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Abstract

In this dissertation we apply computer-assisted proof techniques to two problems, one in
discrete geometry and one in celestial mechanics. Our main tool is an effective inverse
function theorem which shows that, in favorable conditions, the existence of an approximate
solution to a system of equations implies the existence of an exact solution nearby. This
allows us to leverage approximate computational techniques for finding solutions into rigorous
computational techniques for proving the existence of solutions.

Our first application is to tight codes in compact spaces, i.e., optimal codes whose
optimality follows from linear programming bounds. In particular, we show the existence of
many hitherto unknown tight regular simplices in quaternionic projective spaces and in the
octonionic projective plane. We also consider regular simplices in real Grassmannians.

The second application is to gravitational choreographies, i.e., periodic trajectories of
point particles under Newtonian gravity such that all of the particles follow the same curve.
Many numerical examples of choreographies, but few existence proofs, were previously
known. We present a method for computer-assisted proof of existence and demonstrate its
effectiveness by applying it to a wide-ranging set of choreographies.
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Chapter I

Introduction

1 Computer-Assisted Proof

The role of computational results in mathematics is well-established, but its role in rigorous
proof is relatively young. The first proof of the four color theorem, given in 1976 by Appel
and Haken [2], is the break-out example of a proof involving computations so extensive
that they cannot be checked by a human. Since then there have been many more theorems
proven using extensive and essential computer calculations; two particularly noteworthy
examples are the Kepler conjecture, now Hales’ theorem [6], and the existence of the Lorenz
attractor [19]. Even the solution of checkers [17] can be thought of as a theorem of this sort.

These are examples of computer-assisted proofs. Our work gives two applications of
computer-assisted proof techniques, one in geometry (Chapter II) and one in physics
(Chapter III). Of the four examples just given, our applications have more in common with
the Kepler conjecture and the Lorenz attractor, as opposed to the four color theorem and the
solution of checkers. For the latter pair, the problem is essentially discrete; once made finite,
it is clear that a computer could address the problem, at least in principle. By contrast,
the former pair, and our work, are continuous problems. It is perhaps less intuitive that
computational results can resolve such problems.

Note that we distinguish computer-verified proofs from computer-assisted proofs, with
our distinction being that the former involves the formal verification of proofs, whereas the
latter is concerned with proving new theorems. The focus here is on new theorems, and in
particular on theorems for which we know of no plausible approach avoiding the invocation
of electronic computers.

Both of our applications concern the existence of objects with certain properties. More-
over, in both settings there is no particular reason to suppose that these objects have a
concise, explicit representation (say, in terms of low-degree algebraic numbers). But, as we
shall formalize later, there is no particular reason why they should not exist; they can be
viewed as solutions to systems with at least as many variables as constraints. Based on
these observations, we propose that rather than existing for a “nice” reason, which could be
succinctly analyzed by hand, they simply exist because ... why not?

2 An Effective Existence Theorem

The main tool for all of our computer-assisted proofs is Theorem 2.1 below. It shows that,
under suitable conditions, wherever there is an approximate solution to a system of equations



there must be a true solution nearby. This result fits into a body of related work (see §2.1).
It is possible that this specific formulation and proof may not have previously appeared in
the literature, but we make no assertions of originality.

The theorem is stated for general Banach spaces. We use standard notation: |- | denotes
the norm on a Banach space, || - || denotes the operator norm, D f(x) is the Fréchet derivative
of f at z, B(zo,¢) is the open ball around zy with radius €, and idy denotes the identity
operator on W.

Theorem 2.1. Let V and W be real Banach spaces. Given xg € V and € > 0, suppose that
f: B(zo,e) = W is Fréchet differentiable. Suppose also that T: W — V is a bounded linear
operator such that

I7[[ - £ (zo)]

£
for all x € B(xo,g). Then there exists x. € B(zo,€) such that f(x,) = 0.

IDf(z) o T —idw]| < 1 — (2.1)

We will obtain this result as a straightforward generalization of the following effective
inverse function theorem. For notational brévity we use B(r) and B(r) to denote the open
ball and closed ball, respectively, around 0 € W and of radius r.

Proposition 2.2. Let W be a Banach space, fit v > 0, and suppose g: B(r) — W is
differentiable and satisfies g(0) = 0. Suppose also that, for some v < 1,

[|Dg(x) —idw]|| < v forall x € B(r). (2.2)

Then g extends continuously to B(r), and there exists h: B(r(1 —v)) — B(r) such that
g(h(y)) =y for all y € B(r(1 —~)). Moreover, if the inequality in (2.2) is strict, then the
image of h lies in B(r).

Proof. Define ¢: B(r) - W by
c(z) = g(z) — z.

The map c is differentiable and the operator norm of its derivative is everywhere bounded
by «. Thus the mean value inequality implies that, for any z;,ze € B(r),

le(z1) — c(z2)| < v |21 — 22| (2.3)

In particular, ¢ is Lipschitz, so uniformly continuous. The same is true of g(z) = c(x) +z. As
the codomain W is complete, ¢ and g extend continuously to B(r). Note that the Lipschitz
bound (2.3) is obeyed on the entire closed ball.

Let y € B(r(1 — v)) be arbitrary and define the function

u(z) = uy(z) =z + (y — g(z)) = y — ()
on B(r). Applying (2.3) and the triangle inequality,
lu@)] <yl + le(@)] < [yl +7-la] <71 =) +9r =1,
so in fact u maps B(r) to itself. Moreover, for any z1,z2 € B(r),
|u(@1) —u(@2)| = [e(21) — c(@2)| < v |21 — 22

by (2.3). Thus w is a contraction.

10



By the Banach contraction mapping principle, v has a (unique) fixed point; but, by
definition of w,, a fixed point is exactly a preimage of y under g. Thus, letting A(y) be the
fixed point of v = uy, we have the desired inverse function.

Now suppose that the inequality in (2.2) is (everywhere) strict. Then |c(z)| < v - |z| for
any x # 0, so the argument we gave to show u(B(r)) C B(r) actually proves u(B(r)) C B(r).

The fixed point of v is in its image, whence the final claim follows. 0

The proof just given is cribbed from a standard proof of the inverse function theorem.
We note in passing that the function A in the proposition statement is actually unique,
continuous, and differentiable on B(r).

Proof of Theorem 2.1. Let g(x) = f(zo + Tz) — f(z0), define vy =1 — ||T'|| - | f(z0)|/e, and
set r = ¢/||T||. We have v < 1, and (2.1) implies v > 0. The map T cannot be zero because
|lidw || = 1; thus v = 1 iff f(zo) = 0, but in this case the theorem statement is trivial. If
instead v € (0, 1), then apply Proposition 2.2 and take z, = zo + T(h(— f(20))). O

In this thesis we will apply Theorem 2.1 in two different settings.

In Chapter IT we apply it to finite-dimensional normed vector spaces. In this setting
Df(z) is simply the Jacobian of f at z, and (given suitable smoothness conditions) a
successful application of the theorem also yields the dimension of the solution set. Moreover,
a weaker assumption suffices.

Proposition 2.3. Let V and W be real Banach spaces. Given xg € V and € > 0, suppose
that f: B(zg,e) — W is Ct. Suppose also that T: W — V is a bounded linear operator such
that, for all x € B(xg,¢),

|[Df(z) o T —idw|| < 1. (2.4)

If the cokernel of T is finite-dimensional, then the zero locus f~1(0) C B(xzg,¢) is a C!
manifold of dimension dim coker T. In particular, if V and W are finite-dimensional, then
f7H0) is a C* manifold of dimension dimV — dim W.

Proof. This is basically a corollary of the preimage theorem in differential geometry, but that
theorem is not usually stated in Banach spaces and so we shall give a few details. Note that
(2.4) implies that, for all z € B(xg,¢), Df(x)oT is invertible; this is because the power series
S eso(idw — D f(x)oT)* converges, and that series yields the inverse. Fix a finite-dimensional
subspace F of V lifting cokerT' = V/T(W). Let z1 € f~1(0) C B(zg,¢&) be arbitrary and
write 1 = T'(y1) + 21 with y1 € W and z; € F. Choose neighborhoods Uy of y; € W and
Us of z1 € F such that T(U;) + U, C B(zp,€). Then the function q: Uy x Uy — W defined
by q(y,2) = f(T(y) +z) is C! and the restriction of Dg(y1, z1) to W is Df(x1) o T, which is
invertible. Thus the implicit function theorem applies to ¢q. This identifies a neighborhood of
x1 € f71(0) with a neighborhood of z; € F = Rdimeoker? " which proves the first statement.
For the second statement, note that invertibility of D f(xg) o T implies that T is injective,
and in the finite-dimensional case that means that dim coker T’ = dim V — dim W. O

If f satisfies stronger smoothness conditions, then the manifold f=1(0) inherits the same
properties. In Chapter II we will actually always use C™® functions, so the zero sets will be
smooth manifolds.

In Chapter III, by contrast, we apply Theorem 2.1 in a case where we expect f to be a
local isomorphism. In this case it is of interest to have an effective uniqueness result. We will
not actually apply this result in the present document, but we enunciate it for the record.
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Proposition 2.4. Let V and W be real Banach spaces and let B C V' be an open, convex
set. Let f: B— W be a C! function, and let T: W =V be a bounded linear operator. If

[|[ToDf(z)—idy|| <1 (2.5)

for all x € B, then f is injective on B.

Proof. Let x # y € B be arbitrary. Applied to the function T o f — idy, the mean value
inequality asserts that

[(T'o f)(x) = (To f)(y) — (x—y)| <[[T o Df(z) —idy || - [z — o]

for some z € B (in fact, for some z on the line segment between z and y). Thus

(To f)ly) = (Teof)z) =1 —|[TeDf(z)-idv]]) - [z -y > 0.

This proves that 7" o f is injective, so f is injective a fortiori. O

In the finite-dimensional setting, it is straightforward to apply Theorem 2.1. Our task
is to compute an approrimate right inverse T of Df(xzo) and bound ||Df(z) o T — idw/||
for all z € B(zg,e). The first step is no obstacle (see the next paragraph), and the second
step can be done simply and elegantly using interval arithmetic (see §3.2). The difficulty in
applying the theorem lies in identifying which functions f to use; that is the main challenge
we face in Chapter II. By contrast, in infinite-dimensional spaces, even the computational
application of Theorem 2.1 is more delicate (see §III.4).

As we shall see, the freedom to choose any matrix T which is suitably close to an
approximate right inverse is immensely useful. It lets us compute T via non-rigorous
methods, which are much faster than, e.g., interval arithmetic calculations (see §I1.6.1 and
§I11.5.1).

Remark. While the conclusion of Theorem 2.1 strengthens as £ decreases, the hypotheses do
not change monotonically. The bound we need to prove for ||Df(z) o T — idw || becomes
stronger, but the domain on which we need to prove it shrinks. Thus it can, and sometimes
does, happen that we can verify the hypotheses of Theorem 2.1 only by choosing a smaller ¢.

Aside. We proved Theorem 2.1 using a fixed-point theorem, and indeed in the literature
existence results of this form tend to be proven this way. Fixed-point theorems are powerful
and general. There is an alternative perspective, though, which we think is more intuitive
and explanatory: in the context of Theorem 2.1, if z(¢) is a solution of the initial-value
problem

#'(t) = ~T(Df(z(t)) o T)7 f(2(0)),  (0) = =o,

then x(1) satisfies f(z(1)) = 0. This differential equation is a time-rescaled continuous
analog of Newton’s method, and its application to existence theorems is known [14]. If f
is C1 and W is finite-dimensional, then one can use the Peano existence theorem to find
a solution to the differential equation. In the infinite-dimensional case, if f is C! and its
derivative is locally Lipschitz, then the Picard existence theorem gives a solution. However,
our proof avoids the need for these smoothness assumptions.

12



2.1 Related existence theorems

Theorem 2.1 is effectively an effective inverse function theorem, since it can be viewed as
giving quantitative bounds on a neighborhood in which f has a (right) inverse. Such results
date back to the Newton-Kantorovich theorem [8], which gives quantitative bounds on the
convergence of Newton’s method; see Ortega's short note [15] for an English-language proof
and Moore and Cloud’s textbook [12] for a development from the computational perspective.
Kantorovich’s result is close in spirit to our theorem. The main difference is that he analyzed
Newton’s method itself, whereas we are interested only in existence and so accept a degree
of abstractness in exchange for a cleaner statement and proof.

Kantorovich’s theorem shares with Theorem 2.1 the property of immediate generalization
to Banach spaces. It lacks, though, the freedom we have to use an approximate right
inverse T'. Instead Kantorovich’s theorem restricts to invertible functions and uses the
actual inverse of Df. It also requires that the derivative be Lipschitz. While this is often a
natural condition to check computationally (as in §I11.4.7), sometimes it is more convenient
to instead verify (2.1) directly (as in §11.6.1).

There are other existence theorems in the literature that are closer to ours in terms of
concrete computations. One such is the Krawczyk-Moore theorem [9, 11]. (The literature
tends to refer to the theorem by one of those two names, but not both. Krawczyk presented
an analysis of convergence but assumed the existence of a solution, while Moore noted that
existence could be deduced rather than assumed.) This theorem is very similar to ours,
and in fact it is stronger than ours when restricted to the finite-dimensional setting with
the supremum norm. Again, the primary difference is that we have exchanged neatness for
generality. The Krawczyk-Moore theorem shares with Theorem 2.1 the flexibility to choose
an approximate inverse. It also generalizes to infinite-dimensional settings, although not as
easily [5]. Other results in a similar vein include the existence theorems of Miranda [10] and
Borsuk [3] and Smale’s analysis of Newton’s method [18].

3 Computational Considerations

3.1 Choice of norm

Theorem 2.1 applies to any Banach space, so (especially in the finite-dimensional setting) we
are free to choose the norm best suited to our problem. We could even choose substantially
different norms on the domain and codomain, although in our work we have not exploited
this particular freedom.

In Chapter II we use the £°° norm and in Chapter III we use the ¢* norm. These are both
convenient choices computationally because, in addition to being easy to compute the norm
of a vector (which is true of any #’ norm), it is easy to compute ¥ — #P operator norms
when p = 1, 00. In particular, the £*° — £°° operator norm of a matrix is the maximum of
the #! norms of its rows, and the ¢* — £! operator norm is the maximum of the ¢! norms of
its columns. The first statement is basically obvious and the second follows from convexity
(or duality).

Using the £2 norm would also be an acceptable choice, as the £2 — ¢2 operator norm
can be approximated efficiently. (It is the largest singular value of the matrix.) However,
for any other choice of P, even approximating the operator norm is NP-hard [7]. Indeed,
computing the £*° — £ operator norm of a matrix is already a difficult problem [1].

13



3.2 Interval arithmetic

Interval arithmetic is a standard tool in numerical analysis to control the errors inherent in
floating-point computations [13]. The principle is simple: instead of rounding the results
of arithmetic operations to a number that can be exactly represented in a computer, we
work with intervals of representable numbers that are guaranteed to contain the correct
value. This lets us offload any concerns about numerical round-off error onto the computer;
it automatically tracks the errors for us.

For instance, consider a hypothetical computer capable of storing 4 decimal digits of
precision. Using floating-point arithmetic, = would best be represented as 3.142. Using this,
if we computed 2 - w then we would get 6.284, which is obviously not correct. By contrast,
interval arithmetic on the same computer would represent « as the interval [3.141, 3.142].
Then 2 - © would be represented by the interval [6.282,6.284], which does contain the exact
value.

In our software we use the MPFI library to provide support for interval arithmetic [16].
That in turn relies on MPFR, a library for multiple-precision floating-point arithmetic [4].
One of the main problems with interval arithmetic is that the size of the intervals can grow
exponentially with the number of arithmetic operations; this problem can be ameliorated
by increasing the precision of the underlying floating-point numbers. Thus it is a major
advantage of MPFI and MPFR that the precision can be increased arbitrarily.

This did not turn out to be a significant issue in our applications, though. We used
128-bit floating-point numbers for the intervals in our rigorous proofs, and that proved to
be sufficient in all cases save three (see Figure II1.3.1). We did not explore whether less
precision would have sufficed; presumably such optimization could yield some (possibly
significant) improvements in runtime.

14
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Chapter 11

Optimal simplices and codes in
projective spaces

This chapter presents joint work with Henry Cohn and Abhinav Kumar. Most of it appears
verbatim in a joint paper prepared for publication [15].

1 Introduction

The study of codes in spaces such as spheres, projective spaces, and Grassmannians has
been the focus of much interest recently, with an interplay of methods from many aspects of
mathematics, physics, and computer science. Given a compact metric space X, the problem
is how to arrange N points in X so as to maximize the minimal distance between them. A
point configuration is called a code, and an optimal code C maximizes the minimal distance
between its points given its size |C|. Finding optimal codes is a central problem in coding
theory. Even when X is finite (for example, the cube {0,1}" under Hamming distance),
this optimization problem is generally intractable, and it is even more difficult when X is
infinite.

Most of the known optimality theorems have been proved using linear programming
bounds, and we are especially interested in codes for which these bounds are sharp. We call
them tight codes.! These cases include many of the most remarkable codes known, such as
the icosahedron or the Eg root system.

In this paper, we explore the landscape of tight codes in projective spaces. We are
especially interested in simplices of N points in d-dimensional projective space (i.e., collections
of N equidistant points). Tight simplices correspond to tight equiangular frames [39], which
have applications in signal processing and sparse approximation, and they also capture
interesting invariants of their ambient spaces.

In real and complex projective spaces, tight simplices occur only sporadically. All known
constructions are based on geometric, group-theoretic, or combinatorial properties that
depend delicately on the size NV and dimension d. By contrast, we find a surprising new
phenomenon in quaternionic and octonionic spaces: in each dimension, there are substantial
intervals of sizes for which tight simplices always seem to exist.

!The word “tight” is used for a related but more restrictive concept in the theory of designs. We use the
same word here for lack of a good substitute. This makes “tight” a noncompositional adjective, much like
“optimal”: codes and designs are both just sets of points, so every code is a design and vice versa, but a tight
code is not necessarily a tight design. (However, one can show that every tight design is a tight code.)
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This behavior cannot plausibly be explained using the sorts of constructions that work
in real or complex spaces. Instead, the new tight simplices seem not to exist for any
special reason, but rather simply because of parameter counting. Specifically, they can be
characterized using more variables than constraints, in a way that suggests they should exist
but does not prove it. We do not know how to prove that they exist in general, but we prove
existence in many hitherto unknown cases. We also extend our methods to handle some
exceptional cases that are more subtle.

Our results settle several open problems dating back to the early 1980s. We show the
existence of a 15-point simplex in HP? and a 27-point simplex in OP?, which are not only
optimal codes, but also the largest possible simplices in these spaces. (For comparison, the
six diagonals of an icosahedron form a maximal simplex in RP?, and the largest simplex in
CP? has size nine.) Furthermore, these simplices are tight 2-designs. We also construct a set
of 13 mutually unbiased bases in OP2. The mutually unbiased bases had been conjectured
to exist [24, p. 35], but no construction was known, and the tight simplices were conjectured
not to exist [23, p. 251]. It would be interesting to determine whether these simplices could
lead to minimal triangulations of HP? and OP?, which would have the same number of
vertices (see [10]).

We also rigorously show the existence of many tight simplices in real Grassmannians,
which were conjectured to exist in [17] based on numerical evidence. This case is similar to
quaternionic and octonionic projective spaces, in that parameter counts

In contrast to the usual algebraic methods for constructing tight codes, we take a rather
different approach to show the existence of families of simplices. We use our general effective
implicit function theorem (Theorem I.2.1), which allows us to show the existence of a real
solution to a system of polynomial equations near an approximate solution. Furthermore,
when this theorem applies, it also shows that the space of solutions is a smooth manifold
near the approximate solution and tells us its dimension (see Proposition 1.2.3). This allows
us to establish many new results for which algebraic constructions seem out of reach.

In §2 we describe linear programming bounds and recall what is known about tight codes
in projective spaces over R, C, H, and @. Our results concerning existence of new families of
simplices, proved using our main existence theorem (Theorem 1.2.1), are described in §3 and
§4. In §5 we use our methods to produce several positive-dimensional families of simplices
in real Grassmannians. We then give a discussion of the algorithms and computer programs
used for these computer-assisted proofs in §6. Finally, we conclude in §7 with a few explicit
constructions of universally optimal codes, the most notable of which is a maximal system
of mutually unbiased bases in QP2.

2 Codes in Projective Spaces

2.1 Projective spaces over R, C, H and O

If K =R, C, or H, we let KP4~1:= (K?\ {0})/K* be the set of lines in K¢ That is, we
identify z and za for z € K9\ {0} and o € K. Note the convention that K> acts on the
right; this is important for the noncommutative algebra H.

We equip K¢ with the Hermitian inner product (1, 22) = 1131.7,’2, where T denotes the
conjugate transpose. We may represent an element of the projective space by a unit-length
vector x € K%, and we often abuse notation by treating the element itself as such a vector.
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Under this identification, the chordal distance between two points of KP4~ is

p(x1,x2) = /1 = |(z1,22)[2.

It is not difficult to check that this formula defines a metric, which is equivalent to the
Fubini-Study metric. Specifically, if ¥(x1, z2) is the geodesic distance on KP%! under the
Fubini-Study metric, normalized so that the greatest distance between two points is 7, then

cos O(z1, x2) = 2)(z1, 22)|? — 1

p(w1,5) = sin (M) .

and
2

Alternatively, elements z € KP% ! correspond to projection matrices I1 = zzf, which
are Hermitian matrices with I12 = Il and TrII = 1. The space H(K?) of Hermitian matrices
is a real vector space endowed with a positive-definite inner product

1
(4,B) = Tt ;(AB + BA) = Re Tr AB.

Because Reab = Reba for a,b € K, it follows that Re Tr(ABC) = Re Tr(CAB) for A, B,C €
K44 in other words, the operator ReTr is cyclic invariant. Hence, for any z1,z € KP31
with associated projection matrices I}, IIy € H(K?), we have

(I11, 1) = ReTr xlmgmgxg
= ReTr m%xlzizg 2.1)

= Re (2, z1)(x1, z2)

= (21, 22)]%.

Thus the metric on KP?! can also be defined by p(z1,z2) = /1 — (I, II). Equivalently,
it equals ||II; — TI3]|/v/2, where || - || denotes the Frobenius norm: ||A|| = (Z” |4i;1%) 12
for a matrix whose i, j entry is A;;.

The one remaining projective space is the octonionic projective plane OP2. (See [5] for
an account of why OP¢ cannot exist for d > 2; one can construct OP!, but we will ignore
it as it is simply S®.) Due to the failure of associativity, the construction of QP? is more
complicated than that of the other projective spaces; we cannot simply view it as the space
of lines in ®3. However, there is a construction analogous to that in the previous paragraph.
The result is an exceptionally beautiful space that has been called the panda of geometry
[8, p. 155]. The points of OP? are 3 x 3 projection matrices over O, i.e., 3 x 3 Hermitian
matrices I1 satisfying I1? = I and Tr I = 1. The (chordal) metric in OP? is given by

plI1a 1) = =Ty = Tl = /T (7, ]

Each projection matrix II is of the form
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where a,b,c € O satisfy |a]? + |b]? + |c|> = 1 and (ab)c = a(bc). We can cover OP? by
three affine charts as follows. Any point may be represented by a triple (a, b, c) € O® with
la|? + |b]? + [¢|2 = 1, and for the three charts we assume a, b, or c are in R, respectively.
In practice, for computations with generic configurations we can simply work in the first
chart and refer to a projection matrix by its associated point (a, b, c) € R, x Q2.

2.2 Tight simplices

Projective spaces can be embedded into Euclidean space by identifying a point with its
associated projection matrix; using this embedding, the standard bounds on the size and
distance of regular simplices in FEuclidean space imply bounds on simplices in projective
space. The resulting bounds for regular simplices in real projective space were first proven
by Lemmens and Seidel [30]. They are also known in information theory as Welch bounds
[41).

As above, let K be R, C, H, or @. We consider regular simplices in KP41 with the
understanding that d = 2 when K = Q.

Definition 2.1. A regular simplex in a metric space (X, p) is a collection of distinct points
z1,...,zn of X with the distances p(z;, z;) all equal for i # j.

We often drop the adjective “regular,” as by a simplex we always mean a set of equidistant
points.

Proposition 2.2. Consider a regular simplex consisting of N points x1,...,xN with asso-
ciated projection matrices Ily,. .., Iy, and let o = (II;,11;) be the common inner product

fori# j. Then
(d2 - d) dimR K

N <d
<d-+ 5
and, for any such value of N,
N N —d
o> ——.
“d(N-1)
Proof. The Gram matrix G associated to IIj,...,IIy has unit diagonal and « in each

off-diagonal entry. Since G is (1 — a)Iy plus a rank one matrix, an easy computation
shows det G = (1 — a)V~!(1 + (N - 1)a), which is nonzero because o € [0,1). Thus G
is nonsingular, and the elements IIy, ..., Ty € H(K%) are linearly independent, implying
N < dimg H(K?) = d + (d? — d)(dimg K)/2. Now note that (II;, I;) = |z;|> = 1 for each
t=1,...,N. Using this we compute

N N
<(Z Hi) - %Id, (Z Hi) - %Id> =N - N{- + N(N - 1)e
i=1 i=1

Nonnegativity of this expression gives the desired bound on «. tl
Definition 2.3. We refer to a regular simplex with

N-d
d(N 1)

o =

as a tight simpler. That is, it is a simplex with the maximum possible distance allowed by
Proposition 2.2.

20



Note that this definition is independent of the coordinate algebra K. In other words,
the embeddings RP¢~! ¢ CP4—1 ¢ HP?Y~! preserve tight simplices.

Proposition 2.4. Every tight simplezr is an optimal code.

More generally, the bound on « in Proposition 2.2 applies to the minimal distance of
any code, not just a simplex.

Proof. Let IIy,...,IIy be the projection matrices corresponding to any N-point code in
KP?1, As in the proof of Proposition 2.2,

N—%2+ &(Hz,n <(ZH) (ZH>——Id>ZO.

h,j=1
i#]

Thus, the average of (I;,II;) over all i # j satisfies

N
1 N2?/d - N N —d
Tt I1;,I1,) > = .
N(N - 1) ”2_1( o 1Lj) 2 N(N—-1) d(N-1)
i
In particular, the greatest value of (Il;, II;) for ¢ # j must be at least this large. O

A regular simplex of N < d points in KP4 is optimal if and only if the points are
orthogonal (i.e., @ = 0). Such simplices always exist. We only consider them to be tight
when N = d, as the N < d cases are degenerate. There also always exists a tight simplex
with N = d 4 1 points, obtained by projecting the regular simplex on the sphere S%! into
RP?~1, Therefore in what follows we will generally assume N > d + 2.

It follows immediately from the proof of Proposition 2.2 that a simplex {z1,...,zy} is

tight if and only if
N
N
]
Zaziaci = —1.
i=1 d

This condition can be reformulated in the language of projective designs [20, 34] (see also
[23] for a detailed account of the relevant computations in projective space). Specifically,
it says that the configuration is a 1-design. We will make no serious use of the theory of
designs in this paper, and for our purposes we could simply regard Zz 1:17127 = Id as the
definition of a 1-design, but we will briefly recall the general concept in our dlscussmn of
linear programming bounds.

2.3 Linear programming bounds

Linear programming bounds {26, 20] use harmonic analysis on a space X to prove bounds on
codes in X. These bounds and their extensions [4] are one of the only known ways to prove
systematic bounds on codes, and they are sharp in a number of important cases. Later in
this section we will summarize the sharp cases that are known in projective spaces (see also
Table 1 in [14] for a corresponding list for spheres), but first we will give a brief review of
how linear programming bounds work.

The simplest setting for linear programming bounds is a compact two-point homogeneous
space. We will focus on the connected examples, namely spheres and projective spaces, but
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discrete two-point homogeneous spaces such as the Hamming cube are also important in
coding theory.

Let X be a sphere or projective space, and let G be its isometry group under the
geodesic metric ¥ (normalized so that the greatest distance is 7). Then L%(X) is a unitary
representation of 7, and we can decompose it as a completed direct sum

LX) = @Vk

k>0

of irreducible representations V. There is a corresponding sequence of zonal spherical
functions Cy, C1, ..., one attached to each representation Vj. The zonal spherical functions
are most easily obtained as reproducing kernels; for a brief review of the theory, see
Sections 2.2 and 8 of [14]. We can represent them as orthogonal polynomials with respect to
a measure on [—1, 1], which depends on the space X, and we index them so that Cj has
degree k.

For our purposes, the most important property of zonal spherical functions is that
they are positive definite kernels: for all N € N and z1,...,zy € X, the N x N matrix

(Ci(cos Iz, a:j)))l <ij<n 18 positive semidefinite. In fact, the zonal spherical functions span

the cone of all such functions.

For projective spaces KP%~!, the polynomials C) may be taken to be the Jacobi poly-
nomials P,ga’ﬁ), where a = (d — 1)(dimg K)/2 — 1 (ie, a = (dimg KP%1)/2 — 1) and
B = (dimg K)/2 — 1. We will normalize Cy to be 1.

Linear programming bounds for codes amount to the following proposition:

Proposition 2.5. Let 6 € [0, 71|, and suppose the polynomial
13
F(z) =) fCi(2)
k=0

satisfies fo > 0, fr >0 for 1 <k <n, and f(z) <0 for —1 < 2 < cosh. Then every code in
X with minimal geodesic distance at least 0 has size at most f(1)/ fo.

Proof. Let C be such a code. Then

Z f(COSﬁ(ZE,y)) > fOIC|2>

xz,yeC

because each zonal spherical function Cj is positive definite and hence satisfies

Z Ci(cosd(z,y)) > 0.
z,yeC

On the other hand, f(cos?¥(z,y)) < 0 whenever ¥(z,y) > 6, and hence

S Fleos 9(z,9)) < IClF(1)

z,yeC

because only the diagonal terms contribute positively. It follows that fo|C|?2 < f(1)[C|, as
desired. 0

22



We say this bound is sharp if there is a code C with minimal distance at least ¢ and
IC] = f(1)/ fo. Note that we require exact equality, rather than just |C| = [ f(1)/fo].

Definition 2.6. A tight code is one for which linear programming bounds are sharp.

