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Abstract

Engineering is taking the art of pedestrian bridge design to new limits as bridges become
longer and more slender. The current trend to produce sleek structures is resulting in the
appearance of behavioral modes that were not known to exist. One such mode is the
human synchronization with the lateral motion of the bridge. For a number of years
vertical deflections of footbridges have been known to cause discomfort in pedestrians and
have therefore been kept under certain predetermined levels. However, the lateral sway of
bridges, which occurs in long and slender structures, is a relatively new phenomenon.
Very little research has been carried out to study this problem, nor is it addressed in bridge
design codes.

In order to predict the behavior of a bridge under synchronized human forces, a force
model must be developed. The dynamic force models that may be used for analysis
purposes are described in the following sections. In addition to this, methods available to
either avoid or mitigate this problem in pedestrian bridges such as frequency tuning and
damping - both active and passive systems, are also discussed.

The final sections of this thesis discuss the characteristics of some bridges that have
displayed large lateral vibrations due to pedestrian induced forces, and the various steps
taken to mitigate the vibration problem. Results for a very preliminary finite element
analysis on a pedestrian bridge modeled first as a beam and then a plate to study its natural
frequencies of vibration are also presented.

Thesis Supervisor: Jerome J. Connor
Title: Professor of Civil and Environmental Engineering
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1. Introduction

Dynamic forces are induced due to human body motions on pedestrian bridges. The

vertical motion of a bridge due to forces induced by human motion has been the subject of

much analysis and research. Since bridges are usually stiff enough in the lateral direction,

lateral motion is generally not a problem and it has not been well-studied nor well-

analyzed. However, in the year 2000 when a large crowd of people crossing the newly

opened Millennium Bridge set the bridge moving laterally with deflections that were far

greater than those permitted, lateral vibration of bridges was brought into the public eye,

and into the forefront of concerns within the engineering community.

The problem addressed in this paper, although similar to that of soldiers needing to break

step before crossing bridges, is not the same. A large crowd of people causes both these

phenomena, but through different ways. The soldiers are initially walking in step and need

to break this rhythm before crossing the bridge to prevent setting up a resonance within the

structure. However, with the problem of lateral vibration in pedestrian bridges, the crowd

is initially walking randomly. After the bridge begins some movement, they start

becoming more synchronized with each other and the bridge. This is due to the natural

human response in trying to synchronize with the motion of the bridge.

In order to predict the behavior of a bridge under the synchronized human forces, a force

model must be developed. In addition to this it is necessary to investigate methods to

either avoid or mitigate this problem in pedestrian bridges.
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2. Dynamic Force Model

Vibration problems arise when the natural frequencies of the structure coincide with the

frequency of the force imposed on the structure. This causes a resonance problem. In the

case of pedestrian bridges, the forcing frequencies under consideration are that of walking

and running. Many of the codes such as the British Standard and Ontario Highway Bridge

Design Code provide design requirements and guidelines. However, these codes do not

address the issue of lateral motion of bridges due to pedestrian motion. It is therefore

necessary to devise methods to model these forces. As a first approximation the models

used to apply pedestrian loading in the vertical direction can also be used to apply loads in

the lateral direction.

Typical pedestrian walking frequencies range from 1.6 to 2.4 Hz while running frequencies

range from 2.0 to 3.5 Hz. It should be noted that the frequencies of the second and third

harmonic of the normal walking rate are 4 Hz and 6Hz, and these could also be important

in some instances. In addition to walking and running, vandal loading must also be taken

into consideration. Vandal loading is when people purposely try to cause bridge vibration

by exerting forces that are known to cause oscillation. It is suggested that jumping also be

included in the loading models for footbridges [12].

Statistical data on bridges show that typically concrete bridges are more susceptible to

vibrations than steel bridges. Also, steel footbridges tend to have less vibration damping

than do concrete bridges. Some approximate measures of the fundamental frequency of

vibration are given by the following equations [1]:

Let L - span (m)

f - fundamental natural frequency (Hz)

f = 39L- 77 (for Concrete) (2.1)

f = 35L-0 .7 3 (for Steel) (2.2)

The following section describes more accurate models that can be used to predict the

bridge response to human loading.
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Fourier Series Model

There are several possible ways to represent pedestrian induced forces. One accurate

method of doing so is as normalized dynamic forces that are described by a Fourier series

of the form [1]

F, (t) = G + G.a .sin(27i fpt - 5) (2.3)

where G - weight of the person (=800N)

ai - Fourier coefficient of the i-th harmonic

G. a - force amplitude of the i-th harmonic

fp - activity rate (Hz)

pi - phase lag of the i-th harmonic relative to the 1 't harmonic

i - number of the i-th harmonic

n - total number of contributing harmonics

In the case of lateral forces induced due to walking, Equation (2.3) results in

F,(t) = 400.(sin(27z..t)+3.sin(67z..t)) (2.4)

with ayQ = 0.1

a312  =0.1

fp =2Hz

The values of a and 0 are obtained from Tables A. 1 and A.2 in the Appendix (A. 1).

Equation (2.3) expressed for running is

F, (t) = 1280.sin(4;zt) +560.sin(87it) +160sin(12;zt) (2.5)

and

F,(t) = 1280.sin(37i.t) +560.sin(127t) +160.sin(36nt) (2.6)

with a, = 1.6

a 2  =0.7

a3  =0.2

fp = 2 Hz (Equation 2.5) and 3 Hz (Equation 2.6)
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This suggests that bridges showing natural frequencies that are in the proximity of the

frequency range 2-3 Hz must be carefully analyzed for pedestrian induced motion. It

should be noted however, that these methods have been shown to result in an

overestimation of the peak acceleration for the frequency ranges of the second harmonic

[11]. This may be due to the varying phase between the structural vibrations and the actual

load applied by a pedestrian.

Model Refined for Lateral Motion

In the case of lateral forces induced by pedestrian walking, the lateral sway of a person

walking will usually be half the walking frequency. Therefore for lateral loading,

frequencies as low as 1Hz should also be considered critical. Figure 2.1 illustrates this.

