (e.g., Beloozerova et al. 2003; Brookhart et al. 1965) were used. Ramp and hold,

pitch and roll rotations (for 60 peak) of the support surface have been used to study

normal and bilateral labyrinthectomized cats (Macpherson et al. 2007). In the normal

animals, there was activation of the extensors of the "uphill" (away from the direction of

platform rotation) limbs and inhibition of extensors in the "downhill" (with the direction

of platform rotation) limbs. However, following labyrinthectomy there was an opposite

postural response: excitation of the uphill limbs and inhibition of the downhill limbs.

This postural response accelerated the body's COM with the downhill rotation, or in the

same direction as, the platform surface leading to imbalance and falls. This result was

consistent with Peterka's (2002) finding in severe bilateral vestibular-loss humans that
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showed large body sway in response to larger stimulus amplitudes. This finding

suggested that muscle activation patterns were opposite those of the normal subjects (i.e.,

abnormal response magnifies body sway leading to destabilization).

Postural response gain (ratio of the limb axis angle to the platform angle) was

determined for the cat. Similar to the human studies, gain = 1 signified that the limb axis

was tilted at the same amplitude as platform rotation. For normal cats, peak gains in roll

were approximately 0.5. However, after labyrinthectomy, the limb axis peak gains were

> 1 (angle of limb > angle of platform). A gain approaching 0 (e.g., a gain decreasing

away from 1), signified that the limb axis was becoming more stable relative to earth-

vertical and less stable relative to the platform. Thus, due to missing or unreliable

vestibular information the vestibular-lesioned cats tried to align their limb axis with the

platform surface as opposed to earth-vertical. When the severe vestibular-lesioned

animals aligned with the platform surface, the body was accelerated in the same direction

as the platform rotation. This response to platform motion contributed to imbalance and

falls. However, the normal intact animals were capable of aligning with earth-vertical

and therefore were able to restore their balance when the platform was tilted.

We hypothesize that the rhesus monkey exhibits sway characteristics consistent in

pattern to those seen in normal and severe vestibular-loss human and cat subjects. As

opposed to previous studies that have focused on normal vestibular function or severe

vestibular dysfunction, we examined the effects of mild vestibular dysfunction, or

mBVH, on the animal's posture. The main goals of this study were: 1) to determine if

the rhesus monkey stimulus-response curves exhibited sway saturation for normal and/or

mBVH sensory states (indicative of sensory reweighting), 2) to describe the rhesus
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monkey postural control system in terms of system transfer functions, 3) to determine if a

feedback control model based on human postural feedback studies could be applied to

understand monkey postural responses, and 4) if a feedback control model could be

utilized, to test the sensory reweighting hypothesis for the animal in the normal and

mBVH states

4.3 Methods

Experiments were conducted with the approval of the Massachusetts Eye and Ear

Infirmary (MEEI) Institutional Animal Care Committee and were in accordance with

USDA guidelines. One adult, female rhesus monkey (R2: 5 yrs, ~6.7 kg) was used for

these sets of experiments.

The animal was trained to stand free of restraint on the platform to receive a juice

reward. Once the animal was able to stand on the moving platform, normal data were

collected. After the normal experiments were conducted, the monkey underwent a series

of ototoxic treatments. The purpose of these treatments was to target and kill the

vestibular hair cells while preserving a functioning eighth nerve.

Intratympanic gentamicin (IT gent) kills vestibular hair cells and has been used to

treat vertigo in Meniere's patients (e.g., Minor 1999). Initial surgery was conducted

under anesthesia (ketamine (10 mL/kg) pre anesthesia and isoflurane (2 - 5% saturation

with oxygen)) and consisted of tympanic membrane perforation and gentamicin injection

into each ear (i.e., 40 mg/mL in each ear). Maximum damage was estimated to be

approximately 2 weeks post-administration of the drug (1 cycle of IT gent treatment

administration + 2 week waiting period). The animal underwent 5 cycles of IT gent

treatments. The gentamicin treatments were followed by intramuscular streptomycin (IM
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strep) treatments (350 mg/mL per day for 21 days x 2) that were injected into the

animal's muscle.

The degree of vestibular impairment was quantified in terms of the angular

vestibuloocular reflex (VOR) gain (-eye velocity/head velocity). The angular VOR, a

simple eye movement reflex used to measure semicircular canal function, was tested at

discrete frequencies. Final VOR gain (post ablative procedures) was 15% reduction from

normal (for 0.1 to 0.4 Hz). This level of vestibular dysfunction defined the mBVH

sensory state.

4.3.1 Training and data collection

The monkey stood in its natural quadrupedal stance on the balance platform with

9 cm footplate separation in the transverse plane and 31 cm footplate separation in the

longitudinal plane. A platform-mounted juice reward system with a flexible mouthpiece

was used to motivate the animal to stand on the moving platform (Figure 4.1).' Because

the reward system was mounted to the platform, its orientation relative to the moving

platform did not provide the animal an earth-vertical stationary reference.

head foretnmk hmdtrimk

Figure 4.1 Schematic of the juice reward configuration.
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In order to limit visual cues, a black tarp surround and dim lighting were used. To

measure the motion of the head, foretrunk, and hindtrunk, the output of tri-directional

angular position and linear position sensors were sampled at a rate of 150 Hz (miniBIRD,

Ascension Technology Corporation, Milton, VT). In the transverse (mediolateral)

dimension, the stance width was smaller (9 cm) than in the longitudinal (anterior-

posterior) direction (31 cm). Thus, maintaining balance in the mediolateral direction was

a more demanding postural task than in the anterior-posterior direction. As such, the

platform was made to move along the roll-axis (Figure 4.1). In both the training and

testing of the animal, roll-tilt amplitudes of 0.5, 1, 2, 4, 6, 80 peak-to-peak (or "pp") were

used. The pseudorandom stimulus that was used is described below. During testing,

each stimulus cycle was presented 8 times before moving on to the next amplitude. The

stimulus presentation continued until the monkey stopped attending to the task (e.g., the

animal was no longer motivated by the juice reward and hopped off the platform).

4.3.2 Pseudorandom ternary sequence (PR TS) roll-tilt stimulus

A white noise approximated stimulus (pseudorandom sequence) was used as an

input stimulus to control the platform support surface. In the frequency-domain, white

noise has a constant power spectrum for all frequencies much greater than the bandwidth

of the system, however, in the time-domain white noise is an impulse. By cross-

correlating the input, x(t), with the system output response, y(t), an impulse response

function can be obtained, or in the frequency domain H(s), also known as the system

transfer function (Figure 4.2). For a linear system, the transfer function fully

characterizes the system.
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Input excitation Output response
x(t) Ab-Linear System yMt

H(s) IW

Figure 4.2 System schematic.

L[y(t)] Y(s)
H(s) =- - X(S)- transfer function (4.1)

L~x(t)] X(s)

where

L = Laplace operator
s = complex variable
x(t) = the input (as a function of time, t)
X(s) = the Laplace transform of x(t)
y(t) = the output (as a function of time, t)
Y(s) = the Laplace transform of y(t)

The advantages to using a white noise input are the following: 1) constant power

input for all frequencies, 2) the experiment can be performed while the system is

functioning in normal mode, 3) measurements are immune to unwanted noise provided it

is independent of (uncorrelated with) the input white noise source, and 4) presence of

stored energy does not affect the impulse response. However, one disadvantage of using

white noise as an input is that it takes a very long time to obtain an accurate estimate of

the cross-correlation function. In an ideal case, integration time would be infinite

(Davies 1970). The long integration time required for an accurate estimate is overcome

by the use of pseudorandom noise. Pseudorandom noise has approximately the same

autocorrelation as white noise (an impulse), but repeated each period. Thus, the cross-

correlation function may be obtained by integration over only one period of the noise.

Pseudorandom noise signals can have a number of output states (e.g., binary (or 2

output states), ternary (or 3 output states), pentary (or 5 output states)) depending on the
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application. A pseudorandom ternary sequence, or PRTS, (depicted in the schematic of

Figure 4.3, top) can be generated using a shift register and consists of 3 output states: 0,

1, and 2. The sequence is initialized with a series of logics states. Within the shift

register, each stage is cross-connected and simultaneously triggered by a clock pulse, or

the shift time (At). For each clock pulse, the logic contents of the ith stage are transferred

to the (i+ 1 )st stage and a new logic state is introduced to the input of the first stage via the

feedback circuit.

The sequence obtained from the shift register depends on where the feedback

connection is inserted. A modulo-three gate produces the sum-digit table shown in Table

4.1. For modulo-three addition, the result is the same as regular addition.

Table 4.1 Modulo-three addition. (A @3 B)

0
0 0 1 2
1 1 2 0
12 2

In applying a PRTS input stimulus to the balance platform, 0 corresponded to -v

platform velocity, 1 corresponded to zero platform velocity, and 2 corresponded to +v

platform velocity, where "v" is a constant (Figure 4.3, middle). Furthermore, integration

of this sequence yielded platform position. When the PRTS input roll-tilt stimulus was

applied to the platform, output trunk roll was measured (Figure 4.3, bottom).
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n= 4 stages

Modulo-
three gate

2, 2, 2, 1, 0, 0, 2,...

+v, +v, +v, 0, -V1 -V, +V, ...

4
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Time (s)

FUllfit
I
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4
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Time (s)
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2

0

-4

.6
Time (s)

Figure 4.3 Schematic of PRTS generation and application.
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A maximum length sequence is one in which the length of the pseudorandom

sequence, N, is maximum for the given number of stages within the register, n, before the

sequence repeats itself. For a ternary sequence, there is a total of 3" different states,

however occurrence of the state in which the shift register contains 0 logic in each of its

stages (meaning all zero sequence) must be prevented. Thus, the largest possible length,

N, is:

N=3 -1 (4.2)

where
n = number of stages
N = maximum length

The period of the pseudorandom ternary sequence is:

T = At(3" -1) (4.3)

where
A t = shift time
n = number of stages
T period

The frequency bandwidth of the sequence is:

1 1
f, I to f 2 S -- (4.4)

NAt 3At

where
A t = shift time
f, = lower frequency bound
f2= upper frequency bound

For the set of experiments in this chapter, a PRTS that operated using a 4-stage

shift register was used. The PRTS generated an 80 length sequence. The selection of

appropriate shift time and period were based on monkey's attention span and on the
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frequency bandwidth of interest. Thus, the animal tolerated a shift time of 200 ms that

yielded a cycle period of 16 s and a frequency bandwidth of 0.0625 to ~2.33 Hz.

4.3.3 Usable data

In order to identify data sections with human handling artifact, video screening

was conducted. Measurements made during PRTS cycles with human handling artifacts

and during first cycles of each set of PRTS stimuli were discarded. For all the remaining

cycles, offset was removed for each individual cycle. Measurements from remaining

cycles for a given stimulus amplitude were pooled and the sample minimum, lower

quartile (Ql), median (Q2), upper quartile (Q3), and sample maximum were determined.

Outlier sections were defined as those with foretrunk RMS roll less than or greater than

Q1-1.5*(Q3-Ql) and Q3+1.5*(Q3-Ql), respectively (Tukey 1977). Outlier cycles were

identified and discarded from the analysis.2 The remaining cycles were marked as

"usable". A large number of usable cycles were obtained for the normal and mBVH

sensory states (Table 4.2).

Table 4.2 Number of usable cycles for each stimulus amplitude for normal and mBVH sensory
states.

Normal mBVH

(*pp) usable unusable usable unusable

0.5 18 4 20 4

1 14 3 18 3
2 15 3 23 4
4 7 3 20 4
6 11 2 28 6
8 18 3 23 2

4.3.4 Transfer function analysis

The system transfer function, the relationship between output trunk roll to input

platform roll, were computed for the normal and mBVH states.
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Power spectra were computed and averaged over the number of usable cycles. A

discrete Fourier transform (DFT) was used to decompose the PRTS and measured

response to their sinusoidal components. The power spectra computed were the

following:

iN

G(j0) = I X(jw) -Xo(jo) (4.5)

N 

1N

iN

where
N = number of usable cycles

Xi(jo ) = discrete Fourier transform of the stimulus
Yi(jo)= discrete Fourier transform of the response
G,(jo) = power spectral density of the input stimulus
Gy(jo) = power spectral density of the output response
Gy(jo) = cross power spectral density

A property of the PRTS stimulus is that all even frequency components have zero

amplitude (Davies 1970). These even frequency points were discarded from the analysis

leaving 32 odd frequency samples. Spectra were smoothed by averaging the adjacent

frequency points as frequency increased (as described in Peterka 2002). Thus, the power

spectra were represented by 12 points.

The transfer function was computed from the smoothed (denoted by the subscript

"s") odd frequency bands using Equation 4.8.

127



H(jo) (co) (4.8)
G.(jo)

where
H(jo) = system transfer function
(o = angular frequency

Equations 4.9, 4.10, and 4.11 show magnitude and phase of the transfer function,

as well as coherence, respectively.

