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Abstract

A hydrodynamics model for the surf-zone is developed. Although a strong non-linearity is
expected inside the surf-zone, we apply linear wave theory by adopting an equivalent linear
wave which takes non-linearity into account. The model consists of following three elements.
(1) Non-linear wave asymmetry and skewness model, (2) Breaking wave dissipation model and
(3) Undertow model.

Numerical experiments are performed using Nwogu's (1993) Boussinesq equations. Under
the assumption that the energy flux is conserved between theories, several non-linear wave
parameters are extracted from the experiments and expressed in terms of equivalent linear
wave parameters. Using these parameters, we propose a methodology to represent the non-
linear wave height and non-linear bottom orbital velocity profile from the equivalent linear
wave conditions.

We apply Watanabe's (1984) breaking criteria to breaking of the equivalent linear wave.
The breaking wave attenuation model is a modification and combination of Dally et al.'s (1985)
and Watanabe and Dibajnia's (1988) wave energy dissipation models. The value of a parameter,
which was taken as a single constant value by Dally et al. (1985), is determined semi-empirically
to be a function of the bottom slope.

Based on the two-dimensional horizontal momentum equation, the theoretical formulation
of the time-averaged undertow profile is derived. This formula requires evaluation of three
unknown variables. All these variables are expressed by the equivalent linear wave. A new
formulation of a surface roller model is introduced to explain the excess amount of return flow
inside the surf-zone. Our surface roller model also explains the observation that the surface
shear stress, right after breaking, acts in the seaward direction.

The validity of the various models is examined through comparison with experimental data.
Since all the models are based on the equivalent linear wave, they are easy to apply to practical
problems. Moreover, linear wave theory also enables us to extend the models to random wave
conditions.

Thesis Supervisor: Ole S. Madsen
Title: Professor, Civil and Environmental Engineering
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Chapter 1

1. Introduction

1.1 General Remarks

The estimation of beach erosion is one of the most significant concerns to coastal

engineers. It is generally known that beach topography change is caused by the unbalance of the

bottom sediment transport due to waves and currents. One of the simplest models for evaluating

the beach erosion is to predict the equilibrium beach profile. The equilibrium beach profile is

defined as having a local, time-averaged, cross-shore sediment transport of zero and a constant

long-shore sediment transport. By estimating the equilibrium beach profile, we establish the

stationary beach characteristics over long periods of time.

A large number of models for evaluating the equilibrium beach profile have been

proposed. Generally, two different approaches have been taken to establish these models. One is

an empirical approach and the other is a process-based approach. Although an empirical approach

is simple and easy to use, it is difficult to apply to arbitrary conditions such as various waves,

currents and sediment characteristics. A process-based approach is therefore preferable since it
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will allow various conditions to be taken into account.

A process-based model generally consists of two steps. First step is to evaluate wave and

current conditions, which cause sediment transport. The second step is to estimate sediment

transport rates from wave and current conditions and eventually to determine the equilibrium

beach profile. Generally, the process-based model requires the more detailed and accurate

information on wave and current conditions since it is based on the evaluation of physical

processes. Moreover, it is also important to evaluate appropriate wave and current conditions

effectively because the process-based model tends to require more complicated and time-

consuming computations.

The goal of this study is, therefore, to develop wave and current models, which are

sufficiently reliable to form the basis for a process-based equilibrium beach profile model.

1.2 Previous Equilibrium Beach Profile Models

1.2.1 Empirical Model

Of the empirical models for estimating the equilibrium beach profile, the Bruun/Dean

model (Bruun, 1954; Dean, 1977) is the best known. According to this model, the beach profile is

estimated by the form, h oc x', where h is the water depth and x is the distance from the

shoreline toward offshore. From a large number of measured beach profiles, m is empirically

estimated as m=213. If assuming that the depth should be determined by wave dissipation per unit

volume being constant, the value of m, m=2/3, is derived by following procedures. If wave

dissipation per unit surface area is E in water depth, h, then the energy dissipation per unit

volume is
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DD - (1.1)
h

where e is assumed constant. Since the energy dissipation is related to the energy flux and taking

the wave height inside the surf zone to be approximately proportional to the water depth,

D~ d(ECg) d(H 2fh)1 d(h'2)1 hl 2 dhh- d-x - -h h (1.2)
h dc h dhe h dc h dx

Since E is a constant, equation (1.2) results in,

h = Ax 2
/
3  (1.3)

where A is a sediment scale parameter (Dean,199 1). Clearly, this formula is valid only inside the

surf zone.

The most conspicuous advantage of this model is its simplicity although it is not clear

how energy dissipation per unit volume actually moves sediments. In spite of its simplicity, this

model agrees well with numerous beach profiles. Because of its simplicity and applicability to the

prediction of beach profiles, this model has gained considerable recognition.

This empirical model, however, includes a few significant weak points. First, the model

does not consider the different wave conditions although it is generally known that the steeper the

wave, the steeper the beach slope tends to become. Second, this model is applicable only inside

the surf zone because the model assumes that wave heights linearly decrease as water depth

decreases. These points detract from the applicability of the model to the more general estimation

of beach profiles.

According to Inman et al. (1993), the whole beach profile including the area outside the

surf zone is approximately estimated by connecting two different formulas at the breaking point.
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They applied the formula, h=Ax", both inside and outside of the surf zone with little theoretical

background, where A and m are determined by a more complicated empirical methodology. For

example, the averaged values of these parameters are A=1.06 and m=O.36 outside the surf-zone

and A=0. 78 and m=0.41 inside the surf-zone. By using these different parameters inside/outside

the surf-zone, the Inman et al. (1993) model can predict the bar-profile around the breaking point.

However, this model loses the simplicity, which is the strongest advantage of the

empirical models. Besides the determinations of A and m inside/outside the surf-zone, this model

also requires the determination of the origins of these two fitting curves inside/outside the surf-

zone, which directly affects the location of the bar. For example, the height of the origin for the

fitting curve inside the surf-zone is 3-4 m above the still water level and the depth in which the

two curves are switched is 2-4m below the still water level. The ambiguity of the determination

of these origins also makes it difficult to apply this model to more general predictions of

equilibrium beach profiles.

1.2.2 Energetics-based Model

As mentioned above, empirical models have their limitations. In order to improve the

model accuracy and applicability for a variety of local conditions, it is necessary to understand

the mechanism of shore erosion. In this sense, therefore, a process-based model is to be preferred.

The basic idea of the process-based model is, (1) estimating local sediment transport rate

and (2) evaluating the equilibrium beach profile assuming that it should reach its equilibrium

state when local sediment transport rate is close to zero at any point along the profile. The local

sediment transport rate, i,, is denoted as the sum of both bedload transport rate, i., and suspended
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transport rate, i,, i.e.,

i, = b+ is = 0 (1.4)

To estimate the local sediment transport rate, two different approaches, energetics-based and

traction-based, have been taken. The traction-based model is discussed in the next section.

The concept of energetics-based approach is that a portion of fluid energy is expended in

maintaining a sediment transport load. As an example of this approach, Bailard's model(1981),

which is an improved version of Bagnold's model(1963), is well known. In this model the rate of

work done in moving sediments at the speed, u,, should be equal to some fraction of the total

energy dissipation. The resulting bedload transport rate is expressed as,

_: = u, EbQ (1.5)

1 u, Icos# tan -U stan

where q, is the efficiency factor for the bedload, j8 is the slope of the beach, # is the internal angle

of friction, p is the fluid density and p, is the sediment density. The total dissipated energy a is

expressed as

Q= r(t)u(t) = pCdJu@)3 (1.6)

where Cd is the drag coefficient. Similarly, assuming that a fraction of the total amount of energy

dissipated in the stream should be equal to the amount of energy necessary to keep sediment

suspended, Bailard also derived the suspended transport rate in the normal steady flow as,

S= (1.7)
wf /u, -e, sin

where wy is the average sediment fall velocity, E, is the efficiency factor for suspended load. In
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this formula, uniform steady flow in the down-slope direction is assumed for evaluating the

energy dissipation in the stream. Since these formulae include the beach slope, they may be used

to find the equilibrium slope, which gives a total sediment rate of zero.

However, this approach includes a few vital weaknesses. First of all, there is no physical

justification for using Bailard's suspended transport for coastal environments, where oscillatory

flow is supposed to exist, since equation (6) is derived only for normal steady flow. Second,

efficiency factors are hard to quantify and have been shown to fluctuate with varying

hydrodynamic conditions (Nairn and Southgate, 1993). To make matters worse, furthermore,

these efficiency factors have a great influence on the beach profile. Third, this model also has no

threshold for sediment motion, i.e., this model can be used only under strong wave conditions. In

addition to these weaknesses, this model also cannot be applied to coupled wave-current theory.

In this sense, therefore, the energetics-based approach seems to be too limiting.

1.2.3 Traction-based Model

Traction-based models, such as Madsen and Grant(1976) or Madsen(1991), estimate the

sediment transport rate as the total movement of sediment grains, which are induced to move by

friction forces acting on the grains by the moving fluid. Meyer and Madsen(1998) applied this

model to the prediction of equilibrium beach profiles. Their model is mainly based on the

following four concepts.

(a) The local sediment transport rate, i, is denoted as the sum of both bedload transport rate, ib,

and suspended transport rate, i,, (Equation (1.4)).

(b) Sediment transport rate induced by waves on a plane bottom is in the shoreward direction
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because of wave non-linearity.

(c) Bottom slope in the seaward direction cancels the shoreward sediment transport due to

wave non-linearity.

(d) In the surf zone, the offshore flow induced by breaking waves, the undertow, has the effect

of moving suspended sediment in the sea-ward direction and, as a result, produces bar

profile around the breaking point.

Based on these concepts, Meyer and Madsen (1998) suggested two major advantages of

their model compared to energetics-based models. First, there is no empirical efficiency factor.

Second, the mechanics of sediment transport based on a traction model makes it possible to

incorporate wave-current interaction and a sediment movement threshold. Hereafter, the

components of their model are briefly introduced and advantages of the model are also discussed.

(1) Bedload Transport

Madsen(1991) proposes that:

NFd = b -,r,, hence, qsbc= NuV.; = ur. b "' (1.8)
Fd

where N is the number of grains moving per unit bottom area, Fd is the drag force acting on these

moving grains, qsB is bedload transport rate, u,. is terminal sediment grain velocity, V, is the

sediment volume transport per unit width perpendicular to the transport direction, and ;b, T, are

bottom and critical shear stresses, respectively. Figure- 1.1 shows a simple free body diagram of a

sediment grain resting on a sloped bed. Each force shown in the figure is as follows.
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FN = normal force = (p, - p)Vg Cos #

f = frictional force = F. tan 0

F, = gravity force = (p, - p)Vg sin #

where p, and p are the sediment and fluid densities, P is beach slope angle and / is the internal

angle of friction, either static(#,) or kinetic(ok).

FN

Figure- 1.1 Sediment grain on slope

Taking all these forces into account, Madsen(1991) derived a bedload transport rate as,

±8(jrbj-- Tc,) (.-a~r r rqs ={(s -1)pg cosP(tan$ tanf)

0 J r < T r )(1.9)

a= tankk. tanf
tan#, ±tan#

where u. and u., are bottom and critical shear velocity. This formula consists of two equations,

i.e., (+) sign signifies that the orbital velocity is in the shoreward direction (under the crest of the

18
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wave) and a (-) sign in the seaward direction (under the trough of the wave). From the above

equation, sediment transport rates in the down-slope direction become larger than those in the up-

slope direction for the same value of b I. This is because the gravity force acts in the down-

slope direction while wave action creates a shear stress that acts in both shoreward and seaward

directions. Therefore, this formula predicts that sediment transport on a slope would tend to move

in the down-slope direction if fluid oscillations were completely symmetrical. This effect

suggests the existence of an equilibrium beach slope, which is the value of the slope that cancels

shoreward sediment transport induced by nonlinear waves.

(2) Suspended Transport

Inside the surf zone, estimation of suspended load is necessary not only because a strong

undertow exists in order to compensate the shoreward mass transport but also because turbulence,

which enhances the suspension of sediments, becomes stronger due to the effect of breaking

waves. This is the reason why the characteristics of beach profiles inside the surf zone differ from

those outside the surf zone.

Once the sediment concentration profile, C, and the undertow velocity profile, U, are

found, the suspended load can be estimated by the following integration:

qss = (CU)dz (1.10)
ZR

where z is vertical upward axis with z=O at the bottom, Z, is defined as the point near the bed

below which sediment transport is considered to be bedload and above which it is to be

suspended load and h is mean water depth. Madsen and Meyer(1998) find C by solving the
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following equation for the time-invariant concentration distribution with appropriate boundary

conditions.

(Wf C)+ v - =0 (1.11)

where wf is the fall velocity of the sediment and v, is the sediment diffusion coefficient, which is

approximated by the turbulent eddy viscosity. According to Meyer and Madsen(1998), boundary

conditions specified for this equation are defined as follows: (1) no sediment is transported

through the surface and (2) a reference concentration, CR is specified at a reference height above

the bottom, ZR. ZR is defined as proportional to sediment diameter and CR is theoretically

considered to be proportional to the bedload transport rate. In this sense, therefore, this suspended

load model also indicates that beach slope should cancel the sediment transport induced by waves

and currents including undertow and, therefore, equilibrium beach profiles should exist.

(3) Wave and Current Model

Since the model is based on a specific conceptual mechanism of the sediment movement,

we need more detailed wave and current information. As seen in equations (1.8) and (1.9), the

model requires the information of the time variation of bottom shear stress, i.e., orbital bottom

particle velocity, and vertical distribution of time-averaged undertow. Especially for orbital

bottom particle velocity, asymmetric oscillations due to non-linear wave effects must be

estimated appropriately in order to evaluate the shore-ward sediment transport which causes the

formation of an equilibrium beach slope when balanced by the seaward slope effect.

Meyer and Madsen(1998) applied the Stokes and Cnoidal wave theory to evaluate wave
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induced orbital velocity conditions. Since both theories have their limits of validity, they switched

the wave model from Stokes Wave Theory to Cnoidal Wave Theory when the wave shoals and

the Ursell Number exceeds 25. As for breaking waves, they simply defined that breaking wave

height, H, should be proportional to the water depth, h, i.e., H=0.8h. They showed that their

model gives reasonable equilibrium beach slope when both theories are theoretically applicable.

However, they also showed that, in the shallow area such as inside the surf zone, their

equilibrium beach slope becomes too steep because their shoreward sediment transport due to

wave non-linearity is estimated too strong. This is caused by their overestimation of wave

asymmetry.

In order to estimate more accurate equilibrium beach profiles, therefore, it is necessary to

evaluate appropriate wave and current conditions including wave asymmetry profiles. For

practical reasons, we therefore develop an improved wave and current model which is applicable

as input to a traction-based sediment transport model.

1.3 Thesis Organization

The thesis is organized into three sections, Chapters 2, 3 and 4. In Chapter 2, we develop

the wave models. For practical reasons, all models are constructed based on linear wave theory.

First, the relationship between non-linear and an equivalent linear wave is discussed and a wave

asymmetry model and bottom orbital velocity model is developed. Next, breaking wave

dissipation models are developed. The applicability of these models is examined through

comparison of their predictions with measured experimental data.

In Chapter 3, the undertow model is developed. Since the wave model is based on linear
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wave theory, the undertow model is also developed based on linear wave theory. Particular

attention is paid to the effect of surface rollers for which a new theoretical formulation is

proposed. The applicability of the model is also tested through comparison with measured

experimental data.

In Chapter 4, all the models are summarized and further extensions of the model are

discussed.

