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On the Inverse Spectral Problem for Polygonal Domains

Thesis Abstract

Catherine Durso

This thesis uses the solution operator U for the wave equation to prove several results in the

inverse spectral theory of polygonal domains. Because a polygonal domain is completely

specified by a finite number of geometric constants, the inverse spectral problem of extracting

geometric information about a region from its spectrum becomes finite dimensional when the

region is restricted to the class of polygonal domains. In this context a polygonal domain X is a

bounded, connected, open subset of R2 whose boundary is a finite union of disjoint polygons.

The spectrum under examination is the spectrum of the Laplacian on X. The technique of

extracting information from the spectrum by examining the trace of the solution operator of the

wave equation has been successful in other settings and is applicable to polygonal domains. In

this method the study of the trace of the solution operator centers on the geometric information

carried by the singularities.

One main result of this thesis is the proof of the Poisson relation for polygonal domains.

Conjectured by F. G. Friedlander, the relation states that the singularities of the trace operator U

are confined to the length spectrum of closed geodesics of X:

sing supp trU c {l:1 =0 orI I s the length of a closed geodesic of X).

The appropriate definitions of each side of the Poisson relation are provided by F. G.

Friedlander's work [F] analyzing the Sommerfeld kernel for the initial boundary value problem

of the wave operator on wedges. Using the Sommerfeld kernel Friedlander constructed Green's

function U(tx,t',x') for the wave equation on a polygonal domain. In this notation trU is the

distribution on R given by the following integral:

T U(tx,O,x)dx

Due to the finite propagation speed, for small time intervals Green's function on a polygonal

domain is locally equal to the Sommerfeld kernel on a corresponding wedge. The known form

of the Sommerfeld kernel dictates that the set of geodesics for a polygonal domain includes two

classes of geodesics, reflective and diffractive. A reflective geodesic is a billiard ball trajectory

confined to the interior of X, the edges of DX, and those vertices of DX at which the edges meet to

form an angle n/N,N E Z. At the edges of X the trajectory is reflected according to Snell's Law.



At the allowed vertices, reflection is according to a generalization of Snell's Law. A diffractive

geodesic is a billiard ball trajectory in X uaX which includes at least one vertex for which the the

associated angle is not it/N. Such trajectories obey the reflection laws governing reflective

geodesics, while at the vertices not of x/N type diffraction occurs and the trajectory emerges

from the vertex at an arbitrary angle.

The proof of the Poisson relation proceeds in several steps. The main lemma, proved in this

thesis, is that the wavefront set of U away from the vertices is restricted to points of the form

(t,,',x,1,t',4') for which a geodesic of length t - t'joins x and x' while and ' are the directions

of the geodesic as it passes through x and x'respectively. Further, the following quantities must

be equal: e9, , P, and I ' P. This relationship is shown using the known form of the wavefront set
for small time intervals together with a series expansion for the Sommerfeld kernel which gives
control of the kernel as x and x' approach the vertex. This done, the proof proceeds by

considering 4U and(1 - $)U where 0 is a smooth function in x supported away from the vertices.

Standard wavefront analysis then shows that troU satisfies the Poisson relation. The proof of the

Poisson relation for tr(1 - $)U hinges on the existence of a trace class operator closely related to

tr(1 - $)U. Manipulation of this operator reduces the proof to a manageable question of the

regularity of U on smooth initial data with appropriately bounded behavior near the vertices.

One extension of this result is the solution of the inverse spectral problem for triangles. The

crucial spectral invariant for the solution is the height of the triangle, which can now generally be

found from the length of the shortest diffractive geodesic passing through a single corner.

[F] F. G. Friedlander, On the Wave Equation in Plane Regions with Polygonal Boundary,

Proceedings of the NATO ASI, Castelvecchio-Pascoli (Lucca), Italy, 1985.
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Chapter 1

Introduction

This thesis uses the solution operator for the wave equation to prove the Poisson relation
for polygonal domains and to derive a spectral invariant of triangles. In this context a
polygonal domain X is a bounded, open subset of R 2 whose boundary is a finite union
of disjoint polygons. Denote the wave operator (L)2 _ (L)2 _ (L)2 by P. The forcing
problem for polygonal domains is stated as follows: given f E CO (X), find u satisfying
Pu = f, u = 0 on the edges of X, and u = 0 for t < 0. If additional assumptions
are made about the regularity of u near the vertices of X this problem has a unique
solution. F. G. Friedlander in [1] constructs the solution operator G for this problem
from the Sommerfeld kernels for the angles involved. In this thesis the operator used is
generally the solution operator for the initial value problem: given go and g1 E CO*(X)
find g(t, x) satisfying Pg = 0, g(0, x) = go, a(0, x) = gi, and g = 0 on the edges of
X. The solution operator U(t) maps initial data (go, gi) to (g(t), A(t)). The domain is
HIO e L2 . Chapter 3 contains the construction of U(t), its uniqueness, and its expression
in terms of G(t).

The operator U(t) gives rise to a tempered distribution tr U on Rt. The pairing
< tr U, f > is defined to be the trace of the operator f U(t)f(t)dt. This distribution is
determined by the spectrum of the Laplacian on X with Dirichlet conditions.

The first objective of this thesis is to prove the Poisson relation for U(t). The Poisson
relation states that the singular support of tr U is confined to the length spectrum of
closed geodesics of X:

singsupp tr U C {l : I = Oor III is the length of a closed geodesic of X}

Here the appropriate definition for a geodesic of X is given in Friedlander[2]. Both
reflective and diffractive geodesics must be taken into account. A reflective geodesic is
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CHAPTER 1. INTRODUCTION

a closed billiard ball trajectory confined to X, the edges of X, and the vertices of X at
which the edges meet to form an interior angle -, N E Z. At the edges the trajectory
is reflected according to Snell's law. At the allowed vertices, reflection is according to
a generalization of Snell's law. A diffractive geodesic is one which includes at least one
vertex for which the associated angle is not of the form g. Such trajectories obey the
reflection laws above. In addition, at vertices not of g type, diffraction occurs and the
trajectory emerges at an arbitrary angle.

The wavefront set of U is the major element in the proof of the Poisson relation. In
Chapter 4 it is shown that the wavefront set of U is restricted to points (t, z, z', r, C, (') E
T*(R x X x X) such that a geodesic of length It I joins z and z'. The direction from z' to
z along the geodesic is given by sign(t)sign(r) ' and the direction from z to z' is given
by sign(t)sign(r). The proof proceeds by examining the propagation of singularities
by U(t), using induction on the range of t for which the propagation is along geodesics.
The construction of U guarantees propagation along geodesics for small t. Extension
to larger t is accomplished by cutting off the solution g(t) by some 0(t) E C,(Rt)
supported in the region where the propagation property holds. Then applying the
forcing kernel to P4g extends g. The forcing kernel for small time intervals has known
wavefront set, therefore this also extends the propagation property to a larger range of
t.

The Poisson relation follows from this and the regularity of U(t) and G(t) on data
which is smooth in in an appropriate sense. Chapter 5 is a proof of the Poisson relation
for polygonal domains. The approach is to split tr U into a sum

tr U[1 - q] + tr U(t - e)[q]U(e)[] + tr U(t - e)[0]U(e)[1 - q]

where 4 equals 1 in a neighborhood of each vertex, and q vanishes outside a neighbor-
hood which is small compared toe. Then the terms tr U[1-0] and tr U(t-e)[]U(e)[1-
4] can be handled by standard microlocal analysis. The term tr U(t - e)[4]U(e)[] is
smooth for all t, because [q]U(e)[] is smooth, dies off appropriately toward the vertices,
and satisfies P[O]U(e)[O] = 0 on a neighborhood of the vertices.

One application of this result is to the inverse spectral problem for triangles. The
area and perimeter are well known spectral invariants. If the height could be determined
from the singularities of tr U, this would show that the triangle was determined by its
spectrum. For triangles with one height shorter than the others, the height is available
from tr U.

Suppose that a triangle X has a unique shortest height, h. Then there is a closed
geodesic of length 2h lying along the perpendicular dropped from the largest angle a
to the opposite side. This produces a singularity of tr U at t = 2h. The singularity
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is of order -1 if the triangle is a right triangle, and of order -} otherwise. This is2
proved in Chapter 6 by reducing the terms tr U(t)[1 - 0] and tr U(t - 6)[O]U(c)[1 - q]
to expressions roughly of the form tr F U.(t, p(z), z')[]. Here F is a pseudodifferential
operator acting basically as a cutoff function, and 4 is a function supported along the
height geodesic away from the vertex. The operator U, is the solution operator for
the sector corresponding to the angle a. The operator p is reflection across the side
opposite a.

The reduction is straightforward for tr U(t)[1 - q]. For tr U(t - 6)[O]U(c)[1 - 0]
the key fact is that only singularities a distance 2c to le survive the cutoff by [0]. Of
these, the singularities closest to the corner are propagated through the corner by U(E).
Then U(t - e) acts on these like V(t - e). Consequently tr U(t - E)[0]U(e)[1 - 0] has
the same leading singularity at 2h as -tr V(t '- e)[0]V(-t + e)U,(t, p(z), z'). Here V(t)
is the solution operator for the half plane containing X with boundary along the side
opposite a. Similar equivalences are shown for the rest of the singularities in the range.

Using the information from these singularities, a variety of inverse spectral results
can be stated. One of the simplest consequences is that the class of obtuse triangles is
spectrally determined, and that within this class no two triangles are isospectral.
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Chapter 2

Forcing Problem Solution

Operators

2.1 Introduction

The Sommerfeld kernel for a sector preserves regularities of the forcing function and
propagates the singularities of the forcing function in ways that are inherited by the
forcing kernel for a polygonal domain. This chapter recapitulates the description of the
Sommerfeld kernel and the construction of the forcing kernel for polygonal domains
given in Friedlander[1]. Aspects of each kernel that are important to the computation
of the trace of U(t) are emphasized.

The Sommerfeld kernel is the solution operator for a boundary value problem of
the wave operator on a sector. Let S be a sector of angle a < 27r in R2 , given in polar
coordinates by {(r, 0) : r > 0 and 0 E (0, a)}. The wave operator in these coordinates
is

P = 2 _ 2 - r-2()2 _ r--
ar ao ar'

A basic statement of the forward forcing problem for S is the following. Given a
function f in Co'(Rt x S), find a function u in C**(Rt x S) satisfying

Pu=f

u(t, r, 0) = u(t, r, a) = 0

u = 0 if t < 0.

9



CHAPTER 2. FORCING PROBLEM SOLUTION OPERATORS

The Sommerfeld kernel is a distribution F(t, t', r, 9, r', 9') satisfying

Pt,,eF = - 6(t - t') 6(r - r') 8( - 9')r

with F = 0 for t < 0. That is, F is a forward fundamental solution for the forcing
problem. The function u(t, r, 9) =< F, f > is in fact a solution of the problem given.
This particular kernel does better than that. For any integers k, 1, m > 0 the function
r-1/2 (r 8 )k(-L)L)mu(t, r, 9) is bounded on any set (t 1 , t 2) x (0, ri) x (0, a) for -oo <
ti, t 2 < oo and 0 < r1 < oo. These properties specify u, and consequently F, uniquely.

This sort of boundedness together with smoothness in the interior provides a useful
definition of smoothness of functions on the sector.

Definition 2.1 Let 0 be an open set in Rn and u(z, r, 9) a function defined on points
in 0 x S. Then u is smooth on 0 x S with boundary if
i. the function fi(z, r, 0) periodic in 9 with period 2a defined by

ii zr,0) u(z, r, 0) 0 < 0 < a
iu(z, r, 9) = <<-U(z, r, 0) -a < 0 < 0

is smooth on 0 x (0, oo) x Re, and
ii. the function r-1/2(ry)k(-)l()6u(z, r, 9) is bounded on any set V x (0,ri] x [0, a]
compactly contained in 0 and r. finite. Here k and I are non-negative integers and f
is a multi index of non-negative integers.

This is extended to functions with two arguments in sectors by

Definition 2.2 Let 0 be an open set in Rn and let S and S' be sectors with angles
a and a', respectively. Then a function u(z, r, 9, r', 9') on 0 x S x S' is smooth on
0 x S x S' with boundary if
i. the function fi(z, r, 9, r', 9') defined on 0 x R+ x Re x R+ x Re, by the conditions that
it is equal to u on 0 x R+ x (0,a) x R+ x (0,a), odd in Re and Rot, and periodic of
period 2a in Re and 2a' in Rot is a smooth function, and
ii. the function (rr')-1/2 (ra)k(- )l(r' a)k'()(-)' 3 ii is bounded on any set V x (0, r] x
Re x (0,r 2] x Rot. Once again, V is compactly contained in 0 and r1 and r2 are finite.
The exponents k,l,k' and ' are non-negative integers and 8 is a multi index of non-
negative integers.

Several explicit expressions for the Sommerfeld kernel are given in Friedlander[1].
In the case of a sector with angle a equal to 7r/N for some positive integer N, the
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2.2. THE CONIC MANIFOLD SOLUTION

kernel is simply a sum of reflections and rotations of the standard kernel on R 2. The
basic properties of this sector kernel are well understood on the basis of the properties
of the kernel in free space. The Sommerfeld kernel for a sector S with angle a $ r/N is
more complicated. Consequently it is worthwhile examining the forward fundamental
solution on a related manifold. The kernel for the sector is obtained from the kernel on
the manifold and inherits many of the properties of the manifold kernel . In addition,
the manifold kernel provides a sensible way to talk about the wavefront set of the sector
kernel on the edges of R x S x S.

