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Abstract

A comparison study on the performance of two antenna pattern nulling techniques
is being investigated. The two nulling techniques are Multiple Null Constraints and
Derivative Constraints. The method of Multiple Null Constraints technique consists
of placing a set of closely spaced single nulls over a desired nulling sector, while
Derivative Constraints technique consists of placing a single null at the center of the
nulling sector and simultaneously imposing zero derivative(s) response at the same
point. For a given number of constraints imposed on the pattern to obtain a desire
pattern null characteristic, the amount of null depth and null width achieved and the
pattern white noise gain will be compared under each nulling technique.
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Chapter 1

Introduction

Antenna pattern nulling is a method used to suppress interference in the beam pattern

by means of placing nulls in the directions of the interfering sources. Null placement

in beam patterns has found applications in radar and sonar systems as an effort to

minimize the degradation in the signal-to-noise ratio.

1.1 The Problem

A narrow-band interference signal can be suppressed by placing a null or by con-

straining the beam pattern to have zero gain in the interfering direction. However,

a broad null is required to null over a finite angular sector when the interfering sig-

nal is spatially wide-band and when the direction of arrival of the unwanted signal

varies slightly with time or is not known exactly. A number of techniques have been

published in the area of antenna pattern synthesis to obtain broader pattern nulls

[1]-[3].

Multiple Null Constraints is a technique often used to obtain broader pattern

nulls [2], [3]. The technique imposes constraints on the beam pattern by placing a

set of closely spaced single nulls over the desired angular sector. In antenna pattern

synthesis problems, we are generally given a beam pattern and are asked to obtain a

synthesized pattern which is similar to the original pattern but is subjected to some

pattern constraints. In our problem of interest, the pattern constraints are nulls. This
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generally involves finding a constrained weight vector that is an approximate of the

original weight vector.

1.2 The Goal

The objective here is to obtain a constrained pattern with good null responses in the

interfering directions while minimizing changes to the original pattern in directions

away from the constraint points (especially inside the mainlobe) . There were no

criteria to minimize changes in the pattern in previous works [2] and [3]. As an

improvement to these efforts, part of this thesis develops a modified Multiple Null

Constraints technique using a least mean squared error criteria for changes in the

pattern.

1.3 New Approach

Alternatively, broader nulls can also be achieved by constraining a zero-order null

together with higher order derivative nulls at the null location [4]. Zero-order pattern

nulling is the same as the method of Multiple Null Constraints using a single null.

The broader null width is the result of the constraint that the higher order derivatives

are zero at the null location. Constraining zero derivative gain at a null location forces

little changes in the vicinity of the null point. Thus, a flatter or wider null is achieved.

This beam pattern nulling technique is called Derivative Constraints and its results

will be presented in a later chapter.

Two pattern nulling techniques, Multiple Null Constraints and Derivative Con-

straints, will be studied and their results will be compared via a Least-Mean-Square

pattern synthesis technique which will be developed in this thesis.

The performance of each nulling technique is evaluated based on its ability to

achieve the broadest possible null width and depth and the array white noise gain for

a given number of constraints imposed on the beam pattern.
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Chapter 2

Background

2.1 Multiple Null Constraints

Various antenna pattern nulling techniques have been published over the years in

trying to suppress interference from certain directions in the antenna beam pattern

[1]-[3]. Davies [1] described a method employing a network of phase shifters for

independent control of the angular location of the zeros in the beam pattern. This

technique was derived by expressing the directional pattern of the N-element linear

array in a polynomial form of order N-1, and representing it as the product of N-1

factors thus giving N-1 zeros of the directional pattern. A sector null can be formed

if several nulls are made to lie within a desired angular sector.

The technique proposed by Drane-McIlvenna [2] maximizes the array gain in some

prespecified direction while placing pattern nulls in the direction of the interference.

The authors took advantage of the special properties of the constraint matrix and

derived an eigenvector solution for the amplitude and phase of the optimal array

excitation coefficients.