Examining the proof of Proposition 2.5 yields the following characterization of tight
codes:

Lemma 2.7. A code C with minimal geodesic distance 0 is tight iff there is a polynomial
f(z) =30 fxCr(2) satisfying fo >0, fi >0 for 1 <k <n, f(z) <0 for =1 < z < cosb,

Z Cr(cos¥(z,y)) =0

z,y el

whenever fr > 0 and k # 0, and f(cosd(z,y)) = 0 for z,y € C with © # y. In fact, these
conditions must hold for every polynomial f satisfying both f(1)/fo = |C| and the hypotheses
of Proposition 2.5.

By Proposition 2.5, every tight code is as large as possible given its minimal distance,
but it is less obvious that such a code maximizes minimal distance given its size.

Proposition 2.8. Every tight code is optimal.

Proof. Suppose f satisfies the hypotheses of Proposition 2.5, and C is a code of size f(1)/fo
with minimal geodesic distance at least 8. We wish to show that its minimal distance is
exactly 6.
By Lemma 2.7
> (floosd(a,y)) — Jo) =0
z,yeC
and f(cos?(z,y)) =0forz,y € C with x #y
Now suppose C had minimal geodesic distance strictly greater than 6, and consider a
small perturbation C’ of C. It must satisfy

3" (fleosd(z,y)) — fo) =0,

x,yeC’

by positive definiteness. On the other hand,

> (fleosd(z,y)) = fo) = IC'1f(1) = IC'*fo+ Y fleosd(z,y)).
x,yel! x,ycC’
TF£Y

We have |C'|f(1) — |C'|fo = 0 since |C'| = |C| = £(1)/fo. Thus,

3" fleosI(z,y)) 2 0.
x,yel’
z#y

If the perturbation is small enough, then f(cos¥(z,y)) < 0 for distinct z,y € C’. In that
case, we must have f(cosd(z,y)) = 0 for distinct z,y € C’. However, this fails for some
perturbations, for example if we move two points slightly closer together. It follows that
every code of size f(1)/fo and minimal geodesic distance at least ¢ has minimal distance
exactly €, so these codes are all optimal. ]
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Lemma 2.9. Tight simplices in projective space are tight codes.

Proof. Up to scaling, the first-degree zonal spherical function C; on KP41 is 2 + % Now
let
(N —-1)d d—2
=1 .
f(2) +2(d—1) it
It satisfies f(2) <0 for z € [-1,2a — 1], where

N-—-d

“CTAN -1

and f(1)/fo = N, as desired. ]

Note that in this proof C'1 depends only on d, and not on K. By contrast, higher-degree
zonal spherical functions for KP%~! depend on both d and K.
A t-design in X is a code C C X such that for every f € V;, with 0 < k < ¢,

> f@)=o0.

zeC

In other words, every element of V) @ --- @ V; has the same average over C as over the
entire space X. (Note that all functions in Vj for k& > 0 have average zero, since they are
orthogonal to the constant functions in Vj.) Using the reproducing kernel property, this can
be shown to be equivalent to

Z Cr(cos¥(z,y)) =0

z,yeC

for 0 < k <t.
In KP%1 one can check that

holds if and only if {z1,...,zN} is a 1-design.
A code is diametrical in X if it contains two points at maximal distance in X, and it is
m-distance set if exactly m distances occur between distinct points.

Definition 2.10. A tight design is an m-distance set that is a (2m — ¢)-design, where ¢ is 1
if the set is diametrical and 0 otherwise.

For example, an N-point tight simplex in KP4~ ! with N = d + (d? — d)(dimg K)/2 (the
largest possible value of N) is a tight 2-design. See (7] for further examples.

Every tight t-design is the smallest possible ¢-design in its ambient space. This was
first proved for spheres in [20]; see Propositions 1.1 and 1.2 in [6] for the general case. The
converse is false: the smallest ¢-design is generally not tight.

A theorem of Levenshtein [32] says that every m-distance set that is a (2m — 1 —¢)-design
is a tight code, where as above ¢ is 1 if the set is diametrical and 0 otherwise. For example,
all tight designs are tight codes. In [14], it was also shown that under these conditions, C is
unsversally optimal for potential energy: it minimizes energy for every completely monotonic
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Table 2.1: Known universal optima of N points in real projective spaces RP4~1. The
tight simplices are indicated by an asterisk and have maximal squared inner product
(N —d)/(d(N —1)); for simplicity we omit the Gale duals of the tight simplices.

d N max |(z, y)|* Name/origin

d N<d+1 * Euclidean simplex

d 2d * symm. conf. matrix of order 2d
d d(d+2)/2 1/d MUB with d = 4%

2 N cos?(m/N) regular polygon

4 60 (v5-1)/4 regular 600-cell

6 16 * Clebsch

6 36 1/4 Eg root system

7 28 * equiangular lines

7 63 1/4 E; root system

8 120 1/4 Eg root system

23 276 * equiangular lines

23 2300 1/9 kissing configuration of next line
24 98280 1/4 Leech lattice minimal vectors
35 120 * embedding of Eg from [9]

function of squared chordal distance. (See also [13] for context.) This applies in particular
to simplices, so all tight simplices are universally optimal.

In fact every known tight code is universally optimal. Moreover, except for the regular
600-cell in S? and its image in RP3, they all satisfy the design condition just mentioned.
For lack of a counterexample, we conjecture that tight codes are always universally optimal.
(But see [16] for perspective on why the simplest reason why this might hold fails.)

2.4 Tight codes in RP"!

We now describe what is known about tight codes in real projective spaces. Table 2.1
provides a summary of the current state of knowledge.

Euclidean simplices give the simplest infinite family of tight codes.

Another infinite family of tight simplices comes from conference matrices [40] (see [17,
p. 156]): if a symmetric conference matrix of order 2d exists, then there is a tight simplex of
size 2d in R%. In particular, we get a tight simplex in R? whenever 2d — 1 is a prime power
congruent to 1 modulo 4. One can also construct such codes through the Weil representation
of the group G = PSL»(F,). Note that the icosahedron arises as the special case ¢ = 5,
which is why it is not listed separately in Table 2.1.

Levenshtein [31] described a family of tight codes in RP*™! for n a power of 4, based on
a construction using Kerdock codes. These codes meet the orthoplex bound (Corollary 5.3
in [17]) and give rise to mutually unbiased bases in their dimensions. The regular 24-cell is
the special case with n = 4.

A trivial systematic family of tight codes is formed by the diameters of the regular
polygons in the plane. The remaining configurations in Table 2.1 correspond to exceptional
geometric structures.

25



Table 2.2: Known universal optima of N points in complex projective spaces CP4~1. The
tight simplices are indicated by an asterisk and have maximal squared inner product
(N — d)/(d(N — 1)); for simplicity we omit the Gale duals of the tight simplices as well as
the tight simplices from RP4~1,

d N max |(z, y)|? Name/origin

d 2d * skew-symm. conf. matrix of order 2d

d d? x SIC-POVMs

d d(d+1) 1/d MUB with d = p* and p a prime

d 2d+1 * skew-Hadamard matrix of order 2d + 2 (d odd)
d 2d-1 * skew-Hadamard matrix of order 2d (d even)
4 40 1/3 Eisenstein structure on FEg

5 45 1/4 kissing configuration of next line

6 126 1/4 Eisenstein structure on Ko

28 4060 1/16 Rudvalis group

|S| |G| * difference set S in abelian group G

We also observe the phenomenon of Gale duality: tight simplices of size N in KP4~!
correspond to tight simplices of size N in KPN~4-1. For instance, the Gale dual of the
Clebsch configuration gives a tight simplex of 16 points in RP°. See §2.7 for more details.

2.5 Tight codes in CP*!

Table 2.2 lists the tight codes we are aware of in complex projective spaces. For a detailed
survey of tight simplices, we refer the reader to Chapter 4 of [28].

Here, we observe a few more infinite families. In particular, if a conference matrix of
order 2d exists, then there is a tight code of 2d lines in CP4~1 [44, p. 66]. For prime powers
g = 3 (mod 4), this gives a construction of a tight (¢ + 1)-point code in CP(e~1/2 As
mentioned before, such codes may also be constructed using the Weil representation of
PSLo(IFy). Another family of codes of d(d + 1) points in CP?!, for d an odd prime power,
was constructed by Levenshtein [31] using dual BCH codes. These codes meet the orthoplex
bound and give rise to mutually unbiased bases in their dimensions. They were rediscovered
by Wootters and Fields [42], with an extension to even characteristic and applications to
physics. A third infinite family is obtained from skew-Hadamard matrices (see [36] for a
construction using explicit families of skew-Hadamard matrices and Theorem 4.14 in [28] for
the general case).

The most mysterious tight simplices are the awkwardly named SIC-POVMs (symmetric,
informationally complete positive operator valued measures). SIC-POVMs are simplices
of size d? in CP?1, i.e., simplices of the greatest size allowed by Proposition 2.2. These
configurations play an important role in quantum information theory, which leads to their
name. Numerical experiments suggest they exist in all dimensions, and that they can even
be taken to be orbits of the Weyl-Heisenberg group [44, 37]. Exact SIC-POVMs are known
for d < 15, as well as d = 19, 24, 35, and 48, and numerical approximations are known for
all d < 67 (see [38]).

The last line of the table refers to a construction based on difference sets [43] (see also
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Table 2.3: Previously known universal optima of N points in quaternionic and octonionic
projective spaces. For simplicity we omit the tight simplices from RP¢~! and CPe-1,

Space N max |{z, y)|? Name/origin

HP4~!  d(2d +1) 1/d MUB with d = 4*
HP4 165 1/4 quaternionic reflection group
OP? 819 1/2 generalized hexagon of order (2, 8)

[29]). Let G be an abelian group of order N, S a subset of G of order d, and X a natural
number such that every nonzero element of G is a difference of exactly A pairs of elements
of S. It follows that d(d — 1) = A(N — 1), and that the vectors

vx = (X(8))ses

give rise to a tight simplex of N points in P?~! as y ranges over all characters of G. As
particular cases of this construction, one can obtain a tight simplex of n? 4+ n + 1 points
in CP", when there is a projective plane of order n. A generalization of this example was
given in [43], using Singer difference sets, to produce (¢**! —1)/(q — 1) points in CP471,
with d = (¢* — 1)/(g — 1). Similarly, if ¢ is a prime power congruent to 3 modulo 4, then the
quadratic residues give a difference set, yielding a tight simplex of ¢ points in CPe-3)/2 Ag
another example, there is a difference set of 6 points in Z/317Z (namely, {0, 1,4,6,13,21}),
which gives rise to a tight simplex of 31 points in CP®.

2.6 Tight codes in HP?! and QOP?

Relatively little is known about tight codes in quaternionic or octonionic projective spaces,
aside from the real and complex tight simplices they automatically contain. There is a
construction of mutually unbiased bases due to Kantor [27], and two exceptional codes are
known.

The 165 points in HP* from Table 2.3 are constructed using a quaternionic reflection
group (Example 9 in [23]). The 819-point universal optimum is a remarkable code in the
octonionic projective plane [12]; see also [21] for another construction. It can be thought of
as the 196560 Leech lattice minimal vectors modulo the action of the 240 roots of Eg (viewed
as units in the integral octonions), although this does not yield an actual construction: there
is no such action because the multiplication is not associative.

2.7 Gale duality

Gale duality is a fundamental symmetry of tight simplices. It goes by several names in the
literature, such as coherent duality, Naimark complements, or the theory of eutactic stars.
We call it Gale duality because it is a metric version of Gale duality from the theory of
polytopes.

Let K be R, C, or H. Note that Gale duality does not apply to OP2.

Proposition 2.11 (Hadwiger [22]). Let vy,...,vny span a d-dimensional vector space V
over K, and suppose they have the same norm |v;|?> = d/N. Then their images in KPpé-1
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form a 1-design if and only if there is an N-dimensional vector space U containing V' and
an orthonormal basis u1,...,uy of U such that v; ts the orthogonal projection of u; to V.

Proof. Let M be the d x N matrix whose i*® column is v;. The existence of U and uq, ..., un
is equivalent to an extension of M to a unitary matrix by adding NV — d rows, in which case
u1,...,un are the columns of the extended matrix. This extension is possible if and only if
the rows of M are orthonormal vectors; in other words, it is equivalent to MMt = I,;.

To analyze M, we can write it as M = Zf\;l vz'e;r, where e1,...,ey is the standard
orthonormal basis of K. Then

N N
MM = Z vie;rejv; = Z’Ui’U;r-
i,=1 i=1

Thus, the extension is possible if and only if

N
Z ’Ui'l)g = Id)
i=]

which is the condition for a projective 1-design once we rescale to account for |v;|? = d/N. O

Under the 1-design condition from Proposition 2.11, consider the projection w; of the
vectors u; to the orthogonal complement V4L of Vin U. This code {wi,...,wn}in K pN-d-1
is called the Gale dual of the code {v1,...,vn} in KP4~L. However, there is one technicality:
the N points in KPY 971 needn’t be distinct in general, so the Gale dual must be considered
a multiset of points. Aside from the need to allow multisets, Gale duality is an involution
on projective 1-designs, defined up to isometry.

Gale duality preserves tight simplices when N > d + 1, and the multiplicity issue does
not arise:

Corollary 2.12. Let K be R, C, or H. For N > d + 1, the Gale dual of an N-point tight
simplez in KP%1 is an N-point tight simpler in KPN—4-1,

Proof. Because the 1-design property is preserved, we need only check that the Gale dual is
a simplex. In the notation used above, for i # j we have

0 = (i, uz) = (vi, v) + (wi, wy).

Thus, (w;,w;) is constant for ¢ # j because (v;,v;) is. The inequality N > d + 1 merely
rules out the degenerate case KPP. O

The inequality
(d? — d) dimg K
2
from Proposition 2.2 shows that tight simplices cannot be too large. Combining Gale duality

with the same inequality shows that they cannot be too small, either (see Theorem 2.30 in
[44] and Corollary 2.19 in [28]):

Corollary 2.13. Let K be R, C, or H. If there exists an N-point tight simplez in KP4~!
with N > d+ 1, then

N<d+

8d
L+ /1+ g ®

N>d+ 5
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3 Simplices in Quaternionic Projective Spaces

3.1 Generic case

The definition gives one characterization of tight N-point simplices; we simply impose
|z;|2 = 1 for each i and |{z;,z;)|? = (N —d)/(d(N — 1)) for i < j. In fact, tight simplices can
be characterized even more succinctly: it can be shown that 37, ;|(z;,2;)|* > N?/d, with
equality iff {zy,...,zn} is a tight simplex. Both of these descriptions, though, suffer from
the problem that the imposed conditions are singular; loosely put, if a set of points satisfies
the conditions, then it does so “just barely.” In other words, if we define f: HY — RN+ by

S, an) = (ki =1, ol = 1,3 s )P - N?/d),
i,j

then the fact that the last coordinate is always nonnegative implies that the last row of D f
is zero at a tight simplex. Therefore it is hopeless to try to prove existence by applying
Theorem 1.2.1. Setting all the inner products equal to (N — d)/(d(N — 1)) suffers from the
same problem, because

m;'%% S Y
i#]

for all z1,...,xn (see the proof of Proposition 2.4).
Fortunately, it is generally possible to recast the conditions describing tight simplices so
that the Jacobian of the associated polynomial map becomes surjective.

Proposition 3.1. Suppose 1,...,zy € H? (d > 1) and w1,...,wy € R satisfy the
following conditions:

(a) |z;|*?=1 fori=1,...,N,
(b) |(zi,z)]? = [(zyr,zj)2 for L <i<j<Nand1 <7 <j <N, and
(c) Zfil wzxzxz = I.

Then wy = --- = wy = % and {z1,...,xN} is a tight simplex in HPI!,

Proof. Define II; = a:iacz, and let « denote the common inner product |(z;,z;)|? for i # j.
By the first condition we have (Il;, I3) = 1 for each . Thus

N
d= (I3 1) = wi(ll, I) = sz
=1

Moreover, using equation (2.1) we have (II;, IT;) = 1 and (II;, II;) = « for all ¢ # j. Thus,
for any 7,

1= (I, 1q) = Zwt I, 1) = (1 — a)w; + a - Zwb— (1 - o)w; + od.
=1

It follows that w; = (1 — ad)/(1 — a) for each j. Substituting back into the equation

Zf\il w; = d yields o = (N — d)/(d(N — 1)), from which the result follows. O
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Using Proposition 3.1, we can view tight simplices of N points in HP4~! as the solutions
of a system of

N+ ( N_(N2___1> _ 1) + (2d2 — d) real constraints

in
N(4d + 1) real variables.

In situations where Theorem 1.2.1 apply to this system, we get a solution space of dimension
(number of variables) — (number of constraints) by Proposition 1.2.3. This separately counts
each unit-norm lift of the N elements of HP !, so the actual space of simplices has
codimension 3N. Moreover, the space of simplices is invariant under the action of the
symmetry group of HIPY~!. This symmetry group, the compact symplectic group Sp(d)
(strictly speaking, modulo its center {£1}), has real dimension d(2d + 1). Thus the actual
dimension of the space of simplices, local to this particular solution and modulo symmetries,
is at least

N(N —1)

r(N,HP* ) := (4d — 3)N — —4d® +1 (3.1)

when Theorem I1.2.1 (and thus also Proposition 1.2.3) and Proposition 3.1 apply. Equality
holds if the resulting simplices have only a discrete symmetry group; otherwise the solutions
modulo symmetry have dimension greater than r(N, HP4~1),

While a priori it is possible to have tight simplices of up to N = 2d? — d points, we only
have r(N,HP4"!) > 0 for N between roughly 2(2 — v/2)d and 2(2 + v/2)d. This does not
rule out larger tight simplices, but it does mean that this approach using Proposition 3.1
and Theorem [.2.1 could not prove their existence. We believe that outside of this range,
only sporadic examples will exist in general.

Note that Gale duality (replacing d with N — d) preserves r(N, HP?™1), as one would
expect. Furthermore, because r(N, HPY"1) is quadratic in NV, it is also symmetric about the
midpoint of the range in which it is positive. Specifically, r(N, HP?1) = r(8d—5— N, HP41).
Remark 3.2. We emphasize that 7(N, HP?"!) is defined by (3.1). The assertion that the
space of simplices locally has dimension (N, HP4~1) is true only when (i) we find a numerical
solution of the conditions of Proposition 3.1 to which Theorem 1.2.1 applies, and (ii) the
actjon of the symmetry group on our simplex has finite (0-dimensional) stabilizer. Regarding
(ii), we have checked this numerically but not rigorously (see §6.3); of all the cases in part
(a) of Tables 3.1-4.1, only 5-point simplices in OP? fail to satisfy the condition. In that case
there is a 3-dimensional stabilizer. We accounted for this in Table 4.1.

When we attempt to apply Proposition 3.1, there are three possible outcomes:

(a) we find an approximate numerical solution with surjective Jacobian, in which case we
can prove existence using Theorem 1.2.1,

(b) we find an approximate numerical solution, but the Jacobian at that point is not
surjective, or

(c) we cannot even find an approximate numerical solution to the system, in which case
we conjecture that there exists no tight simplex.

In a few cases we encountered a fourth possibility:
(d) we find what appears to be an approximate solution but we are unable to converge to

greater precision.
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Table 3.1: Cases in HP?: (a) proven existence of tight simplices; (b) singular Jacobian; (c)
conjectured nonexistence.

N r(N,HP?) N rank deficiency N
5 0 12 2 14
7 7 15 14
8 9
b
9 10 ()
10 10
11 9

Table 3.2: Cases in HIP3: (a) proven existence of tight simplices; (c) conjectured nonexistence.

N r(N,HP?) N r(N,HP3) N

6 0 14 28 22-28

7 7 15 27 —
(c)

8 13 16 25

9 18 17 22

10 29 18 18

11 25 19 13

12 27 20 7

13 28 21 0

(a)

When this situation arose we tried both Newton’s method and gradient descent for energy
minimization (see §6.2), but we were unable to improve the error in the constraints beyond
107° (as compared to a numerical error of about 1071° for cases (a) and (b)). In these cases
we make no conjecture as to existence or non-existence of solutions.

Tables 3.1, 3.2, 3.3, and 3.4 list our results for d = 3, d = 4, d = 5, and d = 6, respectively.
Each table lists all values of N from d + 2 to the upper bound 2d? — d from Proposition 2.2.
There is no intrinsic problem with extending to larger dimensions, although the calculations
become increasingly time-consuming.

Theorem 3.3. For the values of (N,d) listed in part (a) of Tables 3.1 through 3.4, there
exists a tight N-point simplez in HP4 1,

In fact, near the points found by our computer program and exhibited in the auxiliary
files, the space of simplices modulo symmetries has dimension at least r(N, HP?1). As
described above, we conjecture that these dimensions are exact, but they are at least lower
bounds. In the case of a singular Jacobian (part (b) of the tables) we report the rank
deficiency (i.e., n — rank(Df) in the terminology of Theorem 1.2.1).

In Table 3.3, i.e., in HP*, we first observe a gap between the tight simplices of sizes
d and d + 1 that always exist in HP? ! and the range of simplices for which our method

31



Table 3.3: Cases in HP*: (a) proven existence of tight simplices; (c) conjectured nonexistence

(proven for N = 7); (d) ambiguous numerical results.

N r(N,HP*) N r(N,HP*) N r(N,HP*) N
8 9 15 51 22 44 7
9 18 16 53 23 39 29-45
10 26 17 54 24 33 ©
11 33 18 54 25 26
12 39 19 53 26 18
13 44 20 51 27 9 N
14 48 21 48 —
@ B
(d)

Table 3.4: Cases in HIPS: (a) proven existence of tight simplices; (c) conjectured nonexistence

(proven for N = 8); (d) ambiguous numerical results.

N r(N,HP) N (N, HP?) N r(N,HP®) N
9 10 18 82 27 73 8
10 22 19 85 28 67 36-66
11 33 20 87 29 60 ©
12 43 21 88 30 52

13 52 22 88 31 43

14 60 23 87 32 33 N
15 67 24 85 33 22 —
16 73 25 82 34 10 35
17 78 26 78 (d)

(a)
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proves existence. The gap is real: there exists no 7-point tight simplex in HP?, because of
Corollary 2.13. Similarly, there exists no 8-point tight simplex in HIP®.

3.2 12- and 13-point simplices

The cases of 12- and 13-point simplices are somewhat special: the system of constraints
specified by Proposition 3.1 has a rank deficiency. To prove existence of solutions using
Theorem [.2.1, a different approach is needed.

We take as our starting point the following observation: not only do tight 12-point
simplices exist (numerically), but actually 12-point cyclic-symmetric simplices exist (again,
numerically). By this we mean a simplex such that, if (z,y, 2) € H3 is a point in it, then so
are (y,z,x) and (z,z,y), and these are three distinct points in HPZ.

We would like to adapt Proposition 3.1 to find simplices with cyclic symmetry. Imposing
this symmetry reduces the number of degrees of freedom we have, but it also reduces the
number of conditions we need to check. Fortunately, we end up with a set of constraints
that has a surjective Jacobian at a tight simplex.

For convenience we will state the result only for d = 3, but it naturally generalizes to
any dimension.

Proposition 3.4. Let o be the cyclic-shift automorphism o(a,b,c) = (b,c,a). Suppose

Z1,. .., Z3m € H® and w1, ..., w3m € R satisfy the following conditions:
(a) xm+i =o(x;) fori=1,...,2m,
(b) Wmii =w; fori=1,...,2m,

(c) |lz|* =1 fori=1,...,m,

(d) the squared inner products |(z;, ;)| fori=1,...,m and the following values of j are
all equal: (i) j=1+m, (ii)1<j<m, (iii) i+ m < j < 2m, (iv) i+ 2m < j < 3m,
and

(e) the matriz Z?;”l wimixz has 1,1 entry equal to 1 and vanishing 1,2 entry.

Then wy =+ = W3y = r%i and {z1,...,23m} is a tight simplex in HP?.
Proof. By repeatedly applying the identities (z;, z;) = (0(x;), 0(x;)), it easily follows from
(d) that {z1,...,Z3m} is a simplex.

Having shown that, now consider the matrix M = Zf’z’l wzmlx;r . Rewriting M as

Sy wz(,cza:;r + o(x;)o ()t + o%(x;)0%(x:)), we see that M is cyclic-symmetric, i.e., it
is invariant under conjugation by the permutation o. Of course M is also Hermitian.
Combining these two properties, it must be of the form

M =

w W 3
W N ©»
=N ! Wy

for some 7 € R and s € H. The last condition in the proposition statement forces r = 1 and
5 =0, so in fact M = Is.

Therefore, {z1,...,Z3m} is a simplex with 213211 wzat,a:;r = I3, and we complete the proof
by applying Proposition 3.1. O
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Applying the constraints in the above proposition with m = 4, we get a surjective
Jacobian in Theorem 1.2.1, which proves the following result.

Theorem 3.5. There is a tight simplex of 12 points in HP2. In fact, there is such a tight
simplex with cyclic symmetry.

Experimentally it appears that tight simplices with cyclic symmetry exist in other cases
(e.g., 6- and 9-point simplices in HIP?). In those cases we do not need to use the symmetry
to establish the existence of tight simplices, though.

For 13-point simplices, we wish to follow a similar approach to bypass the rank-deficiency
issue, but we must allow fixed points of the cyclic shift. In fact, there are cyclic-symmetric
13-point tight simplices consisting of 12 points with cyclic symmetry as above (i.e., four
equivalence classes under the cyclic-shift operator) plus one extra point which is invariant
under the cyclic-shift operator.

Proposition 3.6. Let o be the cyclic-shift automorphism o(a,b,c) = (b,c,a). Suppose
T1,...,23m € H? satisfy the following conditions:

(a‘) Lm4i = O'(l)z) fOTZ.: L...,2m,

(b) |zil? =1 fori=1,...,m

(c) the squared inner products |(x;,x;)|% fori =1,...,m and the following values of j are
all equal: (i) j=i+m, (ii)) i <j<m, (ili) i+m < j <2m, (iv) i +2m < j < 3m,
and

(d) the 1,2 entry of the matriz Y ;7 z;x T has real part 1/6 and magnitude 1/3.

Then there is a unique point Tzm+1 € HP? such that {z1, ..., T3m, Tam+1} 18 a tight simplex,
and that point satisfies 0(T3m+1) = Tamy1-

Proof. A tight (3m + 1)-point simplex {z1,...,Z3m+1} must satisfy ?;an mlmf = 3m+1[

Thus the matrix x3m+1mgm 11 1s determined by the other data; since a point in projective
space is determined by its projection matrix, this proves uniqueness. It also proves that, if
such a point z3,,41 exists, then it must satisfy o(zsmm11) = z3m11; this is because otherwise

o({z1,...,23m, 23m+1}) = {Z1, ..., T3m, o (T3m11)}

would be a distinct tigh’c 81mplex
Define M = Ez 1 ziz;. This matrix is Hermitian and cyclic-symmetric, so as in the
proof of Proposition 3.4 1t is of the form

M =

» w3
[V e S
= W &

for some r € R and s € H. Each projection :szj has trace 1, so TrM = 3m. Thus r = m,
so IT := 3m“] M equals

1/3 —-s -3
-5 1/3 =—s
-s -5 1/3
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Being Hermitian and of trace 1, IT is a projection matrix of rank 1 iff 352 = —5, as one can
see by solving I1? = II. The last hypothesis in the proposition statement implies that —3s is
a cube root of unity in H, from which we see that this condition is satisfied.

Let 23,41 € HP? be the point satisfying IT = 9:3m+1z§m+1. We know that {z1,...,z3m,}
is a regular simplex, as in Proposition 3.4. For i = 1,...,3m define II; = 931:1:: and let o be
the common inner product (II;, I1;) (for ¢,j < 3m with ¢ # j). We know

3m+1

3m+1
Z ZEZ.LI =—3 Is, (3.2)
i=1

by the definition of z3,,+;. Taking the inner product with II; for any i < 3m, we get

3m+1
g = (I 1L + (I, 1) + D7 (1, T1) = 1+ (3m = T+ (15, T0).
Jj<3m
J#

Thus (IT;, II) = (3m — 2)/3 — (3m — L)« for each ¢ = 1,...,3m. Similarly, taking the inner
product of (3.2) with IT gives

3m+1
3

= (IL,I) + Y (ILIL) =1+ 3m- (37”3_2 —(3m—1)a>.

1<3m

oOm
(ILIL;) = «, and that 1, ..., 23,41 form a tight simplex. M

Solving this equation yields o = 32=2 —= 3(1}7\,:31) (with N = 3m + 1). It follows that

We get a surjective Jacobian when we apply the conditions of the above proposition in
Theorem 1.2.1 with m = 4, proving the following result.

Theorem 3.7. There is a tight simplex of 13 points in HIP2. In fact, there is such a tight
simplex with cyclic symmetry.

Theorems 3.5 and 3.7 establish the existence of tight simplices, and their proof could also
provide the dimension of the space of tight simplices with cyclic symmetry. They cannot,
though, tell us the dimension of the full space of tight simplices.

If Proposition 3.1 had applied then we would have concluded that, in some neighborhood,
the space of tight simplices of 12 (resp., 13) points in HP? has dimension 7 (resp., 4). The
observed rank deficiency of two has several possible explanations, including the following: it
might mean that two of the constraints are redundant, so that the space of tight simplices is
two dimensions larger than predicted; it might mean that the constraints become degenerate
at the solutions, but the space of tight simplices is still a manifold of the predicted dimension;
or it might mean that the space of tight simplices is not even locally a manifold. Based on
numerical evidence (see §6.5), we conjecture that the first possibility holds.

Conjecture 3.8. There exists a 12-point (resp., 13-point) tight simplex in HP? such that,
in a neighborhood thereof, the space of tight simplices has dimension 9 (resp., 6).

3.3 15-point simplices

The case of 15 points in HP? is special for a few reasons. First, it may be the only case
in quaternionic projective spaces where the cardinality upper bound in Proposition 2.2

35



is achieved (beyond HIP!, which is S* and clearly contains a 6-point simplex). Also, in
comparison with the other cases in Tables 3.1, this case has especially large rank deficiency.
This suggests that the space of simplices is of a larger dimension than r(15, HP?). That
turns out to be correct, as we now show.