H(w) = H(jw)* H(jco) (4.9)

ZH(cn) = L tan (4.10)
r Re(H(jco)),

GIf,4 (4.11)

As described above (Equations 4.9 and 4.10), transfer function gain and phase

were computed from the measured trunk roll-tilt and PRTS roll-tilt stimulus. Here we

discuss the significance of the gain and phase values. A gain = 0 indicates that the trunk

orientation is stable relative to any earth reference (e.g., earth vertical). Thus, if the

animal is upright before the stimulus is applied, the trunk tilt is 00 from upright for a

given platform tilt. Conversely, if gain = 1 at a particular frequency, this indicates that

the trunk orientation is stable relative to the platform surface (i.e., trunk sway equals

platform tilt angle) at that particular frequency. If the gain is decreasing away from a

value of 1, this indicates that the trunk is increasingly more stable relative to earth-

vertical and less stable relative to the tilting platform. If the gain > 1, then the trunk tilt is

larger than the platform tilt. A phase = 0 at a particular frequency indicates that the
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motion of the trunk is synchronous with the platform tilt stimulus at that particular

frequency. However, a phase < 0 or phase > 0 means that the motion of the trunk is

either lagging or leading the platform stimulus, respectively.

In order to determine whether the relationship between the stimulus and response

is linear, coherence functions were computed. Coherence can vary from 0 to 1, with 1

indicating a perfect linear correlation between stimulus and response and 0 indicating that

there is no linear correlation between stimulus and response. In theory, coherence should

give an index of the proportion of the output that can be attributed to a linear

transformation of the input. All computations were conducted in Matlab (MathWorks,

Natick, MA, version 2008b).

4.3.5 Anchoring Indices

Anchoring index (Amblard et al. 1997) has been used to describe the relative

angular deviation of a body segment relative to an inferior body segment (e.g., head

relative to trunk) and is shown in Equation 4.12.

AI= 0' r (4.12)
O-r + O7a

where
Al = anchoring index
cy = standard deviation of the relative angular distribution (with respect to axes linked to inferior
anatomical segment)
aa = standard deviation of absolute angular distribution of segment considered

For normal and vestibular lesioned states, the anchoring index (Al) was utilized to

determine the movement of one body segment relative to an inferior body segment. An

Al < 0 would, in theory, indicate that the body segment was more stable relative to the

inferior body segment than in space (en bloc motion), an Al > 0 would indicate that the
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body segment was more stable in space than relative to the inferior body segment, and an

Al = 0 would indicate that the body segment was neither more stable in space nor relative

to the inferior body segment. Head-to-foretrunk (or head-foretrunk Al) and foretrunk-to-

hindtrunk (or foretrunk-hindtrunk Al) were determined in roll.

In regards to comparisons of the measured results, for the above analyses a

student's t-test (assuming unequal variance, unequal sample size) was used to determine

significance.

4.3.6 Model parameter estimation

Model transfer functions were compared to the experimental transfer functions

computed from the measured data. The model transfer function (Equation 4.15) was

based on the model described in Figure 4.9. A constrained optimization function

("fmincon", Matlab Optimization Toolbox), was used to adjust the model parameters to

minimize the normalized mean square error (NMSE) described in Equation 4.14.

E = fexp tfmodel (4.13)
tfmodel

NMSE = mean(E e E*) (4.14)

where
E = error
tfexp = transfer function computed from measured roll data
tfmodel = transfer function computed by model

The error, E, is the difference between the model and experimental transfer

functions divided by the magnitude of the model transfer function (Equation 4.13).

Normalized mean square error (NMSE) is the mean of the error times the conjugate of

the error (Equation 4.14). This definition of E was determined heuristically in previous
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human studies (e.g., Goodworth and Peterka 2009; Peterka 2002) to obtain quality

model-fits to transfer functions derived from the measured human data.

For the each of the 1, 4, and 80pp PRTS stimulus amplitudes, a set of optimized

model parameters was computed from the measured data (non-simultaneous model

parameter estimation). For non-simultaneous model parameter estimation (Section

4.5.2.1), the NMSE was computed as shown in Equation 4.14 for each PRTS amplitude.

However, we also estimated model parameters for all stimulus amplitudes together, or

"simultaneously", (simultaneous model parameter estimation). As opposed to the non-

simultaneous model parameter estimation, the simultaneous model parameter estimation

(Section 4.5.2.2) involved: 1) constraint of specific model parameters to be equal across

the 1, 4, and 80pp stimulus amplitudes and 2) a normalized mean square error that was the

sum of the error terms for the 1, 4, and 80pp PRTS stimulus amplitudes. For the

simultaneous parameter estimation, we will call the normalized mean square error term

"NMSEsim" to differentiate from the "NMSE" described for the non-simultaneous model

parameter estimations. The motivation behind simultaneous fits is described in Section

4.5.2.2.

4.4 Results

4.4.1 Foretrunk and hindrunk RMS roll versus stimulus amplitude

Foretrunk and hindtrunk RMS roll as a function of stimulus amplitude (stimulus-

response curves) are shown in Figure 4.4. In the figure, the dashed-lines represent the

foretrunk or hindtrunk RMS roll for the zero stimulus amplitude (or a stationary

platform). For the normal animal's foretrunk, the stimulus-response curve was roughly

flat for the three lowest and two highest stimulus amplitudes. For roll-tilts < 40 pp the
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normal animal's foretrunk was not responding to the stimulus in that RMS roll was

comparable to values seen for no platform motion (i.e., quiet-standing). For the normal

animal's hindtrunk stimulus-response curve, there was a non-proportional increase in

RMS roll, or "sway saturation", at the higher amplitudes that was also seen in normal

humans (as shown in Figure 4.22 and Peterka 2002). The types of saturation seen in

stimulus-response curves of the foretrunk and hindtrunk were different. There were also

differences seen in foretrunk and hindtrunk transfer functions (Figures 4.5 and 4.6). This

implied that there were different mechanisms involved in the control of the foretrunk or

hindtrunk (discussed in Section 4.5.1).

For the animal in the mBVH state, the hindtrunk stimulus-response curve showed

that the RMS roll saturates at the larger stimulus amplitudes but to a lesser extent than in

the normal state. When compared to the normal response, the hindtrunk stimulus-

response curve for the mBVH state showed a slight decrease or no significant difference

at the lowest stimulus amplitudes but was elevated at the larger stimulus amplitudes.

HINDTRUNK FORETRUNK
2.0 2.0

-normal
-mBV1.6 -BH1.6
-ltorm

a aH1.2 1.2

0.0 0.8
0 2 4 6 8 0 2 4 6 8
Peak-to-peak stimulus amplitude (deg) Peak-to-peak stimulus amplitude (deg)

Figure 4.4 RMS roll of hindtrunk (left) and foretrunk (right) as a function of stimulus amplitude
with standard error bars. Black-dashed lines represent foretrunk or hindtrunk RMS roll value for

stationary platform (i.e., quiet-standing)
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4.4.2 Foretrunk and hindtrunk transfer functions

For 1 to 80 pp stimulus amplitudes, normal foretrunk transfer function gain was <

1 and approximately constant across frequency (Figure 4.5, top left). For all stimulus

amplitudes, foretrunk phase (Figure 4.5, middle left) had ~ 0 lag (i.e., foretrunk was in

phase with the platform) at the lowest frequencies, then increased in phase lag with

increasing stimulus frequency. Furthermore, foretrunk coherence (Figure 4.5, bottom

left) was low (< ~ 0.6) for all stimulus amplitudes, except for the 6 and 8 pp amplitudes

at low frequencies, indicating that, in general, any relationship between the stimulus and

the foretrunk roll was weak. The mBVH coherence (Figure 4.5, bottom right) was < ~

0.6 for all stimulus amplitudes and was the smallest for the lowest stimulus frequency in

the 1 and 40 pp responses (i.e., ~ 0 coherence). In the mBVH animal, foretrunk transfer

function gain was relatively flat across stimulus amplitudes and frequencies (Figure 4.5,

top right) and in some cases less than normal (e.g., at the lowest frequency for the 1 and 4

0 pp stimuli). The animal in the mBVH state had a slight phase lead for the lowest

stimulus frequency (i.e., foretrunk was leading the platform stimulus) compared to the

normal animal for the 1 and 40 pp stimuli. Given that the lowest stimulus frequency for

the 1 and 4 pp stimuli had an ~ 0 coherence, it was not surprisingly that the gain and

phase were very different compared to the other frequencies. As in the normal animal,

the mBVH foretrunk response phase lag increases with increasing frequency (Figure 4.5,

middle right).
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Figure 4.5 Foretrunk transfer function gain (top) and phase (middle), and coherence (bottom) of for
normal (left) and mBVH (right) sensory states. Bars shown represent standard error.
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Figure 4.6 Hindtrunk transfer function gain (top) and phase (middle), and coherence (bottom) of for

normal (left) and mBVH (right) sensory states. Bars shown represent standard error.
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In the normal hindtrunk transfer function gain (Figure 4.6, top left), sway

saturation was seen in that the gain tended to decrease away from 1 as stimulus amplitude

increased. However, for the lower amplitudes normal hindtrunk gains were ~ I

indicating that the animal was orienting more with the platform. Hindtrunk gain for

lower stimulus amplitudes (i.e., 1 and 20 pp) for frequencies near 1 Hz, were slightly > 1,

which means that hindtrunk roll was slightly greater than that of the platform. For larger

stimulus amplitudes (i.e., 6 and 8 pp) the gain was < 1 for all frequencies consistent with

hindtrunk roll saturating at larger amplitudes (shown in Figure 4.4, left). For neither

normal nor mBVH states, were resonant peaks observed. For larger stimulus amplitudes,

this shift away from a gain = 1 (toward gain = 0) indicated that the hindtrunk was

aligning increasingly more with earth-vertical and less with the platform surface. For all

stimulus amplitudes, hindtrunk phase showed ~ 0 lag at the lowest frequencies, and

increased phase lag for increased frequency (Figure 4.6, middle left). In general, normal

hindtrunk coherence (Figure 4.6, bottom left) was higher than normal foretrunk

coherence at the lowest frequencies (Figure 4.6, bottom left) and decreased in coherence

as the stimulus frequency increased.

The mBVH hindtrunk transfer function gains (Figure 4.6, top right), most gain

functions were elevated relative to the normal gains (Figure 4.6, top left). For example,

for the lowest frequency (0.0625 Hz) with the highest coherence, mBVH gain was

significantly greater than normal at all amplitudes > than 10 pp (20 pp: df = 30, t = 6.829,

p < 0.001; 40 pp: df = 12, t = 3.876, p < 0.005; 60 pp: df = 18, t = 3.239, p < 0.005 ; 80 pp:

df = 36, t = 4.119, p <0.001). For all stimulus amplitudes, hindtrunk phase (Figure 4.6,
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middle right) showed ~ 0 phase lag at the lowest frequencies, then increasing phase lag

with increasing stimulus frequency. The mBVH hindtrunk coherence (Figure 4.6, bottom

right) was generally higher than mBVH foretrunk coherence for frequencies < 0.3 Hz

indicating a more linear relationship between the platform tilt stimulus and hindtrunk

response at the lower frequencies. As in the normal hindtrunk response, coherence

decreased substantially at higher frequencies.

The transfer function results show that foretrunk responses differed from

hindtrunk responses. Foretrunk gains did not change systematically (i.e., were relatively

flat across stimulus amplitude and frequency) for both normal and mBVH. Furthermore,

foretrunk coherence was relatively low (< ~ 0.6 and in some cases ~ 0) for the two

sensory states indicating a weak linear relationship with the stimulus. In contrast,

hindtrunk responses showed systematic gain changes (i.e., decreases in gain as stimulus

amplitude was increased) for the normal sensory state. For example, Figure 4.6 (top left)

which displays the gains for the normal hindtrunk shows that the gain function for the 8'

pp stimulus amplitude was less than the gain function for the 10 pp stimulus amplitude.

Furthermore, for low frequencies (less than ~ 0.3 Hz) coherence was higher for the

hindtrunk than the foretrunk indicating a stronger linear relationship between the

hindtrunk response and the input stimulus.

4.4.3 Relative motion of body segments

For the normal and mBVH sensory states, relative motion of the foretrunk and

hindtrunk were determined in terms of: 1) gain ratio and phase difference and 2)

anchoring indices.
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Gain ratio (foretrunk gain/hindtrunk gain) and phase difference (foretrunk phase -

hindtrunk phase) were computed. Gain ratio = 1 indicates that the foretrunk roll and

hindtrunk roll were equal, whereas a gain ratio 0 indicates that the foretrunk rolled

much less than the hindtrunk. Phase difference 0 means that both the foretrunk and

hindtrunk are in perfect phase with each other. Phase difference < 0 indicates that the

foretrunk is lagging the hindtrunk and phase differences > 0 indicates that the foretrunk is

leading the hindtrunk. Mean gain ratios and mean phase differences are shown in Figure

4.7.
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Figure 4.7 Mean foretrunk-hindtrunk gain ratio (top) and phase difference (bottom), with standard
error bars, for normal (left) and mBVH (right) sensory states.
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In general, the normal animal's foretrunk-hindtrunk gain ratio was close to 1 for

the highest stimulus amplitudes (6 and 80 pp) but was < 1 for the lower stimulus

amplitudes (e.g., 2 and 4 pp). This indicated that roll of the foretrunk and the hindtrunk

were comparable at the higher amplitudes. At the lower amplitudes the foretrunk rolled

less than the hindtrunk. Gain ratio fluctuated across frequency, which may have been

possibly due to intrasubject variability.

In the normal state, the animal's foretrunk roll was in phase with the hindtrunk for

frequencies < 1 Hz and tended to lag the hindtrunk for frequencies > 1 Hz for all stimulus

amplitudes except the 6 0 pp. This is analogous to the normal human upper body and

lower body response while undergoing a mediolateral pseudorandom tilt stimulus

(Goodworth and Peterka 2010).

