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Abstract

New high-performance radar designs are characterized by precise mechanical
components and subassemblies tested to tight electrical performance specifications,
typically pushing state-of-the art in advanced materials and manufacturing processes.
These designs are often well into the production process before manufacturing system
performance can be predicted with confidence.

This work investigates methods to improve the product development process for new
radar subassemblies at Raytheon Company, with the goal of better predicting
manufacturing system performance earlier in the development process. Subassembly A, a
new radar subassembly transitioning into production at Raytheon’s Andover,
Massachusetts facility, was used as a case study.

It was found that manufacturing process simulations already in use at Raytheon are
effective in modeling the structure of complex processes associated with production of
radar subassemblies. However, inputs to these models are often inaccurate, in particular
first-pass yields at various inspection points in the system. Further it was determined that
more accurate first-pass yields required a better understanding of process capability. This,
in turn, required better understanding of the subassembly’s critical parameters and their
allowed variations, so that process capability could be calculated.

The thesis proposes that adding the identification of Key Characteristics (KC) to the
product development process will enable better predictions of first-pass-yields which in
turn increases the accuracy of manufacturing process simulations. Results are presented
for the application of these methods to Subassembly A.

Thesis Supervisor: Steven D. Eppinger
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Thesis Supervisor: Daniel E. Whitney
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Section 1: Introduction

1.0 Overview

Radar system designs have become increasingly capable, largely driven by advances
in electronics and software. Higher performance system designs also bring manufacturing
challenges. As an example, one key to higher radar performance is higher operational
frequencies. This requires better performance from the basic electromechanical
subassemblies that guide and shape the electromagnetic waves. Higher frequencies mean
scaling down the mechanical dimensions and increasing the precision of such
subassemblies.

Raytheon Company is a leader in the development and manufacture of new radar
systems, and historically has found it problematic to predict full-rate manufacturing system
performance with desired precision for new critical subassembly designs, especially those
involving new materials, products and processes that all challenge state-of-the-art. This
work proposes that Raytheon can achieve better predictability of manufacturing system
performance through improvements in its product development process.

This challenge was addressed in the context of Subassembly A, a critical radar
subassembly in the process of transitioning to full-rate production. Prior work had been
done to simulate the manufacturing processes for this assembly. These models require
inputs of first-pass yield numbers at inspection points in the system. Better accuracy in
these inputs requires a better understanding of process capabilities, specifically for those
features that have the greatest impact on product performance. This led to a focus on Key
Characteristic (KC) identification as an enabler for improving first-pass yield estimates for

these designs; and in turn, more accurate manufacturing process simulations.

1.1 Organization of the Thesis |

This thesis is organized in sections, first covering the background and project setting,
including a more detailed description of the problem and applied approach. A review of
the literature discusses KC identification, process capability, and the influence of
manufacturing yield on process performance. Results of KC identification for
Subassembly A are presented, followed by a section that relates an example of how KCs

helped focus the design process. The thesis then returns to the prediction of first-pass



yields for manufacturing system models. The culture and environment for change are

discussed, and conclusions summarized.



Section 2: Project Background and Description

2.0 Section Overview

This project was conducted as an internship assignment through MIT’s Leaders for
Manufacturing (LFM) program and sponsored by the Raytheon Company at their Andover,
Massachusetts site. This section will discuss this setting, with a brief introduction to
Raytheon as a company, specifics on the background and motivation for the project, a

definition of the problem and a description of the approach.

2.1 Raytheon Company

Raytheon Company is a leading supplier of government and defense electronics, with
other business areas in commercial electronics, business aviation, and special mission
aircraft. Headquartered in Lexington, MA, Raytheon has 77,500 employees worldwide
and $16.9 billion in 2001 revenues. Dan Burnham from Allied Signal was appointed CEO
in 1998, and launched the Raytheon Six Sigma (R60) program, an aggressive initiative to
establish a company-wide culture that includes a mix of best practices. This initiative is
discussed in Section 7.3 in the context of organizational change.

Raytheon and other defense contractors face a changing industry environment.
Competition has increased. Mergers and acquisitions over the past few years have resulted
in fewer, but stronger players in the market. The US government is demanding more
accountability and encouraging the use of more commercial practices. As an example, the
Undersecretary of Defense recently emphasized the use of a Spiral Development process
focusing on continued evolutionary product enhancements using relatively short run
product/process evaluations rather than on long-term ongoing production of a continually

maturing design'.

2.2 Integrated Defense Systems (IDS) Andover Operations

This internship was hosted at Raytheon’s Andover, MA facility from June through
December 2002. During this time, in October 2002, Raytheon announced a major
reorganization of its government and defense businesses into seven new business units.

The Andover facility is now the Operations center for the newly organized Integrated

'E.C. Aldridge, “Evolutionary Acquisition and Spiral Development,” US Department of Defense Memo
dated April 12, 2003.



Defense Systems (IDS) business unit. It is one of Raytheon’s major manufacturing
centers, a 1.2 million ft* facility with approximately 3,000 employees. The site is
characterized by a diverse array of capabilities including commodity manufacturing centers
such as circuit card assembly and metal fabrication, as well as more specialized activities
such the manufacture of microwave subassemblies and integration of surface radar
systems. As an example of a surface radar system manufactured in the Andover plant,
readers may be familiar with the Patriot system that received extensive coverage during the
Gulf War and operation Iraqi Freedom. The next generation of surface radars employing
enhanced state-of-the-art Active Electronically Steered Array (AESA) technology is
actively under development by Raytheon. Further information on this and other radar

programs can be found on Raytheon’s website?.

2.3 Surface-Based Radar Systems and Subassemblies

This project deals with achieving predictability in the manufacture of newly designed
precision subassemblies for surface-based radar systems, including large phased-array
radars used for missile defense. Raytheon is a leader in the design and production of such
systems, often working together with other firms to supply sophisticated large-scale
solutions.

Even in full production, large phased-array radar systems are low-volume items, with
perhaps only a few of any given system built in a year. However, manufacturing volumes
of some subassemblies within the system are much higher. In particular, the front end of
the antenna for a phased-array radar system may contain many thousands of identical
elements. In an environment accustomed to low-volume production these relatively higher
volumes present a manufacturing challenge.

This thesis work is done in the context of analyzing one of these relatively high
volume subassemblies that comprise the front end of a large surface-based phased-array

radar system. The particular subassembly studied will be called “Subassembly A”.

2.4 Subassembly A
Subassembly A provides an excellent case study for this thesis work. As a new design

undergoing the transition to production, it was found that manufacturability issues required

? http://www.raytheon.com



a significant redesign effort. At the start of the internship, this redesign was complete, and
Subassembly A was ready for transition to production, with a “Proof of Design” run of 75
subassemblies already underway. These first 75 units were built in an engineering
development lab with the cooperation of both product and process design engineers.

The process was then transitioned to the manufacturing floor, where an additional 200
assemblies were built by the unionized hourly work force as part of a “Proof of
Manufacturing” run, under the close supervision of process development engineers. This
work was completed in late fall and production began ramping to a full-rate goal of 240
subassemblies/day, reaching approximately 50 subassemblies/day by the end of the
internship in December 2002. Over 20,000 Subassembly A units are required per radar
system.

In addition to high volumes relative the overall system, these subassemblies have the
following characteristics that challenge the development of production processes, and
make it difficult to predict how well a proposed manufacturing system will perform:

e Aggressive microwave radio frequency (RF) electrical performance specifications,
with performance targets at or near the limit of present process capabilities.

e Tight mechanical tolerances, typically on the order of .001”

e Assembly processes requiring many accurate special-purpose fixtures

e Specialized materials and joining processes

2.5 Project Motivation

The product clockspeed of new radar systems and subassembly designs is quite slow,
with new development projects typically separated by many years®. Each time a new radar
system subassembly is transitioned into production at the Andover plant, the Surface Radar
Operations group faces the challenge of predicting manufacturing system performance for
the new design. Particularly for the higher volume subassemblies, basic manufacturing
system performance parameteré such as first-pass yield have a significant impact on cost
and schedule. This project was motivated by the desire to look at this transition first-hand
in the context of Subassembly A, and recommend improvements enabling better

predictability for this and future such design efforts.

3 Charles H. Fine, Clockspeed: Winning Industry Control in the Age of Temporary Advantage (Reading,
Massachusetts: Perseus Books, 1998).
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2.6 Problem Statement

This research proposes improvements to the product development process for these
high-volume subassemblies for radar systems. This includes the concurrent engineering of
product, manufacturing system processes, and supply chain. The goal is to develop a
method and tools to predict manufacturing systems performance measures earlier in the
product development process rather than waiting until well into full-rate production—
when changes to product and processes have a much more significant impact on cost and
schedule. As shown graphically in Figure 1, the intent of these predictions is to enable

better strategic business decisions.

= the. a@ve/opment cycle enab/e better

strategic business decisions X

L.

]
Business Product -
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. . System L e Quality
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from here, ... - |

Figure 1: Earlier Feedback Enables Better Strategic Business Decisions

2.7 Project Approach

A plan to predict manufacturing system performance was developed in the context of
evaluating Subassembly A’s transition into production. The approach involved first
becoming familiar with the materials, assembly processes, performance specs and test
methods for this subassembly. Industry practices were investigated and a literature survey
conducted on topics related to predicting manufacturing performance during the product
development process. Project milestones and a schedule were created early in the project.

This plan is depicted graphically in Figure 2.

11
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Figure 2: Project Milestones and Schedule

Early project work involved evaluating the use of manufacturing process modeling
software introduced at Raytheon-Andover by a prior LFM intern®. This software was
found to be effective in visually representing and modeling complex manufacturing
process environments. Based on interviews with those using the models, it was found that
accuracy was limited, due mainly to the accuracy of input data. The project was then
focused on identifying the most important enablers for more accurate manufacturing
system models, starting with immediate causes, and following the method of “5S Whys,” a
classical quality improvement tool used for getting to the root of a problem.

In this project the first why could be phrased as, “Why are Raytheon’s manufacturing
system simulation models sometimes lacking desired precision in predicting manufacturing
performance?” While there are multiple answers to this question, investigating
Subassembly A’s transition into production highlighted one important direct cause:
“Inaccuracy in first-pass yield numbers that are required inputs to the model.” Asking why

again helps reveal contributing causes. Here, the answer to “Why are first-pass yield

* Timothy J. Sweitzer, “A Simulation-Based Concurrent Engineering Approach for Assembly System
Design” (Master’s thesis, Massachusetts Institute of Technology, 2002).
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estimates inaccurate?”” uncovers the most significant contributing cause: “Not knowing
which process steps are the most important determinants of first-pass yields.”

Further whys reveal lower level contributing causes. In this case, asking, “Why do we
not know which process steps are the most important to yields?”” leads to the cause: “Not
knowing which product and process features at risk to variation have the most significant
impact on customer-required performance.” Industry has come to call such features Key
Characteristics (KCs). And, “Why do we not know the KCs for new radar subassembly
designs?” Because the identification, verification, and communication of KCs is not well
embedded within Raytheon’s product development process for radar subassembly designs.

This series of questioning led to the focus of this project on developing a chain of
enablers for better predictability in the development process for new radar subassembly
designs at Raytheon. Starting from defined performance requirements and tolerances, the
three main elements of this “predictability chain” are shown here in Figure 3. The product
and process attributes that are the major drivers of performance are identified and
performance variation calculated. This variation is compared with tolerances, and
allocated to KCs. Process capability can be expressed in terms of capability indices such
as Cpk. This allows prediction of first-pass yield, the percentage of total units that pass a
given test or inspection the first time. Note that this diagram does not imply that these are
the only enablers necessary to accurately predict manufacturing performance, but rather

that these were felt to be most important in the limited context of this project and thesis.