Proposition 3.9. Suppose z1,...,x15 € H® satisfy

1 o
(D3, Tj) = == fori# j,

where
¢ 1

=

3
Suppose additionally that |z;[* € [1 — 10751 + 107%] for each i. Then |;| = 1 and
{x1,...,215} is a tight simplex in HP?.

Fi = ;X |.’L‘1;|2.[3.

We do not think the assumption |z;|* € [1-107%,141079] is necessary for the proposition
to hold, but it is easy to verify in our applications and lets us prove the result with local
calculations. More specifically, it lets us prove the result in a straightforward manner using
interval arithmetic (see §1.3.2).

Proof. For each i write |z;|* = 1+6;. It suffices to show §; = 0 for all 4, because {zy, ..., Z15}
is then a tight simplex. Specifically, define n; = (1 + 5;‘)71/ 2 and let II; = ﬁ;xﬂj = 7719:233:[
denote the projection matrix associated to ;. Then

1 1 if i =7, and

(ITes ) = min; s, D) o+ 5 = {—mnj/m +1/3 ifi#j.
If n; = 1 for all 7, then these inner products agree with the desired value 2/7 in a tight
simplex of 15 points.

Our strategy is to show that nonnegativity of the second zonal harmonic sum forces
0; = 0 for all 4, given a rank condition coming from the fact that 15 equals the dimension of
the space of Hermitian matrices.

Recall that the zonal harmonics on HP?~! are given by Jacobi polynomials P,de_S’l) (2t —
1). Specifically, the functions

Ki(z,y) = P72V (2) (2, )2 - 1)

are positive definite kernels on HP?~!. Let X be the sum of the kernel K, k(z,y) over the
projective code determined by {z1,...,z15}. Then positive definiteness implies ¥ > 0.
We will require only Xo. As Pa(3,1)(2t — 1) = 28¢% — 21t + 3, we can write ¥ in terms of
the moments Z;‘;:l(ﬂi, Hj>’° with k < 2. These moments, in turn, we can write as functions
of §;. If 6 = 0, then 39 = 0. Moreover, expanding to second order in 41,..., 815, a direct
calculation shows that
— s o+ Ty + O(67), (3.3)
where my := Y, & and my := 3", 62.
If £o were locally a negative-definite function of §y,..., 45, then ¥ > 0 would imply
8; = 0. However, the approximation in (3.3) is not negative-definite. To make it so, we must

S =
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add correction terms based on additional constraints satisfied by the perturbations 4;.
These additional constraints come from a singular Gram matrix. We have (I';,I';) =

%(1 + &;), and the Gram matrix of the elements \/gfi is

144, —i
i
— 14 1 + 5N
Each of I'1,...,T'15 is a traceless Hermitian matrix, so they must be linearly dependent,

because the space of such matrices has dimension 14. Thus, the Gram matrix G must be
singular. Let D := 14'* det(G)/15'? be its determinant (normalized as written); then D = 0.
But consider writing D as a function of the §;. A short computation shows that

1

n n
det | diag(ai,...,ap)+b || (1 -+ 1) :bz Haj + Haj
1 i=1 \G#i i=1

Applying this with a; = 1+ +1/14 and b = —1/14 gives us a reasonably compact expression
for D. Using this, we can check that

D = 15m1 + 14(m3 — my) + O(83).
Because D (and so D?) must vanish and ¥ must be nonnegative,
b 1= 4200D — 269D? 4 189003,
must be nonnegative as well. However, from the above inequalities, we have
Y = —4875my + O(6%),

and this is negative-definite. It remains negative-definite in a suitably small neighborhood of
the point (d1,...,015) = (0,...,0), and so if we know that the §; lic in such a neighborhood,
then we can conclude (as desired) that é; = 0 for all 4.

It remains only to compute an explicit radius for such a neighborhood. This is routine
using interval arithmetic. Specifically, one can compute intervals containing the entries of
the Hessian for all § = (81, ...,d15) with |6;| < 1076 for all 4. (This is easy to implement in
any computer algebra system with support for interval arithmetic; example MATHEMATICA
code is available from the author by request.) This allows one to prove that the {squared)
Frobenius norm of the difference between the Hessian at any such § and the Hessian at
(0,...,0) (which is —9750 times the identity matrix) is bounded by 8 - 108. It follows that all
of the eigenvalues of the Hessian at ¢ differ from —9750 by at most V8 - 106. In particular,
the eigenvalues are all negative. That completes the proof. 0

Using this system of constraints, we do get a nonsingular Jacobian matrix and hence
we can apply Theorem 1.2.1. Proposition 1.2.3 then yields a 75-dimensional solution space;
after subtracting overcounting and symmetries, we arrive at the following.

Theorem 3.10. There is a tight simplez of 15 points in HP2. In fact, locally there is a
9-dimensional space of such simplices, as opposed to the —5 predicted by r(15, HP?).
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Theorem 3.10 establishes the existence of a tight 2-design in HP?. The common inner
product in this simplex is 2/7, contrary to a theorem of Bannai and Hoggar asserting that
the inner products in tight designs are always reciprocals of integers [7, Corollary 1.7(b)].
The case of 2-designs is not addressed in their proof, and Bannai has informed us that this
was an oversight. See also [33] for another correction (the icosahedron is a tight 5-design in
- CP! with irrational inner products).

4 Simplices in QP?

The study of simplices in OP? bears a strong resemblance to that in HP?; we get essentially

the same results as long as we take care to work in an affine chart. In particular, we can

handle the generic case, 24- and 25-point simplices, and 27-point simplices using adaptations

of Propositions 3.1, 3.4 and 3.6, and 3.9, respectively.

4.1 Generic case

Proposition 4.1. Fori=1,...,N, suppose z; = (a;,b;,c;) € Ry x 0% and w; € R satisfy
(a‘) |a2"2 + |b‘L|2 + IC@'|2 =1fori=1,...,N,

(b) p(zi,z5)% = p(zir,zj)? for 1 <i<j<Nand1<i <j <N, and

N a; _ 1 00

(c) > wi|bi]| (@ b &)={0 10

i=1 ¢ 0 01
Thenwy = --- = wy = % and {z1,...,zN} is a tight simplez.

We omit the proof of Proposition 4.1 as it is nearly identical to that of Proposition 3.1.
We can attempt to apply Proposition 4.1 with Theorem 1.2.1 and Proposition 1.2.3, just
as we did for simplices in quaternionic projective spaces. There are

N(N -1
N+ (% — 1) + 27 real constraints in 18NV real variables,

so, when the Jacobian is nonsingular, we get a solution space of dimension (N — 1)(34 —
N)/2-9. As before, we should deduct the dimension of the symmetry group. The symmetry
group of OP? is the exceptional Lie group Fj, which has dimension 52. Thus, our final
expression for the dimension of the space of simplices modulo symmetries is

(N —1)(34— N)

—61.
2

r(N,QP?) :=

Again, as with r(N, HIP’d‘l), this formula only applies when, at our numerical solution, Propo-
sition 1.2.3 applies to the conditions of Proposition 4.1 and the simplex has 0-dimensional
stabilizer.

Theorem 4.2. For the values of N listed in part (a) of Table 4.1, there exists a tight
N -point simplex in QP?.
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Table 4.1: Cases in OP2: (a) proven existence of tight simplices; (b) singular Jacobian; (c)
conjectured nonexistence.

N r(N,OP?) N r(N,0P?%) N r(N,0P?)
5 of 12 60 19 74
6 9 13 65 20 72
7 20 14 69 21 69
8 30 15 72 22 65
9 39 16 74 23 60
10 47 17 75
11 54 18 75
(a)

N rank deficiency N

24 2 26

25 2

27 26

(b) (c)

f Actually r(5,OP?) is not 0; rather, it equals —3. This is the only case
in which the simplex we found has a positive-dimensional stabilizer. The
stabilizer is 3-dimensional, so the actual dimension of the space of solutions
modulo symmetries, which (N, OIP?) is really intended to capture, is 0.
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4.2 24- and 25-point simplices

The following proposition is proven similarly to Proposition 3.4.

Proposition 4.3. Let o be the cyclic-shift automorphism o(a,b,c) = (b,c,a). Suppose

Z1, ..., T3m € O and wy, ..., w3m € R satisfy the following conditions:
(a) Tmsi = o(x;) fori=1,...,2m,
(b) Wpti =w; fori=1,...,2m,

(c) zi € Ry x 0% and |22 =1 fori=1,...,m,

(d) the squared distances p(zi,z4)? fori=1,...,m and the following values of j are all
equal: (i) j=i+m, (1) i<j<m, (iii) i+ m < j < 2m, (iv) i + 2m < j7 < 3m, and

(e) the matriz Ef’;nl wixisc;r has 1,1 entry equal to 1 and vanishing 1,2 entry.
Then wy = -+« = wgy, = % and {x1,...,2Z3m} s a tight simplez.

Using the conditions of Proposition 4.3 with m = 8 in Theorem 1.2.1 yields a surjective
Jacobian, allowing us to prove the following theorem.

Theorem 4.4. There is a tight simplex of 24 points in QP2. In fact, there is such a tight
simplex with cyclic symmetry.

Similarly, to prove the existence of tight simplices with 25 points, we use the following
adaptation of Proposition 3.6.

Proposition 4.5. Let o be the cyclic-shift automorphism o(a,b,¢) = (b,c,a). Suppose
T1, ..., T3m € O3 satisfy the following conditions:

(a) Tmyi =0o(m;) fori=1,...,2m,
(b) z; ERy x Q% and |z5|> =1 fori=1,...,m,

(¢) the squared distances p(x;,x;)? fori=1,...,m and the following values of j are all
equal: (i) j=i4+m, (ii)i<j<m, (ili) i+m < j<2m, (iv) i + 2m < j < 3m, and

(d) the 1,2 entry of the matriz Zf”:nl xz:z:;L has real part 1/6 and magnitude 1/3.

Then there is a unique point x3m41 € OP? such that {Z1,...,2Z3m, T3m+1} 8 a tight simplex,
and that point satisfies o(X3ma1) = T3m+1-

Using the conditions above with m = 8 in Theorem 1.2.1 yields a surjective Jacobian.

Theorem 4.6. There is a tight simplex of 25 points in OP2. In fact, there is such a tight
simplex with cyclic symmetry.

Continuing the correspondence with 12- and 13-point simplices in HIP?, based on numerical
evidence we conjecture the following.

Conjecture 4.7. There exists a 24-point (resp., 25-point) tight simplex in OP? such that,
in a neighborhood thereof, the space of tight simplices has dimension 56 (resp., 49).
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4.3 27-point simplices
Proposition 4.8. Suppose x; = (a;, b, c;) € Ry x O? satisfy

<Fi>Fj> :—% fOTi#ja

where

- 1
;=1 b ((_zi b; Ei) - g(azZ + 1bi|2 + |Ci|2)I3'

G

Suppose additionally that |z;|* € [1 — 1077,1 + 1077] for each i. Then |z;| = 1 and
{z1,...,x27} determines a tight simplex in OP?.

Proof. We use the same proof technique as Proposition 3.9, with the only difference being
the constants appearing in the proof. As before, we write |z;|* = 1+ 8;, and let § = max; |&;].
Let G be the Gram matrix of \/2/3T'1, .../2/327. Then det(G) = 0, and the normalized
determinant D := 2626 det(G)/27%* satisfies

D = 2Tmy + 26(m3 — my) + O(8°).
The second zonal harmonic on OP? is given by the Jacobi polynomial

P (2t — 1) = 91¢2 — 65t + 10.
Let 39 be the sum of the kernel Ky(z,y) := P;’g)(zl(:c)y)iz — 1) over the projective code
determined by {z1,..., 227}, so X3 > 0. We compute
41 2429
Yo = —6 —mi+ —— 0(3%).
2= —6m+ gggmi T ggg M2 T O
Because D = (,
L= 758160 — 2745D?% 4 3411725,

must be nonnegative. We have ¥, = —200475mz + O(83), so in a neighborhood of (0, ..., 0)
the function X is negative-definite. We just need to identify such a neighborhood. Using
interval arithmetic as in Proposition 3.9, we find that the squared Frobenius norm of the
difference between the Hessian at (0,...,0) and the Hessian at any point § = (41,...,d27)
with |§;| < 1077 for all 4 is bounded by 4 - 10°. Thus the eigenvalues of the Hessian at
any such ¢ differ from —400950 by at most V4 - 109, In particular, the eigenvalues are all
negative, from whence the proposition follows. O

Applying Theorem 1.2.1 with the conditions of the above proposition, we find a suitable
point for which the Jacobian is surjective.

Theorem 4.9. There is a tight simplex of 27 points in QP2. In fact, there is a 56-dimensional
space of such simplices.

Theorem 4.9 establishes the existence of a tight 2-design in OP2. Such designs were
previously conjectured not to exist [23, p. 251]. It is known [25] that tight ¢-designs in OP?
can only exist for t = 2 and t = 5, and there is an explicit construction of a 819-point tight
5-design [12], so Theorem 4.9 completes the list of ¢ for which tight ¢-designs exist in oP?,
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5 Simplices in Grassmannians G(m,n,R)

Our techniques also apply to show the existence of many simplices on Grassmannian spaces.
The Grassmannian G(m,n) = G(m,n,R) is the space of all m-dimensional subspaces of
R™. It is a homogeneous space for the orthogonal group O(n), isomorphic to O(n)/(O(m) x
O(n —m)), and it has dimension m(n — m). These spaces generalize (real) projective space
RP"!, which is the space of lines in R®. The spaces G(m,n) and G(n — m,n) can be
identified by associating to each subspace its orthogonal complement, so in what follows we
always assume m < n/2.

Though Grassmannians are generally not 2-point homogeneous spaces, it is still possible
to find linear programming bounds [2]. Here we will just consider the special case of the
simplex bound.

When m < n/2, a pair of points in G(m,n) is described by m parameters, namely the
principal angles between the m-dimensional subspaces. Given two m-dimensional subspaces
U and U’, define sequences of unit vectors ui,...,um € U and uf, ..., u,, € U’ inductively
so that (u;, u;) is maximized subject to (u;, uj) = (uj,u}) = 0 for j < i. Then the principal
angles are 6; := arccos{u;, u}).

The chordal distance on G(m,n) is given by

d(U,U") = Vsin2@; + - +sin? O,

Unlike in projective space, the chordal metric on Grassmannians is generally not equivalent
to the geodesic metric /62 4 - -- + 62,. See [17] for discussion of why the chordal metric is
preferable.

A generator matriz for an element of G(m,n) is a m X n matrix whose rows form an
orthonormal basis of the subspace. Given a generator matrix X, the orthogonal projection
onto the subspace is X*X. Suppose X; and X3 are generator matrices for the subspaces Uy
and Uy, and let II; = Xin (for i = 1,2) be the orthogonal projection matrices. Then the
singular values of the matrix X 1X§ are cos 8, for 1 < i < m. It follows that

1
do(U1,Up)? = §HH1 — | = m — (I, ITp). (5.1)

Let I1° = IT— (m/n)I, be the traceless part of the projection matrix. It is easily checked that
|I°[|? = m(n—m)/n. Thus II° can be thought of as a point in RP, where D = m(m+1)/2—-1,
if we view RD as the space of trace zero symmetric matrices. This gives an isometric
embedding U + 1% of G(m,n) into the sphere of radius \/m(n —m)/n in RP, with
de(Ur,Us) = ||II? — Y||/+v/2. The simplex bound for spherical codes gives us the following
result.

Proposition 5.1 (Conway, Hardin, and Sloan [17]). Every N-point simplez in G(m,n)

satisfies
N < (m; 1)’

and every code of N points has squared chordal distance at most

m(n—m) N
n N-1

m(Nm—n)

This squared chordal distance is equivalent to inner product Jnm between orthogonal
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projection matrices.

Remark 5.2. The m = 1 case of Proposition 5.1 is the same as the K = R case of
Proposition 2.2 (together with Proposition 2.4). Indeed, the proofs of these two results are
essentially the same; they are just phrased in different language.

We say that a simplex in G(m, n) is tight if its minimal chordal distance meets the upper
bound above. Analogously to simplices in projective space, a Grassmannian simplex is tight
iff it is a 1-design (i.e., a 2-design in the language of Bachoc, Coulangeon, and Nebe [3]),
which holds iff the linear programming bound is sharp [2]. If the projection matrices of the
simplex are Ily, ..., Iy, then another equivalent condition for tightness is Zf\; I = %In.

Conway, Hardin, and Sloane [17] reported a number of putative tight simplices based
on numerical evidence, but except for some explicit constructions they did not present any
techniques for rigorous existence proofs. The cases with explicit constructions are listed in
Table 5.1. By applying our methods, we can certify the existence of simplices for many of
the cases previously identified but not settled.

Proposition 5.3. Suppose {z;; € R"},—1, N and wy,...,wn satisfy the following condi-
j=1,..m
tions:

(a) |zs5| =1 for alli,j,
(b) for alli and all j < j', (x;i;,2;5) =0,

t

(c) the inner products (Z;n:l T T Z;nzl xi/,jzf,,j) are equal for all distinct pairs i,7,

1,57
and
N
(d) D25z wi (ZT:I xiijg,j) = In.
Then wy = -+ = wy = g and the subspaces span{z;1,...,zym} form a tight simpler in
G(m,n).
Proof. For each i, define II; = Z;’;l x”mf] Because {z;1,...,%;m} is an orthonormal
system, this is the projection matrix associated to the plane span{z;1,...,Z;m}. Using
(5.1), the third condition guarantees that we have a simplex. Arguing as in the proof of
Proposition 3.1, we deduce from the last condition that w; = --- = wy = x5 Thus
Zf\i 1= %In; as noted above, this is equivalent to tightness. O

In many cases the system specified by Proposition 5.3 is nonsingular, allowing us to
apply Theorem 1.2.1. This yields the following.

Theorem 5.4. For the values of (N, m,n) listed in the “proven” column of Table 5.2, there
exists a tight N-point simplex in G(m,n,R).

In the context of Proposition 5.3, we have Nmn + N real variables and

(7))

real constraints. Thus, when Proposition 1.2.3 applies, we locally get a solution space
whose dimension is the difference of these counts. Because O(m) acts on the different
representations of each plane, we are overcounting the dimension by N - (g’) Moreover, when
the symmetry group O(n) of G(m,n) acts with finite stabilizer on the simplex, we should
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Table 5.1: Previously known tight simplices with explicit constructions in G(m,n) for n < 8

(m,n) N Reference

(2,4) 26 [17, pp. 145-146]
) 10 [17, p. 147]
) 9 [17, p. 154]
) 28  [17, p. 152
) 8 17, p. 154]
|

20 [11, p. 135]
28 [17, p. 154

Table 5.2: Tight Grassmannian simplices in G(m,n).

(m,n) Proven Singular Jacobian Ambiguous

(2,4) 46 2,3,7, 8,10

(2,5)  5-10 4,11

(2,6) 5-14 3,4

(3,6)  5-16 2-4 17
(2,7  6-17 18
(3,7) 522 4, 28 23
(2,8)  6-21 4,5, 28

(3,8)  5-28 4

(4,8)  5-30 2-4

deduct (g) from our final dimension count. Putting this all together, when these conditions
are satisfied (c.f. Remark 3.2), we get a neighborhood in which the space of simplices has
dimension

r(N,G(m,n)) := Nmn—w—NmQ—nQ—%l. (5.2)

We tested all cases up to dimension n = 8, using our own software to search for numerical
solutions and also comparing with the numerical results of Conway, Hardin, and Sloane [17].
As with simplices in projective spaces, sometimes the system specified by Proposition 5.3
was singular, and sometimes the numerical evidence was unclear (cf. Tables 3.1 and 3.3).
These cases are in the third and fourth columns, respectively, of Table 5.2.

In addition to our existence proofs and the previously known explicit constructions,
several Grassmannian tight simplices can be proven to exist using the following observation:
if there is a tight N-point simplex in G(m,n) for some m,n, then there is a tight N-
point simplex in G(km, kn) for all £ > 1. This is immediate from block repetition [19,
Proposition 12]. It proves existence for 11 of the singular cases in Table 5.2. This leaves us
with only 7 hitherto unresolved cases in which there is strong numerical evidence for a tight
simplex: 4-point simplices in G(2,5), G(3,6), G(3,7), and G(3,8); 7- and 8-point simplices
in G(2,4); and 11-point simplices in G(2,5). For completeness, we will settle all of these in
the following subsection.
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There should be no difficulty in applying our techniques to complex or quaternionic
Grassmannians, but we have not done so.

5.1 Miscellaneous special cases in Grassmannians

We begin with the case of 11-point tight simplices in G(2,5). This can handled in the same
way as 13-point tight simplices in HP? and 25-point tight simplices in QP?; i.e., we can
prove existence of simplices with cyclic symmetry. We will state the analogous result in
greater generality than we attempted in Proposition 3.6 (which was written in the special
case of HP? rather than a general projective space HP?~1), at the cost of some additional
complexity.

Proposition 5.5. Fiz dimensions n > m and let o be the cyclic-shift automorphism

o(x1,T2, ..., Tn) = (T2,...,Tn,x1) on R™. Set N = nk + 1 and suppose we have vectors
{zi; € Rn}z 11 k. For each i, define T; = Z;’;l mm-a:é’j. Define Iy = ﬂﬁ"—lln — > ien i
] e )
Suppose that, for some n € , =), the following conditions are satisfied:
m+1 m—1

(a) Tptsj = o(xiy) for oll i < (n—~1)k and all j,
(b) |zi;] =1 for alli < k and all j,
(c) for alli <k and all j < j', (i ;2 5) =0,

(d) the inner products <HZ-,H¢:> are all equal for () i<k, i =1i+qk, andqg=1,...,[5]
and (i) i <k-1,"=1iy+qk, i<iyg<k,andgq=0,...,n—1, and

e) the first | 2| + 1 entries in the first row of 113, — nlly are all zero.
2 N

Then n = 1, Iy is a projection matriz of rank m, and the projection matrices {I;}i<n
determine a tight N-point simplex in G(m,n).

Proof. The automorphism ¢ on R™ determines an automorphism on G(m,n) by acting
simultaneously on basis vectors, and this latter automorphism is an isometry. The first
condition states that the planes spanned by {z;1,...,Zim} and {Ti441,.-- , Thtim) are
related by this isometry; thus, taking all 1 < N, we have k orbits under the cyclic-shift
action, each of size n. The next two conditions ensure that the matrices II; for : < N
are orthogonal projections of rank m. Thus the inner products amongst them determine
distances in G(m,n). Now, by applying the cyclic-shift isometry we see that the fourth
condition is sufficient to force {II;};«n to determine a regular simplex. Let a = (II;, I1;) be
the common inner product.

Consider now the matrix ITy. It is symmetric, being a linear combination of symmetric
matrices. Moreover, it is cyclic-symmetric, since y,_, II; is a sum over orbits of the
cyclic shift. It follows that I13, — nIly also shares these properties. Now a matrix with
cyclic-symmetry is determined by its first row, as the other rows are just shifts thereof. A
matrix which is also symmetric is determined by the first |Z | + 1 entries in the first row.
Therefore, by the last condition, H?V —qnlly =0.

It follows that the eigenvalues of Iy are all either O or 1. Let r be the rank of Iy, so
that TrIIy = rn. But, since TrII; = m for all i < N, we have TrlIy = m. Hence n =m/r
is m times the reciprocal of an integer. The assumption n € (; 25 s moy) then forces n =1,
from which we conclude that Il is an orthogonal projection matrix of rank m.
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Figure 5.1: Generator matrices for a tight 4-point simplex in G(2,5).

It remains only to check that (II;,TIx) = « for all i < N (so that {II;};<n is an N-point

simplex) and that o = %, so that the simplex is tight. This follows from the same
argument as in Proposition 3.6. Namely, using the definition of Iy we compute
Nm Nm?
(I, Iv) = —— (T, In) — (IL;, 1) — > (I, 1) = ——m— (N -2

i1

Expanding NTm2 = Iy, 8np,) = > i<n{IIn, II;) then gives

Nm? Nm?
o :m—l-(N—l)( m ——m—(N—2)a>,
n n
and solving this equation gives the desired conclusion. Ol

Note that the plane with projection matrix Il is the unique plane completing {II;};<n
into a tight simplex. This plane is a fixed point for the cyclic-shift action.

In our case of interest we found a point in which the conditions described in Proposition
5.5 are nonsingular. This yields the following.

Theorem 5.6. There exists a tight 11-point simplex in G(2,5). In fact, there is such a tight
simplex with cyclic symmetry.

We remark in passing that every approximate 11-point tight simplex in G(2,5) we found
numerically exhibited a symmetry group conjugate to the cyclic-symmetry discussed here.
With this evidence as well as the fact that r(11,G(2,5)) = —2 < 0, we conjecture that every
tight 11-point simplex in G(2,5) has a nontrivial symmetry group.

We will settle the remaining cases with algebraic constructions. The four cases of 4-point
simplices afford constructions using only rationals and quadratic irrationals, so we give them
explicitly here. Given the provided matrices, the proof of the following theorem consists
only of a straightforward calculation.

Theorem 5.7. The four 2 X 5 matrices in Figure 5.1 are generator matrices whose corre-
sponding planes form a tight simplex in G(2,5), i.e., they have orthonormal rows and the
spans of those rows constitute a tight simpler. Similarly, the matrices in Figures 5.2, 5.8,
and 5.4 determine tight simplices in G(3,6), G(3,7), and G(3,8), respectively.

We are now left with the cases of 7- and 8-point tight simplices in G(2,4). These cases are
more interesting; the simplest explicit coordinates we have been able to find for them require
algebraic numbers of degree 4 and 6, respectively. Because of this, instead of presenting
the algebraic numbers here we rely on a computer algebra system to (rigorously) verify the
calculation. The computational method is discussed in §6.4. Here we simply record the
result.
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Figure 5.3: Generator matrices for a tight 4-point simplex in G(3,7).
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Figure 5.4: Generator matrices for a tight 4-point simplex in G(3,8).
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Theorem 5.8. There exist 7- and 8-point tight simplices in G(2,4).

We remark in passing that G(2,4) contains tight simplices of N points for all N < 10
(the theoretical maximum) except for N = 9. Compared with the other spaces studied in
this paper, only the quaternionic and octonionic projective planes have such a wealth of
simplices. Note also that there does not seem to exist a tight simplex of size one less than
the upper bound in any of these spaces.

6 Algorithms and Computational Methods

We used computer assistance in several different aspects of this work. Our main results
involve two different computational steps: finding approximate solutions and then rigorously
proving existence of a nearby solution. We also require a method for computing with
real algebraic numbers for Theorem 5.8, and we must discuss how to compute stabilizers
of simplices and estimate the dimensions of solution spaces. This section describes the
algorithms and programs used for each of these tasks.

6.1 Rigorous proof

Our existence proofs rely on Theorem 1.2.1. To apply the theorem, we need to choose £ > 0,
the starting point zg, and a matrix T and then compute the operator norms of T and
D f(xg) oT — idgn. We use the £%° norm on the domain and codomain. In addition to being
amenable to the computation of operator norms (see §1.3.1), this norm allows balls to be
naturally represented using interval arithmetic (see §1.3.2). In all of the proofs given in this
chapter, we choose £ = 10™%. Thus the conclusion of Theorem 1.2.1 is that there is an exact
solution, each of whose coordinates differs from our starting point zo by less than 107°. In
other words, the error is less than one nanounit.

To check the hypotheses rigorously, we used a new computer package called QNEWTON,
written by the author. It can be obtained from him upon request. QNEWTON is a C++
library with a PYTHON front end for convenience; it was designed to find and prove the
existence of solutions to polynomial equations over real algebras. QNEWTON has native
support for multiplication in R, C, H, and O@. Also, it uses automatic (reverse) differentiation
to compute the Jacobian of the constraint function. These two features substantially
increase its performance, so that it is practical even for large problems (on the order of 10°
variables/constraints).

The finding part of this mission statement is discussed in §6.2. As to the proving part, the
basic algorithm is clear. We first rigorously compute f(zp), which is straightforward using
interval arithmetic. Then we compute the Jacobian matrix, again using interval arithmetic;
moreover, before we do so, we expand the intervals containing our starting point zg by .
Thus, for each entry we get an interval that contains the corresponding entry of D f(x) for
every = € B(zg,¢). We then compute an interval guaranteed to contain || D f(z) o T — idgn||
for all such z, and an interval guaranteed to contain 1~ ||T|| - |f(z0)|/¢. If the upper bound
of the first interval is less than the lower bound of the second interval, then we are assured
that Theorem 1.2.1 applies.

We should also remark upon the computation of the matrix 7. It is supposed to be
approximately a right inverse of D f(zo), but otherwise we are free in choosing it. Internally
in QNEWTON we compute 7" in the following manner. First we compute the matrix D f(zo)
approximately, using floating-point arithmetic. Then we find its pseudo-inverse (i.e., the
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least-squares right inverse) again using inexact floating-point arithmetic. Finally, we take
the result, which is a floating-point number, and replace it with an interval of width 0. This
approach is fast and, since T need not be exact, still gives rigorous results. It is possible to
compute D f(zg) in interval arithmetic and then compute the pseudo-inverse in the same
way; this is a bad idea, though, because inverting a matrix in interval arithmetic is both
slow and can result in very large intervals. '

Finally, another issue that arises in the course of rigorous proof is that, in three cases
(Propositions 3.9, 4.8, and 5.5), we require certain quantities to be close to 1. For example,
in Proposition 3.9 we need “mi|4 — 1‘ to be at most 107 for each i. This could easily be
checked by direct computation using the 107° bound for distance from the starting point,
but it is simpler to use the following approach. For each i, we add a new variable v;, add
a new constraint v; = |z;|4, and initialize v; to be 1 at the starting point. Then we can
conclude that “wil‘l — 1‘ < 1079 in the exact solution with no additional computation.

6.2 Finding approximate solutions

The QNEWTON package also has some support for finding approximation solutions. The
computations involved in rigorous proof of existence — in particular, computing the Jacobian
matrix — are also the computations needed for Newton’s method. (In fact, exploiting the
templating feature of C++, QNEWTON shares the same computation code between rigorous,
interval arithmetic computations and approximate, floating-point computations.) After we
specify the polynomials and constraints for the problem and an initial point, QNEWTON
attempts to find a solution using a damped Newton’s method algorithm. Newton’s method
converges rapidly (quadratically) in a neighborhood of a solution, but it is ill-behaved away
from solutions; thus we damp the steps so that no coordinate changes in a single step by
more than a specified upper bound. The damping is just a bound on the maximum step
size; if that bound is violated then we scale the step proportionally.

