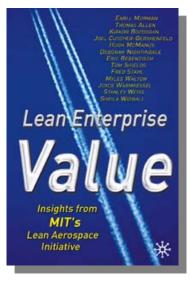




# Coupling Lean Thinking and Systems Thinking at the Enterprise Level

**Prof. Deborah Nightingale** 


Dr. Ricardo Valerdi

Lean Aerospace Initiative Massachusetts Institute of Technology

> IERC Orlando, FL May 22, 2006



# **The 21st Century Enterprise Challenge**



Aerospace has four core missions:

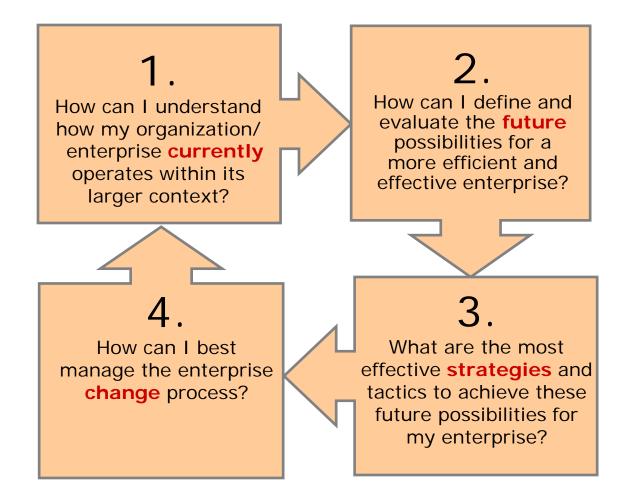
- Enabling the global movement of people and goods
- Enabling the global acquisition and dissemination of information and data
- Advancing national security interests
- Providing a source of inspiration by pushing the boundaries of exploration and innovation

These missions will never be routine and require the best technology and the best organizations

# These enterprise level capabilities are at the intersection of lean thinking and systems thinking.

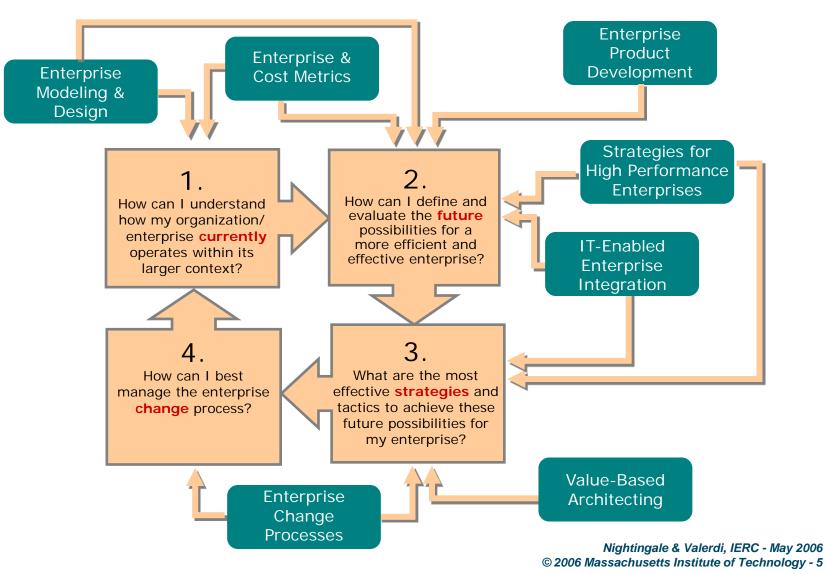


# Lean Aerospace Initiative Formed in 1993


- Industry
  - Airframe, engine, avionics, missile and space companies
- Government
  - Air Force agencies, system program offices, and headquarters
  - NASA, Army, Navy
  - Department of Defense
- Academia
  - MIT Schools of Engineering and Management
  - Educational Network (2003)