VIEWED FROM ABOVE IlHz

1Hz

1~ cI

1Hz

1.0 see

Figure 2. 1: Resonance due to lateral pedestrian motion [7]

In order to consider loading due to a large number of pedestrians, n, where < is a mutually

independent random variable, the lateral force on the girder can be given by

F,(t ) =G.a. .sin( 2;ri fp t - p0 ) (2.7 )

This equation can be re-written as

FP (t ) = - G. .sin( 2z, fp t - 0) (2.8 )
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Therefore, the total effective force from n persons' walk is equivalent to that from n1

persons' completely synchronized walk [7]. Then assuming the lateral girder to be a

single-degree-of-freedom system, the lateral response can be computed by [7]:

m(X +4rcyo X +47r 2f 0
2 X) -= F sin(27zft + 0) (2.9)

2

where X - is the amplitude of the first lateral mode of the girder

S- is the damping ratio

fo - is the natural frequency of the first lateral mode

n - is the number of persons

f- is the frequency of lateral force from human walk

F - the lateral force from human walk (23 N normally)

m - the effective mass of the first lateral girder mode

However, this approach underestimates the lateral loading due to pedestrians, as it does not

account for the possibility of feedback and synchronization. Fujino et al [7] conducted a

detailed study on human walk on a cable-stayed bridge. This study provides a great deal of

insight into the human response to lateral vibration of bridges. The frequency of walking

was seen to change with time, was different for different people, and depended on the

congestion levels.

Table 2.1: Frequencies of human walk and bridge vibration [7]

Time Stage N Walking Frequency (Hz) Pedestrian Condition
Mean Std. Dev.

4.27 (May 5, 1989) 1 8 0.984 0.113 Not congested
4.30 (May 5, 1989) 2 15 0.830 0.086 Congested
4.35 (May 5, 1989) 3 18 0.848 0.082 Extremely Congested
4.40 (May 5, 1989) 4 20 0.864 0.053 (2000 persons)
4.50 (May 5, 1989) 5 25 0.658 0.087 Decreasing

4.30 (Dec. 31, 1989) 6 25 0.883 0.078 Large

Table 2.1 shows the walking frequencies of pedestrians at different times and in different

crowd conditions. N is the number of people whose head motions are analyzed. It is clear

from this table, that in uncrowded situations, the walking frequencies are close to 1 Hz,
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which is the frequency that is expected for lateral swaying. However, as the bridge gets

more crowded, the walking frequency becomes smaller and gets closer to the natural

frequency of the bridge, which is approximately 0.9 Hz in this particular example. This

could be because, when the bridge is not congested with people, they are able to walk

normally at a normal pace. However, in congested situations, people are not able to pace

normally.

In this experiment the lateral head movement of a number of pedestrians was recorded.

The head movement is used as a representation of the lateral body movement of the

pedestrian. The results show that pedestrians tend to display larger lateral movements in

crowded situations than they do in uncrowded situations. This is illustrated in Figure 2.2.

It should be noted that in this example, the lateral girder motion has not been subtracted

from the total lateral head motion. However, the girder motion has a magnitude of only

about 1-cm, which is extremely small compared to the lateral pedestrian amplitude of 5-

cm. This increased magnitude of lateral motion means the lateral force induced will be

greater than the 23 N normally used. A possible reason for the increased magnitude of

lateral motion could be that the pedestrians cannot freely step forward in crowded

situations and hence tend to step sideways instead [7]. Another explanation could be that

the pedestrians try to stabilize themselves while walking on a vibrating bridge by stepping

sideways. A study carried out by Okamato et al confirms this, and also states that the

walking frequency becomes more synchronized to the floor frequency when the lateral

amplitude reaches 1-2 cm [7]. This synchronization of pedestrian motion to the motion of

the bridge is a subconscious effort to stabilize oneself.
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motions [7]

Figure 2.3 shows two examples of human head motion corresponding to Stages 1 and 2 in

Table 2.1. These are examples of fully synchronized head motions. Since these people

were not standing next to each other the identical lateral motion (even though different in

amplitude) is attributed to synchronization with bridge motion. Figure 2.4 shows three

examples of partially synchronized motion. In this study, phase difference between a

reference sinusoidal motion (taken as 0.92 Hz) and the head motions was also calculated.

This phase difference was calculated to maximize

f"+ hi (t) sin(27ift +$,(t))dt (2.10)

where hi(t) - head motion of the ith person

t and r- time in seconds
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Figure 2.3: Examples of head motions of two completely synchronized persons [7]
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Figure 2.5 shows the phase angles plotted against time. Figure 2.5a shows that the five

people are almost in phase with each other and Figure 2.5b shows that another five people

are well synchronized at another phase.

Therefore, out of the twenty-five people whose motion was recorded, twenty per cent or

more show synchronization to the lateral girder vibration. This synchronized force acts as

a resonant force on the bridge. It was suggested earlier on that the equivalent number of

persons whose frequency is perfectly in tune with the bridge is n 12. However, with the

new evidence, it can be stated that the number of people perfectly in tune with the bridge is

given by 0.2n [7]. Furthermore, it was noticed that the amplitudes of lateral motion in

congested bridges are much larger than normal. Hence the lateral force due to walking

should also be greater than the normally accepted 23 N. 35 N is considered a reasonable

value to use instead [7]. These redefined parameters provide a far more accurate estimate

of lateral deflection due to pedestrian motion in congested situations.
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(b)

Figure 2.5: Nonstationary phase difference between human head motions and the reference
sinusoidal motion [7]
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3. Dynamic Analysis

The stiffness of a bridge is governed by all the elements that make up the structure. In the

case of lateral stiffness, the bridge deck usually provides a large portion of this stiffness.

In addition to this, other structural elements such as cables and pylons in cable-supported

bridges, the arch structure in arch bridges, truss members in truss bridges also provide

additional stiffness.

Dynamic Behavior of Deck under Lateral Loading

The deck is one of the major contributors to the lateral stiffness of a bridge. In most

bridges, the span to width ratio is low enough for the lateral loading due to pedestrians not

to be governing factors in terms of serviceability requirements. Appendix A.2 shows

frequencies and mode shapes of a hybrid suspension bridge 750-feet long and 132-feet

wide. The frequency of vibration of the lowest lateral mode for this bridge is 1.41 Hz.

This is larger than the lateral frequency of walking for pedestrians, and will therefore not

be excited by pedestrian motion. However, as pedestrian bridges tend to get longer and

more slender, we see a trend towards very high span to width ratios. This results in

minimal deck stiffness, which requires the bridge to possess other means of providing the

necessary stiffness for lateral resistance, or methods to oppose lateral motions such as

damping.

Dynamic One-Dimensional Analysis

As a first approximation a pedestrian bridge deck may be modeled as a beam clamped at

both ends. This will be a l-D analysis taking into consideration only the beam bending.

This approach will obviously neglect the lateral stiffness provided by the suspension

cables, truss members or any other lateral stiffness contributors. However, the results will

18



not be too far from the real frequencies with regard to cable-supported bridges since the

cables provide little stiffness in the lateral direction.

I
L

Figure 3.1: Beam Model

The governing equation for a bending beam is given by

a 2 El j-EI
ax 2 ax2

+ p - 0
at2

(3.1)

where y(xt) represents the transverse displacement of the beam.