In our computations, we used random Gaussian variables for the initial points and a
maximum step size of 0.1. Because our variables represent unit vectors, the step size is
approximately one order of magnitude less than the natural scale. By using this approach
we were able to find a solution in all cases in which we think there should exist one, using
just a few different random starting positions. In most cases we found a solution on the first
try. These approximate calculations use double-precision floating-point arithmetic, so we
can only expect convergence up to an error of approximately 1072, In all cases this was
more than sufficient for our goals of rigorous proof.

Suppose that, as in Theorem 1.2.1, we are solving for a zero of a function f: R™ — R”,
Newton’s method calls for taking repeatedly taking steps Ax satisfying D f(z) - Az = —f(z).
In particular, we must repeatedly solve linear systems. When m > n the system is
underdetermined. Also, Df(x) may fail to be surjective. Hence we need a linear solver
tolerant of such problems. QNEWTON uses a least-squares solver that treats small singular
values of D f(z) as zero; specifically, it uses the DGELSD function in LAPACK [1]. By using
such a solver we can handle cases with redundant constraints. This was particularly useful
when we were first determining a minimal set of constraints for our problems.

Because the codes we seek are energy minimizers, another approach to find them would
have been gradient descent. In practice, we have found that gradient descent is much slower
than Newton’s method.

For a quick example of the usage of QNEWTON, Figure 6.1 shows a set of PYTHON
commands to find a set of standard generators for H, i.e., anticommuting elements a and b of
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q = HNewton.Newton()

q.parse_block("""

CONSTRAIN Rx(a)

CONSTRAIN Rx(b)

y(len_a_minus_1) := x(a)” x(a) - 1
CONSTRAIN Ry(len_a_minus_1)
y(len_b_minus_1) x(b)~ x(b) -1
CONSTRAIN Ry(len_b_minus_1)

y(ab) := x(a)” x(b)

CONSTRAIN Ry(ab)

nn ")
q.initialize_variable(’a’,[0.1,0.2,0.3,0.4])
q.initialize_variable(’b’,[0.5,0.6,0.7,0.8])
q.Newton_steps(15)

Figure 6.1: A PYTHON session finding a set of generators for H.

norm 1 with zero real part. (Because Rea = Reb = 0, the condition ab = —ba is equivalent
to Reab = 0.) Note that the starting point we use is far from any solution.

6.3 Finding stabilizers

In all but one case, namely 5-point simplices in OP?, our reported dimension for the space of
tight simplices has the dimension of the full symmetry group deducted. That assumes that
the simplex has finite (i.e., zero-dimensional) stabilizer. We checked this by (i) finding a basis
for the Lie algebra of the symmetry group, (ii) applying each element of that basis to the
points of the simplex, and (iii) checking that the resulting vectors are linearly independent.
As described below, we used floating point arithmetic, so these calculations are not rigorous.

The relevant symmetry groups are Sp(d)/{£1} for HP?~! and F; for OP2. The Lie
algebra of Sp(d) has dimension 2d? +d. Viewed as a space of operators on the Jordan algebra
of Hermitian matrices, it consists of commutation with skew-Hermitian matrices. The Lie
algebra of Fy has dimension 52; it consists of commutation with traceless skew-Hermitian
matrices and of derivations of the algebra Q (see [5]).

For each element of our basis for the Lie algebra, we applied that element to the projection
matrices corresponding to the N points in our approximation to the simplex. We then
concatenated the resulting N Hermitian matrices to form one vector. Finally, we used a
singular value decomposition (cf. §6.5) to compute the dimension of the span of those vectors.
In every case except for 5 points in OP? the resulting vectors had full-dimensional span; in
that case the dimensionality of the span was 3 smaller.

As yet this procedure is not fully rigorous, but it would not be difficult to make it so.
This is because, being an open condition, proving a lower bound on the dimension of the
span of a set of vectors can be done with approximate computations. In all but the one
exceptional case we are asserting linear independence; this could be verified by using interval
arithmetic to compute a bound, valid for all codes within 10719 of the given code, on the
determinant of a full square submatrix. Since the true simplex lies in this set, that bound
would apply to it (and to a neighborhood thereof).

The same methods could show that, for the 5-point simplex in OP?, the stabilizer has
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dimension at most 3. This is good enough because, translated into a dimension for the space
of simplices, that bound says that the dimension is at most 0; hence the dimension must
equal 0.

Remark 6.1. Based on similar numerical evidence, we conjecture that (modulo symmetries)
the space of SIC-POVMs, simplices of n? points in CP? !, has dimension 1 when n = 3 and
0 when n > 4. In particular, we conjecture that, except in CP?, SIC-POVMs are isolated.
This is in accordance with the numerical results in [38], although they searched only for
SIC-POVMs that are invariant under the Weyl-Heisenberg group.

6.4 Real algebraic numbers

To verify equations involving algebraic numbers of moderately high degree (in particular,
higher degree than we care to manipulate by hand), we require a computational method for
rigorously doing basic arithmetic with such numbers. We will use the standard approach
of “isolating intervals,” which is implemented in many modern computer algebra systems.
We used the PARI/GP package because it is freely available and has support for arbitrary-
precision rational numbers [35]. There is no explicit support for the isolating interval method
in PARI/GP, so we provide a short implementation in addition to the pertinent data files
for our applications.

The technique is as follows. A real algebraic number « is represented by a triple
(p(x), £, u), where p(x) is a polynomial with integer coefficients such that p(a) =0, £ and u
are rational numbers such that o € [, ], and p(z) has a unique root in the interval ¢, u]
(namely, o). We always take p(z) to be (a scalar multiple of) the minimal polynomial of a,
and we use Sturm sequences to rigorously count the number of real roots in a given interval.
Given representations (py, o, ta) and (pg,£g, ug) for two real algebraic numbers «, 8, we
compute a representation for a + 8 by first taking the resultant, in the variable ¢, of the
polynomials p(t) and pg(z — t). This gives a polynomial in x for which « + 3 is a root.
We then factor the resulting polynomial and count the number of roots for each irreducible
factor in the interval [£, + €5, uq + ugl. If there is more than one factor that has a root in
that interval or some factor has multiple roots, then we bisect the starting intervals [€q, uq]
and [¢g,ug|, using Sturm sequences for p, and pg to choose the halves containing « and
B, respectively. After a finite number of steps we are left with a valid representation for
a + . Computing a representation for o - 8 proceeds similarly, beginning with the resultant
of pa(t) and t9°8Pspg(z/t).

Using this system, we can now elucidate the proof of existence for 7- and 8-point tight
simplices in G(2,4).

Proof of Theorem 5.8. Our data files provide isolating interval representations for the entries
of the 4 x 4 projection matrices {II;};<y for the N = 7 or 8 points in each simplex. To
verify the construction we need only perform a few calculations. First we need to check
that each provided matrix II satisfies II = IT?, TI2 = I, and TrII = 2, as together these
conditions imply that II is an orthogonal projection onto a plane. Then we just need to
verify that TrILIL; = %i—% for i < j < N. These calculations are straightforward given our
implementation of the isolating interval method. L

6.5 Estimating dimensions

In Conjectures 3.8, 4.7, and 7.4, we conjecture the dimension of certain solution spaces; here
we describe the basis for those conjectures.
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Suppose, as is the case in our examples, that we are studying the zero set Z of some
function f. Suppose moreover that we have a procedure for converging to zeros of f, using,
for example, Newton’s method with least-squares solving to handle degeneracy. Thus we
have the ability to generate points on Z, and we wish to use that ability to calculate its
dimension. This is a simple instance of manifold learning, the problem of describing a
manifold given sample points embedded in some higher-dimensional space.

For our purposes we use following heuristic. Fix € > 0. Starting with a solution zg, we
compute N nearby solutions x1,...,zy by, for each i, setting 2 = z¢ + €g;, where g; is a
vector of standard normal random variables, and using our iterative solver to find a zero z;
of f near z}. Then, to first order in ¢, the vectors ﬁ are random (normalized) samples
from the tangent space of Z at xg. We then form the matrix whose rows are those N vectors
and compute its singular values. There should be d singular values of order approximately 1,
where d is the dimension of Z. The remaining singular values should be smaller by a factor
of .

This procedure is certainly not rigorous, but in suitably nice cases, and with proper
choice of parameters, one can have a fair amount of confidence in the result. In particular,
N should be at least as large as the dimension d and € should be chosen small enough that,
in a ball of radius &, Z is well-approximated by its tangent space. One pitfall to avoid is
that, while € needs to be small for the tangent space approximation, it should also be large
enough that the precision of the solver is better than (approximately) 2. If this is violated
then we may erroneously identify extra null vectors of D f(z() as elements of the tangent
space.

In our applications we used N = 1000 and & = 1073 and we required that Newton’s
method converge to within 10712, Tt was usually easy to identify the jump in singular values
after the d corresponding to the tangent space. For instance, Conjecture 3.8 says that,
before accounting for overcounting and symmetries, we conjecture a 66-dimensional space of
12-point tight simplices in HIP2. This is based on the following observation: when we ran
the procedure just discussed, the first 66 singular values were all in the interval [2, 6], but
the 671 was 0.04139564.

7 Explicit Constructions

With the exception of Theorems 5.7 and 5.8, all of the new results we have presented so far
involve computer-assisted proofs using Theorem 1.2.1. This allowed us to sidestep explicit
constructions, and it also gave local dimensions as a collateral benefit. When an explicit
construction is available, though, it can sometimes give insight not proffered by a general
existence theorem. We conclude the paper with a few examples of this.

7.1 Two universal optima in SO(4)

Most results in the literature concerning universal optima in continuous spaces are set in
two-point homogeneous spaces, i.e., spheres and projective spaces. We have already seen
another family of spaces (namely, real Grassmannians) but there are many others.

Consider the special orthogonal group SO(n), endowed with the chordal distance
de(U1,Uz) = ||U1 — Us|| coming from the embedding SO(n) — R™ as n x n matrices
(i.e., the Frobenius norm). This is not the Killing metric, but rather it has the advantage of
being smooth in the matrix entries. Note that every element of SO(n) has norm n, so up to
this scaling factor we have an embedding into =1,
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By a universally optimal code in SO(n), we mean a code that minimizes energy for every
completely monotonic function of squared chordal distance (see [14]). In this section we
present two particularly attractive universal optima in SO(4).

Theorem 7.1. There is a 17-point code in SO(4) with the following properties: it is a
reqular simplex, it is universally optimal, and it has a transitive symmetry group. Moreover,
there is no larger reqular simplex in SO(4).

Proof. Given a,b € Z/17Z, define the rotation matrix

cos(af) —sin(ad) 0 0
R sin(ad) cos(af) 0 0
wb = 0 0 cos(bf) —sin(bd) |’
0 0 sin(bg)  cos(bf)

where § = 27 /17. For any a, b, c,d, not all zero, the map g p0q4: SO(4) = SO(4) defined by
X — Ry pX R q is an isometry of SO(4) of order 17. Set

Xo = (S 80(4)

—_ 0 O O
o= O O

1
0
0
0

o O~ O

and let {X; = Rﬁ,BXoRZ,S} € SO(4) be the orbit of Xy under o7 345. This is a 17-point
code which, by construction, has a transitive symmetry group. Moreover, direct calculation
shows that it forms a regular simplex.

By virtue of the Euclidean embedding SO(4) — S5, there can be no regular simplices
of more than 17 points, and a 17-point regular simplex must be universally optimal (indeed,
it is even universally optimal as a code on the sphere). That proves the remaining claims of
the theorem. O

Theorem 7.2. There is a 32-point code in SO(4) with the following properties: it is a
subgroup, it is universally optimal, and it forms the vertices of a cross-polytope in S*5.

Proof. The code consists of all matrices of the form

a 0 0 0 0 a 00 0 0 a O 00 0 a
0 b 00 b 0 0 0 000 b 00 b 0
00 col’looocl'lcoool"®|0ocool
000 d 004do 0d o0 0 d 00 0

where a, b, ¢,d = £1 with an even number of —1’s. In other words, we use signed permutation
matrices in which the underlying permutation is either trivial or a product of disjoint 2-cycles
and the number of minus signs is even. It is not difficult to check that this defines a subgroup
of SO(4).

The supports of these four types of matrices are disjoint, so the corresponding points in
R are orthogonal. The inner product between two matrices of the same type is simply the
inner product of the vectors (a, b, ¢, d), which is 0 or +4 because of the even number of —1’s.
Thus, the code forms a cross polytope in S*3.

As in Theorem 7.1, universal optimality of C in SO(4) follows from universal optimality
as a subset of S1° (see [14]). O
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7.2 39 points in QP?

Theorem 7.3. There exists a tight code C of 39 points in OP2. It consists of 13 orthogonal
triples such that, for any two points x;,x; in distinct triples, p(x;,z;) = \/W?: In other
words, if IL, I are the projection matrices corresponding to two distinct points in C, then
(IL,II') equals O if the two points are in the same triple and otherwise equals 1/3.

Proof. First we recall from [18, p. 127] the standard construction of a 12-point universal
optimum in CP?: in terms of unit-length representatives, it consists of the standard basis

(1,0,0), (0,1,0), (0,0,1)

together with the 9 points

—ﬁ(l,w“,wb), (7.1)
where w = €2™/3 and a,b =0, 1, 2.

To construct the desired code, we will use the standard basis together with four rotated
copies of (7.1). More precisely, let {1,1, 7, k} be the standard basis of H and let £ be any
one of the remaining four standard basis elements of O. We identify w € C as an element
of span{1,i} C @. Set n = j¢. Then we define C C OP? to be the code obtained from the
standard basis and the points

(1,w%, w?) /43, (1, w5, wb0)/v/3,

(1,wa£,wbn)/\/§, (1’wan’wb]~)/\/§ (7.2)

for a,b = 0,1,2. Direct computation shows that this code has the desired distances.
Specifically, we must split the code into 13 distinguished triples of points. The standard
basis yields one such triple, and each of the four types of points in (7.2) yields three triples
according to the value of a + b modulo 3.

The sum over C of the first and second harmonics

P (2t — 1) =12t — 4,
P (2t — 1) = 9142 — 65¢ + 10

of OP? both vanish; thus C is a 2-design. As it has only two inner products between distinct
points, and one of those is 0, it is tight [32] and in fact universally optimal [14]. O

The code C in Theorem 7.3 is a system of mutually unbiased bases. It follows easily from
linear programming bounds that it is the largest such system possible.

This code is not unique: we can deform it to a four-dimensional family of tight codes
by replacing £, n, n, and j in the second line of (7.2) with £14, &n, €3n, and &4, where
&1, - --,&4 are complex numbers of absolute value 1. The group of isometries of OP? fixing
the remaining 21 unchanged points is zero-dimensional, so we have a four-dimensional family
even modulo the action of the isometry group Fy of OP2. We think the actual space of tight
codes is much larger, though. On the basis of numerical evidence (see §6.5), we conjecture
the following.

Conjecture 7.4. In a neighborhood of the code constructed in (7.2), the space of tight
39-point codes, modulo the action of Fy, is a manifold of dimension 24.
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At present this remains just a conjecture, though, as we have been unable to identify a
nonsingular system of equations to which we can apply Theorem 1.2.1.

The existence of a code of this form was conjectured by Hoggar {24, Table 2] after
classifying the permissible parameters for strongly regular graphs. Excepting a hypothetical
26-point tight simplex, which we conjecture does not exist, there are no remaining cases in
which the existence of a tight code in OP? is conjectured but not resolved. In fact, based
on computations of optimal quasicodes (two-point correlation functions subject to linear
programming bounds [16]), we are confident there are no other tight codes in OP? with at
most 10* points. We believe there are no more of any size.
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Chapter 111

Gravitational Choreographies

Gravitational n-body choreographies are particularly beautiful configurations of n equal-mass
point particles, interacting through Newtonian gravity. In this chapter we present an appli-
cation of computer-assisted proof techniques to the problem of existence of choreographies.
The plan is as follows. In §1 we introduce the problem and survey previous results from the
literature. We then set up the problem in formal terms in §2, and in §3 we summarize our
results. In §4, we present the technical details of our proof technique. We elaborate in §5
on some issues arising in the efficient software implementation of this approach. In §6 we
compare our techniques with previous work. Finally, we close in §7 with some questions for
further study.

1 Background

The study of gravity has an illustrious history. Using Tycho Brahe's data, Johannes Kepler
formulated his three laws describing in detail the elliptical orbits of the planets [60, 59]. Isaac
Newton, inspired by Kepler’s work, formulated his “law of universal gravitation,” stating
that massive bodies attract each other with a force proportional to the inverse-square of their
distance [75]. Using his development of differential calculus, Newton deduced the elliptical
nature of orbits in the Solar System as a mathematical consequence of his law. In fact, he
solved the 2-body system entirely, showing that the only solutions for two point masses,
attracting each other through the inverse-square force law, are conic sections [43].

With the 2-body problem solved, research progressed to studying the n-body problem
with n > 3. This proved significantly harder than the 2-body problem, and in fact remains
today “one of the oldest unsolved problems in the exact sciences” [45, p. xiv]. One seminal
work on the subject is Henri Poincaré’s submission for King Oscar II's prize, which eventually
expanded into a three-volume tome [77]. Rather than providing a solution of the 3-body
problem, which is what the prize solicited, Poincaré’s work showed that a complete solution
in the sense of the solution of the 2-body problem was impossible [30).

Aside. This does not rule out solutions in other, weaker senses, however. For instance,
Sundman’s infinite series can be viewed as a solution of the 3-body problem, albeit an
impractical one [11, pp. 190-191]. One estimate for the number of terms in the series needed
for astronomical accuracy is 108900000 92 p. 39]. This is captured in quotes of George
Birkhoff; he wrote of Sundman’s series that it is “one of the most remarkable contributions
to the problem of three bodies which has ever been made” — but speaking to its practical
usefulness, he said “[u]nfortunately these series are valueless” [11, p. 191].
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Figure 1.1: An approximate solution of the “Burrau problem” (also known as the
“Pythagorean problem”), a particular set of simple initial conditions for the 3-body problem.

Some sense of the difficulty of the problem is captured by Figure 1.1, a depiction of the
trajectories for a particular 3-body problem with a simple set of initial conditions. Despite
the simplicity of the starting configuration, the resulting orbit is quite complicated.

1.1 Periodic orbits

One approach that Poincaré suggested was to focus on special solutions that we can better
understand, instead of attacking the general problem. In particular, he championed the
study of periodic solutions:

D’ailleurs, ce qui nous rend ces solutions périodiques si précieuses, c’est qu’elles
sont, pour ainsi dire, la seule bréche par ot nous puissions essayer de pénétrer
dans une place jusqu'ici réputée inabordable [77, §36].

What makes periodic orbits so valuable is that they are the only breach, so to
speak, through which we can try to enter a place up to now deemed unapproach-

able [32, p. 18].

The simplest example of a periodic orbit in the n-body problem is the “circular orbit” in
which n equal-mass bodies form a regular n-gon rotating with constant angular velocity. It
is a simple exercise to write down such orbits explicitly. In the 3-body case, this generalizes
to a periodic solution for any set of masses [92, §5.7]. More generally, there are periodic
homographic motions with central configuration in the plane; these are solutions in which the
configuration of the bodies remains constant, up to scaling and rotation [2]. For instance,
there is a homographic motion of the equal-mass 4-body problem in which three of the bodies
form an isosceles triangle and the fourth is inside the triangle, on the axis of symmetry [1].

1.2 Choreographies

Rather than studying these, however, we shall study special cases of periodic orbits which
have a remarkable property: all n masses actually follow the same curve. More precisely, we
use the following definition.

Definition 1.1. An n-body choreography is a periodic solution of the n-body problem in
which the n bodies have equal mass and they all follow the same curve, spaced equally in
time. That is, if z(¢) denotes the position function for one of the bodies and T is its period,
then at all times ¢ the n bodies are at positions {z(t), z(t + 17),...,z(t + =1T)}.
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Figure 1.2: The figure-eight 3-body choreography.

We wish to emphasize that, throughout this document, the n-body problem refers to the
problem of n point masses under Newtonian gravity. We do not consider relativistic effects
(except for a brief remark in §7). When we refer to a solution of the n-body problem, we
implicitly mean a nonsingular solution. That means in particular that there are no collisions,
which is the relevant statement for our work.

Aside. In addition to collisions, there is one other type of singularity to rule out: the size of
the system could diverge in finite time [95]. Surprisingly, this exotic type of singularity can
occur in Newtonian gravity [40, 98].

Remark. Choreographies are defined as spatial, i.e., three-dimensional orbits. However, here
we will study choreographies that are planar, i.e., two-dimensional. There is no mathematical
reason to impose planarity a priori, but aside from a few scattered remarks we will put oft
discussion of non-planar orbits until a later paper.

The term “choreography” for these orbits was coined by Carles Simé [84]. He referred to
orbits satisfying our definition as “simple choreographies.” They are sometimes referred to
as “absolute choreographies,” as opposed to “relative choreographies” where the periodic
motion takes place in a rotating frame. Note also that some sources do not explicitly impose
the equal-mass or the equal-time-spacing properties in the definition (see Problem 7.3).

In the remainder of this section we give an overview of the literature on choreographies.
For more information, the reader is referred to Susanna Terracini’s comprehensive survey
article [91].

1.3 Figure-eight

The circular orbit is clearly a choreography, but it is not a terribly interesting one. The
existence of nontrivial choreographies was implicit in the 1983 work of Davies et al. [29], but
it was first explicitly highlighted in a 1993 paper by Cris Moore [71]. Moore numerically
discovered the exemplar of choreographies: the figure-eight orbit depicted in Figure 1.2.
Prior to Moore’s work, the existence of such simple but nontrivial choreographies had
not been anticipated. In addition to being surprising and novel, the figure-eight orbit has
several fine qualities with which to recommend itself. It is planar and possesses 12-fold
symmetry (see §1.4). It has zero angular momentum, in stark contrast to circular orbits
(which require nonzero angular momentum in order to avoid collisions). Moreover, and
perhaps most interestingly, it has been proven to be (linearly) stable [85, 56, 57]. While
many more choreographies have been found since the figure-eight, its stability remains
exceptional. No other (planar) n-body choreography (n > 3), including the circular orbit,
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has been proven to be stable. In fact, to our knowledge, there is only one other planar
choreography which has even been conjectured to be stable (see §3.6).

Aside. The stability of the figure-eight raises the possibility of such a configuration actually
existing naturally in the universe. Douglas Heggie carried out simulations to estimate the
likelihood of binary—binary scattering (encounters between two pairs of bodies) yielding a
figure-eight orbit [44]. Based on this, he reportedly estimated that the density of figure-eights
in nature should be between one per galaxy and one per universe [87, p. 147]. Applications
to physics, in particular in the form of gravitational waves, have been considered by Chiba
et al. [25].

1.4 Variational proofs

In a celebrated 2000 paper, Alain Chenciner and Richard Montgomery rediscovered the figure-
eight orbit and proved its existence [23]. Their proof relied on the variational formulation of
the physical equations of motion, which we now recall.

Given a physical system, let T be its total kinetic energy and let V be its total potential
energy. These are functions of time. Conservation of energy dictates that the total energy
H :=T+V is constant over time. Instead of focusing on H, though, consider the Lagrangian
L :=T -V, and its time integral, the action S := [ Ldt. The action is a functional, i.e.,
a real-valued function of trajectory functions. The importance of the action functional is
expressed in the following principle, often attributed to Hamilton.

Principle of Stationary Action. The physical trajectories are the stationary points of
the action.

Remark. We have been intentionally vague in the statement of this principle. In addition to
the types of physical systems to which this applies, we are especially leaving unspecified
the limits of integration in the definition of the action and the ambient function space over
which the action is supposed to be stationary. These points will be elaborated upon in §2.1
and §4.1, respectively.

The principle of stationary action was inspired by Fermat’s principle of least time, which
describes the path that light takes through media of varying refraction index. It, in turn,
inspired Feynman’s path integral formulation of quantum mechanics. Viewing classical
physical systems through the lens of the action principle falls under the heading of Lagrangian
mechanics. 1t is also referred to as the variational approach.

For choreographic purposes, the primary importance of the variational formulation is
that it views entire paths at once. In particular, one can look for periodic paths by searching
over spaces of periodic paths. It is not as natural to represent periodic solutions using the
usual dynamical perspective, wherein one fixes initial conditions and then solves forward in
time.

As the potential energy from gravitational attraction is nonpositive, the action of any
path is nonnegative; in particular, it is bounded below. This motivates one to search for
periodic orbits by finding minimizers of the action in some restricted space of paths. There
are three possible obstacles to this course of action [17, pp. 74-75]:

(a) non-coercivity, the problem that the infimum of the action amongst all periodic
trajectories comes from having each body follow its own infinitely short, infinitely slow
loop, and putting these loops infinitely far apart;
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(b) triviality, the possibility that an uninteresting (e.g., circular) orbit may minimize the
action; and

(c) collisions.

The problem of coercivity is usually addressed by imposing either topological constraints
or symmetries. The topological constraints one finds in the literature consist of restricting
to a particular homology class [41, 78, 94] or homotopy class [71, 70]. The other approach,
symmetry constraints, is of more relevance to us. Certain symmetries are coercive, in the
sense that if we restrict to orbits possessing such symmetries, then orbits of infinite size no
longer minimize the action. The first example of such a symmetry [28] was the so-called
“Italian symmetry” [19]: at every time, the configuration after advancing half of a period is
the antipode of the current configuration. Imposing this symmetry forces coercivity, because
it means that in order for bodies to become infinitely separated, they also have to travel
infinitely far each period. More than the Italian symmetry, of specific interest to us is the
choreographic constraint, the condition that moving forward in time by 1/n of a period just
effects a cyclic shift of the positions of the n bodies. This symmetry also forces coercivity.
Thus, since we are only focused on choreographies, coercivity will not be a problem.

Imposing the choreographic constraint does not rule out trivial solutions, as the circular
orbit is a choreography. However, triviality is typically not a major obstacle. For instance,
imposing additional symmetries can rule out the circular orbit, as we shall see shortly with
the proof of the figure-eight.

By far the trickiest of the three problems is that of collisions. By a result of Sundman,
for times ¢ near a binary collision at ty, the distance r(t) between the colliding bodies
satisfies r(t) ~ |t — to|?/® [10, §2.2.3]. Thus the potential and kinetic energies, and so also
the Lagrangian, scale as |t — to|~%/3. This has an integrable singularity, so the action is finite
through the collision. In particular, a minimizer of the action is not a priori collision-free.
This is an unfortunate property of the Newtonian inverse potential 1/r; “strong force laws”
such as potentials ¢ with a < —2 have the property that collisions have infinite action [78],
and consequently one can prove theorems about the abundance of choreographies under
such potentials [22, 71].

To prove existence of the figure-eight, Chenciner and Montgomery imposed a particu-
lar symmetry group (containing the choreographic symmetries) and then used a delicate
calculation to rule out collisions [23]. They essentially showed that, while finite, the action
through a collision would be larger that that achieved by a non-collision test path. This
yields the following theorem (with presentation following Chenciner’s later article [17]).

Fix a period T > 0. Let

Dip=(rs|®=18¢=1rs=s1
be the dihedral group of order 12. Let 8 be the group action of D12 on R/TZ defined by
T
Blry-t=t+ 5 and fB(s)-t=—t,
and let @ be the group action of D5 on (R?)? given by

afr) - (2V,2®, %)) = (R(z®), R(zV), R(z?))
afs) - (2, 2@ 2y = (20, _g®) @),
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Figure 1.3: A loop with the sum-zero and Djs-equivariance properties imposed upon the
figure-eight. The entire loop is determined by its values in the first (1/ 6)*" period (depicted
in blue). The positions at each (1/6)*" period are marked in red.

where (1), 2(2), 23) ¢ R? and R: R? — R? is the reflection map R(a,b) = (—a, b).

Theorem ([23]). There exists a periodic solution zV(t), (P (t),2®)(t): R/TZ — R? of the
planar, equal-mass 3-body problem satisfying the following properties:

[sum-zero:] for all times t, M (t) + 22 (t) + 23 (¢) = 0, and

[D12-equivariance:] for all g € Do and all times t,
a(g) - (2 (t), 2@ (1), 28 (1)) = (P (B(g) - 1), 2P (B(g) - 1), =¥ (B(g) - 1).

It is an “eight-shaped” choreography with zero angular momentum.

The above discussion should lend credence to this theorem. We do not wish to repeat an
actual proof, as the further details are fairly technical and tangential to our aims. Instead,
we just take a moment to emphasize the philosophy of the proof: existence follows from
taking a minimizer of the action subject to the chosen symmetry, with the one caveat that
we must check if the minimizer is collision-free. The desired structure of the orbit is forced
by judicious choice of symmetry group. In the particular case of the symmetries prescribed
in the Chenciner-Montgomery theorem, one can check that an equivalent formulation is (i)
xo(t) = x1(t +T/3) and x3(t) = x1(t + 27°/3) (i.e., the orbit is a choreography), (ii) z; is an
odd function, and (iii) z; satisfies

(1) et (s (14 2)).

Consequently the entire orbit is determined by the function z; on [0,7/6], with the only
additional constraint being that z1(0) = 0. As demonstrated by example in Figure 1.3, this
forces the orbit to have essentially the correct structure.

The variational proof technique has more applications, of course. It was applied to the
n-body problem (although not to choreographies) as early as 1977, by William Gordon [41].
Another example (closer to our topic of study) is that shortly before the publication of the
figure-eight orbit with Montgomery, Chenciner together with Andrea Venturelli demonstrated
a proof of existence for a spatial periodic orbit with the Italian symmetry [24]. Known as
the “hip-hop orbit,” it is a member of a family discovered previously by Davies et al. [29].
(The use of Italian symmetry is conducive to finding spatial orbits, because for n > 4 bodies
an action minimizer subject to said symmetry is necessarily nonplanar [19].)
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Stronger machinery for proving existence using this variational method then developed
quickly. Using a novel averaging argument due to Christian Marchal [65] to rule out isolated
collisions, and then building on work of Montgomery, Terracini, and Venturelli, in 2002
Chenciner presented a proof of a general theorem showing that action-minimizing paths
between two fixed endpoint configurations are collision-free [18]. As a consequence, one finds
that periodic minimizers subject to certain symmetries, including the Italian symmetry, are
collision-free.