# A national consortium for research, implementation and diffusion of lean practices






#### Four Grand Questions Derived from the Transformation Imperative



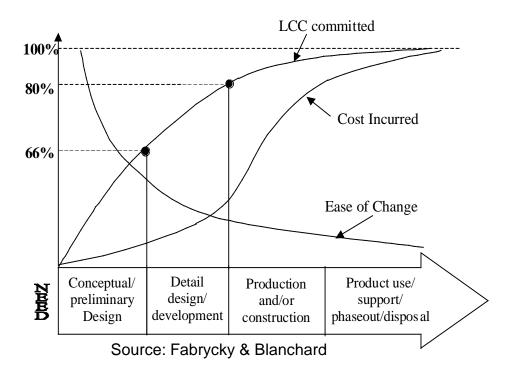


#### Seven Research Clusters to Answer the Four Grand Questions





# Lean Engineering: Doing the Right Thing Right


- Creating the right products...
  - Creating product architectures, families, and designs that increase value for all enterprise stakeholders.
- With effective lifecycle & enterprise integration...
  - Using lean engineering to create value throughout the product lifecycle and the enterprise.
- Using efficient engineering processes.
  - Applying lean thinking to eliminate wastes and improve cycle time and quality in engineering.

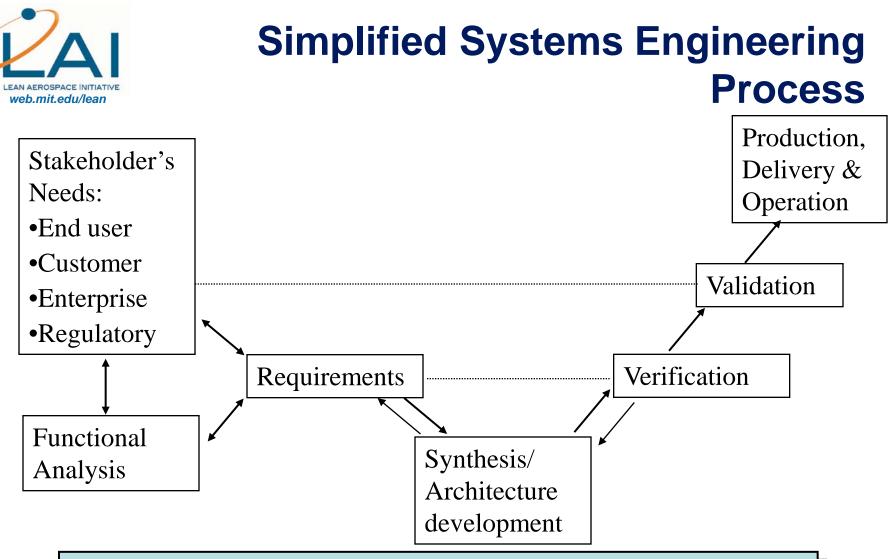
Source: McManus, H.L. "Product Development Value Stream Mapping Manual", LAI Release Beta, April 2004

#### Framework based upon a decade of Lean Aerospace Initiative research & industry/government implementation



# **Engineering Drives Cost**




"Fuzzy Front End" Challenges

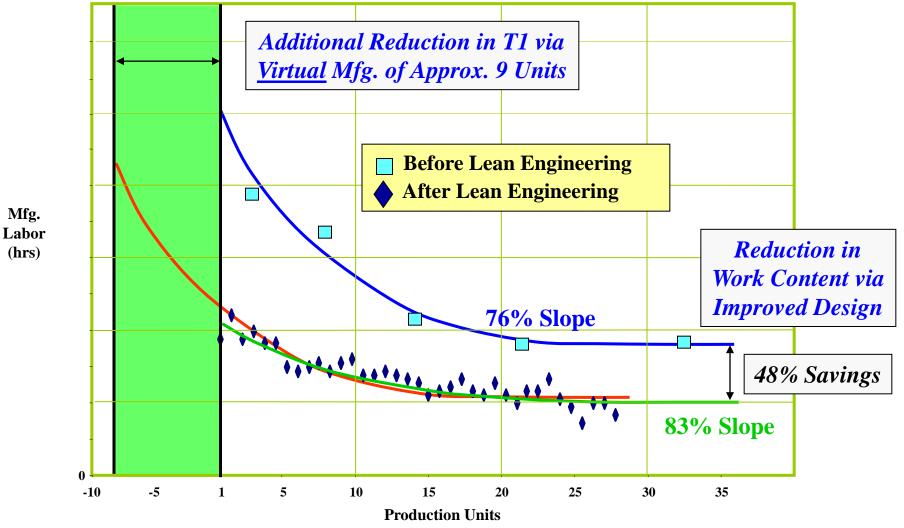
Understanding what the customer values

Deciding which product to pursue from amongst many opportunities

Selecting the right product concept

Early decisions are critical - Disciplined lean systems engineering process is essential