Another multiple null constraints method was solved adaptively by Applebaum

[3]. In the presence of interference, the pattern adaptively places nulls in the direction

of the interference thus maximizing the signal-to-noise ratio. This is done by forming

a cancellation beam pattern and subtracting it from the normal or quiescent beam

pattern. The cancellation pattern has the same shape as the quiescent pattern except

10



that it is centered at the interfering direction and appropriately scaled.

One unattractive feature of the above null placement techniques is the lack of

control in the change of the pattern's shape away from the constraint points. Higher

sidelobe levels or an undesirable shape can occur due to the absence of criteria on

the difference between the constrained and the quiescent patterns away from the

constrained points. Ideally one would like to preserve the main beam's response

while constraining the pattern to have some desired null response.

2.2 Derivative Constraints

In the past, derivative constraint techniques have been used to broaden the beamwidth

in the look direction of a beam pattern to avoid accidental signal suppression [4], [5].

This is done by controlling the first few derivatives of the pattern function at the points

of interest. Specifically, the derivative(s) of the pattern are constrained to have zero

gain at the points of interest. Imposing a zero derivative gain at a point minimizes

rapid changes in the pattern in the vicinity of that point. Thus, the beamwidth can

be made flatter or broader when higher order derivative patterns are added to the

zeroth order pattern.

In this work, the author is proposing a technique that uses derivative constraints

to obtain broader pattern nulls instead of a broader beamwidth as it was used in

[4] and [5]. A least mean square pattern change criteria will be imposed to assure

minimal changes away from the constrained points.
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Chapter 3

Problem Formulation

3.1 Methodology

For a linear array of N+1 isotropic antenna elements with uniform spacing, the an-

tenna farfield wavenumber response function is given by

N/2

W(k) = E wnejL- ,
n=-N/2

(3.1)

where k is the spatial wavenumber vector, wn is the weighting coefficient for the nth

array element and zn is the relative spatial location for the nth element. For the line

array shown in Figure 3-1, the spatial location of each element reduces to

nzd= d (3.2)

where d is the interelement spacing and a is the unit vector along the x-direction.

The quiescent or normal wavenumber response function is defined as
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Figure 3-1: Line Array (The dots represents array elements)

N/2

Wq(kx) = ( qne-tdkx

n=-N/2
(3.3)

where q, is the individual array element weight coefficient and kx is the x-component

of the spatial wavenumber given by

kX = -- sin(9), (3.4)

where A is the wavelength and 0 is the observation angle measured from the broadside

direction.

Similarly, the constrained wavenumber response function W, is defined as

N/2

We(kx) = Z Cne -j"dk

n=-N/2
(3.5)

where cn is the weighting coefficient for the nth array element. This constrained

function W, is an approximation of the quiescent function Wq subjected to either

13
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Multiple Null Constraints or Derivative Constraints.

Our objective is to find a constrained wavenumber response function W, which

is a least mean squared error approximation of the quiescent wavenumber response

function Wq subject to Multiple Null Constraints or Derivative Constraints. By ex-

amining (3.3) and (3.5), we see that the shape of a wavenumber response function is

characterized by its array weighting coefficients. Therefore, the posed problem is to

find a set of excitation coefficients c, such that the resulting pattern W, is the least

mean squared error approximation of the quiescent pattern Wq.

3.1.1 Mean Squared Error

The mean squared difference between the quiescent and the constrained wavenumber

response functions, Eqns. (3.3) and (3.5), is

A 1 2/A Wq(kx) - We(kx)| 2dkX. (3.6)
47r -27r/A

Substituting (3.3) and (3.5) into (3.6) yields

A .2i/A N/2 2
A= - 2r/A N12 e-ndk(qn - cn) dk. (3.7)

n=-N/2

In the special case of an interelement spacing of one-half of a wavelength, d = A/2,

the mean squared error reduces to

N/2

f = 1: Jqn - Cn 12 (3.8)
n=-N/2

after integrating equation (3.7). The results shown in (3.8) indicate that the mean

squared error between two patterns is completely characterized by their excitation

14



coefficients. This is expected since the shape of the wavenumber response function is

determined by the excitation coefficients.

