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Abstract

The lifecycles of many products are becoming shorter and shorter as innovation and time-
to-market become key aspects of modern corporations’ success in the marketplace. Few
methods for inventory management exist that are capable of contending with product
lifecycles measured in months rather than years. This situation is especially acute in the
semiconductor industry, where a single generation of a product typically spends less than
6 months in the marketplace - demand for these products is therefore highly non-
stationary and stochastic. Supply chain management is further complicated by non-
stationary, stochastic lead times and the necessity for complex demand forecasting
procedures - the use of time-series forecasting models is therefore generally infeasible for
these products.

We present a new method in which exogenous short and medium-term forecasts are
combined with a new method of exponential smoothing to generate replenishment
forecasts for finished goods inventories. This method is designed to contend with highly
non-stationary, stochastic demand and lead time patterns, daily seasonal effects, unusual
probability distributions, capacity constraints, and short product lifecycles across a
variety of products. Historical simulations of the model for many of Intel Corporation’s
Central Processing Unit products reveal dramatic inventory reductions compared to the
ad hoc inventory management policies presently in use.
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1 INTRODUCTION

The objective of this thesis is to establish a forecasting and inventory
replenishment model capable of contending with highly non-stationary, stochastic
demand and lead-seasonal effects, unusual probability distributions, and short product
lifecycles across a variety of products. More specifically, this model addresses the need
for generation of daily forecasts of demand from other forecasting techniques that are
considered exogenous to the model. The thesis includes an analysis of supply chain
requirements, a quantitative model for daily demand and inventory forecasts, and an
assessment of organizational and strategic alignment to the new system. This research
was conducted at Intel Corporation’s Supply Network Group from June through

December of 2003.

1.1 INDUSTRY AND COMPANY BACKGROUND

Throughout the course of its history, Intel has derived its success largely from the
pursuit of a single strategy: innovation. This strategy is a necessary one in an industry
that has its own law to describe the pace of technological advance: namely, Moore’s
Law'. Extremely high capital costs, cyclical markets, and cutting-edge manufacturing
technology characterize the semiconductor industry. Intel Corporation manufactures and
distributes a wide variety of semiconductor products, including processors, chipsets, flash

memory, communications products, and motherboards.

! Gordon Moore, a co-founder of Intel Corporation, predicted more than 20 years ago that the number of
transistors that could be placed on a given silicon chip would double every eighteen months. This maxim
has proved largely true and in many ways has become the implicit goal of Intel, its suppliers, and its
competitors in the semiconductor industry.

10




Intel’s relentless quest to improve itself and its products has resulted in a
dominant position in many of the market segments in which it competes, including an
80% worldwide market segment share in CPUs. Holding to the course of Moore’s Law
has brought Intel tremendous revenue growth over the past decade, in addition to higher
market segment share in CPUs. However, the price of the technology required to
produce ever-smaller transistors on its chips has increased as well. The current total cost
to build a wafer fabrication facility has risen to more than $2 billion.

These high fixed costs understandably make up a large percentage of the cost of
producing a chip. This is rather intuitive when one compares the price of the chemicals
and silicon that the chip is made of to the cost of the factory and tools that made it. For a
product such as a CPU with low variable costs and high market value, the opportunity
cost of capital lost through excess inventories is perceived by many to be less than the
cost of lost sales. Additionally, the rapid pace of product and manufacturing process
improvement at Intel sometimes has resulted in periods where demand outstrips supply.
The ensuing stockouts result in lost revenue for Intel and if prolonged, lost market share.
The result is that high inventory levels at Intel have become accepted as a necessary evil
to avoid loss of market share and revenue — an attitude that must be overcome for
inventory reduction to become possible.

This attitude is may seem surprising when one considers the pace of price erosion
and obsolescence experienced by many of Intel’s products. However, it is important to
note that the cost of holding inventory is determined by the variable cost to produce it,
not its market price. Inventory write-downs are only driven by market price when that

price is less than variable cost.
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Recently the semiconductor industry has been experiencing a downturn longer
than any in its entire history. Intel is secking new ways to cut costs in order to maintain
the high level of profitability it has sustained in the past. These economic pressures
provide some of the motivation for change necessary to overcome past acceptance of
high cost inventory management practices.

A high level strategic analysis of Intel is depicted in Figure 1-12. This analysis,
while static, illustrates how the changing landscape of a dynamic industry provides an
additional source of motivation fqr better inventory control systems. This motivation
stems from the combination of the uncertain future of product substitutes for
microprocessors with the highly competitive nature of the industry.

A recent article in the Harvard Business Review [Christensen et al, 1999]
suggests a far less profitable future for Intel’s star product — high power CPUs. For most
of the history of the semiconductor industry, the dominant factor for success in the CPU
marketplace has been product performance. This article suggests that as the performance
of existing products more closely matches the needs of customers, additional factors
become more important. These factors include product availability, delivery, price, and

features.

2 Michael E. Porter first presented this type of analysis in 1979 in the Harvard Business Review [Porter,
1979].
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Figure 1-1. Strategic Analysis of the Microprocessor Industry
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The implementation of our model offers Intel the ability to meet these new
requirements by lowering costs without sacrificing product availability. Lower costs
would allow Intel to increase profits (or offer lower prices, should it become necessary to
do so0). In addition, an inventory replenishment model gives Intel the ability to
understand the relationship between service level, inventories, and capacity allocation.
This understanding will help Intel to make more informed decisions that will allow it to

become more profitable.

1.2 SupPPLY CHAIN OVERVIEW AND CHALLENGES

The task of supply chain management faced by Intel is highly complex,
characterized by a long internal supply network, thousands of products, short product
lifecycles, and worldwide operations. In this section we examine the supply chain
management challenge in more detail and place boundaries on the scope of the problem
we will address in this thesis.

For the development of our model, we have chosen to focus on Central Processing
Units (CPUs), the company’s most well known and most profitable product. CPUs
represent the majority of Intel’s production volume and cost-of-goods-sold, and therefore
hold the greatest opportunity for reduction in supply chain costs.

Intel’s supply chain is characterized by two major manufacturing stages followed
by a finished goods distribution system. Manufacturing and distribution are conducted
on a global scale across dozens of factories and warehouses with hundreds of customers.
Figure 1-2 depicts Intel’s internal supply chain at a high level. The lead times of both

production stages are stochastic and sufficiently long (weeks to months) that production
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is performed on a make-to-forecast basis, with the bulk of the total lead time residing in

the first production stage.

Figure 1-2. Supply Chain for CPU Production

Raw Wafer Die Inventory Assembly and Worldwide
Materials Fabrication Test Distribution

CPUs are distributed to two primary classes of customers: resellers and computer
manufacturers, with the bulk of demand falling in the latter category. The reseller
channel requires one additional packaging step prior to shipment — this step currently
pulls its materials from finished goods inventories rather than ordering them from the
assembly/test factories. Distribution is performed mainly through air freight directly
from one of three factory distribution centers to designated customer pickup points such
as cross docks, although Intel does own and operate some regional warehouses to serve
its customers’ last-minute requests. For our purposes, inventory at the three factory
distribution centers can be considered together because customer demand for a given
product is equally likely to be served from any distribution center.

The number of line items produced from a common set of raw materials is very
large, and the production quantities of each line item are stochastic and evolutionary in
nature. The hierarchy of product definition at the finished goods level is shown in Figure

1-3.
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Figure 1-3. Product Definition Hierarchy
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Thousands of possible line items!!!

In addition, the lifetime of a line item averages a mere six to nine months. This short
lifecycle is the result of the generational nature of Intel’s products. A product marketed
to the end consumer as a 2.0 GHz Pentium IV may have a market life of approximately
18 months. However, during this time there are several reductions in the size of the chip,
called “steppings.” These steppings allow Intel to increase the number of chips produced
on a silicon wafer and reduce their fabrication costs proportionally. One stepping
replaces another, although there is overlap between them due to the needs of Intel’s
customers. These facts drastically complicate the management of finished goods
inventories over the product lifecycle. To summarize the supply chain challenge before
us:

e Intel’s supply chain is not a simple chain but a complex network.

e Demand and production characteristics are non-stationary and stochastic

in nature.
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e The total number of line items managed at the finished goods level
numbers in the thousands.

