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Abstract

Across the aerospace and automotive manufacturing industries, there is a push to
remove the cage around large, industrial robots and integrate right-sized, safe versions
into the human labor force. By integrating robots into the labor force, humans can
be freed to focus on value-added tasks (e.g. dexterous assembly) while the robots
perform the non-value-added tasks (e.g. fetching parts). For this integration to be
successful, the robots need to ability to reschedule their tasks online in response to
unanticipated changes in the parameters of the manufacturing process.

The problem of task allocation and scheduling is NP-Hard. To achieve good scala-
bility characteristics, prior approaches to autonomous task allocation and scheduling
use decomposition and distributed techniques. These methods work well for domains
such as UAV scheduling when the temporospatial constraints can be decoupled or
when low network bandwidth makes inter-agent communication difficult. However,
the advantages of these methods are mitigated in the factory setting where the tem-
porospatial constraints are tightly inter-coupled from the humans and robots working
in close proximity and where there is sufficient network bandwidth.

In this thesis, I present a system, called Tercio, that solves large-scale schedul-
ing problems by combining mixed-integer linear programming to perform the agent
allocation and a real-time scheduling simulation to sequence the task set. Tercio gen-
erates near optimal schedules for 10 agents and 500 work packages in less than 20
seconds on average and has been demonstrated in a multi-robot hardware test bed.
My primary technical contributions are fast, near-optimal, real-time systems meth-
ods for scheduling and testing the schedulability of task sets. I also present a pilot
study that investigates what level of control the Tercio should give human workers
over their robotic teammates to maximize system efficiency and human satisfaction.

Thesis Supervisor: Julie A. Shah
Title: Assistant Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

Robotic systems are increasingly entering domains previously occupied exclusively

by humans. In manufacturing, there is strong economic motivation to enable human

and robotic agents to work in concert to perform traditionally manual work. This

integration requires a choreography of human and robotic work that meets upper-

bound and lowerbound temporal deadlines on task completion (e.g. assigned work

must be completed within one shift) and spatial restrictions on agent proximity (e.g.

robots must maintain four meter separation from other agents) to support safe and

efficient human-robot co-work. Figure 1-1 shows an example scenario where a human

quality assurance agent must co-habit work space with robots without delaying the

manufacturing process. The multi-agent coordination problem with temporospatial

constraints can be readily formulated as a mixed-integer linear program (MILP).

1.1 Formal Problem Description

min(z), z = max (fj - si) + g (X, A, s, f, r) (1.1)

subject to

ZAi 1,Vi E (1.2)
aEA

_bij < f - s ubij, V(i, j) E -y (1.3)
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Figure 1-1: Example of a team of robots assigned to tasks on a mock fuselage. These
robots must coordinate their efforts as to allow a human quality assurance agent the
time and space necessary to inspect progress on the fuselage.

fi - si > lba,i - M(1 - Ai,k),Vi E TLa E A (1.4)

fi - si uba,i + M(1 Aa,i), VTi E r, a E A (1.5)

s, - fi M(1 - xi,), Vri, Yj E r (1.6)

Si - fi MXi,, Vi, Tj E TR (1.7)

sj - fi M(1 - x2,3) + M(2 - Aa,i - Aa,,)VTi, Tj E-r (1.8)

i - fj Mi,j + M(2 - Aa,i - Aaj)Vri, Tj E - (1.9)

In this formulation, Aa,i E {0, 1} is a binary decision variable for the assignment

of agent a to task Ti, xij E {0, 1} is a binary decision variable specifying whether ri

comes before or after Tr, and si, fi E [0, oo) are the start and finish times of ri. A is

the set of all agents a, r is the set of all tasks, Ti, r is the set of all the set of task

pairs (i, j) that are separated by less than the allowable spatial proximity. -y is the

set of all temporal constraints defined by the task set. M is an artificial variable set

to a large positive number, and is used to encode conditional constraints.

The MILP is defined by an objective function (Equation 1.1) that minimizes the

14



makespan (and other terms that are application specific), and a set of constraints

(Equations 1.2-1.9). Equation 1.2 ensures that each task is assigned to one agent.

Equation 1.3 ensures that the temporal constraints are satisfied. Equations 1.4 and

1.5 ensure that agents are not required to complete tasks faster or slower than they

are capable. Equations 1.6 and 1.7 sequence actions to ensure that agents performing

tasks maintain safe buffer distances from one another. Equations 1.8 and 1.9 ensure

that each agent only performs one task at a time. Note Equations 1.6 and 1.7 couple

the variables relating sequencing constraints, spatial locations, and task start and end

times, resulting in tight dependencies among agents' schedules.

While the task allocation and scheduling problem may be readily formulated as

a MILP, the complexity of this approach is exponential and leads to computational

intractability for problems of interest in large-scale factory operations [5]. The key

bottleneck is evaluating the binary decision variables xj for the sequencing of tasks,

which grows exponentially with the square of the number of tasks (i.e., 21,12). To

achieve good scalability characteristics various decentralized or distributed approaches

have been proposed [6, 8, 13, 42, 48]. Fast computation is desirable because it pro-

vides the capability for on-the-fly replanning in response to schedule disturbances

[3, 8, 45]. These works boost computational performance by decomposing plan con-

straints and contributions to the objective function among agents [6]. However, these

methods break down when agents' schedules become tightly intercoupled, as they do

when multiple agents are maneuvering in close physical proximity. While distributed

approaches to coordination are necessary for field operations where environment and

geography affect the communication among agents, factory operations allow for suffi-

cient connectivity and bandwidth for either centralized or distributed approaches to

task assignment and scheduling.

The primary goal of the work I present in this thesis is to alleviate the key se-

quencing bottleneck and provide the capability for fast re-computation of schedules

in response to dynamic disturbances under tightly intercoupled temporospatial con-

straints. The core technical innovation of my work is the development of polynomial-

time, near-optimal techniques for sequencing and testing the schedulability of task

15



sets [19, 20]. My work is inspired by techniques in real-time systems scheduling for

scheduling and testing the schedulability of task sets. Methods in real-time systems

analysis often sacrifice completeness but gain computational tractability by leveraging

problem structure. To model the manufacturing environment as a real-time processor

scheduling scenario, I construct a real-time systems scheduling analogy.

1.2 Processor Scheduling Analogy

I represent many real-world manufacturing constraints through real-time processor

scheduling models. Specifically, I base the analogy on the self-suspending task model,

as shown in Equation 1.10.

C, E En ,Ci), Ti, D , A, R&)(1.10)

In this model, there is a task set, r, comprised of tasks ri. In each task ri, there are mi

subtasks 7 with mi -1 self-suspension intervals. Cf is the worst-case duration of the

jth subtask of -ri, and El is the worst-case duration of the jth self-suspension interval

of -ri. Subtasks within a task are dependent, meaning that a subtask Tid must start

after the finish times of the subtask 11 and the self-suspension Ef. The assignment of

processors to subtasks is described by Aj, where processor Af is assigned to execute

subtask -ri'. The shared memory resource constraints for ri are described by R, where

Rj is the set of shared memory resources required to execute TI. T and Di are the

period and deadline of ri, respectively, where Di < T. Lastly, a phase offset delays

the release of a task, T, by the duration, Oj, after the start of a new period.

For the manufacturing environment, I develop the following relationships. I model

human and robot workers as processor cores on a computer. In the manufacturing

environment, there are often sets of tasks related through wait or precedence con-

straints (e.g., applying several coats of paint, where each task is the application of

one coat) and some tasks that are not explicitly ordered (e.g., painting different parts

of the fuselage). The self-suspending task model is hierarchically composed of tasks

16



and subtasks. Subtasks wri and -r3 are ordered such that ri- must precede r'l by

duration Ei . However, there is no explicit precedence constraint between subtasks Tri

and Tr for i : x. Therefore, I translate tasks from the manufacturing environment

to the hierarchically composed tasks in the processor scheduling framework.

I model wait or precedence constraints as self-suspensions in the processor schedul-

ing scenario. In manufacturing, tasks may have precedence relations (e.g., assemble

one structure before a second) or wait constraints (e.g., the first coat of paint must dry

before applying the second). In real-time systems, tasks may self-suspend, meaning

the processor must wait a certain duration between the execution of two subtasks. For

example, the addition of multi-core processors, dedicated cards (e.g., GPUs, PPUs,

etc.), and various I/O devices such as external memory drives, can necessitate task

self-suspensions. As such, I model wait constraints as self-suspensions and mere

precedence constraints as self-suspensions of zero duration.

Manufacturing processes are governed by upperbound temporal relationships, or

deadlines. For example, on a "pulse" line, tasks must be completed once every pulse,

or else workers at the next assembly location will not be able to progress. The re-

quirement to complete work once every pulse can be expressed as a task deadline.

We also must consider spatial constraints. Robot and human workers occupy a spe-

cific physical space or location to complete a task when constructing an assembly.

While one agent is working, another human or robot cannot enter that space. In

processor scheduling, some tasks require access to space in memory to manipulate

information. Similarly, multiple processors cannot access the same space in mem-

ory without adverse interaction effects. As such, I model spatial locations as shared

memory resources.

Augmented Processor Scheduling Task Model

In Chapters 2 and 4, I augment the traditional model to provide additional expressive-

ness, by incorporating deadline constraints that upperbound the temporal difference

between the start and finish of two subtasks within a task. I call these deadline con-

straints intra-task and subtask deadlines. I define an intra-task deadline as shown in

17



Equation 1.11.
D rel (fa - b < drel )

D ia),(i,b) : ( si - di,(a),(i,b)) 1.11)

where fP is the finish time of subtask Tb, si is the start time of subtask rf, and

dre),,) is the upperbound temporal constraint between the start and finish times

of these two subtasks, such that b > a. In addition to intra-task deadlines Dr for

ri, I extend our task model to include subtasks deadlines, where Dib" is the set of

subtask deadlines for subtasks in ri. As shown in Equation 1.12, if a subtask Trj is

constrained by a subtask deadline constraint, then fj must not exceed di.

Das : (fj 5 d ys) (1.12)

In our processor scheduling analogy I use intra-task deadlines to represent end-to-

end deadlines in manufacturing. For example, only a certain amount of time can pass

between the start and finish of applying composite material before it cures. Lastly,

I utilize subtask deadlines to upperbound the amount of time that passes since the

beginning of the schedule until a certain subtask is complete. For example, if a

quality assurance agent needs to inspect a component of the work at a certain time,

I apply a subtask deadline to the set of subtasks that need to be completed before

the inspection.

1.3 Thesis Contributions

1.3.1 Scheduling and Analysis of Real-Time Systems

Based on this analogy, I present work on scheduling and testing the schedulability of

these self-suspending task sets. I begin in Chapter 2 where I present three contribu-

tions. First, I provide a solution to the open problem of determining the feasibility

of hard, periodic, non-preemptive, self-suspending task sets with any number of self-

suspensions in each task [33]. Similar to prior work, I test the schedulability of these

task sets by providing an upperbound for the amount of self-suspension time that

18



needs to be treated as task cost [34, 35, 36, 44]. The test I develop is polynomial in

time and, in contrast to prior art, generalizes to non-preemptive task sets with more

than one self-suspension per task. Second, I extend our schedulability test to also

handle task sets with intra-task deadlines. Third, I introduce a new scheduling policy

to accompany the schedulability test. I specifically designed this scheduling policy to

restrict the behavior of a self-suspending task set so as to provide an analytical basis

for an informative schedulability test.

If the schedulability test I develop in Chapter 2 finds a task set feasible, then we

need a method for the online scheduling of the task set. In Chapter 3, I present a

near-optimal method for scheduling tasks sets that are returned as feasible from my

uniprocessor schedulability test. The main contribution of this work is a polynomial-

time, online consistency test, which determines whether we can schedule subtask 11

at time t given the upperbound temporal constraints in the task set. The online

consistency test is called the Russian Dolls Test; the name comes from how the test

works by determining whether we can "nest" a set of subtasks within the slack of the

deadline of another set of subtasks. My scheduling algorithm is not optimal; in general

the problem of sequencing according to both upperbound and lowerbound temporal

constraints requires an idling scheduling policy and is known to be NP-complete

[17, 18]. However, I show through empirical evaluation that schedules resulting from

my algorithm are within a few percent of the optimal makespan.

In Chapter 4, I extend both the uniprocessor scheduling algorithm and task model

to the multiprocessor case. The multiprocessor task model includes processor-subtask

assignments, shared memory resources, intra-task deadlines (i.e., Equation 1.11),

and subtask deadlines (i.e., Equation 1.12). The scheduling algorithm utilizes a

polynomial-time, online consistency test, which I call the Multiprocessor Russian

Dolls Test, to ensure temporal consistency due to the temporal and shared memory

resource constraints of the task set.
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1.3.2 Tercio: a Task Allocation and Scheduling Algorithm

Based on the techniques I develop in the scheduling of these self-suspending task

sets in Chapters 2-4, I designed a multi-agent task allocation and scheduling system,

called Tercio1 [22]. The algorithm is made efficient by decomposing task allocation

from scheduling and utilizes the techniques I present in Chapter 4 to perform multi-

agent sequencing. Results show that the method is able to generate near-optimal task

assignments and schedules for up to 10 agents and 500 tasks in less than 20 seconds on

average. In this regard, Tercio scales better than previous approaches to hybrid task

assignment and scheduling [9, 10, 25, 26, 27, 49]. Although the sequencing algorithm

is satisficing, I show that it is tight, meaning it produces near-optimal task sequences

for real-world, structured problems. An additional feature of Tercio is that it returns

flexible time windows for execution [38, 52], which enable the agents to adapt to small

disturbances online without a full re-computation of the schedule. I present this work

in Chapter 5.

1.3.3 Human-Centered Integration of Centralized Schedul-

ing Algorithms

While fast task assignment and scheduling is an important step to enabling the in-

tegration of robots into the manufacturing environment, we also need to consider a

human-centered approach when implementing Tercio in the factory. Successful in-

tegration of robot systems into human teams requires more than tasking algorithms

that are capable of adapting online to the dynamic environment. The mechanisms

for coordination must be valued and appreciated by the human workers. Human

workers often find identity and security in their roles or jobs in the factory and are

used to some autonomy in decision-making. A human worker that is instead tasked

by an automated scheduling algorithm may begin to feel that he or she is diminished.

Even if the algorithm increases process efficiency at first, there is concern that taking

control away from the human workers may alienate them and ultimately damage the

'Joint work with Ronald Wilcox
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productivity of the human-robot team. The study of human factors can inform the

design of effective algorithms for collaborative tasking of humans and robots.

In Chapter 6, I describe a pilot study2 conducted to gain insight into how to inte-

grate multi-agent task allocation and scheduling algorithms to improve the efficiency

of coordinated human and robotic work[211. In one experimental condition, both the

human and robot are tasked by Tercio, the automatic scheduling algorithm. In the

second condition, the human worker is provided with a limited set of task allocations

from which he/she can choose. I hypothesize that giving the human more control

over the decision-making process will increase worker satisfaction, but that doing

so will decrease system efficiency in terms of time to complete the task. Analysis

of the experimental data (n = 8) shows that when workers were given freedom to

choose, process efficiency decreased significantly. However, user-satisfaction seems

to be confounded by whether or not the subject chose the optimal task allocation.

Four subjects were allowed to choose their task allocation. Within that pool, the

one subject that chose the optimal allocation rated his/her satisfaction the highest

of all subjects tested, and the mean of the satisfaction rating of the three who chose

the suboptimal allocation was lower than those subjects who's roles were assigned

autonomously.

2Joint work with Ronald Wilcox, Ana Diaz Artiles, and Fei Yu
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Chapter 2

Uniprocessor Schedulability Test

for Hard, Non-Preemptive,

Self-Suspending Task Sets with

Multiple Self-Suspensions per Task

2.1 Introduction

In this chapter, we present three contributions. First, we provide a solution to the

open problem of determining the feasibility of hard, periodic, non-preemptive, self-

suspending task sets with any number of self-suspensions in each task [33]. Similar to

prior work, we test the schedulability of these task sets by providing an upperbound

for the amount of self-suspension time that needs to be treated as task cost [34, 35,

36, 44]. Our test is polynomial in time and, in contrast to prior art, generalizes to

non-preemptive task sets with more than one self-suspension per task.

Second, we extend our schedulability test to also handle task sets with deadlines

constraining the upperbound temporal difference between the start and finish of two

subtasks within the same task. Third, we introduce a new scheduling policy to

accompany the schedulability test. We specifically designed this scheduling policy to
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restrict the behavior of a self-suspending task set so as to provide an analytical basis

for an informative schedulability test.

We begin in Section 2.2 with a brief review or prior work. In Section 2.3, we intro-

duce our augmented self-suspending task model. Next, we introduce new terminology

to help describe our schedulability test and the execution behavior of self-suspending

tasks in Section 2.4. We then motivate our new scheduling policy, which restricts

the behavior of the scheduler to reduce scheduling anomalies 2.5. In Section 2.6,

we present our schedulability test, with proof of correctness. Finally, in Section 2.7,

we empirically validate that the test is tight, meaning that it does not significantly

overestimate the temporal resources needed to execute the task set.

2.2 Background

Increasingly in real-time systems, computer processors must handle the self-suspension

of tasks and determine the feasibility of these task sets. Self-suspensions can result

both due to hardware and software architecture. At the hardware level, the addi-

tion of multi-core processors, dedicated cards (e.g., GPUs, PPUs, etc.), and various

I/O devices such as external memory drives, can necessitate task self-suspensions.

Furthermore, the software that utilizes these hardware systems can employ synchro-

nization points and other algorithmic techniques that also result in self-suspensions

[33]. Thus, a schedulability test that does not significantly overestimate the temporal

resources needed to execute self-suspending task sets would be of benefit to these

modern computing systems.

Unfortunately the problem is NP-Hard, as can be shown through an analysis

of the interaction of self-suspensions and task deadlines [24, 38]. In practice, the

relaxation of a deadline in a self-suspending task set may result in temporal infeasi-

bility. Many uniprocessor, priority-based scheduling algorithms introduce scheduling

anomalies since they do not account for this interaction [32, 44]. The most straight-

forward, correct approach for testing the schedulability of these task sets is to treat

self-suspensions as task costs; however, this can result in significant under-utilization
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of the processor if the duration of self-suspensions is large relative to task costs [36, 37].