Marchal’s technique applies to both planar and spatial orbits, but with different proofs.
This is because his core averaging idea arose from the fact that the Newtonian potential is a
harmonic function on R3. (Note that neither case implies the other, as a planar orbit is a
spatial orbit but a minimizer in the space of planar orbits need not be a minimizer in the
space of spatial orbits.)

In 2004, Davide Ferrario and Terracini generalized these ideas greatly by proving that
local minimizers subject to a certain wide class of symmetry groups are collision-free [35,
Theorem 10.10]. (As we shall see demonstrated in §1.5, the set of local minimizers is
significantly richer than the set of global minimizers.) The “wide class” handled by Ferrario
and Terracini’s result includes the choreographical symmetry group, the dihedral symmetry
group of the figure-eight, and the symmetry group of the hip-hop orbit [35, Examples 1, 2, 6],
so it generalizes all of the variational results mentioned heretofore. Their result also applies
to many more symmetry groups, including a cyclic symmetry group yielding nontrivial
spatial choreographies [35, Example 8§].

Following this work, Vivina Barutello et al. analyzed all of the symmetry groups possible
for the 3-body planar periodic problem, showing that local minima of the action with respect
to each are collision-free [12]. Ferrario later proved the same for the 3-body spatial periodic
problem [33].

At this point the collision-free proof technology for the variational method is well
established, so that in most if not all desired cases, one knows that there exists a periodic
orbit with specified symmetry. The approach continues to be applied to yield new existence
proofs [80].

1.5 More choreographies

The variational proof technique discussed above is quite powerful, but it gives existence
proofs for abstract orbits. In most cases (namely, every choreographic case known except
the circle [13, Theorem 1}), we do not get a concrete description, or even approximation, of
the global minimizer of the action. For example, Figure 1.2 actually plots a local minimum
of the action subject to the choreographic symmetry. We do not know with certainty that it
plots the Chenciner-Montgomery figure-eight, i.e., the global minimum of the action subject
to Dio-symmetry. (We do suspect it does, because as Chenciner pointed out [17, p. 83],
“...computations indicate that ‘the’ eight orbit is probably unique.” However, this remains
unproven.)

As this discussion highlights, to supplement the proofs discussed above, the study of
choreographies can be illuminated by explicit computational results searching for local
minima. One takes a starting path and then numerically minimizes the action until it
converges, using a finite-dimensional approximation to the function space to make the
problem algorithmically tractable. Modulo numerical errors and the imprecision of the
finite-dimensional approximation, the limit is a stationary point of the action and so is a
choreography. This was the original perspective taken by Moore [71] when he numerically
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discovered the figure-eight orbit.

Remark. Moore used discrete time samples to approximate the positions in his orbits and
used finite differences to approximate velocities [72]. However, in all of the recent work and
in our own work, orbits are instead approximated as trigonometric polynomials (i.e., one
represents functions by truncated Fourier series). This will be made explicit in §2.4.

While the approach of numerically solving variational problems continued to be widely
used outside of celestial mechanics (see, e.g., Gray et al.’s summary [42]), its application
to choreographies lay dormant until Chenciner and Montgomery’s announcement of the
figure-eight. Immediately thereafter, Simé began numerical computations in earnest [84]. In
addition to finding the (or rather, as just discussed, “the”) figure-eight orbit numerically, he
found many more choreographies as local minima of the action. (Indeed, since the action is a
highly nonconvex function, one may expect it to have many critical points.) Simé presented
34 new n-body choreographies with n > 4. Position data for these and 12 more n-body
choreographies are available at his website [81]. Using his data, we have plotted Simé’s
orbits in Figures 3.5, 7.1, and 8.1-8.3. Notice that these orbits cannot be fully characterized
by their symmetry groups, as (for instance) there are ten different 5-body choreographies in
Figure 8.2 exhibiting Z/2 bilateral symmetry. Even more compellingly, in Figure 3.5 there
are four choreographies exhibiting no symmetry in the trace of the orbit.

This work is numerical and non-rigorous in nature. However, in a series of three
papers, Tomasz Kapela and coauthors developed computer-assisted proofs for a few of these
numerically-found choreographies [58, 55, 56]. Figure 8.4 shows plots of the orbits handled
by this work. We will explore their proof technique in more detail in §6.1.

In addition to Simé’s work, several others considered the problem of finding choreographies
by numerically minimizing the action. Chenciner et al. (where this “et al.” includes Simé)
presented several choreographies in the style of Simé’s orbits [22], some of which are and
some of which are not contained in Simé’s previous tables [84]. (Specifically, there are five
new choreographies shown in their paper [22, Fig. 3d,3e,4b,4c,4d].) Michael Nauenberg
studied spatial variants of the figure-eight [73] and, with Moore, other periodic orbits with
symmetries [72]. Another example is Robert Vanderbei, who considered periodic orbits as
an application of his general-purpose nonconvex optimization software [93]. We suspect
that there are many others who have experimented with action minimization as a means of
finding choreographies.

The variants of the figure-eight mentioned in the last paragraph have been particularly
well studied. They were discovered independently by Nauenberg (numerically) [73] and
Marchal (with proof, using the variational method) [64]. They were later studied in more
depth by Chenciner et al. [21] and by Nauenberg [74]. They belong to a family of relative
choreographies. (Recall that a relative choreography is an orbit which is choreographic in a
rotating frame) The angular velocity of the rotating frame varies continuously in the family.
It connects the figure-eight orbit, which is a planar absolute choreography with zero angular
momentum, to the circular orbit, which is a planar absolute choreography with nonzero
angular momentum. The intermediary relative choreographies are spatial, and some (those
for which the angular velocity of the rotating frame satisfies certain integrality conditions)
are actually absolute choreographies, albeit with a longer period than their period in the
rotating frame:

Observation 1.2 ([85, p. 223]). Suppose we have an n-body relative choreography which has
period T and whose rotating frame (with respect to which it is a choreography) has period T.
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Suppose /T is rational, say 7/T = p/q in lowest terms. If (p,n) =1, then the orbit is an
absolute choreography with period pT'.

A similar family was found by Arioli et al. [7]. Their work builds on the “mountain
pass theorem;” recall that this is a theorem in analysis which (under suitable conditions)
guarantees the existence of a saddle point between two distinct minima. Using a numerical
procedure for locating such saddle points [14], they found a saddle point between the
circular orbit and the doubled circular orbit. This approach was mentioned by Simd [84,
p. 13], but Arioli et al.’s work appears to have been the first implementation thereof. They
then took their mountain pass orbit and showed that it continues into a family of relative
choreographies, and finally they gave a computer-assisted proof of the existence of this
family. We will review their proof technique in §6.2 and remark upon their “mountain pass
orbit” in §3.3.

The existence of one-parameter families of relative periodic orbits was first described
by Michel Hénon in 1974 [47]. Using his ideas from that paper, Simé reported that Hénon
found a continuous family of planar relative choreographies containing the figure-eight [85,
p. 223]; the members of the family are called “satellites” of the figure-eight by Simé [85] and
Chenciner et al. [22]. This family was also found by Nauenberg [73], and it is one of the
three studied by Chenciner et al. [21].

The main difference amongst the three families just mentioned is which axis is chosen
for the frame to rotate around.

In passing we observe that the existence of such families (in particular, the third family),
together with Observation 1.2, immediately proves the following result. It is certainly
well-known, although we have not seen it explicitly stated in the literature. For purposes
of this statement, we view choreographies as “equivalent” if they are related by an overall
scaling, spatial isometry, and/or affine time transformation.

Corollary 1.3. There exist infinitely many inequivalent n-body (absolute) choreographies.
In fact, there already exist infinitely many inequivalent 3-body planar choreographies.

In addition to searching for local minima of the action subject to the choreographic
symmetry, one can find minima of the action subject to a larger symmetry group. We
have already seen the power of this idea in the context of Chenciner and Montgomery’s
proof of existence of the figure-eight. Numerical results were pursued in some cases by,
e.g., Moore and Nauenberg [72], but systematic exploration of such minima really began
with the work of Barutello et al. [12] and Ferrario [33, 34] in the periodic 3-body problem.
Recently James Montaldi and Katrina Steckles have given a comprehensive survey of the
symmetry groups possible for planar n-body choreographies [69]. In addition to classifying
the possible symmetry groups theoretically, they numerically found some choreographies
with those symmetries; Montaldi’s website contains animations thereof [68]. Some of these
are extremely beautiful and novel. We will revisit their classification in §3.5.

1.6 Non-variational approaches

In the previous subsection we discussed approaches to finding choreographies based on
numerically minimizing the action. This has proven effective, but there are other ways to
identify solutions. For instance, one can imagine searching the parameter space of initial
conditions directly for choreographic solutions. The dimension of the space is not particularly
large; for instance, in the planar 3-body problem (after removing symmetries) the phase
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Figure 1.4: The initial conditions considered in Simé’s search for 3-body choreographies.

space is 6-dimensional. However, the time evolution map is ill-behaved, so that small changes
in initial conditions lead to large (and perhaps very large) changes in the time-evolved
conditions [83, p. 279].

Nonetheless, one might try to search this parameter space directly for choreographies.
With suitably sophisticated differential equation solvers, Newton’s method operating on the
phase space can be used to converge to a choreography given a reasonably good starting
approximation [84, §7.2]. If one does not start with an approximation, though, then it is
difficult to find a choreography in the full parameter space. Removing degrees of freedom
from the problem can greatly improve the odds of success.

The circular orbit is an extreme example of this. It reduces the n-body problem to a
two-parameter problem: the radius of the circle and the angular velocity. Finding solutions
of the reduced problem is easy. More generally, given a central configuration, it is easy to
(numerically) identify homographic solutions: one just needs to consider the scaling and
rotation of the configuration over time, and conservation of energy and angular momentum
impose stringent conditions on those functions.

Aside. Restricting the problem is a pervasive idea in physics. In the specific context of
periodic orbits, E. Myles Standish, Jr. restricted to configurations starting from rest in
order to identify what may be the first example of a nontrivial periodic solution of the
comparable-mass 3-body problem [86]. (Previously there were known periodic solutions with
collisions, but Standish’s solution is singularity-free.) There is also a large body of research
concerning the restricted three-body problem in which one of the three bodies has negligible
mass as compared with the others [10, §2.5].

In search of more 3-body choreographies, Simé considered configurations with the
following restriction: the three bodies begin in an isosceles triangle and the orbit is invariant
(up to relabeling of two of the bodies) under the simultaneous application of time reversal
and reflection across the axis of symmetry of the triangle (see Figure 1.4) [85, §7]. If we
(without loss of generality) fix the energy of the system, then this restriction leaves just
three degrees of freedom.

Simé6 then systematically searched the reduced parameter space. For each initial condition
he numerically integrated until either (1) the bodies returned to an isosceles configuration with
the same sort of reflection symmetry as the starting configuration, but with a different body
at the apex of the triangle; (2) a close approach occurred; or (3) a prechosen time threshold
passed. In the event of (1), the solution was necessarily a relative choreography; if instead
(2) or (3) occurred, then he dismissed the test case. Starting from each relative choreography,
Simé used a “continuation process” to find a family of nearby relative choreographies with
varying angular velocity for the rotating frame. He then selected from the resulting families
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those relative choreographies in which the angular velocity satisfies the integrality condition
so that the relative choreography is actually an absolute choreography (with longer period).

The results of these extensive computations were 345 choreographies, of which all but
one (the figure-eight orbit) were new [85, §7]. Data files describing these choreographies are
available at Simd’s website [82].

Another study of periodic solutions of the 3-body problem, comparable in spirit but
less extensive in scope, has recently received a lot of attention [90]. This work searched for
periodic orbits starting from a certain two-dimensional parameter space.

2 Formal Problem Statement

2.1 Physics

Let d be the ambient dimension; in the present document we will consider d = 2.

The (nonrelativistic) n-body problem refers to a physical system in which there are
n point masses interacting solely through Newtonian gravity. Recall that, in the theory
of Newtonian gravity, a pair of point particles with masses m; and mg and separation r
generate a force between them which is attractive and which has magnitude
Gmim
F="">2
rr-ln

Here G is the gravitational constant, a physical constant with the units of distance® - mass™! -

time™2. Thus, if z(V(t),...,zM™(t): R — R? are the positions of the n bodies, then the
dynamics of the n-body problem are determined by the equations

(In this document we follow the physicist’s convention of using dot accents to denote time
derivatives.)

An equivalent description of Newton’s law of universal gravitation is that each pair
interaction contributes —Gmims/r to the potential energy of the system. Thus the total
kinetic and potential energies, respectively, are given by

"1 (i Gmym,;
T:Z§m¢|m(l>|2 and V =— le e

; () — :1;(1
=1 <]

We will always consider periodic paths (¥ (¢). Periodicity provides a clear choice for the
limits of integration in the definition of the action: we simply integrate over a full period.
Thus, letting 1" denote the period, the action of the periodic n-body system is

Gm
S/ szzlxz”?ﬁ-zl T ) de. (2.1)

:c(l
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2.2 Conserved quantities

There are 10 classical conserved quantities of the spatial n-body problem. The simplest are
the 6 coming from translation invariance, which may be viewed as the starting position and
velocity of the center of mass:
L N
=y mzY.
?:1 mq ;

Rotational invariance gives conservation of angular momentum, a three-dimensional

vector:
T

L= Zmi(x(i) x ).

1=1

(Note that, in the planar case, the angular momentum is always perpendicular to the plane
and so may be viewed as a scalar quantity. In general the angular momentum is properly
defined in the exterior square A2(R%).)

The final conserved quantity, the energy, arises from time invariance of the system:

B _ 1oa@2 _ T
H=T+V = E melle Z|x(j)—m(i)|'
i—1 1<j

It is a nontrivial theorem of Bruns that there are no other first integrals [16, 54].

2.3 Normalization

Because the time and space scales are arbitrary, we will fix them in such a way as to simplify
the problem. Consider replacing the position functions () (¢) with ) (t) = ez (¢/8) for
some «, # > 0; in other words, consider rescaling time and space (by 8 and «, respectively).
The period of the new functions is ST, and the new action is

T ({n 2
a1 ; 1 Gmymy;
. L Imala®2 L . ) de
o)) (S g > Fora

The physical meaning of the action is unchanged under multiplication by a constant. Thus
there are essentially three degrees of freedom, viz.: «, 3, and overall scale. We can use them
to set, without loss of generality, T, GG, and the overall scaling of masses arbitrarily. This is
easiest to see in two separate steps.

(a) If we set a = yu? and S = yu/2 for v, u > 0, then the net effect of the transformation
is to replace G with G /v and replace the masses m; with m;/u.

(b) If we then perform a transformation with o = 82/3, then the net effect is to multiply
the period by 8 (and leave G and the masses unchanged).

Using this freedom, we will make the following choice throughout.
Convention 2.1. In the n-body problem, we set T' = 1, G = (27)%, and m; = (27)72.

In particular, since all of the problems we will consider are equal-mass, all of the masses
are set to 1/(4m?).
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We may also fix some of the conserved quantities. Firstly, we need to fix an inertial
frame, i.e., the origin of our coordinate system. The following is, we claim, the only sensible
choice.

Convention 2.2. Our n-body systems have their center of mass fixed at the origin. In
particular, the center of mass is stationary, i.e., there is no net linear momentum.

Of course, asking for a periodic solution already forced the center of mass to be stationary.

There is remaining freedom in how to choose the orientation of the reference frame and
the initial time. However, there is not a clear, canonical choice for these and so we shall not
impose any condition.

Aside. The choice of normalization varies widely in the literature. As it happens, in his
n-body choreographies discussed in §1.5, Simé used essentially the same normalization
conventions as we have chosen (his choice was T' = 27, m = 1, G = 1, which differs from
ours only superficially) [84]. However, in his search for 3-body choreographies discussed in
§1.6, he used a significantly different normalization. In general the data one finds in the
literature needs to be renormalized before it can be compared with ours. This problem of
discrepancy in normalization conventions for numerical results was already bemoaned in
1974 [47, Appendix], when Hénon presented a set of conventions for the 3-body problem
and “propose[d] that after discussion this set or a similar one be adopted as a standard” [47,
p. 386]. We did not follow his conventions.

Finally, for later convenience, we shall agree to the following,.

Convention 2.3. All energies are henceforth understood to be divided by 2n.

For instance, the kinetic energy is ﬁ S |22, The reason for this rescaling will

become clear in §4.2.

2.4 Fourier series representation

Because we only consider periodic orbits, it is natural to represent the coordinate functions
as Fourier series. Recalling that we have normalized so that the period is T = 1, we write

zo(t) =z (t) = ZA,(cc)e_%ikt,
kez

where wgl) is the c*® component (c = 1,...,d) of the position function for the first body.

Here A;cc) = fol z.(t)e?™* 4t is the k™ Fourier coefficient of z.(t).

Aside. We find the application of Fourier series to celestial mechanics quite pleasing, as the
original development of the fast Fourier transform was by Gauss to aid his calculation of
ephemerides [46].

Note that for choreographies, wherein all n bodies follow the same curve, we do not need
to write down series for the positions of the other bodies. Moreover, because we fixed the
center of mass at the origin, under the choreographic constraint it follows that the mean of
z(t) must be zero. That is, A(()c) =0 for all c.

Remark. The condition A(()c) = 0 states that, on average, the center of mass is at the
origin. This requires only the part of the choreographic constraint that the bodies follow
the same curve, not that they do so with equal time spacing. But the center of mass is
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always at the origin, and (under our definition) the bodies are equally spaced in time. Thus
n 2Pt =n > kenlk Afcc)e_z"ikt is identically zero, so Agf) = 0 for all k£ such that n | &.
We do not exploit this anywhere, but it can provide a useful spot-check of numerical results.
Now, because the functions z.(t) are real, the Fourier coefficients A;cc) satisfy A(_c,)c = Aff).
Thus, writing A,(CC) = a,(cc) + ibgcc) for k > 1, we have

To(t) =2

k=1

(a,(cc) cos 2wkt + b,(cc) sin 27rkt> .

Given coordinate functions z(t) = (z1(t),...,z4(t)) with their corresponding Fourier
coefficients, we define the ¢! norm

oo d
lell =375 k(lal?| + b))
k=1c=1

This choice of norm is really at the heart of our proof technique; it will be used crucially in
84.

Aside. This norm is an £' norm in terms of varying Fourier modes and also an ¢! norm in
terms of the real coefficients for each mode. We could instead consider the mixed £, £2 norm

o0 d 1/2
el =k (Z |A§:>|2> :
k=1 c=1

This norm is actually mathematically better suited to our goals (as we can see already in
Lemma 2.5). However, we found the computer implementation to be simpler using the
purely ¢! norm, and in any event the norms are equivalent: ||z||12 < ||z|] < v2d||||1 2.
Therefore we shall content ourselves with the analysis as-is.

Definition 2.4. By X we understand the space of mean-zero R%valued periodic functions
z(t) such that ||z|| < co.

Note that X is a Banach space isomorphic to #!. When convenient we identify it
with ¢! by the mapping = — (kagcc), lcbg:) re=1,...,d, k> 1). It contains all sufficiently

differentiable (for instance, C® suffices) functions. In particular, because a collision-free
solution of the n-body problem is necessarily smooth, it contains all of the orbits we wish to
study.

The following bounds are immediate from the definition.

Lemma 2.5. Given any x = (x1,...,24) € X, the functions z. are C*. Moreover, for any
teR,

d d
dolzcdl<2llel] end Y |ao(t)] < 4rlla]].
c=1 c=1

In other words, in defiance of Heisenberg, the norm on X simultaneously controls position
and velocity.
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2.5 The action and its gradient

Applying the conventions from §2.3 to (2.1) and distributing the integral, we have the
following expression for the action:

Lifu(i)]?dHiZ/l;dt
16nm? — Jo 4n = Jo |x() — 2@)]

Consider first the kinetic terms fol |#("|? dt. By the choreographic condition, these are all

equal to fol |z|% dt = ‘cizl fol |£c|? dt. By Parseval’s identity, the L? norms can be computed
in terms of the Fourier coefficients of :

1 9 oo
/O |:i:c[2dt=Z‘(—27rik)A§f) =8n2 Y KAL)

keZ k=1

The potential terms are not as simple. We can make one simplification, though: using
the choreographic condition, we can replace the double sum over ¢, j with n copies of a single
sum over j.

Putting all of this together, our final expression for the action of a choreographic orbit is

1OO
S(x)=§§ k?
k=1

d n—1 .1
(e)j2 l 1
> A *4;/0 Rt 3 = 2@ (22)

c=1

Let Ucs C X be the “collision-free” subset of X, i.e., the set of z(¢) such that z(t +i/n) #
z(t) forall t € R and 5 = 1,...,n — 1. Because the values of = vary continuously with
respect to the norm on X' (by Lemma 2.5), U, is an open set. The action defines a functional
S:Ug— R

This function is twice-differentiable, but some care needs to be taken in how we define the
derivatives. We will examine this is detail in §4.1 and especially §4.2, and content ourselves
here with simply defining the norm on the first derivative. By abuse of notion we often refer
to the first derivative as the “gradient,” denote it by VS (see Definition 4.7), and think of

it as a vector of partial derivatives with respect to the coordinates ka,(f), k:b,(cc). Using this
viewpoint, we choose the ¢! norm:

oo d
Ivs@l =% (‘i<x>|+ ‘imb‘ (2.3)

(kb))

Note that this is not the dual norm that one typically uses with the Fréchet derivative; that
would be an £°° norm. This norm is much stronger.

3 Our Results

Our primary mathematical result is the proof technique developed in §4. As a demonstration
of its power, we have applied it to prove the existence of a slew of choreographies — manifold,
although not yet myriad. To date, we have proven the existence of 192 choreographies.
This number can be compared with the 16 choreographies which had previously had their
existence certified by Kapela et al. (see Figure 8.4) — all of which we have re-proven with our
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software — and the one family treated by Arioli et al. [7]. In addition to being substantially
larger, our storehouse of choreographies includes behavior far more complicated than had
been handled before.

To feed the prover, we also developed techniques for finding choreographies. While these
techniques are not novel and not especially sophisticated, they did prove to be powerful
tools; we describe our methods in §3.2 and explore their main limitation in §3.4. Finally, we
use the remainder of this section to discuss some observations and speculations regarding
the phenomena of symmetry and stability.

We display a selection of 64 proven orbits in this document, in the present section and
then continuing in §8, viz.: Figures 3.1, 3.4, 3.6, 3.7, 3.8, 7.2, 8.5, 8.6, 8.7, 8.8, 8.9, 8.10,
8.11, and 8.12. For each of these we show a plot of the trajectory, record the number of
bodies, name the original discoverer (to the best of our knowledge) of the choreography, and
give the name of the choreography (if one was given). An updated, complete laundry list of
proven orbits, with notes and animations, can be found at the author’s website

http://gminton.org/choreo.html

(which also contains the CHOREO.JS program discussed below) [67].

3.1 Proving existence of choreographies

The mathematical presentation of our proof technique is delayed until §4, but to understand
the statements of our existence results we need to preview a few aspects of it. There are
several parameters to be chosen per proof. First, recall that, as input to Theorem 1.2.1,
we have to choose €, the radius of the ball in which we are going to (attempt to) prove
existence. The constraining factors are that a larger € means that we do not need to have
as accurate of a starting point, but it also means that we have to control the behavior of
the problem on a larger ball. (In particular, the bounds we give in §4.7 depend critically
on € being small.) Our choice of £ varied somewhat in these proofs. In most of our proofs
we used double-precision approximate calculations to find a solutions whose gradient had
norm less than 107!3, and then we proved existence inside a ball of radius & = 10710, There
were a few exceptions, though, where we had to use a smaller £ and consequently a better
starting approximation (see Figure 3.1). In those cases we improved our approximation by
running our solver with double-double-precision floating-point arithmetic (as provided by
the QD library [48]). In the most extreme case, we found a solution whose gradient had
norm less than 10718 and then proved existence within a ball of radius £ = 1013,

In all cases € was orders of magnitude less than the diameter of the choreography, and
so a successful computer-assisted proof tells us that there is a choreography whose plot is
essentially indistinguishable from that given. In particular, the largest € we ever used was
10~® and the diameter of every orbit was at least 0.5. Recalling Lemma 2.5, that lets us
state the following master theorem.

Theorem 3.1. In each case of proven existence, there is a true choreography whose graph
would be indistinguishable from that of our approzimate solution even if the resolution of the
plot was one part in a million.

To understate, the plots given here may be thought of as reasonably representative.
Besides €, another parameter is the number of Fourier modes that we need to control,
both in our approximate solution (see §3.2) and in bounding the infinite matrix in our

[SPPR2)

proof (see “s” in §4.6). This number, times 2d, is the dimensionality of the space we use to
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32 bodies

16 bodies
4 bodies

Found by: Greg M.
“4-Fish”

Found by: Jessa L.

Found by: Henry C. “Fallopian tubes”
“The One Ring”

Figure 3.1: Three choreographies for which we used QD to find a higher-precision approxi-
mation and then proved existence using smaller £; the first and second used € = 1071, and
the third used € = 10~ '3,

approximate X. Simé stated that the dimension he used was typically in the range [103,104].
This generally lines up with our results. We found that 800 modes was often sufficient to
give a satisfactory approximation for a moderately complicated planar choreography. That
corresponds to a 3200-dimensional approximation space.

In addition to choreographies found using our software, which is described below in §3.2,
we proved the existence of some choreographies found by others. In particular, we used data
from Simé’s n-body and 3-body data sets, mentioned in §1.5 and §1.6, respectively. Simé
made his n-body data set available in the form of time series of positions, using essentially
the same normalization as we chose (see §2.3); it was easy to import these. We proved
existence of 33 of the 47 choreographies in this data set. We anticipate no major obstacle to
proving existence of the others, but the default parameters were not sufficient and we have
not yet experimented with other settings.

By contrast, Simé’s 3-body data set is available in the form of positions which are not
uniformly sampled in time. We dealt with this by taking an approximate time rescaling
based on making the angular momentum constant, and then using our software to converge
to a solution. In some cases this was successful and in some it was not; in some of the
successful cases we have proven existence, and in some we have not. For the converged-
but-not-yet-proven cases, like the n-body choreographies discussed in the last paragraph,
we anticipate no fundamental problem in proving them. We just have not yet done so. Of
the 345 orbits in the data set, we have proven existence of 19 and have found approximate
solutions for another 50.

Figures 8.5 and 8.6 show a handful of Simd’s choreographies for which we have proven
existence.

3.2 Finding choreographies numerically

While our primary results concern computer-assisted proof, we also developed software for
numerically finding choreographies. Our software differs from previous work in two ways:
firstly, we eschew action minimization and instead use second-order methods to look for
critical points, and secondly, we start our search from a user specified starting loop.

7



Concerning the first difference, recall that, as we discussed in §1.5, the primary method
discussed in the literature for finding choreographies is action minimization. Indeed, the
principle of stationary action is often sloppily called the principle of least action, which
strongly suggests that one look for minima. More specifically, the common approach is to
minimize the action by using gradient descent in the space of trigonometric polynomials
of a given trigonometric degree (i.e., Fourier series truncated at a certain mode). Gradient
descent has definite advantages, of which the foremost is that (having arranged for coercivity
by imposing the choreographic constraint) it will converge to some local minimum. That
minimum may be uninteresting (e.g., the circular orbit) or it may have collisions, but at
least we know that the algorithm will converge to something.

However, gradient descent also has some disadvantages. Barring extreme numerical
coincidences, it can only find local minima, so we lose the ability to identify saddle points.
It is also slower to converge than higher-order methods, which is relevant because we require
high-precision inputs for the prover. For these reasons, instead of using gradient descent,
in our software we use Newton’s method to search for a zero of the gradient. This has
the advantages of being able to find saddle points (which we will return to in §3.3) and of
converging rapidly, to wit, converging quadratically in a neighborhood of a solution. Simé
wrote that the number of iterations needed to “achieve a good approximation” is quite large,
on the order of 10® to 10* [84, p. 12]. Orders of magnitude fewer steps suffice with our
Newton techniques.

The most notable downside of using Newton’s method is that it is ill-behaved when the
starting point is far from a solution. To combat this, we actually use a damped Newton’s
method algorithm. More specifically, we use the same damping algorithm as in §11.6.2, i.e.,
we just compute the norm of each step and scale it back if it exceeds some threshold. We have
found this to be satisfactory in practice, although there is certainly room for improvement.
A more principled damping method like the Levenberg-Marquardt algorithm [63, 66] could
be useful.

Even after instituting damping, we still lose the guarantee of convergence that gradient
descent has. This problem is mitigated in practice by applying a random perturbation when
the algorithm is unable to make progress.

We suspect that this approach is not used in the literature due to a combination of
the lack of convergence guarantees and the increased programming complexity. The code
needed to compute the Hessian of the action is significantly more complicated than that
needed to compute the gradient. However, we had to develop code for Hessian computations
anyway for the proof procedure, so reusing that work for Newton’s method was natural. The
computer-assisted proof technique used by Arioli et al. also required Hessian computations,
and they do some calculations with Newton’s method, but only to improve the precision of
an already-close approximation [7].

At the start of this subsection we mentioned another difference, that of the choice of
starting curve. In 2000, Simé observed that the starting point for action minimization
could be a very rough approximation, even a “hand drawn curve” [84, p. 12]. We do not
know if he ever tried this, but we have implemented exactly such an input method. Our
software accepts a user-drawn curve — sketched with a computer mouse or with a finger
on touchscreen devices. This curve can be quite crude; for instance, we have found that
haphazard scribbles in the vague shape of a figure-eight converge rapidly in the n = 3 case
to “the” figure-eight.

We developed three programs for finding choreographies: CoMpUTE, CHOREOGRAPHER,
and CHOREO.JS. The first, COMPUTE, just takes a set of Fourier coefficients and performs
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some number of steps of Newton’s method. It does not accept interactive input, but accepts
various options like a variable number of Fourier modes. We use this to find higher-precision
approximations to hand to the prover. The other two, CHOREOGRAPHER and CHOREOQ.JS,
are the interactive programs that start with user sketches. CHOREOGRAPHER is a Ci++
program which actually performs the damped Newton’s method algorithm just described. At
the time of writing, CHOREOGRAPHER has not been widely released and so it is responsible
for finding relatively few choreographies, and almost all of them were found by the author.