Alternatively, the mean squared error can be expressed in vector form as

f = q - (3. 9

where q and c are the array weighting vectors for the quiescent and the constrained

patterns, respectively. They are defined as:

q = [q L,... IO,..., qg] (3.10)

and

f = [C_ ,..., co,..., cN], (3.11)2 2

respectively. In vector form, the mean squared error between two patterns is the

squared norm of the difference in their corresponding weight vectors.

3.1.2 Multiple Null and Derivative Constraints

Utilizing the mean squared error between the quiescent and the constrained patterns

expressed in (3.9), the pattern approximation can now be stated as follows:

2
Arg min e= I -_ ,2

ti
subject to kWc(kxa) = 0,

aki.

(3.12)

(3.13)

15
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where i = 0 .... , N1 - 1, is the order of the derivative and a = 1 .... , N2, is the

null wavenumber location. In view of (3.13), the constrained wavenumber response

function is subjected to Multiple Null Constraints when i = 0 and is subjected to

Derivative Constraints when i > 1.

The ith order derivative of the constrained wavenumber response function, Eq.

(3.5), at a particular null location is

gi N/2

Oki We (k., ) = E cn( -jnd) ie-dkx" =0.
X n=-N/2

(3.14)

From (3.14), we now define the constraint vector for each null constraint as

N
_E(kxa) = [ 2d) ej 2

N
,. .,L .. (- - se sk k= 2, (3.15)

where the asterisk(*) denotes complex conjugation. If we express (3.14) as the inner

product of the constrained weight vector c and the constraint vector E as

(f, E) = 0, (3.16)

then we recognize that the constraint vector E is orthogonal to the constrained exci-

tation weight vector c. The mathematical operation of the inner products of (3.16)

for column vectors is defined as

(c, E) = cEH, (3.17)

where H denotes the Hermitian transpose.
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3.2 Solution

Utilizing the orthogonality between the constraint vector and the constrained excita-

tion weight vector, the pattern approximation problem can now be solved using the

well known least squares approximation method.

3.2.1 Least Squares Approximation

The objective is to approximate the quiescent weight vector q with a constrained

weight vector c while minimizing the error vector. Referring to (3.12), minimizing E

is similar to minimizing the error vector, given by

e = q - c. (3.18)

Using basic algebra, the vector that minimizes the least squares error between q

and c is the one that is orthogonal to c.

In view of (3.16), we see that the constraint vector E is orthogonal to the con-

strained weight vector c, thus the error vector in question is made up of a linear

combination of the constraint vectors given in (3.15),

L

e= Z/3nEn, (3.19)
n=1

where each on is a scaling factor and L = Ni + N1N2 is the total number of con-

straint vectors as described in (3.13) and (3.15) (there is one constraint vector for

each constraint imposed). Substituting (3.19) into (3.18) and rearranging terms the

constrained weight vector that gives us our least mean squared error pattern approx-

imation subject to Multiple Null or Derivative Constraints is

L

c =- q - E OnEn. (3.20)
n=1

17



The least mean squared solution has a nice interpretation which is apparent when

we apply the linear relationship between a weight vector and its corresponding pattern

shape to (3.20). In doing so, we see that the constrained pattern shown in (3.21) is

the quiescent pattern minus a linear combination of the cancellation patterns,

L

Wc(kx) = Wq(kx) - E inWxn(kx), (3.21)
n=1

where each Wxn is a cancellation pattern. The shape of the cancellation pattern is

similar to the quiescent pattern. However, it is centered at the prescribed null location

and scaled by 3n to match the amplitude of the quiescent pattern at the null location.