A number of different approaches have been proposed to test the schedulability

of self-suspending task sets. The dominant strategy is to upperbound the duration

of self-suspensions that needs to be treated as task cost [34, 36]. Recently, Liu and

Anderson et al. have demonstrated significant improvements over prior art in testing

preemptive task sets with multiple self-suspensions per task, under Global Earliest

Deadline First (GEDF) on multiple processor systems [36]. Previously, Devi proposed

a test to compute the maximum utilization factor for tasks with single self-suspensions

scheduled under Earliest Deadline First (EDF) for uniprocessor systems. The test

works by analyzing priorities to determine the number of tasks that may be executed

during a self-suspension [15]. Other approaches test schedulability by analyzing the

worst case response time of tasks due to external blocking events [24, 29, 50].

The design of scheduling policies for self-suspending task sets also remains a chal-

lenge. While EDF has desirable properties for many real-time uniprocessor scheduling

problems, certain anomalies arise when scheduling task sets with both self-suspensions

and hard deadlines. Ridouard et al. note an example where it is possible to schedule

a task set under EDF with tight deadlines, while the same task set with looser dead-

lines fails [44]. Lakshmanan et al. report that finding an anomaly-free scheduling

priority for self-suspending task sets remains an open problem [32].

While not anomaly-free, various priority-based scheduling policies have been shown

to improve the online execution behavior in practice. For example, Rajkumar presents

an algorithm called Period Enforcer that forces tasks to behave as ideal, periodic tasks

to improve scheduling performance and avoid detrimental scheduling anomalies asso-

ciated with scheduling unrestricted, self-suspending task sets [41]. Similarly, Sun et al.

presents a set of synchronization protocols and a complementary schedulability test

to determine the feasibility of a task set for a scheduler operating under the protocols

[47]. Lakshmanan builds on these approaches to develop a static slack enforcement

algorithm that delays the release times of subtasks to improve the schedulability of

task sets [33].

Similar to the approach of Lakshmanan et al., we develop a priority-based schedul-
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ing algorithm that reduces anomalies in practice. This policy enables us analytically

upperbound the duration of the self-suspensions that needs to be treated as task cost,

similar to the approach by Liu et al.. To our knowledge, our schedulability test is

the first that determines the feasibility of hard, non-preemptive, self-suspending task

sets with multiple self-suspensions for each task.

2.3 Our Augmented Task Model

The basic model for self-suspending task sets is shown in Equation 2.1.

'ri :, (CiEl, Cl, Er, .. ., E C i D (2.1)

In this model, there is a task set, r, where all tasks, ri c -r must be executed by

a uniprocessor. For each task, there are mi subtasks with mi - 1 self-suspension

intervals. Cf is the worst-case duration of the jth subtask of Tj, and El is the worst-

case duration of the jth self-suspension interval of ri.

Subtasks within a task are dependent, meaning that a subtask <j' must start

after the finish times of the subtask ij' and the self-suspension E7. T and Di are the

period and deadline of r, respectively, where Di T. Lastly, a phase offset delays

the release of a task, ri, by the duration, 0j, after the start of a new period.

In this work, we augment the traditional model to provide additional expressive-

ness, by incorporating deadline constraints that upperbound the temporal difference

between the start and finish of two subtasks within a task. We call these deadline con-

straints intra-task deadlines. We define an intra-task deadline as shown in Equation

2.2.

Drl (fa _sb< rel )(2)D a),(i,b) : ( -si < djie),(igb)) 22

where ff is the finish time of subtask rf, sj is the start time of subtask ij, and

d(elia) is the upperbound temporal constraint between the start and finish times of

these two subtasks, such that b > a. D 1 is the set of intra-task deadlines for r, and

D'e1 is the set of intra-task deadlines for -r. These types of constraints are commonly
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included in AI and operations research scheduling models [5, 14, 38, 52].

2.4 Terminology

In this section we introduce new terminology to help describe our schedulability test

and the execution behavior of self-suspending tasks, which in turn will help us intu-

itively describe the various components of our schedulability test.

Definition 1. A free subtask, Tr E Tfree, is a subtask that does not share a deadline

constraint with T| 1 . In other words, a subtask 1| is free iff for any deadline Drel
Tij-. Inothr wods,(i,a)(i,b)

associated with that task, (j <_ a) V (b < j). We define ri as free since there does not

exist a preceding subtask.

Definition 2. An embedded subtask, 1 C Tembedged, is a subtask shares a deadline

constraint with Ti (i.e., _Tfj Tfree). Tfree n rembedded = 0.

The intuitive difference between a free and an embedded subtask is as follows: a

scheduler has the flexibility to sequence a free subtask relative to the other free sub-

tasks without consideration of intra-task deadlines. On the other hand, the scheduler

must take extra consideration to satisfy intra-task deadlines when sequencing an em-

bedded subtask relative to other subtasks.

Definition 3. A free self-suspension, El C Efree, is a self-suspension that suspends

two subtasks, Tij and r|*, where T+l E free.

Definition 4. An embedded self-suspension, Eij E Eembejed, is a self-suspension

that suspends the execution of two subtasks, Tf and <|+, where /Y+ C Tembedded.

Efree n Eembedded = 0.

In Section 2.6, we describe how we can use free to reduce processor idle time due

to Efree, and, in turn, analytically upperbound the duration of the self-suspensions

that needs to be treated as task cost. We will also derive an upperbound on processor

idle time due to Eembjded.
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2.5 Motivating our jth Subtask First (JSF) Prior-

ity Scheduling Policy

Scheduling of self-suspending task sets is challenging because polynomial-time, priority-

based approaches such as EDF can result in scheduling anomalies. To construct a

tight schedulability test, we desire a priority method of restricting the execution be-

havior of the task set in a way that allows us to analytically bound the contributions

of self-suspensions to processor idle time, without unnecessarily sacrificing processor

efficiency.

We restrict behavior using a novel scheduling priority, which we call jth Subtask

First (JSF). We formally define the j'h Subtask First priority scheduling policy in

Definition 5.

Definition 5. jth Subtask First (JSF). We use j to correspond to the subtask index in

, . A processor executing a set of self-suspending tasks under JSF must execute the jth

subtask (free or embedded) of every task before any jth +1 free subtask. Furthermore,

a processor does not idle if there is an available free subtask unless executing that free

task results in temporal infeasibility due to an intra-task deadline constraint.

Enforcing that all jth subtasks are completed before any jt" + 1 free subtasks

allows the processor to execute any embedded kth subtasks where k > j as necessary to

ensure that intra-task deadlines are satisfied. The JSF priority scheduling policy offers

choice among consistency checking algorithms. A simple algorithm to ensure deadlines

are satisfied would require that, if a free subtask that triggers a deadline constraint is

executed (i.e. Ti E Tfree, Ti+ E Tembedded), the subsequent embedded tasks for the

associated deadline constraint would then be scheduled as early as possible without

the processor executing any other subtasks during this duration. Other consistency-

check algorithms exist that utilize processor time more efficiently and operate on this

structured task model [19, 31, 511.
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2.6 Schedulability Test

To describe how our test works and prove its correctness, we will start with a simplified

version of the task set and build to the full task model. We follow the following six

steps:

1. We restrict r such that each task only has two subtasks (i.e., mi = 2, Vi),

there are no intra-task deadlines, and all tasks are released at t = 0 (i.e.,

# = 0, Vi). Here we will introduce our formula for upperbounding the amount

of self-suspension time that we treat as task cost, Wfee. Additionally, we say

that all tasks have the same period and deadline (i.e., T = Di = T = Dj, Vi, j E

{1, 2, .. . , n}). Thus, the hyperperiod of the task set is equal to the period of

each task.

2. Next, we allow for general task release times (i.e., qi > 0,Vi). In this step, we

upperbound processor idle time due to phase offsets, Wo.

3. Third, we relax the restriction that each task has two subtasks and say that

each task can have any number of subtasks.

4. Fourth, we incorporate intra-task deadlines. In this step, we will describe

how we calculate an upperbound on processor idle time due to embedded self-

suspensions Wembedded.

5. Fifth, we relax the uniform task deadline restriction and allow for general task

deadlines where Di < Ti, Vi C {1, 2,.. ., n}.

6. Lastly, we relax the uniform periodicity restriction and allow for general task

periods where T T, Vi, j E {1, 2, ... , n}.

Step 1) Two Subtasks Per Task, No Deadlines, and Zero Phase

Offsets

In step one, we consider a task set, -r with two subtasks per each of the n tasks, no

intra-task deadlines, and zero phase offsets (i.e., #i = 0, Vi E n). Furthermore, we say
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that task deadlines are equal to task periods, and that all tasks have equal periods

(i.e., T = Di = T = Dj, Vi, j E {1, 2, .. ., n}). We assert that one can upperbound

the idle time due to the set of all of the El self-suspensions by analyzing the difference

between the duration of the self-suspensions and the duration of the subtasks costs

that will be interleaved during the self-suspensions.

We say that the set of all subtasks that might be interleaved during a self-

suspension, El, is B'. As described by Equation 2.3, Bj is the set of all of the

j' and jth + 1 subtask costs less the subtasks costs for ri and rj+. Note, by defini-

tion, -r and rij cannot execute during Ei . We further define an operator Bij(k) that

provides the k h smallest subtask cost from Bi. We also restrict Bi such that the jth

and jth + 1 subtasks must both be free subtasks if either is to be added. Because we

are currently considering task sets with no deadlines, this restriction does not affect

the subtasks in BI during this step. In Step 4 (Section 2.6), we will explain why we

make this restriction on the subtasks in Bi.

For convenience in notation, we say that N is the set of all task indices (i.e., N =

{ili E {1, 2,. . . , n}}, where n is the number of tasks in the task set, r). Without loss of

generality, we assume that the first subtasks Tl execute in the order i ={1, 2, .. , n}.

B3 = {CxYIx E N\i, y E {j,j ± 1}, (2.3)
Cr Efree, -r$ Tfree

To upperbound the idle time due to the set of El self-suspensions, we consider

a worst-case interleaving of subtask costs and self-suspension durations, as shown in

Equation 2.6 and Equation 2.5 where Wj3 is an upperbound on processor idle time

due to El and Wi is an upperbound on processor idle time due to the set of El

self-suspensions. To determine Wi, we first consider the difference between each of

the Ei self-suspensions and the minimum subtask cost that we can guarantee will

execute during El iff Ej results in processor idle time. To compute this quantity we

provide a minimum bound on the number of free subtasks (Equation 2.4) that will

execute during a self-suspension Ej. By taking the maximum over all i of W, we

upperbound the idle time due to the set of jth self-suspensions.
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= - 1 (2.4)
2

W/=max Et - B(k) , 0 (2.5)
k=1

WI = max (Wij) (2.6)
iIE EEfree

To prove that our method is correct, we first show that Equation 2.4 lowerbounds

the number of free subtasks that execute during a self-suspension Ej, if El is the

dominant contributor to processor idle time. We will prove this by contradiction,

assuming that El is the dominant contributor to idle time and fewer than 1 - 1

subtasks execute (i.e., are completely interleaved) during El. We perform this analysis

for three cases: for i = 1, 1 < i = x < n, and i = n. Second, we will show that, if at

least % - 1 subtasks execute during El, then Equation 2.5 correctly upperbounds
2

idle time due to Erl. Lastly, we will show that if an El is the dominant contributor to

idle time then Equation 2.6 holds, meaning Wi is an upperbound on processor idle

time due to the set of El self-suspensions. (In Step 3 we will show that these three

equations also hold for all Ej.)

Proof of Correctness for Equation 2.4, where j = 1.

Proof by Contradiction for i = 1. We currently assume that all subtasks are free (i.e.,

there are no intra-task deadline constraints), thus I' = n. We recall that a processor2

executing under JSF will execute all jth subtasks before any free jt' + 1 subtask. Thus,

after executing the first subtask, rl, there are n - 1 other subtasks that must execute

before the processor can execute r,2. Thus, Equation 2.4 holds for E' irrespective of

whether or not El results in processor idle time. E

Corollary 1. From our Proof for i = 1, any first subtask, 'ri, will have at least n - x

subtasks that execute during Ex if Ex causes processor idle time, (i.e., the remaining

n - x first subtasks in -r).
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Proof by Contradiction for 1 < i = x < n. We assume for contradiction that fewer

than n - 1 subtasks execute during Ex and Ex is the dominant contributor to proces-

sor idle time from the set of first self-suspensions El. We apply Corollary 1 to further

constrain our assumption that fewer than x - 1 second subtasks execute during Ex.

We consider two cases: 1) fewer than x - 1 subtasks are released before -r and 2) at

least x - 1 subtasks are released before TX.

First, if fewer than x - 1 subtasks are released before r' (with release time of -r is

denoted ri), then at least one of the x - 1 second subtasks, -r, is released at or after

rX. We recall that there is no idle time during t = [0, fJ. Thus, E, subsumes any and

all processor idle time due to E.. In turn, Ex cannot be the dominant contributor to

processor idle time.

Second, we consider the case where at least x - 1 second subtasks are released

before r 2. If we complete x -1 of these subtasks before rx, then at least n -I subtasks

execute during Ex, which is a contradiction. If fewer than x - 1 of these subtasks

execute before rx, then there must exist a continuous non-idle duration between the

release of one of the x - 1 subtasks, r and the release of r , such that the processor

does not have time to finish all of the x - 1 released subtasks before r2. Therefore,

the self-suspension that defines the release of that second subtask, E , subsumes any

and all idle time due to Ex. Ex then is not the dominant contributor to processor

idle time, which is a contradiction. 0

Proof by Contradiction for i = n. We show that if fewer than n - 1 subtask execute

during E,, then En cannot be the dominant contributor to processor idle time. As in

Case 2: i = x, if r2 is less than or equal to the release of some other task, -r, then any

idle time due to E, is subsumed by El, thus En cannot be the dominant contributor

to processor idle time. If -r is released after any other second subtask and fewer than

n - 1 subtasks then at least one subtask finishes executing after r2. Then, for the

same reasoning as in Case 2: i = x, any idle time due to En must be subsumed by

another self-suspension. Thus, Ex cannot be the dominant contributor to processor

idle time if fewer than n - 1 subtasks execute during El, where i = n. 0
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Proof of Correctness for Equation 2.5, where j = 1.

Proof by Deduction. If n -1 subtasks execute during Ei, then the amount of idle time

that results from Ej is greater than or equal to the duration of Ej less the cost of the

n - 1 subtasks that execute during that self-suspension. We also note that the sum of

the costs of the n - 1 subtasks that execute during Ej must be greater than or equal

to the sum of the costs of the n - 1 smallest-cost subtasks that could possibly execute

during Ej. We can therefore upperbound the idle time due to El by subtracting the

n - 1 smallest-cost subtasks. Next we compute W/i as the maximum of zero and El

less the sum of the smallest n - 1 smallest-cost subtasks. If W is equal to zero, then

El is not the dominant contributor to processor idle time, since this would mean that

fewer than n - 1 subtasks execute during El (see proof for Equation 2.4). If W/ is

greater than zero, then El may be the dominant contributor to processor idle time,

and this idle time due to El is upperbounded by W . 0

Proof of Correctness for Equation 2.6, where j = 1.

Proof by Deduction. Here we show that by taking the maximum over all i of W , we

upperbound the idle time due to the set of E' self-suspensions. We know from the

proof of correctness for Equation 2.4 that if fewer than n - 1 subtasks execute during

a self-suspension, El, then that self-suspension cannot be the dominant contributor

to idle time. Furthermore, the dominant self-suspension subsumes the idle time due

to any other self-suspension. We recall that Equation 2.5 bounds processor idle time

caused by the dominant self-suspension, say E . Thus, we note in Equation 2.6 that

the maximum of the upperbound processor idle time due any other self-suspension

and the upperbound for E3 is still an upperbound on processor idle time due to the

dominant self-suspension.

Step 2) General Phase Offsets

Next we allow for general task release times (i.e., qi > 0, Vi). Phase offsets may result

in additional processor idle time. For example, if every task has a phase offset greater
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than zero, the processor is forced to idle at least until the first task is released. We also

observe that, at the initial release of a task set, the largest phase offset of a task set will

subsume the other phase offsets. We recall that the index i of the task ri corresponds

to the ordering with which its first subtask is executed (i.e. i = {1, 2,... , n}). We

can therefore conservatively upperbound the idle time during t = [0, f,' ] due to the

first instance of phase offsets by taking the maximum over all phase offsets, as shown

in Equation 2.7.

The quantity WO computed in Step 2 is summed with W1 computed in Step 1 to

conservatively bound the contributions of first self-suspensions and first phase offsets

to processor idle time. This summation allows us to relax the assumption in Step 1

that there is no processor idle time during the interval t = [0, fnj.

WO = max i (2.7)
t

Step 3) General Number of Subtasks Per Task

The next step in formulating our schedulability test is incorporating general num-

bers of subtasks in each task. As in Step 1, our goal is to determine an upperbound

on processor idle time that results from the worst-case interleaving of the j'4 and

jh + 1 subtask costs during the jh self-suspensions. Again, we recall that our for-

mulation for upperbounding idle time due to the 1" self-suspensions in actuality was

an upperbound for idle time during the interval t = [fn, maxi(ff)].

In Step 2, we used this understanding of Equation 2.6 to upperbound idle time

resulting from phase offsets. We said that we needed to determine an upperbound on

the idle time between the release of the first instance of each task at t = 0 and the

finish of -i. Equivalently, this duration is t = [0, maxi(fi')].

It follows then that, for each of the jth self-suspensions, we can apply Equa-

tion 2.6 to determine an upperbound on processor idle time during the interval

t = [maxj(fj), maxi(fjj")]. The upperbound on total processor idle time for all

free self-suspensions in the task set is computed by summing over the contribution of
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each of the jth self-suspensions as shown in Equation 2.8.