22



Chapter 2

2 Wave Model

As discussed in the Introduction, wave asymmetry must be accurately evaluated to

estimate sediment transport induced by waves. Since the wave asymmetry is caused by wave

non-linearity, we need to accurately estimate the wave non-linearity.

Meyer and Madsen (1998) estimated the wave asymmetry using both Stokes and Cnoidal

wave theories. They switched the wave theory from Stokes wave to Cnoidal wave when the wave

shoals and the Ursell number exceeds 25 and computed wave conditions in each depth applying

the conservation law of energy flux. It is already confirmed that this methodology gives accurate

wave heights near the breaking point (e.g. Shuto, 1974). However, it is also known that Cnoidal

wave theory breaks down in terms of its prediction of wave non-linearity in orbital velocity when

the wave shoals and H/h, the ratio of wave height to mean water depth, becomes large. According

to Horikawa (1985), the limitation of the Cnoidal wave theory is H/h < 0.4. This implies that we

cannot apply Cnoidal wave theory near the breaking point where H/h is expected to be

considerably larger than 0.4.
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When the wave shoals on a slope, furthermore, it is known that the wave profiles become

saw-tooth type in shape due to the effect of the bottom slope. Cnoidal wave theory cannot

evaluate this feature because the theory assumes constant depth condition. Meyer and Madsen

(1998) also showed that their wave asymmetry was too strong, especially inside the surf-zone,

and resulted in too steep an equilibrium beach profile in the surf-zone.

Based on Cnoidal and Stokes wave theory, Isobe and Horikawa (1981) proposed semi-

empirical formulae to compute some parameters, which represent wave asymmetry and skewness.

They also showed that their parameters, based on Cnoidal and Stokes wave theories, gave too

strong wave asymmetry, especially when the water depth is considerably smaller than the

wavelength. Although they modified their approximate formulae to coincide with experimental

data, their model is not a function of the bottom slope.

To take both wave non-linearity and the effect of the bottom slope into account, a

numerical wave model is useful. Recently, a number of numerical non-linear wave models have

been proposed and the applicability of these models is also confirmed. However, numerical

models still have practical limitations in terms of computation time and boundary problems.

In this study, therefore, we apply linear wave theory to evaluate local wave conditions and

propose a semi-theoretical methodology to determine the wave asymmetry caused by wave non-

linearity for waves climbing a slope.

2.1 Non-Linear Wave Model

As discussed before, our goal is to estimate the asymmetrical profile of the bottom orbital

velocity from the equivalent linear wave conditions. In order to evaluate the saw-tooth type
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profiles as waves shoal, we also need to account for the effect of the bottom slope. To achieve

this goal, we first perform a numerical experiment to evaluate local wave conditions and bottom

velocity characteristics. Throughout this experiment, the relationship between computed wave

height and equivalent linear wave height is also examined, which will be used to develop our

breaking wave dissipation model.

2.1.1 Outline of the Model

Similar to Isobe and Horikawa's (1981) model, we evaluate the following five parameters,

(1) H/IH., (2) T,/T, (3) T1,/T, (4) u/U and (5) U/U.. Here, H is computed wave height, H. is the

equivalent linear wave height, Tc, and T,2 are different wave-crest periods and T is a wave period.

Moreover, u, is maximum bottom orbital velocity, Ub is total "height" of bottom orbital velocity,

which is the difference between maximum and minimum bottom orbital velocity, and Ub. is the

equivalent linear total height of the bottom orbital velocity. The definition of these parameters is

shown in Figure-2. 1. Here, different definition of TI(i.e., T,, and T,2) are necessary to improve the

applicability of our asymmetry model over that of Isobe and Horikawa (1981), who used a single

value to express asymmetry.

As discussed previously, all our parameters should be functions of local wave height,

wave period and bottom slope. For convenience, we use the following three dimensionless

variables to determine our parameters. (A) Deep water wave steepness, HILO, which is converted

from the local wave and depth conditions, (B) the ratio of still water depth to deep water wave

length, h/L,, and (C) bottom slope, tanf#.

A numerical experiment is performed to determine the selected parameters as functions of
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HIL, h/L, and tang. From the numerical result, we develop approximate formulae to evaluate

these wave parameters.

A4

0

0

2.
AK~.

uc

k A

Ub

time
- K 4.

/ T,21

T

Figure-2.1 Asymmetry parameters of the wave orbital velocity

2.1.2 Numerical Experiment

(1) Governing Equations

For the numerical experiment, we apply Nwogu (1993)'s modified Boussinesq equations,

which are as follows.

?, =-{(h+)7} -1 aih 3u, +a2h2(hu).

{ u +blh 2 u +b 2h(hUa)91 =

ai - Z f - , a2 = )+
2 h ) 6 h )

1
2

(2.1)

(2.2)

(2.3)Sb2 = Za
h

Here, za is an arbitrary point on the z-axis between bottom and still water level where the z-axis is
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upward with z=O at the still water level. Nwogu (1993) showed that if one takes za=-0.533h, his

Boussinesq equations give the optimum dispersion relationship that is close to that of small

amplitude linear wave theory. In our application of this numerical model, therefore, we take za=-

0.533h. Moreover, ua is the horizontal particle velocity at z=z. Subscripts x and t denote partial

differentiation where t is time and x is horizontal axis taken positive in the shoreward direction.

Using Za and u,, the horizontal particle velocity at an arbitrary point, u(z), is determined as

u(z)=u+ z Z2 u.+(za-zXhua),. (2.4)

Detailed methodologies of space-discretization and time derivation are discussed in Appendix A.

(2) Conditions

Computation was performed on variable uniform slopes for various deep-water wave

steepnesses, HOILO. Table-2.1 shows all the cases of the computation. Here, HO/LO for each case

was estimated directly from the numerical results of wave conditions near the offshore boundary.

Methodology of this estimation is discussed later. Incident wave conditions, i.e., time variation of

free surface profile and current profile, were obtained by 5th order Stokes Wave Theory (Isobe,

1978) or Stream Function Theory with 19 terms (Dean, 1965).

The geometrical conditions for the computations are shown in Figure-2.2. In order to

introduce stable and accurate incident waves into the system, the constant depth region was set at

the offshore boundary.
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Table-2.1 Numerical experiment cases

Offshore water Incident. wave Incident wave.SLOPE CASE GLSLP AE H/ 0  depth(m) height(m) the ory

Al 0.001 10.0 0.093 STK5th
A2 0.002 10.0 0.186 SFM19
A3 0.005 10.0 0.466 SFM19
A4 0.010 10.0 0.931 SFM19
A5 0.020 15.0 1.824 SFM19

A6_0.050 20.0 4.583 STK5th
BI 0.001 10.0 0.093 STKth
B2 0.002 10.0 0.186 SFM19

0.005 10.0 0.466 SFM19
84 0.010 10.0 0.931 SFM19
BS 0.020 15.0 1.824 SFM19
B6 0.050 20.0 4.583 STK5th
01 0.001 10.0 0.093 STK5th
C2 0.002 10.0 0.186 SFM19
/ 03 0.005 10.0 0.466 SFM19
C4 0.010 10.0 0.931 SFM19
05 0.020 15.0 1.824 SFM19
C6 0.050 20.0 4.583 STK5th
D1 0.001 10.0 0.093 STK5th
D2 0.002 10.0 0.186 SFM19
D3 0.005 10.0 0.466 SFM19
D4 0.010 10.0 0.931 SFM19
D5 0.020 15.0 1.824 SFM19
D6 0.050 20.0 4.583 STK5th
El 0.001 10.0 0.093 STK5th
E2 0.002 10.0 0.186 SFM19
E3 0.005 10.0 0.466 SFM19
E4 0.010 10.0 0.931 SFM19
ES 0.020 15.0 1.824 SFM19
E6 0.050 20.0 4.583 STK5th

*STK5: Stokes 5th order wave theory / SFM19: Stream function of 19th order
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The length of this region is 2.5L,,, where L,, is the incident wave length. The constant

offshore depth, h,,, which is shown in Table-2.1 for each case, was selected so as to keep the

Ursell number less than 10 as well as h,,/L,, less than 0.2. This condition allows us to apply both

Boussinesq equation and Stokes wave theory. Near the onshore boundary, constant depth is again

assumed and a sponge layer was introduced in order to absorb the waves and avoid reflected

waves. The constant depth at the onshore boundary was chosen about 50% larger than the wave

breaking depth, which is determined from incident wave conditions by Goda's (1970) breaking

wave criteria. The starting point of the sponge layer was adjusted as shallow as possible for the

numerical computation keeps stable. Although this depth varies by each case, it was always

deeper than H/O. 6, which slightly exceeds the criteria of the valid use of the Boussinesq equations.

As for the sponge-layer conditions for the numerical computation, we applied the model

proposed by Cruz et al. (1993). Further details are given in Appendix A.

wave

sponge-layer

. . ..... :1.5hh>H/O. 6 ::

___________ . : slope = 1/10, 1/20, 1/35, 1/50, 1/100

2.54,

Figure-2.2 Topography conditions for the computation
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Computation was conducted for sufficiently long periods so that quasi-steady waves were

achieved everywhere. During the computations, all variables such as H, Ub, u,, T, and T 2 are

extracted at each horizontal grid from the beginning point of the uniform slope to the sponge-

layer.

(3) Estimation of H/L,

Since all our wave parameters are determined from the equivalent linear wave condition,

we need to estimate the exact equivalent linear wave conditions for each numerical computation.

Assuming that energy flux should be conserved between this numerical model and linear wave

theory, we estimate linear wave conditions from the results of the numerical experiments. Since

we have no energy dissipation term except for the sponge-layer and negligible reflection is

expected, we simply estimate energy flux near the offshore boundary in the constant depth region

and assume that energy flux should be conserved for all other locations except inside the sponge-

layer region. In the numerical experiment, wave energy flux in the constant depth region, Ef, is

determined as

Ef - fdtf u2dz (2.5)

where C is wave phase velocity, p is fluid density, T is wave period, u is horizontal particle

velocity, h is still water depth, 17 is the free surface displacement and z is the vertical axis positive

upward with z=O at the still water level. Wave phase velocity is determined by C=L/T, where

wavelength, L, is directly estimated from the numerical results by the zero-up-crossing method.

Integration over depth in (2.5) can be done analytically using (2.4).
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-U2dz = f dz{A2 - 2z(hua ),. A + z2 [((hua ) -u.A]+ z'u.(hua ).+ Z(uo y

= A2z _Z2(hua ).A +! Z [((hua )L Y -u=A]+ Iz u .(hua. +! zI(u )]a3 4 20 -h (2.6)
=A2(i+h)-(hua).A(2-h2)+ [((hua))2 -uCA7n+h3)3

+ 1u= (hUa)=(14-h4)+1 (u.)2(7 l+h')
4 20

where

12
A=ua+-z U +za(hUa). (2.7)

Evaluating (2.5) from (2.6), we can estimate the equivalent linear wave condition. The deep

water wave height, HO, is therefore computed from obtained Ef by

1 2 g (2.8)7r~
Ef= -- pgHoy2 = H.= P2 T (2.8)

Through the computation, it was confirmed that actual wave height introduced at the

offshore boundary agreed well with the equivalent linear wave height at the offshore boundary

estimated by linear wave theory from the deep water wave height obtained by (2.8). This is

because the Ursell number is so small that non-linearity is essentially negligible from deep water

to the depth at the offshore boundary.

(4) Results

Figures 2.3 and 2.4 show H/H., the ratio of computed wave height to equivalent linear

wave height as a function of h/L0 and H/LO on each bottom slope. The plotted curves estimated

from the computation are terminated at the beginning point of the sponge layer, which is
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supposed to be close to the limit of validation of our numerical model. For comparison, Figure-

2.4 also shows the variation of H/H. for constant depth conditions computed by 1st order Cnoidal

Wave Theory (Isobe, 1985). Equivalent linear wave height, H., is estimated from deep-water

wave steepness by linear wave theory. Since little reflection is expected in this numerical

experiment, we assume that the linear wave heights should be identical to the equivalent linear

wave heights for each local non-linear wave conditions. In these figures, the dotted lines

represent approximation curves to be discussed later. From the figure, it is found that the effect of

the slope becomes conspicuous when h/L, is small. It is also found that H/H. becomes smaller

when the bottom slope is steeper.

Similarly, Figures 2.5 to 2.11 show T,/T, TIT, u/U and U/Ub. as a function of h/L, and

H/L, on each bottom slope. From these figures, we can see that T,/T, T/T and u/U become

closer to 0.5 and U/U. become closer to unity when H/LO is smaller or h/L, is larger, i.e., wave

non-linearity becomes weaker. In contrast, it is observed that T,/T and TIT become smaller and

u/U becomes larger when the wave non-linearity is expected to be stronger, i.e., H/L, is larger

or h/L, is smaller.

It is also seen that the steeper bottom slope tends to make T,/T, T,/T and u/U closer to

0.5. For example, the value of u/U when H/LO=0.01 and h/LO=0.01 decreases from 0.62 to 0.52

when the bottom slope increases from 0.01 to 0.1 (see Figure-2.7 and 2.11). Furthermore, it is

interesting to note that the variation of U/U. is much less than that of H/H.. This observation

implies that we can estimate bottom orbital velocity "height" within a relatively small error only

by linear wave theory from the equivalent linear wave heights.
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2.1.3 Wave Shoaling

From the results of the numerical computation, approximation curves for H/H. are

determined to be

H/H. = 1.0 +d, exp[-d 2 (h/Lo)]

d, =(2.2+2tanh(55tan#l))tanh[(1.6(tanf)-" +25 HO/LO)]

+30(tanJ3)0 (H0/Lo) when tan#>0 (2.9)

d2 =9.5(H 0 /LO)~ 5 +10

d, =2.2

d2 =9.5(H,/ L )~ +10 when tanf# 0

Figures 2.3 and 2.4 show the approximation curves estimated by (2.9) as dotted lines.

Approximation curves are extended from the end of the numerical computation to the breaking

point determined by Goda's (1970) breaking criteria. From arbitrary linear wave conditions, we

can determine the deepwater wave height and wavelength, and we can then estimate actual non-

linear wave height from the approximation formula (2.9). If the bottom slope is negative, i.e.,

depth is increasing in the shoreward direction, we apply the no-slope condition.

2.1.4 Wave Asymmetry Parameters

Similarly, from the result of the numerical computation, we determined the following

approximate formulae for three wave asymmetry parameters and the orbital velocities as
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functions of HIL, h/L and tanf#.

Tel /T = 0.5 -a, exp[- a2(h/Lo)]

al = 33+110exp[-30tan#](H0 /LO)+0.69exp[-8.7tan P] (2.10)

a2 = 40+60exp[-30tanf#]+0.3(H/LO)~8

T2/T = 0.5 -a, exp[-a 2(h/LO)]

al =0.5+14(H/L)+(0.1-0.4tanh(10tan3))exp[-300(H/L)] (2.11)

a2 = 30+ 0.3(H /LO )

UC/Ub =0.5+b, exp[- b2(h/LO)]

b =exp[-exp{-1.3-3.6exp(-30tan#)}]
(2.12)

xexp{(-0.3-0.25exp(-10tan#)).ln(H 0 /Lo )}

b2= exp[2.4 -0.5exp{-45tan }].(H 0 /L0 )(0.1+0.24ex -anP

Ub /Ub* = 1.0 - c, exp [-c2(h/L )]+c3 exp[-c 4(h/L)]-

c = 5.4(HO /L -75

C2= 80(H 0 /LO o1 -90
(2.13)

C3=49{(95+1100exp{-60tan#}XH0 /Lo)Y

xexp[4](95+1100exp{-60tan#}XHO/Lo)]

C4 = -8 -(HO /LO)~0.5

These approximation curves are shown in the Figures 2.5 to 2.11 by the dotted lines and

are extended to the breaking point determined by Goda's (1970) breaking criteria. Within the no

breaking range, these formulae approximate the numerical results sufficiently, which will be

shown later.
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2.1.5 Improved Approximation Model for Bottom Orbital Velocity Profile

Utilizing the asymmetry parameters obtained in the Section 2.1.4, approximate bottom

orbital velocity profiles can be modeled as a combination of four sinusoidal waves. Figure-2.12

illustrates the approximated velocity profile. Each of the four sinusoidal curves is numbered. The

model outline is as follows.