What product and How capable are our  How well does our
process attributes are current processes with existing or proposed
the major drivers of respect to desired manufacturing system
product performance? tolerances? perform?
Identify Key p— Model the
G Predict First Kanutactiii
Characteristics Psss Yiald anutacturing
(KCs) Process

Figure 3: Elements of Predicting Manufacturing System Performance

A significant portion of the internship was spent investigating Raytheon-Andover’s

present capabilities in each of the areas shown in Figure 3. It was found that a number of

13



tools and methods are already being applied in the second and third areas. The area
identified with the greatest potential for improvement is the first: Identification of KCs,
shown highlighted in Figure 3 above. Thus KCs became a focus area of this work. This is
a root-cause enabler for better first-pass yield predictions and manufacturing system

modeling because it enables impacts on product performance to be identified.

14



Section 3: Identification of Key Characteristics (KCs)

3.0 Section Overview

Accurately predicting how well a product design can be manufactured involves first
understanding sources of variability in product and process features and then
understanding how this variation impacts the performance required of the product. Radar
subassemblies are typical of complex system assemblies, with many product and process
features impacting the performance of the product.

Prioritizing which of these parameters have the greatest impact on required
performance and are at risk due to variation with respect to tolerances is the first step to
predicting how well the product can be manufactured. This topic has been termed
identification of Key Characteristics (KCs). This section discusses KCs, looking at
definitions and applications in industry and specifically at the their use within Raytheon.

The following section will then present a KC identification exercise for Subassembly A.

3.1 What is a KC?

Many manufacturing firms have recognized the importance of identifying what they
have termed key, critical, or important characteristics or parameters. Since the 1980’s
several major US companies have drafted specific guidelines and documents defining
methods to capture and communicate this information as part of the product development
process. While there are some differences in the definitions and terminology that have
been proposed, there are common themes. Thornton suggests a definition that is a hybrid
of definitions used by leading industry firms:

Key Characteristics are the product, subassembly, part, and process features that
significantly impact the final cost, performance, or safety of a product when the
KCs vary from nominal. Special control should be applied to those KCs where the

cost of variation justifies the cost of control.’

5 A.C. Thornton, “A Mathematical Framework for the Key Characteristic Process,” Research in Engineering
Design (1999) 11:145-157.
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It is worth noting that a feature may be important to performance, but if variation is
not significant when compared to tolerances, these features should not be classified as
KCs. Instead they may be said to be important features that are under control.

The concept of a loss function is often used to describe the selection of KCs. That is,
if we imagine plotting loss in performance as a function of a product feature,
characteristics are considered key when there is a steep loss in performance as the feature
moves away from its target value and approaches specified limits. Features are not
considered key where the loss in performance is relatively flat as we move away from
nominal within the specified limits. Taguchi describes this as a Quality Loss Function and
suggests that it can be estimated as a simple quadratic function where loss of quality
increases as the square of the deviation from nominal®.

As suggested in the definition above, KCs are often categorized by type. Lee and
Thornton suggest three fundamental categories’:

e Product Key Characteristics (PKCs) are associated with the important physical
properties or product features that impact customer required performance. These
are permanent for a given product design decomposition and set of requirements.

o Assembly Process Key Characteristics (AKCs) are the features during each
assembly stage on the product, tool, fixture or procedures that significantly affect
the realization of a product KC at the next-higher assembly process level. These are
permanent for a given assembly process and product design decomposition.

e Manufacturing Process Key Characteristics(MKCs) are the manufacturing machine
process parameters and/or fixturing features for machine tools and equipment that
significantly affect the realization of a product or an assembly process key
characteristic at the detailed part feature level. These are permanent for a given

manufacturing process and product.

3.1.1 Primary KCs
The identification of KCs starts when customer requirements are translated into top-

level preliminary engineering specifications. Ulrich and Eppinger® describe this process.

¢ Genichi Taguchi and Don Clausing, “Robust Quality,” Harvard Business Review (1990) 68(1): 65-75.
"D.J. Lee and A.C. Thornton, “The Identification and Use of Key Characteristics in the Product
Development Process,” Proceedings of the 1996 ASME Design Engineering Technical Conferences and
Computers in Engineering Conference Irvine, California, August 18-22, 1996.
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It starts by preparing a list of metrics associated with customer needs. A target, or ideal
specification, is set for each metric. Recognizing that some amount of variation is
inescapable, designers then assign tolerances around these targets to insure that the range
of acceptable performance is not exceeded.

Primary KCs are those product features where the amount of variation with respect to
tolerances has a direct and significant impact on customer requirements. Primary KCs

must be met as they are directly based on customer requirements.

3.1.2 Derived KCs

The development of complex systems typically follows an approach where system
architecture is defined and then requirements flowed down to lower levels such as
subsystems, assemblies, and parts. Grady provides a classic text describing this process’.
KCs require a similar flowdown process.

A Derived KC is a parameter where variation significantly contributes to variation
in a higher-level KC. Primary KCs are thus dependent on many derived KCs. The
assembly KCs described above are considered derived KCs. They are permanent for a
given decomposition, physical realization, or chosen design. But different designs aimed
at the same primary KCs will have different derived KCs. From the perspective of the
design process, primary KCs must be met. However, in evaluating design alternatives,
derived KCs can be viewed as a foo/ to understand and manage how variation at lower

level parts and assemblies combines to create variation in customer-required performance.

3.2 Resources and Tools for Identifying KCs

Identification of KCs is a process of understanding how various product and process
features impact product performance, then selecting those features that have the greatest
impact on performance and are at risk due to variation. How these features are identified
and communicated varies across industry. Thornton describes some of these methods of

KC identification in the context a Variability Risk Management (VRM) framework'°.

8 Karl T. Ulrich and Steven D. Eppinger, Product Design and Development, 2" ed. (New York: McGraw-
Hill, 2000), 79-102.

® Jeffrey O. Grady, System Requirements Analysis, (McGraw-Hill, 1993).

12 A.C. Thornton, “More than Just Robust Design: Why Product Development Organizations Still Contend
with Variation and its Impact on Quality,” Research in Engineering Design (2000) 12:127-143.
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Primary KC identification begins in the early stages of product development, when
customer requirements are translated into system specifications. In this context, the House
of Quality, a graphical tool that is part of Quality Function Deployment (QFD), provides a
core matrix that is used to relate customer needs to engineering specifications for system-
level features. Hauser and Clausing'' describe the House of Quality and Ulrich and
Eppinger® provide an example of how this needs-metrics matrix is applied. An alternate
method of mapping function requirements in physical design attributes is Axiomatic
Design, presented by Suh'®">. Further publications and resources on this topic are
available from the website for the MIT Axiomatic Design Group'®. Understanding the
relationships between customer needs and engineering parameters provides an opportunity
to identify the subset of parameters that are subject to variation and that have the strongest
impact on customer performance requirements.

Derived KCs are developed in a flowdown approach. This flowdown may be quite
large for complex systems. Thornton cites examples of a 100 part medical product having
600 elements, and a single join in an aircraft having about 25 elements, with different
companies using custom flowdown methods and databases'.

One systematic method is through the analysis of tolerance chains. For the case of
mechanical subassemblies, Whitney and Mantripragada describe the Datum Flow Chain
(DFC) that relates KCs in assemblies' 16 The joints and/or fixture surfaces that define the
dimensional constraints between parts of an assembly are represented in directed graphs.
These graphs describe the relationship of the lower level features that comprise a given
KC. This establishes a basis for understanding how a particular KC is impacted by
variation buildup in the assembly features that contribute to it.

Other tools traditionally used in the product development process can assist in the

identification of KCs. For example, Failure Modes and Effects Analysis (FMEA) is a

! John R. Hauser and Don Clausing, “The House of Quality,” Harvard Business Review (1988), 66(3): 63-
73.

2 N.P. Suh, The Principles of Design. (New York: Oxford University Press, 1990).

> N.P. Suh, Axiomatic Design: Advances and Applications. (New York: Oxford University Press, 2001).
' http://axiom. mit.edu/

1® R. Mantripragada and D.E. Whitney, “The Datum Flow Chain: A Systematic Approach to Assembly
Design and Modeling,” Research in Engineering Design (1998) 10:150-165.

'D. E. Whitney, R. Mantripragada, J. D. Adams and S. J. Rhee, “Designing Assemblies,” Research in
Engineering Design (1999) 11:229-253
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process to identify potential failure modes, describe their effects, determine causes, and
take action. Causes of failure due to variation lead to the identification of KCs.

Various design methods can be used depending on applicability of analysis tools and
availability of data. If mathematical equation or simulation-based product models can be
created, then sensitivity analysis or Monte Carlo simulation can be used to determine
performance given variation in parameters. If a mathematical model is not possible, then
Design of Experiments can often be applied with good results. Phadke provides a good
references for DOEs'’. Historical data can also be useful, for example in the form of a

process capability database.

3.3 Industry Adoption of KCs
3.3.1 Commercial

There are many examples of companies that have adopted the practice of identifying
KCs. These include automakers such as GM, Ford and Chrysler, commercial aerospace
manufacturers such as Boeing Commercial Airplane Group and Vought, and a variety of
other companies including Kodak, ITT, and Xerox ''® MIT has been instrumental in
coordinating the development of a body of knowledge on KCs and many publications and
other good resources including case studies on KCs in industry can be found at MIT
websites for Key Characteristic'’, the Variation Risk Management Group at MIT* and

Prof. Anna Thornton’s homepage®'.

3.3.2 Defense
In the defense industry, KC identification has been recognized by the United States
government as an important development process method with the potential to reduce

development and production costs and delays*>. As competition increases for development

' Madhav S. Phadke, Quality Engineering Using Robust Design, (Englewood Cliffs, NJ: Prentice Hall,
1989).

'¥ Boeing Commercial Airplane Group, Key Characteristics: The First Step to Advanced Quality Revision
A, (Seattle: Boeing Company, 1992)

' http://web.mit.edu/afs/athena.mit.edw/org/c/consortia/keychar/

% http://variation.mit.edu/

2! http://web.mit.edw/acthornt/www/

22 United States General Accounting Office, Best Practices: Capturing Design and Manufacturing
Knowledge Early Improves Acquisition Outcomes. Report to the Subcommittee on Readiness and
Management Support, Committee on Armed Services, U.S. Senate, July 2002.
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contracts, Raytheon and other defense contractors will be under increasing pressure to
show that their development processes incorporate the effective use of KC identification.
Defense contractors have already begun responding to this trend. For example, in the
Department of Defense’s DoD Integrated Product and Process Development Handbook,
Key Characteristics are discussed as a best practice in place at Northrop-Grumman®’:
Key Characteristics (KC) are designated to identify those part or assembly
features/interfaces where variation from nominal results in the greatest loss.
Statistical Process Control (SPC) measurements are then focused on key
characteristics to minimize variation, ensure capable processes, and reduce
unnecessary inspection requirements.
The Best Manufacturing Practices Center of Excellence (BMPCOE), a partnership
among the Office of Naval Research’s Best Manufacturing Practices and other
government, academic, and industry partners, relates a number of case studies where
Lockheed-Martin and other defense contractors have implemented KC identification*.
Following is an excerpt from a case study describing their program:
...Lockheed Martin Electronics & Missiles identifies the relatively few high-level
critical features of any design. Each of these features, in turn, could have many
crucial components contribute to the overall criticality, but the analysis greatly
reduces the field of consideration. Once the critical features are identified,
variability reduction and the resulting statistical tracking are applied...One result of
using this methodology was the invention of a variability reduction flag being
incorporated into Lockheed Martin Electronics & Missiles’ drawing packages and
procurement documentation... This effort provides a substantial benefit to the
design process by allowing the original equipment manufacturer to provide input
up front. It also greatly reduces the number of Engineering Change Proposals that
follow any new design.