Assuming the beam is homogeneous throughout its length, Equation (3.1) becomes

EI 4+ = 0 (3.2)
ax4 at 2

When the beam cross-sectional dimensions are small compared to its length, we can

assume a harmonic time-dependent solution y(xt) = u(x)e . Substituting this into

Equation (3.2) we arrive at the fourth-order ordinary differential equation

(3.3)

where we define

4 =
EI

(3.4)

Trying a solution of the form u(x) = e' and solving the characteristic equation a 4 -

yO=Ogives a= yand a=iyso that

u(x) = Ae"+ A2e" + Ae"+ A4e"

u(x) = C, cosh(yx)+ C2 sinh(yx) + C3 cos(yx) + C4 sin(yx)

19
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where Ai or Ci (i=1, 2, 3, 4) are determined from the boundary and initial conditions.

For this problem, the boundary conditions are given by

u(0) = u(L) = 0 (3.7)

du du (3.8)
- - -o(.8

dx X=O dx x=L

du
= -C sinh(yx)+ yC 2 cosh(yx) - yC 3 sin(yx)+ 'C4 cos(yx) (3.9)

dx

u(0)= C2 +yC 4 =0 (3.10)

du = C + C3 = 0 (3.11)
dx X=O

u(L) = C, cosh(yL) + C2 sinh(yL) + C3 cos(yL) + C4 sin(yL) = 0 (3.12)

d = -Cj sinh(yL)+ C2 cosh(yL)- jC 3 sin(yL) +
dx x=L

yC 4 cos(yL) = 0 (3.13)

1 0 1 0 C 0

0 1 0 1 C2 0
cosh yL sinh yL cos yL sin yL C3 0

sinh yL cosh yL sin yL cos yLj C4 _ L0

The determinant of this 4X4 matrix must be equal to zero in order to obtain nontrivial

solutions. We therefore get

1- cosh(L) cos(yL) = 0 (3.15)

The first eight roots of this equation are given by

yL = 4.730

y2L = 7.853

y3L = 10.996

y4L = 14.137

y5L = 17.279

y6L = 20.420

y7L = 23.562

20



y8L = 26.704

Therefore, knowing L, E, I, and p for a bridge deck, an estimate can be obtained for the

natural frequencies. This method is used to perform an analysis of a suspension bridge in

Chapter 6. In addition to this analytical method, finite element procedure may also be used

to find the natural frequencies and mode shapes of a bridge deck. This is also illustrated in

Chapter 6.

Dynamic Two-Dimensional Analysis

A more refined model of the bridge deck would be as a 2-D plate element with dimensions

equal to that of the bridge deck (Figure 4). This system would be clamped along both the

short sides allowing for no translations or rotations.

w

L

Figure 3.2: Plate Model

Once again finite element analysis may be carried out to assess the natural frequencies and

mode shapes of the plate element. This is carried out for a suspension bridge in Chapter 6.

Dynamic Behavior of Cables under Lateral Loading in Cable-Supported
Bridges

It is quite clear that cable systems are able to provide resistance against vertical loading.

However, it is not as clear if and how cable systems provide lateral stiffness to a bridge

structure. The ability of the cable system to provide stiffness in the horizontal direction is

21



a result of second order effects that are determined by the support conditions (Figures 3.3

and 3.4)

(a)

©

PV

P

Figure 3.3: (a) Self-anchored and (b) Earth-anchored cable systems under lateral loading
[9]

In these figures ABCD represents the deck, AE and DF represent the pylons, and EB and

FC represent the cables in the undeformed configuration; AB'C'D represents the deck and

EB' and FC' represent the cables under lateral loading. In the self-anchored system, under

lateral loading, the deck and cables rotate about the pylons remaining in the same vertical

plane i.e. the triangles formed by AB'E and DC'F are vertical. This means that there will

be no lateral component of the cable force. However, in the earth-anchored system, the

cable forces will have lateral components as a result of the cables moving into an inclined

plane with the pylon i.e. AB'E and DC'F are no longer vertical but are slanted. Therefore

earth-anchored systems offer lateral resistance while self-anchored systems do not. This is

further illustrated in Figure 3.4

The lateral load Pt is given by equation (3.16):

h
h,= v P (3.16)

22



where 1z- lateral displacement i.e. distance between B and B'

h - height of pylon above deck i.e distance between B and E

E

h

B' B
Pt

P,

Figure 3.4: Lateral load Pt resulting from rotation of an initially vertical cable plane [9]

In order to analyze a cable system, the cables can be modeled as springs with stiffness k in

the lateral direction where

k = - ' cos0 W = W (3.17)
S5 i5 sin 0 d5 tan 0 8h h

This lateral stiffness is considered to be distributed uniformly along the deck. This type of

modeling is possible only for symmetric cable systems. The pylons and end piers may be

considered as rigid supports. Now, with these assumptions the lateral displacement 8,C due

to a horizontal loading, u, is given by

h = (3.18)
w

Vibration in cable systems may occur due to local or global oscillations. Local cable

oscillations are primarily caused by vortex shedding occurring around the cables in the

wind. Long cables acting as hangers or stays may undergo vibrations. Sometimes local

oscillations may occur when the natural circular frequencies of the cable are equal to the

frequency of walking or running of pedestrians. Local oscillations do not generally

influence the immediate safety of the bridge. However, the cables undergo cyclic changes
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during these types of oscillations and hence may eventually result in failure as a result of

fatigue.

Global oscillations comprising of the cables, the deck, the pylons and any other supporting

structure are usually analyzed using computers. The mode shapes for typical three-span

bridges with a symmetric layout will be either symmetric or antisymmetric. A typical first

mode displacement form is shown in Figure 3.5

Figure 3.5: Typical displacement form of first symmetric mode [9]

In general the bridge deck model will give very approximate models of the natural

frequencies of the structure. It is therefore essential to model the entire bridge system and

obtain the natural frequencies of the structure as a whole since all other structural elements

contribute to the overall stiffness.
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4. Vibration Control

Pedestrian bridges are being designed to be lighter and more flexible. This evidently may

result in the deflections being too large, and even though there may not be structural

problems as a result of these vibrations, accelerations may be higher than those considered

tolerable by users of the structure. Therefore in design, three different procedures may be

used to control the excitation levels of a pedestrian bridge:

1. Frequency tuning of the structure. This is based on the critical natural frequencies

of the bridge and the frequency of the forcing function i.e. pedestrian footfall

frequency in this case.

2. Calculating the forced vibration response of the structure and comparing the

amplitudes with serviceability criteria.

3. Several measures can be taken to mitigate vibration problems: increasing structural

stiffness, increasing damping with the use of viscous dampers or tuned vibration

absorbers, or even restricting use of the structure.