2.2 The conic manifold solution

Let S be a sector with angle a. The manifold M associated with the forcing problem
on Rt x S is given by

M = Rt x R+ x R mod 2aZ.

The manifold has canonical coordinates (t, r, 9) and measure r dr d9 dt. The integration
in these coordinates is taken over Rt x R+ x (a, a + 2a) for any
on M is still given by

P 9(%)2 a )2 _ r-2(%)2 _ r-1 .

The forward fundamental solution on M with the required
E(t - t', r, r', 9 - 9') for E(t, r, r', 9) given as follows:

E(t, r, r', 9) lt>r+r = (27r)-'H(t) x(9 - 2na))(t2 - r2 - r'2 +
l= -00

a. The wave operator

regularity is equal to

2rr' cos(9 - 2na)) 112

E(t, r, r', 9) lt<,+r- = (27r)- 1 j K(j, 9)(2rr' cosh77 + r 2 + r' 2
- t2) +1/2 dq.

Here H is the Heaviside function. The function X is the characteristic function of the
interval [-7r, 7r]. The expression for K is in the terms of n = 7r/a. The value of K(77, 9)
is

- ( + 2 e-n"' cos(mrq) cos(mK)).

One immediate and important (if unsurprizing) fact is that supp E(t, r,', 9) is con-
tained in {(t, r, r', 0) : t > Ir - r'l}.

11



CHAPTER 2. FORCING PROBLEM SOLUTION OPERATORS

The operator with kernel E(t -t', r, r', 9-9'), call it E, maps forcing functions which
are essentially "smooth on M with boundary" to functions of the same regularity. Made
precise, this is

Theorem 2.3 (Friedlander[I]) Let f E C (M) be supported in [to, oo) x R+ x R mod
2aZ, and odd in 9. Suppose also that for all k, 1, m > 0, r > 0 and s, s' finite, the
function r1/2(r)k(-a- )mf

Or 09 Ot
is bounded on the set [s,s'] x (0,ro] x [0,2a]. Then Ef solves the forcing problem with
forcing term f. Further Ef E C (M) is also odd in 9, and

r-1/2(r ) ( ) (%)mEf

is bounded on amy set [s, s'] x (0, ro] x [0, 2a].

The bound guaranteed by Theorem 2.3 can be computed in terms of the bounds on f.

Theorem 2.4 Let f be a function satisfying the hypotheses of Theorem 2.3. Let D be
the set {(t,r,9) : r+t <rl+ti, to <t <t 1 }, withto < tl < oo and 0< r1 < oo. Then
there exists a constant C depending only on D such that

ir~1/2Ef I ; Cmax{supD r-1/2g1, sUpDlr-1/2 g2

The propagation of singularities by E is closely related to the propagation of sin-
gularities by the sector kernel. One expects points (t, t'r, r', 9, ', r, r', p, p', 0, 0') in
WF E to be the points related by a geodesic. Indeed WF E is the union of three sets
of points in T*(M x M) which have a natural interpretation in terms of geodesics.

The first of these is just N*(A)\0, the conormal bundle over the diagonal in M x M,
excluding the zero section. This represents the "trivial geodesics" of zero length.

The points in the set

r = {(m,m') E M x M: (t - t')2 - r 2 - r'2 + 2rr'cos(9 - 0' - 2na) = 0,

19 - 9' - 2naI <ir, O < t - t' <r + r', n E Z}

are essentially pairs (r, 9) (r', 9') a distance t - t' apart along a path which does not

intersect the boundary of M. Denote the conormal bundle over P less the zero section

by N*(r) \ 0.
Finally, those points corresponding to diffractive geodesics may be included. Let B

equal {(m, m') E M x M : It - t'l = Ir + r'}.

12



2.2. THE CONIC MANIFOLD SOLUTION

Theorem 2.5 (Friedlander[1J) If M is of the form Rt x R+ x R mod 7r/NZ then the
wavefront set of E(t - t', r, r', 6 - 9') is equal to the closure of

N*(A) \ 0 U N*(r) \ o.

If M is of the form Rt x R+ x mod2aZ, a 0 ir/N then the wavefront set of E(t -
t', r, r', 9, 9') is equal to

N*(A) \ 0 U N*(P) \ 0 U N*(B) \ 0.

There is another expression for E which shows what type of singularity occurs on
the set B, at least at points satisfying the condition that 10 - 6'I is not equal to 7r
modulo 2aZ. The kernel of E is given by E(t - t', r, r', 9 - 9') for

E(t, r, r', 9) = (27r)- 1H(t) x(9 - 2na) (t 2 - r 2 - r'2 + 2rr' cos(9 - 2na)) +1/2

+ (27r)l / L(r7,9)(t 2 - r 2 - r'2 - 2rr' cosh r7) /12 di7

where

0 1 sin n(r9 + 0) sin (7r - 0)

2a cosh Kr - cos K(7r + 0) cosh K7r - cos K(7r - 9)

with r, defined as in other kernel.
One can verify that this version of E basically has a jump discontinuity across the

set B. Each piece x(9 - 0' - 2na)(t 2 
- r 2 - r' 2 + 2rr' cos(9 - 9' - 2na) is smooth on

a sufficiently small neighborhood of a point of B which also satisfies the condition
19 - 9' - 2na 7 ir. Next consider

10 L(r, 9 - 9') (t 2 - r 2 - r' - 2rr' coshr 7)+1 2 d77

in a sufficiently small neighborhood of a point (M, m') E B, 1 - 9' $ 7r. In such a
neighborhood the function on M x M given by the integral can be written as a product
0(t - t' - r - r')f(m, m'). Here f(m, m') is smooth and 0 is the characteristic function
of the interval [0, oo).

13



CHAPTER 2. FORCING PROBLEM SOLUTION OPERATORS

2.3 The sector solution, F

Let 8 be the identification of Rt x S with an open set in M, 8 : (r, 6, t) E S -+ (r, 6, t) E M.
The sector kernel F(t - t', r, r', 6, 6') is simply E(t - t', r, t', 6-6') - E(t - t', r, r', 6+6'),
though for F the integration extends only over 6 in the interval (0, a). One intepre-
tation of this presents F(f) as a pull back by P of E applied to a specially modified
forcing function f. Let f be a function which is smooth on R x S with boundary, with
f(t) = 0 t < 0. Define f(t, r, 6) on M by

f f(t, r, 6) 0 < 0 < a
k, r, ) = -f(tr,-6) -a <6<0.

Then F(f) = Ej o/.
As a consequence of this relationship, one obtains from Theorem 2.3 the following

Theorem 2.6 (Friedlander[1]) Let f be smooth on Rt x S with boundary. Suppose the
support of f is contained in [to, oo) x S. Then F(f) is smooth on Rt x S with boundary,
and F(f) is supported in [to, oo) x S.

As a consequence of Theorem 2.4 and the commutation relations [-, E] = 0,
[i, E] = 0 and [r + t-, E] = 2E, one can draw conclusions about the behavior
of F on smooth families of forcing functions. In particular,

Theorem 2.7 Let S1 and S2 be sectors. Let f(t, r', 6', r", 6") be smooth on Rt x Si x S2

with support in t > to. Consider f as a family of forcing functions parametrized by
r", 6". Then Ff(t,r,6,r",6") is also smooth on Rt x S1 x S2 .

The kernel for F has an asymptotic expansion for t - t' > r + r' which is actually
a little smoother than the one which can be wrung from E.

Theorem 2.8 On any neighborhood (to, tj) x (0, ro) x (0, ri) x (0, a) x (0, a), ro, r1
sufficiently small, F(t, r, r', 6,6') has an asymptotic expansion

(2rr')7n'fm(0, ', r' r0
m=1

Each fm is smooth on Re x Rot x (-roro) x (-ri,r1) x Rt, and odd and periodic of
period 2a in Re and Re,. The derivatives Dfm are bounded by C1(C 2 )mkm#, C1 and
C 2 independent of m.

In fact #F(t, r, r', 6,6') is smooth on Rt x S x S with boundary if q is a smooth
cutoff function radial in S and S' supported in t > r + r'.

14



2.3. THE SECTOR SOLUTION, F

From the definition of F comes a natural extension of F across the 6 and 6' bound-
aries of Rt x S x Rt x S. Simply extend the identification P to a sector neighborhood S'
of S in Rt x R2 , and let / x P map (Rt x S') x (Rt x S') -+ M x M. Then the extension
of F, F is just

F(t - t', r, r', 6,6') = E(t - t', r, r',6 - 6') o P x /3-E(t - t', r, r', 6 + 6') o x /3.

Note that this is the odd extension of F across the lines 6 = 0, 6 = a, 6' = 0. That is,
if 6 and 6' are in (0, a) then

F(t - t', r, r', 6, 6') = -F(t - t', r, r', 6, -6') = -F(t - t', r, r', 6, 2a - 6'),

and likewise for 6.
The wavefront set of E dictates the wavefront set of F. The extension of F to F

gives a way to interpret the wavefront set of F at the edges of (Rt x S) x (Rt x S). The
significance of the wavefront set is clearer if S is expressed in rectangular coordinates.
Also, it is convenient to have the following

Definition 2.9 A point (t, z, z', r, (, (') satisfies a geodesic relation if the following
conditions are met:
i. a geodesic, diffractive of reflective, of length It| joins z to z', and
ii. the direction of the geodesic in i. at z toward z' is sign(t)sign(r)(. The direction
from z' toward z is sign(t)sign(r)('.

In these terms one obtains the following description of the wavefront set of F.

Theorem 2.10 A point p = (t, z, t', z', r, (,,r', (') in T*[(R x S) x (R x S)] is in the
wavefront set of F only if either
i. p is in the conormal bundle of the diagonal,
or
ii. t - t' > 0 and (t - t', z, z', r, C, (') satisfies a geodesic relation.

Let p1 be a reflection in R 2 across the x axis. Let P2 be the reflection across the line
reia , and let po be the identity. Let Q be the sector {(r, 6) : 6 E [-e, a + c]} where e is
sufficiently small that this is not equal to R 2 \(0, 0). To a point p = (t, z, t', z', r, (, r', ')
in T*(R x Q x R x Q) associate the set

U = {pij : p,, = (t, p;(z), t', p1(z'), r, p((), r', p((')) i, j = 0, 1, 2}

There is finally enough terminology to state
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CHAPTER 2. FORCING PROBLEM SOLUTION OPERATORS

Theorem 2.11 The wavefront set of F is confined to the set of points p such that
i. some element of U is in the conormal bundle to the diagonal in (Rt x Q x Rt x Q),
or

ii. some element of U, pi, = (t,z,t',z',r, (,r',('), is such that (t - t',Z1z', ,(,
satisfies a geodesic relation.

2.4 The polygonal domain solution, G

Before proceeding to construct the forcing kernel for a polygonal domain from the
Sommerfeld kernel, it is convenient to establish some details of terminology connected
with a polygonal domain X. In this thesis X is a bounded open region in R2. The
boundary of X is a finite union of disjoint polygons. An edge of one of these polygons
is an edge of X. Likewise, a vertex of one of these polygons is a vertex of X. An edge
is not considered to contain the vertices which are its endpoints.

It is also helpful to associate to X a constant describing the distances between edges
and vertices. Call an open set in X a pure interior set if its closure is contained in X.
An open set in X is a pure edge set if its closure intersects exactly one edge and no
vertices. A pure corner set is one with closure intersecting the boundary of X in two
edges which have a common vertex. In this case, the closure is allowed to contain that
common vertex. If d is a sufficiently small positive number, then for any point z in X
the neighborhood of z of radius 3d falls into one of these three categories.

Definition 2.12 Given a polygonal domain X, d(X) is the supremum of all d E R
with the property that a ball of radius 3d about any point in X is a pure interior, pure
edge or pure corner neighborhood.

The notion of smoothness on the product of an open set in Rn and a sector, and
smoothness on the product of an open set in Rn and two sectors carry over to X.

Definition 2.13 Let 0 be an open set in Rn. A function f(w, z) is smooth on 0 x X
with boundary if it meets all the following conditions.
i. The function f(w, z) is smooth in the interior of 0 x X
ii. Let zo be a point on an edge E of X. Let p be a reflection across that edge. Define

f(w, z) in a neighborhood of zo in R 2 by

f(w,z) z E X
f(wz) = -f(w, P(z)) p(z) E X

0 zEY
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2.4. THE POLYGONAL DOMAIN SOLUTION, G

Then f(w, z) is smooth in a neighborhood of zo.
iii. Let x 0 be a vertex of X. Let q E CO (R 2) be a radial function in polar coordinates
centered at xo. Suppose that 0 is constant on a neighborhood of xo and that supp n X
is contained in a pure corner neighborhood of xo. Then considered as a function on the
product of 0 and the sector S determined by xo and the adjacent edges, q(z)f(w, z) is
smooth on 0 x S with boundary.

Definition 2.14 Let 0 be an open set in R". A function f(w,z,z') is smooth on
0 x X x X with boundary if each of the following conditions is satisfied.
i. The function f(w, z, z') is smooth on 0 x X x X.
ii. Let z 1 be a point on an edge E of X. Let p be reflection across that edge and let O1
be a small neighborhood of z1 in R 2 . Then f(w, z, z') defined on 0 x 01 x X by

Sf(w, z,z') zEX

f(w, z, z') = -f(w, p(z), z') p(z) E X
0 z E E

is smooth. Likewise, odd extension across an edge in the z' variable is smooth.
iii. Let z 1 be a point on the edge E1 and z2 a point on the edge E2 . Then in a small
enough neighborhood of 0 x z1 x z2 in 0 x R2 x R 2 the function the function defined
by odd extension across both edges is smooth.
iv. Let x1 and x2 be vertices of X corresponding to sectors S1 and S2. Let #i, i =

1,2 be smooth radial functions supported in pure corner neighborhoods of x1 and x 2
resfpectively. Suppose that q1 is constant in a neighborhood of xi. Then 0 10 2f is
smooth on 0 x S1 x S2 with boundary.