Another example is from Lockheed-Martin’s Tactical Aircraft Systems F-22 Variability

Reduction (VR) program. The BMPCOE case writeup states:

2 Office of the Undersecretary of Defense. DoD Integrated Product and Process Development Handbook,
Washington D.C., July 1998.
2% Best Manufacturing Practices Web Site. Available at http://www.bmpcoe.org/
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The VR team on the F-22 has identified 2,561 product key characteristics. These
are part-number driven and equate to the 678 processes/part families that led to the
development of 126 Variability Reduction Instructions. Lessons learned during
this process include the need to incorporate VR into normal engineering
requirements to help early identification of key characteristics... No award fee on

the F-22 has been lost since the implementation of the VR program.

3.4 Use of KCs at Raytheon

Through interviews and web searches on the Raytheon intranet no evidence was found
of any formalized KC identification on the surface radar programs at Raytheon’s Andover
facility and supporting design centers. It was found that identification of important
features and parameters occurs informally as part of the design process, but is not a part of
the defined concurrent engineering development plan. It is not yet a required component
of design reviews or other process gates, with no commonly applied method of
communicating and correlating the relative importance of product and process features on
product and manufacturing system design documents such as part and assembly-level
technical drawings and process sheets.

However, a company-wide search revealed that KC identification methods have been
successfully applied on a few programs at Raytheon facilities in Tucson, AZ, part of
Missile Systems, a separate business unit from Integrated Defense Systems (IDS). IDS
Operations includes the Andover Manufacturing campus, which was the site of this
internship®.

One noteworthy example of a Raytheon Missile Systems program implementing KC
identification is AIM-9X, an air-to-air missile program. This program is cited in a report
on best practices to the US Senate Committee on Armed Services>, which examines five
Department of Defense programs and compares program performance indicators of unit
cost and production delays [reference here]. Of these five programs, AIM-9X experienced
the lowest percentage unit cost increases, only 4% compared to a high of 182% for other
programs, and the lowest production delay, only 1 month compared to a high of 39 months

for other program. Specifically, “...early identification of key characteristics and critical

% phone conversations with Peter Bersbach, contact for Key Characteristics implementation at Raytheon
Missile Systems in Tucson (July-December 2003).
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manufacturing processes...” is quoted as a distinguishing factor in the success of AIM-9X

relative to the other programs studied.

3.4.1 Raytheon Key Characteristics Designation System (KCDS)

Raytheon’s Key Characteristics Designation System (KCDS) used in Tucson has its
legacy in the 1997 acquisition of Hughes Electronics defense business, a General Motors
(GM) spinoff*®. Its major objective is described as an “aid in the economical manufacture
of quality products”, and to provide the basis for process control activities. A nine page
reference manual defines various terms, concepts and method of application®®. The
remainder of this section is a brief summary from this document.

Two types of key characteristics are described:

o Key Product Characteristics (KPCs) are product features for which reasonably
anticipated variation could significantly affect either the product’s safety or
fit/function.

o Key Control Characteristics (KCCs) are process parameters for which variation
must be controlled around some target value to insure that variation in a KPC is
maintained or minimized around its target value.

Key Product Characteristics are identified using the concept of a loss function as
described previously. Separate symbols are used on drawings and specifications to
indicate either a Fit/Performance KPC or a Safety KPC.

Once KPCs have been identified as either Fit/Performance or Safety, the associated
KCCs are identified and control plans designed to insure that process controls are
sufficient to minimize variation in KPCs. Three levels of “care” in the manufacturing
process are identified:

e Standard Care describes the usual and customary practices applied to
manufacturing processes so as to meet basic customer requirements.

e Additional Care is required in manufacturing processes associated with
Fit/Performance KPCs to reduce variation around the target level. This typically
consists of identifying a Process Control Plan to reduce variation.

e Special Care is required in manufacturing process associated with Safety KPCs.

%6 Raytheon Key Characteristics Designation System, Raytheon internal document
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Section 4: KC ldentification for Subassembly A

4.0 Section Overview

Subassembly A was taken as a test case for the identification of KCs at a subassembly
level. As the internship began, the detailed design of this subassembly was just finishing
and the transition to production starting. This section describes the selection of candidate
KCs, data collection during pre-production, analysis involving correlation of KC data to

performance measures and implications for KC selection.

4.1 ldentifying Candidate KCs

Identification of KCs for Subassembly A began in the early stages of its transition into
production, with a “Proof of Design” (POD) pre-production run underway. This involved
skilled process development engineers from the manufacturing organization working
closely with electrical and mechanical design engineers and materials experts to build 75
subassemblies in an engineering development lab. In the absence of a KC flowdown from
a higher-level assembly, these design and manufacturing engineers started developing a list
of candidate KCs by reviewing part and subassembly drawings. They identified 57
features at risk to variation where such variation was felt to have the greatest impact on
performance. Many of these fell in the category of “we think this might be important but
we don’t really know.” Acting as a coordinator, I worked with the team to reduce this
initial list.

Tolerance studies and experience to date in building test pieces for the POD run were
used to reduce the list of candidate KCs. Tolerance studies had been used to determine
allowable upper and/or lower specification limits (USL/LSL) around target parameters.
They were performed using finite element analysis software and provided a simulated
measure of RF electrical performance for selected variations in parameters. The initial list
of 57 was reduced to twelve features that were felt to be most important. This list is given
in Table 1, listed roughly in the order of perceived importance to the design community.
Analysis was simplified to look at two electrical performance measures, where five of the
twelve features primarily impact the first performance measure and the remaining seven
primarily impact the second performance measure. Note that generic names for features

and electrical performance measures are used to protect Raytheon proprietary information.
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Table 1: Candidate Key Characteristics for Radar Subassembly A

Designator Key Characteristic Eh'evcl:;;i;:zlr::e::;z:zce
KC1 Joint 2 void depth Electrical Performance 2
KC2 Width near front Electrical Performance 1
KC3 Width across step Electrical Performance 1
KC4 % of Joint 1 not flush Electrical Performance 1
KC5 Coplanarity Electrical Performance 1
KC6 Substrate height Electrical Performance 2
KC7 Epoxy on front face Electrical Performance 1
KC8 Cable protrusion Electrical Performance 2
KC9 Cable length from island step Electrical Performance 2

KC10 Height from bottom of island Electrical Performance 2
KC11 Gap back Electrical Performance 2
KC12 Gap front Electrical Performance 2

4.2 Data Collection

The next step in transitioning Subassembly A into production was moving from the
engineering development laboratory to the factory floor, and starting a “Proof of
Manufacturing” (POM) run. The unionized hourly workforce built 200 subassemblies
under the close supervision of the process development engineers and using the process
documentation that had been updated based on lessons learned from the POD run.

During the POM run, each subassembly was serialized, and candidate KC features
identified were carefully measured and recorded. After assembly, each unit underwent a
required RF electrical test. This test data was captured by serial number, then average
electrical performance across frequency bands was calculated for each of the two

performance measures of interest.

4.3 KC Data Presentation and Analysis

Data presentation and analysis is divided into two subsets according to the two
electrical performance measures. Results for Electrical Performance 1 are presented first,
with respect to contributing parameters KC2, KC3, KC4, KCS5, and KC7. This is followed
by results for Electrical Performance 2 with contributing parameters KC6, KC8, KC9,
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KC10, KC11, and KC12. For KC1, void depth indicates an internal measurement not
accessible in the final subassembly. A non-destructive method of evaluating this joint
using a high-resolution real-time x-ray system was identified, but this equipment was not
available for use in time for completion of this project.

Scatter plots using Microsoft Excel are given separately for performance as a function
of each KC. Data and associated specifications have been offset and/or scaled to protect
Raytheon proprietary information, but the plots accurately represent the relative variation

in measurements and corresponding electrical performance.

4.3.1 KCs Impacting Performance Measure 1

Results for Electrical Performance 1 are presented here, with respect to the following
contributing parameters: KC2, KC3, KC4, KC5, and KC7. Scatter plots are shown in
Figure 4 through Figure 8, followed by observations.

Electrical Performance 1 as function of KC2 Width Near Front
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Figure 4: Scatter Plot and Regression Line for KC2 Width Near Front
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Electrical Performance 1 (larger is better)
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Electrical Performance 1 as function of KC3 Width Across Step
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Figure 5: Scatter Plot and Regression Line for KC3 Width Across Step

Electrical Performance 1 as function of KC4 Joint 1 Not Flush
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Figure 6: Scatter Plot and Regression Line for KC4 Percent of Joint 1 Not Flush
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Electrical Performance 1 as function of KC5 Worst-Case Coplanarity
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Figure 7: Scatter Plot and Regression Line for KC5 Worst-Case Coplanarity

Electrical Performance 1 as a function of KC7 Epoxy on Front
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Figure 8: Scatter Plot and Regression Line for KC7 Epoxy on Front
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For the five parameters contributing to Electrical Performance 1, the first observation
is that with the given dataset, electrical performance for all units was within the single-
sided performance specifications (LSL=0).

Of all these parameters, KC3 in Figure 5 shows the strongest indication of impact on
performance over the range of parameter values, as shown by the steepest sloped
regression line. However, the plot shows that the fit is still rather weak, with slope
strongly dependent on a few points near the outer limits of the dataset. While these few
outer points indicate the possibility of a performance impact, the full range of performance
variation is strongly evident in the middle region of the dataset. Simply tightening up the
variation in KC3 towards the middle of the spec range would likely do little to improve
expected performance.

The other four features exhibit little or no correlation to performance, with linear
regression lines virtually flat. This lack of correlation was surprising, and indicates that
these features are not as key to performance as was originally thought.

KC2 in Figure 4 shows a roughly uniform distribution of performance across all
observed widths, with the range biased toward the upper end of the tolerance band. This is
an example of a process that is in control and meeting specs. This feature cannot be
justified as key based on this data.

KC4 in Figure 6 also shows no significant correlation to performance. Of interest in
this case is that the specification calls for the joint to be fully flush. None of the samples
met the specification, yet there appears to be little impact in performance over the existing
range of observed joint flushness. This indicates an opportunity for cost avoidance.
Meeting the existing spec would require additional cost in the implementation of process
controls and inspection, while there would appear to be little projected performance
benefit. The existing process variation meets performance requirements, providing
evidence to remove the spec on joint flushness.

For KCS5 a policy of 100% inspection had been implemented to meet the drawing spec
for coplanarity, with a resulting scrap or rework rate of approximately 5%. However, as
with the other parameters, Figure 7 shows there is little correlation between this feature
and performance. This indicates a potential to relax the existing spec, with cost savings

due to reduced or eliminated inspection, scrap and rework. As this dataset does not include
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values outside the spec range, a designed experiment with properly selected values outside
the existing spec range would provide the definitive results required to justify such a
decision.

KC7 in Figure 8 indicates another opportunity for cost avoidance. Approximately half
of the samples did not meet spec, showing some significant degree of epoxy contamination
on the front face of the part. However, given existing process variation, there appears to be
almost no difference in performance for those parts that were contaminated. Rather than
implement either process controls to prevent the contamination or rework procedures to
remove it, the data indicates that the spec could be relaxed to allow for existing levels of

contamination with no resulting impact on performance.