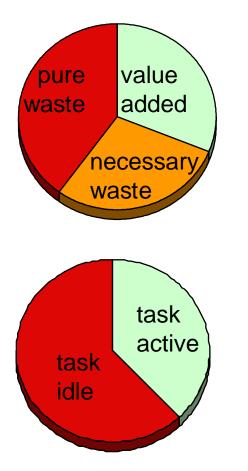



Systems engineering process is applied at multiple levels: system, subsystem, component.

Source: Adapted from Jackson, S. Systems Engineering for Commercial Aircraft

Source: "Lean Engineering", LAI Lean Academy™, V3, 2005




# Lean Engineering Reduces Manufacturing Labor



Source: "Lean Engineering ", John Coyle (Boeing), LAI Executive Board Presentation, Jun 2000



# Waste Exists in Engineering



#### Effort is wasted

- 40% of PD effort "pure waste", 29% "necessary waste" (workshop opinion survey)
- 30% of PD charged time "setup and waiting" (aero and auto industry survey)

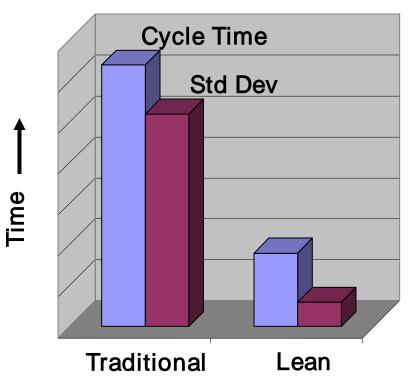


- 62% of tasks idle at any given time (detailed member company study)
- 50-90% task idle time found in Kaizentype events

Source: McManus, H.L. "Product Development Value Stream Mapping Manual", LAI Release Beta, April 2004 Source: "Lean Engineering", LAI Lean Academy™, V3, 2005



# Applying Lean Fundamentals to Engineering


| Lean Thinking Steps                                                                                  | Manufacturing        | Engineering           |
|------------------------------------------------------------------------------------------------------|----------------------|-----------------------|
| Value                                                                                                | Visible at each step | Harder to see         |
|                                                                                                      | Goal is defined      | Goal is emergent      |
| Value Stream                                                                                         | Parts and materials  | Information and       |
|                                                                                                      | flows                | knowledge flows       |
| Flow                                                                                                 | Iterations are waste | Planned iterations OK |
|                                                                                                      |                      | Must be efficient     |
| Pull                                                                                                 | Driven by takt time  | Driven by enterprise  |
|                                                                                                      |                      | needs                 |
| Perfection                                                                                           | Process repeatable   | Process enables       |
|                                                                                                      | without errors       | enterprise            |
|                                                                                                      |                      | improvement           |
| Source: McManus, H.L. NProduct Development Value Stream Mapping Manual (LAI Release Beta, April 2004 |                      |                       |

Key step to application of lean thinking is the Product Development Value Stream Mapping- PDVSM



# Results of Applying Lean to Engineering Release Process

- Value stream mapped and bottlenecks found
- Process rearranged for sequential flow
- Waiting and delays removed



- Reduced Cycle time by 73%
- Reduced Rework of Released Engr. from 66% to <3%</p>
- Reduced Number of Signatures 63%

Source: Lean Aerospace Initiative



# Lean Applies to Development of Many Types of Products

Value-stream based rationalization of processes yields impressive results across a range of environments:

- Aircraft structure drawing release: 75% cycle time, 90% cycle time *variation*, and 95% rework rate reductions
- Satellite environmental testing: 41% cycle time, 58% labor, 76% material, and 92% travel reductions
- Printed circuits: 23% design cycle time reduction
- Avionics: 74% change order cycle time reduction