Wfree = Wi

= max (Wj2 ) (2.8)
i i|EiEEjree

n-1

= max max E - ZBi (k)), 0
i|EiE6fEee ( k=1

However, we need to be careful in the application of this equation for general task

sets with unequal numbers of subtasks per task. Let us consider a scenario were one

task, Ti, has mi subtasks, and r, has only m, = mi-1 subtasks. When we upperbound

idle time due to the m'h - 1 self-suspensions, there is no corresponding subtask -ri

that could execute during Ei"-'. We note that rT'"-1 does exist and might execute

during Ei"-', but we cannot guarantee that it does. Thus, when computing the set

of subtasks, Bj, that may execute during a given self-suspension Ei, we only add a

pair of subtasks Tr, rj+1 if both T, Tj+1 exist, as described by Equation 2.3. We note

that, by inspection, if 'rf were to execute during Ej, it would only reduce processor

idle time.

Step 4) Intra-task Deadline Constraints

In Steps 1 and 3, we provided a lowerbound for the number of free subtasks that

will execute during a free self-suspension, if that self-suspension produces processor

idle time. We then upperbounded the processor idle time due to the set of free self-

suspensions by computing the least amount of free task cost that will execute during a

given self-suspension. However, our proof assumed no intra-task deadline constraints.

Now, we relax this constraint and calculate an upperbound on processor idle time due

to embedded self-suspensions Wembedded.

Recall under the JSF priority scheduling policy, an embedded subtask </+1 may

execute before all jth subtasks are executed, contingent on a temporal consistency

check for intra-task deadlines. The implication is that we cannot guarantee that
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embedded tasks (e.g. Ti or <j+1) will be interleaved during their associated self-

suspensions (e.g., Ei, x E N\i).

To account for this lack of certainty, we conservatively treat embedded self-

suspensions as task cost, as shown in Equations 2.9 and 2.10. Equation 2.9 requires

that if a self-suspension, El is free, then Ej(1 - xj+1) = 0. The formula (1 - xf+1)

is used to restrict our sum to only include embedded self-suspensions. Recall that a

self-suspension, El is embedded iff r+ 1 is an embedded subtask.

Second, we restrict Bi such that the jth and jth +1 subtasks must be free subtasks

if either is to be added. (We specified this constraint in Step 1, but this restriction did

not have an effect because we were considering task sets without intra-task deadlines)

Third, we now must consider cases where Tqj < n - 1, as described in (Equation

2.4). We recall that r = n - 1 if there are no intra-task deadlines; however, with

the introduction of these deadline constraints, we can only guarantee that at least

- 1 subtasks will execute during a given Ei, if E7 results in processor idle time.
2

n Mi-1

Wembeded =E ( E (1 - x j 1 ) (2.9)
i=1 j=1

{1, if 1 E Tfree

0, if E Tembeded

Having bounded the amount of processor idle time due to free and embedded self-

suspensions and phase offsets, we now provide an upperbound on the time H B the

processor will take to complete all instances of each task in the hyperperiod (Equation

2.11). H denotes the hyperperiod of the task set, and HLB is defined as the sum over

all task costs released during the hyperperiod. Recall that we are still assuming that

T = Di = T = D3 ,Vi, j E N; thus, there is only one instance of each task in the

hyperperiod.

H{5B = HLB + Wphase + Wree + Wembedded (2.11)
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"H"
HLB=ZnH i (2.12)

i=1 j=1

Step 5) Deadlines Less Than or Equal to Periods

Next we allow for tasks to have deadlines less than or equal to the period. We recall

that we still restrict the periods such that T = T, Vi, j E N for this step. When

we formulated our schedulability test of a self-suspending task set in Equation 2.11,

we calculated an upperbound on the time the processor needs to execute the task

set, HUB. Now we seek to upperbound the amount of time required to execute the

final subtask -r for task ri, and we can utilize the methods already developed to

upperbound this time.

To compute this bound we consider the largest subset of subtasks in r, which

we define as rIj C -r, that might execute before the task deadline for ri. If we find

that H7ji < Dabs where Dabs is the absolute task deadline for ri, then we know

that a processor scheduling under JSF will satisfy the task deadline for ri. We recall

that, for Step 5, we have restricted the periods such that there is only one instance

of each task in the hyperperiod. Thus, we have D ,s = Di + #i. In Step 6, we

consider the more general case where each task may have multiple instances within

the hyperperiod. For this scenario, the absolute deadline of the kth instance of 7i is

D abs = Di + T(k - 1) + 0j.= D,

We present an algorithm named testDeadline(r,Dabs,j) to perform this test.

Pseudocode for testDeadline(r,Dabs,j) is shown in Figure 2-1. This algorithm

requires as input a task set r, an absolute deadline Dabs for task deadline Di, and

the j subtask index of the last subtask Ti- associated with Di (e.g., j = mi associated

with Di for r, E -r). The algorithm returns true if a guarantee can be provided that

the processor will satisfy Di under the JSF, and returns false otherwise.

In Lines 1-14, the algorithm computes r 3 , the set of subtasks that may execute

before Di. In the absence of intra-deadline constraints, ri3 includes all subtasks rl'

where i = N (recall N = {iji E {1,2,...,, }}) and j' E {1,2,...,j}. In the case
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an intra-task deadline spans subtask ri (in other words, a deadline D ,)x
xa)(,b) exists

where a < j and b > j), then the processor may be required to execute all embedded

subtasks associated with the deadline before executing the final subtask for task i.

Therefore the embedded subtasks of Da)(Xeb) are also added to the set r 3. In Line

15, the algorithm tests the schedulability of -r~i using Equation 2.11.

Next we walk through the pseudocode for testDeadline(r,Dbs,j) in detail. Line

1 initializes rlj. Line 2 iterates over each task, Tr, in r. Line 3 initializes the index

of the last subtask from r that may need to execute before ri as z = j, assuming no

intra-task constraints.

Lines 5-11 search for additional subtasks that may need to execute before -r
due to intra-task deadlines. If the next subtask, rx+ 1 does not exist, then Tr is the

last subtask that may need to execute before -r' (Lines 5-6). The same is true if

T+1 E rf,.e, because Tr+1 will not execute before 11 under JSF if z + 1 > j (Lines

7-8). If rx+1 is an embedded subtask, then it may be executed before -, so we

increment z, the index of the last subtask, by one (Line 9-10). Finally, Line 13 adds

the subtasks collected for -rx, denoted rxlj, to the task subset, rI.

After constructing our subset rj, we compute an upperbound on the time the

processor needs to complete ir-s (Line 15). If this duration is less than or equal to

the deadline Dabs associated with Di for ri, then we can guarantee that the deadline

will be satisfied by a processor scheduling under JSF. satisfy the deadline (Line 16).

Otherwise, we cannot guarantee the deadline will be satisfied and return false (Line

18). To determine if all task deadlines are satisfied, we call testDeadine(-r,Da,j)

once for each task deadline.

Step 6) General Periods

Thus far, we have established a mechanism for testing the schedulability of a self-

suspending task set with general task deadlines less than or equal to the period,

general numbers of subtasks in each task, non-zero phase offsets, and intra-task dead-

lines. We now relax the restriction that T = T,Vi, j. The principle challenge of

relaxing this restriction is there will be any number of task instances in a hyperpe-
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testDeadline(r,Dabs',)
1: Tjj +- NULL
2: for x = 1 to I-rj do
3: z +- j
4: while TRUE do
5: if Tx+1 0 (,ree U rembedded) then
6: break

7: else if Tr+1 E rree then
8: break
9: else if Tz+1 E rembedded then

10: z +- z +
11: end if
12: end while
13: Tx I +- (Ox , (Cx), Ex', Cx, ... ., Cx), Dx, Tx)
14: end for
15: if HUB < Dabs //Using Eq. 2.11 then
16: return TRUE
17: else
18: return FALSE
19: end if

Figure 2-1: Pseudo-code for testDeadline(,r,Dij), which tests whether a processor
scheduling under JSF is guaranteed to satisfy a task deadline, Di.

riod, whereas before, each task only had one instance.

To determine the schedulability of the task set, we first start by defining a task

superset, -r*, where r* D -r. This superset has the same number of tasks as -r (i.e.,

n), but each task ri* E r* is composed of 1 instances of Tj E -r. A formal definition

is shown in Equation 2.13, where C"' and E' are the kth instance of the jth subtask

cost and self-suspension of ri*.

-ri* :(#j, (C 1 El, . . ., Cl/ C2, E a . .,Cij%,l) ii Cj , Ez,2 1 i, 21 (2.13)
. ,C , E',, .I .Cg) D = H, T* =H J**

We aim to devise a test where ri* is schedulable if HjL D* and if the task

deadline Di for each release of ri is satisfied for all tasks and releases. This requires

three steps.

First we must perform a mapping of subtasks from r to r* that guarantees that

r*+1 will be released by the completion time of all other jth subtasks in -r*. Consider
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a scenario where we have just completed the last subtask -r of the kth instance ofi" k

TF. We do not know if the first subtask of the next k + 1 h instance of -ri will be

released by the time the processor finishes executing the other Jh subtasks from -r*.

We would like to shift the index of each subtask in the new instance to some j' ;> j
such that we can guarantee the subtask will be released by the completion time of all

other j' - 1th subtasks.

Second, we need to check that each task deadline Di, for each instance k of each

task ri released during the hyperperiod will be satisfied. To do this check, we compose

a paired list of the subtask indices j in -r* that correspond to the last subtasks for each

task instance, and their associated deadlines. We then apply testDeadine(-r,Dij)

for each pair of deadlines and subtask indices in our list.

Finally, we must determine an upperbound, HuL, on the temporal resources re-

quired to execute -r* using Equation 2.11. If Hu < H, where H is the hyperperiod

of -r, then the task set is schedulable under JSF.

We use an algorithm called constructTaskSuperSet(r), presented in Figure

2-2, to construct our task superset r*. The function constructTaskSuperSet(r)

takes as input a self-suspending task set -r and returns either the superset -r* if we

can construct the superset, or null if we cannot guarantee that the deadlines for all

task instances released during the hyperperiod will be satisfied.

In Line 1, we initialize our task superset, r*, to include the subtask costs, self-

suspensions, phase offsets, and intra-task deadlines of the first instance of each task Ti

in -r. In Line 2, we initialize a vector I, where I[i] corresponds to the instance number

of the last instance of ri that we have added to -r*. Note that after initialization,

I [i] = 1 for all i. In Line 3, we initialize a vector J, where J [i] corresponds to the j

subtask index of *j for instance I[i], the last task instance added to -ri*. The mapping

to new subtask indices is constructed in J to ensure that the jth + 1 subtasks in r*

will be released by the time the processor finishes executing the set of jth subtasks.

We use D[i][k] to keep track of the subtasks in -r* that correspond to the last

subtasks of each instance k of a task ri. D [i] [k] returns the j subtask index in -r* of

instance k of ri. In Line 4, D[i] [k] is initialized to the subtask indices associated with
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the first instance of each task.

In Line 5, we initialize counter, which we use to iterate through each j subtask

index in r*. In Line 6 we initialize HLB to zero. HLB will be used to determine

whether we can guarantee that a task instance in r has been released by the time

the processor finishes executing the set of j = counter - 1 subtasks in -r*.

Next we compute the mapping of subtask indices for each of the remaining task

instances released during the hyperperiod (Line 7-31). In Line 11, we increment HLB

by the sum of the costs of the set of the j = counter - 1 subtasks.

In Line 12, we iterate over each task ri*. First we check if there is a remaining

instance of ri to add to ri* (Line 13). If so, we then check whether counter >J[i] (i.e.,

the current j = counter subtask index is greater than the index of the last subtask

we added to i*) (Line 14).

If the two conditions in Line 13 and 14 are satisfied, we test whether we can

guarantee the first subtask of the next instance of hj will be released by the completion

of the set of the j = counter - 1 subtasks in r* (Line 15). We recall that under JSF,

the processor executes all j - 1 subtasks before executing a jt" free subtask, and, by

definition, the first subtask in any task instance is always free. The release time of

the next instance of -ri is given by T * I[i] + 4. Therefore, if the sum of the cost of all

subtasks with index j E {1, 2, ... , counter - 1} is greater than the release time of the

next task instance, then we can guarantee the next task instance will be released by

the time the processor finishes executing the set of j = counter - 1 subtasks in r*.

We can therefore map the indices of the subtasks of the next instance of ri to

subtask indices in ri* with j = counter + y - 1, where y is the subtask index of ir in

Ti. Thus, we increment I[i] to indicate that we are considering the next instance of ri

(Line 16) and add the next instance of ri, including subtask costs, self-suspensions,

and intra-task deadlines, to ri* (Line 17). Next, we set J[i] and D[i][k] to the j subtask

index of the subtask we last added to ri* (Lines 18-19). We will use D[i][k] later to

test the task deadlines of the task instances we add to ri*.

In the case where all subtasks of all task instances up to instance I[il, Vi are

guaranteed to complete before the next scheduled release of any task in -r (i.e, there
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are no subtasks to execute at j = counter), then counter is not incremented and

HLB is set to the earliest next release time of any task instance (Lines 24 and 25).

Otherwise, counter is incremented (Line 27). The mapping of subtasks from -r to

-r* continues until all remaining task instances released during the hyperperiod are

processed. Finally, Lines 31-39 ensure that the superset exists iff each task deadline

Di,k for each instance k of each task ri released during the hyperperiod is guaranteed

to be satisfied.

Schedulability Test Summary

To determine the schedulability of a task set, -r, we call constructTaskSuperSet(r)

on -r. If the function call returns null then we cannot guarantee the feasibility of

the task set. If the function call successfully returns a task superset, -r*, then we

determine an upperbound, H * , on the temporal resources required to execute r*

using Equation 2.11. If Hu*3 < H, where H is the hyperperiod of -r, then the task set

is schedulable under JSF. Furthermore the processor executes -r under JSF according

to the j subtask indices of r*.

2.7 Results and Discussion

In this section, we empirically evaluate the tightness of our schedulability test and ana-

lyze its computational complexity. We perform our empirical analysis using randomly

generated task sets. The number of subtasks mi for a task T is generated according

to mi - U(1, 2n), where n is the number of tasks. If mi = 1, then that task does not

have a self-suspension. The subtask cost and self-suspension durations are drawn from

uniform distributions Cf ~ U(1, 10) and E ~ U(1, 10), respectively. Task periods

are drawn from a uniform distribution such that T ~ U(EZs Cf, 2 E' Ci). Lastly,

task deadlines are drawn from a uniform distribution such that Di ~ U(Ei C , T).

We benchmark our method against the naive approach that treats all self-suspensions

as task cost. To our knowledge our method is the first polynomial-time test for

hard, periodic, non-preemptive, self-suspending task systems with any number of
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construct TaskSuperSet (-r)

1: i* +- Initialize to r

2: I[i] +- 1, Vi c N

3: J[i] +- mi,Vi C N
4: D[i][k] +- mi, Vi E N, k = 1

5: counter +- 2

6: HLB <~ 0
7: while TRUE do
8: if 1[i] = ,Vi E N then
9: break

10: end if
11: HLB +- HLB ± 1  counter1

12: for i = to n do

13: if I[i] < H then
14: if counter > J [i] then

15: if HLB > Tj*I[i]+5 then

16: I[i] +-I[i]+1

17: T*(counter+y-1)

Tjy, Vy E f{1, 2, . .. , mi}
18: J[i] = counter + mi - 1

19: D [i][I[i] + [i]
20: end if

21: end if

22: end if

23: end for
24: if counter > maxi J[iI then

25: HLB = mini (T * I[i] + 0i)

26: else

27: counter +- counter +1
28: end if
29: end while

30: //Test Task Deadlines for Each Instance

31: for i = 1 to n do

32: for k = 1 to E do

33: Di,k <- Di + Ti(k - 1) + 
34: j +- D[i][k]
35: if testDeadline(r*,Di,k,j) = FALSE then
36: return NULL
37: end if

38: end for

39: end for

40: return r*

Figure 2-2: Pseudo-code for constructTaskSuperSet(r), which constructs a task

superset, -r* for r.
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self-suspensions per task. Recently, Abdeddaim and Masson introduced an approach

for scheduling self-suspending task sets using model checking with Computational

Tree Logic (CTL) [2]. However, their algorithm is exponential in the number of tasks

and does not currently scale to moderately-sized task sets of interest for real-world

applications.

2.7.1 Tightness of the Test

The metric we use to evaluate the tightness of our schedulability test is the percentage

of self-suspension time our method treats as task cost, as calculated in Equation

2.14. This provides a comparison between our method and the naive worst-case

analysis that treats all self-suspensions as idle time. We evaluate this metric as a

function of task cost and the percentage of subtasks that are constrained by intra-

task deadline constraints. We note that these parameters are calculated for r* using

constructTaskSuperSet(-r) and randomly generated task sets -r.

W*ree +Wembeded * 100 (2.14)
Ei Eii

Figure 2-3 presents the empirical results evaluating the tightness of our schedula-

bility test for randomly generated task sets with 2 to 50 tasks. b denotes the ratio

of subtasks that are released during the hyperperiod and constrained by intra-task

deadline constraints to the total number of subtasks released during the hyperperiod.

Fifty task sets were randomly generated for each data point. We see that for small or

highly constrained task sets, the amount of self-suspension time treated as task cost

is relatively high (> 50%). However, for problems with relatively fewer intra-task

deadline constraints, our schedulability test for the JSF priority scheduling policy

produces a near-zero upperbound on processor idle time due to self-suspensions.

2.7.2 Computational Scalability

Our schedulability test is computed in polynomial time. We bound the time-complexity

as follows, noting that mm., is the largest number of subtasks in any task in r and
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Figure 2-3: The amount of self-suspension time our schedulability test treats as
task cost as as a percentage of the total self-suspension time. Each data point and
errors bar represents the mean and standard deviation evaluated for fifty randomly
generated task sets.
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Tmin is the shortest period of any task in -r. The complexity of evaluating Equation

2.11 for r* is upperbounded by 0 ( n 2 mmax H ) where 0 (nmmaxTH ) bounds the

number of self-suspensions in -r*. The complexity of testDeadline( is dominated

by evaluating Equation 2.11. In turn, constructTaskSuperset() is dominated by

0 (nTH) calls to testDeadline(. Thus, for the algorithm we have presented in

Figures 2-1 and 2-2, the computational complexity is 0 n3mmax (TH ) 2). However,

we note our implementation of the algorithm is more efficient. We reduce the com-

plexity to 0 (n2mmax H ) by caching the result of intermediate steps in evaluating

Equation 2.11.