In order to limit the problem before us, we have narrowed our focus to the
management of finished goods inventories for CPUs. However, with this initial model
we have developed the building blocks of a system that can be expanded to include
additional product lines and other parts of Intel’s supply chain.

We have chosen finished goods inventories (FGI) because they make up the bulk
of the inventory carrying costs for Intel. Additionally, FGI represents an important
transfer of responsibility from planning and manufacturing to logistics. Bridging this
organizational gap first would hold significant symbolic and literal meaning as the

beginning of a new paradigm in supply chain management at Intel.
1.3 PROJECT APPROACH AND OUTCOMES

This thesis is part of a wider effort that seeks to begin a paradigm shift in Intel’s
supply chain management practices by converting from a manual push system (build to
forecast) to an automated pull system (replenish to forecast). Our method will add
statistical methods to experience in order to bring about dramatic reductions in supply
chain costs through the reduction of finished goods inventories and inventory and
production planning efforts. These methods are designed to contend with non-stationary,
stochastic demand and lead time patterns, weekly seasonal effects (we use the term
seasonal to denote day-of-the-week effects), unusual probability distributions, and short
product lifecycles across a variety of products.

Our approach can be broken down into two major components - a forecasting

model and an inventory replenishment model. The forecasting model is a variation on
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exponential smoothing. Demand data are first differenced by a 7-day moving average to
capture day-of-the-week effects. These effects are then an exponentially smoothed to
obtain day-of-the-week factors. Optimization is used to obtain the seasonal smoothing
coefficient that minimizes the squared seasonal error. The result is a set of multiplicative
factors for error and day-of-the-week that can be paired with Intel’s weekly demand
forecasts to estimate daily demand and error over the forecast horizon. In addition,
estimates of lead times, lead time variability, and Intel’s forecast error are obtained
through exponential smoothing or other methods. Figure 1-4 illustrates how the model

would fit with Intel’s planning and production processes.

Figure 1-4. Weekly to Daily Production Plan Conversion
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For the inilentory model, the vectors for demand, lead time, and forecast error are
then convolved over the forecasted lead time to produce estimates of lead time demands
over the forecast horizon. The convolved error vector is used to forecast safety stocks
over the forecast horizon, and a periodic replenishment model is then used to generate
unconstrained replenishment signals. Figure 1-5 depicts this process at a high level.
Capacity constraints are then added, permitting the generation of constrained
replenishment signals by working backwards from the forecast horizon.

Historical simulations of the model’s performance on more than 75% of Intel’s
CPU production volume indicate that total finished goods realized through the use of this

model would exceed 50%, with a net present value in excess of $80 million.
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Figure 1-5. Inventory Model Process Flow

Historical @eb

»  Shipment Day-of-Week Factors————

Shipment Data For ecy
Shipment Forecast
Error Distribution
e Generate \ / Generate
Historical Forecast of Intel Forecast Convolve Safety Stock GeneQ Unconstrained
Intel " Error Distribution Forecast Errors— Forecast —»| Unconstrained
Forecast Data Intel EF orecast over ? In&entory Goj/
rror Time
Lead Time Forecast
Error Distribution
Historical Gen@ Future Demand
Lead Time > Lead Time Forecast Data
il N’

20




1.4 OVERVIEW OF THESIS

In this chapter, we have overviewed the supply chain challenge faced by Intel and
other semiconductor manufacturers. We have introduced motives for improved inventory
management systems and also have outlined our proposed solution for the automated
management of finished goods inventories.

In the next chapter, we present current forecasting methods and a review of
relevant forecasting methods. A new form of exponential smoothing that forms the
foundation of our inventory model is introduced. Chapter 3 reviews current inventory
management methods and the base stock model used for generation of unconstrained and
constrained replenishment signals. Results of historical simulations are also presented.
Chapter 4 outlines the organizational impact of converting to an automated inventory
replenishment system and offers recommendations for implementation and further
improvements to the model. Finally, Chapter 5 presents conclusions and key insights for

this thesis.
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2 DEMAND FORECASTING METHODS AND MODELS

In this section we examine Intel’s current forecasting methods and present a
model to allow for their integration into an inventory management system. A review of
existing mathematical approaches is presented, followed by a new form of exponential
smoothing that addresses the problems faced by Intel that existing approaches cannot

solve.

2.1 CURRENT INTEL FORECASTING METHODS

As with most corporations, demand forecasting at Intel is a complex process
involving many people, data sources, and techniques. Intel’s methods can best be
described as a combination of time series and causal techniques that are then subjected to
qualitative judgments. While the use of consistent, un-manipulated mathematical
techniques for generating forecasts generally is considered to be a method superior to
human judgment and manipulation [Chambers, Mullick, and Smith, 1971], it is
uncommon in practice and nearly impossible to put into place. Thus, we make no
attempt to improve Intel’s current forecasting techniques beyond the addition of a new
technique that can be layered on top of current methods in order to facilitate more
rigorous inventory management.

The form of the forecast utilized by our model varies depending on the forecast
horizon. Short-term forecasts are point estimates of weekly demand at the line-item
level. Medium-term forecasts are also point estimates at the line-item level but are
usually monthly quantities rather than weekly. In general, we only need forecast data
over the projected lead-time plus any additional time required to pre-build inventory in

anticipation of a capacity constraint. Lead-times range from as few as three days to as
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many as two months, depending on the production stage and product type. As such, we
are generally concerned with short-term forecasts. Medium-term forecast data are only
sometimes required, and long-range forecasts are not relevant to short-term inventory

control.
2.2 EXISTING MATHEMATICAL APPROACHES

The development of any forecasting system is intimately tied to an understanding
of the salient features of the demand data. Observations of seasonality, trends,
correlation, and other factors must be taken into account in order to choose the correct
forecast method. In Intel’s case, we find that the structure of demand for CPU products is
markedly different from that of Flash Memory. Many CPU line items exhibit 7-day
seasonal patterns, whereas Flash Memory products do not. In addition, the demand
characteristics of line items within each product type vary widely depending on the
maturity and popularity of the product.

Figures 2-1 through 2-4 present demand for four representative CPU products.
The full dataset is presented in Appendix A. The data in these graphs have been
normalized such that the mean demand over the model-training period is 100 units. As
the graphs depict, demand volatility is quite high. CPU Line Item 1 depicts nearly an
entire lifecycle for a typical product. Line Item 2 is similar, but exhibits stronger day-of-
week seasonal characteristics. Line Item 3 tests the model against a product that is
ramping up, whereas Line Item 4 tests the model against a product with a relatively

stationary demand process.
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Figure 2-1. CPU Line Item 1 Demand
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Figure 2-2. CPU Line Item 2 Demand
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Figure 2-3. CPU Line Item 3 Demand
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Figure 2-4. CPU Line Item 4 Demand
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2.2.1 Overview of Forecasting Techniques

The high clockspeed® of the industry, relatively short product lifecycles, and
complex characteristics of demand quickly narrow our choice of forecasting techniques.
The key factors in choosing our forecasting technique are that we are estimating daily
demand over the short-term and that we wish to incorporate day-of-the-week seasonal
effects. Causal models such as econometric techniques based on price elasticities are
capable of these types of forecasts but are not capable of estimating weekly seasonal
effects. Qualitative methods could be used, but manual estimation of each day’s demand
would be extremely labor intensive and would provide relatively poor forecasts. In
addition, their adaptation to mathematical inventory control would require huge
quantities of historical forecast data. Thankfully, time-series methods are well suited to
our forecasting problem.