$Ub+

2 3
4

T,=T-2T,+-T
w~~--- P -"q- P-

T

Figure-2.12 Approximation of the bottom orbital velocity profile
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In the figure, each sinusoidal curves is expressed as

1. U = -UtCos -t

2. u = uc sin 7r(t - T_)

3. U =Ub+cOS -(t-T -Tc+) +uC-Ub+

4. u = -u_ sin( (t-To- -2T+) +uc - Ub+
(2T

(0 t 5 T_)

(T_ :5 t:5 T+)

(2.14)
(T_+ T, t +2T+)

(T_+ 2T+ 5 t:5 T )

Here, u, T, T, and T,+ are estimated from the asymmetry parameters from (2.10) to (2.10) as

u =U -uc T_ = T -Tc, -0.5T72
(2.15)

2 T_ = T -0.5T2

Now unknown parameters are ub+ and ub.. Since the sum of ub+ and ub. should be identical with

total "height" of the orbital velocity,

Ub+ +Ub =UC +u, = Ub (2.16)

From the condition that average velocity must be zero,

Ju dt + fu2dt + fu3dt + fu4dt = 0
0 0 0(2.17)

-uT +uCTC+ +-(uC -ub+ )(Tc, +T,_)+Ub+T+ -UbT_ = 0
2

From (2.16) and (2.17), ub+ and ub are determined as

Ub+ =u 1cI- Tq2 + Ut
(1-7r/2)(T-T 1 )) 1-ir/2 (2.18)

U_- = uTc2 utx /
(1-7r/2)(T-Tcj) 1-7r/2
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2.1.6 Model Application

The applicability of our approximation formulae was examined through the comparison

with experimental data presented by Cox et al. (1995) and Cnoidal Wave Theory.

(1) Comparison with Cox et al. (1995) experimental data

Cox et al., (1995) measured the time variance of the free surface and current velocity at

multiple depth points for the regular wave propagating on the uniform slope of 1:35. Detailed

condition of the experiment is to be presented later. From their data, wave height, mean water

depth, wave period and bottom orbital velocity profile are specified. Since measured wave height

is including wave non-linear effect, we first estimate the equivalent linear wave heights from

measured data by (2.9). The estimation must be done numerically. The methodology of this

computation is summarized as follows.

1. For an initial value, take equivalent linear wave height identical to measured wave height,

H, i.e., H.=H.

2. From H., measured mean water depth, h, and the wave period, estimate H/L, and h/L, by

linear wave theory.

3. Substituting HOILO, h/LO and tan# into (2.9), estimate nonlinear wave height, H.

4. Replace H. by following formula, go back to 2 and iterate the same procedure until

computed H becomes sufficiently close to H.

H."e =H.l+ + (2.19)

Approximate velocity profile is then evaluated from the equivalent linear wave conditions by
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approximation formulae, (2.10)-(2.14). Figures 2.13 and 2.14 show the computed velocity profile

with measured data. In the figure, station 1 and 2 are outside the surf zone while stations 3, 4, 5

and 6 are inside the surf zone. Because of the existence of return flow, Measured data are

adjusted by adding a constant value to make the measured average velocity zero. Approximation

profiles agree well with measured data even inside the surf zone.

(2) Comparison with Cnoidal Wave Theory

Although our asymmetry profile model is based on the numerical experiments for uniform

non-zero slope conditions, the applicability for the constant depth condition was also tested

through comparison with Cnoidal 3rd order wave theory (Isobe, 1979). The relationship between

non-linear wave height and linear wave height was determined by the same procedure as previous

application. Figures 2.15 and 2.16 show comparison of velocity profiles estimated by 3rd order

Cnoidal Wave Theory and present model. From the figures, it is found that our model also agrees

well with Cnoidal wave theory.
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2.2 Breaking Wave Dissipation Model

In the Section 2.1, we proposed a semi-theoretical method to evaluate wave

asymmetry and skewness from the local wave conditions based on linear wave theory. In

this sense, our breaking wave model should also be based on linear wave theory and be able

to evaluate local equivalent linear wave conditions accurately.

Generally, a breaking wave model consists of two steps. One is to find the breaking

point and the other is to determine wave attenuation after the waves start to break. Both

steps are to be consistent with our adopted methodology, i.e., to be based on linear wave

theory. Especially for the second step, we need to estimate the attenuation of the equivalent

linear wave height.

As for breaking criteria based on linear wave theory, Watanabe's (1984) breaking

criteria is useful. As a parameter which determines onset of wave breaking, he used u/C,

the ratio of horizontal particle velocity under the wave crest and the wave celerity. Since

u,/C is estimated from linear wave theory, we can determine the breaking point for the

equivalent linear wave conditions. Because his model is based on Goda's (1970) breaking

criteria, moreover, we can expect acceptable accuracy of his model.

As for breaking wave dissipation models based on linear wave theory, some semi-

empirical energy dissipation models have been proposed and used in practice, e.g. Dally et

al. (1985) and Watanabe and Dibajnia (1988). Although the applicability of these models is

already confirmed through the comparison with measured data, each model still has

different problems. Moreover, almost all models are calibrated to match computed linear
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wave height with measured wave height even though actual measured wave heights include

wave non-linearity and therefore are expected to be larger than the equivalent linear wave

height.

In this section, we first review Watanabe's (1984) breaking criteria, which is

adopted in our model. As for the breaking wave dissipation model, we summarize physical

characteristics of breaking waves. We then review previous energy dissipation models and

discuss their advantages and disadvantages and propose a modified breaking wave energy

dissipation model. We extend its application to random waves and examine the validity of

the model by comparing its prediction and measured data.

2.2.1 Watanabe's (1984) Breaking Criteria

Based on Goda's (1970) empirical breaking criteria, Watanabe (1984) presented a

breaking criteria in terms of u,,/C, the ratio of particle horizontal velocity under the wave

crest to the wave celerity. This parameter is estimated by linear wave theory. Procedures for

the estimation are as follows.

1. From Goda's (1970) breaking criteria, find the breaking depth, h,,, for arbitrary

bottom slope, tanf#, and the deep water wave steepness, H/LO.

2. Based on linear wave theory, compute u,/C at the breaking point by following

formula,

uc, _ nhkHb (2.20)C 2 tanh khb
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where ucr is the horizontal particle velocity at the mean water level under the wave

crest and H., is the equivalent linear wave height at the breaking point, which is also

estimated from h, and H/LO by linear wave theory. Note that this H.b is generally

smaller than actual breaking wave height estimated by Goda's (1970) criteria

because waves around the breaking point include considerable non-linearity.

3. Using the obtained results, represent the new breaking criteria, (UC,/C)b, as a function

of hb/LO and tanl.

Figure-2.17 shows Watanabe's breaking criteria obtained in this manner. An

approximation to this criteria is obtained as,

i0.53-0.3exp[-2.5 +5an fexp-45(i -0.J1 (2.21)

One of significant advantages of Watanabe's breaking criteria is that we can predict

the breaking point by application of linear wave theory. By using equation (2.21), we can

determine the breaking limit of (uc,C)b in arbitrary depth. When our u,/C equals this limit,

the wave will break and when it exceeds this limit, we will apply our breaking wave

attenuation model.

From equation (2.21), we can numerically estimate the breaking depth as a function

of bottom slope, tanf#, and the deep water wave steepness, H/L,. Once we determine the

breaking depth, we can also estimate non-linear breaking wave height from our

approximation formula (2.9). Figure-2.18 shows the distribution of hVHO as a function of

H/Lo and the uniform bottom slope. In the figure, solid lines are estimated by Watanabe's

approximation formula (2.21) and circles are read from Goda's (1970) breaking wave
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criteria. As shown in the figure, Watanabe's breaking criteria agrees well with Goda's

(1970) breaking criteria. Similarly, Figure-2.19 shows the distribution of H/hb as a function

of hLo and the uniform bottom slope. In the figure, solid lines are estimated by equation

(2.21) to determine breaking point but equation (2.9) is also used to evaluate non-linear

breaking wave height. Circles plotted in the figure are read from Goda's (1970) breaking

criteria. As seen in the figure, the difference between these models becomes significant

where hILO is less than 0.005 while the error of both models is within 10% where h/LO is

larger than 0.005. On the other hand, our estimations of H/h, which are shown by solid

lines in Figure-2.19, decreases except zero slope condition when h/Lo is decreases and

becomes less than 0.005. The main reason of this phenomenon is that the effect of the

bottom slope, which makes H/H. smaller, becomes non-negligible especially when h/L,

becomes small. In such a shallow water region, the accuracy of Goda's (1970) breaking

criteria is also doubtful because almost all the measured data used by Goda(1970) was in

the range of h/LO > 0.005. This also means that the range of h/LO < 0.005 is of little

importance in terms of practical use of wave breaking criteria. For example, if we have

waves with a period of 8(s), the wave breaking depth for h/L0 =0. 005 is less than 50(cm)

and therefore the breaking wave height is also much less than 50(cm). These values surely

have little importance for coastal engineering. Figure-2.20 shows Goda's (1970) original

breaking criteria with measured data for tan#=1/30. From the figure, we can also see that

measured H/h, values vary in the range of 20% and our model is sufficiently within this

range.
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One of the advantages of our model is that our bottom orbital velocity is dependent

on linear wave height but not on the non-linear wave height. In this sense, all the

information we need from the breaking criteria is the exact location of breaking point, i.e.,

the breaking depth, hb. From the Figure-2.18, it is seen that we can estimate accurately the

breaking point.
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2.2.2 Physical Characteristics of Breaking Waves

From experimental data, physical characteristics of breaking-wave attenuation can

generally be determined as follows. Here, y is the ratio of wave height to the mean water

depth.

1. Waves are taken to break when they reach a limiting value of H/h=y.

2. When the breaking waves propagate on the constant depth, the ratio of wave height

to the mean water depth, y=H/h, goes to constant value, y=y, ( < yb).

3. Breaking waves recover when y-y,..

4. When the breaking waves propagate on a uniform slope, y also goes to some

constant value, y,, which is a function of the bottom slope, tan#l.

5. The relationship of yb, y, and y, is Yr , <yb. When tan#3=0, y, = y, .

Note that all these observations are based on actual measured data, which includes

wave non-linearity. Utilizing the observations of 1,2 and 3, Dally et al., (1985) developed

the breaking wave energy dissipation model. In their model, however, the effect of the

bottom slope is not considered while they comment that their constant parameter should be

a function of bottom slope. Isobe (1987) developed a breaking wave energy dissipation

model, which took into account the effect of bottom slope by utilizing facts 1, 2, 3 and 4.

Watanabe and Dibajnia (1988) simplified Isobe's (1987) model by utilizing linear long

wave theory. Since the Watanabe and Dibajnia's (1988) model is based on Isobe's (1987)

model, these breaking dissipation models give quite similar results. In their model, breaking

wave heights tend to be larger than experimental values especially when the bottom slope is

59



gentle. Although this problem can be modified by re-evaluating y, and y, their model still

have an inconsistency when tan# approaches zero. The Dally et al. (1985) and the

Watanabe and Dibajnia (1988) models are reviewed hereafter.

2.2.3 Dally et al. (1985) Model

Dally et al. (1985) proposed that the breaking wave energy dissipation rate should

be proportional to the difference of the local energy flux from recovery energy flux on the

local depth, which is the energy flux rate when breaking waves recover after attenuation.

From dimensional analysis, they also assumed that wave energy flux dissipation rate is

inversely proportional to the water depth. Their energy dissipation rate is therefore defined

as

(ECg =- (ECg -(ECg)) (2.22)
ax h

where K is constant, E is wave energy, C, is the group velocity, h is the mean water depth

and x is the horizontal axis in the shore-ward direction. Applying linear long wave theory,

(2.22) is simplified as,

x{2h2 1=-Kh2(r2 _Y,2) (2.23)

Dally et al. (1985) calibrated the value of K and y through comparison of equation (2.23)

with experimental data obtained by Horikawa and Kuo (1966). Through this calibration,

they found that the optimum values of K and y are functions of the bottom slope. For

practical convenience, however, they also showed that the average value of K=0.15 and
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y,=o. 35 gave sufficiently accurate breaking wave dissipation rates on an arbitrary bottom

slope. When the waves break on the constant depth, (2.23) can be solved as

Y = yr2 +(r2 - y,)exp KJ- (2.24)

Here y=y at x=O is specified as a boundary condition. From (2.24), ysurely converges to yr

as x increases but requires an infinite "recovery distance", the distance from breaking point

to recovery point where breaking waves reach y,.

Figure-2.21 shows the distributions of the wave height inside the surf zone on

various uniform slopes, which are computed by this energy dissipation model with

experimental data. In the figure, h' indicates still water depth. It is observed from the figure

that energy dissipation rate is too small for the steeper slope but too large for the gentler

slope. This clearly suggests that we need to determine the value of the constant K as a

function of the bottom slope. The disadvantages of their models are summarized as follows.

1. Calibration was done by matching their estimated wave heights, which are based

on linear long wave theory, with measured wave heights, which unavoidably

include wave non-linearity.

2. If using constant value of K=0.15 and yr=0.35, their model gives too small

dissipation rates on steep bottom slopes.

3. Recovery distance on a constant depth becomes infinite.
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Figure-2.21 Comparison of the Dally et al. (1985) model with measured data
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2.2.4 Watanabe and Dibajnia (1988) Model

For comparison with Dally et al. (1985) model, we review Watanabe and Dibajnia's

(1988) model for y=H/h. At first, they defined the energy dissipation rate as

D(EC, )=A EC,(yy, )m (2.25)

where A is a constant, which is a function of slope to be determined later by comparison

with experimental results. The power of m is attached in order to obtain a finite recovery

distance on the uniform depth, i.e., to remove the third disadvantage of Dally et al.'s (1985)

model. By taking the power of m to be less than unity, the recovery distance becomes finite.

This feature is shown with m=1/2, the value which Watanabe and Dibajnia (1988) used.

Adopting linear long wave theory, and taking m=1/2, (2.25) becomes

5 3

S2h 2 -= 2 h 2 (y - y, (2.26)

When the waves break on the uniform depth, (2.26) is analytically solved as

y = Yrsec2[- x+arccos - (2.27)2 4h r 2.7

Similar to (2.24), y=y at x=O is specified as a boundary condition. From (2.27), ybecomes

y, with finite recovery distance, x = 4h arccos -.