Frequency Tuning

This is simply a method by which critical frequency ranges are avoided during the design

stage and hence the frequencies of the dominant structural modes are kept out of a

previously determined frequency range. In the case of footbridges, since dynamic forces

are induced due to pedestrian footfalls the frequency ranges for walking and running are

avoided, i.e. 1.5 Hz to 3.5 Hz. If the bridge has very low damping values (-1%) then the

second harmonic of the dynamic force from walking must also be avoided (3.5 Hz to 4.5

Hz) [2]. When dealing with lateral vibrations however, frequencies in the range 0.5 to

about 1.5 Hz should be avoided, since pedestrians have lateral motions in this frequency

range, and in crowded situations tend to fall into step with bridge motion thus causing

resonance.
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Satisfying Serviceability Criteria

If it is not possible to keep the vibration frequencies out of the critical range, then the

response to pedestrian loading must be analyzed to ensure that the accelerations and

amplitudes are within tolerable limits. Unfortunately design codes do not provide

specifications for lateral vibration. Therefore the vertical serviceability requirements can

be assumed to be applicable to lateral vibration control. The British design code [BS

5400] gives a vibrational acceleration limit of

0.5. f1  (4.1)

for fundamental frequencies f, Hz less than 5 Hz. Unfortunately this will just give an

extremely rough estimate of the serviceability of the bridge. As described in Chapter 2,

lateral vibration is made very complicated due to pedestrian synchronization with the

bridge movements. Due to this, detailed analysis using the dynamic force models

developed in Chapter 2 will have to be carried out to ensure that even if a large number of

pedestrians fall into step with the bridge vibration, accelerations and amplitudes will

remain at acceptable levels.

Vibration Control

A bridge that does not satisfy serviceability requirements will have to be modified in order

to do so. There are several options available to do this as discussed below.

Passive Control by Increasing Stiffness

Since excessive lateral vibration occurs due to the low bridge stiffness in the lateral

direction. The most logical thought process would be to increase stiffness in this direction.

However, this would involve adding external elements such as bracing in the bridge deck

that might detract from the bridge aesthetics. Additional structural elements would also

increase the total bridge mass, which in turn may result in the superstructure and/or the

substructure having to be redesigned. Increasing bridge stiffness could therefore be an

extremely expensive, inconvenient and intrusive remedial measure.
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Passive Control by increasing Damping

Damping refers to the dissipation of vibrational energy. The energy dissipation equals

work done by the damping force. Damping suppresses system responses, especially near

resonance conditions where damping governs the response [5]. This energy dissipation

can take place in several ways:

" Material damping whereby energy dissipation occurs due to the viscosity of the

material.

- Hysteretic damping whereby the material undergoes cyclical energy dissipation and

absorption due to inelastic deformations.

- Friction damping whereby energy is dissipated due to friction between moving bodies

in contact.

" Energy radiation into the soil

All physical systems have some inherent damping, which are due to contributions from the

structure and by energy radiation into the soil. Table 4.1 shows damping ratios for different

types of materials. Damping by means of radiation into the soil can be high in medium

stiff or soft soil. However stiff soil or rock provides low damping by this method.

Table 4.1: Material damping of different materials [1]
Material

Reinforced small stress intensity (uncracked) 0.007 - 0.010
Concrete medium stress intensity (fully cracked) 0.010 - 0.040

high stress intensity (fully cracked), but no yielding of 0.005 - 0.008
reinforcement

Prestressed concrete (uncracked) 0.004 - 0.007
Partially prestressed concrete (slightly cracked) 0.008 - 0.012
Composite 0.002 - 0.003
Steel 0.001-0.002

In the case of footbridges, if the internal structural damping is not sufficient, additional

damping must be provided by external means. This could be done using devices installed

at various locations along the structure to dissipate energy in particular vibration modes. In

this way, the response of the bridge driven at the resonant frequency can be greatly

decreased. This in turn can significantly reduce overall motion or acceleration of the

structure.
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Tuned mass dampers (TMDs) can be an effective and practical means for reducing

resonant vibration in a bridge. A TMD is a device composed of a spring, mass, and

dashpot (Figure 4.1). These three components can each be implemented in a number of

different ways.

m
Tuned Mass

k c Damper

M
(Modal Mass)

K 
Base Structure

Figure 4.1: Schematic of a tuned-mass damper (TMD)

A TMD is itself a single degree-of-freedom resonant system. It adds a mode of vibration to

the base structure. The equations of motion for the system and with the TMD would be [1]

ms -2, + c, -is - c, (i, -i,) )+ k, -x, - k, -(X, -x X) = F cosiQt (4.2)

m, -. , +c, (i -c() + k, -x, -x k = 0 (4.3)

where s - parameter subscript for the primary system

t - parameter subscript for the tuned vibration absorber

x - total displacement

m - mass

c - damping coefficient

k - spring constant

F cos Qt - harmonic excitation of the primary system

These equations can be solved to obtain the optimum frequency of the damper:

f, = f(4.4)
1+ '

Ms

where

=1 k and f 1 k
21 , 2r ms
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From these equations we can see that the frequency of the tuned mass damper ft is slightly

smaller than the frequency of the bridge, fs. The difference between the two frequencies

depends on the ratio of m, to m. Therefore the stiffness and mass of the TMD are chosen to

put the TMD natural frequency just below the frequency of the "target" mode of the bridge

structure, i.e. the mode to be damped. This causes a strong dynamic interaction between

the TMD and the target mode. The target mode is replaced by two modes, one slightly

above and one slightly below the original frequency. Most important, both of these "split

modes" will be damped by the dashpot of the TMD. In essence, the TMD attracts to itself

the vibrational energy of the target mode and dissipates it into heat through the action of its

dashpot. The dashpot is the damping element added to the absorber. The optimum

damping ratio of the absorber is given by:

3(m )
/t = (1 (4.5)

8(1 + m, /MS,

This formula gives a good approximation for the damping required in the bridge and TMD

combined structure. In some cases damping by means of a dashpot is not essential if the

excitation frequency is certain to remain constant. However, with pedestrian motion this is

not the case and therefore a dashpot should be used.

As a solution to a vibration problem, TMDs have a number of very attractive features:

- They are compact, modular devices that can have a simple interface to the base

structure.

" They can be added to the bridge structure that is already designed or even built.

- A well-designed TMD can add high damping with minimal weight. Figures 4.2 and 4.3

shows the relationship. Figure 4.3 shows that a TMD having even 1% of the base

structure weight can produce high damping: over 5% of critical when tuned correctly.

" The TMD does not impact the static strength or stiffness of the base structure.
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- For designing the TMD, it is often possible to characterize the base structure by

inexpensive test or analysis. In effect, the base structure is modeled simply in terms of

a single mode: the target mode.
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Figure 4.2: Typical frequency response with and without a TMD
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Figure 4.3: Split Mode Damping vs. Mass Ratio

The TMD is considered a narrow-band device. It adds high damping only to modes with

natural frequencies close to its own. This means that multiple TMDs may be needed to

obtain high damping of modes if the frequency range is too large. However, this suits the
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vibration control problem of a pedestrian bridge ideally since only frequencies in the

critical pedestrian swaying motion need to be damped. A TMD is most effective when its

mass is comparable to the modal mass of the bridge, and when the inherent damping of the

bridge is very low. One of the primary design aspects to be noted with a TMD is that its

ability to operate effectively is highly dependent on accurate tuning of the damper.