These definitions of smoothness are valuable because they are preserved by a forcing
operator for X which is built from the Sommerfeld kernels of the sectors involved in X

Theorem 2.15 (Friedlander[li) There is a unique operator G which maps any func-
tion f which is smooth on Rt x X with boundary and supported in [to, oo) x X to a
function Gf with the same properties satisfying

(( )2 - A)Gf = PGf = f.

Sketch of Proof: For t near to Gf is constructed by cutting up X. The space X
has a finite covering by disks of radius d(X). Let 01,... 0,, be a partition of unity
subordinate to this cover. Require the functions O; to have the property that if f is

17
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smooth on 0 x X with boundary then so is q4,f. Under these conditions, each q; is
supported in a disk O of radius d(x). Let 0; be a disk of radius 2d(X) centered around
O . Then 0, is a pure neighborhood of interior, edge or corner type. Let F be the
forward fundamental solution for R 2, the half plane, or the sector corresponding to the
pure neighborhood 0,. Then for t - to < d(X) set Gf equal to L', F(oif). Where
defined, this satisfies the conditions of the theorem.

The function Gf can be extended to larger t by a repetition of the construction for
small t-to. Simply let i(t) be a smooth cutoff function equal to one for t < to+d(X)-2e
and equal to zero for t > to + d(X) - e. Set Gf equal to

OGf - G((1 - O)f - 2 2 kk(Gf)- 2 ).

This genuinely gives an extension of G because each of the new terms is supported in
t > t + d(X) - 2e. Note also that each of the terms in the extension has the same
regularity as f.

Iterating this process produces a function Gf smooth on R x X with boundary
satisfying P Gf = f.

Definition 2.16 The kernel of the operator G in Theorem 2.15 is G(t - t', z, z').

One immediate corollary of the construction is

Corollary 2.17 (Friedlander[i]) Let f(t, z', z") be supported in [0, oc) x X x X and
smooth on Rt x X x X with boundary. View f as a family of forcing functions
parametrized by z". Then Gf(t, z', z") is smooth on Rt x X x X with boundary and it
is supported in [to, oo) x X x X.

While this result is global in Rt, most of the immediate facts about the regularity
of G(t, z, z') are confined to (-oo, d(X)) x X x X. Much of Chapter 3 is devoted to
extending local properties which follow to constructions about Rt x X x X.

Corollary 2.18 Let t be an element of 0 = (to,ti) with 0 < to < ti < d(X). Let
xo be a vertex of X, and let S be the sector determined by x0 and the adjacent edges.
Give G(t, z, z') near 0 x xo x xo in polar coordinates r, 0 and r', 6' centered at xo. For
any 0(r) E C (R) and small e > 0 with 0(r) = 1 for r < d(X) - 2e and 0(r) = 0 for
r > d(X)-e, the function 0(r+r')G(t, r, 0, r', 9') is smooth on OxX xX with boundary.

18



2.4. THE POLYGONAL DOMAIN SOLUTION, G

In a neighborhood of r = r' = 0, G(t, r, 6, r', 00') has an asymptotic expansion of the
form

E (2rr')"'fm(t, r, 0, r', 6')
m=1

as in Theorem 2.8.

Corollary 2.19 The wavefront set of G in (-oo, d(X)) x X x X is contained
union of the conormal bundle to {0} x (the diagonal of X x X) and the set of
(t, z, z', r, C, (') satisfying a geodesic relation in X.

in the
points

There is an interpretation of the wavefront set of G on the edges of (-cc, d(X)) x
X x X which is still related to the geodesics of X. Let z1 and z 2 be points on the edges
E, and E2, respectively. Denote reflections across E, by pi, i = 1, 2. Take po to be the
identity operator on R2. Let 01 and 02 be neighborhoods of z1 and z2 in R 2 that satisfy
the condition that p,(Oi) is equal 0, and the condition that 0, intersects the boundary
of X only in Ei. Then G(t, z, z') can be extended to (-c0, d(X)) x X U 01 x X U 02 by

G(t, z, z')

-G(t, p1(z), z')
G(t, z, z') = -G(t,z, p 2 (z'))

G(t, P1 (Z), P2 (Z'))
10

if zz' E X
if p1(z), z' E X
if z, p2 (z'), E X
if p 1(z), p2(z') E X
if z or z' E

(t, z, z', r, C, (') is in the wavefront set of C only if either
p,((')) is in the conormal bundle to {0} x (diagonal in X U
> ij > 2,

ii. (t, pj(z), p1(z'), r, p;(C), p,((')) satisfies a geodesic relation in X for some 0 > i, j > 2

Corollary 2.20 A point

i. (t, pj(z), p,(z'), r, pt (C),
01 x X U 02) for some 0
or

19
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Chapter 3

Solution of the IVP

3.1 Construction of U

The approach here to proving the Poisson relation for a polygonal domain X is through
the solution operator for the initial value problem associated with the wave operator.
A basic statement of this problem follows. Let go and g, be smooth, real-valued,
compactly supported functions on X. Find g(t) smooth on Rt x X satisfying

og
Pg = 0, g(0,z) = go(z), L(O,z) = g1(z) and g = 0 on the edges of X.

For fixed to one can consider the operator U(to) mapping (go, gi) to (g(to, -) (to,-)).
This point of view produces a whole family of operators {U(t)}tER. The basic properties
of {U(t)} are the concern of the chapter.

The purpose of the first section is to show that {U(t)} can be extended to a unitary
group acting on a Hilbert space Hi @ L2. A distribution solution g(t, z) to the initial
value problem with data go e g1 in H? e L2 results in from application of {U(t)}. This
solution is in Hoc(Rt x X). It also has the property that the restriction to fixed t of
(g(t, -), (t, )) is in HI e L2 . Section 2 shows that g is the unique solution to the initial
value problem having these properties. The final section characterizes {U(t)} in terms
of the operator G(t) from Chapter 2.

The underlying set of H? e L2 and the inner product structure must be specified.
The space H? is the closure of CO*'(X) in the norm

)/1/2||goll = ( Vg -Vg dz)
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Becase the space X is bounded, this norm is equivalent to the more customary Sobolev
norm

Ilgoll = Z (J(ID'gl)2 dz)1 /2

The second space L 2 in the direct sum is the usual space of real-valued square-integrable
functions on X. The inner product used here to make Hl e L2 a Hilbert space acts on
pairs by

(go E gi, fo e f 1 ) = JVgo - Vfo + gif dz.

The corresponding norm is denoted by the energy norm. Throughout the rest of this
discussion, 7r, will be the projection of H10 E L2 to HO.

The action of the operators {U(t)} on H1 e L 2 will be defined by continuity from
the action of {U(t)} on C0**(X) e C00*(X). The first proposition of this section shows
that {U(t)} is well defined on C0'(X) e CO*(X). In order to do this, one shows that
each operator U(to) preserves the energy norm.

Proposition 3.1 Let goeg be an element of Co (X) eCO (X). There exists a unique
function g which is smooth on Rt x X and which is a solution of the initial value
problem. In addition, for any tot1 the function g satisfies the equality

Vg . Vg(to, z) + ( (to, z))2 dz = Vg . Vg(t 1 , z) + (Lg (ti, z)) 2 dz.

Proof: For a given go E gi e C0**(X) e C0* (X), the solution of the initial value problem
on the whole plane provides g(t) when the absolute value of t is less than the distance
from the support of gj to the boundary of X for i = 1,2. Say this gives g(t) for
t E (-t', t').

To extend g(t) to all t, choose 0(t) E C**(R) with 0(t) equal to one when jt| < t'/4
and equal to zero when It| > t'/2.

Then Po(t)g(t) is equal to the sum of two functions, f.- E C0**((-oo,0) x X)
and f+ E C0**((0, oo) x X). Apply the backward fundamental solution tor the forcing
problem , G_, to f- and the forward fundamental solution G to f+. Then set g(t)
equal to i(t)g(t) - G.f. - Gf+. This g(t) is a solution of the initial value problem.
The regularity of G_ and G guarantees that g is smooth on Rt x X.

For any function g smooth on Rt x X and satisfying Pg = 0 the following compu-
tation can be carried out.
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0 - x i: 8g(t, z)Pg(t,z)=

1/2 (Jx Vg -Vg(t, z) + ( (t, z))2 dz - Vg . Vg(to, z) - ( (to, z)) 2 dz

The uniqueness of g follows from this.
Another consequence of this is that if {go,, e g,,}*=1 is a sequence in Cgo (X) x

C0'(X) which converges in the energy norm to go e g, then {U(t)(go,n E 91,n)} is a
Cauchy sequence in the energy norm uniformly in t. Thus the action of {U(t)} is
well-defined.

Definition 3.2 Let go ( gi be an element of H1 e L2 and let {go,, e g,n E C0
0O(X) e

Co (X)} 1 be a sequence converging to go E g, in the energy norm. Then

U(090o (D 1 := liM U(t)g0,n (D gi,n.

The group property of the family of operators {U(t) : t E R} will figure prominently
in the proof of the Poisson relation.

Proposition 3.3 {U(t) : t E R} is a unitary group of operators on H10 e L2 in the
energy norm.

First establish that for the initial data go e gi E C6**(X) e Co*(X) the equality

U(t)U(s)go e gi = U(t + s)go e g1

is valid.
Denote by g(r) e ag(t) the element U(r)go e gi. Considered as a function on R x X,

g(t + s) solves the initial value problem

02( - A)g(t + s, z) = 0

g(t + s, z) t=o = g(s, z)

ag(t + s, z) = g(s, z).
t=o
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The function g(t + s, z) is smooth on R x X with boundary. There exists a sequence of
functions in C0**(X) x Co(X), {ho,, D hl,,}, converging to g(s) e hg(s) in the energy
norm. The function h,(t) = 7r1U(t)ho,, E hl,,, solves the initial value problem

a2
( - A)h,(t, z) = 0

hn(t, z) It=o = ho,

ah(t, z) = hi,
t=o

Each function hn(t, z) is smooth on R x X with boundary.
Consequently hn - g(t, s) is sufficiently regular that, in the energy norm one has

a 0
|Ihn(t) e & hn(t) - g(t + s) E 0ig(t + s)II =

I1ho,n e hi,n - g(s) E9 g(s)II.

Taking the limit as n -+ oo, obtain

j1U(t)g(s) e &g(s) - g(t + S) e 5g(t + s)II = 0.

This proves the group property for smooth, compactly supported initial data. By
continuity, the equality

U(t)U(s)go & gi = U(t + s)go ( gi

holds for general go e gi in H1 D L2 .
The remaining requirement for {U(t)} to be a unitary group is that

lim..o I IU(t)go e gi - go E giII is equal to zero. This is easily seen to be true for
smooth, compactly supported intial data. The fact that C0**(X) x C0o (X) is dense in
HoeL2 and the fact that {U(t)} is unitary imply the limit for arbitrary goEg1 E H10eL 2 .

3.2 Uniqueness of U

Consider the distribution g(t, z) obtained from the initial data go e gi E H10 e L2 by
defining g(t, z) = 7rU(t)go e 91. This distribution is an element of Hj*c(R x R 2 and
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g(t, z) E -g(t, z) is an element of Hl' e L2 for each fixed t. In addition, the energy norm
of g(t, z) e Tg(t, z) is bounded for all values of t in some compact set. In fact, g(t, z)
is the unique such solution of the initial value problem

Pg = 0, g(0,z) = go(z), and L(0,z) = g1 (z).

This uniquness is an immediate corollary of the following

Proposition 3.4 Let v be smooth on R x X with boundary. Suppose v satisfies Pv = 0.
Let g(t, z) be defined on (-a, T + a) x X for some a > 0. Suppose
i. g(t, z) E Hoc([-a, T + a] x X)
ii. Pg = 0 where defined
iii. g(to, z) e 'g(to, z) E H1 e L for all to (-a, T + a)
iv. g(, z) e g(0, z)= 0 e 0. Then

0=jT Pvgdzdt= ( v)g-v( g)dz .
0

Proof: Essentially one approximates v(t, z) and g(t, z) by functions which are suffi-
ciently regular to allow the integration by parts applied above to be carried out rig-
orously. The first step is to approximate v(t, z) by functions vn(t, z) supported away
from the vertices of X. Then on the support of Vn the function g can be approximated
by functions gj(t, z) which are smooth on (-a/2, T + a/2) with boundary. Finally
one must show that the resulting expressions in terms of the approximating functions
converge to the desired expressions in v(t, z) and g(t, z).

There exists a sequence of smooth functions { O(z)} such that each qn is supported
away from the corners of X and such that On(z)V(t, z) converges to v(t, z) in H10 uni-
formly for t in any fixed compact set. One can verify that if {,} is produced according
to the construction which follows then {0,} has the necessary properties.

Let f : R - [0,1] be a smooth function of R satisfying the restrictions

4f~r 0 r <d(X)/4
f~r =1 r > d(X)/2

Let 0,n(z) be equal to f(nr) in polar coordinates centered at each vertex x; if z is
within d(X)/2 of xi. Let 0, equal one otherwise. That is, 0, vanishes in a d(X)/4n
disk around each vertex. Note the equality

IT I P,,vg dz dt = j J P4vc 3 ng dz dt.
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Now the object is to replace qang with a sequence of functions gnj which are smooth
on (-a/2, T + a/2) x X with boundary. Let u, be an H1 extension of 03,g to a
neighborhood of [-a/2, T + a/2] x X such that u, is locally odd across the edges of X
and u, vanishes outside [-a/2, T + a/2] x R2 . Let {kO} be a smooth approximation
ofthe identity on Rt x R2 such that each 4', is a radial function in the space variables.
Require also that the support of each Oj in the space variables is sufficiently small that

0i * un vanishes at the edges of X, vanishes in a neighborhood of each vertex, and
satisfies P(Oj * un) = 0 on a neighborhood of [0, T] x suppS. Let gnj be the restriction
of unj to X in the space variables.