By contrast, the last program, CHOREO.JS, is a JavaScript program which can be accessed
from the author’s website [67]. Users can access it, run the program inside their web browser,
and then upload any choreographies they may find. Uploaded choreographies are stored for
later processing. In this way we have crowdsourced the search for interesting choreographies.

Unfortunately, inverting large matrices is impractical inside of a web browser. Therefore
we needed a different approach in order to make CHOREO.JS practical. So, instead of using
Newton’s method, we used a quasi-Newton method [79, §10.9]. Such methods are analogs of
the one-dimensional technique of approximating Newton’s method by using secant lines to
approximate tangent lines. In the multidimensional setting there is not a unique “secant”
approximation, so there are multiple quasi-Newton methods. We used the symmetric rank-
one (SR1) method. This has the property that, unlike other popular quasi-Newton methods
(e.g., BFGS), SR1 allows for indefinite matrices. This is sometimes considered a disadvantage
of the method, but it is an advantage for us because we are explicitly interested in saddle
points.

Using CHOREOGRAPHER, we found 8 new choreographies for which we then proved
existence. Two particularly interesting members of this set are shown in Figure 3.6, and the
remaining 6 can be found in Figure 8.7.

At the time of writing, 658 trajectories have been uploaded using CHOREO.JS. Many
of these are false solutions; they are not collision-free critical points of the action, but
rather they are artifacts of finite-dimensional approximation (see §3.4). There are also many
duplicates. Even so, we have proven the existence of 128 new choreographies from these
submissions. The 44 proven choreographies depicted in this document and not in Figures 3.6,
8.5, 8.6, or 8.7 were all found using CHOREO.JS.

3.3 Saddle points of the action

Recall that the “mountain pass choreography” of Arioli et al. [7] is a spatial choreography
which is a saddle point of the action and lies between the local minima of the circular orbit
and the doubled circular orbit. A significant amount of work was involved in constructing it,
as it is nontrivial to implement the mountain pass theorem in a numerical algorithm [14].
Following such a procedure is guaranteed to construct a saddle point, but one might wonder
if saddle points are actually that hard to find.

Aside. Our early efforts to reconcile the results of Arioli et al. with our own work suggested
that the mountain pass choreography they found might not be new, but rather a familiar
choreography viewed in a rotating frame. We have not yet investigated this fully, though.

One of our stated reasons for adopting Newton’s method is that it could, at least in
principle, find saddle points of the action. But more than finding saddle points, we need
to be able to recognize one when we see it. To check if a given choreography is a saddle
point, we just need to check if the Hessian of the action at that choreography is indefinite.
Since we have to compute the Hessian anyway to perform steps of Newton’s method, it is
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easy enough to check its signature. COMPUTE has this capability; more specifically, it can
compute the eigenvalues of the Hessian.

We should emphasize that these computations are not rigorous, both because they
take place in floating-point arithmetic and because they work with a finite-dimensional
approximation of the “true” Hessian. It is possible to make them rigorous, for instance by
using the analysis given in §4.6 to determine conditions under which the finite-dimensional
approximation of the Hessian would necessarily have the same number of negative eigenvalues
as the true Hessian. We content ourselves, though, with just discussing saddle points and
minima on the basis of nonrigorous, but convincing, numerical evidence.

It turns out to indeed be the case that Newton’s method with no additional modification
can find saddle points; several of the choreographies we have found are saddle points. In
particular, of the 8 choreographies found using CHOREOGRAPHER and depicted in Figures 3.6
and Figure 8.7, only one is a local minimum of the action (namely, the 12-point hexagon).
For the other 7 choreographies, the Hessian has at least one negative eigenvalue (and, e.g.,
“Finger painting” in Figure 3.6 has 3 negative eigenvalues).

To date the basic version of CHOREO.JS has not found any new choreographies which
are saddle points. This is somewhat disappointing, but not extremely surprising, because
quasi-Newton methods (specifically, SR1 as applied to our problem) start(s) by performing
gradient descent. Thus the algorithm can exit the vicinity of a saddle point before it detects
the indefiniteness of the Hessian.

We said the “basic” version of CHOREO.JS because, as we will discuss in §3.5, CHOREO.JS
has the ability of search for choreographies with certain symmetries imposed. Imposing
symmetries amounts to looking for a stationary point of the action on a subspace; if we
find a stationary point — even a minimum — on the subspace, there is no reason to expect
that is a minimum on the full space. And indeed we do find that choreographies found with
imposed symmetries are often saddle points of the action; for instance, “Whirlybird” in
Figure 8.9 has 3 negative eigenvalues.

This observation is certainly not original to us. In fact, Simé’s n-body data set contains
a saddle point, namely, the choreography “11 bodies on a circle with a flower” shown in
Figure 8.5. This is the only saddle point in the data set. Simé does not comment on this,
but we suspect he found this orbit by minimizing the action subject to a bilateral reflection
symmetry.

Finally, we note that non-variational approaches for finding choreographies are very
successful at finding saddle points. This is to be expected, because there is not reason a
priort why a non-variational method would prefer minima. Recall that Simé’s 3-body data
set came from a non-variational method (see §1.6). Of all the choreographies in that set for
which we have good enough numerical approximations to believe the Hessian calculations
(69, at current count), only the figure-eight is a minimum of action.

3.4 Identifying real orbits

In all of our computations, we truncate the Fourier series at a finite number of modes. This
affects the quality of the solution, and it also masks whether or not a given solution is real.
We have encountered many situations in which the algorithm converges to a critical point of
the action given some mode cutoff, but as the mode cutoff increases it does not converge to
an actual critical point.

A representative example of how this manifests is provided by an orbit submitted using
CHOREO.JS by Yichen H., which he entitled “Tokyo love story.” Using COMPUTE, we took a
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Figure 3.2: A family of numerical trajectories for the 2-body problem. These are critical
points of the action as a function of the first M Fourier modes only.

starting approximation to Tokyo love story using Fourier coefficients up to mode 50 and
then took enough steps of Newton’s method to converge to a critical point of the action (as
a function of those variables only). By computing some additional derivatives of the action,
COMPUTE can estimate the norm of the “full” gradient, i.e., the derivative in terms of all
of the Fourier coefficients. We noted this norm, then iteratively increased the mode cutoff
and repeated the process. If we were converging to a true choreography, then the norm of
the full gradient would converge to 0. Instead, the following table shows the bchavior we
observed for Tokyo love story.

Mode cutoff Norm of the gradient Mode cutoff Norm of the gradient

50 0.773 200 1.40
100 1.06 250 1.52
150 1.24 300 1.63

The qualitative behavior here is clear: the norm is increasing instead of decreasing to zero.
We have plotted the corresponding orbits at each stage in Figure 3.2. These plots reveal the
underlying problem: as the mode cutoff increases, the corresponding critical point of the
action approaches a collision.

As the caption in Figure 3.2 says, Tokyo love story was supposed to be a 2-body
choreography. But the 2-body problem is solved, and in particular the only choreographies
are circular orbits. Thus the Tokyo love story was, in fact, never meant to be.

The driving-to-collision behavior is most common failure mode that we have encoun-
tered. Another example is demonstrated in Figure 3.3, this time for a 3-body (purported)
choreography. In this case we know of no a priori reason why there could not have been a
choreography of this type.

We dealt with this problem in a fairly unintelligent manner, by simply throwing out
hypothetical choreographies such that the norm of the full gradient increased when we
increased the mode cutoff. Another idea would be to reject any orbit in which two bodies
come closer than a fixed distance cutoff; this is what Simé did in his 3-body searches [85, §7].

3.5 Symmetry

Examining, e.g., Figures 8.1-8.3 leads one to the conclusion that choreographies tend to
possess nontrivial symmetry. To the best of our knowledge, in his n-body data set Simé did
not explicitly search for choreographies with symmetries (except possibly for the 11-body
choreography mentioned in §3.3), but nonetheless those are the solutions he found. This
observation has been made repeatedly; Ferrario calls it the “recurring phenomenon of ‘more
symmetries than expected’ in n-body problems” [33, p. 391].
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Figure 3.3: A family of numerical trajectories for the 3-body problem. These are critical
points of the action as a function of the first M Fourier modes only.

This phenomenon recurred in the choreographies found by CHOREO.JS as well. Figure 3.4
shows three choreographies which were found without any symmetry being forced upon the
solution.

In his 45-choreography corpus, Simé did find four asymmetric choreographies. They are
plotted in Figure 3.5. The smallest has 6 bodies; to the best of our knowledge, before our
work there were no asymmetric choreographies known with fewer bodies.

We have had more success finding asymmetric orbits. In particular, Figure 3.6 shows two
4-body asymmetric choreographies which we found using CHOREOGRAPHER. We already
remarked in §3.3 that these choreographies are saddle points; it seems possible that there is
a connection between saddle points and asymmetric choreographies, and such a connection
may explain why we have had less difficulty finding asymmetric choreographies. We have still
not found any asymmetric 3-body choreographies, though. To our knowledge, the existence
of such is an open question.

The above discussion focuses on searching for asymmetric choreographies, but intention-
ally searching for symmetric choreographies can also be a fruitful endeavor. Recall from
above that Montaldi and Steckles have classified the possible symmetry groups for planar
choreographies. We refer the reader to their paper for the details of this classification [69],
and here just give a quick summary. If n is even then the set of possible symmetry groups
of an n-body choreography consists of two infinite families, {C'(n,k/€)} and {D(n,k/£€)},
where k > 1 and £ is prime to k. Possessing C(n, k/f) as a symmetry group means that
advancing time by 1/k results in a spatial rotation of 2n¢/k. The group D(n,k/£) is the
group generated by C(n,k/f) and a time-reversal bilateral reflection symmetry. If n is
odd then, in addition to these two infinite families, there are three additional exceptional
symmetry groups.

The most important aspect of this classification for our present purposes is that the
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“Delta” “Decorated square” “Starfish”

Figure 3.4: Three 8-body choreographies which were found by Abhinav K. using CHOREOQ.JS
and which we proved to exist. These choreographies exhibit symmetry despite not being
constrained to do so.

Figure 3.5: Asymmetric n-body choreographies found by Simé [81].

(0D

“Crooked heart”

“Finger painting”

Figure 3.6: Two 4-body choreographies which we found using CHOREOGRAPHER and proved
to exist. They exhibit no symmetries and they are both saddle points of the action.
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“Drunken sailor”

Figure 3.7: A 32-body choreography which was found by Henry C. using CHOREO.JS, with
an imposed symmetry group, and which we proved to exist.

property of a choreography possessing a given symmetry group is naturally expressed in
terms of the Fourier coefficients. This made it easy to adapt CHOREO.JS to search for
choreographies subject to possessing a given symmetry group; we just project the Fourier
coefficients to the subspace obeying the symmetry (at every iteration of the quasi-Newton’s
method procedure). This feature enabled the discovery of many more choreographies. One
example of such a choreography is shown in Figure 3.7.

This choreography is surprisingly close to, but definitely not the same as, the circular
orbit. It is a saddle point, and it would have been very difficult to find without imposing a
nontrivial symmetry group.

Throughout this subsection we have referred to a choreography possessing or not possess-
ing symmetry without rigorously justifying those assertions. The lack of a certain symmetry
is an open condition, so it would be routine to verify that, e.g., the choreographies in Fig-
ure 3.6 actually are asymmetric. The opposite direction, showing that a choreography does
possess symmetry, is more delicate. One could work in the subspace of loops possessing the
symmetry in question and apply the action principle in that subspace (see the comment after
Corollary 4.5). Another approach, which we find more appealing, is to argue that if a given
choreography nearly possesses a given symmetry group, then it exactly possesses a conjugate
of that symmetry group. Statements of that form can be derived from the uniqueness part
of our existence theorem (Proposition 1.2.4). Although we have not developed this theory
yet, we are interested in doing so in the future; see Problem 7.5.

It is also worth noting that Montaldi and Steckles did not prove the existence of
choreographies with (exactly) each specified symmetry group; they explicitly state that
existence proofs were not part of their paper [69]. Thus if we did make rigorous the notion
of possessing a given symmetry group, our work could provide some concrete existence
theorems supporting their work.

3.6 Stability

The stability of the figure-eight is remarkable, but the idea seems fantastic that it is the only
stable choreography. Recent work has proved the stability of some spatial choreographies
in a family containing the figure-eight [57]; however, in this document we have limited our
attention to planar choreographies, and in any event it is still of interest to find stable
choreographies which are not just perturbations of the figure-eight.

Kapela and Simé remark that there is one other planar choreography which is a known
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Figure 3.8: A 4-body symmetric choreography which was found by Kyle M. using CHOREO.JS
and which we proved to exist.

candidate for stability: it is a 4-body choreography “looking like a pentagonal star” [56,
p. 1252]. They attribute this observation to a preprint by a J. McLaughlin, but as of writing
we have not obtained this preprint.

Independently of this remark, a user of CHOREO.JS found the choreography in Figure 3.8.

It seems likely that this choreography is the “pentagonal star” alluded to by Kapela
and Simé. In addition to it having the right shape, it is plausibly stable: we simulated
the choreography through two periods using a simple leap-frog integrator and, despite
the numerical inaccuracy of this approach, the trajectory was very nearly periodic. We
applied the same heuristic to the other choreographies in our repository, and (other than
the figure-eight) no other choreography passed. This is not particularly convincing evidence
because of the lack of sophistication in our choice of differential equation solver (but at least
our choice is better than manual simulation using light bulbs [49]). We propose as further
work to study stability in more detail (see §7).

4 Our Proof Technique

In this section we present and analyze our technique for computer-assisted, rigorous proof
of existence for n-body choreographies. Our mindset here is theoretical; we aim to firmly
establish the mathematical underpinnings of the approach and present the algorithm in
enough detail to specify a reference implementation. Programming-specific issues and
optimizations, which are necessary to make the approach work in practice but are tangential
to the theory, are deferred to §5.

The basic plan is as follows. First we make the action principle explicit, so that our
remaining task is only to find a stationary point of the action. We then give explicit formulae
for the “gradient” and “Hessian” (first and second derivatives, respectively) of the action in
terms of the Fourier coefficients of certain auxiliary functions, and discuss how to bound
those coefficients. We find that the Hessian is dominated by the kinetic contribution, which
is very simple. Treating the potential contribution as a correction to the dominant kinetic
term, we show how to bound the inverse of the Hessian. We conclude by combining the
bounds to get a condition on when our effective existence theorem, Theorem 1.2.1, applies
to establish the existence of a nearby zero of the gradient.

Before beginning, let us note just once that all numerical computations in our proof
software (with just two exceptions, which we spell out explicitly in §5.1 and §5.4) are done
with rigorous interval arithmetic (see §1.3). We talk about a computation being “exact” when

85



it would be exact given infinite-precision arithmetic, and so the final interval is guaranteed
to include the exact answer.

4.1 Action principle

The very beginning of our approach is the action principle, the law that stationary points
of the action are physical trajectories. (Here and in the sequel, when we say a trajectory
is physical we just mean that it obeys the equations of motion.) In the case of periodic
functions (which is the only case we need), we have thus far defined the action (2.1) but
have not formally stated the principle. We fill in that lacuna now.

The principle is very well-known, but in most sources it is either not developed in detail
or it is developed in a setting different than ours. Fortunately it is straightforward to prove
in our setting, so rather than adapting standard calculus of variations results, we will instead
give a self-contained derivation of the action principle, stated in our specific space, from the
Newtonian equations of motion. This makes the presentation somewhat unconventional (cf.
the classic Mechanics by Landau and Lifshitz [62]), but it yields rigorous underpinnings for
our analysis relatively quickly.

There is no cost in generalizing to general potential functions, so we do so. Suppose
n point particles with positive masses my, ..., my, positions z(), ...,z and velocities
M ... &™) interact via a potential function V(x(l),...,w(n))‘ For convenience write
= (M, ... z(™). Suppose that V is C! on an open domain Q C RH™. If € Q, then
the kinetic energy is T = >_1 ; %mi|a’:(i)|2, the potential energy is V', and the dynamics are
governed by the differential equations

i) = _L.v (4.1)
mi Hgl
If 2, ... 2™ : R — R? are 1-periodic C? functions (not necessarily satisfying (4.1)) such
that
z(t) == (M (),...,2Mt) e Qforall t € R, (4.2)

then we can define the action S = fol (T —V)dt.

Now recall the Banach space X defined in §2.4, consisting of mean-zero 1-periodic
functions and endowed with a certain ¢ norm in terms of the Fourier coefficients. For
use in this section only, define the augmentation X = X ®R? of X that allows periodic
functions with nonzero mean. Endow first X and then the product space X" with the ¢!
product norm. Let U C X™ be the subset (open, by Lemma 2.5) of functions (1), ..., z(™)
satisfying (4.2).

Then we have the following.

Proposition 4.1 (Action Principle for X ™). The action defines a Fréchet diﬁerentiable
function S: U — R. If ¢ € U satisfies DS(z) = 0, then the functions (I (¢t),...,z™(t)
satisfy (4.1), i.e., they describe a physical trajectory of the system.

Proof. Fixx € U and, fori=1,...,nand c=1,...,d, write the Fourier series for :c( )( t) as

oo
20(t) = a9 423 (a,(;’c) cos 2kt + b9 sin 27rkt) :
k=1
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As in §2.5, the kinetic part of the action can be written in terms of these Fourier coefficients:

n 00 d ) ] 1
S=dr®y m kz =3 (<a§;»c>>2 + (b}j@)?) - /0 V(z(t)) dt.
=1 1

i=1 c=

The partial derivatives of S with respect to the constant terms a((f’c) exist and are continuous.

For k > 1, the partial derivatives of S with respect to the scaled coefficients kag’c), k‘b,(:’c)
exist (continuously) and are given by, e.g.,

. 2 1
i(w) = 87r2mi(ka§cz’c)) - —/ 6V. cos 2mkt dt. (4.3)
B(kal") kJo ozl

The remaining integral above is a Fourier coefficient of a continuous function which depends
continuously on the position x&”. Thus the Fourier coefficients are uniformly bounded in &
and in a neighborhood of z € U (even before being divided by k). The first term is also

uniformly bounded in a neighborhood, as kagci’c) is a summand in the definition of H:E,(:Z)H
But X™ is an £! space with respect to these coefficients, so uniform boundedness of the
continuous partial derivatives implies Fréchet differentiability.

Now suppose DS(z) = 0. Then, in particular, each partial derivative of S vanishes.
Reading from (4.3), combining the two equations for a](j’c) and bg’c) into one complex
equation, and rewriting the Fourier coefficients as integrals, this means that, for all £ > 0,

! (D ren ik LoV o
/ 47T2m1k21'g} (t) e?'/ukt dt = / B 62/4]kt dt.
0 0 Oz

(4) (@)

The left-hand side is essentially a Fourier coefficient of jéci , but we do not yet know that CEci
is twice-differentiable. We could skirt this issue by working in L?(R), but instead we will
spend a moment to complete the analysis without leaving the realm of continuous functions.

Recalling that :z:gi) is C! (because it is in :Y\), we can integrate by parts on the left,

differentiating xgz)(t) and integrating exp(2wikt). We also integrate by parts on the right

side, but this time differentiate exp(27rikt) and integrate the partial derivative. Defining

, tov
WO = [ () dr,
0 Oz,

the result of these two integration by parts operations is

1 ' A L . |
/ 27Til€mi;tg)(t) e2mikt 4p — __/ QWIkWC(Z) (t) ekat dt.
v 0

Note in particular that the extra terms generated by the integration by parts all vanish:
the term on the left vanishes by periodicity, and the term on the right vanishes because

Wci)(l) = 0 is exactly the 95/ aa(()z’c) = 0 condition. Collecting terms, we have
1 . . -
/ <mi:t£2)(t) n Wc(’)(t)) 2kt 4¢ = 0
0
for all £ > 1. Hence m,xg) (t) = —Wc(i)(t) + O for some constant Cc(i). The right-hand side
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is continuously differentiable, so the left-hand side is as well. Taking the time derivative, we
conclude, as desired, that

g

mifégi) = —

Next we show that symmetries of the system can be incorporated into the action principle
to limit the directions in which S must be stationary. The following two results may be
viewed as simple instantiations of the Palais “principle of symmetric criticality” [76]; the
first concerns continuous symmetry and the second concerns discrete symmetry. They are
really independent applications of the Palais principle, but to avoid some mild notational
complications we will state the second in a way dependent on the first.

The first of the two results is an easy consequence of the following general symmetry
principle.

Lemma 4.2. Let G be a Lie group acting on o Banach space X. Let D C X be an open
set and let 9. D — R be a Fréchet differentiable function which is G-invariant, i.e., which
satisfies (g -d) = ¢(d) for alld € D and g € G such that g-d € D. Let m: X — F be a
projection of X onto a finite-dimensional space F. Let Lie(G) be the Lie algebra of G, and
suppose x € D satisfies n(Lie(G) - x) = F. If the restriction of Di(x) to kerm vanishes,
then Dy(x) = 0.

Proof. Fixing v € Lie(G), for all sufficiently small ¢ we have exp(ty) - € D and thus
P(exp(ty) - x) = ¢(z). It follows that Dy(z)(y-z) = 0, so Lie(G) - ¢ C ker Dy(x). But
also ker m C ker D(z). The restriction of 7 to Lie(G) - = is surjective, by assumption, so
(Lie(G) - z) + (kerm) = X. This proves that ker Dy(z) = X, as desired. O

To apply this to our present scenario, let (.5(\ ™)o denote the “mean-zero” subspace of X ",
i.e., the space of functions (z(1), ..., 2(™) such that 37, [ 2(®)(¢)dt = 0. (Note how this
differs from X™: that space consists of periodic trajectories in which each body has mean
zero, while (X™)q consists of periodic trajectories in which the mean (over the n bodies)
of the mean positions (of each body separately) is zero.) This is a closed subspace of xr
and so is itself a Banach space. Let Uy = U N (X"™)o; then S defines a Fréchet differentiable
function Sg: Up — R.

Corollary 4.3. Suppose the potential V is translation-invariant. If (z,. .. 2™ e U,
satisfies DSo(zV, ..., x™) = 0, then the functions zV(t),..., 2™ (t) satisfy (4.1), i.e.,
they describe a physical trajectory of the system.

Proof. Let 7 : X" - RY be the projection onto the mean, i.e.,
n 1 ]
m(zV,.. ., 2™y = Z/ 29 (t) dt.
— Jo

Then kerm = (.56'\ ™o, and the restriction of DS(z) thereto vanishes by assumption. Let G be
the d-dimensional translation group on R?. Then Lie(G) - is the space of constant functions
which surjects by 7 onto R?. Thus DS(z) = 0 by Lemma 4.2, whence Proposition 4.1
applies. O

Now let G be a finite group and let p be a representation of G' on (.f ™)o which fixes the
action, i.e., for all g € G the map p(g): (X¥")o = (X™)g is a linear isomorphism fixing Uy
and satisfying So(p(g) - ©) = So(z) for all i = 1,...,r and all z € Up. Several sources (e.g.,
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Chenciner [17, p. 77]) work in a Hilbert space and assume that p is a unitary representation,
but this is not necessary. (And indeed, we will apply this theory with representations
which fix the action but do not act as isometries on X™: because we use the ¢! norm, time
translation is not an isometry.) Let (X' ™) be the subspace of (X™)o fixed under p; this is a
closed subspace and so it is a Banach space. Set U§ = U N (/i’\ ™)f. Then the action defines a
Fréchet differentiable function S§: Uf — R.

Corollary 4.4. Suppose the potential V is translation-invariant. If © € U satisfies
DSH(x) = 0, then the functions z(V(t),...,z(M(t) satisfy (4.1), i.e., they describe a physical
trajectory of the system.

Proof. Fix for the moment g € G. For all 6z € (X™)o, sufficiently small so that z + 6z € Up,
we have So(p(g) - (x + dz)) = So(z + 6z). Tt follows that D(So(p(g) - z)) = DSo(x),
or DSy(p(g) - z) o p(g) = DSp(z). But z is fixed by p(g), so the above equation reads
DSo(z) o p(g) = DSo(z).

Now, averaging over g € G, we have

DSh(e) = DSo(a) o | 15 - ol |
geG

But the image of ﬁ > gec Plg) is ()\A’")g, and the restriction of DSp(z) to this subspace

is DS§(z) = 0. Thus the right-hand side is identically zero, so the left is as well, whence
Corollary 4.3 applies. [

We close this section by applying these principles to our case. Recall the setup of §2.5.
We no longer use z to refer to (z{1), ..., 2{®) € X ™ but rather we have made the mean-zero
choreographic assumption, so that the entire system is described by one function z € A'. We
also restore the letter S as denoting the choreographic action in (2.2). Finally, we recall the
definition of Uy as the “collision-free” subset of X'.

Corollary 4.5 (Action Principle for X'). The action defines a Fréchet differentiable function
S: Ug— R. If x € Ug satisfies DS(x) = 0, then the path determined by x(t) is a physical
choreography, i.e., it obeys the equations of motion.

Proof. The Newtonian potential V is translation-invariant and C! (in fact, smooth) on the
domain Q = {(z®, ..., 2™ : 2 £ z0) for all i # j}, so we may apply the above theory
to it. Let p be the representation of Z/nZ on (X™)o given by cyclic shift of the bodies and
cyclic rotation in time:

(p(1) - (@D,..., 2™ (&) = ™ (¢ + ), 2 (¢ 4+ Yn), ..., 2" D (E+ Yn).

Then (/? ™)? is the space of mean-zero choreographies, i.e., it is isomorphic to X. The
conclusion now follows from Corollary 4.4. ]

We could have stated Corollary 4.5 in a manner that would allow for additional symme-
tries, at the mild cost of some notational burden. While this could be useful (see §3.5), in
this document we will not apply the result in any such way, so we leave the straightforward
generalization to the reader.
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4.2 Expressions for the gradient and Hessian

As stated in Corollary 4.5, the action is Fréchet differentiable. The derivative is a linear
functional DS(z): X — R, and the natural norm on such functionals is the operator norm
(also known as the dual norm). Because the norm on X is just the £! norm in the variables
kafcc), k;b;cc), the dual norm of DS(z) is the £°° norm of the partial derivatives of S with
respect to said variables.

However, the norm we want to use is much stronger; as defined in (2.3), it is the ¢! norm of
those partial derivatives instead of the £ norm. The motivation for this is follows. Consider
only the kinetic part of the action; reading from (2.2), this is Sp = 5 E:’;l k? Ele |A,(cc)[2.
The partial derivative of this with respect to (e.g.) ka,(c) is just ka(c) and so the (infinite)
matrix of second partial derivatives is just the identity. To state thls more formally, equip
X with the basis corresponding to the variables {kagcc), k;bf:)}, and equip A* with the basis
corresponding to the coordinate functions giving the coefficients of the same variables. The
former space has the £! norm and the latter has the £*° norm. Using the natural identification
between these bases, D?S7: X — X* is just the inclusion of £ in £*°, This map is certainly
continuous, but it is not continuously invertible; £*° does not embed in #!.

This is critical because we need a bounded inverse in order to apply Theorem 1.2.1.
Consider replacing X™*, the space of bounded linear functionals on X, with

X ={T: X >R :||T|); < oo},

where ||T||; is the £! norm defined in (2.3). As a function from X to X}, D?S7 is still defined,
and moreover it is a linear isomorphism identifying the two £! spaces. Up to equivalence, this
is the only choice of norm on the dual space that would let us apply our effective existence
theorems.

Of course, not every Fréchet differentiable function F: X — R has the property that
[|DF||1 < oo. For want of a better term, we refer to such functions as #'-differentiable.

Proposition 4.6. The action is an £ -differentiable function S: Ug — R. Its partial
derivatives are given by

o5 i 05 = Le t-l-]/n (t) 271'1kt
ok o) T =k kZ/ wle+im —a@pt o @4

Proof. Consider first the partial derivative with respect to k;af:). Reading (2.2), we find

95 welt + /) — 3(t) |
m(m) Z/ |l‘ t+ g/n _ .’L‘(t)| (COS 27l’k(t +J/n) — COS 27Tkt) dt.

Break the integrals above each into two terms and then time-shift the first of each pair, i.e.,
the integrals with cos 27wk(t + J/n) in the integrand. Recombining the two integrals, we have

x(t —3J/n) —a:c(t) xc(t'l'j/n)—xc(t) non
k kZ/ (ll‘(t—]/n _$( )l3+|$(t+3/n)—:lt(t)|3> 2xkt dt.

By periodicity, the sums over j of the two terms in the integrand are equal. This proves
equality in the real part of (4.4). Computing the partial derivative with respect to kb,(cc)
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similarly verifies the imaginary part of the assertion.

It remains to check that S is ¢!-differentiable, i.e., that the partial derivatives in (4.4)
are summable. Summability of the first (kinetic) term follows from the definition of A’
Consider now the second (potential) term. Define

Z Te(t + /n) — 2(t) (4.5)

2(t + fn) — 2(£)3

Being in X, the function z is C!; being in Uy, the denominators in the definition of F(t)
are nonzero and so it too is C1. Thus its k*P Fourier coefficient is O(1/k) by the Riemann-
Lebesgue lemma. But then the corresponding term in BS/a(kag)), i.e., the k' Fourier
coefficient of F,(t) divided by k, is O(1/k?). This is indeed summable. O

Definition 4.7. To disambiguate the space of definition, when we think of it as an element
of X} we denote the derivative DS(z) by VS(z).

We will sometimes identify the space X} with £!, using the basis of projections onto the
scaled Fourier coeflicients k‘ag), kbgcc). Using the identifications of both with #!, we can also
identify X} with X. The map D?St: X — A} discussed above is the identity with respect
to this identification.