2.8 Conclusion

In this paper, we present a polynomial time solution to the open problem of determin-

ing the feasibility of hard, periodic, non-preemptive, self-suspending task sets with

any number of self-suspensions in each task, phase offsets, and deadlines less than or

equal to periods. We also generalize the self-suspending task model and our schedu-

lability test to handle task sets with deadlines constraining the upperbound temporal

difference between the start and finish of two subtasks within the same task. These

constraints are commonly included in Al and operations research scheduling models.

Our schedulability test works by leveraging a novel priority scheduling policy for

self-suspending task sets, called jth Subtask First (JSF), that restricts the behavior

of a self-suspending task set so as to provide an analytical basis for an informative

schedulability test. We prove the correctness of our test, empirically evaluate the

tightness of our upperbound on processor idle time, and analyze the computational

complexity of our method.
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Chapter 3

Uniprocessor Scheduling Policy for

jth Subtask First

3.1 Introduction

In Chapter 2, we introduce a novel scheduling priority, which we call jth Subtask First

(JSF), that we use to develop the first schedulability test for hard, non-preemptive,

periodic, self-suspending task set[20]. While JSF provides a framework for scheduling

these task sets, it does not fully specify the orderings of tasks most notably when

there are deadlines constraining the start and finish times of two subtasks.

In this chapter, we present a near-optimal method for scheduling under the JSF

scheduling priority. The main contribution of this work is a polynomial-time, on-

line consistency test, which we call the Russian Dolls Test. The name comes from

determining whether we can "nest" a set of tasks within the slack of another set of

tasks. Our scheduling algorithm is not optimal; in general the problem of sequenc-

ing according to both upperbound and lowerbound temporal constraints requires an

idling scheduling policy and is known to be NP-complete [17, 18]. However, we show

through empirical evaluation that schedules resulting from our algorithm are within

a few percent of the best possible schedule.

We begin in Section 3.2 by introducing new definitions to supplement those from

2.4 that we use to describe our scheduling algorithm and motivate our approach. Next,
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we empirically validate the tightness of the schedules produced by our scheduling

algorithm relative to a theoretical lowerbound of performance in Section 3.4. We

conclude in Section 3.5.

3.2 Terminology

In this section we introduce new terminology to help describe our uniprocessor schedul-

ing algorithm. Specifically, these terms will aid in intuitively explaining the mech-

anism for our Russian Dolls online temporal consistency test, which we describe in

Section 3.3.2. In Chapter 2, we define free and embedded subtasks (Definitions 1

and 2) as well as free and embedded self-suspensions (Definitions 3 and 4). We now

introduce three new terms that we use in Section 3.3.2 to describe how we schedule

self-suspending task sets while ensuring temporal consistency.

Definition 6. A subtask group, G', is an ordered set of subtasks that share a common

deadline constraint. If we have a deadline constraint Dre ) then the subtask group

for that deadline constraint would be the Gj - {-r||j < y K b}. Furthermore, G(k)

returns the kth element of G', where the set is ordered by subtask index (e.g., y

associated with rY).

Definition 7. An active intra-task deadline is an intra-task deadline constraint,

Dia),(i,b)el where the processor has at some time t started Tria (or completed) but has

not finished ir. Formally D ri~e = {D re) (iDb)IDi)(ib) E D'rl, s< t < fi}, where

D is the set of all intra-task deadlines.

Definition 8. The set of active subtasks, ractive, are the set of all unfinished subtasks

associated with active deadlines. Formally Tactive = {IT E T, ]Dia),(i,b), a < j<

b)s K si < t < f}.

Definition 9. The set of next subtasks, rnext, are the set of all subtasks, Tij, such

that the processor has finished <f but not started ri . Formally, Tnext = {|Tj IT E

rf 1 < t < fJ}
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3.3 JSF Scheduling Algorithm

To fully describe our JSF scheduling algorithm, we will first give an overview of the

full algorithm. Second, we describe a subroutine that tightens deadlines to produce

better problem structure. The key property of this tightened form is that a solution to

this reformulated problem also is guaranteed to satisfy the constraints of the original

problem. Third, we describe how we use this problem structure to to formulate an

online consistency test, which we call the Russian Dolls Test.

3.3.1 JSF Scheduling Algorithm: Overview

Our JSF scheduling algorithm (Figure 3.3.1) receives as input a self-suspending task

set, r, according to Equation 2.1, and terminates after all completing all instances of

each task ri E -r have been completed. Because these tasks are periodic, scheduling

can continue can continue scheduling tasks; however, for simplicity, the algorithm we

present terminates after scheduling through one hyperperiod. The algorithm steps

through time scheduling released tasks in -r*. If the processor is available and there

exists a released and unscheduled subtask, ri, the algorithm schedules ir at the

current time t iff the policy can guarantee that doing so does not result in violating

another temporal constraint. Now, we step through the mechanics of the algorithm.

In Line 1, we construct our task superset from -r using constructTaskSuper-

Set(-r) we describe in Chapter 2 Section 2.6. We recall that -r is a hard, periodic,

self-suspending task set with phase offsets, task deadlines less than or equal to pe-

riods, intra-task deadlines, and multiple self-suspensions per task. -r* is a task set,

composed of each task instance of r released during the hyperperiod for -r. The tasks

in r* are restricted such that T* = Tj = H where H is the hyperperiod for r, and

T* and Tj* are periods of tasks Tr*, Tj in -r*. Most importantly, we know that if 7r

is found schedulable according to our schedulability test (Lines 2-4), then our JSF

scheduling algorithm will be able to satisfy all task deadlines. Thus, our scheduling

algorithm merely needs to satisfy intra-task deadlines by allowing or disallowing the

interleaving of certain subtasks and self-suspensions.
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JSFSchedulingAlgorithm(r)
1: r* +- construct TaskSuperSet(r)
2: if r* = 0 then
3: return FALSE
4: end if
5: D'* +- simplifyIntraTaskDeadlines(Drel*)
6: t <- 0
7: while TRUE do
8: if processor is idle then
9: availableSubtasks <- getAvailableSubtasks(t);

10: for (k = 1 to lavailableTasksl)) do
11: 4r- availableTasks[k];
12: if russianDollsTest(ri) then
13: t, t
14: ts <- + C|
15: scheduleProcessor( j,t,,tf)
16: break
17: end if
18: end for
19: end if
20: if all tasks in -r* have been finished then
21: return TRUE
22: else
23: t+-t+1
24: end if
25: end while

Figure 3-1: Pseudocode describing our JSFSchedulingAlgorithm(-r)
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In Line 5, we simplify the intra-task deadlines so that we can increase the problem

structure. The operation works by mapping multiple, overlapping intra-task dead-

lines constraints into one intra-task deadline constraint such that, if a scheduling

algorithm satisfies the one intra-task deadline constraint, then the multiple, overlap-

ping constraints will also be satisfied. For example, consider two intra-task deadline

constraints, Dje*) and D e* such that a < y b. First, we calculate the

tightness of each deadline constraint, as shown in Equation 3.1. Second, we con-

struct our new intra-task deadline, D )(imax(bz)) such that the slack provided by

D('*(imax(b,)) is equal to the lesser of the slack provided by D()(b) and D e*

as shown in Equation 3.2. Lastly, we remove D rel* and Dre*gz) from the set

of intra-task deadline constraints. We continue constructing new intra-task dead-

line constraints until there are no two deadlines that overlap (i.e., -3 Drel1*,(ib) and(i,a)(iban

D reI* such that a < y < b).

b-1
6 drei* Ci 0 b ± E' or~ ± 7 (3.1)

(i,a),(i,b) (,a),(i~b) - z E (3.1
j~a )

max(b,z)-1

d *),(i,max(b,z)) = mi (&* , *,z + C 6max(bz) ± + C1, + E$ (3.2)
j=a

Next, we initialize our time to zero (Line 6) and schedule all tasks in -r released

during the hyperperiod (i.e., all r4* in -r*) (Lines 7-23). At each step in time, if the

processor is not busy executing a subtask (Line 8), we collect all available subtasks

(Line 9). There are three conditions necessary for a subtask, r<i, to be available.

First, an available subtask, -r*3 must have been released (i.e., t > r"). Second, the

processor must have neither started nor finished *3. If T* is a free subtask, then all

r*-1 subtasks must have been completed. This third condition is derived directly

from the JSF scheduling policy.

In Lines 10-18, we iterate over all available subtasks. If the next available subtask

(Line 11) is temporally consistent according to our online consistency test (Line 12),

which we describe in Section 3.3.2, then we schedule the subtask at time t. We
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note that we do not enforce a priority between available subtasks. However, one

could prioritize the available subtasks according to EDF, RM, or another scheduling

priority. For generality in our presentation of the JSF Scheduling Algorithm, we

merely prioritize based upon the i index of <r* E r*. If we are able to schedule a

new subtask, we terminate the iteration (Line 16). After either scheduling a new

subtask or if there are no temporally consistent, available subtasks, we increment the

clock (Line 23). If all tasks (i.e. all subtasks) in r* have been scheduled, then the

scheduling operation has completed (Line 21).

3.3.2 The Russian Dolls Test

The Russian Dolls Test is a method for determining whether scheduling a subtask,

<, at time t, will result in a temporally consistent schedule. Consider two deadlines,

(i'j),(i,b) and D(xIy such that De),(i,b) < D( 1 ,,,Z,, with associated subtask

groups G, and Gy. Futhermore, the processor has just finished executing r', where

y < w < z, and we want to determine whether we can next schedule -. To answer

this question, the Russian Dolls Test evaluates whether we can nest the amount of

time that the processor will be busy executing Gj within the slack of Drel If

this nesting is possible, then we are able to execute T and still guarantee that the

remaining subtasks in Gi and GY can satisfy their deadlines. Otherwise, we assume

that scheduling Gi at the current time will result in temporal infeasibility for the

remaining subtasks in GY.

To understand how the Russian Dolls Test works, we must know three pieces of

information about 4, and Taetve. We recall an in intra-task deadline, Dre) is

active if the processor has started <a and has not finished 1r. In turn, a subtask is in

racive if it is associated with an active deadline.

Definition 10. tmax|j is defined as remaining time available to execute the unexecuted

subtasks in Gi. We compute tmax|I using Equation 3.3.
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Dre + sa
tmax 1 = min i'),(i,b) i -t (3.3)

T. ~ (E+ C + E i

Definition 11. tminij is the a lowerbound on the time the processor will be occupied

while executing subtasks in Gi. We compute tmini using Equation 3.4. Because

the processor may not be able to interleave a subtask -r during the self-suspensions

between subtasks in Gi, we conservatively treat those self-suspensions as task cost in

our formulation of tmin|jj. If there is no intra-task deadline associate with -F, then

mwin|i = Ci .

b-1

t 3 nj = C+ I C + E (3.4)
q=j

Definition 12. tsj| is the slack time available for the processor to execute subtasks

not in the Gi. This duration is equal to the difference between tnaxt13 and tmin|{.

t = tmax J - tmin|' (3.5)

Having defined these terms, we can now formally describe the Russian Dolls Test,

as described in Definition 13.

Definition 13. The Russian Dolls Test determines whether we can schedule ri at

time t by evaluating two criteria. First the test checks whether the direct execution of

<| at t will result in a subtask, 4', missing its deadline during the interval t = [si, .11]

due to some D )z) where w < y < z. Second, if ]Drei the test checksdue to som Drel whe (ij),(i,b)'I

whether activating this deadline will result in a subtask missing its deadline during

the interval t = [fl', dre ] due to active intra-task deadlines.

To check the first consideration, we can merely evaluate whether the cost of TI (i.e.,

Cjl) is less than or equal to the slack of every active deadline. For the second con-

sideration, if there is a deadline Dr)l such that x = i and w = j, then we must

consider the indirect effects of activating Dr),iZ) on the processor. I f{T', ... , T}

is the set of all unexecuted tasks in Gi after executing -ri, then we must ensure that
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the can nest amongst the other active subtasks. If, for all active deadlines Dre1(x'w),(x'z)1

where Tg E Tnext, we can nest {r j+ .. Tb} within the slack of {f ,..., T} or vice

versa, then we can guarantee that the processor will find a feasible schedule.

We note if <f, with associated deadline Dl ,pses the Russian Dolls Test,

we do not need to re-test D')1 when attempting to execute any subtask in the set

{r+1,.. . , zr}. For the processor to execute a subtask in {rj+, .. . , T}, we merely

need to test whether the cost of the subtask is less than or equal to the slack of every

other active deadlines not including D"')(iZ.

We provide pseudocode to describe the Russian Dolls Test in Figure 3.3.2. In Line

1, we iterate over all subtasks that are active and next. For a subtask, Tr' to be in

active and next, then r- 1 must have been completed and there must be an intra-task

deadline D"'l such that w < y K z. If the rh subtask (Line 2) in the set of

active and next subtasks is not the equal to the -i, then we proceed with testing the

rth subtask in this set (Line 3). In Lines 4-6, we evaluate the first consideration of the

Russian Dolls Test: whether the cost of 'r. (i.e., Cl) is less than or equal to the slack

of DI'W)(XZ). If not, then executing r at time t will directly result in Try missing its

deadline, so we return that the nesting is not possible (Line 5).

Next, we evaluate the second consideration of the Russian Dolls Test: if there is a

deadline Dr'W( Z such that x = i and w = j, then we must consider what happens

after executing Tj' the indirect effects of activating Dre) on the processor. If

there is such a deadline D&j)(iz) (Line 7), then we consider whether we can nest

the execution of {73+',. . . , r} within the slack of Drel or nest the execution of(X,w),(X,Z)

{Tr,.. ., Tr} within the slack of Drel (Line 8). If not, then we cannot guarantee

that all subtasks in these sets (i.e., {ij+1,. ..,'r} U {f, . . . , r}) will satisfy their

deadline requirements, so we return false (Line 9). After iterating over all active,

next subtasks, and we are able to satisfy both criteria of the Russian Dolls Test, then

we may execute -ri' at time t.
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russianDollsTest(Tjt)
1: for r 1 to |Tactive f rnextI do
2: Tx +- {Tactive 0 Tnext}(r)
3: if =' f ti then
4: if Ci > t6IY then
5: return false

6: end if
7: if 3D then

(ij),(i,b) te
8: if ~- ((tmaxjy < t 6l +') V (t6 l > tmaxlj+ 1 )) then
9: return false

10: end if
11: end if
12: end if
13: end for

3.4 Results

In this section, we empirically validate the tightness of the scheduler and analyze

its computational complexity. We perform our empirical analysis using randomly

generated task sets. The number of subtasks mi for a task Tj is generated according

to mi - U(1, 2n), where n is the number of tasks. If mi = 1, then that task does not

have a self-suspension. The subtask cost and self-suspension durations are drawn from

uniform distributions Cf ~ U(1, 10) and Ej ~ U(1, 10), respectively. Task periods

are drawn from a uniform distribution such that T - U(Ei, Cj, 2 E C ). Lastly,

task deadlines are drawn from a uniform distribution such that Di ~ U(Ei C , T).

3.4.1 Empirical Validation

The metric we use to evaluate the tightness of our JSF Scheduling Algorithm is

similar to the metric we used in Chapter 2 to test the tightness of our Schedulability

Test. For our Schedulability Test, we consider the percentage of self-suspension time

our method treats as task cost. This measure provides a comparison between our

schedulability test and the naive worst-case analysis that treats all self-suspensions

as idle time. For our JSF Scheduling Algorithm, we now consider the percentage of

self-suspension time that the processor is actually is idle.
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Figure 3-2: Percentage of self-suspension time that the processor is is idle.

Figure 3-2 presents the empirical results of evaluating the tightness of our JSF

scheduling algorithm for randomly generated task sets with 2 to 20 tasks, and Figure

3-3 includes the tightness of the schedulability test for comparison. Each data point

and error bars represent the mean and standard deviation valuated for ten randomly

generated task sets. b) denotes the ratio of subtasks that are released during the

hyperperiod and constrained by intra-task deadline constraints to the total number

of subtasks released during the hyper period. We see the amount of idle time due to

self-suspensions is inversely proportional to problem size. For large problems, our JSF

scheduling algorithm produces a near-zero amount of idle time due to self-suspensions

relative to the total duration of all self-suspensions during the hyperperiod.
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Figure 3-3: Percentage of self-suspension time that the processor is is idle compared
to the percentage of self-suspension time the schedulability test assumed as idle time.
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3.4.2 Computational Complexity

We upperbound the computational complexity of our JSF Scheduling Algorithm at

each time step. At each time step, the processor must consider n tasks in the worst

case. For each of the n tasks, the scheduler would call russianDollsTest(rf-2 ). In the

worst case, the number of active deadlines is upperbounded by n; thus, the complexity

of the Russian Dolls Test is 0(n). In turn, the JSF Scheduling algorithm performs

at most 0(n2) operations for each time step.

3.5 Conclusion

We have presented a uniprocessor scheduling algorithm for hard, non-preemptive,

self-suspending task sets with intra-task deadline constraints and . Our polynomial-

time scheduling algorithm leverages problem structure by scheduling according to

the jth subtask first (JSF) scheduling policy that we developed in Chapter 2. Our

algorithm also utilizes an polynomial-time, online consistency test to ensure temporal

consistency due to intra-task deadlines, called the Russian Dolls Test. Although

the JSF policy and Russian Dolls Test are not optimal, we show through empirical

evaluation that our scheduling algorithm produces schedules that are within a few

percent of the best possible makespan.
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Chapter 4

Multiprocessor Scheduling Policy

4.1 Introduction

In Chapter 3, we present a near-optimal method for uniprocessor scheduling of hard,

non-preemptive, self-suspending task sets. These task sets were defined by at least

one subtask per task, intra-task deadlines, and phase offsets. In this chapter, we

extend our method for scheduling uniprocessor systems to handle multiprocessor sys-

tems. We use this extension in Chapter 5 to develop a task allocation and scheduling

algorithm for robotic manufacturing of aerospace structures. To schedule these tasks

sets, we need to incorporate spatial constraints (i.e., shared memory resources) to

ensure that agents do not interfere with each other in space (e.g., collisions). In Sec-

tion 4.2, we extend the self-suspending task model we present in Chapters 2 and 3

for the multiprocessor case. We next extend some of the terminology we introduced

in Chapters 2-3 to the multiprocessor case in Section 4.3 In Section 4.4, we present

our scheduling policy. In Section 4.5, we analyze the computational complexity of

our algorithm, and we conclude in Section 4.6.