4.3.2 KCs Impacting Performance Measure 2

Results for Electrical Performance 2 are presented here, with respect to the following
contributing parameters: KC6, KC8, KC9, KC10, KC11, and KC12. Scatter plots are
shown in Figure 9 through Figure 14, followed by observations.

Electrical Performance 2 as function of KC6 Substrate Height
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Figure 9: Scatter Plot and Regression Line for KC6 Substrate Height
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Electrical Performance 2 as function of KC8 Cable Protrusion

Electrical Performance 2 (smaller negative number is better)
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Figure 10: Scatter Plot and Regression Line for KC8 Cable Protrusion

Electrical Performance 2 as function of KC9 Center Conductor Length
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Figure 11: Scatter Plot and Regression Line for KC9 Center Conductor Length
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Electrical Performance 2 as function of KC10 Center Conductor Height

Electrical Performance 2 (smaller negative number is better)
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Figure 12: Scatter Plot and Regression Line for KC10 Center Conductor Height

Electrical Performance 2 as function of KC11 Back Gap
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Figure 13: Scatter Plot and Regression Line for KC11 Back Gap
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Electrical Performance 2 as function of KC12 Front Gap

Electrical Performance 2 (smaller negative number is better)

LSL (1-sided) -2 T T T T T T T
lotavg: -1.76 -0.003 -0.002 -0.001 0.000 0.001 0.002 0.003 0.004 0.005
worst-case: -2.14 LSL (1-sided)
KC12 Front Gap (Neg indicates protrusion)

Figure 14: Scatter Plot and Regression Line for KC12 Front Gap

For the six parameters contributing to Electrical Performance 2, the first observation is
that with the given dataset, electrical performance for all units was within the single-sided
performance specifications (LSL = -2.14 worst case and -1.76 on a lot average basis).

Of these six parameters, KC6 in Figure 9 and KC8 in Figure 10 show the strongest
relative correlation to performance. However, these both exhibit the same issue as KC3
from the previous section, that is, the regression slope is influenced by a few points near
the ends of the range.

There is currently no specification on KC6, and all samples met the performance
requirements. If there were a need for greater performance, it may be worth investigating
the use of process controls to restrict variation in substrate height to the low end of the
dataset where performance is both improved and experiences less variation (see Figure 9).
The performance improvements would need to justify the cost of such controls. KC8 in
Figure 10 tells a similar story, where there may be a potential for slight performance gains
through the use of process controls that would maintain cable protrusion near the upper

spec limit.

32



For KC9 in Figure 11 and KC10 in Figure 12, there is no significant correlation of
these parameters to performance. No specifications are given for these features, and
reducing variation in center conductor length and height around the center of their
respective datasets is not anticipated to improve performance, as most of the variation in
performance occurs in these middle regions.

KC11 in Figure 13 and KC12 in Figure 14 also show no significant correlation of
parameters to performance. The drawing implies a flushness spec for KC11, that is zero
back gap, a condition that the majority of assemblies did not meet. For KC12 the spec
indicates that protrusion is not allowed, that is, front gap must be positive, a condition that
a few of the assemblies did not meet. However, in both cases, these conditions outside of
specs did not appear to have a negative impact on measured performance. This data
indicates that the existing processes are capable of meeting the performance requirements
and that further investment in process controls to insure compliance with specs would not

result in increased performance.

4.3.3 Multivariate Analysis and Interactions

While individual features show little or no correlation to performance, it is possible
that performance is dependent on interactions of features. To explore these interactions, a
multivariate analysis was performed using JMP, a statistical analysis software packag627.
This analysis was performed separately for each of the two electrical performance
measures.

Figure 15 shows results for the first measure of electrical performance (P1) and its
associated parameters (KC2, KC3, KC4, KC5, and KC7). Likewise Figure 16 shows
results for the second measure of electrical performance (P2) and its associated parameters
(KC6, KC8,KC9,KC10,KC11, and KC12). Each of these figures has two elements. The
first is a correlation matrix that shows correlations between all parameters and the
performance measure. The second is a matrix of two-dimensional scatterplots showing
relationships among all parameters and the performance measure. Density ellipses in red
are set to enclose 95% of data points. A third dimension has been added to these plots
through the use of color. Each marker in the plot is colored according to its performance

measure, across the spectrum of red to violet. This spectrum can most easily been seen in

2" JMP In Version 4.0, SAS Institute Inc., website http://www.sas.com.
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the plots for the performance measures (P1 and P2) where for these graphs the added color

dimension is redundant.
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| Multivariate

l Correlations

KC2 KC3 KC4 KCS KC7 P1
KC2 10000 02723 -01735 -0.1367 0.0540 00173
KC3 02723 10000 -0.1479 -00789 00687 -02195
KC4 -01735 -0.1479 1.0000 02976 -0.4526 0.0696
KC5 -0.1367 -00789 02976 10000 -0.1868 0.0404
KC7 00540 00687 -04526 -0.1868 1.0000 -0.0048
P1 00173 -02195 00696 00404 -0.0048 1.0000
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Figure 15: Multivariate Analysis for all KCs contributing to Electrical Performance 1:
Correlation Table and Scatter Plot Matrix
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[ Multiv ariate |

[ Correlations |

KC6 KC8 KC9 KC10 KC11 KC12 P2
KC6 10000 -00224 -0.0503 02298 -0.0489 0.1237 -0.2428
KC8 -0.0224 1.0000 00552 -00293 00461 01267 02044
KC9 -0.0503 00552 10000 -01086 -0.1519 01410 -0.0524
KC10 02298 -00293 -0.1086 10000 -0.1440 00919 00329
KC11 00489 00461 -01519 -0.1440 1.0000 -04737 -0.0446
KC12 01237 01267 01410 00919 -04737 10000 0.0860
P2 -02428 02044 -00524 00329 -00446 00860 1.0000
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Figure 16: Multivariate Analysis for all KCs contributing to Electrical Performance 2:
Correlation Table and Scatter Plot Matrix
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Figure 15 and Figure 16 were examined for evidence that two-way interactions of
parameters impact the respective performance measures. A strong interaction would be
evident by distributions of color patterns in plots between two of the KCx parameters.

For example, in Figure 15, the better performing units correspond to higher values of
P1, with colors near the violet end of the spectrum (mostly blues) and poorer performing
units have lower values of P1, with colors near the red end of the spectrum. No clear
patterns were seen, with both red and violet/blue markers appearing randomly diffused in
the two-way parameter plots. In Figure 16, the better performing units correspond to
smaller negative values of P2, again with colors near the violet end of the spectrum and
poorer performing units with larger negative values of P2, with colors near the red end of
the spectrum. Again, there appears to be no clear evidence of spatial separation between

the red and violet/blue markers.

4.4 Summary of Data Analysis

In summary, correlations of these features to their respective performance measures
were weak. Of the eleven features measured, only three showed evidence of correlation
(KC3, KC6, and KC8), and the significance of those correlations is questionable in all
three cases, given that just a few outer points dominated the slope of the regression.

There was not strong evidence to confirm these characteristics as key with respect to
performance measures. There are a number of possible conclusions as to why this is the
case. One possibility is that KCs were not properly identified. This means that observed
variation in performance may be due to features that were either never identified or
eliminated from consideration when the list of candidate KCs was reduced. This would
indicate the need for improved methods to identify KCs. In such an assembly where there
are relatively complex relationships between parameters and performance, better analytical
tools may be needed. Ifitis found that software models cannot accurately describe these
relationships, then Design of Experiments can be helpful. The choice of performance
measures is also a factor in identifying KCs. It is sometimes a challenge to select
performance measures that both properly reflect customer needs and can be accurately
measured with reasonable effort and available equipment. With multiple electrical
performance parameters that characterize microwave assemblies, there are choices of how

required performance is defined (ie. which performance measures are important, how
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many different measures are needed, what are reasonable tolerances, how should these be
measured, etc.).

An alternative hypothesis for why the data analysis did not confirm the selected
parameters as KCs is that is that the design is highly coupled, so that variations in many
parameters interact to affect performance. In this case the performance of this design is not
dominated by variation in a few features that directly correlate to performance, but rather is
determined by variations in a large number of features, with complex interactions.
Electrical design engineers associated with the project indicated that this is typical of
electro-mechanical assemblies designed to operate at microwave frequencies. Simple two-
way interactions were explored in the scatterplot matrices. While these interactions did not
show a strong impact on performance, it is possible that other interactions are important.
These could include interactions with parameters not measured and/or higher order
interactions. If this is the case then more sophisticated anélysis methods are needed to
understand these interactions and their impact on performance.

There are other possibilities for why the parameters examined did not show an
anticipated level of impact on performance. It may be that the design is more robust than
expected, that is, variation in parameters would have little effect on performance. If this is
true, it is important to understand the properties of the design that result in robustness. It is
also possible that the parameters studied do have a significant impact on performance, but
that tolerances have been tightly constrained to levels that result in little or no performance
variation. If this is true, then understanding the relationship between these parameters and
performance measures will likely create opportunities for cost savings by relaxing
specifications to levels that acceptable performance specifications will allow.

It appears that measurement error may be a significant source of variation in these
measurements. Analysis of expected measurement error would be helpful to quantify the
sources and magnitude of variation due to measurement in electrical performance measures
as well as KCs. This can be accomplished using a Gage R&R (repeatability and
reproducibility) study, a statistical tool that measures magnitude and source of variation in
measurements. Error bars, both horizontal and vertical, could then bound each point on the

scatterplots, visually indicating the relative importance of measurement errors in overall
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variation. The absence of such information weakens the case for establishing a correlation
between variation in KCs and electrical performance.

Perhaps the most significant of these observations is the potential for cost savings.
This occurs where variation in a parameter does not appear to impact performance, yet
parts are being inspected, then scrapped or reworked due to not meeting specifications.
With designed experiments using parameter levels outside of the current spec range it may
be possible to confirm that specifications can be relaxed and inspection, scrap and rework

can be reduced or eliminated.
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Section 5: KCs and the Design Process: An Example

5.0 Section Overview

A benefit of KC identification is that it helps to focus the concurrent engineering of
product and process on those features of the design that are most important. This became
clear in the process of identifying KCs for Subassembly A. This section follows the
development of a process for one of the critical joints on Subassembly A. It illustrates how

identifying and questioning the KC for this joint led to a more robust design.

5.1 Joint 2

Figure 17 diagrams the cross-section of a portion of Subassembly A, where “Joint 2”
is shown as an electrical connection between the center conductor of a cable and the plated
wall of a hole. The KC identified for this joint is the “Void Depth.” Finite element
analysis simulation results were confirmed with laboratory experiments to show that
variation in the depth of the void has a significant impact on the RF electrical performance

of the subassembly.

Joint 4 \

Flange
Solder

Joint 3 W '
Dielectric Washer\t - Washer Thickness (Tw)
Hole Plating Void Depth (Dv)

, Center Conductor Length (Lcc)

Cable

Center Conductor

Joint 2

Stop Depth (Dst)

Plated Hole Diameter (Dh)
—> <~ Center Conductor Diameter (Dcc)

Figure 17: Cross-Section of Subassembly A, Joint 2
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5.2 A Proposed Solder Preform Process

A number of alternative methods were proposed to create Joint 2, including the use of
either electrically conductive epoxy or solder. One promising method is based on the use
of solder “preforms.” These are now available in a wide variety of form factors and solder
types, and can be custom ordered to precise dimensions®®. This section will present a
simplified version of a Joint 2 design using a solder preform. The intent is not to present a
comprehensive description of the many factors involved in the design, but to present those
that demonstrate the role of KCs in this development process.