Therefore detuning over a period of time or inaccurate installation may result in poor

performance of the damper. In addition to this TMDs show large amplitude motions when

in operation. Hence, they must be installed in open spaces that allow for their motion. In

practice is advisable to measure the frequencies of the bridge structure in situ, and the

TMD installation process must leave allowance for fine tuning [1]. This is usually easier

to do by varying the mass of the damper rather than its stiffness.

Active Control

Passive control mechanisms do not require any external energy whereas active

mechanisms operate through input of external energy. Active damping is sometimes

necessary to achieve greater performance, or to produce system properties that are

controllable electronically. A hybrid active/passive approach may also be used if

necessary. Active systems use actuators, sensors, electronics and software to control

physical systems.

Figure 4.4 shows a typical architecture of active systems. The usual goal is to achieve

some desired response that can be quantified in a set of performance objectives, in

response to commands, or in spite of disturbances.

A number of active control strategies exist. One possible method that can be used in

vibration control of pedestrian bridges is the use of the predictive control strategy. Cunha

and Moutinho [6] have used this approach successfully to study a real pedestrian bridge at

Martorell, near Barcelona. This strategy seemed to be rather general, versatile and fairly

easily implemented. It also achieved a significant reduction in the levels of vibration in the

numerical simulations.
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Figure 4.4: Typical layout of an active system [5]

The primary advantage of active systems is that control is carried out dynamically i.e. a

monitoring system is able to detect the state of the system at a given time and respond by

means of various devices appropriately. This prevents overdesign, which is inherent in the

design of passive systems. An active system is also able to respond to different types of

forces (e.g different frequencies of vibrations) unlike a passive system which is designed to

specifically mitigate certain responses in structures and will not be able to act against a

sudden unpredicted stimulation that it was not designed to withstand. However, great care

must be taken when using active control systems. Since they operate by input of energy

into the system, if designed incorrectly, instability is a very likely outcome.

If the only aspect of the bridge that needs to be controlled is its response to lateral

pedestrian swaying, then a passive system may be the most appropriate. An active system

that would be constantly monitoring the bridge might be too expensive an option for just

this problem. However, if the bridge has other problems along with the lateral vibration
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issue, then active control may be implemented in order to mitigate all problems. The cost-

benefit to using such a system could be realized in this case.

33



5. Case Studies

A large number of footbridges have undergone lateral vibration problems induced due to

pedestrian motion. In this section, some of the bridges around the world that have

displayed excessive lateral motion are discussed.

A Cable-Stayed Bridge

The bridge discussed in this section is a cable-stayed bridge with a total span of 180-meters

and a width of 5.25-meters (Figure 5.1). The bridge connects a boat race stadium and a

bus terminal. When large crowds of people cross the bridge, it has shown both vertical and

lateral vibrations. Lateral vibrations with amplitudes up to 1-cm were observed, and the

horizontal amplitudes of some of the cables were found to be up to 30-cm. An interesting

point to note is that the vibration of the bridge did not occur instantaneously. It took some

time for the vibration to build up to a steady state after which it lasted a few minutes.

It was noted that different cables vibrated at different times at different congestion levels.

This was a result of changes in cable tensions with pedestrian loading so that different

cables were tuned to the lateral girder motion at different loading levels. The first three

natural frequencies of the vertical modes of the bridge were 0.7 Hz, 1.4 Hz and 2.0 Hz; and

the first lateral mode had a natural frequency of 0.9 Hz.
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Figure 5.1: A pedestrian cable-stayed bridge (a) side plan; (b) section of steel box girder
[7]

A model using forced excitation due to human walking explains why the lateral motion of

the bridge occurred specially since its first lateral frequency of vibration is close to the

lateral swaying frequency of human walking. However, this simple model is unable to

predict the large amplitudes of motion that were observed on this bridge. The model

described in Chapter 2, which includes human synchronization with the bridge vibration

causing a resonance effect, is able to explain the 1-cm vibration amplitude of the girder.

The gradual increase in amplitude can be explained as follows. Initially a small lateral

motion is induced due to the lateral motion of pedestrians in a random manner. This small

bridge motion causes some of the pedestrians to start walking in step with the bridge

motion. This results in an increase in the lateral force induced by pedestrians and hence

increases the amplitude of bridge vibration which in turn causes more pedestrians to get in

step with the bridge motion. This way the amplitude gradually builds up. However, it

does not keep increasing to infinity but reaches a steady state because of the adaptive

nature of humans [7].
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The vibration problem was controlled by the installation of a large number of small tuned

liquid dampers inside the bridge box girder.

An Angular Arch Bridge

A footbridge consisting of an S-shaped continuous girder suspended from an angular arch

is shown in Figure 5.2. This is a steel footbridge, which was excited to strong lateral

vibrations with a frequency of approximately 1.1 Hz [2]. This structure consists of several

spans with the intermediate supports of the girder being hinged bearings. The first three

mode shapes of the vibrations can be seen in Figure 5.3(a). The natural frequency of the

lowest lateral mode of this bridge was 1.1 Hz. Since a person sways laterally at half the

stepping rate, this mode was excited and resonance took place. In addition to this,

pedestrian synchronization to the bridge vibration also occurred amplifying the magnitude

of vibrations. In this case the bridge was retrofitted with tuned vibration absorbers that

opposed the lateral motion.

elevotion

Figure 5.2: Footbridge with Lateral Vibrations at 1.1 Hz: Elevation, Plan, and Cross
Section
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Figure 5.3 (a) First three Mode Shapes of Lateral Vibration; (b) Transfer Function for
Lateral Displacement at Midspan [2]

The Millenium Bridge

Vibration Problem

Movements of unexpected amplitudes were experienced on London's Millennium Bridge

when it opened on 10 June 2000. The bridge was subsequently closed because of the small

perceived risk to pedestrians of losing balance and coming to harm in crowded situations.