This technique is similar to the one used in Applebaum's [3] adaptive algorithm for

interference suppression.

Using the constraint vector E, the cancellation wavenumber response function is

given by

N/2

Wx(kx) = Z Ene-kx, (3.22)
n=-N/2

where each En is the element of the constraint vector in (3.15).

The scaling vector f can solved via (3.16). Substituting (3.20) into (3.16) yields

v = 1b3, (3.23)

where v, 3, and 4D are defined as

18



Vi =

(E2, Ej)

(E2,7 E)

(_E2, 7E3)

.k )

(q, Ej)

(q, _E2)

(,E3)

(_E3, El1 )

(E3, E 2 )

(E3,_E3)

(3.24)

-... (EL, E2)

....... (EL, _E3)

-...-...- E...... (Li L)

3 =

/31
/32

/3

, (3.25)

(3.26)

Thus, the scaling vector _# is obtained by solving for the system of equations in (3.23)

as follows,

_3 = <b-'v. (3.27)

In solving for the scaling vector /, Eq. (3.27), its accuracy depends on the con-

dition number of <D or equivalently, the orthogonality of the constraint vectors E.

19
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The matrix (D becomes ill conditioned when its columns or equivalently, when the

constraint vectors E are approaching linear dependence. The orthogonality of the

constraint vectors is examined in the next chapter.

20



Chapter 4

Results

The effectiveness of the null performance technique using Multiple Null Constraints

and Derivative Constraints are presented in this chapter.

4.1 Multiple Null Constraints

The constrained wavenumber response function is subjected to Multiple Null Con-

straints or zero-order constraint when we set i = 0 in (3.13). For a spacing of a

half wavelength (d = A/2) and after evaluating Eq. (3.22), the zero-order of the

cancellation function centered at k., is given by

sine (!(N + 1)(kx - kx0)A)
Wx(kxIkxa) = (N + 1) , (4.1)

sine (I (kx - kxa) A

where the function sinc(x) = x)

Similarly, for normalized uniform weighting (q, = (+1)),the quiescent function

simplifies to

sine ( (N + 1)kxA)
Ws(kx) n kA (4.2)

sic(4kA

21



Using the previous two results and (3.21), the constrained function subjected to

L single nulls is given by

sinc (!(N + 1)kA) L sinc ( (N + 1)(k - kxn)A)
Wc(kx) - ( - (N + 1) E #3 s ) . (4.3)

sin I kxA) n-1 sinc (I (kx - kxn)A)

A plot for three arbitrarily chosen nulls imposed at the normalized spatial wavenum-

ber xA - (0.95,1.0,1.05) is shown in Figure 4-1. Approximately, an average of 27

dB of sidelobe reduction is achieved across the null band. The sidelobe reduction Q
is defined as the ratio of the maximum magnitude squared of the quiescent pattern

to the maximum magnitude squared of the constrained pattern within the null band

denoted by Akx. The expression for the sidelobe reduction ratio Q is given by

max
kx E A kx |Wq(kx) I |(.4Q max -)2

kx E Akx |We(kx )|

In the example shown in Fig. 4-1, the normalized null band is centered at kxA = 1.0

with a bandwidth of = 0.1. The null band is defined as the sector that spans

from the leftmost null to the rightmost null. For example, the normalized null band

shown in Fig. 4-1 is from 0.95 to 1.05. Throughout this thesis and for Multiple

Null Constraints only, the nulls are evenly separated over the null band with one null

placed at each end of the null sector.

The price paid for the sidelobe reduction is the loss in the look direction gain

or amplitude response and the change in the shape of the beampattern between the

constrained and the quiescent cases. However, the look direction gain loss and the

change in the pattern have been minimized in the least mean squared sense. The look

direction gain loss GLoOk is defined as the ratio of the magnitude response squared

in the look direction of the quiescent pattern W and the constrained pattern We and

is expressed as
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|W IV(k 1~ 1|2
GLoon - I'V0(kxlok )12  (4.5)

|We(k Xok 1

The look direction is at broadside for the case shown in Fig. 4-1.