Time-series analyses include moving averages, exponential smoothing, Box-
Jenkins, and other ARIMA methods [Borchers, 2001], trend projection, and more
[Chambers et al, 1971]. We have chosen a combination of moving average and
exponential smoothing techniques due to their relative simplicity, proven robustness
against various types of demand patterns, and popularity in solving forecasting and

inventory control problems [Gardner, 1985].
2.2.2 Exponential Smoothing Models

Exponential smoothing methods come in many variations, each capable of

handling different degrees of trends and seasonality. All of these methods use a weighted

3 Clockspeed is a term used to describe the rate of change faced by the firm in the form of product, process,
or organizational innovation [Fine, 1998].
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average of the most recent demand and the previous forecast. The error-correcting form

of simple exponential smoothing is as follows:

Level, = Level, , +a* Error,

where Error, = Actual, - Level,; and the most recent value of Level represents the

forecast for all future periods.

Two popular schemes that include trend and seasonal terms are the Holt-Winters
model [Holt et al., 1960, Winters, 1960] and the Brown model [Brown, 1963]. Holt-
Winters is more flexible and accurate but more difficult to optimize due to its use of three
smoothing parameters. The error-correcting form of the Holt-Winters method in its

unaltered state is as follows [Gardner, 1985]:

B a* Error,
Level, = Level, , +Trend, , + %easonal, »

Trend, =Trend, , +% 7" Error,
! -1 Seasonal,_,

Seasonal = Seasonal o+ O * (1 -a) * Errort :
‘ o Level,

Error, = (Actual, —(Level,_, + Trend,_, )* Seasonal,_ » )* X

t

X, =

0 if Actual, =0
{ 1 otherwise

(2~

Forecast, (k)= (Level, + k * Trend,)* Seasonal,_ ook WP,

where p represents the length of the season and £ is the number of periods into the future

for which we desire a forecast.
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The Brown model is structurally similar and we therefore do not present it here. As in
the simple exponential smoothing model, the forecasted level is constant for all future
periods. However, the forecast is modified by the trend and seasonal factors.
There are three major shortcomings of these models with respect to our

forecasting problem:

e Only positive demand days are counted.

e The lag on seasonal factors is dependent on the l¢vel smoothing

coefficient (a).

e The error vector is constant across all levels.

Each of these facts requires careful treatment and has important bearing on the

development and application of our model.
2.2.3 Handling Zero Demand

Traditionally, there are two approaches to handling zero demand: either treat no
observed demand as a zero, or ignore observations of zero in the model. Each has its
advantages and disadvantages, but in our case the disadvantages of ignoring observations
of zero eliminate it as a possible method for solving our forecasting problem.

The inclusion of observations of zero demand eliminates the need for estimating
the probability of demand occurring (the Bernoulli factor X; described in the Holt-
Winters model). However, a model such as this breaks down when confronted with low-
velocity demand patterns because a high frequency of zero demand skews the error
distribution and increases the variance of the error vector. In some cases, low-velocity
demand can cause the level to drop so much that it introduces large errors when

combined with multiplicative seasonal factors. This problem is most obvious when one
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of the days within the season is always zero — the model essentially breaks down in this
case.

The elimination of observations of zero demand also presents problems. Because
we require seasonal factors for each day of the week, we must track a separate Bernoulli
factor for each day of the week in order to eliminate confusion between Bernoulli effects
and seasonality. We can imagine a case where the probability of demand occurring on a
Saturday or Sunday is very low, but the probability of demand occurring on a weekday is
nearly 100 percent. If we were to use a single estimate for the probability of positive
demand across all days of the week, the seasonal factors for weekdays would be
incorrectly skewed downward by the weekend effect. We can track separate effects, but
in order for these values to be statistically significant, we need almost the entire product
history for a line item!

Most importantly, it is necessary to recall that for our case we must combine our
model with Intel’s existing weekly forecasts in order to produce a daily forecast. The
correct estimation of daily demand in the future cannot be accomplished merely by
multiplying the appropriate Bernoulli effect into the demand forecast. Monte Carlo
simulation is required in order to properly estimate the full distribution of demand on a
given day within the forecast horizon. Such a simulation would require 500 to 1000 trials
for each day’s demand forecast — this is not practical when confronted with the need to do
this every week for hundreds to thousands of line items.

The elimination of zero vdemand observations has too many disadvantages to be a
viable choice of method for our model. The inclusion of these observations simplifies the

model but limits its application to demand patterns where the percentage of zero demand
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days is lower than 25%. Thankfully, this is not a major problem for Intel, as the vast

majority of its demand volume falls into this category.
2.2.4 Mismatch Between Historical and Forecasted Levels

The use of exponential smoothing on the level produces a mismatch between the
seasonal factors and the level when we try to pair it with Intel’s weekly forecasts. With
the Holt-Winters and Brown methods, the forecast simply combines the last level with
the trend and the seasonal factors. The seasonal factors have been trained* using the
historical data and the level generated by the level smoothing coefficient. This
coefficient produces a lag on the responsiveness of the level to the data that is inversely
proportional to the coefficient. In other words, a coefficient of 0.1 is indicative of a level
that corresponds to a lag of ten data points - the weighted average “age” of the data points
is about ten. As the lag increases, the responsiveness of the level to recent data points
decreases.

The problem arises when we seek to combine seasonal factors trained on a level
generated by exponential smoothing of daily historical values with future level estimates
derived from Intel’s weekly forecasts. Because the seasonal factors are trained in tandem
with the level, modifications to the responsiveness of the level will affect the seasonal
factors. Future level estimates must therefore be structurally similar — i.e. of similar
responsiveness — in order to minimize the error of our daily forecasts when the seasonal

factors are combined with the level.

* For the purposes of this thesis, model training refers to the minimization of the mean squared error
generated by running the model through a set of historical data. Optimization is used to choose
smoothing coefficients and the “trained” seasonal factors are the most recent set of factors generated by
the model from the historical data.
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We cannot simply apply the smoothing coefficient generated from daily values to
exponential smoothing of weekly forecasts without producing a lag mismatch. The use
of a moving average to generate a daily forecast from Intel’s weekly forecasts overcomes
this problem. While we could then use exponential smoothing on this daily forecast, we
are again confronted with a lag mismatch, as the moving average has its own lag of
length equal to the number of data points in the moving average.

The mismatch in the types of levels and their lags will lead to errors in the
forecast. While some of this error could be reduced by altering the length of the moving
average for the forecasted level to the inverse of the historical level smoothing
coefficient, we cannot avoid the underlying mismatch in the structure of the levels. In
addition, the optimal choice of smoothing coefficient may be very low, resulting in a
moving average with a length that exceeds the forecast horizon!

Our solution to this problem is to replace exponential smoothing for the historical
level with a moving average of length equal to that used for generation of the forecasted

level.
2.2.5 Drawbacks of Non-Multiplicative Error

The use of an error distribution that is constant across all levels results in inflated
inventories for products with highly non-stationary demand levels. Most, if not all, of the
exponential smoothing methods commonly used for forecasting, including the Holt-
Winters and Brown methods, generate an error vector that is constant across all levels.
For slowly changing levels, this does not present a large problem. However, for short
lifecycle products such as those produced by Intel, or for products that are undergoing

large changes in the average level of demand, a constant error distribution ignores the
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possibility of positive correlation between the volatility of demand and the mean of
demand. While it is possible that this correlation might be zero, we have found that this
is almost never the case — as demand rises, so does the volatility of that demand. Indeed,
most corporations implicitly make this assumption through the use of inventory policies
that set inventory targets in days or weeks of demand.

To illustrate this shortcoming, imagine that our lead time is 60 days. Point
forecasts of future demand indicate that weekly demand over the next 60 days will
double, on average. If we were to base our safety stock estimates on an error vector that
is not proportional to the average demand level, our safety stock target would remain
unchanged despite the increase in demand. If the volatility of demand did increase, our
stock out risk would rise as well!