With these definitions {gn 3 } converges to 0 3 ng in H*c([-a/2, T + a/2] x X). Con-
sequently gnj t=to converges to03ng in H 1 / 2(X).

The equation

P$nvgn3 dz dt = ( 4nv)gn, - dz

is valid. The limit of this equation as j approaches infinity is

JT I P4nvg dz dt = f( #v)g - qS( g) dz (3.1)

For the terms foT fX Pnvg dz dt and fX(-2!Ov)g dz , the limit can be understood
by examining the Sobolev spaces in which the convergence gni --+ gn takes place. To
prove

Jim J"v . gnj dz T= J#vn g dz ,

it suffices to show that ajn converges to -jUn in H_1(R 2).

To prove the claim consider the Fourier transform, in the space variables, of the
function -(ung - u)j. Provided no particular property of t = 0 is used, one can,

without loss of generality, restrict attention to (Unj - un)1. The claim is then
equivalent to the statement that the functions

(4', - 1)rAn(r, 7)(1 - kiI2 1 2 dr

comprise a sequence of L2 functions converging to zero as j approaches infinity.
The extra factor of r in f(2b - 1)ri4(r, ?)(1 - I|2)-1/2 dr is actually harmless.

This follows because the wavefront set of un is contained in {(t, z, r, 7) : 17-1 = IqI}. Thus

26



3.3. U IN TERMS OF G

(1 - I?|2)-1/2 is bounded on a neighborhood of the set on which -Un fails to be rapidly
decreasing. Since n is an element of H1 (Rt x R 2 ) this implies that (1 + I772 )- 1/2 rii is
the Fourier transform of a function hn(t, z) E H1(Rt x R 2).

The functions Oj * h converge to h in H 1, so Oj * h,_o converges to hljo in
H 1/ 2(R12 ) C L 2 (R). Thus ( hIt'^ * _ (7) converges to (hIto)^(q) in L 2 (R 2). This
proves the claim because

(0j * h*t-0)^ () - (h|,_-)^(7)

is equal to

(4,; - 1)ri (r, 77)(1 +1772)-1/2 dr

To complete the proof of the proposition, note that the limit as n approaches infinity
of (3.1) is

= Pvg dz dt= vu -vudz

This proposition does imply the uniqueness of g satisfying conditions i-iv because
v(T) and -v(T) can be chosen arbitrarily from functions in CO*(X). Thus

Corollary 3.5 The function g(t, z) = 7riU(t)go e gi, go e g E H10 e L2 , is the unique
solution to the initial value problem

a
Pg = 0 gLo = go g =1

t=o
which also satisfies conditions i-iii of the previous proposition.

3.3 U in terms of G

The operators U(t) have another characterizaton in terms of the forward fundamental
solution for the forcing problem, G(t - t', z, z'), constructed by Friedlander.

Proposition 3.6 Let
U11(t) U12(t) -Ut
U21 (t) U22(t) 1

and let f(t, z) be an arbitrary function in CO (Rt x X). Then

U1 2(t - t', z, z')f(t', z') dz' dt' = G(t - t', z, z')f(t', z') dz' dt'.
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Proof: The function u(t, z) =f_*o fX G(t - t', z, z')f(t', z') dz' dt' is the unique func-
tion which is smooth on Rt x X with boundary and satisfying

Pu(t,z) =f(t,z) and u(t,z) =0 for t <0.

Proceed by showing that v(t, z) =fo fX U1 2(t - t', z, z')f(t', z') dz' dt' has the same reg-
ularity as u and satisfies the same conditions. View f(t', z), t' E R as a smooth
family of initial conditions 0 e f(t', z) parametrized by t'. Let g(t, t', z) equal the
projection of U(t)(0 e f(t', z)) onto the first component. Note that g(0, t', z) = 0 and
(1g)(O, t', z) = f(t', z). There exists e > 0 such that g(t, t', z) is in C* ([-e, E] x Rv x X)
with support contained in a compact set in X. This follows from the fact that for t
sufficiently small g(t, t', z) is given by the solution of the Cauchy problem on the plane.

To extend g(t, t', z) to arbitrary t use the method of construction for U(t). That is,
let 0(t) be a cutoff function in C0**(R) with

1 It < e/4
0 |t > e/2

The function ($ - A)(tb(t)g(t, t', z)) is the sum of two functions h+(t, t', z) supported
in (e/4, e/2) x R x X and h_(t, t', z) supported in (-e/2, -e/4) x R x X. The function
g(t, t', z) for arbitrary time equals

4(t)g(tt', z)+f f G(t-t", z, z')h+(t", t', z) dz dt"+J J G(t"-t, z, z')h_-.(t", t', z') dz' dt".

The functions h+ and h- are smooth on Rt x Rt x X with boundary, thus by The-
orem 2.15 g(t, t', z) is smooth on Rt x Rti x X with boundary. The same is true of
g(t - t', t', z). The fact that v(t, z) =fet g(t - t', t', z) dt' is smooth on R x X with
boundary follows from this. Computation of Pv(t, z) gives

Pv(t, z))= + g)(0, t, z) + 0 Pg(t - t', t', z) dt' = f(t, z)

Clearly v(t, z) vanishes for all t sufficiently negative. Thus, by the uniqueness of the
solution to the forcing problem u(t, z) = v(t, z).

Corollary 3.7

r LG(t) G(t) 1
U(t) - [ G(t ) aG(t I

AG(-t) -G(-t)
- y-G(-t) {G(-t) <
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Chapter 4

The Wavefront Set of U, G

The main result of this section is the conclusion that the wavefront set of G(t, z, z') in
the polygonal domain X is confined to points (t, z, z', r, C, (') for which ItI is the length
of a geodesic joining z to z' which passes through z in the sign(t)sign(r)( direction
and through z' in the -sign(z)sign(r)(' direction. This restriction on the wavefront
set of G enables one to use standard techniques of wavefront analysis to conclude that
if (1- q) is a smooth cutoff function with support bounded away from the vertices of X
then the integral fX(1 - 4)G(t, z, z')dz is a smooth function of t away from the length
spectrum of X. Essentially, the main result is proved by showing that G(t, z, z') as an
operator on R 2 propagates singularities along geodesics. More specifically, given initial
data 0 e gi supported away from the vertices of X, let g(t, z) equal ri(U(t)OEg 1 ), which
is equal to f G(t, z, z')g1(z')dz' as a function of z and t. Then to any point (t, z, r, () in
the wavefront set of g there corresponds a point (z', (') in the wavefront set of g, and
a geodesic of length jtj joining z to z' and passing through each point in the directions
sign(t)sign(r)( and sign(t)sign(r)(' respectively. This is shown first for the initial
data 0 e g, for which g, is an L2 function. The result is then extended to allow g, to
be an arbitrary distribution by noting that the regularity of the data is improved by
repeated applications of the inverse of the Laplacian. Special notice of the edges of the
region must be taken. The indicator of singularity most useful in these arguments is
the wavefront set of an extension of the function which is locally odd across the edges
of X. This is made rigorous in

Definition 4.1 A point (y, z, t, () is in the extended wavefront set of a function f
(Rk x X) -- R, denoted EWF, if
i. z is in the interior of X and (y, z, , () is in the wavefront set of f, or
ii. z is in an edge of X, p is reflection across the edge containing z, and (y, z, r,()
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is in the wavefront set of f extended to a neighborhood of z by setting f(x) equal to
-f(p(x)) if p(x) is in the interior of X.

Using this, the following theorem on the propogation of singularities for H10 E L2
initial data is stated:

Theorem 4.2 Let goEg 1 be initial data in Hoe L2 which is identically zero in a neigh-
borhood of each vertex. Let g(t, z) equal 7r 1U(t)go E g1 Then the following statements
are true of g.
i. If (t, z, r, () is an element of EFWg then there exists a point (z', (') in EFWgo -U
EFWgi and a geodesic of length It| joining z to z' which passess through z in the di-
rection sign(t)sign(r)C and through z' in the direction sign(t)sign(r)('.
ii. If for all points (z', C') in EWFg1 U EWFg2 the geodesic of length jt| beginning at
z' in the direction ±(' does not pass through the vertex xo of X, then there is some
neighborhood of (t, xo) on which g(t, z) is smooth on X with boundary.

Proof: The statements are true when Itl is sufficiently small. This follows from the
fact that for sufficiently small t, the function g(t, z) results from the application of the
solution operator on R2 or the solution operator on a half plane, as appropriate, to
each term of q;go E q;ig1 where {;,}n 1 is a suitable partition of unity. Assume that g(t)
satisfies i and ii for all t in the range (0, T) (there is no loss of generality in working
with t > 0). The form of the forcing kernel for small time will guarantee that g satisfies
the conditions for all t in the range (0, T + b) for some b > 0. Several cases must be
examined.

First consider the case in which some point (z', (') in EWFgo U EWGgi and a
vertex xo of X are joined by a geodesic of length T, but for some a > 0 no geodesic
with length in the range (T, T + a] joins a point of EWFgo U EWFg to xo. The task
is to show first that EWFg has the required form for t E (T, T + b]. One must also
show that g(t) is smooth on X with boundary in a neighborhood of each point (t, xo),
t E (T, T + b). This is done by cutting g off near t = T by a function 0(t) and applying
the short term forcing kernel separately to the terms 01P4g, q2P4g and 03 Pbg where

{#1, 02, 03} is a carefully chosen partition of unity for X.
The relationships among the supports of b, q1, #2 and O3 are important. Pick e > 0

which is small compared to d(X). Let 0(t) be a smooth cutoff function satisfying the
conditions

0{)=1 t< T - 2;
f()=0 t > T - e.
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Let the partition of unity { 1 , 02, 0 3 } be such that supp 1 is contained in an e/4 ball
about x0 , supp0 2 is contained in the set of points {z : e/8 < I z - xoll 5 4e}, and supp3
is contained in the set {z : IIz - xoIl > 3e}.

For t in a sufficiently small neighborhood of T and z within a ball of radius d(X)
of x0 , the extended wavefront sets of the terms
f G(t - t', z, z')q Pg(t, t') dt' dz' i = 2, 3 are confined to the desired points. In this

range, the known form of G(t - t', z, z') implies that the singularities of 0 2P~bg are
propagated along the geodesics. The singularities of q 3Pbg which are a small dis-

tance away from the other vertices are propagated along geodesics, while the forcing

terms very near the other verticies do not affect this neighborhood of x 0 . Moreover,
if z is an edge point of X and p is reflection across the edge containing z, the odd

extension of GokPg(t, z), i = 2,3, across the edge has its wavefront set contained

in (t, z, r, () : (t, z, r, () or (t, p(z), r, p(()) satisfies the relation in condition i. Thus
EWF GoiPog(t, z), i = 2, 3, satisfies condition i in the specified neigborhood of (T, xo).
Consider the term

f G(t - t', z, z')q 1Ptkg(t, z) dt' dz', b > -e/2, t E [T + b - e/16, T + b + e/16]. It has
support in the set {z : liz - xoll < b + e/16 + 2e + E/4} and is smooth on X with
boundary in the set {z : liz - xoll < b - e/16 + e - e/4} by Theorem 2.8 Thus
EWF G4Ptg is empty outside the band {z : b + 1e liz - xoI b + 3e}. How-
ever, this band in which EWFG 1 Pog, and hence EWFg, is problematic can be

moved entirely by replacing E in the argument by El = e/8 except in the specification

of the neighborhood of T in question. In this second analysis, the troublesome region

is {z : b + e/32 < liz - xoII < b + 1}. Since the bands from the two arguments are

disjoint, EWFg satisfies condition i in a neighborhood of t - T + b.

In order to verify that condition ii is satisfied, let b and 0 1 ,42,03 be as above. If e
is taken to be small compared to b > 0 then G4 1Pbg and Gq 2Pbg are both smooth

on X with boundary in a neighborhood of (T + b, xo).

The final forcing term f = 4 3Pbg has the property that no point (t, z, r, () E
EWF f gives rise to a geodesic reaching xo in the time interval [T - 2e, T + a]. Thus
there is a neighborhood of x0 such that if (t, z, r, () is an element of EWF f then

the geodesic passing through z at time t in the direction -sign(r)( does not enter

that neighborhood of x0 in the time interval [T - 2e, T + a]. There exists r < e such
that this neighborhood contains the set {z : IIz - xo II < r}. Consider Gf(t, z) for

t E (T - 2e, T + r). This function is supported away from x0 and is smooth on X with

boundary in the set (T - 2E, T +r) x {z : lz - xol < r}. Choose a 6 > 0 which is very
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small compared to r. Let4 E CO*(R) be a function satisfying

1() 1 < T+ r - 2;
0 t > T+ r -.

Pick O(z) E C**(R 2 ) satisfying

O(z) = fi Iiz-xo| <r +S;
10 llz-xoll>r+8.

Note that

08 _2_

Gf(t, z) = 4Gf(t, z) + G[(1 - O)f(t, z) - 2(5 b)(iGf) - ( , Gf](t, z).