The result shown in Fig. 4-1 incurs a 0.06 dB of look direction gain loss and the

changes in the pattern are quite small in the directions away from the null band. In

general, the effect of look direction gain loss is small (less than 1 dB) when the null's

center is away from the mainlobe.

For a given number of imposed nulls and null bandwidth, the amount of sidelobe

reduction achieved is independent of the level of the sidelobe to be reduced. This

finding is illustrated in Figures 4-1 and 4-2. As shown in Fig. 4-2, the amount

sidelobe reduction is approximately 28 dB. This result is similar to the 27 dB we

obtain when the center of the null band is at 1.0, Fig. 4-1. Thus, it appears that

amount of of sidelobe reduction achieved is independent of the amplitude of the

sidelobe to be suppressed. For both cases, the number of imposed nulls used is three

and the normalized null bandwidth is t*kxA - 0.1. The normalized null centers for

Figures 4-1 and 4-2 are at 1.0 and 0.6, respectively. The difference in the location of

the null centers implies a difference in the sidelobe level to be reduced in each case.

The independence of the sidelobe level to be reduced and the achieved sidelobe

reduction is consistent with our analysis since the nulling technique was derived for

any arbitrary quiescent pattern. The null performance should not vary for different

wavenumbers when the number of constraints imposed and the null width remain

fixed. This result is used in obtaining the overall null performance curves in a later

section.

Another characteristic of the Multiple Nulling technique is that the level of side-

lobe reduction increases as the number of imposed nulls increases for a fixed null

bandwidth. This is illustrated in Figure 4-3. The result shown in Fig. 4-3 is for

the case of four nulls evenly spaced over the normalized null band of [0.95, 1.05].

Note that this is the same null band as in Fig. 4-1. An average of 53 dB of side-

lobe reduction is achieved over the null band. This is about a 26 dB increase in the
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null performance as compared to the performance obtained when three nulls are used

instead of four.

-20 - - ........

2 Nom ize t Ia ave nbe: i / i
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Normalized Spatial Wave number: k X% n

Figure 4-3: Multiple Null Constraints: Four single nulls evenly spanned over
[0.95,1.05]. Sidelobe reduction 53dB, Look Direction Gain Loss = 0.15dB. Thirty-
One element array with d = A

2

Two performance metrics of a Multiple Null Constraints system are affected by

the separation between each null: (i) the level of sidelobe reduction and (ii) the

computational difficulty due to matrix ill conditioning. For the first case, the sidelobe

reduction level increases as the null separation decreases. However, when the null

separation is too small, the matrix (D shown in (3.25) becomes ill conditioned since

the columns are approaching linear dependence. Figures 4-4 and 4-5 show the plots

of the condition number as a function of null separation for the case of two and three

imposed nulls, respectively. We can see from both figures that the condition number

is a function of the null separation and the number of imposed nulls. It is inversely

related to the null separation and it increases with the number of imposed nulls. The

inversion of the matrix becomes difficult when the condition number is large.
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4.1.1 Multiple Null Constraints Performance Summary

The null performance characteristics of the Multiple Null Constraints technique are:

1. The amount of sidelobe reduction achieved is independent of the sidelobe level

to be reduced for a given number of imposed nulls and null bandwidth. That is, it

requires as many constraints to reduce a sidelobe level from -10 dB to -20 dB as it

does from -40 dB to -50 dB.

2. The sidelobe reduction level increases with the number imposed nulls for a given

null bandwidth.

3. The sidelobe reduction increases as the separation between each null or the null

bandwidth decreases. However, when the null separation is too small, the columns of

the matrix (D in (3.25) become linearly dependent and give rise to a large condition

number. A large condition number causes difficulty in matrix inversion.