In the mBVH animal, the foretrunk-hindtrunk gain ratio was < 1 (the foretrunk

rolled less than the hindtrunk) for frequencies < 1 Hz for all stimulus amplitudes.

However, for frequencies > 1 Hz the gain ratio was > 1 indicating that the foretrunk

rolled more than the hindtrunk.

In the mBVH animal, the foretrunk led the hindtrunk for the lowest frequency

(0.0625 Hz) for the 1 and 40 pp stimulus amplitudes. However, it is important to note

that coherence was ~ 0 for the foretrunk at this frequency for the two amplitudes (Figure

4.5, bottom right). For the intermediate frequencies (0.0625 - 1 Hz) the foretrunk and

hindtrunk were in phase. For higher frequencies (> 1 Hz), foretrunk and hindtrunk were

out of phase with the foretrunk lagging the hindtrunk for all stimulus amplitudes except

for the 1 pp amplitude, where the foretrunk led and the 8 pp stimulus where the phase

difference remained near zero.
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For the PRTS stimulus, normal and mBVH head-foretrunk roll Al's were

significantly different (df = 25, t = -2.240, p < 0.05) for only the 4 0 pp stimulus

amplitude (Figure 4.8, left). Normal and mBVH head-foretrunk roll Al's that were not

significantly different from 0 or slightly < 0 indicated that the head and foretrunk were

neither more stable in space than relative to the foretrunk, or that the head was more

stable relative to the foretrunk than in space, respectively.

Normal and mBVH foretrunk-hindtrunk roll Al's were positive (> 0) but not

significantly different than 0, and from each other, for the 0.5, 1, 2, and 40 pp amplitudes

(Figure 4.8, right). This indicated that the foretrunk was not more stable in space or

relative to the hindtrunk for the normal and mBVH sensory states at lower amplitudes.

However, at 6 pp mBVH foretrunk-hindtrunk Al was not significantly different than 0,

while the normal foretrunk-hindtrunk Al was significantly < 0 (df = 10, t = 4.375, p <

0.02), indicating that the foretrunk was less stable in space than relative to the hindtrunk.

This suggested that the animal in the mBVH state changed its postural strategy for the

larger amplitudes. However, at the largest stimulus amplitude, 80 pp, both the normal and

mBVH foretrunk-hindtrunk roll Al were not significantly different than 0 and not

significantly different from each other. At the highest amplitude, the animal's foretrunk

in the normal and mBVH states were neither more stable in space or relative to the

hindtrunk. Since the level of vestibular impairment was only mild, the animal in the

mBVH state was still able to utilize a strategy similar to normal. More drastic differences

may be seen in a more severely-impaired animal.
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Figure 4.8 Head-foretrunk (left) and foretrunk-hindtrunk (right) roll Al, with standard error bars,
as a function of stimulus amplitude.

4.5 Discussion

From the stimulus-response and transfer function results, it was hypothesized that

the rhesus monkey "weighted" its graviceptive cues higher for larger stimulus amplitudes

(sensory reweighting) to limit the roll of the trunk. In particular, the normal monkey's

hindtrunk results showed characteristics similar to those seen in humans (rhesus monkey

and human stimulus-response curves shown in Figure 4.22). A human inverted pendulum

model (introduced in Chapter II, Section 2.6.1 and described in this chapter in Section

4.5.2) was modified and implemented to test the sensory reweighting hypothesis.

4.5.1 Sensory reweighting seen in hindtrunk but not foretrunk

A previous study conducted in normal humans (Goodworth and Peterka 2012)

characterized sensorimotor integration in the frontal plane and described the upper body

and lower body utilizing different control mechanisms. The lower body control relied

primarily on sensory feedback and control mechanisms across stimulus amplitude that

was consistent with sensory reweighting (i.e., amplitude dependent reliance

predominantly on proprioceptive or graviceptive cues). In upper body control, sensory
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reweighting was not the dominant mechanism, but instead, intrinsic/short-latency

musculoskeletal mechanisms along with a relatively fixed reliance on sensory feedback

across stimulus amplitudes. The notion that the human upper and lower body is

analogous to the foretrunk and hindtrunk of the rhesus monkey is further supported by the

similar relative phase characteristics across frequency (Figure 4.7, bottom left).

Based on the differences between the animal's foretrunk and hindtrunk stimulus

response curves and transfer function, we proposed that the foretrunk (or "upper body")

relied more heavily on intrinsic/short-latency mechanisms that were not mediated by

neural feedback as opposed to the hindtrunk ("lower body") that predominantly utilized

neural-mediated mechanisms involved with sensory weighting. One reason for this may

be due to different mechanical functions of the foretrunk and hindtrunk. It has been

proposed that the foretrunk is used primarily to provide stability as struts that stiffen,

support, and help steer the animal (Kimura 1985), however, the hindtrunk is used to

generate propulsive forces (Courtine 2005) and therefore the postural control mechanisms

associated with each are likely to differ. Based on the results (i.e., stimulus-response

curves and also transfer functions) shown here for the foretrunk and hindtrunk we

propose that: 1) the foretrunk was utilizing a different mechanism for control (i.e., not

predominantly utilizing the sensory-mediated mechanisms, such as sensory reweighting)

and 2) the hindtrunk was predominantly utilizing sensory feedback, thus leading to a

saturating response seen in both the stimulus-response and transfer function gains of the

normal and mBVH states. In this chapter, we explored the second point: sensory

reweighting in the animal's hindtrunk.

4.5.2 Modeling to describe sensory reweighting
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Experimental characteristics associated with sensory reweighting (saturation)

were apparent in the normal hindtrunk response to the platform stimulus (Figure 4.6, top

left). However, the normal foretrunk data did not show gain saturation characteristics

across stimulus amplitude (Figure 4.5, top left). An independent channel model (e.g.,

Peterka 2002) was used to test the sensory reweighting hypothesis in the hindtrunk only.

More specifically, a model was implemented to determine if changes in model

parameters (e.g., sensory weights) across stimulus amplitudes and also between normal

and mBVH sensory states could predict the measured hindtrunk results. The model

implemented is shown in Figure 4.9 and described by Equation 4.15.

For a pseudorandom roll-tilt input, the support surface input (SS) is the roll-tilt

waveform itself. And the monkey's hindtrunk sway (HS) is the output response. As

previously stated, for quiet-stance or small platform motions some models of bipedal

human stance have treated the human as a single-link inverted pendulum that is

inherently unstable. Because the platform underwent only small perturbations, we

modeled the rhesus monkey's trunk as an inverted pendulum. When there is deviation

from upright stance, a corrective torque (Tc) comprised of the summation of a torque

(TL), generated by mechanisms with long-latency neural time delay, and an

intrinsic/short-latency torque (Ti), generated by mechanisms without time delay (or with

short time delay). The torque (Ti), is generated by: 1) the inherent mechanical

characteristics of the muscles, joints, ligaments, and musculoskeletal system (time delay

= 0) and 2) the short-latency reflexes (< 25ms). The intrinsic/short-latency mechanisms

consist of stiffness and damping (K and B, respectively). In order to stabilize the

pendulum body, a long-latency (~ 200 ms), torque (TL) requires a corrective torque equal
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to the angular deviation times the long-latency stiffness represented by Kp, where "p"

indicates proportional feedback, and another component that is the time derivative of the

angular deviation times the long-latency damping represented by Kd, where "d" indicates

derivative feedback.

K

F.ure 4.Ioiid"neenetcanmdl fo h hssmokyhntuk

Kg

In modeling the rhesus hindtrunk, the moment of inertia of the hindtrunk (J= 0.09

kg*m2) and hindtrunk mass x gravity x hindtrunk COM height (mgh = 2.054 kg*M2/s2)

were determined using anthropometric measurements derived from cadaveric rhesus

monkeys (Vilensky 1979). The weights of sensory channels, proprioceptive (Ge), and

graviceptive (Gv), were assumed to sum to unity. Since all experiments were conducted

in dim lighting with a black tarp surround to limit visual cues, the visual weight was

assumed to be ~ 0.

Transfer functions derived from the experimental results were used in conjunction

with transfer functions derived from the modified independent channel model (Equation
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4.15) to determine model parameters that minimized the normalized mean square error

(described in Equation 4.14).

HS s) (Bs'+ K )+ W (K K Vs

(s (fss+ K )+ J 2 
-mgh+( {KDS K hkzD (4.15)

where
HS/SS = transfer function of output hindtrunk roll/input platform tilt
s = complex variable
K, = Proportional gain or "long-latency stiffness"
Kd = Derivative gain or "long-latency damping"

td = long-latency time delay
G, Proprioceptive gain
Gv Vestibular gain
W =Gn= 1- G,

= G,+ G,
K intrinsic/short-latency stiffness
B intrinsic/short-latency damping

Since there was only one test subject, experimental transfer functions were not

averaged (smoothed) across test subjects, but instead multiple (7 to 28) PRTS cycles from

one animal were used (Table 4.2). Because this was the first attempt ever at modeling

sensory-derived monkey postural responses, one goal of the study was to determine if

physiologic model parameters could be obtained to account for the experimental

behaviors seen. Factors that could impede the use of a human-based feedback control

model include: 1) poor resolution of experimental data such that non-linear behavior is

evident within each test condition and across repeated cycles; 2) highly variable

experimental data resulting in low confidence in model parameters; 3) inadequate

similarity between human and monkey postural system such that a similar model

structure cannot be shared, resulting in a model that simply cannot account for

experimental results without major changes in model structure and parameters included;

and 4) inappropriate model structure that results in non-physiological model parameters

145



(i.e., the model can describe the data, but not with realistic parameter values). We

realized these limitations and thus investigated several modeling iterations. Below, I

describe how model parameter estimates were determined for the 1, 4, and 80 pp normal

and mBVH data using: 1) non-simultaneous model parameter estimation (Section 4.5.2.1)

and 2) simultaneous model parameter estimation (Sections 4.5.2.2 and 4.5.2.3).

4.5.2.1 Non-simultaneous model parameter estimation

For non-simultaneous model parameter estimation, we investigated three

frequency ranges (0.0625-2.33 Hz, 0.0625-1.125 Hz, and 0.0625- 0.625 Hz) using: 1) a

"basic model" that included long-latency (neural controller) stiffness (Kp) and damping

(Kd), sensory weight (Gn), and long-latency time delay (Cd); and 2) the basic model

(consisting of Kp, Kd, Gn, and Td) with the addition of model parameters for

intrinsic/short-latency stiffness (K) and damping (B). The normalized mean square error

(NMSE) described in Equation 4.14 was the metric used to assess the degree to which the

model-derived transfer functions predicted those computed from measured data.

Good model fits (e.g., NMSE < 0.04) were not possible for the ranges of 0.0625 -

2.33 Hz (the full frequency range) or 0.0625 - 1.125 Hz. This was due to: 1) intrasubject

variance and 2) low coherence at the higher frequencies. We restricted the parameter

estimation procedure to the lower input spectrum of 0.0625-0.625Hz because coherence

was relatively high across this range.

A number of reasons led us to exclude the model parameters K and B. While

their inclusion could reduce the NMSE, it led to unrealistic increases and decreases in

parameters with no clear pattern across stimulus amplitudes (probably due to too many

free parameters). Since relatively large values of intrinsic/short-latency parameters (e.g.,
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a relatively large value of intrinsic/short-latency stiffness, K) and proprioceptive

weighting, Gn, (e.g., ~1) results in orientation to the platform surface, these two

parameters were redundant within the model. Furthermore, inclusion of the

intrinsic/short-latency parameters, K and B, led to unrealistically large time delays (Td).

For example, for the mBVH 8 Opp condition a model-estimated time delay was ~ 0.646 s;

much longer than the physiologic time delays of ~ 0.171 s reported for human (Peterka

2002). The non-simultaneous model parameter estimation allowed us to develop the

basic model that included only long-latency parameters (i.e. Kp, Kd, Gn, and Td). This

set of model parameters was used to describe the hindtrunk over the frequency range with

highest coherence.

Transfer function gain and phase predicted by the basic model using model

parameters derived by the non-simultaneous procedure (see Section 4.3.6) are shown for

the normal and mBVH sensory states in Figures 4.10 and 4.11, respectively.
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Figure 4.12 Non-simultaneous model parameter estimates and NMSE as a function of stimulus

amplitude for the normal and mBVH sensory states.
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Figure 4.12 shows the non-simultaneous model parameter estimates computed

from the hindtrunk results measured at the 1, 4, and 8' pp stimulus amplitudes. They

show that the animal in the normal state weighted graviceptive (e.g., vestibular) cues

more heavily than proprioceptive cues at the larger stimulus amplitudes and that the

animal in the mBVH state weighted proprioceptive cues more heavily than the

graviceptive cues at the larger stimulus amplitudes. This was consistent with the

stimulus-response (Figure 4.4) and transfer function (Figures 4.5 and 4.6) results that

show that the normal animal oriented its hindtrunk more with earth-vertical than the

support surface at the larger stimulus amplitudes, leading to sway saturation, and that the

animal in the mBVH state oriented its hindtrunk more with the platform surface than

earth-vertical at the higher stimulus amplitudes, leading to increased roll compared to

normal. In the normal state, long-latency (neural controller) damping, Kd, increased for

the largest stimulus amplitude, however, long-latency (neural controller) stiffness, Kp,

showed little change across stimulus amplitudes. Increases in Kd are known to increase

the stability of the system, reduce the overshoot, and improve the transient response

(Ogata 2003). Here we deduced that the increase seen in Kd in the normal animal for the

largest stimulus amplitude caused reduction in the (output) hindtrunk RMS roll (Figure

4.4) and frequency response gain (Figure 4.6). Time delay, Td, also increased for the

2largest stimulus amplitude, however, this may have been due to the correlation (R

.9823) of Kd and Td within the model as opposed to physiologic changes in Td.