Combined with technological changes at bottleneck processes, results can be even more dramatic:

- Electronic modules: increase yield from 10% to 90%
- IC design: 70% cycle time, 80% cost reductions



# Systems Engineering and Lean Thinking

- Systems Engineering grew out of the space industry in response to the need to deliver technically complex systems that worked flawlessly upon first use
  - SE has emphasized technical performance and risk management of complex systems.
- Lean Thinking grew out of the Japanese automobile industry in response to the need to deliver quality products with minimum use of resources.
  - Lean has emphasized waste minimization and flexibility in the production of high quality affordable products with short development and production lead times.

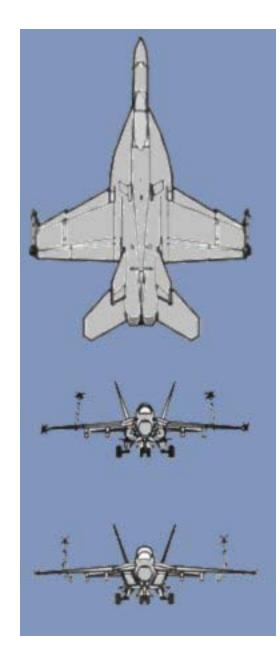
# Apparent differences overcome by common objectives, emerging vision of lean enterprise



# Lean and SE Commonalities

- Lean and Systems Engineering: processes that evolved through experience and practice
  - Shaped by different contexts with different areas of emphasis
  - Bodies of Knowledge (BOKs) based upon observed best practices
- Both emphasize process as a key enabler
- Both have the objective of better delivering best lifecycle value to the customer (end user)
  - Lean: right product at the right time and cost
  - SE: right product that meets customer requirements on schedule and budget

# Can the combination of Lean and SE BOKs lead to a more effective and efficient SE approach?




#### F/A-18E/F Systems Engineering

- Rigorous Requirements Flowdown
- Disciplined Technical Reviews
- Configuration / Data Mgt.
- Systems Cost-effectiveness/
- LCC Trade studies
- Producibility / DFMA
- Risk Management / TPM
- Program Independent Audits
- Reliability/ Maintainability/Safety
- Human factors engineering
- Integrated Logistics

#### IPPD Environment

Source: Al Haggerty, "The F/A-18E/F Super Hornet as a Case Study in Value Based Systems Engineering", INCOSE Panel on Lean Systems Engineering, June 2004





# The Process

#### HAND PICKED LEADERS

#### INTEGRATED MANAGEMENT CONTROL SYSTEM

#### **INTEGRATED PRODUCT DEFINITION**

#### SYSTEMS ENGINEERING

#### **CONFIGURATION CONTROL**

#### LEADERSHIP RISK MANAGEMENT PRINCIPLES WEIGHT MANAGEMENT

•CUSTOMER SATISFACTION
•OPEN, HONEST COMMUNICATION
•SUPPLIERS AS PARTNERS
•TEAMWORK
•PERFORMANCE TO PLAN

### **CO-LOCATED TEAMS**

# EARNED VALUE MGT. SUPPLIER INTEGRATION

Source: Al Haggerty, "The F/A-18E/F Super Hornet as a Case Study in Value Based Systems Engineering", INCOSE Panel on Lean Systems Engineering, June 2004



# Lean Enterprise Principles Applied to F-18E/F



- Continuous Improvement
- Optimal First -Unit Delivered Quality
- Metrics Tracked Weekly Across the Extended Enterprise
- Seamless Information Flow (USN, NGC, GE Engines, Suppliers)
- Decisions Made at the Lowest Level of WBS Via "Delegated" RAA
- Joint Configuration Change Board
- Disciplined Weekly Earned Value Mgt. & Reporting



Source: Al Haggerty, "The F/A-18E/F Super Hornet as a Case Study in Value Based Systems Engineering", INCOSE Panel on Lean Systems Engineering, June 2004



# THE PROCESS WORKS!

- 42% Fewer Structural Parts
- The Parts Fit the First Time



- 1029 Lbs. Below Specification Weight
- Reduced Engineering Change Activity
- Development Completed On Budget- \$4.9B
- 1<sup>ST</sup> Flight Ahead of Schedule!