Therefore, our chosen forecasting methodology must allow error to be
proportional to some estimate of the average level of demand. While the degree of
correlation will vary from line item to line item, we have found that it is closer to +1 than
0 in most cases. One could imagine a model that allowed flexibility in the degree of
proportionality through a fractional exponent based on the degree of correlation;
however, it is our belief that this would complicate the model for minimal gain in
inventory reduction. As a result, we have chosen a model where error is directly

proportional to demand level.
2.2.6 Motivation for New Model

We believe that we have shown that exponential smoothing methods offer the best
possibility for estimating demand over a short-term forecast horizon. The Holt-Winters

and Brown methods provide a reasonable starting point for developing a seasonal model
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but cannot solve our problem in their pure form due to their treatment of observations of
zero demand, inability to be combined with other forecasts, and constant error
distributions. In addition, their application to our data sets yields unstable solutions for
smoothing coefficients and trend coefficients that are too high to provide useful forecasts.
In the following section, we propose a new method of exponential smoothing that

overcomes the failings of traditional exponential smoothing models.
2.3 A NEW FORECASTING MODEL

Our model is best described as a variation of exponential smoothing in which
seasonal factors are trained on the ratio between actual values and the level estimate. The
level is produced using a seven-day moving average rather than an exponentially
weighted moving average, and trend techniques are not employed. Optimization
techniques are used to choose the seasonal smoothing coefficient that minimizes the
squared seasonal error. The final set of seasonal factors is paired with weekly point
forecasts of demand (generated through exogenous means not examined by this thesis) in
order to estimate daily demand and error over the forecast horizon. A detailed

mathematical description of this model follows.
2.3.1 Multiplicative Forecast Error Model

The conversion from gross demand quantities from Intel’s forecasts to a daily
forecasted level is determined as follows. A weekly point forecast is used in this case;

monthly or quarterly quantities could be converted in similar fashion:

33



Y Actual, + (v+3)*WeeklyForecast ., | 7

i=t-3

7
fort=n+1 ton+3

ForecastLevel, = < (4— y)*WeeklyForecast ., + (v +3)*WeeklyForecast
49

fort>nt3,y<4

(11— y)*WeeklyForecast,,, ., + (v —4)*WeeklyForecast
49

fort>n+3,y>4

where y = remainder( % ) and n is the number of historical data points. Thus, the

forecasted daily level is a seven-day moving average centered on the day in question (i.e.
no lag). Due to the use of the moving average with no lag a combination of forecasted
demand and historical values must be used if t <n+3. We have chosen this form for our
forecasted level in order to match the structure of the historical level.

The level is determined as follows. Note that because we are concerned solely
with training the model to produce seasonal factors and error estimates that will best
predict the future (as opposed to minimizing historical error), the level is calculated with

actual values that are centered on the time period in question, rather than lagging or

leading:
( Level,,, fort=1to3
1+3
ZActual,.
i=t-3 — -
Level, = < EEEa— fort=4to n-4

n t+6
Z Actual, + Z ForecastLevel ;

i=t Jj=n+l

fort=n-3ton
\ 7
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Thus, the historical level is a seven-day moving average of historical values with the use
of the forecasted level for t > n-3.

The remainder of the forecasting model is as follows:

Actual

t
ActualRatio, = Level,
Seasonal,_, otherwise

for Level, >0

SeasonalError, = ActualRatio, — Seasonal,_,

/ 1 if6=0
otherwise
Seasonal,_, + & * SeasonalError, for t>0

Seasonal, = < M fort=-61t00

0
Z Actual,
\ i=—6

where J'is the seasonal smoothing coefficient and the values of Seasonal are the seasonal

factors.
Notice that when the level is zero, the seasonal error is also zero. Additionally, the
seasonality component collapses if the seasonal smoothing coefficient is zero. We have
also chosen to set initial values for the seasonal factors using only the first week of data
from the training set. When the entire training set is used, the result is inevitably that the
model is overfit and the seasonal smoothing coefficient is set to extremely low values.
The model is trained by running the data forwards, backwards, and then forwards
again. Godfrey and Powell (2000) have shown that more than a single cycle of forward
and backward passes tends to overfit the data, resulting in less accurate forecasts.

However, due to the use of seasonality, the initial forward pass must be for the maximum
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number of periods that is a multiple of the length of the season. The number of periods is
thus defined as n=2m+1/. In addition, the backwards pass must run the seasons
backwards, but not the periods within each season.

The seasonal smoothing coefficient, &, is chosen using an optimization algorithm

to minimize the following criterion:

ZH: (SeasonalError,)* such that 0< S5 <1.

i=1
Forecast for & periods into the future are then generated as follows:

Fe orecast(n + k) = Seasonal,_, * ForecastLevel,
. k
where g =7- remaznder(—i) .

2.3.2 A Note on Model Training*

The training of time-series models presents problems to those seeking to use them
on short lifecycle products, because time is something that is in short supply. A model
that can only be used for half of a product’s lifecycle is not of much use in the business
world. As such, we must determine the length of data set required to train the model as
~ well as find ways to shorten it as much as possible.

Tests of our model have shown it to produce good results with as little as four
seasons (weeks) worth of training data, although seven weeks’ or more is recommended.
In Intel’s case, we find that this does not place undue strain on the use of the model due
to the generational nature of Intel’s products at the line item level.

A training set is required for the first generation of a particular product. However,
as the product is transitioned from one stepping to the next, the underlying demand

transitions as well. The implication of this is that we may jump start subsequent
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generations using the seasonal factors and seasonal smoothing coefficient from the
previous generation. After sufficient time has passed to build up a set of data on the new
generation, the model can be re-initialized and re-optimized.

We have not examined the uniqueness of model solutions. In general, we have
found that optimization results converge consistently, regardless of the seed value used

for the seasonal smoothing coefficient. To speed optimization, we recommend using a
seed value between 0.15 and 0.25.

Additionally, optimization is not required every time a forecast is generated. The
optimal smoothing coefficient does not shift appreciably from week to week. We
therefore recommend re-optimization on a monthly basis, unless obvious structural
changes occur in the demand pattern (such as a sudden shift in demand characteristics

due to the loss of a major customer).
2.4 FORECASTING RESULTS AND CONCLUSIONS

We have chosen to compare our model with two other methods: simple
exponential smoothing and the Holt-Winters method with trend removed. Tables 2-1
through 2-3 present the results of this comparison. In these tables, MFE refers to the
multiplicative forecasting error method we have presented, SES refers to simple
exponential smoothing, and HWS refers to the Holt-Winters smoothing method.

Initial values for seasonal factors for HWS are set in the same manner as

described for MFE in Section 2.3.1. Initial values for the level are equal to the actual
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value for t=0 for both SES and HWS. Optimizations are completed using the “Solver

Add-in” for Microsoft Excel® °.

Table 2-1. Training Period Comparisons

Training Period (weeks) **
ltem MFE SES HWS
1 7+1 8 7+1
2 7+1 8 7+1
3 3+1 4 3+1
4 7+1 8 7+1

** +1 indicates number of weeks used for training seasonal

factors but not included in training passes

Table 2-2 Mean Square Error Comparisons

Item | Optimization | Forecasting o ) Training Testing
Method Method MSE MSE
1 | Training Set [MFE N/A 0.0445 5814 22081
Training Set [SES 0.214|N/A 9604 41640
Training Set |HWS 0.0825 0.0399 8973 31399
1 | Testing Set [MFE N/A 0.0445 5814 22081
Testing Set |SES 0.115|N/A 9798 40759
Testing Set |HWS 0.108 0.175 9651 30637
2 | Training Set |MFE N/A 0.305 7718 4644
Training Set |SES 0.168|N/A 12648 9260
Training Set |[HWS 0.000194 0.659 12803 7724
2 | Testing Set |MFE N/A 0.332 7547 4552
Testing Set |SES 0.075|N/A 13575 8985
Testing Set |HWS 0.158 0.367| 74273157 7022
3 | Training Set |MFE N/A 0.290 14172 79596
Training Set |SES 0.000|N/A 14845 168352
Training Set |[HWS 0.001 0.159 16957 98974
3 | Testing Set |MFE N/A 0 15360 85039
Testing Set |SES 0.121|N/A 15540 90776
Testing Set {HWS 0.030 0.391 19722 58769
4 | Training Set |MFE N/A 0.351 18633 24565
Training Set |SES 0.029|N/A 31904 23482
Training Set |HWS 0 0.368 20164 25106
4 | Testing Set |MFE N/A 0.230 19976 23009
Testing Set |SES 0.010|N/A 32696 23193
Testing Set |HWS 0 0.269 20467 24608

% Excel is a registered trademark of Microsoft Corporation.
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In Table 2-2 we present two sets of optimization results for each line item — only
the objective function differs. For sets labeled “Training Set,” the objective is to
minimize mean squared error (MSE) during the training period, whereas for sets labeled
“Testing Set” the objective uses the MSE during the testing set. We have done this to
provide a lower bound for error during the testing period that can be compared to values
generated with the training set.