In the mBVH state, Kp increased with stimulus amplitude, whereas in the normal

state Kp remained relatively constant. Peterka (2002) showed that some severe bilateral

vestibular-loss human subjects had increases in long-latency (neural controller) stiffness
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in comparison to normal test subjects and hypothesized that this could serve as a

compensation mechanism. Increases in Kp are known to decrease the rise time but

increase the overshoot of the response (Ogata 2003). Therefore, increases in stiffness

without increases in damping could yield a more oscillatory response and increased gains

(e.g., in the mBVH animal, Kp increased with stimulus amplitude).

Non-simultaneous model parameter estimation aided in: 1) development of the

basic model, which includes the range of frequency points amenable to modeling and

exclusion of intrinsic/short-latency mechanisms, 2) support the sensory reweighting

hypothesis across stimulus amplitude, 3) lend insight into other possible neural changes

that took place across stimulus amplitude and between sensory states, and 4) suggest that

a model based on human postural control could be applied to the monkey to give

meaningful insights into neural control

The "unconstrained" fits provided a simple model fitting routine for each test

condition, however, for the normal and mBVH non-simultaneous model parameter

estimates, non-monotonic changes seen in parameter values across stimulus amplitudes

were unlikely physiologic in nature (but possibly due to the quality of the data, with only

one test subject available). Therefore, to increase our confidence in the observed

parameter trends, the most favorable option would be to test a larger number of subjects.

However, for this set of experiments this option was not possible as there was only one

test subject available. Instead, we explored the effects of introducing a more complex

fitting routine in order to increase confidence in parameter estimates (i.e., constraining

the basic model parameters across stimulus amplitude). For simultaneous model

parameter estimation, we constrained specific model parameters across stimulus

151



amplitude, which allowed us to further analyze the model parameters as a function of

sensory state and stimulus amplitude.

4.5.2.2 Simultaneous model parameter estimation: Constrained model parameters within

the "basic model"

In the previous section, non-simultaneous model parameters were estimated for

which the NMSE was computed and minimized separately for individual (1, 4, and 80 pp)

stimulus amplitudes. In simultaneous model parameter estimation the error minimized

was the sum of the normalized mean square error terms for all amplitudes combined (we

call this "NMSEsim" to differentiate from the "NMSE" described for the non-

simultaneous model parameter estimations). As previously stated (Section 4.3.6), the

normalized mean square error (NMSEsim) was the sum of the errors for the 1, 4, and 8' pp

stimulus amplitudes. The optimal model parameter estimates were determined for the 1,

4, and 80 pp stimulus amplitudes simultaneously by minimizing NMSEsim. An advantage

of simultaneous model fitting was that it allowed the investigation of the effects (in terms

of NMSEsim) of constraints placed on the free parameters within the basic model across

stimulus amplitude.

Table 4.3 shows the constrained model variation number and description. For the first

model variation, no parameters were constrained (the non-simultaneous case). However,

for the second model, variation of time delay (Td) was constrained to be equal across the

1, 4, and 80 pp stimulus amplitudes, but the other basic parameters were unconstrained.

Although the td was constrained to be equal across the 1, 4, and 80 pp stimulus amplitude,

the value of td was determined along with the unconstrained model parameters within the

optimization based on the minimized NMSEsim criterion. The other constrained model
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variations within Table 4.3 followed a similar procedure that allowed estimates of the

basic model parameters.

Table 4.3 Simultaneous model parameter estimation: constrained model variations

1 None
2 Time delay (rd)

3 Active damping (Kd)
4 Active stiffness (Kp)
5 Proprioceptive Weight (Gn)
6 Active damping (Kd) and time delay (Td)

7 Active stiffness(Kp) and time delay (Td)

2w

8 1Active stiffness(Kp), active damping (Kd), and time delay (Td)

Normalized Mean Square Error (NMSEsim)
vs Constrained Model Variation

0 1 2 3 4 5 6 7
Constrained model variation
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Figure 4.13 Normalized mean square error (NMSEsim) for the normal state as a function of
constrained model variation.

Figure 4.13 displays the NMSEsim as a function of the constrained model variation

(described in Table 4.3) for the normal sensory state. When the individual model
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parameters Td, Kd, and Kp were constrained across stimulus amplitude, there was little

change in NMSEsim, suggesting that allowing these parameters to vary added redundancy

to the model and that the monkey did not actually modulate these neural parameters

across changes in stimulus amplitude. However, when the sensory weight (Gn) was

constrained (held constant) across stimulus amplitude (as in variation 5) there was an

increase in NMSEsim, for the normal sensory state (Figure 4.13), suggesting that changes

in the sensory weight were critical for the model to describe the experimental data and

that the nervous system may in fact primarily modulate the sensory weight across

stimulus amplitude. This result is consistent with sensory reweighting being present

in the normal state.

Can changes in sensory weight explain the all the changes seen in the 1, 4, and 80

pp normal measured transfer functions? In order to answer this question, we allowed

only sensory weight, Gn, to vary across stimulus amplitude and constrained all other

model parameters to be equal across stimulus amplitude. The largest NMSEsim was

found in variation 8, where all parameters except Gn (i.e., Kp, Kd, and Td) were

constrained across stimulus amplitude. This led us to conclude that other model

parameters needed to vary across stimulus amplitude. In other words, at each stimulus

amplitude, the measured transfer function data could not be fully explained by allowing

only the sensory weight to vary.

To determine which additional parameter/s needed to be added to account for the

experimental results, we systematically allowed the sensory weight plus one more

parameter to vary. We observed that "Variation 4" was consistent with very minimal

changes in Kp observed in the normal non-simultaneous (unconstrained) model

154



parameter estimate (Figure 4.12). By constraining Kp, the number of parameters that

were allowed to vary were reduced with minimal impact on NMSEsim (Figure 4.13). By

constraining parameters that were not changing a large amount across stimulus

amplitude, our confidence in changes seen across stimulus amplitude in the remaining

model parameters increased.

Figures 4.14 and 4.15 show the model fits for variation 4 and Figure 4.16 shows

the model parameter changes across stimulus amplitude, as well as sensory state.
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Because the non-simultaneous model parameter estimation did not predict large

changes in normal Kp (Figure 4.12) and the simultaneous model parameter estimation did

not show large changes in NMSEsim (Figure 4.13), we investigated constrained variation 4

further (model-predicted transfer functions are shown in Figures 4.14 and 4.15 and model

parameter estimates are shown in Figure 4.16). As in the case where model parameters

were unconstrained across stimulus amplitude (i.e., the non-simultaneous model

parameters shown in Figure 4.12), Kd and td were correlated in constrained variation 4

and still increased for the largest stimulus amplitude. The non-montonic changes in these

parameters are likely due to some level of redundancy between them (as evidenced by

their correlation) which our model could not tease apart, even using more complex fitting

methods. Nonetheless, the constrained variation 4, with fewer model parameters

allowed to vary across stimulus amplitude, further supported the sensory reweighting

hypothesis in that graviceptive weight increased with increasing stimulus amplitude for

the normal and mildly-impaired animal.

4.5.2.3 Simultaneous Model Parameter Estimation: Identification of differences in neural

feedback between normal and mBVH states

In both types of fitting routines (unconstrained and constrained), sensory weights

indicated that the graviceptive contribution in the mildly-impaired state was slightly

higher at the lowest stimulus amplitude and lower at the two higher stimulus amplitudes.

To further understand the graviceptive weight at each stimulus amplitude, we used the

constrained model variation 4 to isolate and investigate the effects of sensory reweighting

in the mBVH state while fixing other parameter values to those determined for the

normal state.
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Figure 4.17 shows the transfer functions computed from the measured hindtrunk

data and from the model prediction based on the "mBVH w/normvalsl" model

configuration. For this model configuration, the mBVH measured data were estimated by

the model with: 1) the normal constrained variation 4 value for Kp, 2) the model

parameters Kd and td that were set equal to the normal parameter values for the 1, 4, and

80 pp stimulus amplitudes, and 3) sensory weight, Gn, that was allowed to vary across

stimulus amplitude. Figure 4.18 shows the "mBVH w/normvals2" model configuration.

For this model configuration the mBVH measured data was estimated by the model with:

1) the normal constrained variation 4 value for Kp, 2) the model parameter Td that was set

equal to the normal parameter for the 1, 4, and 80 pp stimulus amplitude and 3) Gn and

Kd allowed to vary across stimulus amplitude.
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In comparing normal and mBVH configurations (described above), the sensory

reweighting hypothesis was further confirmed. Figure 4.19 shows an overlay plot of the

proprioceptive weight (Gn) and graviceptive weight (Gv) for: the normal variation 4, the

mBVH w/normvalsl model configuration, and the mBVH w/normvals2 model

configuration. For an increase in stimulus amplitude, the normal configuration showed

an increase in Gv (or orientation to earth-vertical), and as a consequence decreased Gn

(or orientation to the platform surface). Increased weighting of graviceptive cues,

enabling the normal animal to saturate its response at larger stimulus amplitudes, is

consistent with both the stimulus-response and transfer function results shown in Figures

4.4 and 4.6, respectively. However, for both mBVH model configurations, Gv weighting

(or orientation to earth-vertical) decreased with increasing stimulus amplitude, and as a

consequence of this, reliance on Gn (or orientation to the platform surface) increased.

With mild vestibular impairment, it is not surprising that the mBVH state showed a

decreased reliance on graviceptive cues relative to normal. However, the animal in the

mBVH state exhibited increased weighting of Gv for increased stimulus amplitude, but

the magnitude of this sensory reweighting as not a strong as in the normal state.
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Figure 4.19 Three model configurations to estimate the graviceptive (Gv) and proprioceptive (Gn)
weight as a function of stimulus amplitude. Normal model configuration with constrained Kp (blue),

"mBVH w/normvals 1" model configuration with normal constrained value of Kp, and normal
values for Kd, and Td at each amplitude (yellow), "mBVH w/normvals 2" model configuration
constrained value of Kp, and normal value at each amplitude for Td (red). All illustrate clear

reductions in graviceptive weight at higher stimulus amplitudes.

4.5.2.4 Time-domain model validation

In this chapter, we have almost exclusively discussed results in the frequency

domain (e.g., measured transfer functions and model-predicted transfer functions).

However, to illustrate how the model used above accounts for time-domain behavior, this

section displays the model-predicted results in the form of a time-domain trace.

Guiv

scopwe

surface rol K Trnpt Transter Fcn2 0~pu Nindbrun
--- elayd r0I 110 workspece

G" Kd

Figure 4.20 Simulink model schematic used for transfer function model validation.

The model (schematic shown in Figure 4.20) was built in Simulink (MATLAB,

MathWorks, Natick, MA, version 2008b) and was used in conjunction with model
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parameters derived from non-simultaneous model parameter estimation described above.

The input to the model was the PRTS platform roll for the 8"pp stimulus. The model

output was the simulated hindtrunk roll.

The simulated hindtrunk roll and (normal) measured hindtrunk roll are plotted in

Figure 4.21. Since only the low frequency portion of the transfer function was used to

estimate the model parameters, it is not surprising that the model predications are

consistent with the overall shape of the measured data but do not capture the higher

frequency components.

4

3 -

2

0

.3 \ - simulated hindtrunk
- platform

-4
0 4 8 12 16

Time (s)

Figure 4.21 Model validation (e.g. normal 80 pp) of results.

4.5.3 Comparison to human work

The hindtrunk roll measured in the normal monkey as a function of stimulus

amplitude (Figure 4.22) shows similar saturation to the COM sway measured in normal

humans (Peterka 2002). The mBVH response curve also demonstrates sway saturation

and is very different than the linear response curves measured in the humans with severe

bilateral vestibular-loss.
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Figure 4.22 Human COM body sway as a function of stimulus amplitude (right) from Peterka (2002)
for eyes-closed, support surface stimulus (Normal = closed circles, severe bilateral vestibular loss =

open circles, platform = open square). Rhesus monkey hindtrunk roll (left) as a function of stimulus
amplitude.

Figure 4.23 shows that sway saturation was seen for both the monkey and the

human in that the rhesus hindtrunk and human COM gains decreased as stimulus

amplitude increased (i.e., orientation with earth-vertical as opposed to platform surface).

For stimulus amplitudes that were < 40 pp in the normal human, gains were usually > 1

between 0.1 and 1 Hz (Peterka 2002). In contrast, the normal rhesus monkey hindtrunk

gains generally not > I except for the I and 2 pp stimulus amplitudes. As in humans, the

rhesus hindtrunk showed increasing phase lag with increasing frequency and also

decreased coherence with increased frequency.
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Figure 4.23 Normal rhesus hindtrunk transfer function with standard error bars (left) and
normalhuman COM transfer functions (right) from Peterka (2002).
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Rhesus monkey hindtrunk
transfer function (mBVH)
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Figure 4.24 Mild bilateral vestibular-loss (mBVH) rhesus hindtrunk transfer function with standard
error bars (left) and severe bilateral vestibular-loss human COM transfer function (right) from

Peterka (2002).
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Figure 4.24 shows that sway saturation was present in the mBVH state of the

monkey, however, for the severe bilateral vestibular-loss human there was no sway

saturation present and gain functions remained the same regardless of stimulus amplitude.