4.2 Our Augmented Task Model

In Chapter 2, we present the self-suspending task model we use to better reflect the

constraints of interest (Equation 2.1). For the multiprocessor case, we incorporate
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both an assignment of processors to subtasks (i.e., task allocation) and shared memory

resources as shown in Equation 4.1. In this model, Ri = {R', Rj,. .., Rm } is the set of

shared memory resource constraints such that Rj is the set of shared memory resources

require to execute -ri. Ai = {A', A?,..., A'} is the processor allocation for ri such

that Aq is the processor assigned to execute ii. Furthermore we restrict the periodicity

and absolute deadline of all tasks to be equal to a user-specified hyperperiod. This

constraint corresponds to a pulse-line in the manufacturing environment where all

tasks in the task set must be accomplished once every pulse of the line.

S: (<iI (Cl, El, C, EEI . . ., E , CE), Rj, Aj, T = H, Di = H, Die, Dabs) (4.1)

In addition to intra-task deadlines D'el for ri, we extend our task model to include

subtasks deadlines, where Dj"b is the set of subtask deadlines for subtasks in ri. As

shown in Equation 4.2, if a subtask ir is constrained by a subtask deadline constraint,

then fi must not exceed ds.

DJ" f di'j" (4.2)

4.3 Terminology

In this section we extend the terminology from Chapter 3 to help describe our multi-

processor scheduling algorithm. In Section 4.4, we use the terms to aid in explaining

how we can ensure temporal consistency due to absolute subtask deadlines. In Chap-

ter 3, we defined a subtask group, active intra-task deadline and active subtasks. We

now augment the definitions of a subtask group and an active subtask to include

absolute subtask deadline; we also define a new term: active subtask deadline.

Definition 14. A subtask group, Gi, is an ordered set of subtasks that share a com-

mon deadline constraint. If we have a deadline constraint D(i,a),(i,b), then the subtask

group for that deadline constraint would be the Gj = {Irj 5 y < b}. If we have

a subtask deadline constraint DqS, then a subtask group for that deadline constraint
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would be the G? = {Tja < y < j}. Furthermore, Gi(k) returns the kth element of

Gq, where the set is ordered by subtask index (e.g., y associated with 'ry).

Definition 15. An active subtask deadline is a subtask deadline constraint, Da,

where the processor has not finished Ti. Formally Dabive - {D05JD E Dabs, 0 <

t < fi}, where Dab, is the set of all intra-task deadlines.

Definition 16. The set of active subtasks, ractive, are the set of all unfinished

subtasks associated with active intra-task deadlines or subtask deadlines. Formally

Tactive = {f~rj E -r, (Dre)(i,) E Drela j b sa K s? <t < f)

v (D cb E Dabs, 1 < j < a,0 < t < fi")

4.4 Multiprocessor Scheduling Algorithm

Our multiprocessor algorithm (Figure 4.4.1) receives as input a self-suspending task

set, -r, according to Equation 4.1, and terminates after scheduling all subtasks. Be-

cause these tasks have a uniform periodicity, only one instance of each task is sched-

uled. The algorithm steps through time to schedule released tasks in r. The order

with which processors attempt to schedule subtasks is based on an processor-priority

heuristic, and the order with which subtasks assigned to a given processor are con-

sidered by that processor is based on a set of subtask priorities. The scheduler only

schedules a subtask iff an online consistency test (i.e., our Multiprocessor Russian

Dolls Test) guarantees that doing so does not result in violating another temporal or

shared memory resource constraint.

4.4.1 Multiprocessor Scheduling Algorithm: Walk-Through

We now step through the mechanics of our scheduling algorithm. In Line 1, we tighten

the intra-task deadlines and subtask deadlines to produce better problem structure.

We note that, for the uniprocessor case (Chapter 3.3), we only considered intra-task

deadlines. The self-suspending task model for the multiprocessor case (Equation 4.1)

includes intra-task deadlines and subtask deadlines. These deadlines may "overlap",
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multiprocessorSchedulingAlgorithm(r)
1: Drel, Dabs +- simplifyDeadlines(DrL,Dabs)
2: if 3Da-s E Dabs then
3: if -multiprocessorRussianDollsTest(rij,r,0,1) then
4: return null
5: end if
6: end if
7: t +- 0
8: while TRUE do
9: A +- prioritizeAgents(A);

10: for a = 1 to JAI do
11: if processor a is idle then
12: availableSubtasks +- getAvailableSubtasks(t,a);
13: availableSubtasks +- prioritizeTasks(availableSubtasks);
14: for (k = 1 to lavailableTasksl)) do
15: -r<- availableTasks[k];
16: if multiprocessorRussianDollsTest(j3,-r,t,O) then
17: scheduleProcessor(rl ,t,a)
18: scheduleResource(r3,t 8 ,Rj)
19: break
20: end if
21: end for
22: end if
23: end for
24: if all tasks in -r have been finished then
25: return schedule
26: else
27: t+-t+1
28: end if
29: end while

Figure 4-1: Pseudocode describing the multiprocessor scheduling algorithm.
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meaning that there are at least two deadline constraints who's interaction can cate-

gorized by one of three cases:

1. D ),l and Drel such that a < y < b, which we considered in Chapter 3

2. DabS and D ab such that a < b.
z,a i,b

3. Dr and D s such that a < b.(i,a),(i,b) __j

To tighten the deadlines for all three cases, we can apply the methodology described

in Chapter 3 Section 3.3 with augmented formulae to handle subtask deadlines. In-

tuitively, we remove two overlapping deadline constraints and replace each pair with

a new deadline constraint such that any schedule that satisfies the new deadline also

satisfies the original deadlines.

For case one where we have two overlapping intra-task deadlines D"')( ,b) and

Djgy),(jz), we can apply Equations 4.3 and 4.5. For case two where we have two

overlapping absolute deadlines Dab' and Dab, we can apply Equations 4.4 and 4.6.

Finally, for case three where we have an overlapping intra-task deadline constraint

and a subtask deadline constraint, we can apply Equations 4.3 and 4.3 for the dead-

lines' slack and Equation 4.7 to compute the tightness of the new absolute deadline

constraint. After replacing all overlapping deadlines such that there are no remaining

overlapping in the task set, we proceed to scheduling the task set.

6 (i,a),(i,b) = d)(b) - (Ci + Eb Ci + Ei) (4.3)

Jabs = dabs - (C z+ E 1 C + Eij (4.4)(i,j) (i,;i) _ =1 5 %

dia),(imax(bz)) = mn(6(i,a),(i,b), 6(i,y),(i,z)) + (Cnax(bz) + max(bz)- C + Ej)(4.5)

dNab) =b Jab (i) (i)) + (Cimax(a,b) + XEmax(a,b)-l Cij + Ej) (4.6)i,max(a,b) mn((i,a) 7 (i,b) (0 ajab ax1

dabs - min (abs 6(i,a),(ib) + i) + (Cimax(b,z) + Emax(b,z)-l C + Ei) (4.7)i,max(j,b) - ((i,j)' (,, k±Lj=a ±

Next, we determine whether the set of subtask deadlines is temporally consistent

(Line 2-6). Our new task model (Equation 4.1) for the multiprocessor case includes

subtask deadlines. These deadlines, which activate as soo as the scheduling process
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begins (i.e., at t = 0, Dabs E Dactive). Therefore, we need to be able to determine

at the start if the set of processors will be able to satisfy those deadline constraints.

To perform this test, we extend our Russian Dolls Test to handle subtask deadlines,

which was originally applied to intra-task deadlines in Chapter 3. We describe this

extension is Section 4.4.2

After tightening deadlines and ensuring schedule feasibility due to Dbs, we ini-

tialize our time to zero (Line 7) and schedule all tasks in -r released during the hy-

perperiod (i.e., all -i- in r) (Lines 8-29). In Line 9, we prioritize the order with which

processors attempt to schedule subtasks. Our processor-priority heuristic works as

follows: consider two processors, a and a'. If the number of subtasks returned by

get AvailableSubtasks(t,a) is less than or equal to the number of subtasks returned

by getAvailableSubtasks(t,a'), then we attempt to schedule a subtask on processor

a before a'.

To understand the motivation for our processor-priority heuristic, we consider the

following. Consider a set of processors, each with a set of available subtasks, where

any one available subtask could be scheduled at time t. When the first processor

schedules one of its available subtasks at time t, that subtask will occupy a set of

shared memory resource, RM, and may activate an intra-task deadline. When the

other processors attempt to schedule their available subtasks, the algorithm must

ensure consistency relative to the constraints generated by the scheduling of the first

processor's subtask. Therefore, when the first processor schedules a subtask, the

domain of available, feasible subtasks for the other processors equal to or smaller

than the domain of available, feasible subtasks before the first processor schedules a

subtask.

Since each time a processor schedules a subtask at time t it reduces the number

of available, feasible subtasks for other agents at time t, we want to reduce the

probability that an agents domain of available, feasible subtasks will be reduced

to zero. To reduce this risk, our heuristic orders the scheduling process so that

processors with larger domains of available subtasks schedule after processors with

smaller domains of available subtasks. We do not consider the set of available and
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feasible subtasks for this heuristic so that we can reduce the average computational

complexity of the algorithm.

In Line 10, we iterate over each processor, a, prioritized by our processor-priority

heuristic. If the processor a is not busy executing a subtask (Line 11), we collect

all released, unexecuted subtasks assigned to processor a (Line 12). In Line 13, we

prioritize the order in which processor a considers scheduling its available subtasks.

Subtasks are prioritized according to three heuristics.

1. Precedence - Consider a situation where processor a' is assigned to subtask 7/+1

and processor a is assigned to rf. Furthermore, the only released, unscheduled

subtask assigned to a' is 7/+1. Until either a schedules T1 or another subtask

assigned to a' is released, a' will idle. Recall that Tij+1 is dependent on Tf

by precedence. As such, we prioritize i7 assigned to a according to whether

Tij- 1 is completed by a different processor a'. Formally, our metric for subtask

precedence prioritization, irp(-r), is shown in Equation 4.8.

lrp(Ti4) = 1 (AiA-1) (4.8)

2. Resource - If two subtasks, T3 and y are both available and unexecuted at

time t such that RJ n RY $0 and Ai = AY, the processor will not be able to

concurrently execute 'ri and rx due to their shared memory resource constraints.

We want to reduce the prevalence of processors being forced to idle due to shared

memory resource constraints, so we prioritize subtasks that requires resource

set Rj based on how many unexecuted subtasks need those resources. Formally,

our metric for subtask resource prioritization,7FR (r), is shown in Equation 4.9,

where 1 (RinRY#0) equals one if one of the shared memory resources required by

Tr and ry is the same. Otherwise, 1 (RjnRY#A) equals zero. Thus, Equation 4.9

returns the number of unexecuted subtasks using a resource required by Ti.

7rR(T) (R=SnR0) (4.9)
Tx Eruneecuted
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3. Location - We recall our real-time processor scheduling analogy from Chapter

1, where we model robot workers as computer processors. Because we want

to reduce the travel distance and time of the workers, we include a heuristic

that prioritizes subtasks according to how close they are to the current location

of the worker. If xi E R is the centroid of the space required by the set of

resources required to execute o'T, then we can compute a metric for the proximity

of one subtask to another, 7r,(rf, Tr), by Equation 4.10, where <f is the subtask

processor a is considering scheduling, and T is the last subtask scheduled by

the processor a. We use the square of the Euclidean norm because the square

root operation is computationally expensive. If the robot workers are moving

along a rail, then R" = R'. If the robot workers are moving along a floor or

around the surface of a fuselage (i.e., polar coordinates), then R7 = R2.

7rl~rfTr) = 1| b - 1!2 (4.10)

To combine these three heuristics into one priority metric, we order subtasks according

to a tiered-sort. First, we say that all available subtasks assigned to processor a are

prioritized first by one heuristic (e.g., ir,). Among those subtasks that have an equal

priority, we further prioritize by a second heuristic (e.g., lrR). We repeat this operation

for the third heuristic.

After prioritizing the available subtasks for processor a, we iterate over those

subtasks according to their priority (Line 14). We get the next available subtask, -rf

(Line 15), and determine whether we can guarantee that our algorithm can find a

feasible schedule if processor a and schedules Tri for resource set Rj at time t using

our online consistency test (Line 16), which we describe in Section 4.4.2. Our test

considers both <f, and the subtasks in rl's subtask group, Gj.

If ri passes our online consistency test, then we schedule fi on processor A3 = a

and shared memory resource set Rj (Lines 17-18). After attempting to schedule

subtasks on all processors, we increment the clock (Line 27). If all tasks (i.e. all

subtasks) in -r have been scheduled, then the scheduling operation has completed
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(Line 25).

4.4.2 Multiprocessor Russian Dolls Test

The Multiprocessor Russian Dolls Test is a schedulability test for ensuring temporal

feasibility while scheduling tasks against deadline constraints and shared memory

resources. To understand how the Russian Dolls Test works, we must know three

temporal and three spatial pieces of information about ir E TaEive. We recall a

subtask is active if it is associated with an active intra-task or subtask deadline. We

define three temporal parameters describing rf in Definitions 17, 19, and 21, and

three spatial parameters describing Tri and Definitions 18, 20, and 22.

Definition 17. tmaxI,, is defined as the remaining time available to execute the

unexecuted subtasks in Gi assigned to processor a provided that at least one subtask

in GI is assigned to a. We compute tmaxI{ using Equation 4.11, where j' is the

subtask index of the last, unexecuted subtask in G- assigned to processor a.

De a)(ib +_i (EI=j'+i Ci + Eiq1
min D~il)(i~b) ± -) - t, if 3Del) a i b

T ,E~+1 Cf+ E
tmax|1 = [ T q-1

m [D - ,+1 C + E ) 1 i j Kbmin -q-, if 3Di"1 jb
T ,+1C + E

(4.11)

Definition 18. tmaxIjr is the remaining time available to execute the unexecuted

subtasks in Gq that require resource r. We compute tmax|j using Equation 4.12,

where j' is the subtask index of the last, unexecuted subtask in Gi that requires r

provided that at least on subtask in Gi requires r.
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min [Da),(i,b) + s E - ( j' 1 C + E - if 3D a
m i n -q -,±1 ) (ia ) ,(i ,b ) J < j b

mil- - ( , 1 0 + Ei-

Dt u C + E ta i ass to pcs

tasct in f on oftmn i|

tmiI~aT~ +C ~ ~ f + Ei)ja< b (~as1 <) (.3

(4.12)

Definition 19. tmin|,r is a lowerbound on the time processor a will be occupied

executing the remaining subtasks in Gq ass'gned to processor a provided that at least

on subtask in Gi is assigned to a. We compute tmin|ia using Equation 4.13, where

ueis the subtask index of the last, unexecuted subtask in G assigned to processor

c. Because a processor may not be able to interleave a subtask 'Fr during the self-

suspensions between subtasks in Gi, we conservatively treat those self-suspensions as

task cost in our formulation of tnin||

b-1

tmin|,q = Ci + 1: Cq + El, if (<Dj(ia),(i,b)|a < j < b) V (3Da b b) (4.13)
q=j

Definition 20. tmin|, is a lowerbound on the time resource r will be occupied exe-

cuting the remaining subtasks in Gq provided that at least on subtask in Gj' requires

r. We compute tnin| , using Equation 4.14, where j' is the subtask index of the last,

unexecuted subtask in Gjj that requires resource r. Because a processor may not be

able to interleave a subtask -r,, during the self-suspensions between subtasks in G , we

conservatively treat those self-suspensions as task cost in our formulation of trnin|ji .

b-1

jmn{ = Cib + q C + Ejq, if (3D(',e),ib| 5 5b V (3D abs 1 < j < b) (4.14)
q=j

Definition 21. tj|j,, is slack time available for the processor to execute subtasks not
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in G'. This duration is equal to the difference between tmax|lp and tmin .

t6 la = taxka, - tmin|{, (4.15)

Definition 22. tIacklr is slack time available to schedule subtasks not in G' that

require resource r not in the Gj. This duration is equal to the difference between

tmaxi,r and tmin|,r.

t6|q, = tmax| , - tmintr (4.16)

Multiprocessor Russian Doll Test: Definition

The Multiprocessor Russian Dolls Test extends from the uniprocessor version of the

Russian Dolls Test in Chapter 3, which considers intra-task deadlines for one pro-

cessor. Different from the uniprocessor version, the multiprocessor test must also

consider processor-subtask assignments, shared memory resources, and subtask dead-

lines.

For intra-task deadlines with shared memory resources, the Multiprocessor Rus-

sian Dolls Test uses two criteria akin to the criteria used for the uniprocessor test:

first, whether the direct execution of ri at time t will result in a subtask, 4', miss-

ing its deadline during the interval t = [si, fJ] due to some D rel or Ri, where

w < y z, and, second whether activating this deadline will result in a subtask

missing its deadline during the interval t - [ft, dgy(b)] due to some D(X'W),(X'z) or

RY.

To check the first criteria, we can merely evaluate whether the cost of ri (i.e., Cj7)

is less than or equal to the processor slack (e.g., ts|;,,) and resource slack (e.g., tsI|,,)

of every active intra-task or subtask deadline. For the second criteria, if there is a

deadline D()(ib), then we must consider the indirect effects of activating that dead-

line on the processors assigned to and resources required by Gi U G' after executing

ri. To satisfy the second criteria we must evaluate two sets of conditions. First, for

all active deadlines Drel and Dabs and processors a, we must be able to nest(X,W),(X,Z) x'w
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the subtasks in Gw assigned to processor a within the slack of GI (a $ x) assigned

to processor a, or vice versa. Second, for all active deadlines D)and Drl and

shared memory resources r, we must be able to nest the subtasks in G' that require

r within the slack of Gb (a $ x) that require r, or vice versa.