The function 4[(1 - 4)f(t, z) - 2(SO(aGf) - jbGf] is smooth on X with boundary,
and so the forcing kernel applied to this expression results in a function smooth on X
with boundary. The term 4Gf(t, z) vanishes in a neighborhood of xo. The remaining
term in the expression for Gf(t, z) is the forcing kernel applied to fi = (1 - 0)[(1 -

?)f - 2 !Gf - 4,Gf. The function fi is supported in {z lz - xoll > r - b}
and has the property that none of the points in EWF fi is associated with a geodesic
passing through {z : IIz - zo|I < r} in the time interval [T - 2e, T + a]. The preceding
argument can essentially be iterated with fi in place f. If b is taken to be sufficiently
small, a finite number of iterations will show that Gf is smooth on X with boundary
in (T, T + a) x {z : IIz - zoll < r}. This completes the argument for the first case.

The remaining cases are considerably simpler. The case in which no geodesic arising
from the initial data arrives at xo in a neighborhood of t = T reduces to showing that
if no geodesic arrives from the initial data to x0 in the interval [T - a, T + a] then
conditions i and ii are satisfied for t E [T, T + a). This is shown by using the foregoing
argument in the situation in which g is known to have the desired behavior in the
interval [0, T - a].

The final case, in which there is a geodesic from EWF go U EWF gi arriving at xo
for all t E [T, T + a] can be handled by using the first part of the argument for case 1.
Note that in this final case condition ii is null.

This proves that g satisfies conditions i and ii in a ball of radius d(X) about xo for
t E [0, T + b]. Since xo was arbitrary, this shows that g satisfies conditions i and ii in
d(X) neighborhoods of all the vertices of X. The proofs that if g satisfies i and ii for
t E [0, T) then then g satisfies i and ii in a neighborhood of radius d(X) contained in
the interior and distance at least d(X)/2 from the vertices of X, or in a neighborhood
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of radius d(X) of an edge point a distance at least d(X)/2 from any vertex, are much
simpler and are omitted. Covering X by such neighborhoods proves the theorem.

The definition of U(t) can be extended as follows. Let z;, i = 1,2, be an edge
point of X. Let pi be a reflection across the edge Ei containing z, and let 0; be an
open neighborhood of z; in R2 with the property that 0, n OX is contained in Ei and
p,(O,) = 0,. For any go e gi E H2 e L 2 supported in 01 the restriction to X of
go e 1 - go o pi e gi o pi, call it fo e fl, is an element of HIO e L2 . Set U(t) go e gi equal
to U(t) fo e f, in the interior of X. In 02 set U(t) go e gi equal to the odd extension of
U(t) fo e f, across the edge E2. The result on the propagation of singularities by U(t)
gives

Corollary 4.3 Let U(t)goe g1 be defined as above and let g equal r1 U(t)goe g1. Then
WF g f T*(Rt x 01) is confined to points of the form (t, z, r, () for which there exists
a point (z',C') in WF go n WF gi and a geodesic of length |t| in X
joining z to z' with directions ( and C' at the end points,
or joining z and p1(z') with directions ( and p1(C'),
or joining p2(z) and z' with directions P2(C) and ('
or, finally, joining P2(z) and p1(z') with directions P2(() and p1((').

The family U(t) can also be viewed as acting on initial data go e gi for go and g1;
both distributions supported in X away from the corners. This is done by increasing the
regularity of the initial data by applying some power of the inverse of the Laplacian on
R 2 , A-1 . Consider first go and gi which are supported in the interior of X. Take k such
that A-k go is an element of H 1(R 2 ) and A-' gi is an element of L 2 (R 2 ). Let 0 E OOO(X)
be equal to 1 in a neighborhood of supp go U supp g1 . Define g(t, z) = ir U(t)go e gi by

g(t) = Ak17rU(t)( A-kgo e A-Skg1) - iU(t)[AkOA-kgo E AkOkAg 1 - Ogo E Og1].

The extended wavefront set of the first term arises from the wavefront set of go and
g, as described in the preceding theorem. The second term is the result of applying
the solution operator to initial data which is in CO*(X) e CO*(X) and so this does not
contribute to the extended wavefront set of g(t, z).

Likewise if fo and fi are distributions supported in a small neighborhood in X of an
edge point of X, and p is a reflection across that edge, let foef1 equal foefi- foopefi op
restricted to X. Define f(t, z) = 7rU(t)fo e f1 by

f(t) = Akx1U(t )(4 A~k fo e A-kf1) -- r1U(t)[AkOA-kf o e Ak# Akf 1 - #fo e q1].
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Once again f(t) has the desired extended wavefront set. Using a partition of unity
one can make any initial data supported on X away from the corners into a sum terms
of athe form go e g, or fo e fi as above. This is summarized in

Corollary 4.4 Let go E gi be initial data supported in X and supported away from the
vertices. Let g(t) equal 7r1U(t)go E g1. Then a point (t,z,r,() is in EWFg only if
there is a point (z', (') E EWFgo U EWFg1 and a geodesic of length |t| joining z to z'
which passes through z and z' in the directions sign(t)sign(r)( and sign(z)sign(r)('
respectively.

The definition of U(t) can now be extended to initial data comprised of distributions
supported in a small neighborhood 01 of a point on the edge El. Simply choose A-k
such that A-kgo e A-kg1 is in H'o E Li . Let q be a cutoff function supported in
01 equal to 1 on the support of go and gi, and symmetric with respect to E1. Then
U(t)go E gi is defined in terms of the extension in Corollary( ). Let g(t) = 71U(t)go e g,
be given by

g(t) = Ak7rU(t)(OA~kgo E qSA~'g 1 ) - 7rU(t)[AkOl JkqsgoE AkA-kg1 - qgo E qg 1 ].

Once again the second term on the right is smooth on X with boundary. Thus the
conclusion of Corollary( is true when go and g, are allowed to be distributions. Call
this extension U(t). Note that-U is locally an odd extension of U in that, for z' in
o 1 fnX and z in 02 nX one has

U(t, z,z') = 0(t, z,z') = -0(t, z, p1 (z'))

- -U(t, p2(z), z') = U(t, P2 (z), p1(z')).

The object of this examination of the propagation of singularities is to determine
the wavefront sets of the elements of U and U. Each of these families of operators can
be written as a matrix. The form of the matrix U(t) was shown in Proposition to be

'G 
&G-- G

&t2 at

The operator 0(t) mapping distributional initial data supported in 01 to distributions
defined on 02 can be written

iG

(ait ac
at 2 at
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The manner in which G and d propagate singularities is given by the propagation of.
singularities from initial data 0 e g1 by the operators 7rU and 7r 1U. The operator G
can be considered as acting in distributions supported in X mapping them to distri-
butions defined on Rt x X. The operator G maps distributions supported in in 01 to
distributions defined in Rt x 02. From this behavior and the fact that certain types of
points are not in the wavefront set of G or G, the wavefront set of each operator can
be restricted to points (t, z, z', r, C, (') whose terms are related by a geodesic.

One useful observation is that both WF G, defined at points in Rt x X x X, and
WFd are contained in the set of points {(t, z, z',r,(,(') : IrJ = 1(1}. This is just
a consequence of the fact that if P is the wave opeator in the variables t and z then
PG = PG = 0. A further assertion is possible. Neither WFG nor WFG contains
points of the form (t, z, z', r, C, 0) or (t, z, z', 0,0, '). For G, this is a consequence of the

fact that G(t) can be written as -G(t - e) o G(e) + G(t - e) o -G(e). Provided e is
sufficiently small the wavefront set G(t, z, z') is known to consist entirely of points for
which Inrl = K(I = ('I. The rules for the wavefront set of the composition of operators
together with the fact that Inr is equal to I(I for points in WFG imply the assertion.
The wavefront set of G can be analyzed similarly. Let

All A 1 2

A 2 1 A 2 2

be the standard solution operator for the initial value problem associated with the wave
operator in Rt x R2 . Then G(t) is equal to -G(t -,e) o A 1 2 (E) + G(t - e) o A 2 2 . The
argument proceeds as above.

Viewing the situation more abstractly, in each case, G and d, there is an operator
K from distributions supported in an open region Z in Rn to distributions defined on
an open region Y in Rm. Recall that a wavefront relation C' for K is a closed set of
points ((y, q), (z, ()) in T*Y x T*Z, such that a point (yo, ilo) is in the wavefront set of
Ku only if there is some point ((yo, 77o), (z, ()) in C' for which (z, () is in the wavefront
set of u. In each case here, a wavefront relation is known. Further, no points of the
form ((y, 0), (z, ()) or ((y, i),(z, 0)) are elements of either the wavefront relation of G
ofthe wavefront relation of G. Consequently the follwing theorem is applicable.

Theorem 4.5 Let K be a continuous operator from distributions supported in a region
Z in Rn to distributions defined on a region Y in Rm . Let C' be a wavefront relation
for K. If there are no points of the form ((y, 0), (z, ()) or ((y, 77), (z, 0)) in C' then the
wavefront set of the kernel of K is confned to the set

{(y, z, 77, ():((y, 77), (Z, - ()) E C'}.
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Applying this theorem to G gives the result that WF G is restricted to points
(t, z, z', 7, (, (') such that there is a geodesic of length Itl connecting z and z', and
the direction of the geodesic fron z to z' is sign(t)sign(r)(, while the direction of
the geodesic from z' to z is sign(t)sign(r)('. Likewise WF G is restricted to points
(t, z, z', r, C, (') for which at least one of the following satisfies the geodesic relation for
G given above:
(t, z, z', r, C, ('), (t, p2(z), z', r, P2(C), ('), (t, P2(z), p1(z'), 7, P2(C), P2(C'))
or (t, z, p1 (z'), r, C, p,((')). Again thinking of G(t) as 8G(t - e) o G(E) + G(t - e) o G(e)
one can conclude that EW G is further resticted to points (t, z, z', r, C, C') satisfying the
equalities IrI = ICI = -C'r. Likewise , for points in WF G the equalities ITI = -Cr = IC'I
are true.



Chapter 5

The Poisson Relation

The purpose of this section is the proof of the Poisson relation for U(t). It has already
been mentioned that the operator which maps a Schwartz function of t, f(t) to the
trace of the operator f U(t, z, z')f(t)dt is a tempered distribution. Call it tr U. The
Poisson relation states that

Theorem 5.1 The singular support of tr U is contained in the set

{l : ±1 is zero or the length of a closed geodesic in X}

It is possible to show reasonably directly that tr U(t) is smooth when t is not in
the length spectrum of X. The necessary information is the form of the wavefront set
of G(t, z, z'), the regularity of U(t) applied to data which is smooth on X x X with
boundary and supported away from the corners, and the regularity of the forcing ker-
nel on forcing data which is smooth on R x X x X. The method exploits the group
structure of U(t) by examining separately the terms tr U(t) o [1 - 0],
tr U(t-e[O]U(e)[4], and tr U(t-e)[]U(e)[1-]. Here 0 is a smooth cutoff function sup-
ported in a neighborhood of the vertices of X. The operator [] on H20 e 2 maps go e gi
to qgo e qg1 . This separation into three terms is justified by considering the distribution
tr U. Certainly trace f U(t)f(t)dt is equal to trace f U(t)[q]f(t)dt + trace f U(t)[1 -
q]f(t)dt. Also, the operator f U(t + s)[]f(t)dt is equal to U(s) f U(t)[q]f(t)dt. Thus
the term trace f U(t)[q]f(t)dt is equal to trace U(e) f U(t - e)[q]f(t)dt, which is equal
to trace f U(t - e)[4]U(e)f(t)dt.

In particular, for the purposes of proving Theorem 5.1 in a neighborhood of a fixed
point to, choose e and 4 as follows. Let e > 0 be a number which is small compared
to d(X) and which satisfies the condition that the interval (to - 3f, to + 3e) contains

37



CHAPTER 5. THE POISSON RELATION

no elements of the length spectrum of X. Given this choice of e, let 4 E CO*(R 2) be a
function which is supported in the set of i balls about each vertex of X. Require also
that 4 is a radial function in the i ball about each vertex xo in the polar coordinates
centered at xo, and that 4 is equal to one in the i ball about each xo. Given this choice
of 4, and the manipulations above, the proof of Theorem 5.1 reduces to the following
Lemmas:

Lemma 5.2 The distribution tr U(t)[1 - 4] is smooth in a neighborhood of any point
to not in the length spectrum of X.

Lemma 5.3 The distribution tr U(t - e)[4]U(e)[1 - 4] is smooth in a neighborhood of
any point to not in the length spectrum of X.

Lemma 5.4 The distribution tr U(t - E)[4]U(e)[4] is smooth on all R.

Proof of Lemma 5.2: The trace of f U(t)[1 - 4]f(t)dt as an operator on H? e L2 is
equal to the sum of the trace of the operator f -IG(t, z, z')(1 - 4(z'))f(t)dt from L2
to L 2 , and the trace of the same operator considered as a mapping from H? to H?.
Since these traces are equal, verifying that tr U(t)[1 - 4] is smooth near to reduces to
checking that f A G(t, z, z)(1 - 4(z))dz is smooth near to.

First consider the integral in the interior of X. Let 0o, 4 1 E C0**(X) be cutoff
functions such that supp 4o is contained in the set on which 4 1 is equal to one. Then
41(z)-G(t, z, z')4o(z')(1 - 4(z') is a distribution with known wavefront relation. Stan-
dard wavefront computations show that f -2G(t, z, z)4o(z)(1 - 4(z))dz, the result of
restricting this distribution to the diagonal in the space variables and then integrating
out the remaining space variable, is smooth in a neighborhood of to.