We now consider the second derivative, i.e., the derivative of the gradient. Fix x € Uy,

and for all ¢, € {1,...,d} and j € {1,...,n — 1}, define

(0 (¢ + 3fn) = () (el + 3/m) — we(1))
5 + 5cc’ :
(¢ + 3/n) — 2(t)]

)y
Gle)(t) = -3 (4.6)

1
|z (t + 3/n) = 2(t)]P’
where §.. is the Kronecker delta. Let @;c’c’) (k) = fol G;c’cl)(t)e%ikt dt denote the k" Fourier
coefficient of G(cc )( t).
Proposition 4.8. The gradient of the action, VS: Uy — AT, 1s continuously Fréchet

differentiable. Its partial derivatives are computed as follows. Fiz ¢, € {1,...,d} and
k. k' >1 and set

%= (B )ie = Z ( pmam — 1) @f’c’)(k’ + k),

j=1
n—1 o R ,
S =(Z)5% = Z (627”’“’1/” - 1) G — k).
Then g 25
S + 1 S :5’5kk/ (E +E)
okalNBkal) ok O(kalT) T kK : )
9%8 %8 1 ‘
= (sccl(skk./ + (E_ - 2+)-

—1 - + - U
B(kaS a(kb)  A(kKbE Ak k!

Proof. By differentiating (4.4), a straightforward (albeit tedious) computation verifies the
veracity of (4.7). The derivative D(VS) should be a linear operator from &, an £ space, to
XY, another ¢ space. The partial derivatives exist and are continuous, so to check that V.S
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is C1, it suffices to show that, in some neighborhood of any = € Uy, the linear functions
defined by the partial derivatives are uniformly continuous (i.e., bounded). Recall that the
¢ — ¢! operator norm of a matrix is given by taking the maximum over columns of the
¢! norm of each column. Thus it suffices to show that (in a neighborhood) there is some
uniform bound B such that, if we fix a variable &’ agcc,/) or k’b,(:,,) (fixing a “column”), then

the ¢! norm of the partial derivatives over all ¢, k and both parts (summing over a “row”
g

)

is bounded by B. But each auxiliary function G;C’C/ is a C! function of time and its time

derivative varies continuously in Ug. Thus the Fourier coefficients €¥§c’d)(€) are uniformly
O(1/£); uniform boundedness follows easily therefrom. 0

In the same way as we abuse notation by calling VS the gradient, we often call its
derivative D(V.S) the “Hessian” and denote it by HS. Having identified both the domain
and codomain with £, we can think of HS(x) as a matrix, with rows and columns indexed

by the coordinates ka,(:), kbgf). (More specifically, the columns and rows are indexed by the
Fourier modes and the projections onto those modes, respectively.) To be even more explicit,
we now choose an ordering for these bases: we order first by mode (ascending), and then by
coordinate. This fixes an ordering to the entries in HS(x), so that we may talk, e.g., about
the “upper-left” submatrix.

The operator norm on the Hessian is the ¢! /¢! matrix norm, which is computed by taking
the supremum (over columns) of the ! norm of each column. This is easy and efficient to
compute given any explicit (finite) matrix.

4.3 Computing bounds on functions and their Fourier coefficients

The formulae in Propositions 4.6 and 4.8 show that there are finitely many auxiliary
functions such that every term in the gradient and Hessian (coming from the potential
energy) can be understood as a Fourier coefficient of one of them. Rigorously bounding
these coeflicients is essential to the proof. While the computation of such bounds can be
viewed as implementation-specific, it is important for the proof to understand what bounds
are available to us. We will give an abbreviated treatment now.

The fundamental building block for everything we do (in the course of our proof technique)
is the periodic function. As input we take truncated Fourier series, which we treat as
representing trigonometric polynomials. We then define various other periodic functions
in terms of these exactly-representable trigonometric polynomials using basic arithmetic
and square-root extraction; let us call any periodic function which is defined in this way
expressible.

We first and foremost need to be able to control the values of the expressible functions.
With some foresight we consider them not as functions of a real variable, but rather as
functions on a strip of the complex plane. We shall have occasion to evaluate the functions
not on R, but instead on some horizontal line R + ih; we refer to h as the “height” in such
cases.

The following lemma is simple-minded but effective.

Lemma 4.9. Let f(¢) = Zi{:_K Are= e be o 1-periodic trigonometric polynomial. Fix
real numbers a < b. On the strip Q% := {¢ € C:a < Im¢ < b},

K
|f'(€)] < By(a,b) := 2ka(|Ak|e—2ﬂka 4 A2,
k=1

92



Thus, for any z € Q8 and all § € Qf such that | Re(§ — 2)| < §,

7€) — f(2)] < By(a,b) - \/(%)2 + (max{b — Imz,Im z — a})”. (4.8)

The proof of the lemma is immediate. Using it, we can state the first bound of this
section; by a “bound” here we mean an outline of a computational algorithm for computing
mathematical bounds. More specifically, these algorithms compute rigorous bounds that
can be made arbitrarily close to the true value at the cost of increased runtime.

Bound 1. If a given expressible function is analytic on a given strip, then we can rigorously
verify its analyticity and compute bounds for the function values on that strip.

Method. First consider the case of trigonometric polynomials. Given such a function,
represented by its Fourier coefficients, use a discrete Fourier transform to get (exact)
function values at N regularly-spaced sample points. This can be done at any desired height
h by first scaling the Fourier coefficients by e=?™**. Then apply (4.8) with ¢ = 1/N to
get rigorous bounds on rectangles which together cover the whole strip Q2. Note that, by
increasing N and/or subdividing the interval [a, b] and bounding the strip associated to each
subinterval separately, these bounds can achieve any desired accuracy.

For a general expressible function, first divide the strip into rectangles and compute
bounds on the underlying trigonometric polynomials as above; this produces complex balls
containing the image of each rectangle. Now compute the values of the expressible function
on each rectangle by using “complex interval arithmetic” to find, after each arithmetic
operation, a complex ball guaranteed to contain the true values. If this cannot be done
analytically, for instance if we need to divide and the ball representing the denominator
contains zero, then subdivide the rectangles and try again. O

Remark. Here and throughout, when we talk about a function being analytic on a closed
set, we mean that it is analytic on some neighborhood thereof.

Bound 2. We can compute rigorous bounds for any LP norm of any expressible function at
any height (at which the function is analytic).

Method. Tmmediate from the previous bound. O

Aside. Analyticity of division fails if and only if the denominator is zero, so there is no
question of how to interpret that. There is some question in the treatment of square-root
extraction, though. Because strips are simply connected, a function has an analytic square
root as long as it is never zero. However, since we want to actually compute the square
root, it is useful to commit to a branch instead of having to determine a valid square root at
runtime. We use the principal square root, and thus to verify analyticity we have to check
that the function never touches the negative real axis (in addition to never touching zero).

Our real goal is to bound the Fourier coeflicients of expressible functions. The most
obvious way is to use Parseval’s identity: writing f(k) := fol f(t)e?™#t dt for the k™ Fourier

coefficient of a 1-periodic function f, we have Y ,cp 1F(E)|? = fol |£(8)]? dt.

o~

Bound 3. If fAz's an expressible function with Fourier coefficients f(k), then we can compute
a bound on Y | f(k)|? = fol |f(£)|% dt. Moreover, this is true even if f (or perhaps the functions
it is defined in terms of ) is (are) only known up to some error in the uniform norm.
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Method. Any starting error in the function values can be added to the error in (4.8) and
. . . 1 2

then propagated through the computation. Doing so, rigorously upper bound f; |f(¢)|?dt

using the above method and then apply Parseval. O

The addendum concerning additional error applies in particular if the underlying trigono-
metric polynomials approximate some element of X closely (as measured by the norm
thereon). We will use this to bound the change in the Hessian within an & ball of our starting
point.

We could in principle compute all of the bounds we need using Parseval’s identity applied
either to our functions or their time derivatives (see §5.3). In fact, if we started with arbitrary
coordinate functions in X, then we would only know C! regularity and so Parseval would
be essentially the only bound available to us. However, our initial coordinate functions
have significantly more structure to them, and in particular there is a much better bound
available for them. Namely, we have the following simple-but-powerful result (compare with
Theorem 8.2.2 in Brass and Petras [15, p. 267)).

Lemma 4.10. Let f(t) be a 1-periodic functwn whzch has analytic continuation to a strip
QF (as defined in Lemma 4.9). Let f(k fo e?™kt di be the k™ Fourier coefficient.

Then 1
(k)| < </0 |F(t+iR)] dt) o= 2mhk

Proof. Consider integrating the analytic function f(t)e?™** around the perimeter of the

rectangle [0, 1] x [0, h] C R? = C. By Cauchy’s integral theorem, this line integral vanishes.
That is, we have

1 h B . 0 . . 0 . =
/ f(x)eQWikz da:+/ f(1_+_iy)62mk(l+1y) dy+/ f(x+ih)62ﬂ1k(x+1h) d:l:-l—/ f(iy)€2mk(ly) dy
0 0 1 h

equals 0. The second and fourth integrals cancel. That leaves us with

! i 1 . . 1 )
= / f(x)e%nkm dr = / f(w + ih)627r1k(z+1h) dr = e~2ﬂ'hk / f(:l) + ih)Gkax dz,
0 0 o

whence the triangle inequality completes the proof. ]

Remark. We work with real-valued functions, so the negative-mode Fourier coefficients are
just conjugates of the positive-mode coefficients. Thus Lemma 4.10 actually gives exponential
decay bounds for all of the coefficients. If we did not have this conjugate symmetry, then we
could just bound the negative-mode coefficients separately by considering Q° W

Bound 4. Suppose f is an expressible function with analytic continuation in a neighborhood
of the real line. Then we can compute any desired number of explicit Fourier coefficients,
with rigorous error bounds, as well as an exponentially decaying bound on the remaining
coefficients.

Method. Lemma, 4.10 gives the asserted exponentially decaying bound. As for the computa-
tion of explicit Fourier coefficients, compute N regularly-spaced samples of f on the real
line and take their discrete Fourier transform. This gives approximations

Zf( ) 27ik(5/N)
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for the Fourier coefficients f fo e?™kt 4t of f. More specifically, the fast Fourier
transform computes f(k) for —I_N2 1] S k < [EHY. Now f(t) = Spep flk)e 2™ 50 the
output of the discrete Fourier transform is exactly

{f(k):Zf(k+Nm) ‘ k:—[?J[?H

meZ

With the exponentially decaying (in particular, summable) bound on the higher Fourier coef-
ficients, we can bound >, o f f(k+ Nm), which is the error f(k)— f(k) in our approximation

of the k** Fourier coefficient. 0

Note that we start with trigonometric polynomials, which are entire, and the auxiliary
functions we study are holomorphic away from collisions. Thus the analytic continuation
property is satisfied in all of the computations we make at our starting point (i.e., all of our
computations except those in §4.7).

4.4 Step 1: bounding the gradient

For the remainder of the section, fix a mean-zero, 1-periodic curve zg: R — R? which we
intend to prove is close to a choreography. (We do not use 0 as a coordinate subscript, so
this notation does not technically collide with that of the coordinate functions z..) We
assume that zg is a trigonometric polynomial, i.e., it is represented by a finite Fourier series.
In the notation of §2.4, AECC) = 0 for all ¢ and all |k| > K. Note that this certainly implies
zp € X. We also fix € > 0, the radius in which we are going to try to prove existence of a
choreography.

The first step towards our goal of being able to apply Theorem 1.2.1 to prove existence of
a choreography near zg is bounding the norm of the gradient, i.e., [|V.S(xo)||. This is easy.

First, following Bound 1, we compute a height A such that the distance functions
|zo(t + 3/n) — 2o(t)| admit analytic continuation to the strip Q8. This is always possible,
unless xg contains a collision. This process only needs to be done once, because all of the
functions we consider have analytic continuation wherever the distance functions do. Next,
using Bound 4, we compute bounds on the Fourier coefficients of the auxiliary functions
F, defined in (4.5). We take care to compute explicit values, with error, for at least the
coefficients with modes — K, ..., K. Then, using Proposition 4.6, we directly compute the
entries of the gradient in the modes for which we have explicit Fourier coefficients. We
bound the remaining entries (the “tail”) using the exponential decay estimate. Combining
the explicit entries, errors on those explicit entries, and the tail bound gives a rigorous upper
bound on ||VS(z)|].

4.5 Step 2: accounting for symmetries

The next step is to bound the inverse of the Hessian, but in this we encounter a serious
problem: at a stationary point of the action, the Hessian is not actually invertible. The
reason for this is that there is a positive-dimensional group acting on X’ via symmetries of
the action: O(2) x O(d), acting via time translation and spatial isometry.

Indeed, if z, € & is a choreography, then V.S(z,) = 0. For all g € O(2) x O(d), g T« 18
also a choreography, so V.S(g-z.) = 0. But this implies D(VS)(z4)(Lie(O(2) x O(d))-z4) = 0.

95



In particular, unless z, has positive-dimensional stabilizer (i.e., unless z, is the circular
orbit), the Hessian has a null space of dimension dim(Lie(O(2) x O(d))) =1 + (g)

Generally speaking, the solution to this problem is to break symmetry. There are several
specific ways to handle it (see §6.3), but we will use a particularly simple one: we just drop
a few variables.

More specifically, consider a finite subset Z of the variables {kagcc), kb,(:)} and let m: X —
RZl be the projection onto them. We seek a subset of size |Z| =1+ (g) such that, for all
x € X satisfying ||z — zp|| < &, the restriction of 7 to the subspace Lie(O(2) x O(d)) - x is
surjective. Surjectivity is an open condition, so this can be readily checked by computer.

Remark. If we allow ourselves to decrease ¢ as needed, then it is possible to find such a
set if and only if zg has zero-dimensional stabilizer in O(2) x O(d). In particular, as long
as we are willing to discard the circular orbit, this search will succeed. If we did want to
handle degenerate cases (namely, the circular orbit), then we would just need to detect the
dimension of the stabilizer numerically and adjust the size of the set Z accordingly.

Having identified such a set of variables, in principle we delete them from consideration
in all future endeavors. (In practice, though, we just hack around them (see §5.2).) If our
computer-assisted proof succeeds, then we apply Lemma 4.2 to the resulting solution to see
that it is indeed a choreography.

Aside. In the context of Theorem 1.2.1, we can think of variable dropping in two different
ways. One way is as described, by removing the variables from consideration altogether
(mathematically, we are quotienting X at the start by the corresponding finite-dimensional
subspace). Another way is to project out the variables from A only, utilizing the flexibility
in Theorem 1.2.1 that we only need a right inverse, not a two-sided inverse. From this
perspective, the first approach corresponds to choosing the right inverse in which the rows
corresponding to the deleted variables are all zero. In principle one might wish to choose a
different right inverse, and so the second perspective is more flexible. On the other hand, the
approach we use is more conducive to applying Proposition 1.2.4, which is useful in principle
(see §7.5). The reader is free to adopt whichever perspective feels more natural.

Remark. We are not able to rule out the possibility that the Hessian could still be singular after
accounting for symmetries, but no such cases are known (cf. Problem 7.4). A hypothetical
choreography with a singular Hessian would spell trouble for our computer-assisted proof
technique.

4.6 Step 3: bounding the Hessian

To apply Theorem 1.2.1 we need to (1) find a linear operator T': X — X, which should
approximate (HS(z¢))™Y; (2) bound ||T||; and (3) bound ||HS(z) o T —id|| for all z € X
such that ||z — zo|| < &, where id is the identity map on X}. We will break the last step
into two parts: (3a) bound ||HS(zo) o T — id|| and (3b) bound ||HS(z) — HS(zo)}|. Steps
(1), (2), and (3a) — the computations confined to our current point zg — are the topic of
this subsection.

Calculating the bounds described in this subsection is by far the most time-consuming
part of the computation, and so we have made several crucial changes and optimizations
in our implementation. The description of those is deferred to §5.1; here we describe the
simplest, unoptimized, proof-of-concept approach.

As we worked out in §4.2, the contribution of kinetic energy to the Hessian is just
the identity matrix. The contribution of potential energy is less ruly, but it decays with
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the row and column mode. Thus we expect the Hessian to be eventually (ignoring a
prefix of rows/columns) diagonally dominant. The plan is to exploit this to control the
infinite-dimensional Hessian by a finite-dimensional approximation.

Having already verified analyticity on a strip in §4.4, we use Bound 4 to compute the
Fourier coefficients of the auxiliary functions Géc’cl) defined in (4.6). More precisely, we
compute (with error bounds) some explicit coefficients and an exponentially decaying bound
for the rest. With this done, we can compute and/or bound any term of the Hessian
matrix according to Proposition 4.8. Choose a cutoff k > 1 and let M denote the upper-left
(2dk) x (2dk) submatrix of HS(x¢), i.e., the submatrix consisting of the modes k =1, ..., k.
We compute M explicitly and then invert it numerically.

Define T': £* — £' to be the matrix with M ! in the upper-left block, a unit diagonal in
the remaining rows/columns, and zero everywhere else. It is easy to compute ||T||; it is just
max{||M |, 1}.

Our remaining task is to bound ||HS(x¢) o T' —id||. Let R denote the matrix obtained
by taking HS(zp), subtracting the identity matrix, and then zeroing out the top-left
(2dk) x (2dk) submatrix. Then |[HS(zo) o T —id|| < ||R]|| - ||T]|, so we can accomplish our
goals by bounding the norm of R.

For each pair of modes k, k/, there is a corresponding 2d x 2d submatrix in R coming
from the variables {kafcc), kb;cc) re=1,...,d} and {k'a,(cf), k'b,(cc,) :c=1,...,d}. To simplify
the exposition we ignore this here and just think of k, k' as specifying one entry in R. The
persnickety reader should apply our discussion separately to the (2d)? choices of coordinate
and combine them by summing over the 2d rows and taking the maximum over the 2d
columns.

We see in (4.7) that each entry in R (except those in the zeroed upper-left submatrix) is
a combination of two parts: the X_ term and the ¥, term. Summing over j the bounds on

the Fourier coefficients of G;C’c/), we find exponentially decaying bounds G(k) such that the
total contribution towards the operator norm of R coming from the entries with row mode
index k£ and column mode index &' is bounded by (G(|k' — k|) + G(k' + k))/(kk'). We then
sum the exponential decay bounds to get an estimate B such that > ;°G(k) < B. Now,
for any k', the sum over k of G(|k' — k|) + G(k' + k) is certainly bounded by 3B. Moreover,
each nonzero entry of R satisfies max{k,k'} > x + 1, and hence ||R]| < 3B/(x + 1). This

bound is very weak but it does go to zero as the cutoff & increases.

4.7 Step 4: bounding the change in the Hessian

Our present task is (3b) from the previous subsection, bounding ||HS(z) — HS(xzo)]|| for
x € B(xg,e) := {& € X : ||z — zo]| < £}. This is the most mathematically intricate step
of the whole method, so we shall proceed through it with more detail than we used in the

other steps.

Recall the definition (4.6) of the auxiliary functions ch’cl) (t). By (4.7) the entries of
the Hessian are linear combinations, over j, of the Fourier coefficients of G;c’c,)(t). We will
bound the change coming from each j separately and sum the final operator norm bounds.
We fix j € {1,...,n — 1} for the rest of the section. In addition to simplifying the discussion,
this lets us reduce notational overload by dropping the subscript and writing G(&¢) = Géc’c,).
The functions G(©¢) depend on the point z € &', Having just freed G of its subscript, we

now write G&“) to emphasize this dependence. Taking partial derivatives, for each m > 1
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and e=1,...,d we have

oG (1) | aGLT) (1)  o(ermimiln — 1)

i — . plecie) ) eQﬂ'imt, (4.9)
a(mald)  A(mbd) m ¢
where the auxiliary functions ngc’c,’e) are defined by
P:I(:C’C/’e) (t) _ 15A£CC/A$CA(13€ _ 566 ) 3A:Uc/ 5 3Az. 3A1;e

[Az[T Az 79 [A2lP T 7 AL

using the shorthand
Az, = z(t + i/n) — z(t).

In the language of §4.3, ngc’c”e)(t) is an expressible function defined in terms of z. Using
Lemma 2.5 we can bound the uniform norm of x — z¢ for all z € B(xzg, e). Then we can apply

Bound 3 to get a bound N(©®) such that [1(P{*?(t))2dt < N©<'® for all z € B(zo, ).

Aside. In invoking Lemma 2.5, we were using the fact that the supremum norm of the
function z(t) is continuous with respect to the norm on X, i.e., elements of A which are
close with respect to the norm are also uniformly close pointwise. This is a crucial property
for the norm to possess. If only, say, the L? norm of z(t) were continuous, it would be
impossible to compute such a bound N (&), Indeed, we would not even know if every
z € B(zg, €) is collision-free.

Taking the L2 norm of (4.9) and summing over m, we find the bound
1| oo (e,c) 2 (e,d) 2 00
t
/ Z (aGaz (e() )) + <6Gﬂc (egt)> t< Z 16 / cc ,e) dt
0 |1 o(mam’) O(mby,)

< N(c o e)

T

For temporary use, define the £2 norm on X by

oo d
lelld =S5 k2Af?

k=1c=1

Clearly ||z||2 < ||z||. Now, by the mean value theorem and the Cauchy-Schwarz inequality,
for any = € B(zg,€) we have

(e,c’) cc) L& 8G(CC)() i aG?(/C’CI)(t) i 2
Gy -G Z oy | T\ ooy |z — o3

d(mayy,) 8(mb,(ﬁ))

for some y € B(xo,¢) (in fact, for some y on the line segment between x and ). Integrating,
L Gee) (ee') (¢ 2 87
/0 (G (1) — Gl (D) dt < e Z B Niece),

In summary, we have found an upper bound on the L? norm of AG(¢) = Glee) G(C 2
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We are nearly done. Recalling (4.7), the entries of the matrices HS(x) and HS(x¢) are
linear combinations of the Fourier coefficients of G, and G,,, respectively. By linearity, the
entries HS(x) — HS(xzg) are the corresponding linear combinations of the Fourier coefficients
of AG?), As in §4.6, let us conveniently forget that each pair of modes is associated
to a 2d x 2d matrix, with the understanding that the bounds we write down should be
summed over the 2d rows and then a maximum should be taken over the 2d; so we drop
coordinate labels and ignore the distinction between real and imaginary parts. The entry of
the matrix HS(x) — HS(zo) in row indexed by k and column indexed by &’ is (a signed real
or imaginary part of)

1
kk!
As k varies, the mode in the first term ranges in absolute value from 0 to co. It covers the
modes once if & = 1 and otherwise covers each term at most twice; thus, absorbing the 1/k’
factor, we may treat it as covering the range once. As k varies, the mode in the second term
never repeats.

(E(k’ — k) + AG(K + k)) .

Putting this together, we see that the sum over & of the absolute values of the entries
of HS(z) — HS(z¢) is bounded by two inner products of the vectors (@(k} k> O) and
(1/k: k > 1), possibly with reordering. By Cauchy-Schwarz, any such inner product is
bounded by the square root of

(i i) (iy@(m?) <™ -/1 IAG()2dt < m g2 ZS—ﬁN(C»C'@)
k2 =6 g =6 3 ‘

k=1 k=0
This gives the desired bound on ||HS(z) — HS(zo)]|.

Remark. While this analysis was fairly loose, the resulting bound is O(g) and so can be
made as small as needed. The scaling with € is what makes this step practical (cf. §5.3).

4.8 Final bounds

In §4.6 we computed bounds on ||T'|| and ||HS(zo) o T — id||, and in §4.7 we computed a
bound on ||HS(z) — HS(z)|| for z € X such that ||z — z¢|| < €. Using

1HS(2) o T —id|| < [|[HS(z0) o T —id|| + |[HS () — HS (o)l - |T]I,

we obtain a bound on |[HS(z) o T —id||. Combining this with the bound on ||VS(zo)||
from §4.4, we can attempt to check the hypothesis of Theorem 1.2.1. More specifically, if
[|VS(zo)|| £ @, ||T]] £ 8, and ||HS(z)o T —id|| < 7 and are the bounds we computed, then
we test if v < 1 — af/e. If that hypothesis is satisfied, then (after invoking Corollary 4.5
and the comments of §4.5) Theorem I1.2.1 rigorously proves the existence of an n-body
choreography within ¢ of the starting path zg. As a reminder, “within €” is measured by
the norm on &’; it implies closeness in the supremum norm by Lemma 2.5.

We close this section with the remark that all of the bounds we made here can be improved
arbitrarily by using suitably large parameters. In particular, given any choreography at
which the Hessian is invertible (after accounting for symmetries), there exist parameters for
which the algorithm described here could prove existence. Of course, said parameters may
not be practical; and indeed, without significant optimization (especially in §4.6), they are
not.
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5 Implementation Details

We implemented the proof technique just outlined in a C++ program named PROVER.
However, in order to handle interesting cases, several changes and optimizations were
necessary. Some of the most important (practically) and interesting (theoretically) are
discussed in this section.

5.1 Optimizations in Hessian computations

The Hessian bounds in §4.6 are the most costly computations by a wide margin. In PROVER
we implemented several improvements, both theoretically (so as to obtain a proof with more
modest parameters) and computationally (so as to speed up the calculations we do make).

The first and most important change is that, as in the previous chapter (see §11.6.1), we
perform matrix inversion in native double-precision arithmetic. That is, instead of inverting
the Hessian exactly using interval arithmetic, we cast each entry down to (machine-native)
double-precision, invoke a floating-point library to compute the inverse, and then cast the
results back up to intervals (of zero width). We use this as the matrix T. We have to
account for the fact that T is not the exact inverse with another error term (see §5.4), but
in practice the precision of the numerically-computed inverse is very good, so the extra error
is negligible. In Chapter II we used for T the least-squares pseudo-inverse. Here we are
inverting symmetric square matrices, so we instead used a Cholesky LDL! decomposition
(with pivoting). Specifically, we used the DSPTRF and DSPTRI functions in LAPACK (3]. They
save memory by operating in-place on packed representations of symmetric matrices. That
turns out to be advantageous, as for complicated choreographies RAM usage has been a
limiting factor in the proof computations.

In the analysis given in §4.6 we noted that by increasing &, i.e., by looking at a larger
submatrix M, we could improve the quality of our bounds. This is a crude solution, though,
because the runtime of the matrix inversion step is cubic in x. This makes it impractical to
handle complicated choreographies by simply increasing . Improvements in the analysis
are needed.

In the exposition we gave in §4.6, we computed the explicit upper-left (2dk) x (2dk)
submatrix M and let R be the “remainder” matrix obtained by zeroing out those entries. We
then bounded ||HS(zo) o T —id|| by ||R]| - ||T||- In practice the norm of T' can be somewhat
large; in some cases it is on the order of 103. This makes the bound ||R|| - ||T|| very crude.

To improve it, we first note that, after the first 2dx rows/columns, T is the identity
matrix. Thus ||RT|| is bounded by max{||RiegM ||, || Rrignt||}, where Rief: is the matrix
containing the first 2dsx columns of R and Rygy is the matrix containing the remaining
columns. This observation means that, while we need to be careful about bounding the first
2dk columns of R, we can be much more loose in bounding the remaining columns.

Aside. Accepting a worst-case cost of a factor of 2, we actually compute the sum || Riegs M ||+
|| Rright|| instead of the maximum. The one exception is that when we have some error term
that applies equally to both the left and right parts of R, we only consider it on the left.
This is because of the above observation that, since Ry is amplified by M ~! in our bounds,
its norm counts more than that of Ryjght. Technically this is only correct if || M I >1. We
do enforce this in our code, but it could only be violated in the most contrived circumstances.
In particular, M acts on the large Fourier modes like the identity, so the norm of both M
and M~ are at least on the order of 1.
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Now we turn our attention to improving the bounds on R. It is especially important to
bound Rjes well, as its effect in the final operator norm bound is magnified by M. We do
this quite simply by computing some of its nonzero terms explicitly. In the first 2dx columns,
we compute a user-selectable number of rows of R below the first 2d« (say, those in which
the mode index is between k + 1 and x + r). That is, we compute an explicit submatrix
below the entries corresponding to M. Let Rier;,1 be this submatrix and let Rieg o be the
(infinitely tall) submatrix containing the remaining rows. We compute Ryt 1 M ~1 explicitly
and take its operator norm; we then bound ||Ryef 2|| using the basic approach in §4.6. This
bound is reasonable because k — k' (the row mode index minus the column mode index) in
Riett 2 s at least 7, so we only need to add up the tail of the Fourier coeflicients. We then
combine these two bounds by noting that || Riere M ™1|| < || Riegs, 1 M || + || Ruee 2| - || M 1.

It remains to bound || Ryjgns||. We start by computing a user-selectable number of columns
of it, say up to mode ¢. We evaluate enough entries in each column that all of the remaining
entries have k — £’ greater than a user-determined cutoff, say m. After taking the operator
norm of the explicitly-computed part, we need to bound the operator norm coming from the
columns with mode greater than ¢ and the norm from the remaining unevaluated terms in
the columns we did compute. The latter is easily bounded as in the previous paragraph,
using the fact that sum of the Fourier coefficients with mode greater than m (i.e., the sum
of the tail) is small. For the uncomputed columns, we consider separately the terms with
|k — K’| <m and those with |k — k’| > m. The terms in which |k — /| is large are bounded
as above. For the terms in which |k — &'| is small, we are forced to use the sum of the
corresponding Fourier coefficients; this sum is typically not negligible. However, instead of
only being able to divide by max{k,k'} > x + 1 in computing the operator norm bound, we
can now divide by A := (¢+ 1){c+ 1 —m). This is a big improvement for two reasons: A
depends on ¢ instead of k, and the runtime is quadratic in ¢ as opposed to cubic in &; and,
if we view m as fixed, then A grows quadratically instead of linearly.

These improvements can be summarized by the following four parameters, which are
tweakable in PROVER:

(a) maxmode, i.e., &;

(b

) cutoff, i.e., m;
(c) columns, i.e., ¢; and
)

(d) extraheight, i.e., r.

5.2 Dropping variables

In §4.5 we discussed the approach of accounting for symmetries by dropping variables. There
are two implementation issues associated with this: the first is determining a set of variables
to drop and verifying the legitimacy of the choice, and the second is actually dropping the
variables from our computations,

The second problem is neatly resolved by simply zeroing out the corresponding rows and
columns of the explicit matrices we compute (M and M ~!, in the notation of §4.6). More
precisely, in M we zero out the rows and columns and then set the diagonal entries to 1;
no more care that that needs to be taken in the implementation. This is because the £!
operator norm of a matrix can only decrease when rows and/or columns are deleted. Thus
the bounds of, e.g., §4.7, still apply to the post-variable-dropping matrices. Moreover, by
taking this action in M, the matrix T we use will be zero in the rows and columns that
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were supposed to be erased (except for the ones on the diagonal). Thus H.S(z¢) o T has an
extra column for each variable that was supposed to be deleted, but the other columns are
unaffected. This extra column can only increase the operator norm (and in practice it does
not increase it at all).