Lastly, the Russian Dolls Test also accounts for the consistency between subtask

deadlines. Because all of the subtask deadlines will be activated as soon as scheduling

begins (i.e., at t = 0), we need to ensure that all subtasks constrained by these

deadlines can satisfy their temporal and shared memory resource. To perform this

check, we can use the method for the second criteria for intra-task deadlines, but

exclusively for subtask deadlines. First, for all subtask deadlines Dab and processors

a, we must be able to nest the subtasks of each Gw assigned to processor a within

the slack of of Gb (a # x) assigned to processor a, or vice versa. Second, for all active

deadlines Dab and shared memory resources r, we must be able to nest the subtasks

of each Gw that require r within the slack of of the subtask each G' (a $ x) that

require r, or vice versa.

Multiprocessor Russian Doll Test: Walk-Through

We provide pseudocode to describe the multiprocessor Russian Dolls Test in Figure

4.4.2. The Russian Dolls Test takes as input a subtask -ri, the task set r, the current

simulation time t, and the type of test. The Russian Dolls Test returns the feasibility

of the set of subtask deadlines (if type = 1) or the feasibility of scheduling -r at time

t (if type # 1).

If the scheduling algorithm calls the Russian Dolls Test to determine the feasibility

of subtask deadlines, then we first determine whether we can nest the set of subtask

deadlines within each other for all processors required by those subtasks (Line 2).

Second, we determine whether we can nest the set of subtask deadlines within each

other for all resources required by those subtasks (Line 3). If the nesting for proces-

sors and resources is possible, then we guarantee that our multiprocessor scheduling

algorithm will find a feasible schedule with respect to subtask deadline constraints.

If the scheduling algorithm calls the Russian Dolls Test to determine the feasibility
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scheduling Tri at time t, we first store the processor and resource required to execute Ti1

(Lines 9-10). In Line 11, we iterate over all subtasks that are active and next and not

to -ri. For a subtask, 4r to be in active and next, -r4 l must have been completed and

there must be an intra-task deadline Drel a w < y < z or a subtask deadline(X,W),(X,Z)

Dal E y < z. In Line 12, we store the kth active and next subtask not r-.

In Lines 13-17, we evaluate the first consideration of the Russian Dolls Test:

whether the cost of rfi (i.e., C) is less than or equal to the processor and resource

slack of all active deadlines that require that processor and resource, respectively. If

not, then executing -ri at time t will directly result in -r missing its deadline, so we

return that the nesting is not possible (Line 14). We note that if rf, with associated

deadline D j),(ijz), passes the Russian Dolls Test, we do not need to re-test De)I

when attempting to execute any subtask in the set {T+1,... , 1F}. For the processor

to execute a subtask in {rj+1, . . . , Tj}, we simply test whether the cost of the subtask

is less than or equal to the resource and processor slack of every other active deadline

(not including Dgrd(yZ,)) that requires Ri and Ai.

Next, we evaluate the second consideration of the Russian Dolls Test: if there is a

deadline D"hi, en we must consider the indirect effects of activating D", on

the processor after executing <f. To determine whether the scheduling algorithm will

find a feasible schedule if we activate D(e , at time t, we consider whether we can

nest the execution of {rj+, . . . , Tr} amongst all other active deadline constraints for

the processors (Line 16) and resources (Line 17) required to execute those subtasks.

If not, then we cannot guarantee that the scheduling algorithm will find a feasbile

schedule, so we return false (Line 9). After iterating over all active, next subtasks

not equal to TriZ, and we are able to satisfy both criteria of the Russian Dolls Test, we

may execute r at time t.

4.5 Computational Complexity

We upperbound the computational complexity of our multiprocessor scheduling algo-

rithm at each time step. At each time step, the algorithm would call multiproces-
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multiprocessorRussianDollsTest(-
1: if type = 1 then
2: if (tmaxl,a ts ) V ( >
3: if (tmaxIY, < t r|(,) V (tI|,,
4: return true
5: end if
6: end if
7: return false
8: else

9:
10:
11:
12:
13:
14:
15:
16:

17:
18:
19:
20:
21:
22:
23:
24:

7,-i,t,type)

tmax ia)
;> tmaxL

a't+ Ai
r'+ Ri
for k = 1 to I{(Tactive r Thezt) \-r}I do

4' +- {(Tactie n Tnext) \rj}(k)
if Cl > t,5 , , A Ci > t6 IY,,, then

return false
end if
if (tmaxIfa t3,+'1) V (t619, >- tmax

if (tmax < tji) V (t6 I , > t

return true
end if

end if
return false

end for
end if
return true

VD , DabsI a then

r) , VD , Dabs, r then

,+i) ,Va then

max|ir) ,Vr then

Figure 4-2: Pseudocode describing the Multiprocessor Russian Dolls Test.
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sorRussianDollsTest(Fi,r,t,type) at most n times, because, at most n subtasks are

available at any time t. In the worst case, the Russian Dolls Test evaluations n active

deadlines with subtasks assigned to a = JAl processors and r = IRI shared memory

resources, where R is the set of all shared memory resources. Thus, the complexity of

the Russian Dolls Test is O(n(a+r)). At most, a subtasks can pass the Russian Dolls

Test at each time step and be scheduled. Therefore, the JSF Scheduling algorithm

performs at most O(n 2 (a + r) + a) operations for each time step.

4.6 Conclusion

We have presented a multiprocessor scheduling algorithm for hard, non-preemptive,

self-suspending task sets with intra-task deadline constraints, subtask deadlines, and

shared memory resources. Our scheduling algorithm utilizes a polynomial-time, on-

line consistency test, which we call the Multiprocessor Russian Dolls Test, to ensure

temporal consistency due to the temporal and shared memory resource constraints of

the task set. Allowing for multiple processors, shared memory resources, and subtask

deadlines is and extension from our uniprocessor Russian Dolls Test we develop in

In Chapter 3. In Chapter 5, we describe how we embed the multiprocessor schedul-

ing algorithm into a task allocation and scheduling algorithm, Tercio, to provide

the capability of dynamically coordinating the teams of robots in the manufacturing

environment.
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Chapter 5

Fast Scheduling of Multi-Robot

Teams with Temporospatial

Constraints

5.1 Introduction

In this Chapter, we present Tercio, a centralized task assignment and scheduling

algorithm that scales to multi-agent, factory-size problems and supports on-the-fly

replanning with temporal and spatial-proximity constraints. We demonstrate that

this capability enables human and robotic agents to effectively work together in close

proximity to perform manufacturing-relevant tasks.

We begin in Section 5.2 with a review of prior work. In Section 5.3 we formally

define the problem we solve, and we outline our technical approach in Section 5.4. In

Section 5.5, we provide the Tercio algorithm including pseudocode, and Section 5.6

describes the fast multi-agent task sequencer, called as a subroutine within Tercio.

Section 5.7 presents the empirical evaluation, and describes the application of the

algorithm in a multi-robot hardware testbed.
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5.2 Background

There is a wealth of prior work in task assignment and scheduling for manufacturing

and other applications. While the problem in many cases may be readily formulated

and solved as a mixed-integer linear program (MILP), the complexity of this approach

is exponential and leads to computational intractability for problems of interest in

large-scale factory operations [5]. To achieve good scalability characteristics, various

hybrid algorithms have been proposed. A brief survey of these methods follows.

One of the most promising approaches has been to combine MILP and constraint

programming (CP) methods into a hybrid algorithm using decomposition (e.g. Ben-

ders Decomposition) [25, 26, 27]. This formulation is able to gain orders of magnitude

in computation time by using a CP subroutine to prune the domain of a relaxed for-

mulation of the MILP. However, if the CP is unable to make meaningful cuts from

the search space, this hybrid approach is rendered nearly equivalent to a non-hybrid

formulation of the problem. Auction methods (e.g. [6]) also rely on decomposition

of problem structure and treat the optimization of each agent's schedule as indepen-

dent of the other agents' schedules. These techniques preclude explicit coupling in

each agent's contribution to the MILP objective function. While the CP and auction-

based methods support upperbound and lowerbound temporal deadlines among tasks,

they do not handle spatial proximity constraints, as these produce tight dependencies

among agents' schedules that make decomposition problematic. Typically, allowing

multiple robots to work closely in the same physical space produces dependencies

among agents' temporal and spatial constraints, producing uninformative decompo-

sitions and non-submodular conditions.

Other hybrid approaches integrate heuristic schedulers within the MILP solver

to achieve better scalability characteristics. For example, Chen et al. incorporate

depth-first search (DFS) with heuristic scheduling [10], and Tan incorporates Tabu

Search [49] within the MILP solver. Castro et al. use a heuristic scheduler to seed

a feasible schedule for the MILP [9], and Kushleyev et al. [30] apply heuristics for

abstracting the problem to groupings of agents. These methods solve scheduling
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problems with 5 agents (or groups of agents) and 50 tasks in seconds or minutes,

and address problems with multiple agents and resources, precedence among tasks,

and temporal constraints relating task start and end times to the plan epoch time.

However, more general task-task temporal constraints are not considered.

5.3 Formal Problem Description

In this section, we formulate the task assignment and scheduling problem for multiple

robots moving and working in the same physical space as a mixed-integer linear

program (MILP). Problem inputs include:

" a Simple Temporal Problem (STP) [14] describing the interval temporal

constraints (lowerbound lb and upperbound ub) relating tasks (e.g. "the first

coat of paint requires 30 minutes to dry before the second coat may be applied"

maps to interval constraint secondCoatStart - firstCoatFinish E [30, inf),

and the constraint that "the entire task set must be finished within the 120

minutes" maps to finishTaskset - startTaskSet E [0, 120]),

* two-dimensional cartesian positions specifying the floor spatial locations

where tasks are performed (in our manufacturing application this is location on

the factory floor),

" agent capabilities specifying the tasks each agent may perform and the agent's

expected time to complete each task, and

" allowable spatial proximity between each pair of agents.

A solution to the problem consists of an assignment of tasks to agents and a

schedule for each agent's tasks such that all constraints are satisfied and the objective

function is minimized. The mathematical formulation of the problem is presented

below:

min(z), z = f(A, Ap, x, s, f, -r,Y) (5.1)
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subject to

Aa,j = 1,Vi E T (5.2)
aEA

ubij 5 fi - si ubij, Vi E 7 (5.3)

fi - si > lba,i - M(1 - Ai,k), VTri E , a c A (5.4)

fi - si 5 uba,i + M(1 - Aa,i), Vri E -, a E A (5.5)

sj - fi M(1 - xi,), Vri, j E Tr (5.6)

si - fj Mxi,, Vi, Tj E rR (5.7)

s. - fi > M( -xij) + M(2 - A, - A)VTi, Tj E r (5.8)

si - f, Mxi,, + M(2 - Aa,i - Aa,j)VTi, Tj E r (5.9)

In this formulation, Aa,i E {0, 1} is a binary decision variable for the assignment

of agent a to task ri, xij is a binary decision variable specifying whether Ti comes

before or after T, and si, fi are the start and finish times of ri. A is the set of all

agents a, r is the set of all tasks, ri, r is the set of all the set of task pairs (i, j) that

are separated by less than the allowable spatial proximity. Y is the set of all temporal

constraints defined by the task set, and is equivalently encoded and referred to as

the Simple Temporal Problem (STP) [14]. M is an artificial variable set to a large

positive number, and is used to encode conditional constraints. Figure 5-1 visually

depicts a problem instance of this MILP, with two robots and six tasks (depicted as

six stripes on the workpiece).

Equation 5.2 ensures that each task is assigned to one agent. Equation 5.3 ensures

that the temporal constraints relating tasks are met. Equations 5.4 and 5.5 ensure

that agents are not required to complete tasks faster or slower than they are capa-

ble. Equations 5.6 and 5.7 sequence actions to ensure that agents performing tasks

maintain safe buffer distances from one another. Equations 5.8 and 5.9 ensure that

each agent only performs one task at a time. Note Equations 5.6 and 5.7 couple the

variables relating sequencing constraints, spatial locations, and task start and end
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Figure 5-1: Example of a team of robots assigned to tasks on a cylindrical structure.

times, resulting in tight dependencies among agents' schedules.

The objective function f f(A, Ap, x, s, f, R, r, -y) is application specific. In our

empirical evaluation in Section 5.7 we use an objective function that includes three

equally weighted terms. The first term minimizes fi (A, A, r), the difference between

the previous agent assignment and the returned agent assignment. Minimizing this

quantity helps to avoid oscillation among solutions with equivalent quality during

replanning. The second term f2 (A) minimizes the number of spatial interfaces be-

tween tasks performed by different robots. Inter-robot accuracy is challenging for

multi-robot systems of standard industrial robots. In robot painting, this can lead to

gaps or overlaps at interfaces between work done by two different robots, and so we

seek a task assignment with the fewest interfaces possible. In Figure 5-1 the agent

allocation results in one interface between the red work assigned to the left robot and

the blue work assigned to the right robot. The third term f3 (A, x, s, f, -Y) minimizes

the sum of the idle time for each agent in the system, which is functionally equivalent

to minimizing the time to complete the entire process (i.e. the makespan).
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5.4 Our Approach

In this section, we outline our technical approach for efficiently solving this MILP.

Tercio is made efficient through a fast, satisficing, incomplete multi-agent task se-

quencer that is inspired by real-time processor scheduling techniques that leverage

problem struture. We decompose the MILP into a task allocation and a task se-

quencing problem. We modify the MILP to support this decomposition, and use the

task sequencer to efficiently solve for the subproblem involving Equations 5.3-5.9 and

objective term f 3(A, J, S, E,y). We demonstrate that this approach is able to gener-

ate near-optimal schedules for up to 10 agents and 500 work packages in less than 20

seconds.

Real-Time Processor Scheduling Analogy

We use a processor scheduling analogy to inspire the design of an informative, polynomial-

time task sequencer. In this analogy, each agent is a computer processor that can

perform one task at a time. A physical location in discretized space is considered

a shared memory resource that may be accessed by up to one processor at a time.

Wait constraints (lowerbounds on interval temporal constraints) are modeled as "self-

suspensions," [33, 44] times during which a task is blocking while another piece of

hardware completes a time-durative task.

Typically, assembly manufacturing tasks have more structure (e.g., parallel and

sequential subcomponents), as well as more complex temporal constraints than are

typical for real-time processor scheduling problems. Al scheduling methods handle

complex temporal constraints and gain computational tractability by leveraging hi-

erarchical structure in the plan [46]. We bridge the approaches in Al scheduling

and real-time processor scheduling to provide a fast multi-agent task sequencer that

satisfies tightly coupled upperbound and lowerbound temporal deadlines and spa-

tial proximity restrictions (shared resource constraints). While our method relies on

a plan structure composed of parallel and sequential elements, we nonetheless find

this structural limitation sufficient to represent many real-world factory scheduling
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TERCIO(STP, P,i, Ag, -y, R, cutof f)
1: makespan +- inf

2: while makespan > cutoff do
3: A +- exclude previous allocation Pa,i from agent capabilities
4: A +- TERCIO-ALLOCATION(y, STP, Ag)
5: STP +- update agent capabilities
6: makespan, seq +-

TERCIO-SEQUENCER(A, STP, R, cutof f)
7: end while
8: STP +- add ordering constraints to enforce seq
9: STP +- DISPATCHABLE(STP)

10: return STP
Figure 5-2: Psuedo-code for the Tercio Algorithm.

problems.

5.5 Tercio

In this section, we present Tercio, a centralized task assignment and scheduling al-

gorithm that scales to multi-agent, factory-size problems and supports on-the-fly re-

planning with temporal and spatial-proximity constraints. Pseudo-code for the Tercio

algorithm is presented in Figure 5-2.

The inputs to Tercio are as described in Section 5.3. Tercio also takes as input a

user-specified makespan cutoff (Line 2) to terminate the optimization process. This

can often be derived from the temporal constraints of the manufacturing process. For

example, a user may specify that the provided task set must be completed within an

eight-hour shift. Tercio then iterates (Lines 3-7) to compute an agent allocation and

schedule that meets this makespan. Because Tercio uses a satisficing and incomplete

sequencer, it is not guaranteed to find an optimal solution, or even a satisficing solu-

tion if one exists. In practice, we show (Section 5.7) Tercio produces makespans within

about 10% of the optimal minimum makespan, for real-world structured problems.
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5.5.1 Tercio: Agent Allocation

Tercio performs agent-task allocation by solving a simplified version of the MILP

from Section 5.3. The objective function for the agent allocation MILP is formulated

as follows:

min(z), z = fi(A, P, -y) + f2 (A) + v (5.10)

where, recall g minimizes the difference between the previous agent assignment and

the returned agent assignment to help avoid oscillations between equivalent quality

solutions during replanning, and h minimizes the number of spatial interfaces between

tasks performed by different robots.

We introduce a proxy variable v into the objective function to perform work-

balancing and guide the optimization towards agent allocations that yield a low

makespan. The variable v encodes the maximum total task time that all agents

would complete their tasks, if those tasks had no deadline or delay dependencies and

is defined as:

V > Z cj x AjVa E A (5.11)

where c1 is a constant representing the expected time of each task. We find in practice

the addition of this objective term and constraint guides the solution to more efficient

agent allocations. The agent allocation MILP must also include Equations 5.2 and 5.3

ensuring each task is assigned to exactly one agent and that the agent-task allocation

does not violate the STP constraints.

5.5.2 Tercio: Pseudocode

A third-party optimizer [1] solves the simplified agent-allocation MILP (Line 4)

and returns the agent allocation matrix A. Interval temporal (STP) constraints are

updated based on this agent allocation matrix by tightening task time intervals (Line

5). For example, if a task is originally designated to take between five and fifteen

minutes but the assigned robot can complete it no faster than ten minutes, we tighten
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the interval from [5,15] to [10, 15].

The agent allocation matrix, the capability-updated STP, and the spatial map of

tasks are then provided as input to the Tercio multi-agent task sequencer (Line 6).

The task sequencer (described further in Section 5.6) returns a tight upperbound on

the optimal makespan for the given agent allocation as well as a sequence of tasks for

each agent.