The method proposes inserting a solder stop, a high-temperature rubber plug, into the

plated hole, followed by a cylindrical solder perform as shown in Figure 18.

L J

Hole Plating \
Solder Preform e

Solder Stop/

Figure 18: Solder Stop and Cylindrical Solder Preform Inserted in Plated Hole

The unit is then placed in a special-purpose fixture and heated in an oven, while the solder
stop prevents the solder from flowing down the sides of the hole. The fixture holds the
cable aligned and allows it to drop into the molten solder, completing the joint as shown in
Figure 19. The flange shown in the finished joint of Figure 17 can then be slipped over the
cable and manually soldered to give the joint mechanical strength and create the required

electrical connection between the cable jacket and outside of the unit.

*¥ Indium Corporation of America, A Quick Guide to Solder Preforms. Available from
http://www.indium.com.
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Figure 19: Joint 2 after Solder Reflow

A traditional approach then takes this proposed design and selects targets for the basic
parameters of the joint, choosing tolerances for each to limit the impact of variation on
product performance. In this case variation in the parameter identified as Void Depth was
determined to have the greatest impact on product performance. We can recognize that
variation in the resulting Void Depth will depend on a stackup of variation in a number of
physical parameters: Stop Depth, Solder Volume, Plated Hole Diameter (itself a function
of variations in hole diameter and plating thickness), Center Conductor Diameter, Center
Conductor Length, and Washer Thickness.

From a worst-case perspective, it is possible to identify the disallowed conditions
shown in Figure 20, then calculate worst-case specifications for all those parameters
subject to variation. Given random variation in these parameters, a worst-case analysis
results in specifications that are unnecessarily tight. A better approach might be the use of

statistical tolerancing techniques, as described by Whitney*’. However, instead of

¥ D.E. Whitney, Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development, to
be published by Oxford University Press, 2003, Chapter 5: Dimensioning and Tolerancing Parts and
Assemblies.
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proceeding on this path, let us back up and look at this design from the perspective of the
KC.

Center Conductor
doesn’t clear
solder stop

Solder overflow
into counterbore

No center
conductor
contact

Void Depth
exceeds spec

Figure 20: Defective Conditions for Joint 2

5.3 KCs Give Perspective on Design Alternatives

At this point, we step back from the design to take a closer look at the KC. Why is
Void Depth a KC? Tolerancing studies were done on the proposed design and variation in
Void Depth was found to impact RF electrical performance. In this case the metric directly
related to customer requirements is electrical performance. In terms of a very simple KC
flowdown, electrical performance is considered the primary KC and Void Depth is
considered a derived KC. Why is this distinction important? Primary KCs must be met
because they are directly linked to customer requirements. However, derived KCs are
artifacts of the chosen product and/or process design. For any given design it is expected
that most of the KCs will be derived.

It is correct that Void Depth is critical for this particular design, but might there be

other designs where electrical performance is not dependent on Void Depth, or where Void
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Depth is not subject to stackup in variation of other parameters? Is there a design that will
allow us to more directly control the variation in KCs around their target values? Or is
there a design that is so different that it doesn’t have a void and thus has no void depth? A
robust design can be achieved if the variation inherent in the associated part, process, and
assembly parameters has little effect on performance requirements.

This type of questioning led to the suggestion that the process for creating this joint
literally be turned upside-down. Starting with a “not-to-exceed” spec for void depth, it
was determined that ideally there would be no void whatsoever. Targeting a zero-void
joint in an upside-down configuration led to the proposed joint design shown in Figure 21.

An added feature of this design is the flange soldered to the centered conductor. This
achieves a thinner solder joint to minimize the stress associated with coefficient of thermal
expansion mismatches in the solder and walls of the plated hole. A minimum joint length
is needed to insure a good joint, but a joint that is too long was shown to result in
undesirable stresses. The taper on the flange makes the joint length robust to variation in

other parameters such as solder volume or hole diameter.

Inner Joint can be soldered before
inserting cable assembly into hole

Center Conductor

Solder Preforms

Invar reduces CTE stress
Plated Invar Flange

Outer Joint is thin and taper on flange
reduces vanation in joint length

Inner Solder Joint

Inverted position for
‘ consistent ‘no-void” joint
Plating =1

VWashHsr . Require§ fixture to seat
washerin counterbore
Cable (may be attached to cable)

Figure 21: An Alternative Design for Joint 2

At the time this design was suggested, initial production was already underway with a

process based on a conductive epoxy. Initial results of the epoxy process showed potential
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promise. This design was held in reserve pending further production experience with the
epoxy process. No new derived KCs were anticipated in this alternative design.

In summary, this simplified description provides an example of how KCs can be used
to focus the design process on those parameters that have the greatest impact on
performance, resulting in more robust designs. Because KCs cut across product and
process and supply chain boundaries, they act as a communication aid to organizations that
are trying to improve concurrent engineering design in order to improve the transition from
design to production. Identifying and communicating KCs establishes common goals for
all design and manufacturing personnel.

Looking at causes of inaccuracies in manufacturing process simulations led us to
question expected first-pass yield inputs to the model. This in turn led to identification of
Key Characteristics (KCs) as a way to focus on features with the greatest impact on
customer performance requirements. Having addressed KCS as the root of this
predictability chain, we now examine the next step: predicting first-pass yields for

manufacturing process modeling.
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Section 6: Predicting First-Pass Yields for Manufacturing
Process Modeling

6.0 Section Overview

Radar Subassemblies are precise mechanical subassemblies that go through many
specialized production process steps. As part of manufacturing system design, inspection
and test procedures are established at various stages in the production process. Each
inspection point has an associated first-pass yield, with rejects resulting in either scrap or
rework.

This section will discuss what Raytheon is currently doing to predict first-pass yields,
then look at an underlying mathematical framework and method to apply it to Subassembly
A in a simple spreadsheet model. We will then return to where this project started, with a

brief description of use of manufacturing process modeling at Raytheon.

6.1 Process Capability Analysis Toolset (PCAT)

Raytheon has significant experience in predicting yields based on process capability.
They have developed a custom software tool, the Process Capability Analysis Toolset
(PCAT), for predicting first-pass yield, cost, and cycle time early in the product design
process. Its purpose is to assist in quantifying the “impact of key design features and
characteristics on manufacturing process, enabling tradeoffs early in the design process™’.
PCAT uses a database of process capability models based on historical data and expert
knowledge validated against actual production data. A graphical user interface allows a
designer to input the associated process and parameters for a given design. The software
then queries the database for Defects Per Unit (DPU) estimates of each process and
combines these to give a resulting DPU and associated first-pass yield prediction for the
design.

At Raytheon’s Andover facility, PCAT is presently used extensively in areas such as
Circuit Card Assembly and Metal Fabrication. However, at the time this project began, the
appropriate DPU data did not yet exist for the processes required for Subassembly A and

similar electro-mechanical subassemblies. A project has been initiated to develop these

models and make them available to evaluate future radar subassembly designs.

3 PCAT Process Capability Analysis Toolset, internal Raytheon Company training materials
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In the absence of a PCAT model for Radar Subassembly A, a simple spreadsheet
model was created that uses a DPU estimation method similar to that used by PCAT. A
brief summary of the mathematical basis for DPU estimation of first-pass yield is
presented, followed by a description of the spreadsheet model implemented for

Subassembly A.

6.2 Mathematical Basis for First-Pass Yield Estimates

This section presents a brief summary of the mathematical basis for using DPU
estimates to predict First-Pass Yield for assemblies. Portions of the brief summary
presented here draw heavily on Motorola Six Sigma training materials®'. We start with a
few definitions:

e First-Pass Yield for a given test or inspection step is the ratio of units that pass the
first time over total number of units tested for the first time.

e Defect is defined as a fault in a part, subassembly, or process that causes a unit to
fail test.

o Defects Per Unit (DPU) is the ratio of defects found at all acceptance points over
total number of units produced.

Defects are typically distributed either uniformly or randomly in a unit. Using the
example of an electronic circuit card assembly, if a wrong part is placed in a parts bin,
every circuit board will contain the wrong part in the same location, resulting in a
uniformly distributed defect. However, mixed parts in the same bin would create
randomly distributed defects, where the probability of a defect is dependent on the
proportion of wrong parts in the bin. Uniform defects are easiest to locate, fix, and
prevent, while randomly distributed defects are usually more challenging. For this
analysis, first-pass yields are estimated based on randomly distributed defects.

The Poisson distribution is useful in finding a relativély simple formula for estimating
first-pass yield given the assumption of randomly distributed defects. In a Poisson
distribution, an unknown number of items are scattered over some type of “region”. With
this region divided into extremely small increments of size €, a distribution is considered

Poisson with parameter A if the following apply:

3! Design for Manufacturability, Motorola Six Sigma Training Course ENG 123, 1990.
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o the probability that exactly one item falls in a given increment of size € is A&
e the probability that no items fall in such an increment is (1- Ag)
e increments are independent as to whether they contain items

The parameter lambda can be interpreted as the average number of items in a unit
interval of the region. The Poisson formula then gives the probability that x items will
occur during a given interval T, where p = AT is the average number of items in interval T,
and e is the mathematical constant (= 2.718):

P{x}=(u*-e*)/x!

Often the Poisson distribution is applied to events occurring in time, but in this case it
is applied to defects occurring in the possible “defect space” of an assembly unit, that is,
the space comprising possible opportunities for creating defects in the assembly. While a
proof is not presented here, it has been demonstrated that these randomly distributed
defects can be modeled as a Poisson distribution. In the Poisson formula, we can let x =
number of defects, and p = expected defects per unit (DPU), such that for a given unit the
probability of zero defects is

P{0} = (DPU’- &P"V)/ 01 = &PV
Recognizing that probability of zero defects is First-Pass Yield, we have
FPY =™

In the case of radar subassemblies there are multiple opportunities for defects in parts
and assembly processes. Each of these (A, B, ..., N) results in a First-Pass Yield that can
be found from an associated DPU:

FPYa =ePUA FPYR =eP"UB, .. FPYyn=¢"'UN)

The Rolled First-Pass Yield, or probability of a unit going through the entire process

without defects can be found by the joint probabilities:
Rolled First-Pass Yield = P{0 defects for all process steps}
=P {0 defects at A} - P{0 defects at B} -...- P{0 defects at N}

-DPUA . ,-DPUR . . ,DPUN

=e e

—. -(DPUA +DPUR + ...+ DPUN)
= ¢ (DPUA B N

This result doesn’t depend on process flow, only on the DPUs. However, the result

assumes independence of opportunities for defect. That is, the existence of one defect does
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not change the probability that another defect will occur. Because this is not always
strictly true in practice, this result can be expressed as an approximation rather than an
exact result.

In conclusion, we end up with a very simple way of estimating first-pass yield for an
assembly: Identify the opportunities for defects, estimate DPUs, sum the DPU estimates,
then use the simple formula: FPY = ¢ ®PPY) " The next section presents a method of

applying this to assemblies and then uses Subassembly A as an example.

6.3 Method for First-Pass Yield Estimation for Assemblies

The mathematical concepts developed in the previous section can be used to
implement a relatively simple method for yield estimates on new subassembly designs
where PCAT process models are not yet available.

The following process is used:

1. Divide the processes required into subassembly groups as defined by the
anticipated inspection and test points. These are the opportunities to discover
defects.