4. The loss in the look direction gain or amplitude response is quite small (i.e. less

than 1 dB) when the null's center is away from the mainlobe. Also, the changes in

the pattern occurs mostly in the vicinity of the null band.

The above performance characteristics will be compared to that of the Derivative

Constraints technique in the next section.
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4.2 Derivative Constraints

In this section we will present the results for two types of Derivative Constraints

and they are Hard and Soft Constraints. We called it Hard Constraints because the

derivative is constrained to zero at the null location as shown in Eq. (3.13). Similarly,

Soft Constraints is when we relax this condition and instead we impose a non-zero

derivative gain at the null location or by constraining the derivative to a small value

6. The results are shown in the next two sections.

4.2.1 Hard Constraints

The constrained wavenumber response function is subjected to Derivative Constraints

when i > 1 in (3.13). In this method, we are imposing a zero-order pattern null

together with higher order derivative nulls at the null location. Substituting the ith

order constraint of vector E shown in (3.15) into (3.22), the ith order constraint of

the cancellation function centered at ka is given by

N/2

W('( kx) = (-jnd )ie-nd(k-k). (4.6)
n=-N/2

The ith order constraint of the cancellation function can be simplified by recognizing

that it is the iLh order derivative of the zero-order cancellation function,

Di sinc ( (N + 1)(kx - k)A)
WV ')(kx) = (N + 1) . (4.7)w g sinc (I(kx - kxa)A

The constrained function for L+1 constraints or the Lth order derivative constraint

imposed at a single null located at kx, is given by
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sine (!(N + 1)k A) L i sinc ( (N + 1)(kx - ka)A)
Wc (kx) =-(N+1) E i .isi (4.8)

sin ( kxA) N =1 ki sinc ( (k, - kxQ)A)

For notational convenience, the constrained pattern with zero-order, zero- plus first-

order, zero- plus first- plus second-order constraints are termed zero, first, and

second - order constraints, respectively.

Beampattern plots for zero, first and second-order constraints are shown in

Figures 4-6 - 4-8 and a combined plot is shown in Figure 4-9. The use of derivative

constraints to broaden a null is well demonstrated in Fig. 4-9. As expected, both the

null depth and width increase with the constraint order. This is because additional

flatness has been imposed by constraining zero derivative response at the null location.

One noticeable feature of Derivative Constraints is its ability to achieve a large

null depth at the center of the band. However, the price paid for this large null depth

is a decrease in the null width.

As we will see later that the trade-off between null depth and width is the key

performance factor when choosing between Multiple Null Constraints and Derivative

Constraints techniques. Figures 4-10 and 4-11 illustrate this trade-off by plotting the

constrained pattern for the two techniques using two and three constraints, respec-

tively. In comparing the results, the sidelobe reduction obtained with Multiple Null

Constraints is less significant than with Derivative Constraints but it covers a wider

sector.

Further examination of Figs. 4-10 and 4-11 suggests that a better overall null

performance is achieved with Derivative Constraints when two constraints are used.

Multiple Null Constraints gives better performance when the number of constraints

is greater than two.

Similarly to Multiple Null Constraints, Derivative Constraints is subjected to look

direction gain loss and pattern changes. Nevertheless, the gain loss is quite small for

both constraint techniques and the changes in the pattern occur mostly in the vicinity

of the null band.
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4.2.2 Soft Constraints

Due to the device performance limitation, any null depth beyond -70 dB is practically

not realizable. As a result, the null performance obtain from the Hard Constraints

method is practically not achievable, Fig. 4-9. Therefore, we now carry out the

computations for the Soft Constraints method as an effort to reduce the null depth

to a more practical range. In this method, we constrain equation (3.13) to a small

value 6 instead of to zero as for the Hard Constraints method.

Beampattern plots for the Soft Constraints method are shown in Figure 4-12

for three values of 6, -40dB, -60dB and -80dB. As expected the result of the Soft

Constraints method approaches to that of the Hard Constraints method as 6 - 0.