We could also have dropped the variables in our calculation of the gradient norm, but
we did not bother as it would have given negligible savings.

Aside. Above we asserted that the £! operator norm of a matrix can only decrease when rows
and columns are deleted. This is obvious for the £' and £*° norms, as these norms are the
suprema, of the £! norms of the columns and rows, respectively. It is also clear for the 2 norm.
However, it is not true in general. Endow R? with the norm |(z,y)| = max{|z +y, |z|}, take
the map M(z,y) = (z +y,—2(z +y)), and consider “dropping” (i.e., projecting out) the
first variable. The operator norm of M is 1, but M(0,1) = (1, —2), projecting out the first
variable gives (0, —2), and |(0,-2)| =2 > 1= [(0,1)].

Consider now the first problem, that of determining a set of variables to drop and
verifying its legitimacy. We do this as follows. Let Ly be the matrix whose columns are
a basis for Lie(O(2) x O(d)) - zo. There are only finitely many nonzero modes in xp, as
it is given by trigonometric polynomials, so Lg is a finite matrix. We need to identify a
square submatrix of Lo which is invertible. For this we use a LU decomposition with partial
(row) pivoting. This is a standard algorithm in numerical analysis [79, §2.3]. We iteratively
do the following procedure for the ¢ column: identify the row with the largest entry (in
magnitude), permute it to the ¢ row, and then subtract an appropriate multiple of this
column from the subsequent columns so as to make their entries in the ¢*® row all equal to
zero. The exact numerical behavior of this algorithm is not critical to us; the important
thing is that at the end, the top submatrix is invertible. The rows which we permuted into
the top in the course of the algorithm are the rows we select for dropping.

It remains to verify that this choice is valid for every nearby point z (in particular, for
the choreography we intend to find). For this we need to pay some attention to the definition
of Lg. For its columns, we take a natural basis in which the first column corresponds to
time translation and the remaining columns correspond to spatial rotation in coordinate
planes. In particular, each column consists of a permutation, in each Fourier mode, of the
2d coordinates of zg (multiplied by the Fourier mode, in the case of time translation). Thus,
if L, is the corresponding matrix defined for another point z, € X, then the ¢! norm of
each column of L, — Lo is either bounded by (for the spatial rotations) or equal to (for time
translation) the norm ||z, — z¢||. In particular, if ||z. — z¢|| < €, then the operator norm
of L, — Ly is also bounded by . This is of course also true if we limit our attention to
the square submatrix we previously selected. Now we just use the following observation: if
A, B, C are square matrices with ||[AC —id|| < J, ||A— B|| <e,and § +¢-||C|] < 1, then B
is invertible. (In particular, B! = C(id — (id — (AC — (A — B)C)))™!, and the last term is
invertible because ||id — AC — (A — B)C|| < d +¢-||C||.) Thus, to complete the argument,
we just numerically invert the square submatrix of Ly, compute the norm of the approximate
inverse, and compute how far the product of the matrix and its approximate inverse is from
the identity.

Aside. While simple and arguably elegant, this approach is not very aesthetically pleasing.
In particular, there is not a canonical choice, and the choice of variables we make will
vary by choreography. In a previous version of our software, we used an approach which
is more principled, but which unfortunately is limited to d = 2. Identify R? with C
and consider the Fourier series expansion of z(1)(t) 4 iz(?)(¢). Pick a particular mode k
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and consider the +k and —k Fourier coefficients, Ar and A_;. The combined action of
spatial rotation by 0; radians and time translation by 2/(27k) acts on these coefficients by
(Ag, A_g) = (el®1-02) 4, ei(el+92)A_k). As long as Ay and A_; are both nonzero, there is a
canonical representative for the orbit of SO(2) x SO(2) given by taking both Ax and A_j to
be positive reals. Thus we can account for symmetries by fixing the imaginary parts to zero
(and dropping the corresponding variables).

5.3 Computing bounds on Fourier coefficients

We described the approach for bounding Fourier coefficients in §4.3; in this section we just
add a few additional remarks to the discussion.

Most of our bounds on Fourier coefficients are in terms of Bound 4, which uses analytic
continuation into the complex plane. These computations have two parameters: the height
h that we lift to, and the length of the Fourier transform. These are both adjustable in
PROVER.

While we leave them as user-selectable, it would have been possible to choose both of
these parameters in a more systematic manner. In particular, we could choose a lift height A
by repeatedly computing the largest height for which Lemma 4.9 is able to prove analyticity,
lifting to that height, and recomputing. We implemented this in a previous version of the
software, but found it to have an unfavorable tradeoff between usage value and code clarity.
In particular, it is not always better to increase the height; as we see from Lemma 4.10, a
larger height proves a better rate of exponential decay, but it may also increase the coefficient.
Thus it is not clear that maximizing h is desirable.

From a theoretical perspective, though, increasing the length N of the Fourier transform
is always advantageous. Moreover, the runtime is proportional to N log N, so it is relatively
cheap to increase this parameter.

Increasing NV allows one to offset a limited lift height. This is important not just because
we are not using an optimal choice of h, but rather because some choreographies simply
do not admit analytic continuation to a large strip. Increasing N helps in the following
ways. The error on individual Fourier coefficients comes from bounding the sum of Fourier
coefficients of modes differing by a multiple of N; if we increase NV then we increase how far
out the modes we need to bound are, and thus we can tolerate a bound on those modes that
decays more slowly. Also, when we compute the “tail bounds” on sums of Fourier coefficients,
we explicitly sum up all of the terms we have available from the Fourier transform, and use
the exponentially decaying bound on the remainder. If we compute more terms, then the
smallest term to which we apply the exponential decay bound is pushed farther out. Again,
this lets us tolerate a slower decay.

On a broader note, recall that we commented in §4.3 that it is possible to determine
bounds using only Parseval-type bounds applied to time derivatives. In particular and
for contrast with the approach we chose, consider that in §4.6 we could have bounded the
large-mode coeflicients in a uniform way that applies to the whole ball B(xg,¢). This is a
pleasant idea in principle, and it would essentially avoid the need for the arguments of §4.7.
However, in practice the bounds that one gets from such an approach are insufficient to
handle even moderately complicated choreographies. To make our software widely applicable,
we instead adopted the roundabout approach of (1) exploiting analytic continuation — a
special property possessed by xy but not a general element of B(zg,¢) — to produce much
stronger bounds on the large-mode coeflicients, and then (2) using the closeness of x to g
to deduce that HS(z) cannot have changed much from HS(zg).
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5.4 Faster matrix multiplication

To compute the matrix T', we need to perform a matrix inversion. As discussed above, we
do this with an optimized library in machine-native arithmetic; the inversion step becomes
practical by dint of this optimization. Once we have computed the inverse, we need to
multiply it by the original matrix (to compute the error introduced by our approximate
inverse). The results of this multiplication need to be rigorous, so one is inclined to use
interval arithmetic. However, somewhat surprisingly, merely multiplying the two matrices
turns out to be unpleasantly slow.

There has been a lot of work on efficient implementations of matrix multiplication, and
in particular there are optimized libraries for multiplication in machine arithmetic (see, e.g.,
the ATLAS project [96]). To make the most of what we have on hand [4], we decided to
use double-precision arithmetic to compute the matrix product and use floating-point error
analysis to rigorously bound the error in this computation. This error analysis is standard;
here we repeat just enough of the theory for our needs.

The IEEE 754 floating-point standard [52], which is obeyed by nearly every modern
processor (including Intel processors since 1987 [51]), specifies that the results of floating-
point operations should be exactly rounded. That is, the result should be the same as if
the computation had been performed with infinite precision and then rounded (in whatever
rounding direction is chosen — most commonly, rounded-to-nearest). The double-precision
floating-point type we use has 52 bits of precision (actually 53, including an implied leading
1 in the mantissa). Thus, given any arithmetic operation z * y, we have

|(-73 * y)computed - (CE * y)exact' < 2752. (x * y)exa.ct- (5.1)

Aside. While there is some nonuniformity in the implementation of trigonometric and
other special functions, our analysis only depends on the implementation of addition and
multiplication. Thus it is valid even on the infamous early P5 Pentium processors [26].

In particular, we have |(z * ¥)computed| < (1 + 2752) - [(z * Y)exact|- Suppose we are
multiplying m X k and & x n matrices A and B, respectively. If Ap,x and Bpa are
supremumn bounds on the entries of A and B, respectively, then the computed product
of any two terms has magnitude at most (1 + 2752) A0, Bmax and differs from the exact
value by at most 27524, Bmax- The computed sum of two such terms has magnitude
at most 2(1 + 2752)2 A, Brax and the sum introduces an additional error of at most
2752 . 2(1 4 2752) Ajpax Bmax- Continuing this analysis to a sum of k such terms, we get a
bound on the final error of each entry of the computed matrix product.

This simple analysis does not depend on the order in which terms are added, but it does
depend on the following assumption:

each term of A - B, say (A - B);j, is computed by evaluating the k products

and sumiming them, in some order.

In particular, we assume that no asymptotically fast matrix multiplication techniques, like
Strassen multiplication [89], are used.

Our code uses the DGEMM function in BLAS [31] and gives error bounds that are correct
whenever (5.1) and (5.2) are satisfied. The specification of the BLAS library does not
guarantee that these, and in particular (5.2), are obeyed, but in practice they are.
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To accommodate hardware and/or software in which (5.1) and/or (5.2) (respectively)
are not satisfied, we also provide a fixed-point implementation of matrix multiplication.
This rounds each term to a (representable) integer multiple of a fixed power of 2 and then
computes the product using integer arithmetic. It gives simple error bounds in terms of the
original rounding operations. The code is somewhat complicated by computing an exponent
that ensures no overflows in the integer arithmetic operations. Since assumptions (5.1) and
(5.2) are obeyed on most systems, we expect that the fixed-point code will not be needed,
and thus we shall not go into any more detail here.

To motivate this discussion, we tested computing ||AB — id||, where A and B are
1000 x 1000 matrices, on our workstation. The timings were as follow: 72 seconds with
interval arithmetic multiplication, 1.36 seconds with fixed-point multiplication, and 0.81
seconds with floating-point multiplication.

Finally, while in this document we have not heretofore discussed parallelizability, we do
note that the matrix multiplication step is embarrassingly parallel. We only care about the
operator norm of the result, so we could compute each column of the product separately,
take their ¢! norms, and then take the maximum of the results.

6 Comparison With Previous Work

The technique of computer-assisted proof has previously been applied to a variety of problems,
including n-body choreographies. We are aware of two previous such bodies of work: that of
Kapela et al. [58, 55, 56] and that of Arioli et al. {7]. In this section we give some remarks
concerning the similarities and differences with the work presented here.

6.1 Kapela et al.’s computer-assisted proofs

In three successive papers, Kapela and Piotr Zgliczyriski [58], Kapela [55], and then Kapela
and Simé [56] gave computer-assisted proofs for the existence of a few choreographies. The
fundamental difference in the approaches taken in these papers lies in the treatment of
symmetries (see §4.5); we discuss these differences in §6.3.

The approach taken by Kapela et al. differs significantly from ours. While we directly
handle the infinite-dimensional problem of action criticality, they instead considered the
finite-dimensional dynamics problem. One can define the time-evolution operator (an
operator on phase space) which takes initial conditions in the form of positions and velocities
for each body and returns the same data at a later point in time. Using an algorithm for
rigorously computing the Jacobian of this operator (specifically, the C1-Lohner algorithm
[100]), one can apply effective existence theorems like our Theorem 1.2.1. They phrased
their existence result in terms of the Krawczyk method, which a priori applies only in finite
dimensions (but that, of course, is sufficient for their needs).

Their work utilized a general-purpose library, CAPD, which performs rigorous calculations
for ordinary differential equations, including evaluation of the time-evolution map and its
derivatives [27]. This library has been applied to a range of problems [39, 38, 97, 61].

Assuming an algorithm for computing the Jacobian of the time-evolution operator, this
approach is conceptually simpler than ours. It is also easy to adapt to any dynamical system.
However, our method is in principle applicable to a wider range of problems other than
dynamical systems, such as two-dimensional partial differential equations. These problems
cannot, in general, be recast as finite-dimensional; an approach that copes directly with
infinite-dimensional spaces is needed.
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The approach of Kapela et al. also suffers from the instability of most choreographies;
the time-evolution operator is ill-behaved and is quite sensitive to initial conditions. This
necessitates the use of extra techniques like parallel shooting to handle nontrivial cases
[56, §4.1]. Even with such techniques, they were not able to handle choreographies of the
complexity that we treat here (see Figure 8.4). Instability of the dynamical system is not, a
priori, an issue for our action-based approach. ’

Our approach depends on the nonsingularity of the Hessian of the action (after accounting
for symmetries); their approach depends on the nonsingularity of the time-evolution operator
minus the identity (after accounting for invariants). We do not know of any theoretical
reason ruling out the possibility that, for some choreography, one of these nonsingularity
conditions could be satisfied but not the other. However, we have never seen such a case.

Their dynamical approach also allows one to get a handle on the eigenvalues of the
monodromy matrix. When these eigenvalues lie on the unit circle, the orbit is linearly stable.
Kapela and Simé used this approach to prove the stability of the figure-eight [56]. They
then went on to prove KAM stability of the figure-eight as well as some members of a family
of relative choreographies [57]. We have not investigated techniques for proving stability,
but propose to pursue them in the future (see §7).

6.2 Arioli et al.’s computer-assisted proofs

While early work of Gianni Arioli [5, 6] studied periodic orbits of the n-body problem using
similar finite-dimensional techniques, a later paper with Barutello and Terracini applied a
different approach to existence proofs for choreographies [7]. Their approach is much closer
to ours, in that it directly considers the infinite-dimensional problem of action criticality.
We became aware of this work after developing our own methods.

Like our work, theirs relies on an existence theorem in Banach spaces. They explicitly
phrased their existence theorem as a fixed point result and cited it as a consequence of the
contraction mapping principle [7, Lemma 2|; while their result is superficially different from
ours, it is similar in substance.

Unlike us, Arioli et al. consider a Banach space of functions with analytic continuation
to a fixed strip. Recall from §4.3 that we did exploit analytic continuation to improve our
bounds; working exclusively with such functions is arguably a cleaner approach. However,
because analytic continuation was not technically required for the theoretical analysis and
we did not impose it a priori on our solution, our approach is in principle applicable to
non-smooth problems with, say, C' functions rather than holomorphic functions.

Another substantial difference is that we explicitly handle non-polynomial functions,
whereas Arioli et al. approximate every function that arises by a polynomial. They do
this because they are building on a body of work [9, 8] that only handles polynomials.
This is also how they are able to work in a space of analytic functions. To account for
the non-polynomial nature of the actual functions, they have to compute error bounds for
the quality of the approximation. These error bounds depend on the distances, i.e., the
arguments of the approximated functions, remaining in a certain range. This is relegated to
a two-sentence remark [7, p. 459], so we are not sure of the precise implementation.

In summary, we understand there to be two major high-level differences between the
approach of Arioli et al. and the approach presented in this document. The first is con-
creteness: they streamlined their analysis by using the language of compact operators on
Banach algebras, whereas we have tried to keep our presentation as explicit as possible. The
second difference is reliance on computation: by restricting to polynomials, they could use
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intricate manual bounds to reduce the need for computer assistance. By contrast, we have
not hesitated to offload more of the work onto the computer.

There is also a substantial difference in the implementation of our methods. Arioli et al.
do use interval arithmetic, but their base floating-point type is the native double, whereas
we use arbitrary-precision floating-point types. This costs us a performance penalty, but it
allows us to handle more delicate cases. The difference is reflected in the number of Fourier
coefficients needed for the starting choreography approximation: the cases they studied
are well-approximated by 60 coefficients, whereas the choreographies we handled routinely
require approximations with a number of coefficients on the order of 103.

More than just proving existence of individual choreographies, though, Arioli et al. also
proved the existence of a continuous family of relative choreographies. We have not extended
our method to handle families.

6.3 Treatment of symmetries

Recall from §4.5 that, in order to apply an existence theorem tailor-made for locally unique
solutions, we need to handle the problem of symmetries. This problem also arises in both
of the aforementioned computer-assisted proof techniques, but the method of resolving it
varies.

In the first of the three papers (on existence of choreographies) by Kapela et al. [58],
Kapela and Zgliczynski exploited the symmetries of the figure-eight to reduce to a 2-
dimensional phase space. This reduction in particular breaks the O(2) x O(2) symmetry
group of the planar problem. Thus we expect a locally unique solution in the reduced space,
and indeed, Kapela and Zgliczyniski successfully applied their existence theorem to this
2-dimensional problem [58].

The reduction afforded by the figure-eight symmetries is overkill for breaking the O(2) x
O(d) symmetry group. In the planar case, all that is needed is to fix a preferred time phase
and rotation of the spatial frame. Choreographies with bilateral symmetry, in which the
orbit is invariant under the joint operation of time reflection and reflection through one axis,
admit a natural choice therefor. This is the approach taken in the second paper of Kapela
[65]. It is also the approach taken by Arioli et al. [7, p. 455].

In order to handle asymmetric choreographies, a different approach is needed. In the
third Kapela et al. paper, Kapela and Simé developed such an approach [56]. It is the analog
in their finite-dimensional setting of the dropping-variables technique we use. Using the fact
that the time-evolution operator preserves the invariants of the physical problem — angular
momentum and energy — they verified that it is unnecessary to find a fixed point of the full
time-evolution operator, but rather two variables can be omitted.

Comparing this approach with ours exemplifies the Noether’s-theorem duality between
symmetries and invariants. We propose that this particular problem is more natural in our
setting (that of symmetries) rather than Kapela and Simé’s setting (that of invariants),
because computations with energy and momentum are more complicated that computations
with symmetries. In particular, checking the conditions of Lemma 4.2 is simple, whereas
checking local injectivity of energy and momentum is marginally more delicate.

7 Further Work

This work has raised many questions which we think are worthy of study. In this section we
give brief mention to a few such questions.
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Figure 7.1: “Generalized figure-eight” n-body choreographies found by Simé [81], rescaled
to have the same horizontal range. Depicted are choreographies for n = 3 (black), n = 19
(blue), n = 99 (yellow), and n = 199 (red). Notice that, once rescaled, they are nearly
indistinguishable.

The most obvious direction for further work is in extending our results to spatial
choreographies. From the perspective of our proof technique, there is no trouble; in fact,
PROVER already handles choreographies of arbitrary dimension. The complication arises in
finding choreographies; our preliminary results suggest that, without imposing symmetries
or other conditions, it is relatively difficult to find non-planar choreographies. We will report
on this in greater detail elsewhere.

Another natural generalization is changing the physical model. For instance, in this
document we only considered Newtonian gravity, i.e., the inverse-square force law. One
could consider relativistic corrections, either to first-order post-Newtonian effects or to the
full general relativistic setting. In the setting of general relativity, it is not even clear at
the outset whether or not choreographies are possible. There has been some work on this
problem [50, 53, 99], but we think it would be interesting to develop this further.

As introduced in §3.6, there is some evidence that the pentagram orbit in Figure 3.8 is
(linearly) stable. This begs attention, in a few ways. Firstly, it suggests that there would be
value in simulating the trajectory to greater precision and for longer times in order to gain
better evidence for its stability. If it does appear stable, then we could attempt to apply
computer-assisted proof techniques to prove stability.

Problem 7.1. Prove (or refute) the claim that the pentagram orbit in Figure 3.8 is stable.

So far we have not developed any techniques for approaching Problem 7.1, but doing so
seems worthwhile. Moreover, given simulation and proof technology, it would be interesting
to look for other examples of stable choreographies. A good starting point would be to
compute high-precision simulations of all of the choreographies we have found. The simple
computations we have done so far suggest that there are no other stable examples in our
data set; however, it could be the case that there are examples, but they just have small
regions of stability.

Another possibility for further work is suggested by the plot in Figure 7.1. This graphic
shows four figure-eight-like choreographies, presented on the same plot, and each rescaled to
have the same width. The rescaling is logarithmic in the number of bodies.

This figure suggests quite convincingly that the figure-eight orbits are converging, as
n — o0, to some limiting curve.

Problem 7.2. Determine the limiting curve of the family of n-body (with n odd) figure-eight
orbits, or determine that the curves do not converge.
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4 bodies

Found by: Henry C.

“Tyto novaehollandiae”

Figure 7.2: A choreography which we have proven to exist, and a magnification of part of its
graph. The choreography appears to have a tangency, but actually the curve crosses itself.

The energy must be renormalized in order to define the n — oo continuum limit of
the physical problem, but this renormalization is well-understood [36]. It is appealing to
conjecture that the limiting curve has a simple description, e.g., algebraic. The possible
algebraic nature of the 3-body figure-eight itself has been investigated, but while it is
well-approximated by algebraic curves, it does not itself appear to be algebraic [85, p. 211].
Interestingly, the lemniscate is a valid shape for a choreography if one changes the potential
function [37].

Another avenue for research involves relaxing the definition of a choreography. We built
several conditions into Definition 1.1 that one might consider removing, such as the equal-
mass hypothesis and the equal time spacing hypothesis. Define a generalized choreography
to be a periodic solution of the n-body in which the n bodies follow the same curve.

Problem 7.3. Determine if there exist generalized choreographies which are not choreogra-
phies, i.e., generalized choreographies with unequal masses or without equal time spacing.

A generalized choreography with unequal masses (but equal time spacing) is called a
perverse choreography by Chenciner; he has shown that there exist no perverse n-body
choreographies with n < 5 [20]. As far as we know, the existence of n-body perverse
choreographies with n > 5 and the existence of generalized choreographies with unequal
time spacing are both still open questions.

Our next proposal for further work is motivated by Figure 7.2. This shows a particular
4-body choreography and a magnification of part of its graph. The choreography appears
to have three points of tangency; however, the magnified plot shows that actually the
curve crosses itself. Another type of “near miss” is depicted in Figure 7.3, which shows
magnifications of two other choreographies. Both of them appear to have cusps in their
graph, but after magnification we see that neither apparent corner of the graph is cuspidal.

Note that, while choreographies are smooth functions of time, it is still possible for the
graph of a choreography to have a cusp. This could occur if some body at some point in
time is at rest (equivalently, by the choreographic constraint, each individual body is at rest
at some point in time).

These observations raise the question of whether there exist choreographies with tangen-
cies and/or cusps, and the related question of whether there exist choreographies in which
some body is at rest at some time. There exist periodic orbits of the n-body problem. and
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(a) (b)

Figure 7.3: Magnifications of near-cusps for two choreographies: (a) is the pentagram in
Figure 3.8 and (b) is “deformed heart” in Figure 8.7.

even the 3-body problem, which start with all bodies at rest [86]. A simple argument shows
that a choreography cannot start with all bodies at rest, but we know of no argument ruling
out the possibility of having an individual body at rest.

We think these questions are interesting on their own, but they also hint at a more
fundamental question. A possible explanation for the lack of cusps is that there is no
particular reason (as far as we know) for a choreography to prefer a cusp to a near-cusp.
That is to say, if we considered a continuous family of choreographies containing one with a
near-cusp, say by looking at relative choreographies or by varying the potential function,
then the family may well contain one with an actual cusp — but we know of no reason why
that representative should correspond to an absolute choreography or should correspond to
exactly the inverse-square force law. If, on the other hand, we had such a family within the
domain of absolute choreographies with respect to the Newtonian potential, then the same
argument suggests that we could find a cuspidal choreography.

Problem 7.4. Find (or rule out the possibility of ) a continuous family of n-body absolute
choreographies for the Newtonian potential.

Members of such a family would necessarily fail our method of computer-assisted proof,
and indeed they would fail the other two established methods as well (see §6).

We close this section with a more concrete proposal for further work. We alluded in
§3.5 to a possible method for proving that a choreography has a given symmetry group,
relying on the uniqueness guarantee of Proposition 1.2.4. To elaborate on this idea, notice
that a successful application of our computer-assisted proof technique yields more than just
existence: it gives existence of a choreography close to our approximation, and it also shows
that, in a ball of effectively computable radius, any two choreographies must be related by
isometry (in fact, an isometry which is close to the identity). The existence part comes
directly from Theorem 1.2.1, while the uniqueness part combines Proposition 1.2.4 with our
approach in §4.5 for handling the symmetries of the problem.

Suppose now that we have a choreography « which, to reasonably high accuracy, admits
a certain finite symmetry group G. That is, for all g € G, g -z =~ z. Given suitable bounds,
the uniqueness statement could guarantee that g -z = o, - , where o4 is an isometry that
is close to the identity. Assuming z has no continuous symmetries (i.e., that it is not the
circular orbit), this isometry o4 is unique, so that the transformation oy lg is the unique
stabilizer of z in a small neighborhood of g. Again assuming suitable bounds, we could

deduce from this uniqueness statement that (o, g)(crg_,lg’ )= cr;gl, (9g9') for all g, ¢’ € G. In
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other words, {0 lg : g € G} is a finite group of symmetries of = (and this group is isomorphic
to ). This discussion is the motivation for the following loosely-stated principle, which for
a suitable definition of “appears” can be applied to any choreography whose existence can
be proven using our techniques.

WYSIWYG Principle. If a choreography appears to have a certain symmetry group, then
it actually does have that symmetry group (up to a small perturbation).

The name of this principle comes from the computing notion of “what you see is what you
get.” Because of the WYSIWYG Principle, symmetry and cusps are qualitatively different;
whereas choreographies do not prefer cusps to near-cusps (repeating our language from
above), they do prefer symmetries to near-symmetries.

Problem 7.5. Eztend PROVER to implement the WYSIWYG Principle, i.e., to rigorously
determine the symmetry group of a given choreography.

The above discussion can be made fully explicit, so there should be no great obstruction
in completing Problem 7.5; we just need to make it so [88].

8 Gravitational Gallery

Figures 8.1-8.3, together with 3.5 and 7.1, show depictions of the 45 n-body choreographies
found by Simé, using data from his website [81]. (There are two more orbits in his data set
— circular orbits with 3 and 11 bodies — but we have suppressed them here.)

Figure 8.4 presents the choreographies whose existence was established by the computer-
assisted proof techniques developed in the three papers by Kapela et al. [58, 55, 56]. We
have proven existence for all of these with our own software as well, and the graphs we show
come from that data.

The remaining figures show some more choreographies handled by PROVER, i.e., chore-
ographies for which our methods were able to prove existence.

HO=0=D g

Figure 8.1: 4-body choreographies found by Simé [81].
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Figure 8.2: 5-body choreographies found by Simé [81].

n=717 n=719 n=11 n =15
n=19 n =19 n=21
n =39
n =99

Figure 8.3: 16 additional n-body choreographies found by Simé [81].
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Figure 8.4: The n-body choreographies whose existence was proved with Kapela’s computer-
assisted methods [58, 55, 56].
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11 bodies 21 bodies

%i 5 bodies

“11 bodies on a circle with a “21 bodies on a circle with “Five bodies on a trefoil”
flower” several inner loops”
i .
5 bodies 7 bodies
11 bodies
(@ e e e e e e e @]

“The 10-chain with 11 bodies”

L‘S 3 7
. . . even bodies on a flower
“Five bodies on a daisy”

Figure 8.5: 6 of the 33 orbits from Simé’s n-body data set [81] for which we have proven
existence.
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Figure 8.6: 6 of the 19 orbits from Simé’s 3-body data set [82] for which we have proven
existence.

) 6 bodies
3 bodies 5 bodies @
“Hidden «” “Twisted inside”
“Deformed heart”
9 bodies .
6 bodies 12 bodies
“Pinched inner loop” j “Hexagon”
“Blobby”

Figure 8.7: Six choreographies which we found using CHOREOGRAPHER and proved to exist.
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6 bodies 32 bodies

©

“T wanted a heart”
“Beauty, truth, awesomeness” an eart

12 bodies 5 bodies

i

“Better than expected” “Not quite awesome”

Figure 8.8: Four miscellaneous n-body choreographies which we found using CHOREO.Js and
proved to exist.

4 bodies 5 bodies
5 bodies
“'I\lllip”
“Baller” “Whirlybird”
5 bodies 6 bodies
“Old lady hair” “Star”?

Figure 8.9: Five n-body choreographies which we found using CHOREO.Js and proved to
exist. These choreographies were found using imposed symmetries.
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16 bodies

4 bodies
8 bodies
Found by: Sam W.
T-lobed madness Found by: Natalie D. Found by: Anonymous
“Beautiful orbit” (Tempe, AZ)
24 bodies
6 bodies
6 bodies
Found by: Anonymous
(Colonial Heights, VA)
Found by: Anonymous Found by: kurt
(Paris) “shasta”
“maelstrom”
. 8 bodies
12 bodies
Ay
6 bodies

Found by: Adam K.
“Lazy day”

Found by: Anonymous
(Brooklyn, NY)

Found by: Kyle M.

“eight bodies one heart”

Figure 8.10: Miscellaneous n-body choreographies which were found by online users of
CHOREO.JS and which we proved to exist.
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8 bodies

8 bodies 6 bodies
Found by: Henry C. Found by: Anonymous
“(3+¢)-leaf clover” Found by: Anonymous (Seattle, WA)

(Albuquerque, NM)

6 bodies 7 bodies

6 bodies

(o>

Found by: Kelly M.

“DNA”
Found by: Abhinav K.
Found by: Scott T.
“Insect”
11 bodies 12 bodies
12 bodies

Found by: Anonymous
(Cedar Park, TX)

Found by: Stephani S. Found by: Lisa W.

“Husta Highway” “Dreamcatcher”

Figure 8.11: Miscellaneous n-body choreographies which were found by online users of
CHOREO.JS and which we proved to exist.
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32 bodies 6 bodies
8 bodies

Found by: Daniel S.

Found by: Katie G. “Klein bottle” Found by: Ana E. and John
L.

“K 3 ”
aleidoscope ;
P “Time turner”

9 bodies 8 bodies 16 bodies

N

Found by: Anna W. Found by: Greg H. Found by: J.P. G.
“Lone Star” “We are so patient” “Matryoshka”

6 bodies

Found by: Nora W.
“#17”

Found by: Anna P.

“Robin’s nest”

Figure 8.12: Miscellaneous n-body choreographies which were found by online users of
CHOREO.JS and which we proved to exist.
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