2. Starting with the lowest level subassembly grouping(s), for each group of
assembly steps leading up to a test or inspection point:

List all subassemblies, all vendor parts, and all process steps required

b. Associate the Key Characteristics with their specific subassemblies,
vendor parts, and assembly process steps listed, and note anticipated
process controls: fixturing, automation, etc.

c. For vendor parts and assembly process steps, estimate the number of
Defects per Unit (see DPU estimation guidance below), focusing
estimation efforts mainly on the identified Key Characteristics

d. Estimate the effectiveness of the test or inspection, that is, what
percentage of the defects that arrive at an inspection point will be found
by the inspection. If there is the potential that the inspection will falsely
reject good parts, this number should also be estimated.

e. Sum the estimated Defects Per Unit caught by inspection or test

f. For each inspection point, estimate first-pass yield by e PPY) (DpU

caught by inspection or test) plus percentage of false rejects.
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3. Sum the estimated Defects Per Unit not caught and pass on this estimated DPU
value to the next higher subassembly, then repeat steps 2a through 2f for that
subassembly, finishing with an estimate of first-pass yield for the deliverable
assembly and an estimate of DPU passed on to the next higher assembly.

A caveat to this method is that defects not caught by the final test for that subassembly will
not contribute to predicted first-pass yield assigned to that subassembly. If they are caught
at a test for a higher level subassembly, they would count toward the first-pass yield of that
subassembly. With an effective final subassembly test, there is no ambiguity in allocation
of defects. An ineffective final subassembly test may tend to overestimate the true yield of
that subassembly, while underestimating the yield of the higher level assembly when the
defects are finally revealed.

Estimating DPUs for parts and assembly process steps presents a challenge that
requires drawing on a variety of data sources. In some cases these numbers can be fairly
accurate, where there is significant historical data or pre-production processes have
stabilized. Where individual process steps are already stable it is possible to use process
capability analyses, such as calculating Cpk’s and related DPUs by fitting Gaussian
distributions to process data. Kolarik describes this process>’. Part of this project involved
researching and identifying appropriate tools that are both quick to learn and readily
available to the wider Raytheon community. It was found that such analyses can be
performed using SPC XL, a software add-on to Microsoft Excel that gives Cpk and
associated DPU values directly. This software package is available to the entire Raytheon
community through the company intranet. For someone already familiar with MS Excel,
this package can be installed and Cpk analyses run with minimal effort and learning. Table
2 is a simple reference to compare DPU values with sigma capability and Cpk. A written
description of process capability that roughly describes the various capability levels

defined by order of magnitude DPU values.

32 William J. Kolarik, Creating Quality: Process Design for Results, McGraw-Hill, 1999.
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Table 2: DPU Order of Magnitude Estimates For Process Capability

Estimate of Process Capability DPU T capability C ok
Process extremely capable 1.E-06 5.07 1.69
Process very capable, easily meets specs 0.0001 3.89 1.30
Process capable with respect to specs 0.001 3.29 1.10
Process marginal with respect to specs 0.01 2.58 0.86
Process is clearly incapable of meeting specs 0.1 1.64 0.55

For the cases where good data is not readily available or reasonably obtainable,
various other methods can be used to estimate DPUs. Preliminary data from preproduction
runs can be used, with estimated adjustments for a production environment (ie. additional
fixturing, etc. Knowledgeable engineering estimates can be applied. If data is not
available, an error analysis can be performed. This involves looking at sources of errors
that will contribute to defects and analyzing the relationships will combine errors to create
defects.

The following section shows how this method was applied to Subassembly A.

6.4 Predicting First-Pass Yield for Subassembly A

Raytheon’s PCAT software provides a powerful tool for estimating first-pass yield,
but the required process capability data were not available at the time Subassembly A was
being developed. Instead the method presented in the previous section was used to create
an Excel spreadsheet model to estimate first-pass yield at the multiple inspection and test
points for Subassembly A. KC identification indicates the elements that are most
important in the predictive process, that is, key characteristics can be considered the main
drivers of first-pass yield.

As a first step, Subassembly A process steps were divided into seven groups, based
on six defined intermediate inspection steps and a final RF electrical test. The intermediate
inspections steps included general visual evaluation and selected measurements to confirm
that parts and subassemblies met drawing specifications. Excel was used to capture this
information, with part and assembly names referenced by generic names to protect
Raytheon proprietary information. An assembly tree showing inspection steps is given in

Figure 22 and the seven tables are given later as Table 3 through Table 9.
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Figure 22: Assembly Tree for Subassembly A Showing Inspection Points

For each of these seven groupings, the following opportunities for defects were listed:
vendor parts, lower-level subassemblies, and assembly process steps. A quantity entry
indicates if multiples of the same parts, assemblies, or process steps are used. Candidate
KCs and any special process controls were identified for each item before making
estimates of the DPUs for each line item. DPUs considered marginal or worse ( >0.01) are
highlighted in the tables. Next, the effectiveness of each inspection at uncovering defects
was estimated for each line item, that is, each defect opportunity. Some of these numerical
estimates have been altered to protect Raytheon proprietary data, while generally
maintaining the same relative trends as the original estimates.

The spreadsheet was then used to calculate a predicted DPU total for each line item (=
Qty * Pred DPU), the predicted DPU caught by inspection ( = Est % Defect Caught by
Insp * Pred DPU Total), and the predicted DPU passed on ( = Pred DPU Total — Pred DPU
Caught by Inspection). Line items DPU predictions were then summed to capture two
DPU subtotals, one for DPU caught by inspection and one for DPU passed on to the next

higher subassembly. Predicted first-pass yield for that inspection step is given using the
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formula described in the previous section: FPY = ¢ ® PPUs Caught By Inspection) “p o 1ypyy
passed on are transferred to the table associated with the next higher subassembly, with the
procedure repeated in each of the other tables.

As an example, we look at Table 3 that describes this process for the lowest level
subassembly, labeled Subassemblyl-2. Two vendor parts (Partl and Part2) are joined
using epoxy and a series of eight process steps. Predicted DPUs are low for all but the two
vendor parts. It is also estimated that the inspection process has limited effectiveness, with
only about a third of the total DPU caught by the inspection (.0227), resulting in a
predicted first-pass yield of 97.8% for this inspection step. Closer examination shows that
this is dominated by the predicted 30% inspection effectiveness rate for DPUs associated
with Part2. Approximately two thirds of the total DPU are passed on to the next higher
assembly (.0409), a number that is transferred to the first row of Table 5 describing the
next higher assembly. This process is followed for the remaining tables. Note that defects

passed through are caught at the final electrical test shown in Table 9, a definitive test for

electrical performance.

Table 3: Yield Predictions for Subassemblyl-2

Join Part1 to Part2 (Joint 1) to create subassembly1-2
Bond/Seal with fixture and manually injected epoxy

Pred DPU Est %

Part or Defects Pred DPU

Assy Caught Pred DPU Caught by Pred DPU
Vendor Parts Qty Step Notes by Insp Total Inspection Passed On
Part1 1 0.01 1 50% 0.01 0.005 0.005
Part2 1 0.05 2 30% 0.05 0.015 0.035
Joint 1 _Epoxy 1 0.0001 3 50% 0.0001 0.00005 0.00005
Assembly Process Steps
Clean Parts 1 and 2 1 0.0001 3 50% 0.0001 0.00005 0.00005
Assemble Masking Disk 1 0.0001 3,8 50% 0.0001 0.00005 0.00005
Assemble Part1 to Part2 1 0.001 6.8 80% 0.001 0.0008 0.0002
Secure Part2 in Part1 1 0.001 6.8 80% 0.001 0.0008 0.0002
Bond Parts 1 and 2 (incl. touch-up) 1 0.001 6.8 80% 0.001 0.0008 0.0002
Cure 1 0.0001 3 50% 0.0001 0.00005 0.00005
Defixture 1 0.0001 3 50% 0.0001 0.00005 0.00005
Inspect 1 0.0001 3 50% 0.0001 0.00005 0.00005

Subssembly1-2 Predicted DPU Caught By Inspection 0.0227
Subassembly1-2 Predicted First-Pass Yield 97.8%

Subassembly1-2 DPU passed on to Subassembly1-2-3-4 0.0409
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Table 4: Yield Predictions for Subassembly3-4

Join Part3 to Part4 (Joint 4) to create Subassembly3-4
Bond/Seal with fixture, resistance tweezers, and solder preform

Est %
Pred DPU Defects Pred DPU

Part or Caught Pred DPU Caught by Pred DPU
Vendor Parts Qty Oper Noes by Insp Total Inspection  Passed On
Part3 1 0.0001 3 50% 0.0001 0.00005 0.00005
Part4 1 0.004 4 80% 0.004 0.0032 0.0008
Solder preform 1 0.0001 3 50% 0.0001 0.00005 0.00005
Assembly Process Steps
Solder Part3 to Part4 1 0.001 80% 0.001 0.0008 0.0002
Degas 1 0.0001 3 50% 0.0001 0.00005 0.00005
Inspect 1 0.0001 3 50% 0.0001 0.00005 0.00005

Subassembly3-4 Predicted DPU Caught by Inspection 0.0042

Subassembly3-4 Predicted First-Pass Yield 99.6%
Subassembly3-4 DPU passed on to Subassembly1-2-3-4 0.0012

Table 5: Yield Predictions for Subassemblyl-2-3-4

Join Subassembly3-4 to Subassembly1-2 (Joints 2&3) to create Subassembly1-2-3-4
Double Bond/Seal with fixture and 1) manually injected epoxy 2) epoxy preform

Est %
Pred DPU Defects Pred DPU
Part or Caught Pred DPU Caught by Pred DPU
Internal Parts from Previous Assy Qty Oper Notes by Insp Total Inspection Passed On
[Subassemblyi-2 1| 00400 | [ 10% [ 0.0409 0.00409 | 0.03681 |
[Subassembly3-4 2 | 0.0012 | [ 10% | 00024 0.00024 [ 0.00216 |
Vendor Parts
Spacer 2 0.001 50% 0.002 0.001 0.001
Joint 2 Epoxy 1 0.001 5 50% 0.001 0.0005 0.0005
Joint 3 Epoxy Preform 2 0.0001 3 50% 0.0002 0.0001 0.0001
Assembly Process Steps
Position Subassembly3-4 in fixture 2 0.0001 3 50% 0.0002 0.0001 0.0001
Position (2) Preforms 2 0.01 5 80% 0.02 0.016 0.004
Inject Epoxy 2 0.02 5 20% 0.04 0.008 0.032
Position Subassembly1-2 in fixture 1 0.001 5 50% 0.001 0.0005 0.0005
Seat Subassembly1-2 1 0.001 : 50% 0.001 0.0005 0.0005
Cure 1 0.0001 3 20% 0.0001 0.00002 0.00008
Remove Unit From Fixture 1 0.0001 3 50% 0.0001 0.00005 0.00005
Verify Marking 1 0.0001 3 50% 0.0001 0.00005 0.00005
Inspect 1 0.0001 3 50% 0.0001 0.00005 0.00005

Subassembly1-2-3-4 Predicted DPU Caught by Inspection 0.0312
Subassembly1-2-3-4 Predicted First-Pass Yield 96.9%
Subassembly1-2-3-4 DPU passed on to Formed Subassembly1-2-3-4 0.0779

Table 6: Yield Predictions for Formed Subassembly1-2-3-4

Bend Cables to create Formed Subassembly1-2-3-4

Cable Bending
Est %
Pred DPU Defects Pred DPU

Part or Caught Pred DPU Caught by Pred DPU
Internal Parts from Previous Assy Qty Oper Netes by Insp Total Inspection Passed On
[Subassembly1-2-3-4 [ 1 [ 00779 | [ 10% | 00779 | 000779 | 007011 |
Assembly Process Steps
Fixture Subassembly1-2-3-4 1 0.001 50% 0.001 0.0005 0.0005
Form 1st Long Cable (2 bends) 2 0.01 7 50% 0.02 0.01 0.01
Form 2nd Long Cable (2 bends) 2 0.01 7 50% 0.02 0.01 0.01
Offset 1 0.01 7 50% 0.01 0.005 0.005
Inspect 1 0.0001 3 50% 0.0001 0.00005 0.00005