Therefore by varying the constraining value 6, the null depth can be reduced to a

desired operating value.

Two performance factors of a Derivative Constraints system are affected by im-

posing Soft Constraints on the null. First, the sidelobe reduction ratio Q, Eq. (4.4),

decreases as a result of a decreased in the null depth. Second, the array white noise

gain is expected to be less with the Soft Constraints method than with the Hard

Constraints method. This will be apparent in the next section where we analyze for

the array white noise gain of a beamformer.

4.3 Array White Noise Gain

The third performance metric use in comparing the performance between the two

nulling techniques is the improvement in the signal-to-noise ratio or the array gain.

As described by Cox et al. [6], the array gain is given by

W*

G = ,Rw (4.9)

where w is the array weighting vector, s is the signal vector and R is the noise

cross-spectral matrix. The numerator of (4.9) is called the signal response, and the
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denominator is called the noise response. For the case of the noise is spatially white,

the noise cross-spectral matrix R becomes the identity matrix and the array gain

becomes what is called the white noise gain. We define the normalized white noise

gain as

G = (4.10)
w*w

Thus, Gw is the array gain against spatially white noise and its reciprocal is a measure

of sensitivity to noise. For a given nulling technique, higher value of white noise gain

is desired thus making the pattern response less sensitive to additive noise.

A comparison plot of the normalized white noise gain for the Hard and Soft

Derivative Constraints methods is shown in Figure 4-13 for 6 = -40dB. The plot

shows that the Soft Constraints method exhibits a slightly less in the white noise

gain than that of the Hard Constraints method. This is expected since the null depth

has been reduced for the Soft Constraints method thus making it more sensitive to

noise. However there is no difference in the white noise gain between each method

for 6 = -60dB. This is shown in Figure 4-14 . Hence this allows us to use the Soft

Constraint method without fear of making the beamformer more noise sensitive.

We have computed for the normalized array white noise gain for the Multiple Null

Constraints and the Hard Derivative Constraints techniques for different values of L,

the number of constraints imposed, and it is shown in Figure 4-15. The data shown

in Figure 4-15 is the white noise gain of the constrained pattern Gwc normalized by

the white noise gain of the quiescent pattern Gwq. Therefore, Figure 4-15 is the plot

of the improvement in the array white noise gain due to pattern nulling constraints.

As we can see that both nulling techniques achieve a similar level of improvement

in the white noise gain. Therefore, the choice of which constraint technique to use

becomes a matter of the user's preference between null depth and width.
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4.4 Overall Null Performance

Oftentimes in interference cancellation, one would like to know the relationship be-

tween the number of constraints and the achieved null width for a certain level of

sidelobe reduction. As shown in Fig. 4-9, this relationship cannot be obtained di-

rectly with Derivative Constraints. Though the width of the null increases as the

number of constraints is increased, quantifying the increase is difficult. In contrast,

the relationship between the bandwidth and the number of nulls is well defined for

Multiple Null Constraints since a null is imposed at each end of the band thus defining

the null band.

In beamforming, it is generally efficient to minimize the number of constraints

used for interference cancellation. Thus, we have computed general null performance

curves for both techniques. These curves show the relationship between the level

of sidelobe reduction achieved and the number of constraints used for a given null

bandwidth.

The nulling performance curves for the Multiple Null Constraints and the Deriva-

tive Constraints techniques are shown in Figures 4-16 and 4-17 for different values of

L, the number of imposed constraints. The performance curves are computed using
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the average sidelobe reduction as given in (4.4) and is repeated here for completeness,

max
kx E Akx |Wq(kx)| 2

Q= max 2

kx E Akx |We(kx) I|

When computing for the reduction ratio for the Multiple Null Constraints technique,

the nulls are evenly spanned out over the null band with one null placed at each end

of the band. As for Derivative Constraints, the reduction ratio Q is computed as a

function of the null band Akx (defined by the Multiple Null Constraints technique)

for a given number of constraints L.