We find that MFE provides the lowest mean square error during the training
period in all cases. More importantly, MFE also provides the lowest error during the
testing period for all of the training sets except for CPU Line Item 4. This is the true test
of the model, since a model optimized using only training data most closely resembles a
real application of the model. In the case of CPU Line Item 4, all three methods produce
similar results, which is to be expected given the more stationary nature of the demand

process.
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Table 2-3. Seasonal Factors at End of Training Period

Trained Seasonal Factors

ltem Day of Season MFE HWS
1 n+1 1.336 1.161
n+2 0.905 0.841
n+3 0.473 0.627
n+4 0.757 0.664
n+5 0.660 0.644
n+6 0.942 0.905
n+7 1.811 1.602
2 n+1 0.092 0.365
n+2 0.669 6.675
n+3 0.815 5.462
n+4 0.655 4.818

n+5 2.084 14.807
n+6 1.555 7.740
n+7 0.897 5.846
3 n+1 0.674 1.007
n+2 0.904 1.008
n+3 2.655 2.641
n+4 0.330 0.846
n+5 0.067 0.168
n+6 1.082 2.247
n+7 0.701 1.195
4 n+1 0.221 0.764
n+2 4.160 3.111
n+3 1.113 1.095
n+4 0.483 0.328
n+5 0.250 0.713
n+6 0.459 0.816
n+7 1.141 0.529

In all four data sets, we find that demand exhibits strong seasonality. The
seasonal factors for MFE and HWS differ due to the different methods used for
calculating the level the factors refer to. In the case of CPU Line Item 2, note how the
HWS model produced extreme values for the seasonal factors. This is the result of a low
value for the level smoothing coefficient combined with a high value for the seasonal
smoothing coefficient. When demand shifts upwards, the seasonal factors must shift

dramatically upward to account for the lag on the level. Additionally, there is a dramatic
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difference in the optimal smoothing coefficient for the two sets of optimizations for CPU
Line Item 2. In sum, for HWS the level is highly dependent on the data set used to
optimize the smoothing coefficients, implying that this method may pose difficulties in
practice.

The smoothing coefficients for MFE and SES also shift depending on the
optimization method used. However, the mean squared error does not change
dramatically for these methods, unlike HWS, implying that they are more robust to
structural changes in the demand process. However, SES produces higher mean squared
error in most cases.

The implication of these results is that our method may be superior to both simple
exponential smoothing and the Holt-Winters method for products with non-stationary
demand processes with seasonality. Additionally, the lack of large shifts in error despite
changes in the smoothing coefficient suggests that frequent re-optimization is

unnecessary.
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3 INTEGRATION WITH INVENTORY MANAGEMENT

In this section we integrate the forecasting method presented in Section 2 with a
model for inventory control. A review of current methods for inventory management at
Intel is presented, along with a discussion of non-stationary inventory policies and the
base stock model. Methods for convolving lead time demand are discussed, followed by
the presentation of our integrated model for both unconstrained and constrained
replenishment policies. Finally, the results of our model are compared to current

methods, revealing dramatic inventory reduction possibilities.

3.1 CURRENT INVENTORY MANAGEMENT METHODS

Traditionally, Intel Corporation has managed its major inventory points through
experience and judgment alone. Inventory goals are typically expressed in weeks of
demand, using a form of moving average based on a quarterly time frame. We seek to
provide methods to allow Intel to accomplish a paradigm shift in their supply chain
management practices by converting from a push system to a pseudo-pull system.

A push system is traditionally defined as one in which production decisions are
based solely on demand forecasts without regard to historical estimates of the distribution
of demand, lead time, and other factors. Conversely, under a pull system these historical
estimates are employed to derive inventory goals that are then compared to on hand
inventories to determine production decisions. A traditional pull system does not employ
forecasts. We classify our model as a psuedo-pull system because while it makes use of
Intel’s forecasts, it also uses historical estimates of the distribution of demand, lead times,

and Intel’s forecast error to determine forecasts of inventory goals, which in turn drive
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production quantities. Production quantities are “pulled through” to finished goods

inventory, rather than pushed into inventory to meet demand forecasts.

A cursory examination of the challenge Intel’s supply chain managers face

quickly reveals why statistical methods have not yet been employed:

Six major inventory points, dozens of warehouses and factories, two major
manufacturing stages, tens of thousands of finished line items, and hundreds
of customers make for a complex supply network, rather than a simple supply
chain.

Product lifecycles for most products are less than 18 months, with the
majority of demand occurring in a 3 to 6 month timeframe.

Production yields are highly stochastic.

Manufacturing technology is continually changing and among the most
sophisticated in the world.

Lead times from raw materials to finished goods are extremely long (months).
Customers and Intel factories are spread worldwide.

Demand and lead times are highly stochastic, with non-stationary means and
probability distributions.

Manufacturing equipment is shared across a diversity of product types (Flash
Memory, CPU, Communications Products, etc.), each with a different set of

customers and market conditions.

We turn our attention next to the selection of a model that best fits the supply

chain challenge faced by Intel Corporation.
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3.2 HANDLING NON-STATIONARY DEMAND DISTRIBUTIONS

Most inventory models used by academics and corporations today rely on an
assumption of stationary demand distributions. On the surface this seems to be at odds
with the non-stationary nature of many forecasting methods such as exponential
smoothing. Indeed, we already have argued that the assumption of stationary demand
processes in the future is unwise for products that have shown non-stationary tendencies
in the past. However, this does not mean that traditional inventory models cannot be
applied.

One key to the successful use of stationary inventory models is to find a
forecasting methodology that produces an error distribution that remains stationary
despite the non-stationary nature of the underlying demand process. Our model does
exactly this by generating an error distribution that remains a fixed in proportion to the
forecasted level. This allows us to convolve a single estimate across all future periods of
what percentage of the forecasted level should be carried as safety stock. This estimate

can then be used to forecast evolving inventory goals.

3.3 THE INVENTORY MODEL

Base Stock Theory forms the underpinning of our inventory model. A detailed
explanation of this type of model can be found in Silver and Peterson (1985). We have
chosen to use a periodic, order-up-to model due to the periodic nature of Intel’s existing
internal planning processes as well as the likelihood that many of Intel’s customers use
periodic inventory replenishment policies.

We model inventories at a single stage. The expansion of this model to multiple

stages is not examined, although we believe it could form the basis of a wider model.
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Axsiter and Rosling (1993) present a detailed examination of multilevel inventory
control models that could serve as a good starting point for this analysis. The optimality
of our inventory policy is also not examined — while base stocks are optimal in certain
classes of stationary problems, they are not necessarily optimal here. However, we
expect them to work reasonably well here and in settings similar to those presented in this
thesis. We begin with two methods for convolving lead time demand, followed by a

presentation of the inventory model without and with capacity constraints.
3.3.1 Methods for Convolving Lead time Demand

The standard model for an order-up-to base stock policy is comprised of two
types of inventory: pipeline inventory and safety stock. Pipeline inventory is determined
through estimates of the average expected demand level over the lead time. However, the
determination of safety stock requires more careful treatment due to its dependence on
the probability distribution of expected demand over the lead time.