Furthermore, gains in the severe vestibular-loss humans were much > 1 which indicated

that the human COM tilt was greater than that of the platform tilt (e.g., as much as 5

times greater). In contrast, the monkey in the mBVH state had hindtrunk gains that were

approximately <, or equal to, 1 for any stimulus amplitude. This greater stability of the

monkey was potentially due to: 1) the animal was in its natural quadrupedal stance which

allowed for a relatively larger base-of-support and lower COM than the bipedal human

and 2) the rhesus monkey had only mild vestibular dysfunction and thus the ability to use

graviceptive (e.g., vestibular) cues was still present.

Normal rhesus monkey hindtrunk model results for sensory weights were

comparable to those seen in normal humans (Figure 4.25). The rhesus monkey hindtrunk

proprioceptive weight was ~ 0.34 for the lowest stimulus amplitude and then decreased to

~ 0.15 at the higher amplitudes, and consequently the graviceptive gains increased as

stimulus amplitude increased. For the human, there were similar trends in that

proprioceptive weightings decreased for an increase in stimulus amplitude, and as such,

graviceptive gains increased as stimulus amplitude increased.
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Figure 4.25 Model derived normal and severe bilateral vestibular-loss human sensory weights from
Peterka (2002) with proprioceptive weight, Wp, and graviceptive weight, Wg (top). Mild bilateral

vestibular-loss (mBVH) rhesus hindtrunk sensory weights from non-simultaneous model fits
(bottom) for normal (blue) and mBVH (red).

The rhesus monkey results for the mBVH state showed that for the higher

stimulus amplitudes, proprioceptive gains were weighted more than in the normal state.

However, since the animal was only mildly impaired, sway saturation was still seen in the

stimulus-response curves and transfer function results. Furthermore, the model results in

the previous section showed that the monkey was still able to make use of some of its

graviceptive (e.g., vestibular) cues though to a lesser extent than normal. For the severe

bilateral vestibular-loss human, proprioceptive weights were ~ I and gravipcetive

weights - 0 across stimulus amplitude. This stronger weighting of proprioceptive cues in

the humans with severe bilateral vestibular-loss is consistent with their transfer function

gains being much higher than the hindtrunk gains seen in the mild vestibular-loss rhesus

monkey (Figure 4.24). Differences in levels of vestibular impairment were a likely

source of the differences in the impaired humans and monkey results shown in Figure
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4.25. Other potential sources include anatomical differences (e.g. rhesus monkey is a

habitual quadruped and therefore has a relatively greater base-of-support than the bipedal

human and more inherent stability).

4.5.4 Future work

The goal of the models used in this paper was to adapt and build on models

previously applied to human posture while identifying the simplest model that still was

able to capture the characteristics (via physiologic model parameter estimates) of rhesus

monkey posture. Thus, while multiple segments and links allow for more complex

motions and analysis of joint torques, they also lead to higher model complexity and

often more model parameters. Given the apparent redundancy in certain model

parameters already present in our simple single-link model, a future multi-link model will

need to include higher resolution and more experimental data to reliable estimate a more

complex model. Thus, the application of the single-link inverted pendulum analysis to a

single monkey served as an appropriate first ever approach to modeling rhesus monkey

posture in two different sensory states.

4.6 Conclusions

Through characterization of stimulus-response curves, transfer function analysis

and modeling techniques, we found evidence that the animal in both the normal and

mBVH sensory states exhibited forms of sensory reweighting in that graviceptive sensory

cues were used to a greater extend with increasing stimulus amplitude while

proprioceptive cues were used to a lesser extend with increasing stimulus amplitude. The

normal animal's stimulus-response curve revealed saturating nonlinear increase in

hindtrunk roll for an increase in stimulus amplitude (sway saturation). Transfer functions
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showed that as stimulus amplitude increased, hindtrunk gains increased for the animal in

the mBVH state (i.e., the vestibular-lesioned animal oriented more with the platform)

than the normal animal that had decreased gains with increased stimulus amplitude (i.e.,

the normal animal oriented more with earth-vertical). These results were used in

conjunction with a model to test the sensory reweighting hypothesis (i.e., increased

weighting of gravipceptive cues for increases in stimulus amplitude). Parameter

optimization based on normal and mBVH hindtrunk measured transfer functions led to

model estimated parameters that were consistent with increased graviceptive sensory

weighting (orientation to earth-vertical) for an increase in stimulus amplitude in both

sensory states. Consistent with the mild vestibular impairment, the mBVH model

predicted less sensory reweighting than in the normal state.

'Chapter II (Section 2.4.2) addresses animal training.
2 Chapter II (Section 2.5.4) justifies the logic behind the outlier criteria used.
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V. Stabilization by light-touch in vestibular loss rhesus
monkeys

5.1 Abstract

Rhesus monkeys with vestibular dysfunction were provided an external sensory

cue: light-touch to the tongue, mouth, and lips (via an earth-mounted juice reward

dispenser). In order study the effects of the level of vestibular dysfunction on the

animal's ability to make use of the light-touch cue, one rhesus monkey, R2, was studied

in a state of mild bilateral vestibular hypofunction (mBVH) and the other, Ri, in a state

of severe bilateral vestibular hypofunction (sBVH). Two juice reward configurations

were used in this study: 1) an earth-mounted (EM) juice reward configuration that

provided a light-touch cue and a stationary reference, and 2) a head-mounted (HM) juice

reward configuration in which the head was free to move and the stationary reference was

unavailable. The quiet-stance test conditions used allowed for alteration of stance width

as well as support surface cues. In comparing trunk sway from the HM and EM

configurations, RI in the sBVH state had greater benefit (observed as a greater reduction

in trunk sway) from the EM light-touch cue than R2 in the mBVH state.

5.2 Introduction

It is well known that inputs to the visual, somatosensory, and vestibular systems

combine through sensory integration to form an output postural response (e.g., Horak and

Macpherson 1996). Subcutaneous touch and pressure receptors can be used to inform

subjects of their position with respect to an external reference. For example, pressure

receptors are stimulated in the feet when standing on a support surface or stimulated in

the fingertip when touching a stationary object. In this study, we focused on varying
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inputs to the animals' somatosensory systems (e.g., through altering footplate cues and

light-touch cues) for mild and severe bilateral vestibular-impaired monkeys.

Stabilization of posture by a light-touch (< 1 N) has been previously investigated

in both normal (Lackner et al. 2001) and severe bilateral vestibular-loss humans (Lackner

et al. 1999). In the normal standing human, the index finger was lightly touching a

stationary surface that allowed them to derive the information necessary to stabilize their

body sway. Although having a stationary spatial reference (e.g., flat surface) was found

to be the most effective in attenuating postural sway, light fingertip contact with various

surfaces (e.g., both bendable and rigid filaments, or even an imagined spatial position)

led to significantly decreased center-of-pressure (COP) sway. Fingertip contact was far

below that to provide mechanical support (<65 g and often as low as 5-10 g) and subjects

spontaneously adopted a force level of ~ 0.4 N (- 40 g). This force level was within the

maximal dynamic sensitivity of somatosensory receptors in the fingertip (Johnasson and

Magnusson 1991). Because the fingertip has rich sensory innervation, it is very

responsive to deformation of its surface (i.e., displacement detection thresholds at the

fingertip are around 1 mm). Therefore, in normal humans, sensory information from

light fingertip touch has proven sufficient to allow for postural orientation.

The effects of light fingertip touch were also previously investigated in bilateral

vestibular-loss humans (Lackner et al. 1999). They explored whether vestibular-loss

human subjects could substitute contact cues (in place of the missing vestibular

information) from the fingertip to balance in darkness. Bilateral vestibular-loss subjects

were unable to stand without falling in the dark with no fingertip contact, but bilateral

vestibular-loss subjects were significantly more stable in the dark with light-touch.
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In addition to fingertip touch, studies that utilized the tongue to provide sensory

information used for postural orientation have also been implemented. The tongue is

densely innervated and has a large somatosensory cortical representation (Picard and

Olivier 1983). In subjects with normal vestibular function, information about head

orientation is sensed by the vestibular system. However, in those patients with vestibular

dysfunction, one form of sensory substitution used to derive head position is electro-

tactile stimulation of the (densely innervated) tongue (e.g., Bach-y-Rita and Kercel 2003;

Vuillerme et al. 2011). For a vestibular-loss subject, the missing vestibular information

that is replaced by a sensory substitute can lead to a more accurate estimation of body

orientation needed for balance than if no sensory substitute were provided. This chapter

addresses whether a simple light-touch cue to the mouth and lips of the rhesus monkeys

with vestibular dysfunction can attenuate body sway.

We hypothesize that a rhesus monkey with severe vestibular-loss can utilize light-

touch, via the mouth (i.e., tongue, lips, etc.), to attenuate its body sway in quiet-stance.

Furthermore, we hypothesize that the severe vestibular-loss animal can stabilize itself

using light-touch for quiet-stance conditions with both limited visual and support surface

cues (a test condition that has previously proven difficult for human bilateral vestibular-

loss subjects (Horak et al. 1990)).

5.3 Methods

5.3.1 Sensory states

Experiments were conducted under the approval of the Massachusetts Eye and

Ear Infirmary (MEEI) Institutional Animal Care Committee and were in accordance with

USDA guidelines. For these sets of experiments, two adult female rhesus monkeys, Ri
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and R2, (Ri: 7 yrs, 7.9 kg and R2: 5 yrs, 6.7 kg) were used. RI was surgically implanted

with a vestibular prosthesis (discussed in Chapter VI) that may have caused minor

vestibular damage. Baseline measurements for RI were made in this "control" state. R2

was not instrumented with the device, and baseline measurements were made in this

"normal" state. The baseline sensory state (i.e., the control state of R1 and normal state

of R2) of each rhesus monkey was characterized by measuring its angular vestibuloocular

reflex (VOR) at discrete frequencies. The VOR is a simple eye movement reflex used

reflecting semicircular canal function.

After characterizing the baseline sensory state for RI and R2, each monkey

underwent a series of ototoxic treatments. The purpose of these treatments was to target

and kill the vestibular hair cells while preserving a functioning eighth nerve.

Intratympanic gentamicin (IT gent) kills vestibular hair cells and has been used to treat

vertigo in Meniere's patients (e.g. Minor 1999). Initial surgery was conducted under

anesthesia (ketamine (10 mL/kg) pre anesthesia and isoflurane (2 - 5% saturation with

oxygen gas)) and consisted of tympanic membrane perforation and gentamicin injection

(40 mg/mL) in each ear. Maximum damage cause by the drug was estimated to be

approximately 2 weeks post-administration (i.e., 1 cycle of IT gent treatment =

administration, then a 2 week waiting period). For both animals, the gentamicin

treatments were followed by intramuscular streptomycin (IM strep) treatments (350

mg/mL per day for 21 days x 2) that were injected to each animal's muscle.

Figure 5.1 shows plots of the percentage decrease in VOR gain relative to the

baseline for monkeys RI (left panel) and R2 (right panel). RI underwent 3 cycles of IT

gent treatments and 2 IM strep treatments that resulted in severe bilateral vestibular
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hypofunction (sBVH) as can be seen in the relatively large decrease in VOR gain relative

to the control state. R2 underwent 5 cycles of IT gent treatment and 2 IM strep

treatments that resulted in mild bilateral vestibular hypofunction (mBVH) as reflected in

the relatively small decrease in VOR gain relative to its normal state.
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Figure 5.1 Reduction of VOR gain from baseline measurement as a function of frequency measured
in RI (left) and R2 (right).

5.3.2 Balance platform apparatus

The animal was trained by use of a juice reward system to stand free of human or

mechanical restraint on the balance platform.' Figure 5.2 is a schematic illustrating the

two different reward schemes used: an earth-mounted juice reward configuration (EM)

wherein the animal's lips, mouth, and tongue made contact with a flexible, bendable

tubing attached to a rod anchored to the ground (left) and a head-mounted juice reward

configuration (HM) where the monkey had a juice tube clipped to its headcap and

flexible tubing was routed to the monkey's mouth (right). The head-mounted reward

system did not provide an earth-stationary reference cue and the monkey was able to

freely move its head during the test session.
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EM reward Head Foretrunk HM reward

Figure 5.2 Earth-mounted (EM) reward configuration (left) and the head-mounted (HM) reward
configuration (right).

The head and foretrunk body motion was measured using position sensors

(miniBIRD, Ascension Technology Corporation, Milton, VT) sampled at 100Hz. In

order to minimize visual cues, all test sessions were conducted in dim lighting with black

tarp surround.

5.3.3 Quiet-stance training and testing

The monkey was trained to stand on the balance platform with each foot on the

appropriate footplate to receive a juice reward. A more detailed description of animal

training is provided in Chapter II (Section 2.4.2), and we will only discuss it briefly here.

In order to motivate and encourage the rhesus monkey to stand on the platform, the

animal was first trained to receive the reward from an EM juice dispenser. When the

monkey was able to stand on the platform comfortably, the animal was trained using the

HM dispenser. In order to maintain the animal's attention on the task, it was essential to

provide a juice reward and hence a tubing configuration (i.e., either earth-mounted or

head-mounted). Therefore, it was not possible to test the no dispenser condition.