For uniformly sloping bed, (2.26) is represented as

2y-h2 + -y2h2- =-Ayh(y -Y, (2.28)
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Assuming that DY = 0 when y = y, and approximating Dh as a gradient of the still water
ahx

depth, i.e., = -tan #, A is determined from (2.28) as

A 5 tan3 (2.29)
2 y: -y,

Substituting (2.29) into (2.25), energy dissipation model is complete as

EC 5= tan # - (2.30)

The determination of y, and y is left. Based on experimental data(e.g. Maruyama and

Shimizu (1986); and Saeki and Sasaki (1974)), Watanabe and Dibajnia (1988) defined

these values as

Y,. = 0.4yb
(2.31)

Y, =0.8(0.57+5.3tanf3)

where y is y at the breaking point. To obtain these values, they simply assumed that linear

wave height is 80% of actual wave height and simply multiplied measured y, and y,

obtained by Maruyama and Shimizu (1986) and Saeki and Sasaki (1974) by 0.8. Clearly, y,

does not equal to y. when tan# is zero while, from the definition, these values should be

identical for the no slope condition. In their model, moreover, dissipation rate becomes zero

when tan# is zero. These problems can be resolved by modifying the definition of y,. and ,.

Figure-2.22 shows the distributions of the wave height inside the surf zone on various

uniform slopes computed by Watanabe and Dibajnia (1988) model. From the figure, it is

observed that the predicted variation of breaking wave heights with bottom slopes is much
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smaller than suggested by the measured data. In other words, the Watanabe and Dibajnia

(1988) model has too small a slope-dependency. As discussed before, moreover, it is

expected that the Watanabe and Dibajnia (1988) model overestimates breaking wave

heights when the bottom slope is small because their breaking wave dissipation rate

becomes close to zero when the bottom slope approaches to zero. This, eventually, does not

remove the third disadvantage of Dally et al.'s (1985) model. The disadvantages of

Watanabe and Dibajnia's (1983) model are summarized as follows.

1. The model has too small a slope-dependency.

2. The breaking wave dissipation rate becomes too small when the bottom slope is

very small.

3. The breaking wave dissipation rate becomes zero for the uniform depth conditions.

2.2.5 Modified Breaking Wave Dissipation Model

(1) Theoretical Formulation

Similar to Dally et al. (1985), we assume that energy dissipation rate, E,., is

proportional to the difference between local wave energy, E, and recovery wave energy, E,
i.e.,

E jr' E 'E (2.32)

where characteristic time scale, At, is determined as At=h/Cg. Therefore, the energy

dissipation equation due to breaking is expressed as
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Figure-2.22 Comparison of the Watanabe and Dibajnia (1988) model with measured data
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(ECg)=-K (E-Er) (2.33)aJx h

where K is a constant. This expression is identical to original Dally et al.'s (1985) definition

(2.22). The same physical concept of the energy dissipation rate is to be applied later when

developing a surface roller model. Although K is simply taken as a constant value in the

original model, it is possible to determine K as a function of bottom slope by adopting a

similar procedure to that employed by Watanabe and Dibajnia (1988). Assuming linear

long wave theory, equation (2.33) becomes

y 2h -Kh&2 -(y 2.34a)

or

2y-h2 +-y2h2 =-Kh2 (2 -_ ) (2.34b)ax 2 ~x (Y r

Assuming that = 0 when y = y,, K is determined from (2.34b) as
ax

K -5y32 ah (2.35)
2(yS -yr) ax

According to Longuet-Higgins (1964), wave set-up inside the surf zone is determined by

linear long wave theory as

ir= 3 tan (2.36)
ax 8+3 72

Here, it is assumed that y and the bottom slope is constant inside the surf zone. Utilizing

a/i
(2.36), and taking y=y, in (2.35) is expressed as
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=+h =fil3y72-=-tanl+--=-tan#l l- yS (2.37)ax ax 8+3(

From (2.35) and (2.37), K is represented as

K- 20ys 22 (2.38)
8+3y y' -yIr 

.

Substituting (2.38) into (2.32), energy dissipation model is finally determined as

(EC' I ),y( 2 y2
hEC)= -- pghC P y2 Yta(2.39)

2 8+37 Y

If we define y and , referring to Watanabe and Dibajnia's (1986) model as

(2.40)
Y, =a+btan#

it is clear that this modified model is still consistent when tan# is zero by the following

examinations. When tan# is zero, K is estimated from (2.38) and (2.40) as

im K rn20y. tan# lim 20(a+btan#p)2  tan#P
taniP-+o ta P-+o8+3y 2 ys - Yr2 tan -+o 8+3(a+b tan #) 2 (a+btan -)2 -a2 (2.41)

10a 1
8+3a 2 b

Thus, K has some finite value as tan# goes to zero, which means that we still have a certain

wave attenuation rate, while Watanabe and Dibajnia (1988) has zero dissipation rate, for

constant depth conditions. Moreover, if substituting a=0.28 and b=4.0, which are obtained

later, K is estimated from (2.37) as K=0.085. This value is reasonably consistent with K

calibrated by Dally et al. (1985) for the non-slope condition.
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(2) Determination of y, and y,

As mentioned above, y, is a function of the bottom slope and must be identical to y,

when tan# is zero. Since our breaking wave dissipation model is based on linear wave

theory, our y and y, must also be based on equivalent linear wave theory. In order to avoid

the conflicts of two different Ys determined by measured wave height or the equivalent

linear wave height, we put subscripts "m" for actual measured values. In this section, actual

values of y, and y are first evaluated through comparison with various experimental data.

Then, we finally determine y, and y by converting ym and y,,,.

Figure-2.23 shows H/H vs. h'/hb', on the 1/30 uniform slope, as obtained by

Horikawa and Kuo(1966). Here, H is the local wave height inside the surf zone, H is the

wave height at the breaking point, h' is still water depth and hb ' is still water depth at the

breaking point. In the experiments, they observed that the characteristic curves of H/H vs.

h'/hb' are dependent on the bottom slope but hardly dependent on the wave steepness in

deepwater, i.e., wave heights or wave periods. From the figure, we can also observe that

H/Hb and h'/hb' are linearly related to each other near the shoreline, i.e., the relationship of

H/Hb and h'/hgb'is expressed as

H h H-=a-h+ H (2.42)
Hb h' Hb

where a is a constant and H, is the wave height at the still water shoreline. From their

observation, the value of a has little dependency on wave period and breaking wave height

but is a function of tan#l. Table-2.2 shows a on various bottom slopes obtained by

Horikawa and Kuo(1966) and Mizuguchi et al. (1978).
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Table-2.2 a as a function of tan$

tanp a
1/10 0.60(')
1/20 0.59(2)

1/30 0.57(2)
1/65 0.49)
1/80 0.46(2)

(1) Mizuguchi et al. (1978)
(2) Horikawa and Kuo (1966)
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Figure-2.23 H/H vs. h'/h'b on the 1/30 uniform slope
(Horikawa and Kuo, 1966)
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Differentiating (2.42) by horizontal axis, x,

-= a b =-ay tan (2.43)
Dx h' Ixa t

Therefore, ,, is determined from (2.43) as

Ysm = (2.44)

In order to compute (2.44), we need to estimate the wave set-up. Here, we again apply

Longuet-Higgins' (1964) formula (2.36), which is to be valid near the shoreline because y

is observed to be a constant value, i.e., y=, as assumed for determining (2.36). From

equations (2.36) and (2.44), Y, near the still water shoreline is determined as,

- H a(h'+7r) -aybm tan #l 3yY
YSM = - x xy2 =aybm 1+ 8y2 (2.45)

-tanlP+ 32 tan#
8+3Ys2

Therefore

YSM = *. (2.46)
0.75aybm

The ratio of H/h at the initial breaking point, y,,, is evaluated by Goda's (1975) empirical

formula as

Ym = 0.17 [I.-exp( 1.57r L(1+15tan4/ 1(
hb LO (2.47)

This y,, is identical to the actual y at the breaking point. Although (2.36) is based on linear

wave theory and therefore y in (2.36) should be obtained by equivalent linear wave theory,
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we used y,, in stead of y in (2.45). Since wave set-up gradient is generally much smaller

than bottom slope, this should be a reasonable approximation.

Figure-2.24 shows y,,, predicted by equations (2.46) and (2.47) as a function of tanf#.

When computing (2.47), h/LO=0. 01 and 0.05 are used as a general value at a breaking point.

The figure also includes y,,, which is directly measured in the experiments performed by

Cox et al. (1995) and Okayasu et al. (1988, 1990). As seen in the figure, values estimated

from (2.46) and (2.47) are dependent on h/LO. Although this dependency becomes non-

trivial when the bottom slope is steeper, we simply determine &,,, as

y,, =0.35+6.5tanP (2.48)

which is the straight line shown n the Figure-2.24. This implies that Y,, is y,=0.35 which

is identical to y,,, when tanf#=0. This value is consistent with the Dally et al.(1985) model.

(3) Determination of ,, and y,

Our estimation of y,,, and y, is now complete. In order to apply these values to our

breaking wave dissipation model, we need to convert them into the values for the

equivalent linear wave height. If a local depth, actual wave height and wave period are

specified, the equivalent linear wave height can be estimated from equation (2.9) by

following the same procedures discussed in the Section 2.1.6. Therefore, if the actual wave

heights are determined by (2.48) on arbitrary local depth, we can estimate equivalent linear

wave heights, i.e., y, as functions of a wave period and the bottom slope.
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Figure-2.25 shows the converted y vs. h/L, for various slopes estimated in this

manner. From the figure, it is seen that the value of % has little dependency on h/L, and

therefore it is reasonable that we can pick % around h/L,=0.01, where most breaking waves

on the uniform slope are expected to reach %. Figure-2.26 shows converted %, with y,,,

picked from the lines in Figure-2.25 at h/LO=0.01 and h/LO=0.02 as a function of tanf#.

From the Figure-2.26, it is seen that both picked y values at h/LO=0. 01 and 0.02 are close to

each other. % and y, are finally approximated by the straight line shown in the Figure-2.26,

i.e.,

y =0.28+4.0tan 
(2.49)

Y, = 0.28 
(.9

1.0
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0.6

0.4

0.2

0.0
0.4

-- ----- .... - -.- - --------................

............. ................. ...... . .. ---.----------.----- .--------

-- _____ ----- ___ ...... __ ........... ....... __ . _____ . ...... __ ._____ .___ _ ._ _ ... I-----

............0.01 0.02.0.03.004.0.05.0.06?0.0

0.01 0.02 0.03 0.04 0.05 0.06 0.07
h/LO

Figure-2.25 y, vs. h/LO for various bottom slope
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(4) Model Examination

Figure-2.27 shows the distributions of the non-linear wave heights inside the surf

zone on various uniform slopes computed by the present model. In the figure, non-linear

wave heights are estimated from our approximation formula (2.9). The detailed

methodology for numerical application of the model is discussed later in the Section 2.3.

From the figure, it is clear that our breaking dissipation model estimates wave attenuation

more accurately than any of the previous models.

2.2.6 Model Extension for Random Wave Problem

The modified breaking wave dissipation model for regular waves is now complete.

Since our model is entirely based on wave energy, it is possible to extend the model to the

random wave problem by taking averages for all waves. To extend the model for random

wave conditions, the following assumptions are made.

1. The frequency spectrum of the random waves is narrow banded, i.e., the frequency can

be approximated by a single value.

2. The wave heights are Rayleigh distributed. According to Longuet-Higgins (1952), the

probability density function for wave heights is expressed as

p( ) = 24 exp(- 2) (2.50)

where 4 = H/H,,,, and H. is the root-mean-square wave height. Since this assumption

of Rayleigh distribution is based on linear wave theory, these wave heights should be the

equivalent linear wave heights.
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Figure-2.27 Comparison of the present model with measured data
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3. Based on linear wave theory, the average energy of the random waves can be obtained

by averaging the energy of each wave.

From these assumptions, the total energy of the arbitrary random wave is

2p(4)d4= pg p22 ( _ 2 )d= pgH 2  (2.51)P9fr M8 (251
0 0

Assuming that mean water level varies insignificantly from one wave to the next, the wave

set up can be approximated by its averaged value as

8 32 tan# (2.52)
ax 8+ =

where y,,,,=H,,/h. Since energy dissipation is only applied to breaking waves, total energy

dissipation rate is expressed from (2.39) and (2.50) as

A(EC, =f p(4) -1 pghC, l tan P 1 d4 (2.53)
x 2 2+.2,

and

EC, =- 2 ,h2c (2.54)

where b=Hy/'H,,, with H, breaking wave height in arbitrary local depth. From the

assumption, group velocity, C,, can be represented by a single value. Since y is the only

variable that is a function of 4, (2.53) can be easily integrated as

(ECg)= -A p( .(y2,,,2 _,r~=Af 2(y ,,,4 2 _ yr )eXP _2 )dg 2.5ax -y1 =PA24) ~ MI (2.55)
4 4

=-A exp(-4,)((1+ -)y r2)

where
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5pghCgy tan P (2.56)
A 2(8+3ys)(ys-y)(

From (2.55) and (2.56), final form of the breaking dissipation rate for random waves is

therefore written as

(ECg )=- pghCs tan 2 b + (2.57)TX2 J8Ys r

Since Watanabe's (1984) breaking criteria parameter, u,/C, is proportional to linear

wave height, 4 can also be determined by this criteria as

4b= Hb*/Hrms (Ucr,/C)b/A(U,,/C),, (2.58)

From (2.56), averaged dissipation rate of the wave energy flux and therefore

averaged wave energy at an arbitrary point can be estimated numerically. Root-mean-

square of random wave heights and linear significant wave height, H, are determined from

(2.51) as

H T/(2.59)

H, = 1.416H,,,,

More detailed methodologies for the numerical application of this model is

discussed in the next section.
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2.3 Model Application

Theoretical formulation of breaking wave dissipation model for regular waves and

random waves is now complete. In this section, the methodology for the numerical application of

the model is discussed and the applicability of the model is examined by comparing numerical

results with experimental data.

2.3.1 Model Application for Numerical Computation

(1) Regular Waves

Adopting a forward difference scheme, the equation (2.39) for breaking wave energy

dissipation rate is discretized as

(ECg) -(ECg) 5 1 r2 _72pghjCjyi (tan P )i 2 2 (2.60)2s 2 ysrAx 2 (i +37 sl- ,

where h, = h',+i, (tan#),=(h',+-h',)/Ax and h', is still water depth at n=i (n=1,2,...,N). ij is the

mean surface water elevation due to wave set-up/set-down. From (2.54), we can estimate energy

flux at n=i+1 explicitly if we specify all variables at point n=i. Wave height and mean surface

water elevation at n=i+J are then estimated by following procedure.

1. Taking initial value of i,+ as m+1 = .

2. The mean water depth at n=i+J is now estimated as h~j = h'+,1 +i and then the

equivalent linear wave height at n=i+J is estimated from obtained energy flux and group

velocity as

H.j+ = 8(ECg)ie /pgCg,i+ (2.61)
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Note that the group velocity at n=i+J is a function of i.,, which should be determined.

3. The mean surface water elevation due to wave set-up/set-down is determined by linear

wave theory.

di 1 dSx
dx pg(h'+) dx

(2.62)

1 21 + 2kh Adpigacnrlifenewhere the radiation stress S,. is S ,=p1+ Adopting a central difference
8 2 sinh 2kh

scheme, (2.60) is discretized as

-new j -' s -s
+ - _ X -S+' (2 .6 3 )
Ax pg(h'+h'i+ + ) Ax

Here, Se,+, is also a function of !&I. The mean surface water elevation, "iT , is newly

determined from equation (2.63).