The Millennium Bridge links the City of London at St. Paul's Cathedral with the new Tate

Gallery at Bankside. It is a 330-m long, 4-m wide suspension bridge with a center span of

144-m. The behavior of the Millennium Bridge is dominated by the behavior of the cables

that carry a total tension force of some 2000 tons. The lateral vibration experienced on the

Millennium Bridge occurs because some of the lateral natural modes of vibration are

similar in frequency to the sidesway component of pedestrian footsteps on the bridge

(between 0.5 Hz and 1.0 Hz).
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Figure 5.4: The Millennium Bridge in London

The bridge was open from Saturday 10 June to Monday 12 June. An estimated 80 000 -

100 000 people crossed on the opening Saturday with about 2000 people at some points

during this time period. When the bridge was crowded, the south and center spans

underwent lateral vibrations large enough to cause pedestrians to stop walking or to hold

onto the balustrades to regain their balance. The south span showed a combination of

horizontal and torsional oscillations while the center span showed mainly horizontal

oscillations. The south span moved about 50-mm and the center span moved up to 70-mm

with frequencies of 0.77-Hz and 0.95-Hz respectively. A loading of 200 people on the

bridge was sufficient to cause motion in the center span. The north span however, showed

no substantial motion.

Due to concern for the safety of individuals the number of people present on the bridge

was controlled from noon onwards on the day of its opening. This was only a

serviceability problem. There was never any danger of structural damage.
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Investigation into Cause of Vibrations

Once the bridge was closed on June 12, the design engineers -Arup - began to investigate

various different options to mitigate the vibration problem. Extensive research, testing and

computer simulation was carried out by the engineers. The investigation took into

consideration practicality, appearance, cost, and maintenance requirements when

proposing the final solution.

The first step in the investigation was to check the assumptions made in the original

design. In order to do this, bridge behavior had to be studied by monitoring its dynamic

characteristics. These tests were carried out between 15 June and 7 July. The instruments

placed on the bridge were used to record bridge motion resulting from forces exerted by

Mechanical shakers. The effect of weather also needed to be checked and hence a small

weather station was set up to record wind speed and changes in temperature and their

effects on the bridge behavior. The test results were compared to the bridge behavior

predicted by the original model. This proved that the bridge behaved as expected under

loadings that had been taken into consideration during the design process. Hence it was

concluded that forces that had not been considered in the original design caused the lateral

vibrations of the bridge.

The dynamic forces identified as needing further research were wind effects and pedestrian

loading. Investigation into the dynamic effect of wind loading during opening weekend

confirmed that it could not have been the cause for the excessive deflections and

vibrations. This left the investigators with only one more cause to look into - pedestrian

loading.

It had been noticed that the crowd of pedestrians was walking in time with the motion of

the bridge during the opening weekend. Once again the original design assumptions were

checked and it was concluded that the bridge had been designed following all the

requirements specified by the UK bridge design code as well as other overseas codes and

non-statutory documents. Since the UK Bridge codes only required vertical excitation to
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be considered in bridge design, all the critical vertical loads were studied. In addition to

this the recommended loading was increased by 33% as an additional safety factor. The

design also took into consideration vandal loading.

Hence research was conducted into the design loadings used for bridge design and their

adequacy. As mentioned earlier, it was noticed during opening day that the crowd tended

to walk in step with the motion of the bridge. This was noticed from video footage and

confirmed later on with experimental evidence. In crowds, individuals started walking in

step with each other. The summation and synchronization of the forces induced by each

individual causes the bridge to also sway in rhythm with the crowd when the frequencies

of the crowd imposed lateral loading are equal to any of the natural lateral frequencies of

the bridge. Hence a build up situation takes place, where a small group of people begin to

walk in step and cause small motions of the bridge. This results in more people falling into

step with these motions hence increasing the applied forces which in turn increases the

swaying motion of the bridge.

Redefining Bridge Design Loading

Next, an extensive research program was carried out to study how people walk in crowded

situations i.e. the magnitude of force exerted by pedestrian footfalls in the lateral direction

as well as typical frequencies. The research included a series of laboratory tests at the

Institute of Sound and Vibration Research (ISVR) at the University of Southampton, and

Imperial College, London. All these places conducted experiments on how individuals

walk on vibrating platforms. By controlling the motion of the platform it is possible to

monitor human response to different types and magnitudes of platform vibrations.

A field test was also carried out on a small footbridge in Scotland. This bridge was used to

test if walking in the open air (i.e outside the confines of a laboratory) resulted in any

changes in human response to vibration or "lock-in" with bridge motion. All these tests

were used to determine input forces that the Millennium Bridge had to be retrofitted to

carry. These tests led to the conclusion that crowd responses are affected by surroundings.
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Hence it was decided that the Millennium Bridge itself would be tested with crowd

loading. This type of testing would yield very accurate input loadings for the bridge. The

experiment involved 100 people walking along the bridge at different speeds. The crowd

density was also varied. In addition to this, crowd reaction to bridge motion induced by

means of mechanical shakers was also recorded. Video cameras were used to record the

human responses. In addition to this foot switches were also used. The response of the

bridge was measured as well during these tests. Hence a highly accurate "crowd loading"

model was developed. This model was used to test if the retrofitting suggested would

restrict bridge motions to acceptable levels.

Bridge Retrofit Options

Three Options were studied:

1. Increase bridge stiffness

The frequency of the bridge is dependent on the square root of its stiffness i.e.

=k (12)

where f - frequency

k - stiffness

m - mass

In order to avoid the bridge and pedestrian frequencies matching, the natural

frequencies of the bridge would need to be increased from 0.5 Hz to around 1.5 Hz (i.e.

tripled). To do this, the lateral stiffness of the bridge would need to be increased by a

factor of nine. Only adding large structural elements that would completely change the

unique and slender nature of the bridge could provide such a large increase in stiffness.

Adding bracing in the bridge deck could do this. However this type of retrofit resulted

in the torsional vibration modes becoming controlling factors. Adding tuned mass

dampers, which would further increase the bridge mass, could control these torsional

modes. Not only would the increase in mass affect the aesthetics of the bridge but

could also affect the structural integrity of the bridge since the superstructure and

substructure were designed for the original lightweight bridge. In addition to these two
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major disadvantages, stiffening the bridge would also be an expensive operation. Due

to these factors, Arup concluded that this type of retrofitting would not be the optimal

solution.

2. Bridge damping

Reduce dynamic motion by increasing the energy absorbed by the bridge in each cycle

of vibration. A number of active and passive damping systems were studied. Active

dampers act by 'reacting' to the motion of the bridge and 'adjusting' the level of

damping induced accordingly. This involved monitoring the bridge motion and

computerizing this information in order to form a feedback system that would control

the amount of damping provided. Even though extremely efficient, active control

would be an extremely expensive option and was thus eliminated. Hence Arup

concentrated on Passive systems which do not involve feedback systems but react

directly to bridge motion. It was decided that a combination of viscous dampers and

tuned mass dampers would provide the optimal cost-efficient solution. Viscous

dampers act by absorbing energy. The damping provided by viscous dampers is

depended on the speed of motion since they act by compressing and decompressing

fluids. The resistance of the fluids provides the damping mechanism. Tuned mass

dampers use their inertia to resist certain motions. The tmd's are used to stop the

structure from vibrating at certain predetermined frequencies.