To understand the behavior near the edges, use G(t, z, z'). Let 0 be a sufficiently
small neighborhood of a point zo on an edge E0 of X. Then G(t, z, z') is a well-defined
operator from distributions supported in 0 to distributions defined in a neighborhood of
0. Let 4o,41 E CO*(R 2) be cutoff functions supported in 0 and even across Eo. Suppose
supp 40 is contained in the set on which 01 is equal to one. Then 4 1G(t, z, z')4o(z')(1 -
4(z')) is a distribution on R2 x R2 . As- before, wavefront considerations imply that
f G(t, z, z)40o(z)(1 - (z))dz is smooth on a neighborhood of to.

The distribution G(t, z, z)4o(z)(1 - 4(z)) is even across Eo. It is equal to
G(t, z, z')4o(z)(1 - 4(z)) on X. Thus

1 0(t, z, z)4o(z)(1 - 4(z))f(t)dzdt =2
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J G(t, z, z)qo(Z)(1 - q(z))f(t)dzdt.

Using a partition of unity subordinate to a division of the closure of X into sets of
the type of 0 and sets with closure contained in the interior of X completes the proof
of Lemma 5.2.

The proof of Lemma 5.3 is very similar, though some technical complications arise
due to the extra [q] in the expression. The main complication is the absence of an
extension of U(t - e)[q]U(e)[1 - 0] corresponding to U[1 - k]. However, one can define
an extension of U(t - e)[1 - 0]U(c)[1 - 0] just as U was defined. This will suffice for
the proof of the lemma.

To define the extension of U(t - e)[1 - O]U(e)[1 - q], call it B(t), proceed as follows.
Let 01 and 02 be neighborhoods of the type specified in the definition of U, with
corresponding edges El and E2, and reflections p, and P2. The operator B(t) acts on
initial data go E g1 supported in 01. The action is specified on 02 n X by the equality

17rB(t)go e gi = 7r1U(t - e)[1 - O]U(e)[1 - 0](go e gi - go o pi ) gi o p1).

Let g(t) equal 7r 1B(t)go e gi.The function g(t) is defined on all of 02 by the fact that
it is odd across the edge E2.

The wavefront relation for B(t) is the set of pairs ((t, z, r, (), (z', (')) for which
(t, z, z', r, C, (') or (±Ilt -21, z, z', r, (, (') satisfies a geodesic relation. Note that Pg = 0.
Denote by A(t) the family of solution operators for the initial value problem associated
with the wave operator on R2 . If b is sufficiently small, then

B(t) = 1 U(t -,E)[1 - q]U(E - b)A(b)[1 - 0].

Thus the same arguments that were used to compute the wavefront set of G can be
applied to B(t). Conclude that if B(t) is written

B 1 I(t) B 1 2(t)
B 2 1 (t) B 2 2 (t)

then the wavefront set of B(t) is contained in the set of points
{(t, z, z', r, C, (') : ((t, z, r, (), (z', zeta')) is an element of the wavefront relation for B}.
Furthermore Bii(t, z, z') = -Bi(t, z, p1 (z')) = -Bii(t, p 2(z), z') = Bij(t, P2(Z), P1(z')).
This completes the background necessary to treat tr U(t - e)[1 - 0]U(e)[1 - 0] in es-
sentially the same way as U(t)[1 - 0]. The result is
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Proof of Lemma 5.3: Note that, in light of Lemma 5.2, it suffices to show that
tr U(t - e)[1 - q]U(e)[1 - f] is smooth in a neighborhood of to. To do this, let

40,41 E C0**(X) be cutoff functions with supp 40 contained in the set on which q1 is
equal to one. The f 41Bi;(t, z, z)4odz is smooth in a neighborhood of to, i = 1, 2.

Likewise, let 40 and q1 be smooth functions supported in 01 that are even across
the edge!i. If supp 40 is contained in the set in which 41 is equal to one, then
f q1B;;(t, z, z)qodz is smooth in a neighborhood of to.

As in the case of the previous lemma, these two facts suffice to show that
tr U(t - c)[1 - 4]U(e)[l - 4] is smooth in a neighborhood of to.

The final case, Lemma 5.4, is substantially different. Here the fact that the elements
of qU(e) are smooth in 0 x X x X where 0 is a neighborhood of to is crucial.
Proof of Lemma 5.4: Consider the matrix form of [4]U(e)[4],

( C11 C12

C21 C22

View this as two sets of initial data parametrized by z', C1(e, z, z') E C2 1 (e, z, z'), and
C 12 (e, z, z')eC2 2 (e, z, z'). Claim that 7rC 1 (e)e C21(e) and rl1Cu(e)e C22(e) are smooth
on R x X x X with boundary. Consider first

C1(t + e;z, z') = 1U(t)Cn(e) e C21(e).

The function C1(t, z, z') can be obtained by considering

Cn(s) = 4(z) G(s, z, z')O(z')

for s in the range (L, oo). Note that 'Cu(e) = C1 2 (e). Basically, Cu(s) comes very
close to solving the initial value problem with initial values Cn(e) e C2 1 (e). The failure
is just a smooth function supported away from the vertices. Consequently the solution
to the initial value problem is smooth on R x X x X with boundary.

To begin filling in the details of this argument, note that the wave operator in
the s and z variables applied to C11 results in a function f(s, z, z') which is smooth
on (2, oo) x X x X with boundary. In fact the support in z remains outside the
neighborhood of the vertices on which 4 is equal to one. Let 0(s) E C**(R) be a
function which is equal to one on (2, oo) and equal to zero on (-oo, 2). Apply
the forcing kernel to (s)f(s, z, z') to obtain a function g(s, z, z') which is smooth on
R x X x X with boundary. The function C1(s, z, z') = Cu(s, z, z') - g(s, z, z') is then
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smooth on (2e, oo) x X x X with boundary. The wave operator applied to C0(s, z, z')
in the s and z variables is equal to zero when a is greater than 2. Conclude that

032

7r1 U(t)01i(e, z, z') E C1(,E, z, z')

is equal to C1(t + e, z, z') for t greater than -'.
32'

The function CI(s, z, z') solves an initial value problem very similar to the one with
initial data C1(e) E C2 1 (e). In fact, C1(e, z, z') A01e(e, z, z') is equal to C1(e) q C2(e)
when z is in a ball of radius le around any vertex. This implies that

7ri U(t) (0i(e) e a0C1 (e) - Cu(e) e C2 1(e))

is smooth on R x X x X with boundary.
Observe now that C1(t + e) is equal to

C 1 (t + e) - Ir U(t) (0i1(E) e 0(E) - Cii(e) e C21(e))

for t > -n. This implies that C1(t + e) is smooth on (2, 0) x X x X with boundary.
To verify that C1(t + e) is actually smooth on R x X x X with boundary, consider a
smooth function ?(s) which is equal to one in a neighborhood of [e, oo) and equal to
zero in a neighborhood of (-oo, 11-]. Apply the backward fundamental solution G to
P4C1 . Then Ci(s, z, z') is equal to ikC 1(s, z, z') - CPC 1(s, z, z'), a difference of two
functions both smooth on R x X x X with boundary.

Define C2(t + e) to be 7rjU(t)C1 2 (E)C 2 2 (e). The argument above also serves to show
that C2(t, z, z') is smooth on R x X x X with boundary.

In these terms, U(t - e)[O]U(e)[O] is equal to

C1(t) C 2(t)

iC1 (t) {C2 (t)

Each of the distributions tr C1(t) and tr y C2(t) can be computed by direct integration
of smooth functions. This proves the Lemma.

As mentioned earlier, the Poisson relation follows from these three Lemmas. Thus
the proof of the Poisson relation is now complete.



42 CHAPTER 5. THE POISSON RELATION



Chapter 6

Applications to Triangles

6.1 The inverse spectral problem

Specializing to the case in which the polygonal domain X is a triangle should make
some strong inverse spectral statements possible. Area, A, and perimeter, p, are well
known spectral invariants of triangles in particular, and much more complicated regions
in general. For triangles, however, just one more piece of data is needed to determine
the specific triangle up to rigid motion. For example, if the height is known the triangle
can be determined.

Thus one might hope that the lengths of the shorter closed geodesics of a trian-
gle together with area and perimeter would determine the triangle. Provided that the
lengths of diffractive geodesics are distinguished from the lengths of reflective geodesics,
this is the case. For obtuse triangles the shortest closed geodesic lies along the perpen-
dicular dropped from the obtuse angle to the opposite side. It is a diffractive geodesic
with length 2h, twice the height. For right triangles this same geodesic is the shortest,
but it is reflective. There is no diffraction at an angle of .

The shortest geodesic for acute triangles is again reflective. It is formed by joining
the feet of the perpendiculars dropped from each angle. It has length 2h sin a, where
a is one of the three angles and h is the length of the height dropped from that angle.
The next closed geodesic in order of length for an acute triangle is diffractive. It lies
along the height dropped from the largest angle.

F.G. Friedlander [3] has determined that it is not possible for a right triangle to be
mistaken for an acute triangle given this data. That is, if X is an acute triangle with
a given area and perimeter and a given value of h sin a, then there is no right triangle
with the same area and perimeter having its shortest height equal to the value h sin a
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of the acute triangle.
Consequently the folllowing process shows that the given data determines a triangle.

If the shortest closed geodesic is diffractive, the triangle is obtuse. Its height is now
known, and so X is determined. If the shortest closed geodesic is reflective and its
length is twice the height of a right triangle with the given area and perimeter, then X
is that right triangle. If the area, perimeter and the length of the shortest geodesic are
not consistent with the area, perimeter, and the shortest height of a right triangle, then
the triangle is acute. Its height is half the primitive length of the next closed geodesic
in order of length. This determines X.

Much of the data mentioned is available from tr U. For a triangle with one height
h shorter than the others, tr U has a singularity of order -1/2 at t = 2h. This is
the content of Theorem 6.17. The result of Guillemin and Melrose [1] for regions with
smooth boundary imply that tr U of an acute triangle has a singularity of order -1 at
t = 2h sin a, the primitive length of the reflected height geodesic. Theorem 6.18 states
this.

The missing element is the shortest height of acute isosceles triangles. In this case
the diffracted wavefront set of U is tangent to the reflective wavefront set along the
shortest height geodesic. This complication means that the method of Theorem 6.17
does not apply directly.

Even without this, a number of partial results can be stated. For example, as a
consequence of the reasoning above, Theorem 6.17, and Theorem 6.18, the following
theorem holds.

Theorem 6.1 Obtuse triangles can be distinguished from arbitrary triangles by spectral
information. In the class of obtuse triangles, a particular triangle is determined by its
spectrum.

6.2 tr U in terms of the Sommerfeld kernel

Let X be a triangle. A height geodesic of X is a closed geodesic beginning at one
vertex, traveling along the perpendicular dropped from that vertex to the opposite
side, then reflecting back. If one of the height geodesics is shorter than the others, it is
of particular interest. Say it has primitive length 2h. For this geodesic the singularity
of tr U at t = 2h can be computed by the extension of the method used to prove the
Poisson relation. This computation is given in section 3. Note that the angle through
which this height passes is either 1 or not of the form -.2 N
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The computation of singularity at 2h involves a series of reductions to operators
simpler than U(t). At this point the hypothesis that h is the shortest height is unnes-
sary. Instead assume that the height geodesic dropped from vertex x0 with primitive
length 2h is the only closed geodesic of that length. As in the proof of the Poisson
relation, tr U is treated in three pieces. Take q E CO*(R 2 ) to be equal to 1 in an e - b
ball around each vertex, e < d(X), 0 < b < e. Require that 0 is supported within e
-neighborhood of each vertex, and that in the e -neighborhood of each particular vertex
0 is radial in polar coordinates centered at that vertex. As in Chapter 5 , tr U is equal
to

tr U(t)[1 - q] + tr U(t - 3e)[-]U(3e)[0] + tr U(t - 3e)[O]U(3e)[1 - 0].

As a consequence of Lemma 5.4 the contribution of tr U(t - 3e)[q]U(3e)[] is always
smooth. Also, if ip is smooth on X with boundary and supported away from the
height geodesic in question then tr U(t)[1 - 4][0] and tr U(t - 3e)[q]U(3e)[1 - 0][b]
are also smooth near t = 2h. This reduces the problem to tr U(t)[1 - q]11 - 4] and
tr U(t - 3e)[0]U(3e)[1 - 0][1 -4] where 1 - 4' may be taken to have support very near
the height geodesic.

The goal is to give an explicit expression in terms of the Sommerfeld kernel which
captures the singularity at t = 2h. Consider U(t) applied to the initial data which
has singularities propagating along the height geodesic. In some sense, under U(t) the
singularities of this form experience the Sommerfeld kernel in corner at xo just once.
Otherwise they are propagated by the operator for free space or the operator for the
edge. This is the idea behind the replacement of U(t) by a Sommerfeld kernel.

In the case of tr U(t)[1 - 0] [1 - 4'] this motivating idea applies fairly directly. Let
p be reflection in R2 across the edge opposite xo. Say a is the angle formed by the
edges meeting at xo. Take U, to be the solution operator for the initial value problem
associated with the wave operator on the sector S with angle a. The operator U, has
the form

( F

82F )

where F(t - t', z, z') is the Sommerfeld kernel for the sector S. The thrust of Lemma 6.3
and Lemma 6.4 is that tr U(t)[1 - 0][1 - 4'] differs from

-tr [(U,(t, p(z), z') + U,(t, z, p(z')))[l - - ']]
by a smooth function in a neighborhood of t = 2h. Since the formula for U, is known
explicitly, this makes the computations in section 3 possible for tr U(t)[1 - 0][1 - 4].
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More complicated arguments are needed to reduce the computation of the singular-
ity of tr U(t - 3e)[q1]U(3e)[1 - ][1 - 0] to a computation of traces which essentially just
involve the Sommerfeld kernel and reflection. These appear in Lemma 6.6, Lemma 6.7
and Lemma 6.8 in this section.