4. Taking +I = I', iterate the same procedures until if. converges.

Starting from n=2 with initially given offshore wave conditions at n=J, equivalent linear

wave heights and mean surface water level at n=2,3,...,N are computed one by one. Here,

assuming that the water depth at offshore boundary is deep enough and therefore the wave set-

up/set-down is negligibly small, we take i =0. During the computation, (2.60) is applied when

U / C, > (uc / C)b, where (u, /C)b,, is estimated by Watanabe's breaking criteria, (2.21). Once

waves start to break, breaking wave energy dissipation (2.60) is applied until the ratio of the local

wave height to mean water depth, H., /(h', +i%), becomes less than y,. To make the distance for

wave recovery finite, we determine the recovery point by H, /(h',+!)<1.0y, .
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(2) Random Waves

The basic idea for numerical computation of breaking wave dissipation for random waves

is the same as that for regular waves, which is discussed in the previous section. As for breaking

wave energy dissipation, however, we use (2.57) instead of (2.39). Dicretized formula of (2.57) is

(ECg) -(ECg) 5 (I (+ 42 )y2 _2
=--pghCgy5(tan P)( 1 ep(-4,) 2 " ' (2.64)

Ax 2 8+3(

Mean surface water elevation is determined by (2.63) but the averaged radiation stress S" is

determined based on root-mean-squared wave height, i.e.,

1 2(1 2kh
S =-pgH2 , -+ (2.65)

8 2 sinh2kh

Similarly starting from n=2 with initially given offshore wave conditions at n=], root-mean-

squared wave heights and mean surface water level at n=2,3,...,N are computed one by one. The

significant difference between numerical methodologies for regular waves and random waves is

that wave energy dissipation is always computed by (2.64) for random waves while energy

dissipation is applied only after waves start to break for regular waves.

2.3.2 Model Test

For further examination, other tests are carried out on experimental data presented by Cox

et al. (1995) and Okayasu and Katayama (1992). Table-2.3 shows conditions of all cases. In the

table, h, is offshore water depth, H, is incident wave height and H, is deepwater wave height. The

deepwater wave height, H, is estimated by linear wave theory after converting measured incident

wave height into equivalent linear wave height by Cnoidal wave theory. For the random waves,

significant wave heights and significant wave period are shown in the table.
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Table-2.3 Conditions of the Experiments

CASE beach type slope wave hi(cm) Hi(cm) HO(cm) T(s)
_____ ____ ________ condition _ _ _ _ ____

1 uniform 1:35 regular 40.0 11.50 11.10 2.200
2 uniform 1:20 regular 35.0 7.85 8.60 1.200
3 uniform 1:20 random 35.0 8.28 9.06 1.260
4 bar-type 1:20 random 32.0 5.67 6.12 0.945
5 bar-type 1:20 random 32.0 7.52 8.24 1.140

1 : Cox et al. (1995)
2-5: Okayasu and Katayama (1992)

Figures 2.28 to 2.32 show comparison of computed wave heights and mean water level

with measured data. In the Figures 2.28 (Case 1) and 2.29 (Case 2), the dotted line is the linear

wave height computed directly from the local energy flux and the solid line is the converted non-

linear wave height. In the random wave cases, linear significant wave height is plotted. Since our

breaking wave dissipation model for random waves is based on Rayleigh distribution and the

ratio of non-linear wave height to equivalent linear wave height is different for each wave, this

model cannot estimate significant wave heights including wave non-linearity. It is however found

that our model estimates wave height attenuation fairly well. It is also seen that computed mean

water level coincides well with measured data.
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Figure-2.28 Wave heights and mean water level
(CASE 1 Cox et al., 1995)
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CASE 2 (Okayasu and Katayama, 1992)
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Figure-2.29 Wave heights and mean water level
(CASE 2 Okayasu and Katayama, 1992)
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Figure-2.30 Wave heights and mean water level
(CASE 3 Okayasu and Katayama, 1992)
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Figure-2.31 Wave heights and mean water level
(CASE 4 Okayasu and Katayama, 1992)

87

10

5

0
1.0

0.0

0

0

0

-40

CASE 4 (Okayasu and Katayama, 1992)



CASE 5 (Okayasu and Katayama, 1992)
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Figure-2.32 Wave heights and mean water level
(CASE 5 Okayasu and Katayama, 1992)
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Chapter 3

3 Undertow Model

The wave asymmetry and the breaking wave dissipation models are complete. In this

chapter, an undertow model is developed. In order to keep our models consistent, the undertow

model should also be based on linear wave theory.

3.1 Physical Mechanism of the Undertow

Figure-3.1 illustrates the undertow phenomenon. The undertow is a seaward return flow,

which compensates shoreward mass transport due to propagating waves. Moreover, it is generally

known that the time-averaged return flow, i.e., the undertow, has a vertical variation. This

phenomenon can be explained by the local mismatch of the turbulent shear stress in the water

column, while depth-integrated shoreward force due to waves and wave setup are balanced. In

this sense, the undertow model is developed by formulating shoreward mass transport due to

waves and the vertical distribution of shoreward turbulent shear stress. Theoretical formulation of

the undertow is discussed hereafter.
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Figure-3. 1 Graphical illustration of the undertow

3.2 Theoretical Formulation

Assuming irrotational incompressible flow, the Euler equation for the horizontal direction

in the x-z plane is expressed as follows.

DJu Eau au l ap
-- +u-+w-=(3.1)

where x is a horizontal axis, z is upward with z=O at the still water level, u and w are particle

velocities in x and z directions, respectively. Continuity equation is

-+--=0(3.2)

Combining (3.1) and (3.2), the horizontal momentum equation is expressed as
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+u U2)+ (a )= (3.3)
at ax az p ax

In order to take time-average of (3.3), we express each velocity component as a combination of

periodic wave, undertow and turbulent fluctuation components. Each particle velocity is therefore

expressed as

U=U+U +U (4u = Eu'+U(3.4)
w =i+w'

where i and w- are components of the periodic wave, u' and w' are components of a turbulent

fluctuations and U is time-averaged undertow velocity. Assuming that time variance of turbulent

fluctuation is equally distributed, time-averaged particle velocities, i, W, u2 and uw are

expressed as follows. Here, over bar denotes the time-averaged value.

i=U
W=o

2 ~ 22 -2 (3.5)u =U+ - 2+u 2 +2u =U 2 +u +u
uw wu uw +2wu

where i~ii becomes zero according to linear wave theory and it is therefore reasonably assumed

that contribution of the turbulent components dominate the wave motion inside the surf zone, i.e.,

w << u'w'. Taking time-average of (3.3) after substituting (3.5), the time-averaged momentum

equation is expressed as

U2+V+U'2)+ ') (3.6)
ax a p ax

Moreover, we assume that the undertow velocity is much smaller than the wave velocity

component, i.e., U2 <<7 and turbulent fluctuation components are isotropic with a horizontal

length scale much larger than the vertical length scale, i.e., -a7)<< a(u7w'). Applying these
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assumptions and a turbulent eddy viscosity model, (3.6) is approximated as

+ _2~ '=,, = v, (3.7)

where v, is the turbulent eddy viscosity and r is time-averaged shear stress at arbitrary depth.

Integrating (3.7) within an arbitrary control volume, which is shown in the Figure-3.1, and

applying Gauss's theorem, time-averaged turbulent shear stress at arbitrary depth, r is

determined as follows.

r= 5(p+p 2 )z (3.8)
-z

From the Bernoulli equation, (3.8) is represented by

'r= P - i +(2 _ i- )-g(i-_z) z(3.9)

where 0 is a velocity potential. The right hand side of (3.9) is separated into two parts as

a~ -1 a + I(w~2_p gf-z z-p - + -2f g -zz (3.10)

Utilizing Stokes second order wave theory, integration of (3.10) is performed up to the second

order. Since the first term of the right hand side of (3.10) is 0th order integrand, we keep all terms

up to the second order. On the other hand, only the first order terms are kept for the second term

because the integrand is the first order. From the Stokes wave theory, each value in (3.10) is

expressed as follows.
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O(1) _ a.o cosh k(h'+z)
k sinh k(h'+T)

0(2) 2+a2 cosh k(h'+z) sin 2(kx - ox)-U - a4o 2 t +O(E)
8 sinh4 k(h'+)T)

~(1) =
=0

at
=-a*o2) i +0(3)=_C32 +o(3)

at 4 sinh2 k(h'+!T) 2
a*2 cosh 2 k(h'+z)+0(e4)

2 sinh 2 k(h'+g7)

;=a2 sinh 2 k(h'+z) +0(E4)
2 sinh2 k(h'+n-)

=-Z +(u2+w2)-pgz+o(e)=-p at pgz+o(e 2)at 2 a

7=-g7 +O(e 2 ) at z=qat

Substituting these formulae into (3.10) and keeping terms up to the second order, (3.10) is

rewritten as

ax= p± 2-CiT+gg- z))z+ p (0 -V +z)dz (3.11)
z i

Therefore

D(1 ga2 2ki--z) 1 )_ 12'g(-
= 2  sinh 2kh 2 2 -pg-z) (-h'< z< ) (3.12)

or

2kf ~ ~ 2 + ' a ____

I=x sin 2kh +2 z sinh 2kh agxz (.3

where E = !pgal is the wave energy and h =h'+IT is the mean water depth. In (3.13), the first

2

two terms are shear stresses due to the waves and the last term is due to the wave setup. Figure-

3.2 illustrates the contribution of each shear stress. From (3.13), it is also seen that the shear
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stress varies linearly in z. When z = I1, surface shear stress, r., is estimated from (3.12) as

1 Pa* 1 aE

4 ax 2 Dx (3.14)

When there exists a bottom slope, the water column is subjected a seaward force, F, at z=-h' due

to the weight of water column itself, i.e.,

F = pg(h'+ a-
TX2

3

Setup

+ - -

-3

A

0

A

-A

(3.15)

h Total

0

2T/(aE/x)

Figure-3.2 Vertical distribution of the shear stress
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Combining (3.12) and (3.15), the current bottom shear stress, r,=f(z=-h'), is determined as

a (E( 2kh 1 (h'+r) Dh'
E sinh 2kh +2-pgh + pgh- (3.16)a Dax

=- S- pgh ;iL

where S =E 2kh + I is the radiation stress. Since both ; and a are still unknown
( sinh 2kh 2) ax

variables, we need another definition of c to solve the problem. This procedure is discussed in

the following section. Once r,, is specified, we can evaluate the wave setup from (3.16).

From here, we shift the origin of the z-axis to z=O at the bottom in order to formulate the

undertow profile. From (3.7), (3.13), (3.14) and (3.16), the relationship between undertow

velocity and time-averaged shear stress is simply expressed by , and 'r, as

f= av =(T, - r) +,r (3.17)
az S Ch

According to Stive and Wind (1986), the turbulent eddy viscosity, v,, can be approximated fairly

well as a constant, i.e., independent of z. In this study, therefore, we assume that v, is constant

over depth and integrate equation (3.17) to obtain

U= T z2+ 2 S! z+C (3.18)
2pvth pv,

Here, the integration constant, C, is determined by specifying the total amount of the return flow

rate. Since the volume of the return flow must balance the amount transported shoreward due to

mass transport,

h

UmhJfUdz (3.19)
0
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where U,, is the mean velocity of the return flow. Substituting (3.19) into (3.18), the general

formula for the undertow profile is written in the following form.

U - rs z2 z- +U, (3.20)
pvth 2 6 )pv, 2)

3.3 Determination of Parameters

In order to estimate the undertow profile from (3.20), we need to determine the following

three unknown parameters. (1) depth-averaged return flow velocity, Un, (2) surface shear stress,

;, and (3) bottom current shear stress, rc. In this model, all these parameters are also determined

by linear wave theory. Applicability of the use of linear wave theory for the determination of

these parameters is examined in Appendix B through a comparison with the Stream function

method (Dean, 1965).

3.3.1 Average Return Flow

Applying first order linear wave theory, the free surface elevation, i7, and horizontal

particle velocity, u, are expressed as

=acos0 (3.21)

u=U+ii=U+ao cose (3.22)

where a is wave amplitude, U is steady current velocity, Co is angular frequency, k is wave

number and h is mean water depth. The time-averaged particle velocity, WT, is i = U under the

trough level, i.e., at z < -a. Above the trough level, Eulerian mass transport velocity is expected.
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Since particle velocity is zero above the free surface, the time-averaged particle velocity above

the trough level (z > -a) is expressed as

- 1 1 3.3
U -= (U + UWCos O)dO = (UO,+ uWsin OW) (3.23)

where

cosW= Z (-a:! z! a, 0 6 i7r) (3.24)
a

Figure-3.3 shows the vertical distribution of the time-averaged horizontal particle velocity. From

the figure, it is seen that the time-averaged steady current above the trough level is symmetrical

around the mean water level.

Assuming zero mass transport, depth integration of (3.23) determines return flow velocity,

U, as

fi-(Uw +uwsin w)dz=0
-h a /2 (3.25)

-+Uh= ul-(z/a)dz=- us i _au2
-a 0

Therefore, depth and time-averaged return flow velocity due to wave, U,, is

U =au, _ a2 o) _ E (3.26)
2h 2htanhkh phC

where C is the wave phase velocity and E is the wave energy.

It has been proposed that there will be an increase of mass transport within the surf zone

due to effects of the surface roller. Stive and Wind(1986) proposed an empirical equation to

obtain the return flow velocity.
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U, = - Igh H (3.27)
10 h

The result corresponds closely to the solution of linear wave theory (3.26) when H=0.8h. Since

their empirical equation is based on measured wave heights, wave height in (3.27) should be non-

linear wave heights. Svendsen(1984) presented the return flow velocity as

= -C( (BO +-S2h) (3.28)
S h H 2L

where C is the wave phase velocity, B,=0.08 is a shape factor and S is the area of the roller

estimated to be 0.9H2. Since his model is also calibrated with measured wave heights, non-linear

wave heights should be used for estimation. The second term of (3.28) accounts for a surface

roller effect, which should be added only inside the surf-zone. These models are compared later.

3.3.2 Surface Shear Stress

The surface shear stress due to waves, r,, is also estimated by linear wave theory. As

discussed in the derivation of theoretical undertow profile model, the surface shear stress is

determined by linear wave theory as

1 E (3.29)
2 ax

Similar to the return flow velocity, it is also expected that there will be a greater shear at

the surface of the water inside the surf zone than there would be outside the surf zone.

Svendsen(1984) proposed following semi-empirical equation to obtain the surface shear.
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SSN h H2
6 = + ji2 Lga (3.30)

Here the second term expresses the effect of the surface roller and S is the time-averaged area of

the surface roller. Similar to return flow velocity, non-linear wave heights should be used in

(3.30) since calibration was done with measured wave heights.

3.3.3 Bottom Current Shear Stress

The bottom current shear stress can be determined by introducing wave-current bottom

boundary layer mechanics. According to the combined wave-current boundary layer model

presented by Grant and Madsen(1986), boundary layer flow is determined as

u= Ln --IJ (z ,) (3.31)

where u., is the bottom current shear velocity, u*. is the maximum combined wave-current shear

velocity, K is von Karman's constant (K=0.4), zo is determined as zo=k130 where kN is the

equivalent Nikuradse sand grain roughness and 3c is the thickness of the wave bottom boundary

layer. Here kN is taken as the diameter of the sand grain for rough turbulent flow or as

kN =33/*, for smooth turbulent flow. The bottom current shear stress, r, can be determined

by matching condition of the boundary layer flow velocity (3.31) and the free stream flow

velocity (3.20) at the edge of the wave boundary layer, i.e., at z=&e,,. Substituting u, = Vg /p

into (3.31), r, is estimated from (3.20) and (3.31) by the following formula.
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"' + (32h)

P t - (3.32)lnc )+ I, (h wi

KPU*M Z pv, 3 2h

Since u., and S. are still unknown and these parameters are dependent on 'r, (3.32) must be

solved by numerical iteration. The procedure of this computation is as follows.