Examining the expression for Q, we see that it is a function of the location of

the nulling band center. However, it has been shown in section 4.1 that the sidelobe

reduction ratio is independent of the location of the band. It is a function of the

bandwidth and the number of imposed constraints. The independence of the null

location allows us to compute general performance curves for any location in the

visible region of kxA = [0, 27r].

Comparing the results shown in Figs. 4-16 and 4-17 and a comparison plot shown

in Figure 4-18, we see that Multiple Null Constraints technique gives better average

sidelobe cancellation than that of Derivative Constraints technique. This can be

further justified by examining the comparison beampattern plot for both techniques

shown in Figure 4-11. This plot clearly shows that over the null band defined by the

Multiple Null Constraints technique, better average sidelobe cancellation is achieved

with Multiple Null Constraints.

The performance curves we have presented thus far are for the case of an interele-

ment spacing of one-half of a wavelength, d = A/2. For half-wavelength spacing, the

aliased space is equal to the propagation space. This is not the case for interelement

spacing less than a half-wavelength or d < A/2. In this case the propagation space is

less than the aliased space. As a result, some of the sidelobes or noise energy which

were in the propagation space (when d = A/2) have now moved out into the aliased

space. This is a concern because the mean squared error between the constrained
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and quiescent patterns was minimized only over the propagating space. The added

noise in the aliased space could affect the null performance since no error constraint

was imposed in this space.

To examine this affect, we have computed a performance curve for the case of an

interelement spacing of one-quarter of a wavelength d = A/4. The result is compared

to the case of half-wavelength spacing and is shown in Figure 4-19. As we can can

see that the null performance is the same for both cases. Hence, the null perfor-

mance curves we have presented thus far (for d = A/2) are also applicable to other

interelement spacing with d < A/2.
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Chapter 5

Conclusion

In this thesis we have presented two beampattern nulling techniques, Multiple Null

Constraints and Derivative Constraints. The resulting constrained pattern is a least

mean squared approximation of the quiescent pattern subjected to pattern nulling

requirements. Three performance merits, white noise gain, null width and null depth,

were used to evaluate the effectiveness of each nulling technique. We have found that

the improvement in the white noise gain is similar for both techniques. Thus, the

choice of which constraint technique to use becomes a matter of the user's preference

between null depth and width.

A major disadvantage of the Derivative Constraints technique is the indirect rela-

tionship between the number of constraints imposed and the resulting null bandwidth.

This is not the case for Multiple Null Constraints in which the null bandwidth is the

sector between the leftmost and rightmost nulls.

For a given number of constraints, the method of Derivative Constraints gives

better depth but over a smaller sector than Multiple Null Constraints. The latter

technique yields less depth but over a wider sector. Better overall performance is

achieved with Derivative Constraints when the number of constraints used is two.

As we have seen earlier that the null depth obtain from the Hard Derivative Con-

straints method is quite large. However, any null depth beyond -70 dB is practically

not realizable due to the device performance limitation. As a result, a Soft Constraints

method was considered. The data have shown that the result of the Soft Constraints
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method approaches to that of the Hard Constraints method as the constraining value

6 -+ 0. Thus, by varying the constraining value 6, the null depth can be reduced to

a more practical range.

General sidelobe nulling performance curves were computed for both techniques.

The performance curves show the relationship between the average level of sidelobe

reduction achieved over some nulling bandwidth for a given number of constraints.

After comparing the performance curves we have concluded that Multiple Null Con-

straints technique gives better average sidelobe reduction ratio than that of Derivative

Constraints technique.

In conclusion, for wide-band interference cancellation applications, multiple nulling

is more effective than derivative nulling. Conversely, when the interfering source is

narrow-band or directional, derivative nulling is more effective than multiple nulling

due its ability to achieve a large null depth at the interfering direction.
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