#### Achievement Recognized:1999 Collier Trophy!


Source: Al Haggerty, "The F/A-18E/F Super Hornet as a Case Study in Value Based Systems Engineering", INCOSE Panel on Lean Systems Engineering, June 2004



# LAI EdNet Lean SE Working Group

- SE processes recognized as sound, but not always applied effectively
- "Lean" provides an approach to maximize value while minimizing wasted effort
- Synergies of lean practices and SE practices are being explored
- Working name is "Value Based SE"



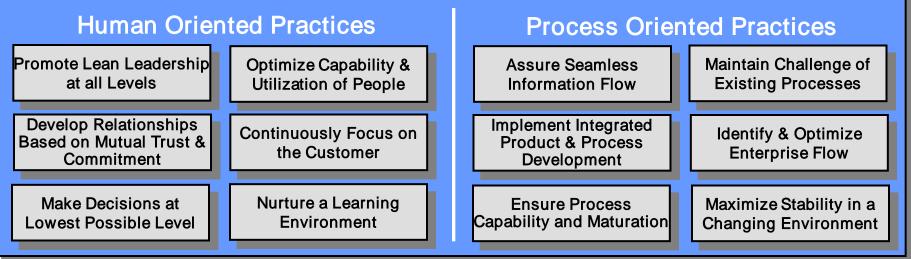


#### Possible WG outputs

- Lean SE Learning community
- Value based Systems Engineering Framework
- Course materials
- Research



# Value Based Systems Engineering


- Emphasize common objectives for Lean and SE: Value
  - Overarching objective of value based systems engineering is to deliver the expected value to the system stakeholders
  - Critical functions are those that create/deliver that value
  - Measures of success are based on value created/delivered to stakeholders
- Value based SE is an enterprise level function
- Value based SE must be scaleable, from systems of systems to major subsystems
- Software Engineering community is already making progress
  - "Value-Based Software Engineering" by Biffl, S., Aurum, A., Boehm, B., Erdogmus, H., Grunbacher, P., (Eds.), Springer, 2005.

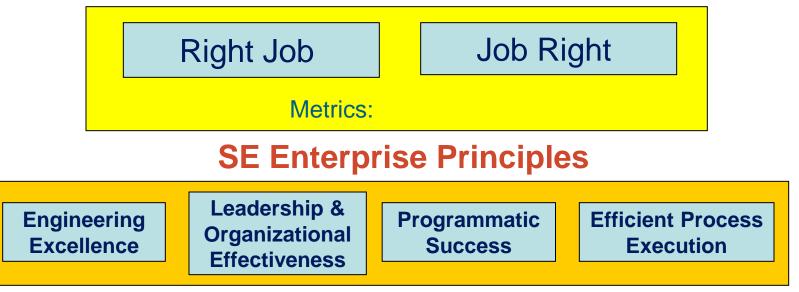


#### - Lean Enterprise Model A Tool for Benchmarking Lean Enterprises

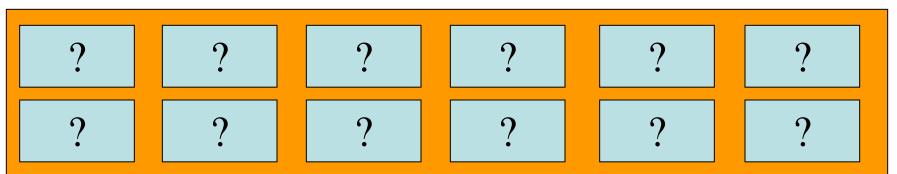
# Meta-PrinciplesResponsiveness to ChangeWaste MinimizationEnterprise PrinciplesRight thing, in the right place, at the right time, in the right quantityEffective relationships in the value chainContinuous improvementOptimal first unit delivered quality

#### **Overarching Practices**




**Enabling and Supporting Practices** 

Source: web.mit.edu/lean




# Lean SE Tool: Draft Value Based Systems Engineering Model

#### **Meta Principles**



#### **Overarching Practices**