According to Madsen(1994), the relationship between u, and u., is expressed as

Um = C u*,, (3.33)

where

C, =(1+2Mpcos $,+, Y 2 , (3.34)

=-- (3.35)
IrwmL U%"

and 0,, is the angle between waves and current, i.e., $,=ir when waves are normally incident on

the parallel beach and the undertow is in the offshore direction. The maximum wave shear

velocity, u.,,, is expressed as

u2", = fU 2,, (3.36)

wherefc, is a wave friction factor and Ub, is the maximum near-bottom orbital velocity. Moreover,

the boundary layer thickness, 3,, is then given by following formula (Madsen and Salles, 1998).

AC = A*" (3.37)

with

A = exp(2.96(C, Ab,,/kN )-07 -1.45) (3.38)
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where A,, =Ub. /co is the maximum bottom excursion amplitude and co is the angular

frequency. As seen in the equation (3.38), 3, is also a function of C., i.e., a function of i,. The

wave friction factor,f., is determined through the following procedures.

1. Assuming rough turbulent flow, estimate a friction factor by the following explicit formula

(Madsen, 1994).

[C. exp[7.02(C Ab./kN078 _-8.82] for 0.2,< (CLAbm/k)< 102

f=- C, exp [5.61(C A,,/kN)1-7.30] for 102 <(CAbm/kN)<104 (3.39)

C, exp [5.50(C, Ab./kN)-0.120 -7.02] for 104 <,(coAbm/kN)< 106

These explicit approximation formulae are based on the exact solution obtained by

Madsen(1994). When Ab,/kN > 106 , the wave friction factor is estimated by solving the

following approximate formula numerically.

1 ±o 1  1 1 CAb
+logio = logio kN -0.17 (3.40)

41f, C', 4 Jfw / C', kN

2. Under the assumption of rough turbulent flow, the maximum wave shear velocity, u.,, is

estimated as

u.,= ub (3.41)

3. Check if our initial assumption of rough turbulent flow is valid by estimating the value of

kNU*w,,/v where v is kinematic viscosity (=10'm 2/s for sea water). If kNuw, /v > 3.3, the

flow is the rough turbulent. If kNu*,, /v < 3.3, the flow is smooth turbulent. Re-estimate a
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friction factor by replacing the equivalent Nikuradse sand grain size by kN =3.3v *m

5. The wave friction factor for the laminar flow is determined as

fC = 2 (3.42)

Comparing this friction factor with the one determined for turbulent flow condition, we

should apply the larger value for our wave friction factor.

All the variables except eddy viscosity are now determined. Evaluation of the eddy

viscosity is discussed later. As noted previously, u.,,, and ; are dependent on each other and

iterative computation is therefore required in order to determine r,, 3, and u.,,,. The iteration

procedures are summarized as follows.

1. As initial value, assume c << Twi and take A = 0.

2. Estimatefw from (3.39)

3. Using present , estimate u.,,, from (3.33) and 6, from (3.37).

4. With u., and S, evaluate ; from (3.32).

5. Evaluate new w"" by (3.35) and compare with previously used R. If there is considerable

difference between these two values, take p=p"e and go back 2 to iterate the same

procedure.
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3.3.4 Eddy viscosity

According to Stive and Wind(1986), the depth-independent eddy viscosity, v,, is

empirically given as

v, =0.0lCh (3.43)

Stive and Wind (1986) showed that this empirical eddy viscosity model gives reasonable

undertow profiles inside the surf zone with their model. As seen in (3.43), however, this model

can not take into account the difference of the wave heights. In other words, (3.43) overestimates

the eddy viscosity when wave height is smaller and underestimate when wave height is larger

since (3.43) is only a function of water depth and wave period. In this study, we therefore

introduce a semi-empirical model based on Prandtl's second hypothesis.

According to Prandtl's second hypothesis, eddy viscosity is determined as

vM eu. - Ui (3.44)

where u,,,,,u,,, is maximum/minimum fluid velocity and f is a thickness of the turbulent flow.

Applying this hypothesis to the undertow problem, the thickness scale can be represented by the

water depth, i.e.,

i~h (3.45)

The scale of the difference of fluid velocity can be represented from (3.20) as

Urn '-u= =U|O - U|, Z= . (r "c (3.46)
2pv,

Substituting (3.45) and (3.46) into (3.44), general expression of our eddy viscosity is given as

v, r = +ckh (3.47)
P
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where k, is an empirical constant and k,=0.3 was used in this study through comparison with

experimental data. For practical convenience, we simply approximate (3.47) as

vt =k, F- rSIIo h (3.48)
P

When the surface shear stress, ;, dominates the bottom current shear stress, r,, as often occurs

inside the surf zone, the eddy viscosity in (3.48) can be determined explicitly because r is

already determined a parameter. Otherwise, numerical iteration is required because both r,, and v,

are now depending on each other. The applicability of this model is examined later.

3.3.5 Examination of parameters

In this section, we examine the applicability of our modeling of return flow velocity,

surface shear stress and turbulent eddy viscosity through comparison with other models and

experimental data obtained by Cox et al. (1995). Experimental conditions are the same as CASE1

presented in Section 2.3.2. In this computation, the return flow velocity, surface shear stress and

turbulent eddy viscosity are estimated from (3.14), (3.29) and (3.48) respectively by using linear

wave heights computed by our wave model. Moreover, the return flow velocities proposed by

Stive and Wind(1986) and by Svendsen (1984), the surface shear stress by Svendsen (1984) and

the turbulent eddy viscosity by Stive and Wind(1986), were estimated from (3.27), (3.28), (3.30)

and (3.43), respectively, by using non-linear wave heights computed by our wave model.

Figure-3.4 shows the comparison of the depth-averaged return flow velocity (3.26),

surface shear stress (3.29) and turbulent eddy viscosity (3.48) computed by present model and

other models with measured data. From the figure, it is seen that return flow velocity increases
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immediately after the wave breaking despite the fact that wave heights start to decrease. The

return flow velocity computed by linear wave theory starts to decrease at the breaking point.

Therefore, the linear wave theory underestimates return flow velocities inside the surf-zone

although its prediction outside the surf-zone is very close to measured data. Stive and Wind's

(1986) model predicts return flow velocities fairly well inside the surf-zone but clearly

overestimates those velocities outside the surf-zone. These results suggest that linear wave theory

should be applicable if waves are not breaking and that different phenomena other than wave

actions should occur inside the surf-zone. Svendsen's (1984) model explains this excess amount

of mass transport inside the surf-zone by introducing the surface roller model. As seen in the

figure, Svendsen's (1984) model surely estimates the increase of return flow velocity inside the

surf-zone. However, his model estimates too large a return flow velocity right after the breaking

point since his model is calibrated to be appropriate only in the inner surf-zone. This also gives a

large mismatch of return flow velocity at the breaking point.

The surface shear stress computed by linear wave theory is smaller than Svendsen's

(1986) model. Since Svendsen's (1984) model is expected to be valid in the inner surf-zone, we

can conclude that linear wave theory underestimates surface shear stress in the inner surf-zone

and therefore, we should also introduce an additional model, which explains this excess shear

stress. Moreover, it is also seen that both models have a peak shoreward surface shear stress right

after the breaking point. This result cannot explain the observed facts, which will be presented

later, that the peak shoreward shear stress occurs inside the surf-zone a certain distance away

from the breaking point and the surface shear stress right after the breaking point tends to act in

the seaward direction.
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Figure-3.4 Computed parameters with measured data

107

Depth-averaged
Linear waveUndertow Velocity Stive&Wind(I 986)

------- ------ ---- ------- ---------- ---------- ---------- I,%- ----- Sven& en(1984) .......... ...
0 Meas. Cox et al. (1995)

....... ......................................................... ................ ... ...... ........ .... ..... ... ..... ... ......... ...... .... .... ................ ...... ............... ..
0

0
. .. ........... .. ..... ......... ....

.$urface Shear Strq §
---------- - ---------------------------------------------- ----- IT ---------------------------------------------------------------------

.......................... .................... .............. .... ........ ...... ........ I ....... ....................... .................. ..................... ........... ......... ..............

........................ ................... . ................ . ............. . ... ......... .... . ......... ..

.. .................. ...................................... ---- ---- ---- --------------- ------------- --------- ---- ---T ---- ----------- ----------- -------------- ------------------ - --

Eddy Viscosity

............................................. .............. ... ........... .............. ......... .... ...... ......... ... ...... .............. ... .......... .... .... ...............

5

0.20

0.15

0. 10
0

0.05

0.00

2A0

10

Z
0

-10

1.0

C4
5N 0.5C)

0 .0 1 1.0 0.5 0.0
h!/Iyb



3.4 Surface Roller Model

In the Section 3.2.5, it was seen that the mass transport rate evaluated by linear wave

theory was too small inside the surf zone while these values agreed fairly well with measured

data outside the surf zone. This obviously suggests that we have an additional phenomenon,

which causes excess mass transport inside the surf zone.

As discussed before, Svendsen(1984) explained this excess amount of mass transport and

the surface shear stress by introducing the effect of the surface roller. His model, however,

estimates too large a surface shear stress in the outer surf-zone because his surface roller model is

empirically developed from experimental data that are representative for in the inner surf zone.

Okayasu et al. (1990) pointed out this disadvantage and developed a new undertow model

with the assumption that dissipated wave energy due to breaking is transferred to both the surface

roller energy and turbulent energy. It is also assumed that dissipated wave energy at an arbitrary

local point is evenly transferred to the turbulent energy through a certain distance, which is

related to the local depth. The surface roller energy is then determined as an integration of the

remaining dissipated wave energy, which is caused by wave breaking but not yet transferred to

turbulent energy. Although their model estimates total volume of the return flow throughout the

surf-zone fairly well, their model still overestimates the surface shear stress near the breaking

point. Since their shear stress model depends only on energy dissipation rate, their surface shear

stress always acts in shoreward direction, which cannot explain the observation that the surface

shear stress near the breaking point tends to act in the seaward direction. This feature is shown

later by the experimental data. Moreover, because of the complexity of their model, it is difficult

to apply this model to random wave conditions.
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Dally and Brown (1995) proposed a model to estimate the area of the surface roller and

the mass transport rate based on similar concepts to those of Okayasu et al. (1990). In their model,

it is assumed that the rate of dissipated turbulent energy is proportional to the amount of surface

roller energy. Although the applicability of their model is proved only for the mass transport rate

under regular wave conditions, it is expected that this concept is also applicable to the surface

shear estimation. Because of the simplicity of this model, it is also expected that we can extend it

to random wave problems.

In this study, therefore, we improve the Dally and Brown's (1995) model and develop a

new surface roller model, which is applicable over the entire surf-zone and also applicable for

random waves.

3.4.1 Theoretical Formulation of the Surface Roller Energy

L

L

Figure-3.5 Sketch of the surface roller
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Figure-3.5 illustrates the surface roller. In the figure, S is the area of the surface roller, L,

is a horizontal length of the surface roller, L is the wavelength. In this model, we assume that a

particle in the surface roller moves horizontally with the phase velocity, C. Assuming that the

thickness of the surface roller, d,, is uniform, i.e., d,=S/L,, time-averaged total energy per unit

area of the surface roller, E,, is determined as

1 1,L S SC
E =-pdC =- - dt=p- (3.49)

T 2T f 2L, 2T
0 0

Here, the potential energy of the surface roller is neglected with the assumption that the surface

roller is uniformly distributed in vertical direction around the mean water level and should have

little potential energy change compared with the change in kinetic energy. Now, we assume that,

from the total breaking wave dissipation energy, only the potential wave energy should be

transferred to the surface roller energy since there should be no way for the surface roller to

obtain kinetic energy which exists in the water column. The surface roller energy should then be

dissipated to turbulent energy gradually. In the linear wave theory, this assumption implies that

only half of the breaking wave dissipation energy is transferred to surface roller energy while the

other half is dissipated separately from the surface roller. Based on these assumptions, energy

flux conservation law leads

!i*(EC,)+ (EC)=D (3.50)
2 x ax

where Db is the dissipation rate per unit area from the surface roller to turbulent energy. Since the

first term of (3.50), which denotes the dissipation rate of the wave energy, is already estimated by

our breaking wave dissipation model, we can estimate surface roller energy once Db is specified.

From the assumption, Db should be a function of surface roller energy. Assuming therefore that
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Db should be proportional to the surface roller energy flux, equation (3.50) is represented as

I(EC,)+ '(EC)=--a (3.51

Here, a is a dimensionless parameter and the mean water depth, h, is added to match up the

dimensions. This formulation is surely consistent with our breaking wave dissipation model.

Substituting (3.49) into (3.51), energy balance equation is represented in terms of the area of the

surface roller as

I a a ( SC2  SC2

2 d-x EC + p2T = p2Th (.2

If applying C = gh to (3.52) with the assumption of shallow water linear wave theory, equation

(3.51) becomes equivalent to the Dally and Brown (1995) model except that the first term of the

left-hand side of (3.52) is not divided by 2 in the Dally and Brown (1995) model. In other words,

they assumed that all the dissipated wave energy is transferred to the surface roller energy while

we assumed only the potential energy to be transferred to the surface roller. According to Dally

and Brown (1995), the constant parameter, a=0.2, gives the reasonable results in terms of the

prediction of the mass transport rate due to the roller, which is discussed later.

3.4.2 Determination of a

Although Dally and Brown (1995) applied a single constant value of a, it is expected that

this a should also be a function of the bottom slope because the proportionality coefficient of our

breaking wave energy dissipation model is determined to be a function of the bottom slope. In

this section, we develop a semi-empirical formula to determine an appropriate value of a.
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According to Svendsen (1984), the area of the surface roller, S, in the inner surf-zone

becomes proportional to a square of the local wave height, i.e.,

S = AH 2  (3.53)

Here Ar is a proportionality constant and the local wave height, H, should be the non-linear wave

height since this expression is obtained from the experimental data. Although Svendsen(1984)

proposed Ar= 0.9, the larger values of Ar up to the order of 10 have been proposed through other

experimental and field data(e.g., Okayasu et al., 1987; and Hiruta and Hattori, 1999). For

example, Okayasu et al. (1987) proposed Ar=2.0 based on their experiments. As seen in the

Figure-3.4, Svendsen's (1984) model underestimates the depth-averaged return flow velocity

inside the inner surf-zone. This also suggests that Ar should be larger than 0.9. Moreover, it is

expected that the value Of Ar should be a function of the bottom slope although Svendsen (1984)

applied the single constant value for Ar. For example, the surface roller area must approach zero

on the no-slope depth condition because all the surface roller energy should be dissipated to

turbulent when the breaking wave heights approach its recovery wave heights and no dissipated

wave energy is supplied to the surface-roller. In this study, therefore, we determine the surface

roller area in the inner surf-zone as

S=BtanpHz (3.54)

where the equivalent linear wave height is used in order to keep the consistency of our model.

The empirical constant, B, is determined as B=140, which gives S = 4H* when tan#=1/35. Since

we are using the equivalent linear wave heights, proportionality constant should be larger than Ar.

The validity of this B value is examined later.
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Utilizing (3.54), we determine the value of a based on the following concepts. First, we

assume that, on the uniformly sloping bed, the area of the surface roller approaches (3.54) as

equivalent linear wave heights approach H.=y%). Substituting these conditions into (3. 52), we get

8 pgyg
+ p Btanfyih

2 C2

2T' (3.55)

As discussed before, a =0. Note that (3.55) is still valid for non-slope condition because allax

the terms in (3.55) becomes zero when tan3=0. Applying shallow water linear wave theory, i.e.,

C= C, =. fgh , (3.55) is simplified as follows.