By altering the footplate surface, platform somatosensory (i.e., footplate) cues
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were varied. The gum rubber surface provided stronger and more reliable cues than the

foam surface. Mediolateral stance width was varied to provide either a large base-of-

support (wide stance) or small base-of-support (narrow stance). Four test conditions of

varying levels of task difficulty were utilized (gum-wide, gum-narrow, foam-wide, and

foam-narrow).

5.3.4 Data analysis

In a given test session, data was broken down into 15s trials. In order to remove

the offset for a given trial, the mean was computed and was subtracted from each data

point within the trial. The foretrunk RMS roll was then computed. Usable trials were

defined as those sections in which the foretrunk RMS roll fell within specific movement

criteria.2 Table 5.1 shows the number of usable and unusable trials. All data analyses

were conducted in MATLAB (MathWorks, Natick, MA).

Table 5.1 Number of usable and unusable data sections for RI and R2.

R1 in the sBVH state R2 in the mBVH state
EM HM EM HM

usable unusable usable unusable usable unusable usable unusable
gum-wide 12 1 10 1 33 2 40 4
gum-narrow 15 4 15 4 19 2 53 6
foam-wide 13 1 13 2 24 1 1 27 6
foam-narrow 18 4 19 5 41 5 47 6

In regards to comparisons of the measured results, for the above analyses a

student's t-test (assuming unequal variance, unequal sample size) was used to determine

significance.

5.4 Results

The RMS roll measured for the quiet-stance test conditions are shown in Figure

5.3.
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Figure 5.3 Foretrunk RMS roll with standard error bars as a function of quiet-stance test condition
for R1 with severe bilateral vestibular-loss (sBVH) (left) and R2 with mild vestibular-loss (mBVH)

(right) for earth-mounted (EM) and head-mounted (HM) dispensers.

R2 with mild vestibular-loss (Figure 5.3, right) showed no significant change for

RMS roll between EM and HM configurations for the gum conditions, however, the

RMS roll for the EM configuration in the wide and narrow foam conditions was

significantly greater than the HM configuration (df = 29, t = 3.01, p < 0.01 and df = 63, t

= 2.95, p < 0.01, respectively). We hypothesized that the small but significant increase in

roll between HM and EM could be explained by the animal (R2) having to adjust its

posture to attend to two tasks as opposed to one task (i.e., adjusting and changing its

postural strategy to accomplish the goals of standing on the platform and keeping its

mouth affixed to the juice reward (EM configuration) as opposed to just standing on the

platform (HM configuration)).

In contrast, when comparing the EM and HM configurations for Ri, the animal

with a more severe vestibular impairment, the HM roll was significantly greater than the

EM roll for three out of the four test conditions (e.g., df = 11, t = 4.49, p < 0.001 for the

gum-wide and df = 13, t = 3.04, p < 0.01 for the foam-wide condition), showing that R I's

sway decreased for the EM configuration where there was a light-touch, stationary

reference cue provided.
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When comparing the wide stance width to narrow stance width for both the gum

and foam surface for the HM configuration, decreasing trends were seen. This was

possibly due to the narrow stance width being more favorable to the animal in the HM

configuration. This may explain why in the gum-narrow condition the roll for the HM

configuration was not significantly different than the EM configuration.

5.5 Discussion

When provided a stationary, light-touch sensory cue (via an EM juice dispenser)

the RI, in the sBVH state, demonstrated less RMS roll than when this cue was removed.

However, when a light-touch cue was provided to R2 in the mBVH state, the differences

in RMS roll between the EM and HM conditions were insignificant or changed only

slightly. These findings imply that the severely-impaired animal, RI, achieved greater

benefit from the external sensory (light-touch) cue and used that postural reference

information to stabilize its trunk.

5.5.1 Mild versus severe vestibular loss

Since previous studies have only focused on the effects of providing light

fingertip touch to normal and bilateral vestibular-loss humans (Lackner et al. 1999), there

are no previous findings to compare the effects of light-touch in a mildly-impaired

animal. Since a range of vestibular dysfunction exists clinically, it is important to know

if subjects with mild vestibular impairment can benefit from using light-touch to stabilize

themself.

The rhesus monkey, Ri, in the severely impaired state was able to utilize lip,

tongue, and mouth contact cues from the earth-mounted dispenser to orient its posture

and reduce trunk sway (RMS roll) compared to the test configuration where it did not
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receive these cues. This finding is consistent with previous findings that have shown that

bilateral vestibular-loss humans are able to utilize light fingertip touch to provide

stabilizing cues in darkness (Lackner et al. 1999) and that without light-touch humans

with severe vestibular-loss were more unsteady. For three out of the four quiet-stance

test conditions (i.e., gum-wide, foam-wide, and foam-narrow), the sBVH animal showed

increased sway for the HM configuration in comparison to the light-touch EM

configuration. This result showed that an animal with severe vestibular-loss can make

use of external somatosensory contact cues (via the mouth), for even the most difficult

quiet-stance test condition (foam-narrow).

R2 in the mBVH state showed only a small change in sway between the HM and

EM configurations. This result was surprising given that even normal humans (with no

vestibular dysfunction) were able to reduce their body sway when provided light fingertip

touch (Lackner et al. 2001). Other results within this thesis (e.g., Chapter III) have

shown that R2 in the mBVH state may have co-contracted its muscles to compensate for

its vestibular loss, and thus, there was decreased sway compared to normal even in the

more difficult (foam) conditions. We hypothesize that the animal was using a similar

strategy here (i.e., muscle stiffening or co-contraction) as a mode of compensation for its

mild vestibular lesion for both the EM and HM configurations and thus the added

"benefit" of the additional light-touch contact cue provided was not used and therefore

made little difference in terms of stability (i.e., the co-contraction strategy was a

sufficient postural compensation mechanism to stabilize the animal).

For both HM and EM configurations and for all quiet-stance conditions, R2's

sway was less than Ri's. Because R2's sway magnitude was much smaller than Ri's,
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one hypothesis we propose is that R2 simply "out-performed" Ri. More specifically, R2

may have already hit a performance plateau in that R2 simply had better balance

compared to RI and so it could not get any better (or more stable) with when provided an

additional sensory cue.

Even in humans with intact vestibular function, there are still intersubject

differences (e.g., age (Prieto et al. 1996; Cenciarini et al. 2010), different levels of

experience (Horak and Macpherson 1996), and also body-type) can lead to different

postural strategies and different levels of performance. Prieto et al. (1996) showed that

elderly human adults have increased sway compared to young human adults. In our

study, RI was older (- 7 yrs old) compared to R2 (~ 5 yrs old). Although there was

about 2 years age difference between the two animals, both were considered young adults

and therefore increased sway seen in RI due to age-related effects may be possible but is

unlikely. Another potential cause of differences between the two animals is level of

experience. However, since both animals were trained using similar methodology, it is

unlikely that experience level caused the discrepancies seen in sway between the two

animals. Size and build of each animal was a likely source of intersubject differences.

RI was larger in size and weighed more than R2 (RI: 7.9 kg and R2: 6.7 kg). The

differences in size and weight of the two animal's could have likely led to each animal

using a different postural strategy to balance on the platform. R2 weighed less and was

shorter in height than Ri. Because R2 had a lower center-of-mass (COM) 3 height relative

to the balance platform surface and weighed less than Ri, it was inherently more stable.

Furthermore, for a given goal or set of goals there are multiple postural strategies to
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achieve them because the musculoskeletal system has more degrees of freedom than are

necessary to achieve a specific task or goal.

In order to determine the (posture) effects of varied levels of vestibular function

on an animal's ability to make use of light-touch cues, future work should attempt to limit

intersubject variability as much as possible (i.e., utilize animals of similar age and size).

Furthermore, testing a larger number of subjects would only further enhance our

knowledge on the effects of vestibular dysfunction on posture while animals are receiving

a light-touch cue.

5.6 Conclusion

This chapter showed that an animal, Ri, with severe vestibular-loss can utilize

non-vestibular cues (e.g., light-touch via the lips, tongue, and mouth) to provide

orientation information that improves postural stability and reduces trunk sway. This

improved stability was measured in conditions of weak visual cues, a condition shown to

destabilize humans with severe bilateral vestibular-loss. When provided with a light-

touch cue, a mildly-impaired animal, R2, did not decrease its trunk sway when provided

the light-touch cue. We hypothesize that is due to R2 compensating for the mild

impairment with increased muscle stiffening and that the resulting stability led to the

light-touch cue being either ignored or not making a substantial difference when

integrated by the animal's postural control system.

'Chapter II (Section 2.4.2) addresses animal training.
2 Chapter II (Section 2.5.4) justifies the logic behind the outlier criteria used.
3 Chapter I (Section 1.4.4) describes posture nomenclature (e.g., base-of-support, center-of-pressure, and
center-of-mass).
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VI. The postural sway evoked by head-turns in a severely
vestibular-impaired rhesus monkey utilizing a semicircular

canal prosthesis

6.1 Abstract

A rhesus monkey's posture in response to head-turns was measured in a severe

bilateral vestibular hypofunction (sBVH) sensory state and also in a severe vestibular

hypofunction state aided by prosthetic stimulation (sBVH + STIM-ON). We show that

the prosthetic electrical stimulation (supplied by a prototype invasive vestibular

prosthesis) in a severe vestibular-loss animal decreased trunk sway. We propose that the

partially restored head velocity cues provided by the prosthesis could be integrated by the

central nervous system (CNS) to allow the severely-impaired animal a more accurate

estimate of head orientation. Furthermore, we hypothesized that this more accurate

estimate of head orientation (in the sBVH + STIM-ON state) combined with neck

proprioceptive information to provide the severely-impaired animal a more accurate

estimate of trunk position.

6.2 Introduction

Vestibular loss can arise due to congenital anomalies, genetic diseases, exposure

to ototoxic drugs, age-related hair cell degeneration, and other idiopathic causes. People

suffering from severe vestibular dysfunction experience equilibrium disorders that can

cause unsteady balance in daily activities such as walking in dim lighting or on uneven

surfaces, bending to pick something up, or the simple task of turning one's head.

Although some patients may develop compensatory strategies over time, vestibular-loss

sufferers that are unable to do so are left with limited treatment options and can become
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permanently debilitated. For those severe vestibular-loss subjects with intact eighth

nerve function, an invasive vestibular prosthesis aimed at restoring vestibular function

holds great potential as a possible rehabilitative solution.

Vestibular prostheses excite the neurons of the vestibular system and are aimed at

restoring vestibular function. The vestibular system responds to head movements that are

both angular (via the semicircular canals) and linear (via the otolith organs). Although a

prosthesis that restores full vestibular function (i.e., to both the otoliths and the

semicircular canals) would be ideal, this technology is not yet feasible. Directing

electrical stimulation to the otoliths is hindered by the opposing polarities of the otolith

hair cells, however each of the semicircular canals has uniform directional sensitivity that

makes electrical stimulation more feasible. Past and current investigations have involved

the development of semicircular canal prostheses aimed at restoring rotational cues.

Although the semicircular canal prostheses transduced head velocity, there has been

considerable evidence that canal cues can be used in conjunction with otolith cues to

estimate head orientation relative to gravity (e.g. Angelaki et al. 1999; Merfeld et al.

1999).

Previous vestibular prosthesis studies have focused on eye movement responses

of animals such as guinea pig (e.g., Gong and Merfeld 2002), chinchilla (e.g., Fridman et

al. 2010), squirrel monkeys (e.g., Lewis et al. 2010; Merfeld et al. 2007) and rhesus

monkeys (e.g., Dai et al. 2011) and have shown that the prosthesis can partially restore

the vestibuloocular reflex (VOR) to subjects with severe vestibular loss. Although

prosthetic vestibular stimulation has been extensively characterized in terms of eye
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movements, postural responses have not been rigorously investigated in either animals or

humans.