In Section 2, we presented a new model for forecasting demand. However, the
seasonal error vector from this model only represents one of the ingredients necessary for
the proper determination of safety stock targets. Because we have based our forecasting
model on Intel’s forecasts, we must include the error from these forecasts in our
convolution of the probability distribution of lead time demand. In addition, in Intel’s

case lead times are stochastic and non-stationary and therefore must also be included.®

¢ We have chosen to neglect yield forecast error. Yields are also stochastic and non-stationary in Intel’s
case but they quickly reach predictable levels, and we therefore assume they can be factored into
replenishment signals directly.
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3.3.1.1 Direct Convolution
For the case of Intel’s CPU products, lead times through Assembly/Test generally
exceed 10 days. Following the Central Limit Theorem, we assume normal distributions
for any daily errors extrapolated to ten or more days. For lead times less than 10 days,
the discrete distribution methods presented in the next section may need to be employed.
We begin with the standard form for the interaction of demand and lead time

variability:

SafetyStock =z (ServiceLevel)* \J(ALT + RT)* 02 oni + Hiomand * O 1z
where z'(ServiceLevel) refers to the z-factor for the desired service level, ALT refers to

the average lead time, RT is the review period, and o and u take on their usual forms of
standard deviation and mean, respectively.

It is important to remember that we are deriving a multiplicative factor for daily
safety stock estimates, rather than a constant estimate for all future periods. We assume
that the error of an Intel forecast for one week is independent from the error of another.
We also assume that seasonal forecast error is identically distributed and independent of
Intel’s forecast error, lead time, and review period. Finally, we assume that Intel’s
weekly forecasts are dependent on lead time inasmuch as the quantity of forecast error is
dependent on the forecast horizon (in weeks).

First, we must convert Intel’s weekly forecast error distributions into a single

daily error distribution. This is accomplished as follows:

, | A o-;’eekly IFE_k
O Daity _IFE— Z — (ALT+RT)

= 7* IntelWeeklyForecast _k
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where IntelWeeklyForecast_k and oy,,, 1z , Tespectively refer to Intel’s forecast for

demand and the variability of Intel’s forecast error for the week £ falls in. Note that
Intel’s forecast error is now in percentage terms (i.e. days of demand).

Because the variation of demand relative to Intel’s forecast is dependent on both
the seasonal forecast error and Intel’s weekly forecast error, we must convolve these two

together over the lead time and the review period. Additionally, we may remove the
Uh.mama teTm because we are convolving a safety stock estimate that scales with the mean
of demand. All terms are in terms of a percentage of the mean, therefore in this case xis

literally one mean and £# is simply one. The formula for our multiplicative safety factor

is thus as follows:

SafetyFactor = z™ (ServiceLevel )* J (ALT + RT)* (02, rutsrror + O puity I )+o?,

Although the lead time may be non-stationary, it is assumed to be stationary for
the calculation of the required safety stock on a given day. However, the lead time used
for one day’s safety stock calculation may vary from that of another. In practice, we have
found that so long as the lead time does not change too quickly from one period to the
next, excessive bullwhip is not introduced into the system.

For the purposes of this thesis, we have assumed a lead time‘ of twelve days, a
review period of one day, and a lead time standard deviation of 20% of the nominal lead
time (2.6 days) for each CPU line item. In similar fashion, we have assumed that forecast
error for Intel’s weekly demand forecasts is 5% for the first week out and increases by
2% for each week thereafter. These values are used for illustrative purposes only and are

in no way representative of actual lead times or forecast errors experienced by Intel,
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which vary both over time and from product to product. Average lead times and forecast
errors may in fact be much smaller or much larger than the values we have assumed.

In actual fact, we find that for Intel, both lead time and lead time variability are
highly non-stationary. Both values remain stable in the early parts of a product’s
lifecycle, then increase dramatically after a product has reached its peak demand rate,
eventually reaching levels that make the use of a base stock model impossible. Figure 3-
1 illustrates this behavior. Lead times and lead time variability were calculated using the

adaptive variance exponential smoothing methods developed by Snyder [2002].

Figure 3-1. Lead Time Behavior for CPU Line Item 2
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The form of Intel’s forecasts presents an additional roadblock to the short-term
implementation of our model. As described in Section 2.1, Intel utilizes a wide variety of

personnel and forecasting techniques to make estimates of how much of its products to
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manufacture. However, amongst all of the types of forecasts available, from production
starts to production completions and from promises to customers to available capacity, as
far as we can determine, Intel does not generate a short- to medium-term forecast that
describes estimates of what shipments will be required during a given time period (i.c. a
week). The closest Intel forecast available is a one of production completions — the error
of this forecast compared to actual shipments is shown in Figure 3-2. As can be seen

from the figure, the degree of error present makes this forecast difficult to use for our

purposes.

Figure 3-2. Production Forecast Error for CPU Line Item 2
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Forecast error in Figure 3-2 is calculated in the traditional simple fashion.
However, it is highly likely that correlation in forecast error exists across generations,
line items within a product line, and product types. Cakanyildirim and Roundy [2002]

present an excellent method for estimating correlation and estimates of future forecast
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error for individual products. However, their methods require vast amounts of data (five
years or more) and have proved infeasible for our purposes.

An examination of performance drivers for planning and manufacturing and close
scrutiny of week-to-week changes in requests for production revealed many of the
reasons for the increases in lead times. A detailed examination of these problems is
beyond the scope of this thesis. However, suggested recommendations for solutions that
better fit the implementation of this model are presented in Section 4. We next examine
convolution through simulation.
3.3.1.2 Convolution through Simulation

For short lead time products (less than 10 days) with unusual probability
distributions, the errors of the multiple time periods have to be analyzed by convolution.
This is accomplished through the simulation of discrete probability distributions of lead
time, seasonal error, and Intel’s forecast error. Simulation methods produce good results
and are more robust to unusual probability distributions, but require substantially more
processing power.

Murty [2000] describes a form of this technique where the error distribution from
an exponential smoothing of demand is split into discrete elements and convolved over
the lead time using Monte Carlo simulation. Monte Carlo techniques operate through
random draws on each probability distribution that are then processed to form a
distribution of simulated results. A minimum of 500 to 1000 trials with 15 to 25 discrete
elements is recommended for reliable results. Crystal Ball™ 7 is an excellent tool for the

application of these techniques.

7 Crystal Ball is a registered trademark of Decisioneering, Inc.
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Either direct convolution or simulation may be used to produce an estimate for the
required safety factor, or number of days’ safety stock, that is required to meet a desired
service level. The remainder of the inventory model is presented next.

3.3.2 Unconstrained Inventory Model

In manufacturing, there are two major types of buffers against uncertainty:
production capacity and inventory. Choosing an optimal balance between the two is a
difficult task and has been addressed by many capable authors in the literature. We find
Atkinson’é solution [2001] to be the most elegant and complete. These techniques
require the extensive use of financial considerations that are beyond the scope of our
model. However, we believe that our method could form the basis of numerous types
financial optimization models.

We choose to address the requests for inventory replenishment when capacity
constraints for a single product are known across the entire forecast horizon. The
calculation of constrained replenishment forecasts first requires the determination of

unconstrained replenishment signals. The unconstrained model is as follows:

ALT+RT
BaseStockGoal, = 2 Forecast,,; + Forecast,, ;.. zr * (SafetyF. actor)

i=1

ALT
CurrentStock, = Zreplenishment,_,. + EndingOnHand,

i=1
EndingOnHand, = BeginningOnHand, — Forecast,

BeginningOnHand, = EndingOnHand,_, + replenishment, (4,1,

{ BaseStockGoal, — CurrentStock, if greater than zero

replenishment, = 0 otherwise

Note that this will yield current stocks equal to the safety stock for t > n+ALT+RT.
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3.3.3 Constrained Inventory Model