3. Restrict bridge usage

The last option considered was to either restrict the number of pedestrians on the

bridge at a time or to interrupt their walking patterns by placing various obstructions

along the bridge such as street furniture. This option was not considered feasible

since it would defeat the entire purpose of the bridge.

The final design for retrofitting included a combination of stiffening, viscous dampers and

tuned mass dampers. Additional stiffening would be provided by means of steel bracing.

The viscous dampers would be attached between the existing structure and the steel
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bracing. The steel bracing acted also to transmit bridge motion to the dampers from the

deck. Most of the viscous dampers were placed under the deck while some of them were

placed between the deck and the river piers. Two pairs of struts and dampers under the

south span extended significantly below the bridge to be supported by concrete bases next

to the central pedestrian ramp. The viscous dampers were designed to provide mostly

lateral vibration control. However some of the dampers were also designed to control

vertical vibration and vibrations at inclinations.

The tuned mass dampers were primarily added to provide further vertical vibration control.

Four tuned mass dampers will be placed in the center span to control the first lateral mode

of vibration. These tmd's will also be fitted under the deck.
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6. An Analysis

An analytical and finite element analysis was carried out on a beam model of a bridge.

The dimensions used are those of the deck of the Pforzheim 11 bridge across the River Enz

at Pforzheim built for the city's 1992 Landesgartenschuau (LGS). This is also a

suspension bridge with a span of approximately 270-feet and deck width of 8-feet (Figure

6.1). The Pforzheim 11 has masts that lean outwards. This was done for the visual effect

and to simplify the anchorage of the hanger cables to the deck. The bridge was tested with

a group of pedestrians and showed build-up of lateral vibrations. This vibration was

observed again when the bridge was opened.

Figure 6.1: The Pforzheim 11 Bridge over the River Enz. A back-anchored suspension
bridge

One Dimensional Analysis
Analytical Results

From the first eight roots of Equation 3.15 for the beam under consideration,
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L = 270-feet

E = 4176000-kips/ft2

I = bh3/12 = 0.525X8 3/12 = 22.4 ft4

= pbh = 0.49X0.525 X 8 = 2.058 kips/ft3

c0i = 2.069 radls = 0.329 Hz

(02 = 5.703 rad/s = 0.908 Hz

(03 = 11.182 radls = 1.78 Hz

(04 = 18.483 radls = 2.942 Hz

os = 27.612 radls = 4.395 Hz

(06 = 38.564 radls = 6.138 Hz

o7 = 51.342 rad/s = 16.343 Hz

c0 = 65.946 radls = 20.991 Hz

Finite Element Results

The bridge was modeled as a beam with a width of 8-feet and height of 0.525-feet. During

the analysis the degrees of freedom perpendicular to the lateral vibration of the beam were

taken out so that only in-plane vibration could be studied. The mode superposition method

was used in ADINA (finite element analysis software) since only a certain number of

modes and their corresponding frequencies were required.

In the first step, the beam was divided into two subdivisions with two nodes per division.

This produced a three-node model that was able to predict only the first three eigenvalues

and eigenvectors. The results as shown in Table 6.1 were quite inaccurate.

Table 6.1: Modal Frequencies for finite element analysis of beam with 3 nodes
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Mode Frequency (rad/s)
Number Exact FEM

1 2.069 0.2659
2 5.703 0.4975
3 11.1813 1.2186



This three-node model is not able to display the second or third mode shape since there are

not enough nodes to model this vector.

MODE 1. F 0.3272
TIME 0.000

MODE 2. F 0.9079- -
TI[ME 0.000 ----.

MODE 3,F 1T97
TIME 0.000:.*-' N

MODE 4. F 3.390
TIME 0.000

Figure 6.2: Mode shapes for finite element analysis of beam with 5 nodes

Table 6.2: Results for finite element analysis of beam

Mode Exact Mesh Density
Number Solution 11 nodes 21 nodes 31 nodes 41 nodes 51 nodes 101 nodes

1 2.0691 2.0530 2.0530 2.0530 2.0530 2.0530 2.0529
2 5.7036 5.6536 5.6522 5.6521 5.6521 5.6521 5.6521
3 11.1813 11.0702 11.0600 11.0594 11.0593 11.0593 11.0593
4 18.4833 18.2819 18.2369 18.2345 18.2341 18.2339 18.2339
5 27.6108 27.3033 27.1587 27.1505 27.1491 27.1487 27.1484
6 33.9819 33.8773 33.8580 33.8512 33.8481 33.8439
7 38.5639 38.1702 37.7951 37.7729 37.7692 37.7681 37.7675
8 51.3424 50.9334 50.1137 50.0623 50.0534 50.0510 50.0494
9 65.9465 65.5682 64.0810 63.9741 63.9553 63.9503 63.9471
10 1 68.8034 67.9640 67.8088 67.7547 67.7296 67.6963
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Figure 6.3: Mode shapes for finite element analysis of beam with 51 nodes

Similarly the 5-node model yields 5 modal frequencies and mode shapes (Figure 6.2).
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Increasing the number of nodes in the beam results in more accurate results with a larger

number of modes included in the solution. Table 6.2 summarizes the results for all the

different mesh densities used. One thing to be noted from the FEM results is that the

frequencies obtained for Modes 6 and 10 were not part of the exact solution. This point

will be addressed and explained in the section that discusses FEM analysis in 2-D.

The first ten mode shapes are obtained using higher mesh densities (Figure 6.3). All these

shapes are formed as expected. Once again note that Mode Shape 6 and 10 do not display

any variation in lateral displacement along the length of the beam.

Two-Dimensional Analysis

Finite Element Results

Analysis was started out with a small number of elements after which the mesh density

was gradually increased to obtain more accurate results. The mode superposition method

was used to find the natural frequencies of vibrations and corresponding mode shapes for

the plate. The first run was carried out on a model with 2 subdivisions of 8-node elements.

The resulting frequencies were nowhere near the exact solution obtained for the beam. The

mode shapes could not be represented accurately either.

With higher mesh densities a more accurate representation of the mode shapes was

obtained (Figure 6.4). It is seen that for the higher modes lateral motion of the edge nodes

is different from that of the central nodes. Hence the deck goes through contraction and

expansion cycles at these higher modes. The Mode 6 and Mode 10 motion also becomes

clearer with the plate element. These modes represent motion in the longitudinal directions

- not the transverse direction. Hence this motion was not captured by the analytical
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Figure 6.4: Mode shapes for finite element analysis of plate (128 by 4 subdivisions, 8-node
elements)
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calculations performed for the beam element since they looked at motion only in one

direction.