While this makespan is longer than cutof f, the algorithm iterates (Lines 3-7), each

time adding a constraint (Line 3) to exclude the agent allocations tried previously:

E Aa,i + E (1 - Aa,i) > 0 (5.12)
a,i1L,,,i=0 a,ijL.,i=1

where La,i is the solution from the last loop iteration.

Tercio terminates when the returned makespan falls beneath cutoff, or else when

no solution can be found after iterating through all feasible agent allocations. If the

cutoff makespan is satisfied, agent sequencing constraints (interval form of [0, oo))

are added to the STP constraints (Line 8). Finally the resulting Simple Temporal

Problem is compiled to a dispatchable form (Line 9) [38, 52], which guarantees

that for any consistent choice of a timepoint within a flexible window, there exists

an optimal solution that can be found in the future through one-step propagation of

interval bounds. The dispatchable form maintains flexibility to increase robustness to

disturbances, and has been shown to decrease the amount of time spent recomputing

solutions in response to disturbances by up to 75% for randomly generated structured

problems [52].

5.6 Tercio: Multi-agent Task Sequencer

The key to increasing the computational speed of Tercio is our hybrid approach

to task sequencing. Tercio takes as input a set of agent-task assignments and a

well-formed self-suspending task model (defined below), and returns a valid task

sequence if one can be found by the algorithm. The task sequencer is merely satisficing
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and is not complete; however, we empirically validate that it returns near-optimal

makespans when integrated with the Tercio Agent Allocation algorithm (See Section

5.7). In this section, we provide an overview of the multi-agent task sequencer by first

introducing our task model, which is inspired by real-time systems scheduling. Second

we describe how our fast task sequencer works to satisfy temporospatial constraints.

A full treatment can be found in Chapter 4.

5.6.1 Well-Formed Task Model

The Tercio Task Sequencer relies on a well-formed task model that captures hierar-

chical and precedence structure in the task network. The basis for our framework is

the self-suspending task model [33], described in Equation 5.13.

Tj : ((CiEl, C , Ei, ... , Ci (5.13)

In this model, there is an instance, I, with a set of tasks, r, that must be processed

by the computer. For each task, there are mi subtasks with mi - 1 self-suspension

intervals for each task ri E -r. We use rk to denote the kth subtask of ri, Ck is the

expected duration (cost) of Tr. Ek is the expected duration of the kth self-suspension

interval of ri. T and Di are the period and deadline of ri, respectively. Furthermore,

subtask -ri is assigned to processor A .

The standard self-suspending task model provides a solid basis for describing many

real-world processor scheduling problems of interest. In this work we present an

augmented model to better capture problem structure inherent in the manufacturing

environment:

Tj : (#i , (ClI El, .. ., Ej -1, Cf),Aj, T =H, Dj= H, Di, )Dik" (5.14)

where we set the implicit deadlines of the tasks equal to the period of the task set.

This modification models well many assembly line manufacturing processes where the

set of tasks at one location is repeated once every "pulse" of the production line. In
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this scenario, the user allots a certain amount of time, T, for the set of tasks to be

accomplished, and the set of tasks is repeated with a period of T. For convenience,

we will not explicitly state (T = T, Di = T) from Equation 5.14 in the remainder of

the paper; however, these constraints are implied. For convenience, we also assume

all tasks are non-preemptable, meaning the interruption of a subtask significantly

degrades its quality.

The second adaptation we make is to allow phase offsets for each task, where a

phase offset is a delay between the epoch time and the release of the given task. This

allows a user expressiveness to require that an agent wait a specified time interval

before starting the first subtask of a task.

The third change we make is to enable the user to specify intra-task deadlines,

D )re) between the start and end of two subtasks for a given task and subtask

deadlines, DO' for an individual subtask. We define an intra-task deadline in Equa-

tion 5.15 and a subtask deadline in Equation 5.16. The set of intra-task deadlines for

Ti is Drel.

Dijb :(f(rb) - s(TF) d(ij),(i,b)) 1 j b mi (5.15)

Dabs): (f(,ri) < da) D 1 < b < mi (5.16)

where the operator fb is the finish time of subtask ri, si is the start time of sub-

task 7rj. For Equation 5.15, d)b is the upperbound temporal constraint between

- and For Equation 5.16 dabs is the absolute deadline for rb. This deadline

constraints provide additional expressiveness to encode binary temporal constraints

relating tasks in the manufacturing process. For instance, these constraints may be

used to specify that a sequence of subtasks related to sealant application must be

completed within a half hour after opening the sealant container. These types of

constraints are commonly included in Al and operations research scheduling models

[5, 14, 38, 52].

We also extend the model to include shared memory resources. Each subtask

r requires a set of ki shared memory resources R - {R,,..., Rk} be utilized to
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perform that subtask (e.g. for memory shared among multiple processors). In the

manufacturing analogy, a shared memory resource corresponds to a region of space

in the factory that must physically be unoccupied for an agent to execute a subtask

there. These shared memory resources are used to encode hard spatial constraints

that prohibit agents from working in close physical proximity.

Next we describe how the Tercio Task Sequencer leverages the structure of the well-

formed task model to compute a schedule that satisfies upperbound and lowerbound

temporal constraints, as well as spatial-proximity restrictions. To our knowledge,

this is the first real-time scheduling method for multi-processor systems that (1) tests

the schedulability of self-suspending, non-preemptive tasks where multiple tasks in r

have more than one self-suspension [33, 32, 43], and (2) that extends self-suspending

models to include shared memory resources.

5.6.2 Multi-agent Task Sequencer Overview

The Tercio multi-agent task sequencer pseudo-code takes as input a task set r of

a well-formed task model (also called the STP constraints) and the user-specified

makespan cutoff. The algorithm returns a valid task sequence for each agent, if one

can be found, and an upperbound on the time to complete all tasks. This upperbound

on completion time is compared to cutof f to test schedulability of a well-formed task

model.

Restriction on the Behavior of the Scheduler

We introduce three task-based heuristic restrictions an agent based heuristic restric-

tion and on the scheduling simulation that address the types of schedule bottlenecks

that hinder efficient execution in the well-formed task model augmented with shared

memory resources.

First, we introduce a heuristic 7rp(ij1) (Equation 4.8) to ease bottlenecks due to

inter-agent precedence constraints. Second, we introduce a heuristic 1rR(T'j) (Equation

4.9) that prioritizes subtasks according to the number of other subtasks in the model
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that will require the same resource. Lastly, we introduce a heuristic 7r( ri) (Equation

4.10) to reduce travel distance. While travel time is small relatively to the task

durations of interest, we do not want robots to move erratically about the space from

the point of view of their human teammates.

These three heuristics can be combined in various formulations. We have chosen

a tiered system, in which tasks are ordered according to one heuristic. Then, for all

tasks that have the same value based on the first heuristic, those tasks are ordered

according to a second heuristic. This process is repeated for the last heuristic. The

order in which the heuristics are applied can be tuned a priori with the knowledge

of what kind of bottlenecks govern the system. For our real-world problems in large-

scale assembly manufacturing, we find the the key bottleneck is the need to satisfy

precedence constraints between subtasks assigned to different agents. For the results

discussed in this paper, we order the heuristics as follows: 1) -r,(TFj), 2) r1R(Ti), 3)

We also use an agent-based heuristic to improve the efficiency of the schedule.

The order with which agents are scheduled is chosen based on how many released,

unexecuted subtasks are assigned to the agents. When each agent is scheduled, the

domain of subtasks that can be correctly scheduled either is unchanged or decreases. If

an agent with relatively few subtask options schedules last, that agent may be forced

to idle because of constraints imposed by the other agents schedules. Therefore,

we prioritize the order with which agents are scheduled such that agents with more

released, unexecuted subtasks schedule after those with fewer released, unexecuted

subtasks.

Finally, our scheduling policy requires that an agent not idle if there is an avail-

able subtask, unless executing that subtask will violate a subtask-to-subtask deadline

constraint. This condition is checked via an online temporospatial consistency test.

Multi-Agent Online Consistency Check.

During the scheduling simulation, we perform an online consistency check, which

we call the Multiprocessor Russian Dolls Test (Chapter 4), that ensures that the
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scheduling of a next subtask, Ti, will not result a missed deadline for a different

subtask, -r., or violate a spatial-proximity constraint. Note, by the definition of a

well-formed task model, ri and -Fj must be different tasks for their subtasks to be

scheduled concurrently.

Our well-formed self-suspending task model includes absolute deadlines, Dabs(i,b)

relating a subtask -r to the plan epoch time, and inter-subtask deadline, D(jj),(i,b),

from ii to rb. We now introduce a definition for the an active deadline, which we use

to describe our online consistency test.

Definition 23. Active Deadline - Consider an intra-task deadline Dr,, or an

absolute deadline Da S. An intra-task deadline is considered active between 0 < t <

min(fij,, D b), and an absolute deadline is considered active between 0 < t <

min fj, D1.

We readily formulate our online consistency test as a constraint satisfaction prob-

lem. First, we will consider the case where we have multiple, active, inter-task dead-

lines. We evaluate Equations 5.17-5.22 for the union of all active deadlines and the

deadline we are considering activating.

aa 1a x,yz,a) I(,k~a)VA(.7
(i,j),(i,k) - (x,y),(x,z), VDI ' D", EA

~j:k =( -j),((k) a(i~ik~a) + Z 7 (C + E )) (5.18)

a =D6(iji,k,a) _t (5.19)
(x,y),(x,z) = i

y VD(Y r)Dfr(' ,kr) Vr E R (5.20)(i 'j),(i,k) - (x,Y),(x,z)l i

j:k ~ /(ij),(ik) 3r(i,j,k,r) + ,j, (Cf + E(E )) (5.21)

r) = D(ikr) - t (5.22)Y(x,Y),(X,z) = i

Equation 5.17 determines whether or not we can "nest" a set of tasks within the

"slack time" of the deadline associated with another set of tasks. Specifically, we

must ensure that Y(Yij),(ik), defined as the amount of time an agent a is occupied with

subtasks {i, .. . ,} associated with D ,k (or Dibk where j = 1), is less than
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the slack time, 6,,, for the agent a's other commitments to {I-r, ... , rZ} associated

with active deadline D"'%) or D(x, y)abs. Slack is calculated in Equations 5.18-

5.19, where a(i, j, k, a) and 0a(i, j, k, a) refer respectively the next and last subtask

to which agent a is assigned to in {I T, . ,rik}.

We utilize the same methodology for spatial constraints in Equations 5.17- 5.19.

Specifically, we test whether 7(ij),(ik), defined as the amount of time an resource r is

occupied with subtasks {rf,. . . , i} associated with Dre , or Dab, is less than the

slack time, 6xr,y:, for the resource r's other commitments to {T , .. , rk} associated

with active deadline Drg)() or D(, y)abs.

Our multi-agent sequencer uses a polynomial-time version of this online consis-

tency test to evaluate the feasibility of scheduling subtasks. A full description of the

online consistency test is provided in Chapter 4 Section 4.4.2. The complexity of this

consistency check is O(n(a + r)) where n is the number of tasks, a is the number of

agents, and r is the number of resources.

5.7 Evaluation and Discussion

In this section, we empirically validate that Tercio is fast and produces near-optimal

solutions for the multi-agent task assignment and scheduling problem with temporal

and spatial-proximity constraints.

5.7.1 Generating Random Problems

We evaluate the performance of Tercio on randomly generated, structured problems

that simulate multi-agent construction of a large structural workpiece, such as an

airplane fuselage or wing.

Task times are generated from a uniform distribution in the interval [1, 101. Ap-

proximately 25% of the subtasks are related via a nonzero wait duration (lowebound

constraint) drawn from the interval [1, 10], and approximately 25% of the subtasks

are related via an upperbound temporal deadline generated randomly to another sub-

task. The upperbound of each deadline constraint, D' , is drawn from a normal
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distribution with mean set to the lowerbound temporal duration between the start

and end of the set of subtasks in D"A1  . Physical locations of a subtask are drawn

from a uniform distribution in [1, n] where n is the total number of subtasks in the

problem instance, -r. Lastly, we vary the number of subtasks, mi, within each task,

r, from a uniform distribution in the interval [0.25 x numTasks, 1.25 x numTasks],

where numTasks is the number of Ti E I.

5.7.2 Computation Speeds

In Figure 5-3 we evaluate scalability and computational speed of Tercio. We show

the median and quartiles of computation time for 25 randomly generated problems,

spanning 4 and 10 agents, and 5 to 500 tasks (referred to as subtasks in the well-

formed model). For comparison, we show computation time for solving the full MILP

formulation of the problem, described in Section 5.3. Tercio is able to generate flexible

schedules for 10 agents and 500 tasks in seconds. This is a significant improvement

over prior work [9, 10, 49, 30], which report solving up to 5 agents (or agent groups)

and 50 tasks in seconds or minutes.

5.7.3 Optimality Levels

Our fast computation relies on the known structure of our well-formed task model,

but it is desirable to be able to take as input general sets of temporal (STP) con-

straints. General STPs can be reformulated into well-formed task models by adding

and tightening well-formed temporal constraints to make the constraints that violate

the well-formed model redundant. We present results with both random problems

that are well-formed and problems that are general but have been reformulated into

a well-formed task model.

In Figures 5-4-5-5 we show that Tercio is often able to achieve makespans within

10% of the optimal makespan for well-formed models and 15% of the optimal makespan

for general STPs; Tercio is also able to produce less than four additional interfaces

when compared to the optimal task allocation for well-formed models and less than
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Figure 5-3: Empirical evaluation: computation speed as function of number of work
packages and number of agents. Results generated on an Intel Core i7-2820QM CPU
2.30GHz.
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Figure 5-4: Empirical evaluation: Tercio suboptimality in makespan for problems
with 4 agents.

eight additional interfaces for general models. We are unable to measure the subop-

timality gap for larger problem instances due to the computational intractability of

the full MILP. The purpose of Tercio is to solve the problem of scheduling with tens

of agents and hundreds of tasks; as we can see in Figure 5-4, Tercio tightly tracks the

optimal solution.

5.7.4 Robot Demonstration

We demonstrate the use of Tercio to plan the work of two KUKA Youbots. Video

can be found at http: //tiny. cc/t6wjxw. The two robots are working to assemble a

mock airplane fuselage. The robots perform their subtasks at specific locations on the

factory floor. To prevent collisions, each robot reserves both the physical location for

its subtask, as well as the immediately adjacent subtask locations. Initially, the robots

plan to split twelve identical tasks in half down the middle of the fuselage. After the

robots finish their first subtasks, a person requests time to inspect the work completed

on the left half of the fuselage. In the problem formulation, this corresponds to adding

a resource reservation for the left half of the fuselage for a specified period of time.

Tercio replans in response to the addition of this new constraint, and reallocates the
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Algorithm Performance - Interface Optimality
4 Agents
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"Tercio - (General STP)

........ ................................ ....................

00 00 400

. ... ..... .... .. ... .. ... ... . ... ....

00

410
... .. .. .... ......-too.

go
go

...........

4 6 8 10 1
Number of Tasks

.... ...1.
2 14 16

Figure 5-5: Empirical evaluation: Tercio suboptimality in number of interfaces for
problems with 4 agents.

Figure 5-6: Hardware demonstration of Tercio. Two KUKA Youbots build a mock
airplane fuselage. A human worker requests time on the left half of the fuselage to
perform a quality assurance inspection, and the robots replan.
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work among the robots in a near-optimal manner to make productive use of both

robots and to keep the number of interfaces low.

5.8 Conclusion

We present Tercio, a task assignment and scheduling algorithm that is made efficient

through a fast, satisficing, incomplete multi-agent task sequencer inspired by real-

time processor scheduling techniques. We use the fast task sequencer in conjunction

with a MILP solver to compute an integrated multi-agent task sequence that satisfies

precedence, temporal and spatial-proximity constraints. We demonstrate that Tercio

generates near-optimal schedules for up to 10 agents and 500 tasks in less than 20

seconds on average.
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Chapter 6

Towards Successful Coordination

of Human and Robotic Work using

Automated Scheduling Tools: An

Initial Pilot Study

6.1 Introduction

In this chapter, we will seek to understand how much control human workers should

have over the assignment of roles and schedules, when working in a team with robot

partners. Successful integration of robot systems into human teams requires more

than tasking algorithms that are capable of adapting online to the dynamic envi-

ronment. The mechanisms for coordination must be valued and appreciated by the

human workers.

Human workers often find identity and security in their roles or jobs in the factory

and are used to some autonomy in decision-making. A human worker that is instead

tasked by an automated scheduling algorithm may begin to feel that he or she is

diminished. Even if the algorithm increases process efficiency at first, there is concern

that taking control away from the human workers may alienate them and ultimately
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damage the productivity of the human-robot team. The study of human factors

can inform the design of effective algorithms for collaborative tasking of humans and

robots.

In this work, we present results from a pilot study (n = 8) where participants

collaborate with a robot on a construction task. In one condition, both the human

and robot are tasked by Tercio, the automatic scheduling algorithm. In the second

condition, the human worker is provided with a limited set of task allocations from

which he/she can choose. We hypothesize that giving the human more control over

the decision-making process will increase worker satisfaction, but that doing so will

decrease system efficiency in terms of time to complete the task.

We begin in Section 6.2 with a brief review of related work in human factors stud-

ies of human-machine systems and task allocation. In Section 6.3 and Section 6.4 we

describe our experimental method and we report the results from the human subject

experiment. We then discuss the implications, limitations, and lessons learned from

the results of our pilot study in Section 6.5. In Section 6.6, we discuss recommenda-

tions for a full human subjects experiment. Lastly, we summarize our findings and

discuss future work in Section 6.7. For a full description of Tercio, see Chapter 5.

6.2 Background

Developing man-machines systems that are able to leverage the strengths of both

humans and their artificial counterparts has been focus of much attention from both

human factors engineers as well as researchers in artificial intelligence. Parasuraman

has pioneered work examining adaptive automation to regulate operator workload

[40]. When the operator is over-tasked, the automation can reduce the burden on the

operator by assuming certain tasks. If the human-automation system experiences a

period of low workload, the automation can shift more responsibility to the human

operator to mitigate possible complacency or a reduction in manual skills [39].