In the semiconductor industry inventory is utilized far more often than capacity as
a buffer due to the expensive nature of capacity. In addition, we have shown in Table 2-3
that daily demand seasonality is extreme in many cases. The leveling of this seasonality
is accomplished through constraints on capacity. The optimal allocation of capacity
between different products is dependent on many factors - our model does not seek to
accomplish any such optimization. We seek to describe only the required replenishments
to fit a given set of capacity constraints over the forecast horizon. The constrained model
is as follows:

replenishment, — Capacity, if greater than zero
Shortall, = { 0 otherwise

Shortfall, if prebuild,,, =0
otherwise if Shortfall, >0
Shortfall, + prebuild,,,

prebuild, =
otherwise if prebuild,,, —(Capacity, — replenishment, )>0

prebuild,,, —(Capacity, - replenishment,)
0 otherwise
Capacity, if prebuild, >0
Constrained _replenishment = { prebuild,,, +replenishment, otherwise
This model works by comparing unconstrained replenishment signals to available
capacities, working backwards from the forecast horizon. If capacity is unavailable to
meet the required replenishment, then the replenishment must be ordered in earlier

periods. The advantage of a model such as this is that allows for linear optimization
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techniques to be employed in the allocation of total factory capacity across Intel’s many

products.
3.4 HISTORICAL SIMULATION RESULTS

We compare the results of our inventory model for CPU Line Items 1 through 4 to
actual inventories held by Intel over the same periods. Actual inventory quantities are
normalized using the same mean of demand employed for the normalization of demand
quantities. Daily production capacities are set to the daily average of 110% of each
week’s demand and the target service level is 95% in all cases. Beginning on hand
inventories are set to the initial safety stock plus the first ten days of demand during the
training period. The model is run backwards through the first three weeks of training
data to allow it to reach stable operation, although in general we find that the model

settles down in 10 periods or fewer.

Figure 3-3. Inventory Comparison for CPU Line Item 1
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Figure 3-4. Inventory Comparisons for CPU Line Item 2
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Figure 3-5. Inventory Comparison for CPU Line Item 3
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Figure 3-6. Inventory Comparison for CPU Line Item 4
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Table 3-1. Service Levels for MFE Inventory Simulations

CPU Line Item Simulated Service Level
1 98.15 %
2 100.00 %
3 100.00 %
4 100.00 %

As shown in Table 3-1, service level goals are exceeded in all cases. The degree
of excess service is larger than expected, perhaps due to our assumption of perfect

correlation between seasonal forecast error and forecasted levels.
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Table 3-2. Potential Inventory Reductions with Use of MFE®

CPU Line Item Potential Inventory Reduction
1 80.2 %
2 571 %
3 39.2%
4 88.5%

The results of our historical simulations are dramatic. Table 3-2 illustrates the
scale of reductions that could become possible should Intel fully implement this model.
While several roadblocks currently exist, the quantity of these reductions provides a
powerful source of motivation for implementation. We examine these roadblocks and

other organizational factors in the next section.

¥ Note that these reductions rely on the assumed values for lead times, lead time variability, and forecast
error. However, the values listed here are similar to those we have found when actual values are used for
lead times. Forecast errors are still assumed in this case, although we believe them to be reasonable for
the short forecast horizons we face in this application of the model.
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4 ORGANIZATIONAL IMPACTS

In this section we examine the impact of implementing our proposed inventory
model. An end-state vision of the new supply chain paradigm is presented, followed by a
roadmap for its achievement. The section concludes with an examination of future

improvements to our model.

4.1 IMPLEMENTATION STRATEGIES’

The conversion of Intel’s supply chain from push to pull is far from trivial —itis a
paradigm change in the process for managing Intel’s entire manufacturing system.
Changing the information process that generates production signals to Intel’s factories
also will require changes to performance measurements, organizational structures, and
corporate culture.

Change on such a scale must be accomplished thoughtfully and incrementally — if
the mechanics of the system were ready for implementation tomorrow, the effort would
fail due to lack of buy-in from the organization. Even if buy-in existed, the effort would
still fail due to the fact that it would be entirely new. In short, change of this magnitude
cannot be expected to occur all at once - feedback, correction, and additional discovery

are required.
4.1.1 Envisioning a Pull-Based Supply Chain
There are many possible paths to a pull-based supply chain paradigm. Of

paramount importance, however, is that the entire organization be aware of the vision for

the end-state and the roadmap to get there. In Intel’s case, this end-state vision is a

® Many of the concepts in this section are drawn from Hammer [1995].
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supply chain management process that generates its own production schedules based
solely on demand forecasts, factory capacities, pricing, and historical data. Moreover,
this process is a simple window into many of the metrics that drive the company’s
success: demand patterns, lead time patterns, forecast error, and production yields. Such
visibility will allow Intel to reduce supply chain costs even further through the solution of
as yet unknown problems previously covered up by inventory. Indeed, similar efforts at
other major corporations have yielded dramatic results — Kodak has removed more than
$500 million in inventory from its supply chain, and Proctor and Gamble has experienced
similar results.'
4.1.2 Roadmaps for Changing Paradigms

Such a vision is indeed compelling, but what should be Intel’s first step towards
its realization? One possible roadmap could be to conduct a series of tests — historical
simulations such as those presented in this thesis fall into this category. Offline
simulations observed in real time, parallel to actual operations would come next,
followed by an experimental pilot on a small set of actual products, then finally full
rollout across all relevant prodlicts. While promising, this option is unfortunately
currently impossible due to the problems with forecasts and lead times outlined in
Chapter 3.

A roadmap that allows for these problems might entail the following:

1. Develop a process for the weekly assessment of lead times, lead time

variability, and the impact they have on the company’s bottom line. Re-

1 Conversations with Earl Chapman, Eastman Kodak, and William Tarlton, Proctor and Gamble,
September 2002.
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align manufacturing performance measurements to include goals for lead
time reduction and the mitigation of lead time variability. Shorter, more
predictable lead times will result in the quick reduction of both finished
goods and work in process, even without an automated replenishment
system. Indeed, this is where Kodak reaped a large portion of its
inventory reductions!

. In parallel to the manufacturing effort, begin to generate shipment
forecasts for a small set of test products. The products chosen should be
the same as those actually used in live pilot programs. As such, these
products should have stable demand and low production volumes. The
forecasts need only cover shipments up to a horizon equal to the estimated
lead time. Clear and visible support of the team performing this effort
must be present from senior management for this and subsequent efforts to
succeed. The team’s boss and his or her boss must also be held
accountable for their treatment of the project both during and after its
completion.

. With these forecasts, conduct an offline simulation of a replenishment
system using weekly rather than daily quantities. Low production
volumes allow capacity constraints to be neglected. Assume lead time
characteristics equal to the goals set in step one. At this stage, use rules of
thumb for setting inventory goals. A goal such as this might be two weeks
of demand based on a four week moving average comprised of the

previous two weeks’ shipments and forecasts of the next two weeks’
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10.

11.

shipments. These goals should be sufficiently high that stockouts are not a
concern.

Correct any errors in the process, then conduct a pilot on the actual
products when lead times are sufficiently under control.

Develop a system for monitoring forecast error over the lead time horizon.
In parallel to the pilot, conduct another offline simulation using a weekly
model that estimates inventory targets mathematically, rather than
experientially.

Develop a methodology and tool for setting capacity constraints across
multiple products using unconstrained replenishment signals. This
research could be conducted by a Class of 2004 MIT Leaders for
Manufacturing intern.

In parallel to the development of this tool, transition the pilot to the
weekly mathematical replenishment model.

Rollout the new system across other products, first using experiential
inventory goals then transitioning to mathematical ones. Begin with the
products that are easiest to manage and then move to the harder ones.
Adjust performance measurements and the organizational structure as
necessary to support the new supply chain management process.

Repeat 6 through 10 for roll out of the daily forecasting and inventory
management system presented in this thesis.