Formed Subassembly 1-2-3-4 Predicted DPU Caught by Inspection 0.03334
Formed Subassembly1-2-3-4 Predicted First-Pass Yield 96.7%
Formed Subassembly1-2-3-4 DPU passed on to Subassembly1-2-3-4-5-6 0.09566
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Table 7: Yield Predictions for Subassembly5-6

Join Part5 to Part6 to create Subassembly5-6
Bond/Seal with fixture and epoxy preform

Est %
Pred DPU Defects Pred DPU
Part or Caught Pred DPU Caught by Pred DPU
Vendor Parts Qty Oper by Insp Total Inspection  Passed On
Part5 1 0.0001 3 50% 0.0001 0.00005 0.00005
Parté 1 0.0001 3 50% 0.0001 0.00005 0.00005
Epoxy Preform 1 0.0001 3 50% 0.0001 0.00005 0.00005
Assembly Process Steps
Clean Part6 1 0.001 3 20% 0.001 0.0002 0.0008
Adhere Part5 1 0.001 20% 0.001 0.0002 0.0008
Verify Position 1 0.001 80% 0.001 0.0008 0.0002
Oven Cure 1 0.0001 3 20% 0.0001 0.00002 0.00008
Remove Material 1 0.001 80% 0.001 0.0008 0.0002
Inspect 1 0.0001 3 50% 0.0001 0.00005 0.00005
Subassembly5-6 Predicted DPU Caught by Inspection 0.00222
Subassembly5-6 Predicted First-Pass Yield 99.8%
Subassembly5-6 DPU passed on to SubassemblyA  0.00228
Table 8: Yield Predictions for Subassembly A (Untested)
Join Subassembly5-6 to Formed Subassembly1-2-3-4, then Touch-up to createSubassembly A
Bond/Seal with fixture, solder preform, and resistance tweezers
Bond/Seal with fixture, pretinned solder pad, and manual solder iron
Bond/Seal manually with epoxy
Est %
Pred DPU Defects Pred DPU
Part or Caught Pred DPU Caught by Pred DPU
Internal Parts from Previous Assy Qty Oper Noes by Insp Total Inspection  Passed On
[Formed Subassembly1-2-3-4 [ 1 [ 0.09566 | [ 10% | 0.09566 | 0.009566 | 0.066094 |
[Subassembly5-6 |1 [ 0.00228 | [ 70% | 000228 | 0000228 | 0002052 |
Vendor Parts
[Joint 5 Solder Preform [ 2 Joooo1 [ s | [ 00002 ] 0 [ 00002 ]
Assembly Process Steps
Set-up Holding Fixture 1 0.001 50% 0.001 0.0005 0.0005
Position Subassembly5-6 1 0.001 50% 0.001 0.0005 0.0005
Secure Subassembly5-6 1 0.001 50% 0.001 0.0005 0.0005
Position Solder Fixture 1 0.001 50% 0.001 0.0005 0.0005
Solder Cables 2 0.001 [ 50% 0.002 0.001 0.001
Reposition Fixture 1 0.001 50% 0.001 0.0005 0.0005
Solder Center Conductors 2 0.005 5 50% 0.01 0.005 0.005
Degas 1 0.0001 3 50% 0.0001 0.00005 0.00005
Touch-up 1 0.001 50% 0.001 0.0005 0.0005
Cure 1 0.0001 3 50% 0.0001 0.00005 0.00005
Inspect 1 0.0001 3 50% 0.0001 0.00005 0.00005
SubassemblyA Predicted DPU Caught by Inspection  0.018944
Subassembly A Predicted First-Pass Yield 98.1%
Subassembly A DPU passed on to Tested Subassembly A 0.097496
Table 9: Yield Predictions for Tested Subassembly A
Electrical Test
Est %
Pred DPU Defects Pred DPU
Part or Caught Pred DPU Caught by Pred DPU
Internal Parts from Previous Assy Qty Oper Notes by Test Total Test Passed On
[Subassembly A [ 1 [0.097496] [ 99% | 0.007496 | 0.09652104 | 0.00097496 |
Test Process Steps
Calibrate Test Station 1 0.01 5 80% 0.01 0.008 0.002
Place Part in Test Fixture 1 0.02 5 80% 0.02 0.016 0.004
Run automated test software 1 0.0001 50% 0.0001 0.00005 0.00005

Tested Subassembly A Predicted First-Pass Yield

Tested Subassembly A Predicted DPU Caught by Inspection 0.12057104

88.6%

Tested Subassembly A DPU passed on to Next Higher Assembly 0.00702496
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6.5 Comparing Predictions to Actual Yields

Table 10 presents a summary of the predicted first-pass yields for the inspection steps,
compared against actual yield data collected during the Proof of Manufacturing run. It
appears that this method was effective at estimating first-pass yields within about a 5%
band. The most significant observation is that the intermediate inspections are relatively
ineffective at detecting defects, which are not revealed until the final electrical test. Yields
for intermediate inspection steps are in the high 90%’s, while the final test yield is much
lower at 91%. Looking at Table 3 through Table 9, the model shows how defects are
passed through the initial and intermediate inspection steps and caught only at the final RF
electrical test. This highlights the potential for improvement if an effective test could be
implemented earlier in the assembly process. It is also worth examining whether all
inspection steps are cost-effective. For example, the final inspection of Subassembly A
before going through test shows a 99% yield. If the same defects that are identified here
would be revealed by the final electrical test, then in full production it would be more cost
effective to skip this last step and proceed directly to electrical test.

The final electrical test is considered very effective (see 99% effectiveness estimate in
Table 9), meaning that very few defects are expected to be passed on to the next higher
assembly. As noted when this method was presented in Section 6.3, if this final test were
less effective, then these yield numbers may need to be adjusted to account for those

defects that would be discovered later in the assembly process or by the customer.

Table 10: Predicted First-Pass Yields Compared to Actuals for Proof of Manufacturing

(POM) Run
Inspected Subassembl Predicted First-Pass Actual First-Pass
P y Yield for POM Yield during POM
Subassembly1-2 97.8% 95%
Subassembly3-4 99.6% 95%
Subassembly1-2-3-4 96.9% 97%
Formed Subassemblyl-2-3-4 96.7% 96%
Subassembly5-6 99.8% 98%
SubassemblyA (untested) 98.1% 99%
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Tested SubassemblyA 88.6% 91%

Note: Relative numbers are representative, with offsets applied to protect proprietary data

This model is for a snapshot in time and can be updated during the transition into
production. For example, the numbers shown here represent predictions and actuals for the
beginning of the Proof of Manufacturing run. With iterative improvements in the
production process and tuning of the test specifications, production yields at test were
consistently near 100%. If it can be shown that yields are consistently near 100%, it may
be possible to reduce or eliminate the costly final testing if it can be verified that processes
remain in control.

In summary, this model provides a way of looking at buildup and removal of defects
through a process of multiple inspections that are characteristic of new radar subassembly
designs. Achieving reasonable overall yield estimates can be accomplished by breaking
the model into the many line items that describe opportunities for defects, then using KCs

to identify those that deserve the most effort in estimating individual DPU numbers.

6.6 Modeling Manufacturing Processes

This project began with a goal of achieving better manufacturing system predictability
through greater accuracy in manufacturing process simulations. Asking a series of
“Whys?”” led down a path that focused on enablers for more accurate models by first
looking at KCs as the basis of a “predictability chain” and then developing a structured
method to estimate first-pass yields. Taken alone, accurate yield estimates are an
important part of predicting how a manufacturing system will perform. They are also an
important input to manufacturing process models that can be used to predict other
measures of interest.

Raytheon has developed significant capabilities in modeling manufacturing system
processes for radar subassemblies at their Andover facility. A prior MIT Leaders for
Manufacturing student, Tim Sweitzer, addressed this topic in detail during a project at
Raytheon’s Andover facility in June-December of 2001. Sweitzer introduced the use of
Process Model, a commercial package that provides a software environment to visualize,

analyze, and improve processes>. This software allows one to model many of the

33 ProcessModel Version 4.2, ProcessModel Corporation, Provo, UT, website http://www.processmodel.com.

57




complexities of manufacturing system processes that drive performance measures (ie.
queues, rework, work-in-progress, non-value added activities, resource requirements,
batching, etc.). In his thesis®, Sweitzer presents an initial model of the manufacturing
system for an earlier version of the same Subassembly A design examined here.

As this project neared completion, Raytheon personnel were updating the initial
manufacturing process models to include changes to the product and process design.
These models were used to predict full-rate performance of the line and incorporated into
the training process to demonstrate full-rate performance on the actual line. This thesis
will not present further details on modeling of manufacturing processes, but does highlight
that accuracy of these models is dependent on enablers such as the identification of KCs

and estimation of first-pass yields as enablers.
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Section 7: Recommendations and Organizational

Change

7.0 Section Overview

This section will summarize recommendations, address the strategic benefits of these

changes, examine the cultural environment for implementation, and outline a transition

plan for future work.

7.1 Summary of Recommendations

This project proposes that better predictability of manufacturing system performance

of new radar subassembly designs can be achieved by integrating the following elements

into the product development process:

Implement key characteristics identification as an integral part of the product design
process. This is considered the most significant recommendation, as this is not
presently part of the development process for radar subassemblies manufactured at
Raytheon’s Andover facility.

Use the methods presented in Section 4 to verify if candidate KCs are truly KCs and
to validate Cpk estimates for processes.

Use the KC identification exercise as an opportunity to review tolerances and
associated process controls. If parameters thought to be key show little impact on
customer-required performance, this indicates an opportunity for cost savings by
relaxing tolerances and thus reducing scrap or rework. Inspection and other process
controls may also be reduced or eliminated.

Obtain more accurate first-pass yield estimates through PCAT models or the custom
yield models previously presented, where the KCs indicate the product and process
features that will have the greatest impact on yield. This is considered an extension
of existing work.

Apply these first-pass yield estimates in manufacturing system simulations using
existing software tools like the Process Model software previously introduced. This

is considered an extension of existing work.
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7.2 Strategic Benefits
Strategic benefits of implementing the proposed methods can be grouped in three
categories: benefits specific to a new subassembly design, benefits at a system-level, and

benefits in building organizational capabilities.

7.2.1 Benefits to Subassembly Designs

Subassembly designs can directly benefit from cost and performance improvements
resulting from the methods proposed. In particular, a culturally established method of
identifying, verifying, and communicating KCs helps focus the concurrent design process
on features that have the strongest cost-performance tradeoffs. When such priorities are
communicated to all development team members, including process design, process
implementation, and training personnel, it can decrease development time, reduce product
redesign cycles, and result in more efficient process and manufacturing system design.

As demonstrated in the case of Subassembly A, identifying and verifying KCs reveals
that many of the product and process features initially thought to be critical may in fact
have little or no impact on customer required performance. When this is the case, it may
be possible to justify the relaxation of specifications. For internal manufacturing processes
this can reduce the need for inspection, scrap, and rework. For vendor parts this may allow
suppliers to reduce their costs. Process controls may also be avoided, or substituted with
less expensive measures. Inspection may be reduced to a sampling level required to be
sure that processes stay in control. For radar subassemblies, process control is a significant
cost, as it often involves many specialized precision fixtures for assembly, bond, and cure
operations. For cases where KC verification confirms that variation of a feature within
specs does have a significant impact on performance, process controls can be applied if the
improvements merit the additional cost of the controls. Including KC verification as part
of the process also provides a feedback measure of effectiveness for the initial KC
identification. As KC identification is improved through the use of better analytical
techniques, the verification stage will help track this progress and drive continuous
improvement.