The human-robot interface has long been identified as a major bottleneck in utiliz-

ing these robotic systems to their full potential [7]. As a result, we have seen significant
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research efforts aimed at easing the use of these systems in the field, including careful

design and validation of supervisory and control interfaces [4, 12, 23, 28]. Other,

related research efforts have focused on utilizing a human-in-the-loop to improve the

quality of task plans and schedules [11, 12, 16]. This is particularly important when

the search space is large or if it is not possible to represent all aspects of the environ-

ment in the problem formulation.

These prior efforts have focused primarily on utilizing a human-in-the-loop to

improve plans and schedules for work performed by other agents. In this work, we

are motivated by applications in the manufacturing domain where human workers will

be performing physical tasks in coordination with robotic partners. In some cases,

the human workers may also be responsible to tracking the progress and tasking the

team. We seek to understand how much control human workers should have over

the assignment of roles and schedules, when working in teams with robots. While we

necessarily want to maximize the efficiency of human-robot teams, we also desire for

the human workers to value, accept, and cooperate with the new technology. With

this in mind, the following sections of this paper will describe the pilot study we

conducted to lend insight into trade-offs among flexibility in decision-making, overall

task efficiency, and worker satisfaction.

6.3 Methods

The purpose of this pilot study is to gain insight into how to integrate multi-agent

task allocation and scheduling algorithms to improve the efficiency of coordinated

human and robotic work. We hypothesize that keeping the human worker in the

decision making process by letting him/her decide the task assignments will decrease

performance of the system (i.e., increase time to complete the task objective) but will

increase the human appreciation of the overall system. We conducted a pilot study

to assess the tradeoffs in task efficiency and user satisfaction, depending on whether

or not the worker is allowed control over task allocation.

For our pilot study, we consider two experimental conditions:
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" Condition 1: A task allocation and scheduling algorithm (i.e., Tercio [22]) spec-

ifies the plan.

" Condition 2: The human worker is given a limited set task allocations from

which he/she can choose.

6.3.1 Experimental Setup

The task objective given to the human-robot team is to complete two Lego kits, each

consisting of seven steps. The parts required to build each of the seven steps for both

Lego kits are placed into bins away from the build area. There are two classes of roles

for the agents: builder or a part fetcher. If an agent is a builder, then the agent is

responsible for building either one or both of the Lego kits. If an agent is a fetcher,

that agent retrieves part bins and transports them to a specified builder. We enforce

that the fetcher can only fetch one part bin at a time.

If a robot is assigned to fetch parts, we must have some mechanism of informing

the robot when and to whom to fetch the part bin. A priori we tuned the temporal

constraints of the task network so that the robot would fetch the next part bin

for a human builder just before the human finished the previous step. In a future

experiment, we want to incorporate a closed-loop feedback mechanism so that the

timing of the fetching adapts to when the human is ready for the parts. We discuss

this further in Section 6.5.

We use two KUKA Youbots (See Figure 6-1), which are mobile manipulator robots

(height 65cm, weight 31.4 kg). To control the robots movement through the space, we

implemented a simple close-loop control system. A PhaseSpace motion capture sys-

tem, which tracks the locations of LEDs that pulse with unique frequencies, provides

real-time feedback of the state of the robots (i.e., X = [x, y, z] for each robot).

When the experiment begins, the initial assignment of the roles is as follows:

1. The human subject is responsible for completing one of the Lego kits.

2. One Youbot, called "Burra", is responsible for completing the second Lego kit
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Figure 6-1: A picture of a KUKA Youbot. Image Courtesy of KUKA Robotics.

3. A second Youbot, called " Kooka", is responsible for fetching the Lego parts for

both the subject and the robot Burra.

After "Kooka" fetches the first three part bins for the human subject and "Burra",
we simulate a failure of "Kooka" and inform the human subject of the malfunction.

Because "Kooka" was responsible for fetching the remaining four part bins for the

human subject and "Burra", the assignment of roles must change to complete the

build process. We recall that we want to observe the effects of giving the human

subject control over the his/her task assignment versus using a autonomous task

allocation scheduling algorithm (i.e., Tercio).

For participants assigned to Condition 1, the Tercio algorithm is used to assign

roles to the human and robot workers in an optimal manner. In the optimal solution,
the participant and the robot Burra work independently, fetching their own part bins

and completing their own Lego kits. For participants assigned to Condition 2, the

human workers decides the roles of both him/herself and the robot Burra. The two

options proposed to the human worker are:

1. The human worker and Burra work independently

99



2. "Burra" fetches all remaining part sets and the human worker completes the

two Lego kits.

After task allocation has been performed, either by Tercio or the human participant,

the human and "Burra" complete their respective tasks. The completion of both Lego

construction tasks marks the end of the trial.

6.3.2 Data Collection

All experiments were performed at the Interactive Robotics Group (IRG) laboratory

at MIT. We tested eight subjects (3 males and 5 females; 25 ± 2 years ranging be-

tween 23-27 years), and four subjects were randomly assigned to each of the two

conditions. All subjects were recruited from the MIT graduate student population.

The experiment was approved by the Massachusetts Institute of Technology's Com-

mittee on the Use of Humans as Experimental Subjects (COUHES) and informed

consent was obtained from each subject prior to each experimental session.

Time to complete the task (i.e. finish building both Legos sets) was measured using

a stopwatch. The time to finish the build includes the time that the human spent

deciding how to reallocate him/herself and "Burra" to the remaining fetching and

building tasks after "Kooka" malfunctions. We include this time to better simulate

the extra time the decision-making process would take versus the computer-assigned

decision. At the end of the trial, each participant completed a questionnaire asking

them to rate their level of agreement with the seven statements using a five-point

Likert scale from 1 (strongly disagree) to 5 (strongly agree):

1. I was satisfied by the robot system's performance.

2. I would use this robot system next time this set of tasks was to be repeated.

3. The robots collaborated well with me.

4. The robots and I performed the tasks in the least possible time.

5. I was content with the task allocation after the robot malfunctioned.
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6. I felt safe and comfortable with the robots.

7. The robots were necessary to the successful completion of the tasks.

6.3.3 Statistical Analysis

Performance data (time to complete the task objective in seconds) were tested for

normality using the Kolmogorov-Smirnov test (Condition 1: p = 0.994; Condition 2:

p = 0.49). A one tail t-test for two independent samples with equal variances was

used to compare the two conditions. Prior to that, the samples were tested for equal

variances using the F test (p = 0.08).

Human appreciation of the system (or human satisfaction) data were calculated

for each subject as the average of all seven questions in the questionnaire. Thus,

every subject had an ordinal score between 1 and 5. The MannWhitney U test (a.k.a

Wilcoxon test) were used to compare the two conditions. In all cases, significance was

taken at the a = 0.05 level. Data is presented as the average standard deviation.

6.4 Results

6.4.1 Performance

The average time for the four participants in Condition 1 was found to be 436 +

19.1 s. Similarly, the average time for the four participants in Condition 2 was

found to be 598.8 t 47.5 s. Figure 6-2 shows the boxplot of the performance results

(time to complete the two Lego kits) across the two conditions (in Condition 1,

the algorithm decides assignments; in Condition 2, the subject decides assignments).

Time to complete the task was significantly higher in Condition 2 than in Condition

1 (p < 0.001).
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Condition I Condition 2

Figure 6-2: Boxplot showing the median, quartile and standard deviations of the
performance of the human subjects in both conditions.
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Figure 6-3: Boxplot showing the median, quartile and standard deviations of our
measure of human appreciation of the autonomous system based on a five-point Likert
scale.

6.4.2 Human Appreciation of the System

The average questionnaire rating for the four participants in Condition 1 was found
to be 3.5 ± 0.2. Similarly, the average questionnaire rating for the four subjects in
Condition 2 was found to be 3.21 ± 0.6. Figure 6-3 shows the boxplot of the rating
results across the two conditions (in Condition 1, the algorithm decides assignments;
in Condition 2, the subject decides assignments) The non-parametric Mann-Whitney

U test did not find any significant difference between the two conditions (U = 5 >
U, = 1). Furthermore, the average rating in Condition 1 is higher than the average

rating in Condition 2, which is in disagreement with the initial hypothesis.
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6.5 Discussion

6.5.1 Evaluation of Time to Complete the Task

Time to complete the task objective was significantly higher in Condition 2 than

Condition 1. All four human-robot teams in Condition 2 needed more time than any

of the human-robot teams in Condition 1. Surprisingly, three of the four participants

in Condition 2 chose the non-optimal solution (human completes both Legos and the

robot "Burra fetches the parts). Only one participant chose the optimal solution and

his/her time needed to complete the task was the least in his/her group, although

still higher than all four teams in Condition 1. These results indicate that making

decisions takes time. Even in the case when workers chose the optimal solution, the

time needed to complete the tasks was higher, possibly due to additional time for

decision making.

6.5.2 Evaluation Human Appreciation of the System

No statistically significant differences were observed in worker appreciation of the

system contrary to what was hypothesized. The three participants from Condition

2 that chose the non-optimal solution present the worst ratings among all partici-

pants in the experiment. Interestingly, the participant from Condition 2 that chose

the optimal-condition presents the highest rating, even above the ratings from par-

ticipants in Condition 1. These results lend support to the hypothesis that human

satisfaction is most affected by an inherent sense of efficiency while freedom of choice

plays a secondary role. In our pilot study, high efficiency with freedom of choice yields

the highest satisfaction, while high efficiency without freedom was second. When the

participant is given freedom of choice, resulting in low efficiency, human satisfaction

appears to decrease drastically.

The lower average scores in Condition 2 could alternatively be attributed to the

disruption and difficulty the robot malfunction caused the human participant. From

the human's perspective, deciding under time pressure amongst a set of options for

104



how to resolve the problem may be less preferable than having an automated algo-

rithm resolve the problem. To understand the true factors that affect both perfor-

mance and human appreciation of the system, we will conduct a full experiment based

on the observations from this pilot study.

6.6 Recommendations for a Full Experiment

For the purpose of design of a future experiment to fully investigate this integration,

I discuss several threats to internal validity of our pilot study and recommendations

to reduce those threats:

1. Our pilot study used a one-group post-test-only design. This experimental

design is susceptible because it increases the likelihood that a confounding factor

affected the results of the experiment. For example, the worker might have

made a mistake in building the Lego, which would likely decrease efficiency and

satisfaction. We recommend using a one-group double-pretest post-test design.

This design would enable us to account for factors such as statistical regression

(i.e. natural variations in Lego-building performance will be less consequential).

One threat from this design is testing, where subjects might improve or get

to know the system better. To account for these concerns, we should have

the worker practice building the Lego at home before the experiment. With

practice, the performance will approach a plateau. Lastly, if the subject were

assigned to the group where the subject assigns the roles of the workers, we

would enforce that the worker performs the assignment of roles for all three

trials a priori.

2. We chose graduate students from MIT as our population; however, our selection

of subjects is quite different than the target population of factory workers. Yet,

because we are designing a system that has not yet been used in a factory, MIT

students, who have more experience with advanced technology, may be more

akin to factory workers who will have worked with this system in the future.
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3. Subjects were asked to build Legos that they had never built before and were

asked to work with a robot to build Legos, which is a task they had most likely

never done before either. As a result, the subjects who had control over the

agent-task assignments made educated guesses as to which assignment of roles

they would choose. Subject dis/satisfaction may come from whether or not the

subject liked the particular role selected rather than from the availability of

control or lack thereof. We recommend that subjects are given an opportunity

to practice each of the roles of the agents to develop an accurate mental model

of the trade-offs for efficiency and satisfaction. We posit that factory workers

would also have accurate mental models of the reward and cost for each of the

relevant manufacturing roles that the worker might experience.

It is also important to address the threat of experimenter-expectancy effects. We

felt it necessary to have one experimenter follow the robots with tethers and a kill-

switch to satisfy the concerns of the MIT Internal Review Board. Furthermore, an

experimenter was required to place the bins of Lego parts on the manipulator arm

of the robot. With such a pronounced involvement of the experimenters, there is an

increased likelihood that the subjects may have altered their behavior based upon

what they thought we expected from them. Perhaps, if the robots ran without a the

visible supervision of the experimenters, the subjects may have been more immersed

in the task at hand and, in turn, produce data with higher internal validity. We

recommend for the future experiment that the experimenters are physically removed

as much as possible.

Additionally, we must consider an important nuisance factor. The pilot study

used a scheduling algorithm that assumed uniform performance across all workers.

However, workers, whether in the factory or in a laboratory environment, work at

different rates. Our goal is to determine how much control a worker should have over a

system; however, our subjective and objective measures are likely affected by how well

the timing of the actions of the robots coincide with the actions of the humans. For

future experiment, we could include this nuisance factor of the coordination quality

as one of the factors in the experiment. This technique is known as local control or
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blocking and is a common technique. The drawback from this approach is that it

would require yet more subjects because we have added a third experimental factor.

6.7 Conclusions and Future Work

We aim to understand how best to integrate robots to work in coordination with a

human workforce. In the manufacturing domain, human workers are often provided

some flexibility in decision-making for how to execute their work. As a means of

integrating robots into human teams, we have developed an algorithm that takes a

centralized approach to producing agent-task assignments and schedules. However,

concerns exists that humans may not appreciate or may even reject a system that does

not allow them enough flexibility in how to do their work. The pilot study we have

conducted is a first step towards understanding much control over decision-making a

human worker should be provided.

We varied the amount of control that our participants had over the task assign-

ments in the human-robot team. Results from the study supported our first hypothe-

sis; giving the human workers more control decreased temporal efficiency. Our second

hypothesis stated that worker appreciation of the technology would benefit from pro-

viding the human with some control over the decision-making. This hypothesis was

not supported with statistical testing. However, we did find a trend where workers

with more control who chose the optimal solution were the most satisfied, and workers

with more control who chose the suboptimal solution were the least satisfied.

Pilot studies are designed to provide guidance on how to design a follow-on large

scale experiment. While our pilot provides initial results and trends, these results

were obtained through a small scale experiment and are not sufficient to provide

recommendations on algorithm and interface design. Based on this pilot study, we

plan on running a full human subject experiment with a number of changes: 1) the

roles of the robots will be redesigned so that they are more highly valued by the

human participants (e.g., having the fetching task be more realistic) 2) experimenter

interference will be reduced by removing tethered power, and 3) the experiment will
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be redesigned to better isolate the dependent variable of worker satisfaction from

confounding factors (e.g., uncoordinated timing between the fetching robot and the

human).
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, I present contributions from my research that advance the capability

of large-scale, multi-agent task allocation and scheduling with tightly intercoupled

temporospatial constraints. The efficient solution to this problem utilizes a real-

time processor scheduling analogy and fast techniques for scheduling and testing the

schedulability of these non-preemptive task sets.

I began in Chapter 1 with an introduction to the problem of interest and my

approach. In Chapter 2, I present a solution to the open problem of determining

the feasibility of hard, periodic, non-preemptive, self-suspending task sets with any

number of self-suspensions in each task in polynomial time [33]. This schedulability

test leverage a new scheduling priority that restricts the behavior of a self-suspending

task set to provide an analytical basis for an informative schedulability test.

Next, I developed a near-optimal, uniprocessor scheduling algorithm in Chapter

3. If my schedulability test determines that a task set can be scheduled under JSF,

then the uniprocessor scheduling algorithm can produce a feasible schedule. The main

technical innovation of this contribution is a polynomial-time, online consistency test,

which I call the Russian Dolls test. In Chapter 4, I extend the uniprocessor scheduling

algorithm and Russian Dolls Test to the multiprocessor case, which includes spatial

or shared memory resource constraints.
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In Chapter 5, I describe a task allocation and scheduling system, named Tercio'.

The system uses a MILP to determine the task allocation and my multiprocessor

scheduling algorithm to perform fast sequencing of the tasks. The algorithm is able

to scale up to problem sets that are an order of magnitude larger than prior state-of-

the-art solvers. Lastly, I present a pilot study in Chapter 6 to determine how best to

integrate Tercio into the manufacturing environment from a human-centered point of

view.

7.2 Future Work

There are two primary areas of future work. First, the multiprocessor scheduling

algorithm (Chapter 4) that is embedded within Tercio must be extended to include

more general temporal constraints. Second, we need to develop of a full-factory

scheduling algorithm based on the Tercio (Chapter 5).

7.2.1 Extending Tercio to Allow More General Temporal

Constraints

The fast task sequencer within Tercio is based on an augmented self-suspending task

model, which I present in Chapter 4. While the augmented model includes intra-

task and subtask deadlines, I seek to generalize the breadth of temporal constraints

relating tasks and subtasks. The current self-suspending task model enforces that

subtask r precedes Trl by duration Ej; however, 4r and ri are unordered for x # i.

In future work, I will incorporate a mechanism for relating 4r and <j through explicit

temporal constraints.

I also seek to extend Tercio to be able to solve hierarchical problems, where there

are a set of processes, each comprised of a set of tasks. This hierarchical structure

provides further generality and provides an intuitive method for a human operator to

specify the constraints of the manufacturing task set. The premise of the extension
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is that schedules for each process would be solved at the task level. Then, we would

solve the process-level problem based on the schedules generated the tasks within

each process.

7.2.2 Full Factory Scheduling

Tercio was designed as a single-cell scheduling algorithm, here a single cell consists

of a set of workers working in close proximity with a specific, common goal (e.g.,

one location along an assembly pulse line). I seek a near-optimal system that can

schedule multiple cells in real-time. However, there is an inherent trade-off between

global optimality (across multiple cells) and local optimality (within a single cell).

Because multiple cells are readily modeled as distributed processes, Tercio could serve

as the basis for scheduling intra-cell activity. To perform multi-cell task allocation in

response to a significant dynamic disturbance e.g., a robot from one cell brakes and is

offline until repaired), the multi-cell algorithm could conduct a trade study evaluating

the quality of Tercio-generated schedules based on which workers are assigned to

which cells. In this way, robots could be shifted from one cell to another if necessary

to satisfy temporal constraints. However, the multi-cell system would need to ensure

that the cost to local optimality did not suffer to such an extent as to violate any

minimum production rates within a cell.
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