Repeat 6 through 10 for roll out of additional features to the system such

as other stages of the supply chain, financial optimizations, etc.
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Throughout this entire roadmap, constant correction will be required and new
challenges may be uncovered. Additionally, the transition of job descriptions should be
gradual. Automation of manual processes and consolidation of effort should be

attempted incrementally.
4.1.3 Summary of Recommendations for Implementation

In sum, a pull-based supply chain paradigm presents Intel with a vision that is
compelling beyond the inventory reductions that would result from the use of our model.
However, the achievement of that vision must be undertaken gradually with attentidn to
factors such as performance drivers, organizational structure, culture, and politics. An
incremental approach is vital to long-term success in order to allow for course corrections

and to build momentum for change.
4.2 FUTURE MODELING POSSIBILITIES

Note that in the above roadmap, choosing how replenishment signals should be
split amongst die inventory bins remains a manual process. A die inventory bin refers to
a group of untested, unassembled chips grouped into similar speeds. This is the result of
stochastic production processes — all chips produced on the same silicon wafer are not the
same speed, but rather emerge along a distribution of different speeds. A replenishment
signal for a 2.0 GHz product could be pulled into production from any die inventory bin
containing chips of 2.0 GHz or greater. When combined with replenishment signals from
other speeds, the optimal choice of die inventory bins becomes quite complex and
requires the addition of financial considerations to the model. This process for choosing
these bins could be automated as well if good methods can be created for doing so.

However, an incremental roadmap for their introduction applies here as well.

61



An additional area for further development is the inclusion of production yields in
the model. If these yields are predictable enough, a simple deterministic alteration to
replenishments may be possible. If they are stochastic, more elaborate methods may be
necessary.

A final suggestion for future study is the expansion of our single-stage
multiplicative forecast error model to networks comprised of multiple stages. A detailed
examination of bullwhip'! effects resulting from the non-stationary nature of the model is

warranted. Echelon stock policies could also be considered.

! The term bullwhip is used to characterize the effect of increasing demand volatility as one moves further
away from the end customer.
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S CONCLUSIONS AND RECOMMENDATIONS

The scope of change required to fully implement this system is substantial and
will require years to fully complete. The paradigm shift from push to pull must be
accomplished incrementally and will necessitate corresponding changes in corporate
culture, organizational structure, performance drivers, software, and infrastructure.
However, the financial benefits are substantial: preliminary analysis of the net present
value of inventory reductions exceeds $80 million, based on a three-year phased
introduction across Intel’s processor and flash memory product lines. In addition, when
the system is implemented Intel will have the building blocks to an even leaner supply
chain. This system gives the company a clear picture of the accuracy of their demand
forecasts, the volatility of their demand, and the length and volatility of their lead times.
With a more tightly controlled supply chain and the mathematics to describe it, financial
optimization of service levels and product mix can be undertaken, as well as inventory
reductions at other stages of the supply chain.

Several key insights can be drawn from this thesis:

e Periodic inventory replenishment models can be used for non-stationary
processes with great success. While these models may not represent a
lower bound on inventories, they provide a simple and powerful solution
to an otherwise intractable problem.

e Multiplicative forecasting models offer a mathematically simple solution
to non-stationary problems and provide substantial forecast error

reduction.
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Models that can incorporate generational learning across products can
make use of statistical models possible for short lifecycle products.
Successful paradigm shifts in supply chain management techniques
require open dissemination of the vision and roadmap for change. Many
facets of an organization must be scrutinized to ensure that the plan will
further align performance drivers, corporate strategy, and the structure of
the supply chain. Practitioners should expect changes to be gradual rather

than immediate.
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APPENDIX A — NORMALIZED DEMAND DATA

The data in the following table have been normalized such that the mean of the
training period data (see Table 2-1 for a list of training periods) is 100. Period 1

corresponds to a different starting date for each CPU Line Item.

Table A-1. Normalized Demand Data for CPU Line Items 1 through 4

Normalized Demand for CPU Line Item
Period (day) 1 2 3 4
1 134 0 7 0
2 113 0 23 502
3 133 112 56 56
4 65 40 0 1
5 57 0 0 0
6 199 279 5 2
7 280 0 8 8
8 134 0 211 334
9 113 0 256 650
10 133 28 283 14
11 65 0 138 0
12 57 64 43 196
13 199 13 390 180
14 280 80 266 7
15 40 0 17 195
16 5 8 13 458
17 40 12 395 4
18 30 0 25 0
19 33 4 0 244
20 2 7 72 0
21 232 20 45 0
22 79 0 435 0
23 216 1 635 120
24 0 41 258 143
25 153 54 52 0
26 3 158 560 0
27 10 59 438 0
28 60 28 163 10
29 86 17 330 5
30 3 11 265 233
31 0 19 483 383
32 36 16 276 1
33 14 186 108 1
34 60 410 320 0
35 108 0 182 9
36 17 16 327 1
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Normalized Demand for CPU Line Item

Period (day) 1 2 3 4
37 47 228 824 691
38 0 36 318 29
39 8 269 337 39
40 76 565 54 14
41 381 165 1036 94
42 252 133 168 0
43 188 8 596 0
44 376 228 844 209
45 56 235 267 0
46 63 126 438 71
47 212 461 13 0
48 25 250 502 0
49 104 223 186 150
50 240 100 454 2
51 75 146 1117 100
52 7 79 323 9
53 9 110 200 0
54 37 543 94 28
55 66 183 809 114
56 95 127 1
57 62 31 459
58 9 343 261
59 27 26 446
60 222 114 0
61 36 441 0
62 5 107 288
63 238 26 1
64 190 37 55
65 169 198 589
66 14 73 74
67 207 86 0
68 39 273 1
69 62 111 3
70 258 52 170
71 242 19 371
72 74 49 196
73 117 164 35
74 43 88 0
75 195 96 86
76 45 141 3
77 192 36 10
78 148 63 64
79 201 89 0
80 25 111 0
81 127 83 0
82 230 72 0
83 134 49 5
84 574 135 0
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Normalized Demand for CPU Line ltem

Period (day) 1 2 3 4
85 985 31 15
86 100 116 119
87 91 295 62
88 194 174 23
89 104 134 7
90 167 195 11
91 865 122 425
92 570 13 14
93 515 36 6
94 132 89 10
95 0 215 13
96 274 369 17
97 370 34 321
98 1259 161 28
99 485 64 13
100 269 199 11
101 87 40 349
102 539 30 51
103 517 49 0
104 207 27 12
105 518 40 504
106 598 21 24
107 420 100 49
108 67 64
109 0 36
110 217 30
111 318 31
112 499 35
113 491 0
114 190 49
115 10 18
116 844 45
117 296 60
118 976 44
119 545
120 257 1
121 41 53
122 0 60
123 177 49
124 197 84
125 232 62
126 751 49
127 291 79
128 197 139
129 338
130 416
131 983
132 770

69




Normalized Demand for CPU Line ltem

Period (day) 1 2 3 4
133 852
134 734
135 558
136 120
137 560
138 585
139 184
140 427
141 0
142 72
143 31
144 495
145 227
146 534
147 71
148 283
149 47
150 4
151 205
152 275
153 211
154 428
155 654
156 27
157 0
158 167
159 192
160 59
161 420
162 217
163 106
164 3
165 276
166 97
167 261
168 116
169 878
170 163
171 0
172 202
173 165
174 275
175 645
176 263
177 4
178 61
179 257
180 68
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Normalized Demand for CPU Line Item

Period (day) 1 2 3 4
181 454
182 401
183 338
184 42
185 0
186 134
187 69
188 364
189 266
190 200
191 36
192 0
193 123
194 152
195 433
196 511
197 126
198 9
199 5
200 155
201 126
202 11
203 92
204 154
205 97
206 0
207 51
208 148
209 90
210 19
211 30
212 1
213 0
214 14
215 1
216 6
217 103
218 34
219 19
220 0
221 65
222 10
223 1
224 1
225 486
226 0
227 0
228 0
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Normalized Demand for CPU Line ltem

Period (day) 1 2 3 4
229 1
230 5
231 51
232 3
233 0
234 0
235 1
236 1
237 235
238 7
239 24
240 45
241 0
242 9
243 5
244 115
245 50
246 19
247 0
248 0
249 0
250 95
251 20
252 43
253 15
254 0
255 0
256 6
257 0
258 0
259 1
260 28
261 0
262 0
263 4
264 0
265 11
266 16
267 4
268 0
269 3
270 4
271 10
272 51
273 0
274 0
275 0
276 0

72




Normalized Demand for CPU Line Item

Period (day)

1

2

3

4

277

22
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