5 3 2ah(gh2 732 ax
+ 3gBtan#f3yh

2  =-a gBtanflyh 2

2T ax 2T
(3.56)

ahAs derived in (2.37), ah is determined from Longuet-Higgins (1963) as

ah 8
T= 8+ tan ax 8+3y~

(3.57)

From (3.56) and (3.57), a is finally determined as

8+ 8 5Tgf
8 +3y52 16B h

+3tan# J (3.58)

3.4.3 Return Flow Velocity due to the Surface Roller

Since it is assumed that the total volume, S, of the surface roller moves for one wave

period, depth-averaged return flow velocity, U,, is determined as

UV=_ySI =. 2 Ev
T h pCh '

(3.59)
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3.4.4 Shear Stress due to the Surface Roller

Similar to the wave shear stress model, the shear stress due to the surface roller is also

determined by integrating the momentum equation in an arbitrary control volume. Since the

surface roller is always located above the free surface, it is reasonable to assume that the pressure

in the surface roller is identical to an atmospheric pressure and therefore constant in the x-

direction. Moreover, the shear stress due to the surface roller becomes constant in depth below

the lower edge of the roller because there should be no surface roller below the free surface. The

time-averaged shear stress due to the surface roller is therefore expressed as

I a~ pdC2dt=+ a C= +2E (3.60)
0

This expression is identical to the Svendsen's (1984) model, i.e., the second term of (3.28). The

significant difference from his model is the variation of the surface roller area. In Svendsen's

model, the surface shear stress due to the surface roller is always negative, i.e., acts in the shore-

ward direction since the surface roller area always decrease in the surf-zone as wave dissipates.

In the present model, on the other hand, (3.60) becomes positive, i.e., r, acts in the sea-ward

direction, right after the breaking because the surface roller grows when the waves start to break.

This feature will be shown and discussed in the Section 3.6.

3.4.5 Model Application for Numerical Computation

The theoretical formulation of the surface roller model is now complete. In order to

estimate the surface roller energy for arbitrary waves and bottom conditions from (3.51),

numerical computation is required. In this section, we discuss the methodology of the numerical
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solution of (3.51).

Applying trapezoidal rule, (3.51) is discretized as follows.

Ei+iCg+ - ECg,+ Ei,,i+iCi+ , -EC_ _ ai E,+1Ci+1 E C (3.61)
2Ac AX 2 h Jh

Here the subscript, i, denotes the grid number in the shore-ward direction. Note that a is also a

function of mean water depth but a known parameter. From (3.61), the only unknown variable,

Ev,+1, is estimated explicitly as

Ei = E, 1CiI- 2 A ) (Ei+iCgi+ - ECgj) (3.62)

C i l (1+ 2hji )a

The boundary condition is given as zero surface roller energy outside the surf-zone, i.e., at the

offshore boundary.

3.4.6 Modification of the Undertow Model

Taking the surface roller effect into account, the determinations of time and depth-

averaged return flow velocity and the surface shear stress are modified from our original

undertow model. Since the shear stress due to the surface roller is constant in depth, the

assumption of the vertical linear distribution of the shear stress, i.e., (3.17) is still valid. The only

change in the formulation of our undertow model is, therefore, the determinations of return flow

velocity, U,,, and surface shear stress, r,. Combining linear wave model and the presented surface

roller model, U,, and r, are determined as follows.
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U E + 2Ev (3.63)
phC phC

T,= I E+2E,, (3.64)

3.5 Model Extension for Random Wave Problem

As seen in (3.63) and (3.64), both the return flow velocity and the surface shear stress are

proportional to wave and surface roller energies. Moreover, statistically averaged surface roller

energy for random wave condition should be simply estimated from (3.51) if the wave energy

dissipation rate, the first term of (3.51), is also determined as statistically averaged for the

random wave condition. It is therefore reasonable to apply our undertow model to the random

wave problem by simply taking rms-wave height as a regular single wave height. The

applicability of this extension is examined later.

3.6 Model Examination

3.6.1 Area of the Surface Roller

Figure-3.6 shows the area of the surface roller as a function of still water depth. In the

figure, dotted lines are Svendsen's (1984) expression (3.53) for the surface roller area. It is seen

that the present model surely approaches S = 4H. as assumed when developing the model. Here

H. is the equivalent linear wave height and this assumption of S=4H' appears reasonable

because the estimated area is close to S = 2H 2 in the inner surf-zone, which is the relationship

proposed by Okayasu, et al. (1987) where H is the non-linear wave height.
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From the figure, it is seen that the surface roller estimated by the present model starts to

grow at the breaking point and decrease after reaching its peak value inside the surf-zone. This

feature explains a continuous increase of return flow velocity and the surface roller energy in the

outer surf-zone. This increase of the surface roller energy causes the seaward surface shear stress

right after the breaking point.

3.6.2 Examination of Parameters

Figure 3.7 shows the same graph as Figure 3.5 with the return flow velocity, surface shear

stress and turbulent eddy viscosity estimated by the present model added. Although the return

flow velocity is underestimated right after the breaking point, it is seen that our model predicts

reasonable return flow velocities for the entire region. As discussed before, it is also seen that the

present model estimates the sea-ward surface shear stress right after the breaking point while

other models predicts shore-ward shear stress for the entire surf-zone. As shown later in the

Section 3.6.3, it is observed that the surface shear stress acts in the sea-ward direction right after

the breaking point. In this sense, therefore, this feature is one of improvements of the present

model over other models. Moreover, our model agrees well with Svendsen's (1984) model in the

inner surf-zone, where the validity of his model has already been confirmed. Turbulent eddy

viscosity is estimated within the same order of Stive and Wind(1986) model. Since a combination

of the shear stress and turbulent eddy viscosity determines the undertow profile, the validity of

the turbulent eddy viscosity should be examined by comparing computed undertow profiles with

measured data.
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3.6.3 Undertow Profile

To examine the applicability of our undertow model, numerical computations are carried

out on the same experimental data presented in Section 2.3.2. The bottom boundary roughness is

kN=1.0(mm) for Casel(Cox et al., 1995) and smooth-wall condition for the other cases(Okayasu

and Katayama, 1992). Other conditions are shown in the Table-2.3. Cox and Kobayashi (1997)

present more detailed measurements about undertow profiles in Cox et al.'s (1995) experiments.

Figures 3.8 to 3.12 show comparison of computed undertow profiles and wave heights

with measured data. In the figures, it is seen that measured undertow profiles, dotted curves, are

drastically changes around the trough level. This is simply because measured data includes the

components of mass transport due to wave above the trough level. This feature was discussed in

the Section 3.2.1 and was shown in the Figure-3.3. In this sense, we should compare the

computed undertow profiles with measured data only below the trough level because the

computed undertow profiles do not include the components of mass transport above the trough

level. From these figures, it is seen that our model predicts undertow profiles fairly well both

inside and outside of the surf-zone. From Figures 3.10, 3.11 and 3.12, it is also seen that our

model predicts reasonable undertow profiles for the random wave problems.

From Figures 3.9 and 3.10, it is also seen that measured undertow velocity under the

trough level near the breaking point increase in upper-ward. This feature indicates that the surface

shear stress acts in the sea-ward direction near the breaking point.
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Case 1 (Cox et al., 1995)
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Case 2(Okayasu and Katayama, 1992)
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Case 3(Okayasu and Katayama, 1992)
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Case 4(Okayasu and Katayama, 1992)
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Case 5(Okayasu and Katayama, 1992)
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Chapter 4

4. Conclusion

In this study, a hydrodynamics model for application outside and inside the surf-zone was

developed. Although a strong non-linearity is expected inside the surf-zone, we simply applied

linear wave theory by adopting the concept of an equivalent linear wave, which takes non-linear

wave effects into account.

The model broadly consists of following three models. (1) Non-linear wave asymmetry

and skewness model due to wave non-linearity and bottom slope, (2) Breaking wave dissipation

model and (3) Undertow model. Since all these models are based purely on the linear wave

theory, it is easy to apply these models to practical problems. Moreover, the equivalent linear

wave theory also enables us to extend the models to random wave conditions rather easily. In

conclusion, all the models are summarized and further refinements and extensions of the models

are discussed.
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4.1 Non-Linear Wave Model

The main goal of this model is to evaluate the non-linear (actual) bottom orbital velocity

profiles from the equivalent linear wave conditions. In order to know the relationship between

equivalent linear wave and non-linear wave, we performed numerical experiments on uniform

slopes using Nwogu's (1993) Boussinesq equations. Through the experiments, the relationship

between equivalent linear wave and non-linear wave was determined under the assumption that

energy flux should be conserved between both theories.

From the experiments, five parameters were extracted to evaluate the non-linear wave

height, non-linear "height" of the bottom orbital velocity and the asymmetry/skewness of the

bottom orbital velocity from the equivalent linear wave conditions. These parameters were

plotted as a function of h/LO and HILO, which are determined from the equivalent linear wave

conditions. The semi-empirical formulae, which approximate these plotted curves as a function of

h/LO and HOILO, were also proposed.

The bottom orbital velocity profile is approximated by a combination of four sinusoidal

curves, each of which represents asymmetry/skewness parameters. The approximated profiles

agreed well with experimental data obtained by Cox, et al. (1995). Although the model is

developed for uniformly sloping bed condition, the model also agreed well with Cnoidal wave

theory for constant depth conditions. The advantage of this model is that all the parameters can be

explicitly determined from linear wave theory.
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4.2 Breaking Wave Dissipation Model

In order to evaluate the accurate breaking point from the linear wave conditions, we

applied Watanabe's(1984) breaking criteria to the model. Once the waves are judged to be

breaking from Watanabe's (1984) breaking criteria, breaking wave energy dissipation model is

applied.

As for breaking energy dissipation model, we reviewed the Dally et al.'s (1985) and the

Watanabe and Dibajnia's (1988) models and discussed advantages and disadvantages of these

models through the comparison of wave heights obtained by their model with experimental data.

The main disadvantage of the Dally et al.'s (1985) model is that the proportionality constant,

which determines the amount of energy dissipation rate, is not given as a function of slope but

given as a single constant. This problem results in evaluating too large/small wave heights in the

surf-zone when the bottom slope is steeper/gentler. Although the Watanabe and Dibajnia's (1988)

model took the effect of the bottom slope into account, their model was not applicable to the

constant depth condition, which is expected to occur inside the surf-zone. Furthermore, it is found

from the comparison with experimental data that their model has too small a slope-dependency.

We applied the same concept as the Dally et al.'s (1985) model but took the effect of the

bottom slope into account. We semi-empirically determined the proportionality constant as a

function of the bottom slope based on observed characteristics of the wave heights attenuation

inside the surf-zone. Through the comparison of wave heights estimated by present model and

experimental data, it was found that the present model has a reasonable slope-dependency.

Moreover, it is notable that our model is applicable even for constant depth conditions.

We also extended the model to random wave conditions by assuming wave heights to be
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Rayleigh distributed. The breaking wave model agreed well with a number of experimental data

for both periodic and random waves.

4.3 Undertow Model

Based on the two-dimensional horizontal momentum equation, we derived the theoretical

formula for the time-averaged undertow profile. This formula requires three unknown variables;

the surface shear stress, the bottom shear stress and the depth-averaged return flow velocity.

These three variables were also derived based on the equivalent linear wave theory.

Through the comparison of these computed variables with experimental data obtained by Cox, et

al. (1995), it was found that the linear wave theory predicts sufficiently accurate return flow

velocities outside the surf-zone. However, it was also found that the linear wave theory could not

explain the drastic increase of the return flow velocity inside the surf-zone. From this comparison,

we conclude that the equivalent linear wave theory should be applicable for the entire region but

that additional phenomena, such as surface roller effect, must be taken into account in order to

evaluate the excess amount of return flow inside the surf-zone.

The surface roller model was therefore developed to evaluate the excess amount of return

flow inside the surf-zone. Applying the similar concept of Dally and Brown's (1995) model, we

developed an energy balance equation, which includes the growth/decay of the surface roller

energy. Combining this energy balance equation with our breaking wave energy dissipation

model, we determined the semi-empirical coefficient as a function of the bottom slope, which

was taken as a single constant value in the Dally and Brown's (1995) model. Since the model is

purely based on the equivalent linear wave theory, the surface roller model is also easily extended
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to the random wave condition.

The surface shear stress due to the surface roller was also proposed. The combination of

the surface shear stresses due to waves and surface roller reasonably explains the observed facts

that the surface shear stress just after the breaking point acts in the seaward direction.

Finally, the complete undertow model was examined through the comparison of computed

undertow profiles with experimental data of various cases. It was found that the undertow profiles

evaluated by the present model agreed .well with experimental data even for random wave

conditions.

4.4 Model Extensions

If the waves are obliquely incident toward the coast, the decrease of the radiation stress

due to the wave breaking causes a shore-parallel force in addition to the shore-normal force. The

latter is the force causing wave setup and undertow, and is not greatly affected by the angle of

wave incidence so long as this is relatively small. Thus, the present hydrodynamics model for the

surf-zone should be approximately valid also for obliquely incident waves. The shore-parallel

force, which depends on an angle of incidence even when this is small, causes longshore currents.

The existence of longshore currents should affect the bottom friction shear stress and therefore

should affect to some extent the undertow profiles. Furthermore, the surface roller should also

yield a shore-parallel force. This additional shore-parallel force should affect the longshore

currents. In this sense, therefore, the model should be extended to evaluate the interaction of the

undertow and longshore current when the waves are obliquely incident on the shore.

According to Kampuis (1991), it is observed that the alongshore sediment transport rate
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often has another peak around the mean shoreline besides the first peak inside the surf-zone. This

phenomenon can not be explained by the present models because in these models the current

velocity decreases toward the shoreline if the water depth also decreases. This excess amount of

alongshore sediment transport should be strongly related to the swash-zone hydrodynamics. In

order to estimate the topography evolution near the shoreline, therefore, it is necessary to develop

the swash-zone model, which is consistent with present models.
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Appendix A

A. Numerical Methodology of the Boussinesq Equations

In this section, the numerical methodology for Nwogu's (1993) Boussinesq equations is

presented. For numerical computations, Zheng's (1999) finite different scheme is applied.

A.1 Governing Equation

Governing equations of Nwogu's (1993) Boussinesq equations for 1-dimensional problem

are as follows.

Continuity equation;

7t + [(h+n 4 +][a, h3u. +a 2h2(hu)j =0 (A.1)

Momentum equation;

u, +gn, +uu, +bjh 2ut +b2h(hu), = 0 (A.2)

where the constants a,, a2, b, and b2 are given by

a, = - 6'
a2 = Za 1 b, = 1; b2 = a (A.3)
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In these equations, horizontal velocity, u(x,t), is represented by the velocity at a certain

depth, z=za. According to Nwogu(1993), z =--0.553h gives the optimum dispersion

relationship that is close to the small amplitude linear wave theory. We therefore applied

z= -0.553h in this computation. For the sake of simplicity of the expression, we express (A. 1)

and (A.2) as follows.

7t= E(771U) (A. 4)

U, = F(7,u) (A.5)

where

E(7,u)= -[(h +)7] - [h3u, +a 2h2(hu)jl (A.6)

U = u +b 1h2u +b2h(hu),. (A.7)

F(7, u) = -g77x - uux (A.8)

These expressions are used later when we discuss the dicretization method in the time step.

A.2 Discretization in the Space Step

We apply a space staggered grid and shift the location of u, by a half grid from the point of

1, and h,. The locations of these values are shown in the Figure-A. 1.

Figure-A. 1 Staggered grid
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Using this staggered grid, each term of the continuity equation (A. 1) is discretized by

centered difference scheme around iy, as follows.