Although posture resulting from implementation of vestibular prostheses has not

been fully characterized, it has been shown that electrical stimulation (of the vestibular

afferents) can affect human posture. Galvanic vestibular stimulation (GVS), a simple

method that allows for probing of the posture effects by altering the vestibular signal, has

been studied in humans (e.g., Fitzpatrick et al. 2004). The galvanic stimulus is

commonly delivered by an anodal electrode on the mastoid process behind one ear and a

cathodal electrode behind the other ear (i.e., bilateral bipolar GVS). Bilateral monopolar

GVS has electrodes of same polarity at both ears, while unilateral monopolar GVS has a

stimulating electrode at just one ear. Fitzpatrick et al. (2004) had shown that GVS

stimulation affected human body sway magnitude and direction. Greater stimulation

current yielded higher amplitude tilt (of the head and trunk). In a standing subject,

bilateral bipolar GVS resulted in movement of the body toward the side of the anodal

electrode. The significance of this result is that it showed that vestibular afferents are

sensitive to electrical stimulation and can cause postural responses. However, unlike

natural stimuli, GVS has a large disadvantage in that it has no directionality and the entire

population of susceptible afferents are stimulated (regardless of the alignment of the hair

cells they innervate). This setback is overcome by direct stimulation of the individual

ampullary nerve afferents via a (semicircular canal) vestibular prosthesis. Furthermore,

observations were only for short-term stimulation (i.e., during the test session), therefore

long-term effects (e.g., adaptation) were not observed
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In both humans and non-human primates, some postural effects of the vestibular

prostheses have been observed (as in Philips et al. 2013; Thompson et al. 2012,

respectively). Phillips et al. 2013 implemented a unilateral vestibular prosthesis in

humans that consisted of electrodes chronically implanted in each of the three

semicircular canals in the right ear. Testing was conducted during quiet-stance (tandem

foot placement) with eyes-open or eyes-closed. This study showed that the modulation of

stimulation current modulated the amplitude of the postural responses (i.e., peak sway

amplitude increased in both mediolateral and anterior-posterior planes for an increase in

prosthetic stimulation current). Also, stimulation of a specific canal affected postural

sway orientation in that sway was directed opposite to the stimulated canal (i.e., right

posterior canal stimulation produced a sway response shifted in the left-anterior right-

posterior (LARP) plane and right anterior canal stimulation produced a sway response

shifted in the right-anterior left-posterior (RALP) plane). However, one observed

problem was that all of the subject's eye movement responses to the stimulation were not

consistent with observed postural responses. More specifically, in all subjects the

direction of the elicited eye movements changed as a function of stimulation current level

(possibly due to increases in current spread at higher current levels), but the direction of

the postural response was not observed to change for an increase in stimulation current

level. Furthermore, the prosthetic stimulation was only provided for a relatively short

duration (e.g., during the test session). Therefore, the long-term effects (e.g., adaptation

or habituation) of chronic prosthetic stimulation (e.g., days/months) on posture were not

explored. Although the results were encouraging, they show that further development

and characterization of the prosthesis is necessary in order to further explore its
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rehabilitative potential. Phillips et al. (2013) measured the effects of prosthetic

stimulation of human vestibular-loss subjects on quiet-stance body sway with tandem

foot placement. In the work described here we employed a more challenging balance

task for a severe vestibular-loss subject: head-turns to targets.

When humans with severe bilateral vestibular dysfunction turn their heads while

walking, it can result in an ataxic gait, imbalance, and falls. Head-turns have also

revealed instabilities in bilateral vestibular-loss (quadruped) cat subjects (Stapley et al.

2006). Normal cats trained to perform rapid, large-amplitude head turns to the left or

right in yaw while standing on a balance platform, exhibited a strategy of pushing off the

forelimb contralateral to the head-turn and all four limbs created a yaw rotational moment

in the direction of the target. However, bilateral vestibular labyrinthectomized cats thrust

their body to the ipsilateral side of the head-turn leading to imbalance and falls. Stapley

et al. hypothesized that postural imbalance in the labyrinthectomized animals arose from

the misperception that the trunk was rolling contralaterally (based on available neck

proprioceptive information in absence of vestibular information).

It is widely accepted that head orientation inputs from the vestibular receptors (the

otoliths and semicircular canals) and neck afferents (joint receptors and muscle spindles)

combine via vestibulospinal and cervicospinal reflex pathways, respectively (Stapley et

al. 2006). Furthermore, it has been suggested that vestibular ("head-in-space") inputs and

neck proprioceptive ("head-on-trunk") inputs are combined to calculate the position and

velocity of the trunk relative to earth-based coordinates such as the line of gravity

("trunk-in-space") (e.g., Mergner 1997). If this is correct, then the absence of either

vestibular or neck proprioceptive information would lead to an erroneous estimate of
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trunk position. Intact cats (and humans) receive both vestibular (head-in-space) signals

and neck proprioceptive (head-on-trunk) signals. When neck proprioceptive signals are

combined with vestibular signals, the result yields a reliable estimation of trunk

orientation (Figure 6.1, top). Vestibular-lesioned test subjects, however, lack the head-in-

space signal but are still receiving a reliable head-on-trunk signal. As a result, the

vestibular-loss subject estimates an erroneous trunk position (trunk-in-space) leading to

imbalance and falls (Figure 6.1, middle).

We propose that the electric stimuli delivered by the vestibular prosthesis will

partially restore vestibular cues to the severely-impaired animal. Because of this, we

hypothesize that an animal in a severely vestibular-impaired state aided by a vestibular

prosthesis (sBVH + STIM-ON) will have a more accurate estimate of trunk position

(Figure 6.1, middle and bottom). This would lead to reduced trunk sway in the sBVH +

STIM-ON state compared to the sBVH state without stimulation.

NORMAL:
Vestibular Cues Neck Proprioceptive Cues Trunk Position Estimate

Head-in-space + Head-on-trunk Trunk-in-space

VESTIBULAR LOSS (sBVH):

tibular C Neck Proprioceptive Cues Trk Position Est te

Hea eace + Head-on-trunk - Trunl -space

VESTIBULAR LOSS + PROSTHESIS (sBVH + STIM-ON):

Vestibular Cues Neck Proprioceptive Cues Trunk Position Estimate

[e 2d n- ps + Head-on-trunk - Tr u-in-spc

Figure 6.1 Schematic of normal, vestibular loss, and vestibular loss assisted by prosthesis trunk-in-
space estimation. Gray text is to indicate a partial restoration.
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The schematic shown in Figure 6.1 does not suggest that neck proprioceptive cues

are the sole source of proprioception (e.g., bottom-up proprioception also plays a role in

standing). However, because of the nature of the stimuli (i.e., relatively high velocity

head-turns) meant to excite the semicircular canals, as opposed to those involving

movements support surface (e.g., as in the platform roll-tilt stimulus described in Chapter

IV), we assumed that neck proprioception cues combining with vestibular cues were

dominant in estimating the trunk position during the head-turn..

6.3 Methods

6.3.1 Sensory states

Experiments were conducted with the approval of the Massachusetts Eye and Ear

Infirmary (MEEI) Institutional Animal Care Committee and were in accordance with

USDA guidelines. For these experiments, one adult female rhesus monkey RI (7 yrs, 7.9

kg) was used. The animal was trained to stand free of restraint on a balance platform

while receiving a juice reward.'

Using similar surgical procedures as described in Merfeld et al. 2007 for squirrel

monkeys, the animal underwent surgery prosthesis implantation of its right posterior

semicircular canal. After the surgical procedure, but before the treatments to compromise

the vestibular system, the rhesus monkey's angular vestibuloocular reflex (VOR), a

simple measure of semicircular canal function, was tested to define this baseline, or

"control", state. After quantifying the control state, the monkey then underwent a series

of ototoxic treatments that targeted and killed the vestibular hair cells while preserving

eighth nerve function. Intratympanic gentamicin (IT gent) specifically kills vestibular

hair cells and has been used to treat vertigo in Meniere's patients (e.g., Minor 1999).
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Surgery was conducted under anesthesia (ketamine (10 mL/kg) pre anesthesia and

isoflurane (2 - 5% saturation with oxygen)) and consisted of tympanic membrane

perforation and gentamicin injection in each ear (i.e., 40 mg/mL in each ear). Maximum

damage caused by the drug was estimated to be approximately 2 weeks post-

administration (i.e., I cycle of IT gent treatment = administration, then 2 week waiting

period). RI underwent 3 cycles of IT gent treatments. In order to cause a greater level of

vestibular dysfunction, the gentamicin treatments were followed by intramuscular

streptomycin (IM strep) treatments (350 mg/mL per day for 21 days x 2). Following

these sets of treatments, VOR gain was measured to characterize the severe bilateral

vestibular hypofunction (sBVH) sensory state as shown in Figure 6.2 relative to control.

Figure 6.2 also shows the VOR gain measured for the sBVH + STIM-ON state relative to

control.
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* --+-Severe Vestibular Hypofunction +
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Figure 6.2 VOR gain reduction (re control sensory state) for the sBVH and sBVH + STIM-ON
sensory states.

6.3.2 Vestibular prosthesis

The details of the prosthesis design and implementation have been previously

published (Gong and Merfeld 2002; Lewis et al. 2010; Merfeld et al. 2007) and will only
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be described briefly here. The study described in this chapter utilized a one-dimensional,

semicircular canal prosthesis in which the electrode was placed in the ampulla of the right

posterior canal in the rhesus monkey, RI. Although a one-dimensional prosthesis is

described, current ongoing research involves the development of a three-dimensional

prosthesis to simulate all three canals in each ear.

The one-dimensional prosthesis sensed head velocity that was high-pass filtered

(~0.03 Hz cutoff frequency, time constant of 5 s), to mirror the system dynamics of the

mechanisms associated with a normal rhesus monkey semicircular canal. The filtered

head velocity was used to modulate the current pulse rate of the electric stimulus so that

increasing (or decreasing) head velocity results in increases (or decreases) in spike rate

(similar to the normal physiology of the canal and ampullary nerve). The tonic, baseline

pulse rate was 250 Hz with pulse amplitude in the range of 90 microamperes, with 200 ts

pulse duration. The rate was modulated to provide a bidirectional cue (i.e., head-turns

that were ipsilateral to the stimulating electrode increased the rate of stimulation while

head-turns that were contralateral to the stimulating electrode decreased rate of

stimulation). The modulation itself was based on a hyperbolic tangent function that

saturated at higher angular velocities, but was approximately linear for mid-range

velocities (Figure 6.3, left). The prosthesis electronics housing was mounted to the

animal's head and is shown in Figure 6.3, right.
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Figure 6.3 The hyperbolic tangent function (left) and electronics housing (right) for the rhesus
monkey prosthesis.

Prior to the start of data collection, the animal was given only 8 days to adapt to

the prosthetic simulation. There was a reduction in head movement due to (possibly) a

behavioral response of the animal to the sensation of the electrical stimulation pulses.

The time course necessary for the animal to become behaviorally adapted to the

stimulation was not addressed in this study, but should be characterized in future work.

6.3.3 Overview of setup

Rhesus monkeys are habitual quadrupeds and were examined in their natural,

quadrupedal stance. The animal was trained to stand free of human or mechanical

restraint on the balance platform in order to receive a juice reward.' The head-mounted

(HM) juice reward consisted of an acrylic clip attached to the monkey's head-cap

(electronics housing) and a flexible tube that was routed to the monkey's mouth. This

configuration was used so that the animal could freely rotate its head to illuminated

targets (Figure 6.4).
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head
HM dispenser foretrunk

Figure 6.4 Schematic of the juice reward configuration: head-mounted, HM, dispenser.

In order to measure the motion of the head and foretrunk, position sensors

(miniBIRD, Ascension Technology Corporation, Milton, VT) were sampled at 100 Hz.

In order to limit environmental visual cues (e.g., of the surrounding wall and floor) all

test sessions were conducted in dim lighting with a black tarp surround.

6.3.4 Head-turns to illuminated targets

Data were collected for RI in the sBVH and sBVH + STIM-ON sensory states.

For each state, the animal stood on a stationary platform and light-emitting diodes

(LEDs) were positioned at 0' straight-ahead and ~400 oblique (in the plane of the right

posterior canal) as shown in the schematic of Figure 6.5. A manual switch was pressed

by the experimenter to illuminate the targets in the different positions. The animal was

trained such that when it turned its head and fixated on the illuminated targets, it received

a juice reward. When the animal was able to stand free of human restraint and make

head-turns to the appropriate target, data were collected.
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Target off
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Balance
Platform Pitch

Figure 6.5 Schematic of the head-turn experimental condition (Lewis et al 2007). The left panel
shows the monkey fixated on the 0' target while the monkey in the middle panel is fixate on the 400

target.

The experimenter pressed a manual switch to either illuminate the target in the 0

or the ~400 (oblique) position. During test sessions, the time of the manual switch press

was recorded as a step in the digital output (value of either 0 (off) or 1 (on)). This was

used to mark the onset of LED-on in the head measurement data record. After the test

session, the head-turns to the oblique target were manually marked (by the data analyst).

The digital output aided in determining the time just before the head-turn and just after

the head-turn (the head-turn interval). The head-turn interval (or section) consisted of the

following: start) the 0" target being illuminated and the animal facing forward; end) the

400 oblique target being illuminated and the animal turned its head. The initial maximum

value of head yaw following the 400 oblique target being illuminated marked the end of

the head-turn interval. The peak values of roll, pitch, and yaw displacement and velocity

of the head and foretrunk were then computed for each head-turn interval. Equations 6.1

and 6.2 describe maximum displacement (MAXD) and maximum velocity (MAXV).
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MAXD = max(x(i)) - min(x(i)) (6.1)

where x(i) is position data for either the head or foretrunk within a given head-turn section for
section number "i"

MAXV = max(i(i)) - min(k(i)) (6.2)

where i(i) is derivative of the position data for either the head or foretrunk within a given head-

turn section for section number "i"

Body position measurements in terms of the normalized percentage of peak

foretrunk displacement for a given peak head displacement (nMAXD) were also

computed (Equation 6.3), as well as body velocity measurements in terms of a

normalized percentage of peak foretrunk velocity for a given peak head position velocity

(nMAXV) (Equation 6.4). The purpose for normalizations (described in Equations 6.3

and 6.4) were to counteract the effects of the animal having variations in head-turn

magnitude (to the illuminated target fixation point) on the animal's trunk motion.

nMAXD = MAXDretrunk 1000/ (6.3)
MAXPead

OMA = fAX Irefrunk 10OtY/o (6.4)
MAXV head

Anchoring indices (Amblard et al. 1997), describing the relative angular

deviations of a body segment relative to an inferior body segment (e.g., head relative to

trunk), were calculated and analyzed.
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AI= Ur a (6.5)
Ur + a,,

where
Al = anchoring index

Cyr = standard deviation of the relative angular distribution (with respect to axes linked to inferior
anatomical segment)

Cya = standard deviation of absolute angular distribution of segment considered

Anchoring index (AI) was quantified to determine the movement of one body

segment relative to an inferior body segment. An Al < 0 would, in theory, indicate that

the body segment was more stable relative to the inferior body segment than in space, an

Al > 0 would indicate that the body segment was more stable in space than relative to the

inferior body segment, and an Al = 0 would indicate that the body segment was neither

more stable in space or relative to the inferior body segment.