The reduction argument for U(t)[1 - 0][1 - b] breaks into two parts. First consider
E CO*(X) supported in a small neighborhood of a point on the height geodesic. The

distribution tr U(t) is analysed in Lemma 6.3. In Lemma 6.4 the function q E C0**(X)
is even with respect to p and supported near the foot of the perpendicular from xo.

In these lemmas, the interest is in the singularity at t = 2h, so tr U(t) can be
replaced by any distribution which is equal to tr U(t) plus a smooth function.

Definition 6.2 Let u and v be distributions on Rt. Say u is equivalent to v if, in some
neighborhood of 2h, u - v is smooth. Denote this relation by u P v.

Lemma 6.3 Let zo be a point on the height geodesic from the vertex x0 to the edge E
and back. There exists a neighborhood 0 of zo such that for any q E CO (O), tr U(t)
is equivalent to tr ((-U,(t, z, p(z')) - U,(t, p(z), z')) j).

Proof: Denote by (o the vector '0 0. Let q E C0*(X) be a cutoff function with
support in a small neighborhoodof zo. Construct a pseudodifferential operator A which
is a microlocal cutoff near the points (zo, ±(o) in T*X. Specifically, let q1 E CO**(X)
be equal to one on suppo and have just slightly larger support than 0. Take ao(() E
Co*(R 2) to be homogeneous of degree zero for large C. Require that ao is supported in
a small conic neighborhood of {(o, -(o} for large (0, and that ao((o) is equal to ao(-(o)
which is equal to one. Then A is an operator with symbol a(z, () = qi(z)ao((). Let [A]
be the operator on H0 ED L2 mapping goEg 1 to Ago e Agi. The distribution tr U(t)[A][]
is equivalent to tr U(t)[4].

Now let b be small compared to the distance from zo to the boundary of X. If q and
A are appropriately chosen then WFU(b)[A][] has two components. Basically, the
singularities selected by A have moved distances ±b along the height geodesic. Thus it
is possible to select functions fl, f2 E COO (X) such that WF [fi]U(b)[A] [ ] is contained
in a small conic neighborhood of (zo + bCo, (o), and WF [f 2]U(b)[A][q] is contained in
a small conic neighborhood of (zo - b, -(o), and WF [1 - fi - f 2]U(b)[A][] is empty.
Then tr U(t)[A][4] is equivalent to

tr (U(t - b)[ f]U(b)[A][S]) + tr (U(t - b)[f 2]U(b)[A][S]).
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Denote [f,]U(b)[A][q] by F. The term U(t - b)F ultimately contributes the ex-,
pression -U,(t, p(z), z') in the statement of the lemma. To show that tr U(t - b)F1 is
equivalent to tr(-U,(t, p(z), z') note first that U(t)F differs from U.(t)[f 1 ]U,(b)[A][]
by a smoothing operator for t near h. Let c E R be such that c + b is greater than
Izo - xol but c + b - Izo - xoI is much smaller than d(X). Loosely, this means that at
the time c + b a geodesic starting near (zo, o) has gone through the corner at xo but
has not reached other corners.

There exists a pseudodifferential operator B such that WF(U(c)F1 - [B]U(c)F)
does not intersect a conic neighborhood of {(z, -(o) : z is on the height geodesic}.
Then tr U(t - b)F is equivalent to tr U(t - b - c)[B]U(c)F1. Further tr U(t - b -
c)[B]U(c)Fi is equivalent to

tr(-U,(t - b - c, p(z), z')[B]U,(c)[f]U,(b)[A][)])

which is equivalent to -tr U,(t, p(z), z')[].
The argument showing that tr U(t -b)F 2 is equivalent to -tr U.(t, z, p(z')) is similar,

and is omitted.
The set 0 can be taken to be any set contained in the region where the q in the

preceeding argument is equal to one. This completes the proof.

The set 0 above depends uniformly on zo. Suppose zo is at least a distance do from
xo and from E, do < d(X). Then the ball of radius -. about zo is an acceptable 0.

The next case to consider is that where zo is the foot of the perpendicular from xo to
E. This is treated by reflecting U(t) across E. That is, let Y be the polygon produced
by reflecting X across E and taking the union of X and the reflection. Let Uy(t) be
the operator U(t) for Y to distinguish it from U(t) for X. Consider the operator

V(t, z, z') = Uy(t, z, z') - Uy(t, z, p(z')).

By the uniqueness of U(t), if z and z' are in X then

V(t, z, z') = U(t, z, z').

Now let 4 E CO*(R 2) be supported near zo E E. If o = op, then tr U(t)[ ] is equal to
}tr V(t)[]. This is the key to the proof of

Lemma 6.4 Let zo E E be the foot of the height geodesic from xo to E. Then there
exists a neighborhood 0 of zo in R 2 such that for any 4 E CO (O) as above, tr U(t)[k]
is equivalent to

- tr ((U,(t, z, p(z')) + U,(t, p(z), z'))[])
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Proof: This is the same as the claim that tr V(t)[] is equivalent to

-tr ((U,(t, z, p(z')) + U,(t, p(z), z'))[]).

This can be verified by a straightforward application of the ideas in Lemma 6.3

Given these two lemmas, tr U(t)[1 - 4] [1- ib] can be computed from the Sommerfeld
kernel. The support of (1 - P) can be restricted to a very narrow band around the
height geodesic. There is a partition of unity {qS}, on supp(1-)(1-ib) with O , i > 1
satisfying the hypothesis of Lemma 6.3 and 0 1 satisfying the hypothesis of Lemma 6.4.
Thus tr U(t)[1 - 0][1 - b] is equivalent to

1 k
- tr (U,(t, z, p(z')) + U,(t, p(z), z')) [q 1] - tr (U,(t, z, p(z')) + U,(t, p(z), z')) [/.]

The next objective is to produce an similar expression for

tr U(t - 3e)[q1]U(3E)[1 - 0][1 - 4].

The contribution to the singularity of this term comes from a rather small region in X.
Let f E CO*(X) be equal to one on a neighborhood of

Q = {z : z is on the height geodesic and 2e - 6 < Iz - xol < 4e + 6}

for some 0 < 6 < e. Suppose f is also supported in a small neighborhood of Q. Then

tr U(t - 3e)[q]U(3e)[1 - f][1 - 0][1 - 0]

is smooth near t = 2h because the operator is smoothing. No singularities survive all
those cutoffs. Thus it suffices to consider tr U(t - 3e)[0]U(3e)[;] where [;q 1 is a
partition of unity for a small neighborhood of Q.

In particular, it is convenient to take 4 1, 02, 03 as follows. The support of 01 is
contained in a small neighborhood of

Q1 = {z E Q: Jixo - zI| < 2.5 + 6}.

The support of #2 is restricted to a neighborhood of

Q2 = {z E Q: 2.5 < ||xo - zI < 3.5}.
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Finally the support of 03 is contained in a small neighborhood of

Q3 = {z E Q: 3.5 < I|xo - zI}.

The virtue of this partition is that [g]U(3e)[0;] is relatively simple for each O;. Consider
initial data go D g1 and the function g(t) = 7r 1 U(t)(go e gi). Points in WFgo U WFg1
which are in a small conic neighborhood of Q x {(o, -(o} give rise to singularities of g(t)
which have already cleared the corner at t = 3e. Thus U(t - 3e) acts on [0]U(3f)[01]
essentially as the free space operator with reflection across E on one space variable.
The singularities of g due to points of WFgo U WFg in a small conic neighborhood of
Q2 x {(o, -o} are still in the region where Ois equal to one at t = 3e. This indicates that
U(t - 3e)[]U(3e)[ 2] is essentially U(t)[02]. Finally, singularities arising from points
in a conic neighborhood of Q3 x {(o, -Co} have not yet reached the corner at time 3E.
This means that [g]U(3e)[ 3] is essentially the free space kernel sandwiched between
[0] and [03I. Lemma 6.6, Lemma 6.7 and Lemma 6.8 make these observations rigorous.

Some notation is needed for the free space kernel with reflection in various variables.

Definition 6.5 Let V(t, z, z') be the standard solution operator for the initial value
problem associated to the wave operator in R2. Then

VR(t,z,z') V(t,z,p(z'))

and
RV(t, Z, Z') V(t, p(z), z').

For each of these Lemmas, let Oo E CO*(X) be equal to one on

{z E Q: 6 < ||xo - z1I < f}

and let 0' E CO*(X) be equal to one on the support of 00 . Let {1, q2, 03} be a partition
of unity as described above.

Lemma 6.6 Let 0' E CO (X) be equal to 1 on the support of q1. The distribution
tr U(t - 3e)[q]U(3e)[41 ] is equivalent to

-tr RV(t - 3e)[0][ko]V(-t + 3e)[q4']U,(t, p(z), z')[01]

Proof: This is simply a matter of chasing equivalences. In short,

tr U(t - 3e)[0]U(3e)[ 1 ]
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~ -tr RV(t - 3e)[0]][0o]U(3e)[4 1]

~ -tr RV(t - 3e)[][q']VR(-t + 3E)RV(t - 3e)[0o]U(3e)[ 1 ]

; -tr RV(t - 3e)[q][0o]VR(-t + 3e)[14']U,(t, p(z), Z')[q1]

Lemma 6.7 The distribution

tr U(t - 3e)[4]U(3e)[0 2]

-tr U,(t, P(Z), Z')[021.
is equivalent to

Proof: This is a corollary of the proof of Lemma 6.3.

Lemma 6.8 The distribution

tr U(t - 3e)[]U(3e)[0 3]

is equivalent to

Proof: Again, one just chases equivalences, starting with

tr U(t - 3e)[0]U(3e)[4 3] ~ tr U(t - 3e)[0][0o]V(3e)[0 3].

Then let 0' E CO**(X) be equal to 1 on a neighborhood of {z E Q : 3c - 26 <
4r + b}, and also on a neighborhood of supp03. Then the equivalences

tr U(t - 3e)[0]V(3e)[03]V(-3e)V(3e)[0'3

~ tr V(3e)[ 3 ]V(-3e)V(3e)[0'S]U(t - 3E)[0][0o]

are -tr V(3f)[3V(-3e)[0']U,(t, p(z), z')[ah[t0]

are straightforward.

11z-xo11<
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The advantage of the equivalent distribution over the original in these Lemmas
is that, for these purposes, RV(t - 3e)[q][0']V(-t + 3e) and V(3e)[03 ]V(-3e) are
pseododifferential operators with simple principal symbol. The operator U,(t, p(z), z')
is a matrix of conormal distributions on the regions in question. Thus the calculus
of conormal distributions can be brought to bear on the problem of computing the
singularity of tr U at t = 2h.

6.3 The singularity arising from the shortest height

In this section attention is restricted to triangles X having one height shorter than
the others. The equivalent expressions for ir U derived in the last section are used to
compute the leading term of the singularity of tr U at t = 2h. Here 2h is the length
of the shortest height geodesic. There are two cases in which X has a unique shortest
height. Either the angle where the shortest height originates is 1 or it is some a which is
not of the form I. In fact, a is greater than 1 because the unique shortest height must
be dropped from the unique largest angle of the triangle X. Attention is restricted
to the shortest height geodesic in order to ensure that U,(t) will have a convenient
expression along the geodesic near t = 2h. Here U, is the solution operator for the
sector S with angle a, the largest angle of X.

Let x0 be the vertex of the largest angle. Denote by E the opposite edge. Once
again, p is the reflection across the line containing E.

If the largest angle a is equal to 1, then U,(t, p(z), z') is a sum of rotations and
reflections of the standard solution operator in free space. From the explicit expressions
for U,(t, p(z), z') the leading term of the singularity at t = 2h of tr U(t, p(z), z') is
computed by the method of stationary phase. This is Lemma 6.11.

The situation is more subtle if a is not equal to 1. In this case, position the triangle
in R 2 with xo at the origin. Let one edge containing xo lie along the positive x-axis and
the other along the line containing (r cos a, r sin a). The shortest height geodesic forms
an angle P with the x-axis. The fact that a is the unique largest angle of X guarantees
that if 6 and 6' are sufficiently near # then 10 ± 6'+ 2naI is not equal to ir. Consider
points z" and z' E S in a small neighborhood of a point zo = (ro cos /, ro sin#) on the
height geodesic. Then p(z") is equal to (r cos 6, r sin 6) with 6 near # and r + r' near 2h.
Further, 16 ± 6' + 2naI is not equal to 7r. Consider the Sommerfeld kernel F(t, z, z') in a
neighborhood of the point (t, z, z') = (2h, p(z"), z'). Recall that in such a neighborhood
F can be written as the sum of a smooth function and a function Xf2. Here x is the
characteristic function for the set {(t, r, r') : t > r + r'}. Thus near (2h, z", z') the
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entries in the matrix U,(t, p(z"), z') are conormal distributions with kernels available
explicitly from Xf2. Lemma 6.10 gives the highest order term of the singularity at
t = 2h of tr U.(t, p(z), z') where q is supported near the height geodesic. This is
computed by applying the method of stationary phase to -F(t, p(z), z'), a conormal
distribution on the region in question.