60[(h+77M = 1 [(h 312 +i- 31 2 - 2 -27(h_1 2 +7i-i/ 2>i 1  (A.9)
2 +27(01Ax + 1i1/2, +(hs3n +143/2 il

3=u, [u,+, -2u, +u,_,] (A. 10)

4() =U I31 [hhiuI -2A- -h, _ ui (A.11)

(h = (ih1u, -3 _ 1u,_3 (A. 12)
AX

5 J(h2(hu) -[Iiz1 2 (hu), -h 1 s,(hu),_] (A.13)

Here, the fourth-order centered difference scheme is applied to the first order differentiation

terms while the second order scheme is applied to the higher order differentiation terms.

Similarly, the momentum equation (A.2) is discretized around u, as follows.

ax(i)i = I [i+l -27, +2777i+i --77i 2] (A.14)
24Ax

(uSxu),= 1 (u1 -iUijX-3Ui+ 4u -u2 + 1(u + u,113u, -4ui_, +ui-2] (A.15)

where the upward second-order scheme is used for the convection term in (A. 15).

A.3 Discretization in the Time Step

The time-integration of the governing equations (A.4) and (A.5) consists of the third-order

Adams-Bashforth predictor and fourth-order Adams-Moulton corrector schemes(Hoffman, 1992).
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A.3.1 Predictor Step

The third order explicit Adams-Bashforth scheme is expressed as follows.

n+)* = + At [23E," -16En" 1 +5En-2] A.16)
1112

U"**=U,"+ A 23in - 16n-~+5Fn-2 A.17)

All variables on the right-hand side of (A. 16) and (A. 17) are known from the previous, nth-step

computations. The variables superscribed by a star on the left-hand side of (A. 16) and (A. 17) are

the predicted values for the (n+J)th-step, which are straightforward to obtain. For example,

(A.17) is equivalent to a tridiagonal matrix equation and is therefore solved by applying the

Thomas algorithm. Using these predicted values, we can estimate corresponding predicted values

of Efn+l)* and F(n+l)* These values are used for the next corrector step.

A.3.1 Corrector Step

The fourth order Adams-Moulton scheme is expressed as follows.

" = 4"+ 9E"" -5E" En- 2 (A. 18)

U"*= U, + 9At [9Fn+* + 191"- " -+]- (A.19)
0 24' i ' A 9

From (A.18) and (A.19), newly corrected variables for the (n+)th-step are computed. The

corrector step is iterated by taking these new (n+)th-step variables as predicted (n+J)th values

until the error between two successive results reaches a required a limit. The error of each

variable is defined as
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n1)=) - (u)= 1 (A.20)

where the star superscript denotes the values of the previous estimation, i.e., predicted value. The

corrector step is iterated if any £(ii) or e(u) exceeds 0.1%.

A.4 Boundary conditions

A.4.1 Incident Wave Boundary

The time series of incident wave conditions at two space steps, in, m2, u1 and u 2 are

specified analytically by Stokes wave theory or the Stream Function Method[Dean, 1965]. Using

these values, variables inside n > 2 are computed.

A.4.2 Absorbing Boundary

Absorbing boundary consists of two conditions. The first is Sommerfeld radiation

condition, which is applied just at the boundary where waves are supposed to go out. The second

condition is the sponge layer (damping layer), which is applied over a certain distance in front of

the boundary.

(1) Sommerfeld Radiation Condition

A non-reflective condition is used to absorb the outgoing waves, i.e., the wave conditions

outside the boundary are determined by following.
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7+ Cn , = 0 (A.21)

u, + CuX =0 (A.22)

where C =gh is the wave phase velocity approximated by the linear long wave theory. For

example, (A.21) is discretized by the first-order backward(forward) difference scheme and solved

by applying the third-order Adams-Bashforth predictor and fourth-order Adams-Moulton

corrector schmes [Hoffman, 1992]. The discretized formula is as follows.

Predictor Step;

0*=,"x -C R[23m",1 - "+ 54"2)-23rg - 16 517+5 (A.23)

Corrector Step;

(n+1) = At c~ [("n1)*+ln - + n2) 9 ) +I97 -I + -
+i =7+i 24Ax + 9" 5+r-4+5"2) (+ n5+1 i9ig -5"- +57"-2)] (A.24)

(2) Sponge Layer

Previously presented radiation boundary condition inevitably includes finite errors

because of the numerical discretization or approximation of the phase velocity. This error can

become the reflected wave components and can eventually cause the model to blow up in some

cases. To reduce this reflection, a sponge layer is applied over a certain distance before the

boundary. This sponge layer dissipates the wave energy and therefore makes wave heights or

particle velocities at the boundary sufficiently small so that reflected wave components are

negligible. Damping terms are added to the momentum equation (A.5) as
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U, = F(1731U) - Eu (A.25)

where the damping coefficient, e, is obtained by Cruz et al. (1993) as

e= Oy -E[cosh(yR /F)-1] (A.26)
2(sinhy-y) h

where F is a thickness of sponge layer, which is about two or three times the wavelength, y=3,

6=0. 15-5. 0 and R is the distance from the beginning point of the sponge layer. As seen in (A.26),

the damping due to the sponge layer becomes larger/smaller when q is larger/smaller. However,

but the reflection due to the sponge layer also becomes stronger/weaker when 6 is larger/smaller.

In this sense, therefore, we need to determine the optimum value of 6 so that the sponge layer

absorbs the wave energy effectively but does not reflects waves. In this study, we adopted 6 =3.
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Appendix B

B. Linear Wave Theory vs. Stream Function Method

In this section, we examine the applicability of the linear wave theory using the concept of

equivalent linear wave height based on the conservation law of the wave energy flux. Dean's

(1965) Stream Function Method with 19 terms (SFM) was used to estimate characteristic

variables including wave non-linearity, which are compared with those variables estimated by the

equivalent linear wave theory.

B.1 Equivalent Linear Wave Height

Equivalent linear wave height is estimated under the assumption that energy flux should

be conserved between linear wave theory and non-linear wave theory. In SFM, energy flux, Efsm

is numerically computed by integrating the following formula.

EsM = + 2 pz d =dz (B.1)

where h is the still water depth, 77 is the free surface elevation and u and w are particle velocities
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in the x and z directions, respectively. From the non-linear energy flux obtained from (B. 1), the

equivalent linear wave height, H., is determined by

H, = V8 Efs / pgCg (B.2)

Figure-B. 1 shows HS./H. as a function of h/LO and Hsm/h where Hsm is the non-linear wave

height of SFM and LO is the deep-water wavelength. As seen in the figure, HsIH. becomes

larger when Hs,/h is larger. For all the following comparison, the equivalent linear values are all

based on the equivalent linear wave height obtained from (B.2).

0.8

Hemh=.
910-2 2 3

h/LO
4 5 6 7 8 9101

Figure-B. 1 Comparison of the wave heights between
SFM and the equivalent linear wave theory
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B.2 Wave Energy

Generally, the wave potential energy, E, and wave kinetic energy, Eb are determined as

E =f pgzd (B.3)
0

E = (u2 +w 2 )dz (B.4)

According to the linear wave theory, both E, and Ek have the same value and determined as

E, =Ek =IpgH.2 (B.5)
16

Figure-B.2 shows the comparison of these energies obtained by the equivalent linear wave theory

and SFM. From the figure, it is observed that both kinetic and potential energies obtained by

SFM become smaller than those obtained by the equivalent linear wave theory when HSF/h

becomes larger. This result implies that the group velocity determined by SFM should be larger

than that determined by the equivalent linear wave theory since energy flux should be conserved

between both theories. This feature is discussed again in the next section. Moreover, it is also

found that the wave potential energy becomes smaller than wave kinetic energy in SFM while

both energies are identical to each other in the linear wave theory.

B.3 Phase Velocity and Group Velocity

The group velocity in SFM, Cg,, can be obtained from energy flux, Es, and wave

energy as

CgsM = Ejsm /(E, + Ek) (B.6)
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Figure-B.2 Comparison of the wave energy between
SFM and the equivalent linear wave theory
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Figure-B.3 shows CS/C.,C, and Css,/Cina, as a function of H.jh and h/L,. From the

figure, it is seen that both CsijC,,, and Csr/Cgin,,, have similar characteristics. As discussed

before, the group velocities obtained by SFM become larger than those obtained by the

equivalent linear wave theory when H,,m/h (h/L0 ) becomes larger (smaller). This is surely the

opposite tendency of the wave energy as discussed in Section B.3. However, it is also seen that

the difference of these velocities between the equivalent linear wave theory and SFM is small

compared with the difference of the wave heights.

B.4 Mass Transport

The time-averaged mass transport above the trough level is generally determined by

M = udz (B.7)

Here T7 < 0 denotes the trough level. In SFM, the time-averaged mass transport is computed

numerically from (B.7). In linear wave theory, the time-averaged mass transport above the trough

level is analytically determined from (B.7) as

M1 = udz = -a (B.8)" 2tanhk(h +T)

where a. is the amplitude of the equivalent linear wave and h +!T denotes the mean water depth.

Figure-B.4 shows Ms/MZinar as a function of h/L, and HsAh. From the figure, it is observed that

the MsJMi,,, becomes smaller when Hs,/h becomes larger while CSIj/Cnear and Csi/Cin.

become larger as seen before. This is because the free surface profile of SFM becomes sharper

due to wave non-linearity and eventually transports less water than linear wave does.
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The difference between the models, however, is less than 20%. Moreover, it is expected

that this difference becomes smaller for non-zero bottom slope condition because the free s'urface

wave profile becomes saw-tooth type, which moderates the sharpness of the wave crest.

4 5 6
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0.5
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U
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7 8 910-1

5 6 7 8 910-1

Figure-B.3 Comparison of the phase and group velocities between
SFM and the equivalent linear wave theory
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Figure-B.4 Comparison of the mass transport between
SFM and the equivalent linear wave theory

B.5 Momentum Flux

Horizontal time-averaged momentum flux due to the wave, M, is generally determined by

M,.=p+pu 2 + pgz (B.9)

where p=-p (u2 + w 2) _ pgz is the total pressure. Integrating (B.9) with respect to z from
at 2

the bottom to the free surface and subtracting the hydrostatic pressure, Radiation stress, S., is

determined as

(B.10)S= (p+ pu2)dz+ pgzdz= (p+ pu2)dz+ pg(jT2 -h2)
-h -h -h

where q- is the mean water level and over bar indicates the time-averaged value. In SFM, the

radiation stress is numerically computed from (B. 10). In linear wave theory, (B.10) is analytically

151

0,8



represented by applying Stokes wave theory and keeping up to the second order as

S= =(P+U2)dZ+ (P+PU2)dZ+ 2PO(2 -h 2)
-h ii,

2 71 (2
~ (u2_w2)_pgz z+Jpg(-z)dz+ pg(i2-h 2)

= pgH *2( 2k(h+W + 1.)
8 sinh 2k(h+!T) 2

(B.11)

In order to estimate the shear stress at arbitrary depth, r(z), we determine the "Partial

Radiation stress", S,(z), as an integration of (B. 10) from an arbitrary depth to free surface. S,(z)

is therefore defined as

(B.12)S'.(Z) f J(Pp2 )dz+jfpgZdZ =jf(p + p2)dZ + Ipg(2 -Z2)
2 2 Z

Taking the similar approach, S,(z) for linear wave theory is determined from (B. 12) as

S (z)= pgH2
2k(T -z) + )

sinh2k(h+qT) 2)
(B.13)

Horizontal momentum balance equation from arbitrary depth, z, to the free-surface is then

expressed by S.(z) and r(z) as

S. (z) +pg( -z)-7+1r(z)= 0 (B.14)

From (B.14),

i a-1 S S(-)
a -x pg (h + 1) Ox

-rb

pg(h + T)
(B.15)

where b is the shear stress at the bottom, i.e., rb= r(-h). From (B.11), (B.13), (B.14) and (B.15),

the shear stress at an arbitrary depth for the linear wave theory is therefore expressed as
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,r(z) pgH,' I- V z + Tz Ir. (B. 16)
'x 16 iT+h) i+h

When z = !T, the shear stress at the mean water level, r,, is then expressed as

=--Pg. (B.17)16 ax

Figure-B.5 shows the vertical distribution of S.(z) estimated both by SFM (B. 12) and

linear wave theory (B.13). The wave condition is HA/h=0.6 and h/L,=0.02, where the strong

non-linearity is expected. From the figure, it is seen that both theories give close value around the

free surface even though the strong non-linearity is expected.

To compare the partial radiation stresses around the free surface between both theories for

various wave conditions, we should note following differences between SFM and linear wave

theory. In SFM, as seen in (B. 12), both velocity, u2, and pressure, p, terms are included

everywhere below the free surface. In linear wave theory, however, the velocity term is counted

only below the mean water level because the velocity term becomes the third order above the

trough level (B. 11). Moreover, the pressure force above the trough level is evaluated at the mean

water level although the integration range is from the trough level to the free surface. This feature

is also seen in the Figure-B.5 as the partial radiation stress at the mean water level by linear wave

theory has the value (B. 17), which is coincident with the integration of the pressure term (the

second term of (B. 11)). In this sense, it is not consistent to compare the partial radiation stresses

at the mean water level because linear wave theory includes pressure force above the trough level

while SFM includes the components only above the mean water level. In this study, therefore, we

compare the partial radiation stresses at the trough level. The partial radiation stresses in each

theory are determined as follows.
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sm T' = (P+ pu2)dz+ Pg(f2 -z2) (B.18)

1 2 2k(QT+a*) 1
SXXT linear - pgH. +- (B.19)

8 sinh 2k(h+ f) 2

Figure-B.6 shows SrTS,,/SxxCar,, as a function of h/L, and Hsm/h. In the figure, it is seen that

partial radiation stress determined by the equivalent linear wave theory coincident well with that

obtained by SFM.

B.6 Summary

Observed facts are summarized as follows.

1. The non-linear wave height becomes much larger than the equivalent linear wave height

when H/h (h/L) becomes larger (smaller).

2. The non-linear wave energy becomes slightly smaller than the equivalent linear wave

energy.

3. In SFM, the kinetic energy becomes slightly larger than the potential energy when H/h

becomes larger, i.e.; the wave non-linearity becomes significant.

4. Since non-linear wave energy becomes smaller than linear wave energy but the energy flux

is conserved, the non-linear group velocity becomes larger than the equivalent linear group

velocity.

5. The non-linear phase velocity also becomes larger than the equivalent linear phase velocity.

However, the difference of these velocities is small compared with the difference of the

wave heights.
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6. The time-averaged mass transport obtained by SFM becomes smaller than that obtained by

the equivalent linear wave theory when H/h becomes larger.

7. The feature noted in 6 is cased by the sharper shape of the non-linear wave profile. This

sharper profile reduces the mass transport although the non-linear phase velocity is larger

than that of equivalent linear wave theory.

8. The difference of the mass transport above the trough between SFM and the equivalent

linear wave theory is less than 20% and it is expected that this difference becomes smaller

for non-zero bottom slope condition because the bottom slope affects to make wave profile

gentler. The use of the equivalent linear wave theory for mass transport is therefore

reasonable even in the surf-zone.

9. The partial radiation stresses at the trough level obtained by SFM and the equivalent linear

wave theory coincident well with each other. Therefore the use of the equivalent linear

wave theory for the evaluation of the surface shear stress is reasonable even in the surf-

zone.
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------- Linear Wave (eqn. B. 16)
SFM (eqn. B. 12)
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Figure-B. 5 Comparison of S,,, between SFM and the equivalent linear wave theory
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Figure-B.6 Comparison of S, between SFM and the equivalent linear wave theory
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