Table 6.3: Results for finite element analysis of plate

Mode Mesh Density - 8 Node Elements
Number 2by2 4by2 8by2 16by2 32by2 64by2 128by2

1 9.8789 2.3321 2.1040 2.0657 2.0601 2.0591 2.0587
2 25.9026 7.5579 5.8973 5.6685 5.6396 5.6357 5.6346
3 34.3196 28.1165 11.8287 11.0467 10.9554 10.9447 10.9424
4 68.8555 34.0662 20.1534 18.1291 17.9054 17.8817 17.8773
5 73.2148 38.1159 31.2715 26.8601 26.3937 26.3473 26.3397
6 124.8111 68.4025 34.0115 33.9914 33.9837 33.9814 33.9803
7 743.9480 78.5775 45.6301 37.1836 36.3132 36.2302 36.2180
8 819.6729 104.0043 68.0419 49.0514 47.5530 47.4144 47.3958
9 825.8367 129.8910 73.8620 62.4295 60.0028 59.7836 59.7561
10 1174.2834 137.2468 81.2190 67.9816 67.9646 67.9596 67.9577

The results for the plate model are summarized in Table 6.3. This method yields slightly

more accurate results when compared to the beam model. It certainly provides better

understanding of the mode shapes when compared to the one-dimensional beam analysis.

Discussion of Results
The beam model is an accurate enough representation of the bridge deck and can be used

effectively to study the various dynamics of the bridge. However, the plate model gives a

more accurate representation of mode shapes. Mesh densities of 21 nodes will yield

sufficiently accurate results for the beam model and a 32 by 2 mesh using 8 node elements

yields accurate results for the plate model. The frequency of vibration of the first two

modes are 0.329 and 0.908 Hz which are close to or within the frequency range that may

be excited by the lateral motion of walking pedestrians. However, this model has not

accounted for the contribution of the other structural element of the bridge to its stiffness.

Hence, it obviously underestimates the bridge stiffness and provides a low estimate of the

natural bridge frequencies. Including the cables and the pylons into the bridge model will

increase the stiffness in the lateral direction, and hence increase the natural frequencies.

Taking into consideration the results obtained for the beam and plate models, it is highly

unlikely that the frequencies will increase sufficiently to fall out of the frequency range
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that can be excited by humans. Most likely the first mode will stay within a range that

could be excited by pedestrian motion.
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7. Conclusion

Engineering is taking the art of pedestrian bridge design to new limits, as bridges become

longer and more slender. The current trend to produce sleek structures is resulting in the

appearance of bridge characteristics that were not known to exist before. One such

property is the human synchronization with the lateral motion of the bridge. For a number

of years vertical deflections of footbridges have been known to cause discomfort in

pedestrians and have therefore been kept under certain predetermined levels. However, the

lateral sway of bridges, which occurs in long and slender structures, is a relatively new

phenomenon. Very little research has been carried out to study this problem, nor is it

addressed in bridge design codes.

Quite a few bridges have shown this type of motion over the past few years. This problem

does not seem to be dependent upon the type of bridge under consideration, and hence has

been observed in arch bridges, cable-stayed bridges, and suspension bridges. The primary

characteristic of a bridge that makes it susceptible to this problem is the natural frequency

of the bridge being close to 1-Hz.

Pedestrians have an average walking rate of 2-Hz. While walking, people tend to sway at

half the walking rate laterally i.e. 1-Hz. If a large enough crowd of people is using the

bridge at the same time, it is quite likely that some of the pedestrians will be walking in

phase with each other at the natural frequency of the bridge. This exerts a force on the

structure, which causes it to vibrate. The next stage in this excitation process is what

makes it different from vertical vibration. Once the bridge is set in motion, more

pedestrians will begin to walk in step with the vibration of the bridge - this is a normal

human reaction in an attempt to steady oneself. This results in the pedestrian force on the

bridge becoming larger and hence causing resonance. This is how the large amplitude

vibrations result.
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Now that engineers are aware of this possible problem with footbridges, the easiest method

of avoiding it is to try and keep the natural frequencies of the bridge at levels greater than

1-Hz. Designing structures that are stiff both laterally and vertically does this. If this is

not possible, and the bridge does end up having a critical frequency, it is also possible to

add external damping to the structure by means of viscous or tuned mass dampers, which

will prevent the build up in amplitude of the vibrations. Several bridges have been

retrofitted using this method successfully. Active damping systems may also be

implemented to provide resistance against the lateral swaying. However, it has not been

implemented yet since it happens to be the expensive option. It certainly seems likely that

this may turn out to be the most optimum solution if the active system is implemented into

the bridge design from the initial stages itself and is used to mitigate not only the lateral

vibration problems but is also used to fulfill other serviceability requirements.

The large lateral vibrations are caused by human 'reaction', which could be considered

highly subjective in nature. Some studies have shown that surroundings influence this

human reaction to vibration. This necessitates adequate testing of a pedestrian bridge after

construction. Testing is especially necessary if TMDs are being used since their

performance is highly dependent on accurate tuning.

Finally, it is absolutely essential that further in-depth research be carried out on this topic

to provide basic design guidelines for engineers. It is also necessary to include

serviceability requirements that address the lateral stability of a pedestrian bridge in bridge

design codes.
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Appendix

A.1 Dynamic Forces
Table A. 1: Representative types of activities and their applicability to different actual

activities [1]
Representative types of activity Range of Applicability

Designation Definition Design Actual activities Activity
activity rate (Hz)

rate (Hz)

"walking" walking with 1.6 to 2.4 . slow walking -1.7
continuous ground (ambling)
contact normal walking -2.0

. fast, brisk walking -2.3
"running" running with 2.0 to 3.5 . slow running (jog) -2.1

discontinuous ground . normal running ~2.5
*contact fast running >3.0

Table A.2: Normalized dynamic forces assigned to the representative types of activity
defined in Table 1 [1]

Representative Activity rate Fourier coefficient and phase lag Design

type of activity (Hz) U1 a2 $2 C3  03 density

(person/M2)

"walking" vertical 2.0 0.4 0.1 7r/2 0.1 iT/2 -1

2.4 0.5

forward 2.0 0.2 0.1

U/2 =0.1

lateral 2.0 U1/2= 0.1 U3/ 2 = 0-1

"running" 2 to 3 1.6 0.7 0.2 -
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A.2 Mode Shapes and Frequencies of a Hybrid Arch-Suspension Bridge

Table A.3: Characteristic modal frequencies of the hybrid arch-suspension bridge
Mode Period (s) Frequency (Hz)

1 1.68 0.59

2 1.49 0.67

3 1.22 0.82

4 1.05 0.95

5 0.71 1.41

6 0.70 1.43

7 0.67 1.49

8 0.63 1.59

9 0.61 1.61

Figure A. 1: 5 th Mode, T = .71s
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