The rest of the effort in the section goes into showing that the terms

tr RV(t - 3e)[0][/4]V(-t + 3e)[14']U,(t, p(z), z')[01]

and
tr V(3r:)[03]V(-3e)[0']U,(t, p(z), z')[0][0]

from section 6.2 have singular parts at t = 2h much like those of tr U,(t, p(z), z')[01] and
tr U,(t, p(z), z')[40io] respectively. In the regions under consideration, the operators
RV(t-e) 40o] VR(-t+3e) and V(3e)[ 3]V(-3E) are pseododifferential operators. Their
principal symbols can be computed from Lemma 6.12. For the purposes of the trace
computation, the principal parts of the two operators act like cutoff functions on the
space variables. The actual computations of the leading term at t = 2h for the cases
a = - and a = 1 conclude the section.

The Sommerfeld kernel for the angle a $ i has, as mentioned, singular part
Xf2(t, r, r', 0, 9') in a neighborhood of (2h, p(z), z) if z is on the shortest height geodesic.
Consequently the term a F(t, r, r', 9, 9') in such a neighborhood can be written

(27r)- 1 j ei(trr')f2(r + r', r, r', 9, 9') dr + smoother terms

Here

f 2 (t, r, r', 9, 9') = (27r)- 1 j (L(, 9 - 9') - L(q, 9 + 0'))(t 2 - r2 - r'2 - 2rr' cosh 7) +/112 d77

with L(77, 9) as defined in section 2.1. The value of f2 at (2h, p(z), z) becomes important
in later computations.

Lemma 6.9 The value of f 2(2h, r, 2h - r, 8, P) is

(27r)~l(L(0, 0) - L(0, 2#))(2r(2h - r))~11 2 lim [(a - cosh ) 1 /2 d7.
a-++1JI

The simplest term to compute in tr U(t) at t = 2h is the term tr U(t)[] where e
is smooth in a small neighborhood of a point on the shortest geodesic. Take X to be
positioned as above. Then it makes sense to speak of U,(t, p(z), z')[4]. The reflection
p is, in these coordinates, reflection across the line Re(ze-p) = 2h.
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Lemma 6.10 The distributions tr U,(t, p(z), z')[] and tr U,(t, z, p(z')) have a singu-
larity at t = 2h with leading term

C J (r, /) dr h-1/2(L(0, 0) - L(0, 2#3))(t - 2h) /2

where C # 0 is the same in both cases, independent of the geometry and independent

of 0.

Proof: Consider first

Sei(t-r-r')f 2 (r + r', r, r', 9, ')4(r', 9') d-

restricted to z = p(z'). Let (R(r, 9), 0(r, 9)) be the point p(r cos 0, r sin 0) in polar
coordinates. Then

U,(t, p(z), z)q!(z) dz =

= eir(t-R(r,0)-r)f2 (r + R(r, 9), R(r, 9), r, e(r, 9), 0)q$(r, 9) dr dO rdr.

Application of the method of stationary phase in 9 results in the top order term

J~00 ~i- 2h - r f 2 (2h, r, 2h - r, $, #)q(r, #)e~4ei-(t-2)dr rdr +

0027r 1/2 2hr - 1/2 i rt2
- f 2(2h, r, 2h - r, f, l) (r,/ )e 4e-r(t-2)drrdr.

1 r (2h - r)

Substituting the value of f2 from Lemma 6.9 proves the result for U.(t, p(z), z). The
computation for U(t, z, p(z)) is the same.

The result in Lemma 6.11 is analogous and is proved in an analogous way. The
Sommerfeld kernel for the sector with angle 1 is

(27r)-' (t2 - r2 - r'2 + 2rr' cos(9 - 9' - n7r))+1/ -

n=,+

(t2 - r 2 - r 12 + 2rr' cos(O + 0' - nir) + /
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The term producing the singularities corresponding to the height geodesic is

(27r)- 1 (t 2 - r2 - r'2 + 2rr' cos(O - 0' - r))+1/2 = (27r)-'(t 2 - I|z + z'112) +1/2

This follows from the fact that Ip(z) + z| |= 2h for any z along the height geodesic.
This operator can be expressed as the sum of two Fourier integrals,

A' + B' where

A = (27r)- 2  ei(<z-z',t>+tIeI(il(l)n d

and

B (27r)- 2 i.(<Z-Z't>-titJ)(i1 1)" d(,

n = -1, 0, 1. By A' denote Ao with z' replaced by -z'. The operator B' is Bo with z'
replaced by -z'.

Writing 6 in polar coordinates (r, b) and applying the method of stationary phase
to 0 yields

(27r)- 2 j 1/2z + z'-1/ 2 (ei-(+Iz+z'-i + eir(t-Iz-z'+ ) dr

2 I
for the principal part of A'. The complex conjugate of this is the principal part of B'.

In this form A' and B' can be plugged into the method of Lemma 6.10. The result
is

Lemma 6.11 Let q be as in Lemma 6.10, but let X be a right triangle and a -

Then tr U(t, p(z), z')[k] and tr U(t, z, p(z'))[] have singularities at t = 2h. In both
cases the leading term of the singularity is

K J (r, P) dr ((t - 2h + i0)- 1 + (t - 2h - iO)~').

The constant K is equal for both cases. It is independent of 4 and of the geometry of
the situation.

The last two Lemmas amount to computations of the leading term in the singular-
ities of tr U(t)[1 - 0][1 - 0] and tr U(t - 3e)[q]U(3e)[4 2] in the notation of section 6.2.
The terms tr U(t - 3e)[q]U(3e)[ 1] and tr U(t - 3e)[0]U(3e)[0 3] necessitate a closer ex-
amination of the operator [0 2]V()[4]V(-s)[01]. Here V is the free space solution
operator, as in the previous section. The variable s is taken to be in some range [so, s1]
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with so > 0. Further, the support of 4 E Co(R 2 ) is contained in a set with diameter
less than so. Similarly, both 41 and 02 are supported in the same set 0, also having di-
ameter less than so. This guarantees that, under geodesic flow, points in 0 are mapped
outside 0 by time 2s.

Let An and B, be as above. For n E {-1, 0, 1}, the operators A,(t) and B,(t) are
Fourier integral operators whose canonical relations XA(t) and XB(t) are homogeneous
canonical graphs. For s > 0 the operator V(s) is given by

(Ao + Bo)(s) (A., - B-1)(s)
(A1 - B1)(s) (Ao + Bo)(s) )

The operator V(-s) is

( (Ao + Bo)(s) (-A-, + B_1)(s)
(-A 1 + B1)(s) (Ao + Bo)(s) }

Egorov's Theorem, with parameters, cf H6rmander [1] applies to

[02]V(S)[0]V(-S)[01]

to give

Lemma 6.12 The family of operators

[4'2 1V(s)[4]V(-s)[b1]

is equal to a matrix family of pseudodifferential operators

[01PI(S) P12(s) a matrix of
2I P21() P22(s) +Ismoothing operators

such that
i. The operators pi, are smoothly parameterized by s.
ii. The principal symbol of pu and P22 is

(0 0 XA(s) +4' 0 XB(s))

in rectangular coordinates (z, () E T*(R 2).

iii. The principal symbol of P12 is

2i(() 0 XB(.) - 4 0 XA(s))-
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iv. The principal symbol of P21 is

a(() o XB(s) - 0 XA(.))-

Here a(() E C (R 2 ) is equal to zero in a neighborhood of C = 0, and equal to one
outside another neighborhood of ( = 0.

Extend the pseudodifferntial operators pi, above to pseudodifferential operators on
distributions of R 2 x R 2 in the following manner. Let a'((, (') E C**(R 2 x R2) be
homogeneous of degree zero for large (4, 4'). Suppose a'((, (') is equal to zero in a
conic neighborhood of 0' = {((, (') : C = 0, j('1 = 1}. Stipulate further that for large
((, (') the function a' is equal to one outside a small conic neighborhood of 0'. Then
multiplication of the symbol of pii by a'((, (') results in a symbol in (z, z', C, ('). Using
this and mimicking the computation in Lemma 6.10 yields

Lemma 6.13 Suppose the angle a is not equal to '. The leading term in the singularity
at t = 2h of

tr RV(t - 3e)[qq']V(-t + 3e)[0']U,(t, p(z), z)[01]

is
C J 1(r) dr h~1/ 2(t - 2h)+ 2

Here C is equal to the C in Lemma 6.10. The function $k1(r) is equal to q1 (r, fl) for
r E (2e + 6, oo) and equal to 0(3c - r, P) for r E (0, 2e + 6).

Proof: Consider the matrix of pseudodifferntial operators given by

[4']RV(t - 3e)[00'k]VR(-t + 3E)[4]

extended to act on R2 x R 2 by a'. Denote this by

P(t) = P 1 2P21 P22

The operator

Pf bU,(t, pb), Z')[o1]

differs by a smoothing operator from
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RV(t - 3e)[q0q']VR(-t + 3e) [q']U.(t, p(z), z)[01~]

because I(I is equal to |'I in WF U,.
This reduces the proof of to the computation of the leading terms of

a 02

tr (P1(t)NF(t, p(z), z')01 + Pn(t) &2 F(t, p(z), z')01)

and

tr (P21(t)F(t, p(z), z')Ol + P2 2 (t) F(t, p(z), z')01

at t = 2h. Here F is the Sommerfeld kernel for the sector S.
First compute tr P1(t)A F(t, p(z), z')0 1. This is equivalent to

tr P11(t) J eir(t-R(rO)-r')f2(R(r, 9) + r', R, r', O(r, 9), 9') dr.

Note that the restriction of the principal symbol of Pu to the conormal bundle associ-
ated with q 1 aF(t, p(z), z')0 1 is just 00' 0 XR. Here XR is the relation

{(z, C, z', c'): a geodesic of length t joins (z, () and (p(z'), p(('))}.

Restricting the variables to r = r', 9 = 9' results in the expression

f 1 000 o a(r, 9)eir(t-R(rO)-r) f 2(R + r, R, r, 0, 9) dr d9 rdr (6.1)

for the leading term of the singularity of the trace. The map o takes a point (r, 0) to
(R(r + t, 9), 0(r + t, 9). As in Lemma 6.10 applications of the method of stationary
phase in the 9 variable results in the leading term of the singularity. The leading term
is equal to

1C 1(r) dr h 1 /2(L(O, 0) - L(0, 2#))(t - 2h) /2

The computation of tr P2 2(t)-F(t, p(z), z') is identical to this. For the computations
concerning tr P1 2(t)-F(t, p(z),z') simply note that the restriction of the principal

symbol of P1 2 to the conormal bundle associated with 0'q 9F(t, p(z), z')0 1 is qLOOOXR.

This reduces computation to the same integral 6.1.
Likewise, the restriction of the principal symbol of P2 1 to the conormal bundle asso-

ciated with the conormal distribution O'F(t, p(z), z')0 1 is OqOv' o XR. Thus the leading
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term of tr P21F(t, p(z), z') 1 is, once again, given by 6.1. This completes the proof.

An entirely analogous result is true for the right triangle. The proof is virtually the
same and so is omitted.

Lemma 6.14 The leading term in the singularity at a t = 2h of

tr RV(t - 3e)[S']V(-t + 3e)[q4']U,(t, p(z), z')[0 1]

is

K J 01(r) dr ((t - 2h + i0)~1 + (t - 2h - i)-').

The computations for tr U(t - 3e)[q]U(3e)[ 3] are related to the ones above, though
somewhat simpler. The statements of the results follow. The proofs are omitted.

Lemma 6.15 If the angle of the sector S is not equal ot Z, then the leading term in2'
the singularity at t = 2h of

tr V(3e)[0 3]V(-3e)[q0]U,(t, p(z), z')[00o]

is

C J 3(r) dr h-1/2(L(0, 0) - L(0, 2/3))(t - 2h)+1/2

The constant C is the same as in the previos Lemmas. The function 03 (r) is equal to
03(r + 3e, #) for r E (0, e/2 + 6), and equal to 0(r, fl) for r E (e/2, oo).

Lemma 6.16 If a is equal to E, the singularity at t = 2h of

2$2 tr V(3e)[03]V(-3,E)[0]U,(t, p(z), z')[0]

is

K J03(r) dr ((t - 2h + i0)-1 + (t - 2h - iO)~').

Note that these Lemmas can all be assembled to give the leading term of tr U at
t = 2h for the triangle X. Recall that tr U was equivalent to

3

tr (U(t)[1 t ][1 -eP] + U(t - 3e6)[2]U(3.)[0]

in the notation of section 6.2.
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Theorem 6.17 Suppose X is not a right triangle, and suppose X has one height h-
shorter than the others. Then the singularity of tr U at t = 2h has leading term

-2C h'/ 2 (L(0, 0) - L(0, 2#))(t - 2h)-1/2

Here C is a constant independent of X and L(7, 0) is the function from section 3.1.

Proof: Lemma 6.3, Lemma 6.4 and Lemma 6.10 imply the equality of the leading term
of tr U(t)[1 - 0][1 - 0] and of

-2C (1 - 4)(r, /) dr h~1/2 (L(0, 0) - L(0, 2/8))(t - 2h)-1/2

The equaliaty

j 02(r, f) dr + j1(r) dr + fIb 3 dr = 2J (r)dr

can be deduced from the definitions of 01 and 03 in Lemma 6.13 and Lemma 6.15. But
tr Z U(t - 3e)[0]U(3e)[0;] has the leading term

-C 42 (r, P) + 01(r) + 03(r) dr h-1/ 2 (L(0, 0) + L(0, 2,8))(t - 2h) + 1/2

Combining this with the leading term of tr U(t)[1 - 0][1 - 4] completes the proof of
the Theorem.

The same manipulations of the terms contributing to the leading singularity of
tr U(t) proves the result when X is the right triangle.

Theorem 6.18 Suppose X is a right triangle and h is the height from the right angle
to the hypotenuse. The singularity of tr U at t = 2h has the leading term

-2hK ((t - 2h + i0)' + (t - 2h - iO)-').
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