Supplier issues were found to be the main cause of delays when Subassembly A was
transitioned into production. KC flowdown to suppliers is one tool for effective

management of supplier quality, communicating features where process controls are
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particularly important. For example, each feature identified as a KC could trigger a
requirement that suppliers either demonstrate a certain process capability level (ie. Cpk >

1.3) or implement 100% inspection.

7.2.2 Benefits to Systems

Achieving predictable performance from a subassembly and its manufacturing system
also provides benefits at the radar system level. As system architecture is defined and
development moves from preliminary to detailed design, error budgets are allocated to
each subassembly. Predictions of yields and other manufacturing system performance
measures would permit strategic reallocation of error budgets to optimize the radar system.
The objective may be minimizing overall system cost for a given set of customer
performance requirements. In some situations it may be preferable to maximize system
performance for a given cost target, for example, on demonstration projects where future

contracts will be awarded on the basis of performance relative to a competitor’s system.

7.2.3 Organizational Benefits

More predictable manufacturing systems also enable Raytheon to make better
business-wide decisions. Understanding internal manufacturing capability permits better
make-buy decisions across a business unit or the entire company. Specifically, KCs
identify those processes most critical to radar system performance. This is important
information when determining whether to develop key supplier relationships or allocate
strategic capital where it has the greatest payoff in terms of building internal design and

manufacturing capability.

7.3 Organization & Change

Raytheon’s Andover facility provided an excellent opportunity to view the challenges
of implementing change at a large company. The most significant change initiative
associated with the project is the recommendation that KC identification be implemented
as a part of the product development process. This initiative is discussed using a
framework of three different perspectives on organizations: strategic, political, and

cultural.
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7.3.1 Strategic Perspective

Historically Raytheon has excelled on a strategy of providing superior technical
solutions. Founded in 1922 as the American Appliance Company, it has a long history of
technical achievements in radio tubes, radar technology, inventing microwave cooking,
and developing the first guided missile that could hit a flying target**. Defense contracts,
typically structured on a “cost-plus” basis, were typically won on the basis of technical
reputation and performance.

However, this environment is changing. The past few years have seen a consolidation
of companies within the defense industry. Competition is more intense for development
programs. Government agencies that issue contracts are now placing more emphasis on
commercial practices, including operational excellence. Product development time and
manufacturing issues are increasingly important. In this new environment, being a
technology leader is not enough.

Raytheon has implemented a number of strategic initiatives to remain competitive.
Many of these fall under the umbrella of the Raytheon Six Sigma program, discussed
below in the section on culture. These initiatives have shown results, particularly in
applying lean manufacturing techniques on the factory floor. There is strong top-level
support for major initiatives beyond the factory floor, with expectations of similar
productivity gains possible in the development process.

During the internship project, Raytheon announced a major reorganization of its
defense businesses. With this announcement, the Andover facility became the Operations
center for the new Integrated Defense Systems (IDS) business unit. The details of the
reorganization were still underway at the completion of the internship in December 2003,
and it remains to be seen what effect this will have on lower levels of the organization.

From a strategic perspective, the identification of KCs fits well with corporate Six
Sigma initiatives, and allows Andover Operations to lead an initiative that ties

improvements in manufacturing back to the product development process.

7.3.2 Political Perspective

Organizational structure at Raytheon is a mix of functional and project oriented

organizations. The structure was traditionally functional, led by design engineering, which

** Historical information from Raytheon website: http:/raytheon.com/about/history.htm
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still retains much of the organizational clout. Several people expressed the view that
manufacturing engineering and operations were gaining strength, but are still considered
less important. Project leaders are given responsibility to coordinate projects across the
functional boundaries. A recent addition to the organizational mix is the concept of value-
stream leads. These leaders take responsibility for an entire value stream within the
Andover factory.

This project was conducted under the supervision of the Surface Radar Operations
Group. Residing in the Andover plant, this group is closely linked with the manufacturing
organization. Development engineering work began at a nearby facility in Sudbury,
Massachusetts, with design engineers moving to the Andover factory as the design began
transitioning into production. As an intern with no direct authority in any organization, I
had an excellent opportunity to neutrally view an initiative from multiple organizational
perspectives.

Implementation of KCs identification would provide benefits across organizational
boundaries. It would mean a better understanding of manufacturing issues before new
designs go into production, avoiding the headaches of reworking a design already in
production. Raytheon has been moving toward concurrent product and process design for
radar subassemblies, and identification of KCs can provide a strong link between the
engineering and manufacturing organizations as it cuts across these boundaries.

The design engineering organization will bear most of the costs of implementing KC
identification. It will require additional analysis and more coordination with the
manufacturing organization. In the past, there may have been less incentive for design
engineering to take on this extra work, as they held less responsibility for the transition to
production. But trend is moving toward the design community sharing in production risks.
Design engineering is now assigned in the factory until production of the new design is
going smoothly, creating a strong incentive to implement tools to ease this transition to

production.

7.3.3 Cultural Perspective
Soon after Dan Burnham became CEO of Raytheon Company in 1998, he launched

the Raytheon Six Sigma (R66) program as an initiative to establish a company-wide

culture. At the most general level, R6c is based on a six-step process for continuous
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improvement: Visualize, Commit, Prioritize, Characterize, Improve, and Achieve. Its
charter is much broader than the statistical methods that its name implies, and includes
many other best-practices. For example, R6c includes many of the principles of lean
manufacturing as embodied in the Toyota Production System.

Raytheon management has demonstrated serious commitment to R6c through
extensive training and certification programs for a large number of employees, spanning
top leadership to the hourly workforce. Many Six Sigma projects have achieved success in
increasing productivity through process improvement on the factory floor, but with
relatively less involvement from the design engineering community. Raytheon has
recently launched a Design for Six Sigma (DFSS) initiative, specifically targeting the
design engineering community in an effort to achieve similar productivity improvements
through better product design. Just as this project was ending, the Integrated Defense
Systems (IDS) organization was soliciting suggestions for DFSS initiatives.

The Six Sigma program backdrop provides an excellent environment for the success
of a KC implementation program. The initiative to identify KCs can take advantage of
timing with the cultural push toward DFSS.

Raytheon also has a one-company initiative for knowledge sharing and dissemination
of best practices. Knowledge is captured and made available through the Raytheon
intranet. A major part of this initiative is a generic development process template, called
the Integrated Product Development Process (IPDP), which covers the lifecycle of a
program. Development of radar systems follows this process, which is tailored for specific
program needs. A high level view of the IPDP is shown in Figure 23. Business strategy
and planning drive the development of product requirements and architecture, with a
specifications flow-down to the subsystem and component level. Detailed design of
specific subassemblies occurs concurrently with the design of associated manufacturing
processes. This is represented by the dotted boxes in Figure 23. While these dotted boxes
are not part of Raytheon’s top-level IPDS view (but perhaps should be), they represent
concurrent engineering functions that are part of the existing lower-level hierarchy. After
system verification, these subassemblies are transitioned into production, then integrated
into deliverable systems. The product that reaches final production may have been through

a number of iterations.
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Figure 23: Raytheon Integrated Product Development Process (IPDP)

KC identification does not yet appear as part of the lower-level IPDP documentation.
It fits well into this framework, specifically in the lower-level processes in area 3.
Requirements and Architecture Development, and area 4. Product Design and
Development. Incorporating KC identification into IPDS gives it broader visibility across
the company so that improvements to the process can benefit from a broad range of

applications beyond just radar subassemblies.

7.4 Transition Plan
Changing the product development process for radar subassemblies to include the

identification of KCs will not happen on its own. This project has identified the
opportunity for improvement, looked at some of the tools and resources available, and has
demonstrated some of the challenges and benefits with application to Subassembly A.
Before leaving the internship, a transition plan was recommended with plans for future
work, including the following actions:

e A new development program was identified to initiate the implementation of KC

identification.
e KC identification was proposed as a DFSS initiative.
e IPDP implementation of KC identification was discussed with IPDP content

OWINETS.
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¢ Training opportunities were identified for the Raytheon Key Characteristics
Designation System (KCDS) currently applied at the Tucson facility.
A major step still required for success is to identify a knowledgeable and authoritative
champion for KCs. This has been done at Raytheon Missile Systems in Tucson, and may
provide a model for implementation within the Integrated Defense Systems organization.
Implementation of the other project recommendations will be easier as they are
extensions of existing work. Estimates of first-pass yield for radar subassemblies will be
enhanced with the use of Process Capability Analysis Toolset (PCAT) models that are
currently being updated. These will include information on electromechanical assemblies
such as Subassembly A. This project provides a spreadsheet model for predicting yields
where such models are not yet available. Modeling of manufacturing processes using
Process Model is underway, with many users trained and multiple licenses available. This

project simply provides more accurate inputs to these models.
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Section 8: Conclusions

Subassemblies for new radar system designs present challenges in predicting
manufacturing performance earlier in the product development process. Often the product
performance is a function of many variables, and the tendency is to identify too many
features as key with providing supporting data and analysis. Finding those features that
truly have the greatest impact on product performance and are simultaneously at risk due to
process variation may be difficult, as experienced with the KC identification exercise for
Subassembly A.

The KC identification process for Subassembly A would have benefited from
additional analytical methods to better understand the variables that drive performance. In
the case of assemblies designed to operate at high frequencies, numerical simulations such
as finite element methods are invaluable, but often have difficulty in capturing the many
small nuances in design features that can combine to impact performance. In this case a
rigorous analytical evaluation of pre-production prototype hardware is needed. Design of
Experiments is one of the most powerful tools available, but requires that sufficient time
and cost are budgeted into the development plan. One of the challenges with DOE:s is that
early in development it is often difficult to quickly get quality vendor parts with
parameters accurately tailored to the desired levels.

Sources of variation in measurement are also important. While care was taken in
performing mechanical measurements and electrical tests, measurement capability studies
(i.e. Gage R&R methods) are needed to properly indicate expected performance variation
due to measurements.

Identification and verification of KCs is most effective if treated as an integral part of
the design process and considered in the flowdown of requirements to subsystems and
components. Naturally this should be started early. This includes the flowdown of KCs to
vendor supplied parts. Primary KCs will be associated with customer requirements. For
derived KCs it should be remembered that these are artifacts of the design concepts. If
there is difficulty in meeting a derived KC, it is worthwhile to examine whether an

alternate design with different KC chains may make it easier to achieve the primary KCs.
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It is not uncommon in complex and state-of-the-art radar system assemblies that there
will be intriguing interdependencies among many diverse product and/or process
parameters that are not readily modeled and may not be characterized sufficiently to result
in desired precision when performing predictive product/process simulation for
manufacturing. A typical reaction is to set specifications at or even beyond the limits of
present process capability, resulting in significant increased cost when in reality there may
be little benefit to product performance. Analytical verification of the impact of variation
on performance provides a significant opportunity for cost savings.

A general observation is the need to continue positive steps toward concurrent
engineering. When issues arise in the development process, one still hears “Is it a design
or process issue?” The answer is usually “Yes, it’s both.” Identification of KCs cuts
across these boundaries and will result in higher performing products at a lower cost.

In conclusion, including the identification of KCs in the product development process
enables a better understanding of which product features are driving yields. Better yield
estimates enable more accurate manufacturing system process models that in turn provide
the predictable manufacturing performance measures that are needed for better strategic

business decisions.
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