All data analyses were conducted using MATLAB (MathWorks, Natick, MA).

6.3.6 Usable data

Usable head-turn data were defined as those segments in which the head

movements fell within specific movement criteria 2: 1) all head-turn segments for a given

test session were pooled and the sample minimum, lower quartile (Qi), median (Q2),

upper quartile (Q3), and sample maximum were determined based on the MAXD head

yaw and 2) outlier sections were defined as those with head MAXD yaw less than or

greater than Q1-1.5*(Q3-Ql) and Q3+1.5*(Q3-Q1), respectively (as in Tukey 1977).

The mean and standard deviations for Equations 6.1 through 6.5 were determined from

the usable head-turn sections. For both sensory states, there were ample usable head-turn

sections (i.e. sBVH sensory state: N = 70 usable (9 unusable) and sBVH + STIM-ON

sensory state: N = 78 usable (17 unusable)).
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In regards to comparisons of the measured results, for the above analyses a

student's t-test (assuming unequal variance, unequal sample size) was used to determine

significance.

6.4 Results

6.4.1 Head movements in sBVH and sBVH + STIM-ON sensory states

The peak foretrunk roll as a function of peak head yaw for all usable head-turns in

the sBVH and sBVH + STIM-ON states are shown in Figure 6.6.

Figure 6.7 reveals that in the sBVH + STIM-ON compared to the sBVH state for

all three axes of motion (i.e., yaw, pitch, and roll), the animal had significantly less head

movement both in position and velocity (e.g., head pitch displacement and velocity: df

110, t = -3.428, p < 0.001 and df = 122, t = -2.117, p < 0.05, respectively).
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We accounted for the differences in head movement seen here by: 1) analyzing

trunk motions for head motions that were similar in magnitude for the two states (Section

6.4.2) and 2) normalizing foretrunk position (or velocity) by head position (or velocity)

(Section 6.4.3).

6.4.2 Foretrunk motions for comparable head-turn magnitudes

Because head-turn amplitude was smaller in the stimulated state (sBVH + STIM-

ON) than the sBVH state, we aimed to determine if the decreases seen in foretrunk roll

were a consequence of the smaller head-turns or increased stability due to the partially

restored head orientation cues. In this section, we compared foretrunk roll between the

sBVH and sBVH + STIM-ON sensory states for head-turns of similar amplitude.
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Figure 6.8 Foretrunk MAXD roll as a function of head MAXD yaw for comparable head-turn
magnitudes in the sBVH and sBVH + STIM-ON states.

Figure 6.8 shows the range of head-turns (25-400 counter-clockwise in yaw) for

the two sensory states (sBVH: N = 26; sBVH + STIM-ON: N = 36). This range was

selected because there was overlap in head-turn magnitude between the two states. The

mean and standard error were computed for each sensory state for this range of head-turn

amplitudes (Figure 6.9).
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Figure 6.9 Foretrunk MAXD roll for sBVH and sBVH + STIM-ON states with standard error
bars shown.

Figure 6.9 shows that between the two states there was a significant decrease (df

= 42, t = -2.55, p < 0.02) in foretrunk roll in the sBVH + STIM-ON state relative to the

sBVH state for an insignificant difference in head-turn yaw.

6.4.3 Absolute and normalized foretrunk motions

For all usable head-turns sections shown in Figure 6.7 (i.e., regardless of head-

turn magnitude), both absolute and normalized foretrunk motions were pooled then

compared for the sBVH and sBVH + STIM-ON sensory states.

Foretrunk MAXV yaw as a function of foretrunk MAXD yaw (Figure 6.10, left)

showed no significant difference between sBVH and sBVH + STIM-ON foretrunk

MAXD. There was a small but significant decrease in MAXV yaw in the sBVH +

STIM- ON state (df = 96, t = -2.806, p < 0.01). Foretrunk MAXD roll and MAXV roll

were both significantly less (df = 112, t = -12.350, p < 0.001 and df = 98, t = -3.324, p <

0.002, respectively) in the prosthesis on state (sBVH + STIM-ON) than the sBVH state

(Figure 6.10, right).
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Figure 6.10 Foretrunk MAXD as a function of MAXV in yaw (left) and roll (right) for sBVH and
sBVH + STIM-ON states with standard error bars shown.

The magnitude of the foretrunk roll normalized by head yaw and foretrunk roll

velocity normalized by head yaw velocity (i.e., nMAXV foretrunk roll and nMAXD

foretrunk roll) are shown in Figure 6.11 (left and right, respectively). When the

prosthesis was turned on, there was a significant decrease (df = 127, t = -5.603, p <

0.001) in nMAXV foretrunk roll. Although insignificant, the nMAXD foretrunk roll also

revealed a decreasing trend in comparing the sBVH to sBVH + STIM-ON states.
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Figure 6.11 Ratio of foretrunk-to-head MAXV roll (left) and MAXD roll (right) for sBVH and sBVH
+ STIM-ON states with standard error bars shown.

6.4.4 Changes in postural strategy between sensory states

In order to determine if there were changes in postural strategy between the sBVH

and sBVH + STIM-ON sensory states, roll Al was calculated (Figure 6.12). For both
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sensory states the Al was negative, indicating that the head was more stable relative to

the trunk than in space (i.e., the trunk was being "carried with" the head). Since the

animal was performing head-turns to illuminated targets, this result was not surprising.

The decrease in Al when the animal received prosthetic stimulation was not significant.

0.0

-0.1

-0.2

0-0.3

-0.4

-0.5 -
sBVH sBVH + ST1MON

Sensory State

Figure 6.12 Head-foretrunk roll anchoring index for sBVH and sBVH + STIM-ON states with
standard error bars shown.

6.5 Discussion

A rhesus monkey with severe bilateral vestibular loss exhibited a decrease in

foretrunk roll when receiving vestibular prosthetic stimulation. We propose that the

prosthetic electrical stimulation modulated by the animal's head velocity partially

restored head velocity information. When the CNS integrated this information, it

provided the severely-impaired animal more accurate head orientation cues than when the

animal was without the stimulation. The more accurate estimate of head orientation

allowed the severe vestibular-loss animal a better estimate of trunk position. This was

observed as a reduction in trunk sway for the stimulated state (sBVH + STIM-ON)

compared to the non-stimulated state (sBVH).

6.5.1 Animal's estimation of trunk position
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A previous study conducted in normal and labyrinthectomized cats hypothesized

that the combination of vestibular and neck afferent information contributed to trunk

stability in space (Stapley et al. 2006). They proposed that the intact cat received both

vestibular signals encoding velocity of head roll in space and neck proprioceptive signals

of head roll with respect to trunk. The head-on-trunk signal combined with the head-in-

space signal to indicate trunk position. Since the lesioned cat lacked the information of

head roll in space, they suggested that the neck proprioceptive input of head-on-trunk, in

the absence of an accompanying head-in-space input, was estimated by the animal as the

body rolling under a stable head. This caused an illusion of falling in the roll plane as

opposed to the head rolling on a stable trunk. This misperception caused an erroneous

postural response leading to increases in sway and falls.

We showed that the severe vestibular-loss rhesus monkey's estimate of trunk

position and/or velocity were improved (decreased or had a decreasing trend) when the

animal was provided with partially restored head velocity cues via the prosthesis. More

specifically, in comparing the sBVH state to the sBVH + STIM-ON state the animal

showed significant decreases in foretrunk roll position for insignificantly different head-

turn magnitudes (Figure 6.8). Furthermore, Figure 6.9 showed that foretrunk roll

displacement (or velocity) normalized by head yaw displacement (or velocity) for the

sBVH + STIM-ON and sBVH states revealed decreases in trunk motion. Taken together,

these results are interpreted as the animal in the sBVH + STIM-ON state being able to

utilize the partially restored canal cues from the prosthesis to obtain a more accurate

estimate of trunk position (compared to the animal in the severely-impaired state).

6.6 Conclusions and Future Work
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Here we show that the implementation of a vestibular prosthesis in a severely

vestibular-impaired monkey led to a more stable trunk. Although the results shown here

are for one-dimensional stimulation, future posture studies should continue with

characterization of a vestibular prosthesis providing stimulation to all three semicircular

canals. Also, to further test the utility of the prosthesis, balancing tasks that have proven

to be difficult for vestibular loss subjects (e.g., head-turns while walking and balancing

on a moving support surface) should be investigated. Furthermore, future work should

incorporate electromyographic (EMG) measurements to allow for study of muscle

activation patterns of the limbs and trunk to observe how those change with and without

prosthetic stimulation. Also, eye movement measurements (e.g., via coil system) should

be evaluated to quantify of the role of eye movements in conjunction with posture

responses to balancing tasks (such as those listed above) both with and without the

prosthetic stimulation.

'Chapter II (Section 2.4.2) discusses training methods used.
2 Chapter II (Section 2.5.4) justifies the logic behind the outlier criteria used.
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VII. Summary

The measured data and observed model results were consistent with the

following: 1) the severity of vestibular dysfunction affects the postural mechanisms used

to compensate, 2) severe vestibular-loss animals can utilize light-touch to improve

postural stability, and 3) electric stimulation (via a vestibular prosthesis) in a severe

vestibular-loss animal can aid in postural stability.

We observed that the severity of the vestibular dysfunction affects the postural

compensation mechanisms used. For stationary support-surface conditions (e.g., quiet-

stance and head-turns), we observed that a mild vestibular-impaired animal had decreased

sway compared to its baseline condition but that a severe vestibular-impaired animal had

increased sway relative to baseline. A feedback controller model was able to predict

sway that was consistent with measured results. Furthermore, model parameters were

consistent with the following: 1) the animal in the mildly impaired state increased its

intrinsic/short-latency stiffness and damping in order to compensate and 2) the animal in

the severely impaired state relied more on its long-latency neural mechanisms to

compensate for the larger sways present.

For the tilting support surface, we examined a sensory reweighting hypothesis

(i.e., there is increased weighting of graviceptive cues and decreased weighting of

proprioceptive cues at larger platform tilts). In the normal animal, saturating trunk sway

was observed at higher platform tilt amplitudes (sway saturation). The mild vestibular-

loss animal also demonstrated sway saturation, but sway was generally elevated from

normal. A feedback controller model was implemented and the model-predicted results
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were consistent with the sensory reweighting hypothesis in that: 1) the normal model

parameter results were consistent with greater weighting of graviceptive cues (and

decreased weighting of proprioceptive cues) at larger platform tilts and 2) the model

parameter results for the mildly impaired state showed that graviceptive weighting

increased with platform tilt, but not to the extent seen in the normal state.

In this thesis, we have shown that sensory state (or level of vestibular impairment)

can influence compensation strategy. The observations for mild and severe vestibular

impairment can aid in determining rehabilitation strategies and also will serve as a

baseline for future human (and non-human primate) research. Based on our observations,

it is conceivable that different rehabilitative plans (e.g., patient training, non-invasive aids

or vestibular prostheses) would be necessary based on the severity of vestibular loss, and

that the type of assistive device (if any) could be influenced by the severity of vestibular

dysfunction and best suited for a specific patient.

For a severe level of vestibular impairment without the aid of non-invasive,

sensory cues (e.g., light-touch) or invasive, electric stimulation (via a vestibular

prosthesis), the animal was unstable and had large trunk sways. We observed that an

additional light-touch (proprioceptive) sensory cue aided the severe vestibular-loss

animal in reducing its trunk sway compared to the configuration where it did not receive

a light-touch cue. However, the animal with mild vestibular loss showed little change

when provided the light-touch cue. We proposed that the animal in the severely impaired

state was able to benefit from the light-touch cue, but that the animal in the mildly

impaired state used other means (e.g., increases in intrinsic/short-latency stiffness) to

compensate and, therefore, made little use of the additional sensory cue. These results
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imply that severely vestibular-impaired subjects can benefit (i.e., enhance their stability)

when an additional proprioceptive cue is provided. We also determined that prosthetic

stimulation (via a prototype vestibular implant) in a severe vestibular-loss animal aided in

postural stability. These findings indicate that prosthesis development and postural

characterization should proceed. Future posture studies should include: 1) responses to

multi-canal and bilateral prostheses and 2) continuation of non-human primate posture

research with the aim of human vestibular prosthesis implementation.

Through measured and model-predicted results, we observed that sensory

reweighting shown here in normal rhesus monkeys (and previously observed in normal

humans), is used by the animal even for a mild level of vestibular impairment. The

results suggest that modeling could be used to quantify vestibular contributions in a

mildly impaired state, and also could be helpful in tracking a patient's rehabilitative

progress following implantation of a vestibular prosthesis.

Overall, the results reported within this thesis establish the beginnings of a

baseline database of primate postural responses to a wide variety of test situations for

different levels of vestibular impairment against which rehabilitative techniques (e.g..,

posture mechanisms used to compensate, non-invasive sensory substitutes, and invasive

prototype vestibular prostheses) can be evaluated.
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